
1

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ

ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ

COMPARISON AND ANALYSIS OF CLASSIFICATION METHODS ON

MULTIVARIATE DATASETS WITH PYTHON

Διπλωματική Εργασία

του

Κουβαρά Σωκράτη

Θεσσαλονίκη, Μήνας 2019

2

COMPARISON AND ANALYSIS OF CLASSIFICATION METHODS ON

MULTIVARIATE DATASETS WITH PYTHON

Κουβαράς Σωκράτης

Πτυχίο Μαθηματικών, ΑΠΘ,2014

Διπλωματική Εργασία

υποβαλλόμενη για τη μερική εκπλήρωση των απαιτήσεων του

ΜΕΤΑΠΤΥΧΙΑΚΟΥ ΤΙΤΛΟΥ ΣΠΟΥΔΩΝ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ

ΠΛΗΡΟΦΟΡΙΚΗ

Επιβλέπων Καθηγητής

Σαμαράς Νικόλαος

Εγκρίθηκε από την τριμελή εξεταστική επιτροπή την ηη/μμ/εεεε

Ονοματεπώνυμο 1 Ονοματεπώνυμο 2 Ονοματεπώνυμο 3

...................................

Κουβαράς Σωκράτης

...................................

3

Περίληψη

Σκοπός αυτής της διπλωματικής εργασίας είναι η μελέτη των διάφορων

αλγορίθμων κατηγοριοποίησης, η κατασκευή ενός προβλεπτικού μοντέλου για κάθε

αλγόριθμο με την βοήθεια της γλώσσας προγραμματισμού Python και βιβλιοθηκών

μηχανικής μάθησης (Scikit , imblearn , XGBoost) και η σύγκριση της απόδοσης αυτών

των μοντέλων.

Η αλγόριθμοι που θα μελετηθούν είναι :

1. Νευρωνικά δίκτυα (Multilayer Perceptron),

2. K πλησιέστεροι γείτονες (Κ-ΝΝ)

3. Naive Bayes

4. Boosting (Adaboost και XGBoost),

5. Δέντρα απόφασης (CART)

6. Support Vector Machines

7. Random Forest.

Για την κατασκευή ενός μοντέλου για κάθε αλγορίθμου, θα χρησιμοποιηθούν

σύνολα δεδομένων από το UC Irvine Machine Learning Repository.

Λέξεις Κλειδιά:

XGBoost, Support Vector Machine, SVM, Adaboost, Random Forest, K-NN,

Decision Trees, boosting, bagging , Neural Network, Multilayer Perceptron, Naïve Bayes

4

Abstract

The purpose of this research is the use and study of the variety of available

Classification methods, building model with the use of Python and Machine Learning

packaged (Scikit, Imblearn and XGBoost) and finally the comparison of those algorithms

in terms of speed and accuracy, where the metric of accuracy will be determined based

on the nature of the data for each dataset

The algorithms that are going to be studied are :

1. Neural Networks (Multilayer Perceptron),

2. K nearest neighbors (Κ-ΝΝ)

3. Naive Bayes

4. Boosting algorithms (Adaboost και XGBoost),

5. Decision Trees (CART)

6. Support Vector Machines

7. Random Forest (Bagging Algorithm)

The datasets that are going to be used where taken from UC Irvine Machine

Learning Repository and are available online.

Keywords:

XGBoost, Support Vector Machine, SVM, Adaboost, Random Forest, K-NN,

Decision Trees, boosting, bagging , Neural Network, Multilayer Perceptron, Naïve Bayes

5

Table of Contents
List of Figures .. 7

List of Tables .. 8

1 Introduction ... 9

1.1 Problem definition ... 9

1.2 Objectives .. 9

1.3 Thesis Structure ... 9

2 Background ... 12

Ensemble Methods ... 12

2.1 AdaBoost .. 12

2.2 XGBoost (Gradient Boosting Framework) .. 13

2.3 Random Forest ... 13

2.4 Decision Trees (C. A. R. T implementation) ... 14

2.5 Naïve Bayes .. 15

2.6 Support Vector Machines ... 16

2.7 Multilayer Perceptron (Neural Networks Framework) .. 18

2.8 K-NN .. 20

3 Case Study: Immunotherapy and Cryotherapy datasets .. 21

3.1 Introduction .. 21

3.2 Preprocessing .. 21

3.2.1 Data Merging .. 21

3.2.2 Data Transformation – Data Cleaning .. 21

3.2.3 Class balancing... 22

3.2.4 Outlier Detection ... 23

3.3 Exploratory Data Analysis ... 24

3.3.1 Pairplot Visualization.. 24

3.3.2 Univariate Analysis .. 24

3.3.3 Boxplot Analysis - ‘Violinplot Analysis’ ... 25

6

3.3.4 Correlation Matrix .. 26

3.4 Results .. 27

4 Case Study: APS Failure at Scania Trucks Dataset .. 30

4.1 Introduction .. 30

4.2 Preprocessing .. 31

4.2.1 Removing insignificant rows ... 31

4.2.2 Filling the missing values .. 31

4.2.3 Dimensionality Reduction.. 32

4.2.4 Class balancing... 33

4.3 Results .. 33

5 Case Study: S.C.A.D.I DATASET .. 35

5.1 Introduction .. 35

5.2 Exploratory Data Analysis ... 35

5.3 Preprocessing .. 36

5.4 Results .. 39

6 Conclusions ... 41

Bibliography ... 42

7

List of Figures

Figure 1: Random Forest .. 14

Figure 2 : Support Vectors ... 16

Figure 3 : Margins of SVM .. 17

Figure 4 : An artificial neuron .. 18

Figure 5 : A Multilayer Perceptron .. 19

Figure 6 : 3-NN and 5-NN example for unlabel instance (green dot) 20

Figure 7 : Overview Table of resulting dataset .. 22

Figure 8 : Count plot of joined dataset classes ... 22

Figure 9 : Count plot of Surface Area for Cryotherapy and Immunotherapy Dataset 23

Figure 10 : Countplot of Area feature in joined dataset ... 23

Figure 11 : Seaborn's pairplot ... 24

Figure 12 : Distribution plots for every feature colored by class attribute 25

Figure 13 : Violinplot of every dataset feature ... 25

Figure 14 : Violin Plot for the feature Time ... 26

Figure 15 : Violinplot for Number of Warts feature .. 26

Figure 16 : Spearman Correlation Matrix .. 27

Figure 17 : Histogram of ba_000 - ba_009 features in Row 1 ... 30

Figure 18 : Histogram of az_000 - az_009 features in Row 1.. 30

Figure 19 : Frequency plot of number of missing values ... 31

Figure 20 : Performance of PCA and SVD per Number of Neighbors 32

Figure 21 : Performance of S.M.O.TE per number of Neighbors 33

Figure 22 : Count plot of class labels ... 36

Figure 23 : Distribution of class labels per sex .. 36

Figure 24 : Seaborn's clustermap.. 37

Figure 25 : Importance of Features from XGBoost model... 38

Figure 26 : Performance of preprocessing type for each algorithm 39

file:///C:/Users/skouvaras/Desktop/Master%20Thesis/Sokratis%20Kouvaras%20(22_6_19).docx%23_Toc12197032
file:///C:/Users/skouvaras/Desktop/Master%20Thesis/Sokratis%20Kouvaras%20(22_6_19).docx%23_Toc12197033

8

List of Tables

Table 1 : XGB results on both standalone and combined datasets 28

Table 2 : Random Forest results on both standalone and combined datasets 28

Table 3 : C.A.R.T results on both standalone and combined datasets 28

Table 4 : Adaboost results on both standalone and combined datasets 28

Table 5 : Neural Network results on both standalone and combined datasets 28

Table 6 : SVM results on both standalone and combined datasets 28

Table 7 : Naive Bayes results on both standalone and combined datasets 28

Table 8 : KNN results on both standalone and combined datasets 28

Table 9 : Performance results on Immunotherapy & Cryotherapy combined dataset 29

Table 10 : Performance results on Scania dataset .. 34

Table 11 : Performance results on S.C.A.D.I dataset ... 40

9

 1 Introduction

Machine learning is a field in Computer Science that has been around since 1950

when for the first time the term appeared (Arthur, 1959). It has gained in popularity the

last decade with an increasing number of companies using Machine Learning to interpret

their data and gain valuable insights.

We can use it for a variety of subjects such as computer vision, email filtering but

also for Data Mining, a subset of Machine Learning that discovers patterns in data sets.

The process of Data Mining we are interested in this study is Classification, which is

closely related to categorization. For Classification tasks, our goal is to predict a certain

label of given instance based on the rest of its features.

 1.1 Problem definition

There is a great variety of algorithms that can be used for Classification, such as

Decision Trees, Support vector machines or Neural Networks. Due to the differences in

the way each algorithm works there is not any guideline to choose which algorithm fits

better the data we have in order to produce the best model that describes our data.

 1.2 Objectives

The purpose of this research is to compare the most common classification

algorithms in datasets of various complexity. To determine the effectiveness of each

algorithm we are going to use the accuracy of the model that was produced from each

one. For the Scania dataset a custom metric was used in order to compare each algorithm

as it was requested at the Industrial Challenge 2016 at The 15th International Symposium

on Intelligent Data Analysis (IDA). Finally, we are going to compare the time it takes for

each algorithm to create a model.

 1.3 Thesis Structure

In chapter two, a brief description of the classification algorithms is given in

order to help the reader understand the basics of how each algorithm works. There is also

a summary of the algorithms used as a part of the preprocessing for some datasets.

10

 In chapters three to five we study the datasets that were donated to UCI. In each

chapter a brief description of the dataset, the feature is contains and it’s class attribute is

presented in order to gain a better understanding of the dataset. Afterwards the

processing methodology that was used is explained and finally the results of each

algorithm (accuracy and running time until completion) is presented.

 Finally at chapter 6 are the conclusions based on the overall results of all

algorithms.

11

12

2 Background

In this section, all the algorithms that are going to be used are briefly explained,

in order for every reader to gain basic understanding of them.

Ensemble Methods

Ensemble methods are techniques that create multiple “models”, which are

combined to create improved results. Models are usually predictive models such as

decision trees, neural networks or support vector machines (Zhou, 2012). There are two

major categories of ensemble methods, based on the way the predictive models (also

called based learners) are created.

The algorithms where the models are created sequentially are called boosting

algorithms, with Adaboost as a representative while on the other hand when they are

created in parallel they with Bagging as a representative. The ensemble algorithms we

are going to examine are Adaboost and XGBoost that belong to the Boosting framework

and Random Forests from the Bagging framework.

2.1 AdaBoost

AdaBoost algorithm is a machine learning meta-algorithm that was first

introduced in 1996 (Freund & Schapire, 1997). Suppose we are given a training set of N

samples {(𝑥1, 𝑦1), … , (𝑥𝑁 , 𝑦𝑁)} and our initial distribution 𝐷1 𝑡ℎ𝑎𝑡 𝑖𝑠 {
1

𝑁
, … ,

1

𝑁
}. At

initialization, all training examples begin with the same weight and our weight vector 𝑤1

at step 1 is equal to the distribution 𝐷1.

At each step, some classifier creates a simple model (also referred to as

hypothesis). The weak learners (or base learners) are usually decision trees with a depth

of 1 (also called stamps). The error of this model is then calculated by adding the weights

of all the misclassified instances with the mathematical formula:

13

A weight 𝑎𝑡 is calculated for that hypothesis to minimize the error of the final

model where 𝑎𝑡 =
1

2
ln (

1−𝜀𝜏

𝜀𝜏
) and new weights are calculated for the training set. Finally

we update our distribution 𝐷𝑡+1 =
𝐷𝑡(𝑖)𝑒−𝑎𝑡𝑦𝑖ℎ𝑖(𝑥𝑖)

𝑍𝑡
 where 𝑍𝑡 is a normalization factor. We

set out weight vector to be equal to our new distribution and we repeat this process.

2.2 XGBoost (Gradient Boosting Framework)

Gradient Boosting is an ensemble method based in the boosting framework. Like

all boosting algorithms, it builds a strong learner by sequentially adding weak learners.

The initial model 𝑓0(𝑥) should be a function that minimizes the loss function or the

MSE:

𝑓0(𝑥) = 𝑎𝑟𝑔𝑚𝑖𝑛𝛾 (∑ 𝐿(𝑦𝑖, 𝛾)

𝑛

𝜄=1

) = 𝑎𝑟𝑔𝑚𝑖𝑛𝛾 ∑(𝑦𝑖 − 𝛾)2

𝑛

𝜄=1

By taking the first differential of the above equation we can see that 𝑓0(𝑥)

minimizes at the mean. This means that the first prediction for all out data is the average

of the class we want to predict. After calculating the differences (residuals) 𝑟𝑖 between

the actual values of the class and our predictions, we fit a weak learner ℎ1(𝑥) using the

training set{(𝑥𝑖, 𝑟𝑖)}𝑖=1
𝑛 .

Then a weight 𝛾1 is calculated for that model using the formula:

𝛾𝑚 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛾 ∑ 𝐿(𝑦𝑖, 𝐹𝑚−1(𝑥𝑖) + 𝛾ℎ𝑚(𝑥𝑖))

𝑛

𝜄=1

Finally, we update out model 𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝛾𝑚ℎ𝑚(𝑥)

2.3 Random Forest

Random Forest is a supervised learning algorithm that creates a random

collection (“forest”) of trees. The trees it creates are Decision Trees that are trained using

the bagging method.

14

Bagging is selecting a random sample from the dataset with replacement. The

extension (Ho, 1995) that Random Forest adds is that the Decision Tree is trained in a

subset of the available features.

Figure 1: Random Forest

 After all the trees are created, the prediction for the class of any given instance is

done using voting (for classification).

2.4 Decision Trees (C. A. R. T implementation)

Decision Tree algorithms ID3 (Quinlan J. R., 1986) and C4.5 (Quinlan J. R.,

2014) were invented by John Ross Quinlan and both build a tree from a set of training

data using the concept of information gain. Around the same time with Quinlan, Breiman

created his own implementation of decision trees named Classification and Regression

Trees (C.A.R.T) (Breiman, Friedman, Olshen, & Stone, 1984) and is very similar to

C4.5.

A key difference between C.A.R.T and C4.5 is that it supports numerical target

variables (regression) and it does not compute rule sets. The Python package skicit-learn

uses an optimized version of the C.A.R.T algorithm.

Let us suppose we are given a set of training vectors S = {s1… 𝑠𝑙} of classified

samples 𝑠𝑖 ∈ 𝑅𝑛 and a label vector y. At each node N, for each feature j and given a

threshold 𝑡𝑁 we partition the data into 𝑄𝑟𝑖𝑔ℎ𝑡({𝑗, 𝑡𝑁}) and 𝑄𝑙𝑒𝑓𝑡({𝑗, 𝑡𝑁}) where

𝑄𝑟𝑖𝑔ℎ𝑡({𝑗, 𝑡𝑁}) = (𝑥, 𝑦)|𝑥𝑗 > 𝑡𝑁 and 𝑄𝑙𝑒𝑓𝑡({𝑗, 𝑡𝑁}) = 𝑄 − 𝑄𝑟𝑖𝑔ℎ𝑡.

15

The quality of the split is called impurity and is measured using a function H(),

but the quality measures used are usually entropy or Gini index. The choice of the

measuring function depends on the task being solved, classification or regression.

Then we calculate the Gini index for node N and split at the j feature:

𝐺(𝑁, {𝑗, 𝑡𝑁}) =
𝑛𝑙𝑒𝑓𝑡

𝑁𝑁
𝐻 (𝑄𝑙𝑒𝑓𝑡({𝑗, 𝑡𝑁})) +

𝑛𝑟𝑖𝑔ℎ𝑡

𝑁𝑁
𝐻 (𝑄𝑟𝑖𝑔ℎ𝑡({𝑗, 𝑡𝑁}))

We split our data on the feature that minimizes 𝐺(𝑁, {𝑗, 𝑡𝑁}) and continue the same

procedure recursively for 𝑄𝑙𝑒𝑓𝑡 and 𝑄𝑟𝑖𝑔ℎ𝑡 until the stopping criteria are met.

2.5 Naïve Bayes

Naïve Bayes is a conditional probability model that makes use of Bayes’

Theorem to calculate the probability for each class label 𝐶𝑘 . Given a training set of N

feature and an instance x represented by a vector 𝑥 = {𝑥1, … , 𝑥𝑁} using the formula:

𝑝(𝐶𝑘|𝑥) =
𝑝(𝐶𝑘)𝑝(𝑥|𝐶𝑘)

𝑝(𝑥)

We are interested in calculating the numerator of our fraction that is equal to the

joint probability model 𝑝(𝐶𝑘, 𝑥1, … , 𝑥𝑁).Using the chain rule we can rewrite this

probability as follows:

𝑝(𝐶𝑘, 𝑥1, … , 𝑥𝑁) = 𝑝(𝑥1|𝑥2, … , 𝑥𝑁 , 𝐶𝑘)𝑝(𝑥2|𝑥3, … , 𝑥𝑁 , 𝐶𝑘) … 𝑝(𝑥𝑁−1|𝑥𝑁 , 𝐶𝑘)𝑝(𝑥𝑁|𝐶𝑘)

This classifier is called “naïve” because we assume that all features are mutually

independent, conditional on the category 𝐶𝑘.

Based on this assumption we can do the following approximation:

𝑝(𝑥𝑖|𝑥𝑖+1, … , 𝑥𝑁 , 𝐶𝑘) = 𝑝(𝑥𝑖|𝐶𝑘)

so now we can rewrite 𝑝(𝐶𝑘, 𝑥1, … , 𝑥𝑁) =
1

𝐾
𝑝(𝐶𝑘) ∏ 𝑝(𝑥𝑖|𝐶𝑘)𝑁

𝑖=1 where
1

𝐾

is a normalization factor.

After the model is build given an instance we can calculate the probability to

belong in each class label. Then we apply a decision rule to find the class of this instance.

The most common decision rule is known as the maximum a posteriori rule, which

means we assign the class label with the highest probability.

16

2.6 Support Vector Machines

Support Vector Machines, also known as Support Vector Networks (Boser,

Guyon, & Vapnik, 1992) are supervised learning methods that can be used for both

classification and regression.

This algorithm performs classification by calculating the hyperplane (a simple line in two

dimensions) that best differentiates the classes of the dataset.

Out of an infinite number of

hyperplanes SVM calculates

the optimal using a subset of

training samples, the support

vectors. Support vectors are

data points that lie closest to the

decision surface and are the

most difficult to classify.

Let’s suppose that our

separating line has a form of 𝑤 ∙

𝑥 − 𝑏 = 0 where the variable b

let’s us move the line without having to pass through the origin O and w is the weight

vector we have to calculate in order to find our hyperplane. In order to maximize the

margin between the classes we need the parallel hyperplanes to the optimal one that are

closest to the support vectors of either class. Those hyperplanes can be described by

equations 𝑤 ∙ 𝑥 − 𝑏 = 1 and 𝑤 ∙ 𝑥 − 𝑏 = −1.

Figure 2 : Support Vectors

17

 The distance between these

hyperplanes is
2

|𝑤|
, thus to

maximize the margin we have

to minimize ||𝑤||. To ensure

that no data points are going to

be inside our margin then for

every i either 𝑤 ∙ 𝑥𝑖 − 𝑏 ≥ 1

or 𝑤 ∙ 𝑥𝑖 − 𝑏 ≤ −1.

That is a quadratic constrained

problem and can be solved by

Lagrangian multiplier method.

The Lagrangian formulation of

the problem is:

min 𝐿𝑝 =
1

2
||𝑤||2 − ∑ 𝑎𝑖𝑦𝑖(𝑥𝑖 ∙ 𝑤 + 𝑏) + ∑ 𝑎𝑖

𝑙

𝑖=1

𝑙

𝑖=1

 subject to :

 ∀ 𝑖 , 𝑎𝑖 ≥ 0

where α are the Lagrange multipliers and l is the number of training instances.

Instead of solving this problem in the Scikit implementation, the dual problem is

solved with the help of the Kuhn – Tucker theorem. The solution will be the same for the

original problem.

The dual problem formulation is:

𝑚𝑎𝑥𝐿𝐷(𝑎𝑗) = ∑ 𝑎𝑖 −
1

2

𝑙

𝑖=1

∑ 𝑎𝑖𝑎𝑗𝑦𝑖𝑦𝑗(𝑥𝑖 ∙ 𝑥𝑗)

𝑙

𝑖=1

subject to:

 ∑ 𝑎𝑖𝑦𝑖 = 0 𝑎𝑛𝑑 𝑎𝑖 ≥ 0𝑙
𝑖=1

Knowing the 𝑎𝑖 we can calculate the weights 𝑤 = ∑ 𝑎𝑖𝑦𝑖𝑥𝑖
𝑙
𝑖=1 and given a known point

of 𝑥𝑖 features we can classify it by looking at the sign of

𝑓(𝑥) = 𝑤 ∙ 𝑢 + 𝑏 = (∑ 𝑎𝑖𝑦𝑖𝑥𝑖

𝑙

𝑖=1

∙ 𝑢) + 𝑏

.

Figure 3 : Margins of SVM

18

2.7 Multilayer Perceptron (Neural Networks Framework)

Artificial Neural Networks is a computational model inspired by nature and the

way biological neural networks in the human brain works. It consists of a collection of

nodes called artificial neurons. For every input given a weight is assigned for every

feature of this input and a bias is included.

Learning occurs in the perceptron by changing connection weights after each

piece of data is processed, based on the amount of error in the output compared to the

expected result. Then the sum of all the inputs multiplied by their weights goes through

an activation function producing a single output producing the final output of our model.

Figure 4 : An artificial neuron

It was proven that a model with a single perceptron can only solve linear

separable problems (Minsky & Papert, 1969) so then need to expand this had arisen. That

led to the use of Multi-Layer Perceptron models that consists of many neurons divided

into layers.

19

Figure 5 : A Multilayer Perceptron

The leftmost layer, known as the input layer, consists of a set of neurons

{xi|x1,x2,...,xm} representing the input features. Each neuron in the hidden layer

transforms the values from the previous layer with a weighted linear summation

w1x1+w2x2+...+wmxm, followed by a non-linear activation function g(⋅):R→R - like

the hyperbolic tan function. The output layer receives the values from the last hidden

layer and transforms them into output values.

Although the weights of the nodes for each layer are initially assigned at random,

in order to maximize the capabilities of a neural network they should be tuned based on

the training data. The backpropagation algorithm is applied on a feed-forward neural

network to adjust the weights at each node based on the output of the outcome of the

nodes of the next layer that it is connected to.

The advantages of Multi-layer Perceptron are:

● Capability to learn non-linear models.

The disadvantages of Multi-layer Perceptron (MLP) include:

● MLP with hidden layers have a non-convex loss function where there exists

more than one local minimum. Therefore different random weight

initializations can lead to different validation accuracy.

● MLP requires tuning a number of hyper parameters such as the number of

hidden neurons, layers, and iterations.

● MLP is sensitive to feature scaling

20

2.8 K-NN

K-NN algorithm is a non-parametric method used for classification and is

amongst the simplest classification algorithms. Given a set of training examples and a

custom distance metric (usually the Euclidian metric is used) we can predict the class of

a new instance by a plurality vote of its neighbors.

Using the distance metric provided, we are looking for the k nearest neighbors of

the new instance, and based on their label we decide for the label of the given instance.

Figure 6 : 3-NN and 5-NN example for unlabel instance (green dot)

21

3 Case Study: Immunotherapy and Cryotherapy datasets

3.1 Introduction

Immunotherapy and Cryotherapy are two medical datasets donated by the

dermatology clinic of Ghaem Hospital, Mashhad, Iran to the UCI Machine Learning

Repository (Khozeimeh, et al., 2017). A study has been conducted on these datasets

where a fuzzy rule-based method was applied to create a model with an accuracy of

83.33% in the Immunotherapy dataset and 80% in Cryotherapy dataset. Our purpose is to

compare the performance of the classic classification algorithms and to build a more

effective model in terms of accuracy.

3.2 Preprocessing

3.2.1 Data Merging

In order to be able to build a model with every algorithm both Cryotherapy and

Immunotherapy datasets had to be combined resulting into a single dataset. The

Immunotherapy dataset has an extra feature (‘Induration_diameter’) resulting in the

addition of 90 missing values for the instances that come from the Cryotherapy dataset.

A zero value was assigned to them.

3.2.2 Data Transformation – Data Cleaning

The class attributes for both Immunotherapy and Cryotherapy datasets where 0 if it

was negative and 1 if the Response to treatment was positive. After merging the two

datasets, the class values for the instances that come from the Immunotherapy dataset

remained the same, while the ones coming from the Cryotherapy dataset were set to 2

and 3 respectively. In addition, the Cryotherapy dataset contains a duplicate value, two

instance with the exact same attributes. It was considered noise and was removed from

the dataset to avoid disturbances in the underlying distribution of the data.

22

Figure 7 : Overview Table of resulting dataset

3.2.3 Class balancing

Cryotherapy dataset is balanced having almost equal number of positive and

negative responses to treatment, but that is not the case for the Immunotherapy dataset

where the positive responses were more.

Figure 8 : Count plot of joined dataset classes

In order to balance the dataset we could use random oversampling to create a few

dummy data of class 0, or we could use an even more advanced technique like Synthetic

Minority Oversampling Technique (S.M.O.TE) (Chawla, Bowyer, Hall, & Kegelmeyer,

2002). After experimentation, it was found that the best choice would be to not use any

oversampling technique and proceed with the dataset as it is.

23

3.2.4 Outlier Detection

In figure 9 we notice that the ‘Surface Area of Warts’ feature has a high variance

and that can indicate that there are some outliers. Also in the pair-plot matrix (Fig. 11),

we can see two possible outliers of type 3 warts at the Result-Area pair. Looking at the

distribution of the data from both Cryotherapy and Immunotherapy datasets, we can see

that the ‘Surface Area’ feature has a Poisson distribution with extreme values.

Figure 9 : Count plot of Surface Area for Cryotherapy and Immunotherapy Dataset

After merging the two datasets, we get the following distribution. The fact that the

resulting distribution seems Poisson-like and we have a small dataset with 180

observations allows as to assume that those two values are not outliers.

Figure 10 : Countplot of Area feature in joined dataset

24

3.3 Exploratory Data Analysis

3.3.1 Pairplot Visualization

To gain more insight about the relations between the features, and possibly find

some pattern in our data, we are can use a set of visualizations that are going to help us

explore and understand our data better. The Python package Seaborn provides us a

plethora of different type of plots depending on the type of data you want to visualize

(Relational, Categorical, and Distributions etc.). The result of the pairplot function (Fig

11) allows us to see a matrix of scatter plots for every combination of our dataset

features. We also have the ability to color our data points based on some feature. Here

they are colored based on the Type feature.

Figure 11 : Seaborn's pairplot

3.3.2 Univariate Analysis

 After visualizing the relations between the features, we need to understand how

each feature interacts with the class we want to predict. At Figure 12, we can see for

every feature the distribution for every class attribute. A feature where those distributions

are well separated is a good feature to be used in order to predictions. On the other hand,

a feature with overlapping distributions, doesn’t add much information. For example at

25

Figure 12 we can see that for the ‘Number of Warts’ attribute all class attributes have the

same distribution, which makes it really hard to distinguish the class only by looking at

this feature.

Figure 12 : Distribution plots for every feature colored by class attribute

 That’s not the case for ‘Age’ and ‘Time’ attributes where the distributions may

not be totally separated but there is a significant difference in the mean.

3.3.3 Boxplot Analysis - ‘Violinplot Analysis’

 Another helpful visualization that is also often used in outlier detection is the

boxplot. Instead of a regular boxplot we can see at Figure 13 Seaborn’s violinplot which

is a combination of a regular boxplot in the center of every ‘violin’, and a distribution

plot on the sides.

Figure 13 : Violinplot of every dataset feature

26

In figure 14 we can see that for the feature ‘Time’ classes 1 and 3 have a lower

mean classes 0 and 2 have a higher mean but also smaller variance, which makes the date

more concentrated around the mean. The use of this feature will help as distinguish the

classes easier.

Figure 14 : Violin Plot for the feature Time

 On the other hand, as we can see from the violinplot of feature ‘Number of

Warts’ (Fig 15) the mean for every class is almost the same which makes this feature

weaker compared to the predictive power of ‘Time’.

Figure 15 : Violinplot for Number of Warts feature

3.3.4 Correlation Matrix

To select the best features that describe our dataset we also calculated the

correlation matrix (Figure 16) using the Spearman method. Because the Spearman

correlation coefficient is based on the ranks of the data rather than the actual data, makes

it a better choice for examining the relationships between variables with unequal

variances, and of non-normal distribution.

27

Figure 16 : Spearman Correlation Matrix

 The features with the greatest relevance with the Result of Treatment were the

induration diameter with a correlation coefficient of -0.85, age with -0.28 and Time with

-0.16. The rest of the features had a less significant correlation coefficient and also based

on our boxplot and univariate analysis, only the top three features were used to build the

models.

3.4 Results

 Each algorithm was tested using 10-fold cross validation, with a fixed seed to

ensure that all algorithms are going to be trained and tested on the same training and

testing sets. The class attribute was considered balanced so the metric that was used to

compare the performance of the algorithms was the accuracy of the predictions. Except

from the resulting dataset after combining Immunotherapy and Cryotherapy datasets,

each algorithm was also tested on the original datasets in order to see if their combination

would result in a better performance.

 As we can see from tables, 1-9 the highest accuracy on the combined dataset was

by XGBoost with a 92.22% accuracy and a standard deviation of 5.6%. For every

algorithm except XGBoost and Support Vector Machine, the accuracy on Cryotherapy

was higher than both Immunotherapy and combined datasets. Also the accuracy on

Immunotherapy dataset was the lowest for every algorithm except Support Vector

Machine where Cryotherapy had the lowest accuracy score.

28

Table 1 : XGB results on both standalone and combined datasets

Table 2 : Random Forest results on both standalone and combined datasets

Table 3 : C.A.R.T results on both standalone and combined datasets

Table 4 : Adaboost results on both standalone and combined datasets

Table 5 : Neural Network results on both standalone and combined datasets

Table 6 : SVM results on both standalone and combined datasets

Table 7 : Naive Bayes results on both standalone and combined datasets

Table 8 : KNN results on both standalone and combined datasets

Finally at Table 9 we can see the time it took for every algorithm to train, predict

and measure the accuracy of the model, for every fold, in total.

Dataset\Fold 1 2 3 4 5 6 7 8 9 10 Mean Sd

Immunotherapy 0,777 0,666 1 0,777 0,555 0,777 1 0,777 1 1 0,833 0,15

Cryotherapy 0,888 1 1 0,888 0,888 0,888 0,666 0,888 0,888 0,888 0,888 0,086

Combined 0,833 0,944 0,944 0,833 0,888 0,944 1 0,944 0,888 1 0,922 0,056

Dataset\Fold 1 2 3 4 5 6 7 8 9 10 Mean Sd

Immunotherapy 0,888 1 1 0,777 0,777 0,777 1 0,777 0,777 1 0,878 0,1

Cryotherapy 0,888 1 1 0,888 1 0,888 0,777 1 0,888 0,666 0,9 0,1

Combined 0,833 1 0,833 0,833 0,888 0,944 1 0,888 0,888 0,777 0,888 0,07

Dataset\Fold 1 2 3 4 5 6 7 8 9 10 Mean Sd

Immunotherapy 0,777 0,777 1 0,777 0,666 0,777 1 0,777 1 1 0,855 0,12

Cryotherapy 0,888 1 1 0,888 1 0,888 0,888 1 1 0,666 0,922 0,1

Combined 0,777 0,833 0,777 0,833 0,777 0,888 1 0,888 0,833 0,888 0,85 0,06

Dataset\Fold 1 2 3 4 5 6 7 8 9 10 Mean Sd

Immunotherapy 0,888 0,888 0,888 0,666 0,555 0,777 1 0,777 0,777 1 0,822 0,13

Cryotherapy 0,888 1 1 0,888 0,888 0,888 0,777 1 0,888 0,666 0,888 0,09

Combined 0,777 0,888 0,888 0,833 0,888 0,888 0,944 0,833 0,888 0,777 0,861 0,05

Dataset\Fold 1 2 3 4 5 6 7 8 9 10 Mean Sd

Immunotherapy 0,888 1 0,777 0,777 0,777 0,777 0,777 0,777 0,666 0,666 0,788 0,092

Cryotherapy 0,888 1 0,777 0,888 0,888 0,888 0,666 0,888 1 0,777 0,866 0,096

Combined 0,722 1 0,888 0,777 0,888 0,777 0,944 0,833 0,833 0,722 0,838 0,087

Dataset\Fold 1 2 3 4 5 6 7 8 9 10 Mean Sd

Immunotherapy 0,888 0,666 0,666 0,222 0,555 0,222 0,555 0,666 0,555 0,666 0,566 0,195

Cryotherapy 0,222 0,666 0,444 0,444 0,555 0,777 0,333 0,222 0,444 0,777 0,488 0,193

Combined 0,722 0,944 0,888 0,777 0,888 0,888 0,888 0,722 0,833 0,833 0,838 0,072

Dataset\Fold 1 2 3 4 5 6 7 8 9 10 Mean Sd

Immunotherapy 0,777 0,888 0,888 0,666 0,777 0,666 0,888 0,777 0,777 0,888 0,799 0,083

Cryotherapy 0,888 1 1 0,888 0,888 0,888 0,555 0,888 0,666 0,888 0,855 0,13

Combined 0,611 0,944 0,888 0,722 0,833 0,833 0,833 0,777 0,833 0,888 0,816 0,089

Dataset\Fold 1 2 3 4 5 6 7 8 9 10 Mean Sd

Immunotherapy 0,777 0,555 1 0,888 0,666 0,777 0,888 0,888 0,777 0,555 0,777 0,14

Cryotherapy 1 0,888 1 0,888 1 0,888 0,888 1 0,777 0,888 0,922 0,07

Combined 0,888 0,888 0,777 0,666 0,888 0,888 1 0,777 0,777 0,888 0,844 0,08

29

Table 9 : Performance results on Immunotherapy & Cryotherapy combined dataset

Algorithm\Fold 1 2 3 4 5 6 7 8 9 10 Mean Sd Time

XGBoost 83.3% 94.4% 94.4% 83.3% 88.8% 94.4% 100% 94.4% 88.8% 100% 92.2% 5.6% 0.17

Random Forest 83.3% 100% 83.3% 83.3% 88.8% 94.4% 100% 88.8% 88.8% 77.7% 88.8% 7% 1.54

C.A.R.T 77.7% 83.3% 77.7% 83.3% 77.7% 88.8% 100% 88.8% 83.3% 88.8% 85% 6.5% 0.07

Adaboost 77.7% 88.8% 88.8% 83.3% 88.8% 88.8% 94.4% 83.3% 88.8% 77.7% 86.1% 5.1% 3.75

Neural Network 72.2% 100% 88.8% 77.7% 88.8% 77.7% 100% 83.3% 83.3% 72.2% 83.8% 8.7% 2

SVM 72.2% 94.4% 88.8% 77.7% 88.8% 88.8% 88.8% 72.2% 83.3% 83.3% 83.8% 7.2% 0.06

Naïve Bayes 61.1% 94.4% 88.8% 72.2% 83.3% 83.3% 83.3% 77.7% 83.3% 88.8% 81.6% 8.9% 0.07

KNN 88.8% 88.8% 77.7% 66.6% 88.8% 88.8% 100% 77.7% 77.7% 88.8% 84.4% 8.8% 0.07

30

4 Case Study: APS Failure at Scania Trucks Dataset

4.1 Introduction

Scania, a major Swedish manufacturer of commercial vehicles, donated the APS

failure dataset to UCI Machine Learning Repository. It contains data collected from

heavy Scania trucks in everyday usage. The dataset is already split in a testing and a

training set. The datasets consists of two classes, where the positive class corresponds to

trucks with failures associated to the Air Pressure System (APS) while the negative class

corresponds to trucks with failures that are not connected to it.

 It has 170 feature columns that have been anonymized, for example ‘aa_000’ and

‘ab_000’ are the first two features. There are two types of features, the usual standalone

type where one column is one feature and the histogram type. The histogram features are

groups of 10 feature columns that in fact are bins of a histogram. For example, the

features ‘az_000’-‘az_009’ (Fig 18) belong to a single histogram. There are 70 features

that belong to a histogram thus there are seven histograms in our data.

Figure 17 : Histogram of ba_000 - ba_009 features in Row 1

Figure 18 : Histogram of az_000 - az_009 features in Row 1

0

500000

1000000

1500000

2000000

2500000

ba_000 ba_001 ba_002 ba_003 ba_004 ba_005 ba_006 ba_007 ba_008 ba_009

ba Histogram - Row 1

0

2000000

4000000

6000000

az_000 az_001 az_002 az_003 az_004 az_005 az_006 az_007 az_008 az_009

az Histogram - Row 1

31

4.2 Preprocessing

One of the most common tasks of a data analyst, when preparing a dataset to be

used for constructing a predictive model, is to handle the missing values of his dataset (if

those exist). In this particular dataset, 850.015 missing values take up to 8.3% of the total

data.

4.2.1 Removing insignificant rows

As we can see in figure 19 that is the distribution of the count of missing values per

row, that there are rows with more than 150 missing values out of 170 features. These

rows can be safely removed, as they do not add any information to the dataset. For the

final models only rows with less than 60 missing values were kept.

Figure 19 : Frequency plot of number of missing values

Removing rows should be done in consideration with the class that those rows

belong to. Due to the fact that this is a highly imbalanced dataset, having only 1000 rows

that belong to the positive class and 59.000 rows that belong to the negative class,

removing can reduce even more the instances that belong to the positive class. For that

reason only rows with more than 60 missing values where removed resulting in a dataset

with 58.026 rows with 947 instances belonging in the positive class and 57079 instances

belonging in the negative class.

4.2.2 Filling the missing values

One of the most common ways to replace missing values is to substitute them

with either the average or the median of that feature. Using the median or a simply

average to replace the missing values isn’t a valid method for this dataset, cause there are

features (columns) that have a really high percentage of missing values, (e.x columns

32

‘ab_000’,‘bn_000’,’bo_000’,’bp_000’ have 46329,44009,46333 and 47740 missing

values respectively) and doing so would disrupt the underlying distribution.

I decided to use a machine learning approach using the mean of the values of the

50 nearest neighbors to estimate each missing value (Ozan, Riabchenko, & Kiranyaz,

2016). The metric used to compute the distance between instances was the following:

𝐷(𝑥, 𝑦) = ∑ 𝐷𝑖(𝑥𝑖, 𝑦𝑖) 𝑡ℎ𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑟𝑜𝑤𝑠 𝑥 𝑎𝑛𝑑 𝑦

𝑤ℎ𝑒𝑟𝑒 𝐷𝑖(𝑥𝑖 , 𝑦𝑖) = {
1 𝑖𝑓 𝑥𝑖 𝑜𝑟 𝑦𝑖 𝑖𝑠 𝑛𝑎

|𝑥𝑖 − 𝑦𝑖|

𝑎𝑛𝑑 𝑥𝑖, 𝑦𝑖 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑜𝑓 𝑥 𝑎𝑛𝑑 𝑦 𝑟𝑜𝑤𝑠 𝑎𝑡 𝑖 𝑐𝑜𝑙𝑢𝑚𝑛

4.2.3 Dimensionality Reduction

Another problem about this dataset is the number of columns it has making the

computation times longer. To overcome this I tried various dimension reduction

techniques such as Principal Component Analysis (PCA) and Singular Value

Decomposition (SVD).

To determine the best dimension to use for our classification task, as well as the

best technique for dimension reductions, I trained an XGB model and evaluated it using

10 fold cross validation and taking the average cost.

Figure 20 : Performance of PCA and SVD per Number of Neighbors

33

We can achieve minimum cost projecting our data into 140 dimensional space using

PCA algorithm.

4.2.4 Class balancing

Finally the last thing we have to take in consideration is that this dataset is highly

imbalanced. It has only 947 instances belonging to the positive class and 57079 samples

belonging to the negative class.

To help build better model with all algorithms there are many techniques for

oversampling. Oversampling is the creation of dummy instances that are going to be

added to our dataset. Those instances are going to be of the desired class, in our case the

positive class. There are many algorithms for oversampling and I chose to use Synthetic

Minority Oversampling Technique (S.M.O.TE).

Figure 21 : Performance of S.M.O.TE per number of Neighbors

The best results where achieved when creating synthetic samples considering the 15

closest neighbors.

4.3 Results

To compare the performance of every algorithm the dataset was split using 10-

fold cross validation. A fixed seed was used to ensure that all algorithms use the same

training and testing subset. In Table 10 we can see the cost of each algorithm in each

fold, with XGBoost algorithm having the minimum average cost of 12253 units and the

second lowest standard deviation of 5.6 after Naïve Bayes classifier.

34

Table 10 : Performance results on Scania dataset

Algorithm\fold 1 2 3 4 5 6 7 8 9 10 Mean StDev Time

XGBoost 12010 12370 11950 12110 11640 12120 12590 12650 12460 12630 12253 321,654 2255.5

CART 20000 22480 29200 23240 23210 33130 21140 20640 33330 25410 25178 4738,55 336.9

Random Forest 12660 12330 15940 12410 12430 14960 12690 13360 13570 11310 13166 1298,22 113.1

Naïve Bayes 16660 16300 16700 16710 16690 16640 16640 16660 16660 16660 16632 112,942 5.7

Adaboost 15600 14520 16950 15910 14310 15220 15880 14240 14030 16970 15363 1029,64 1130.3

SVM 29830 26410 49750 29000 29190 62380 38670 36530 27130 49230 37812 11570,1 9064.4

Neural Network 13040 16580 19620 16720 13630 13370 13510 12940 13860 14830 14810 2064,12 794.7

KNN 18920 20150 18940 18930 18900 18910 19910 18950 18920 19910 19244 492,467 641.6

35

5 Case Study: S.C.A.D.I DATASET

5.1 Introduction

Self-Care Activities Dataset contains 206 features of 70 children with physical

and motor disabilities based on International Classification of Functioning, Disability and

Health for Children and Youth (ICF – CY) (Zarchi, 2018). Our first two features are

gender (1 for male and 0 for female) and age while features 3-205 are self-care activities

based on ICF-CY. An ICF-CY code consists of four levels where the first level classifies

general activities (Body Functions, Body Structures, Activities and Participation and

finally Environmental Factors). Self-Care problems is a subset of Activities and

Participation and starts with d5.

The prediction class consists of the following seven labels:

1. class 1 : Caring for body parts problem

2. class 2 : Toileting problem

3. class 3 : Dressing problem

4. class 4 : Washing oneself and Caring for body parts and Dressing problem

5. class 5 : Washing oneself, Caring for body parts, Toileting and Dressing

problem

6. class 6 : Eating, Drinking, Washing oneself, Caring for body parts,

Toileting, Dressing, Looking after one’s health and Looking after one’s

safety problem

7. class 7 : No problem

5.2 Exploratory Data Analysis

As we can see at figure 22 class 6 is the most common in our dataset while

classes 1, 3 and 5 have only two, one and three cases respectively.

36

Figure 22 : Count plot of class labels

As we can see due to the small size of this dataset the classes are not equally

distributed between genders. There were only female cases of class 5 and 3 and only

male cases of class 1 and we can see a huge difference in proportion in class 6.

Figure 23 : Distribution of class labels per sex

5.3 Preprocessing

Using Seaborn’s cluster map function we can see the various clusters of instances

(using hierarchical algorithm) but the first thing we can notice is that a black column in

the cluster map means that all instances have the same value (zero) in that feature. For

example features d 5602-8 and d 5602-9 has the value 0 across all dataset. When a

column has the same value for all the instances of a dataset means that all instances have

37

the same feature which adds zero information that would help us with our classification

task. As a result we can drop 63 out of 202 columns.

Figure 24 : Seaborn's clustermap

38

After using Scikit’s LabelEncoder class we encode our class labels from strings to

numbers in order for all algorithms to be able to process the data. For this dataset the

problems we have to overcome is the huge number of features and the fact that some of

the class labels are undersampled.

 Three kinds of preprocessing where tested on this dataset:

 Use all the features without using any oversampling technique to balance

the class feature.

 Use all the features using RandomOversampler as an oversampling

technique.

 After training an XGB model using the first preprocessing we extract the

feature importance and used only the best features without any

oversampling.

Figure 25 : Importance of Features from XGBoost model

39

At figure 26 we can see that using oversample had the best average accuracy after

using 10-fold cross validation as an evaluation technique across all algorithms. That is

not the case for XGB that had the best results when using only the top 12 features (those

that had an f-score that was equal or greater than 30) without using any oversampling.

Figure 26 : Performance of preprocessing type for each algorithm

5.4 Results

To compare the performance of every algorithm the dataset was split using 10-

fold cross validation. A fixed seed was used to ensure that all algorithms use the same

training and testing subset. In Table 11 we can see the accuracy of each algorithm in each

fold, with Neural Network algorithms having the highest average accuracy of 93.18%

and the lowest standard deviation.

40

Table 11 : Performance results on S.C.A.D.I dataset

Algorithm\fold 1 2 3 4 5 6 7 8 9 10 Mean StDev Time

XGBoost 81,81 54,54 100 80 70 100 90 70 100 80 82,64 14,42932933 13,15

CART 90,9 81,81 90,9 80 70 100 100 90 100 100 90,36 9,835613301 0,05

Random Forest 100 72,72 100 80 80 100 100 90 90 100 91,27 9,911702982 1,59

Naïve Bayes 100 90,9 100 90 80 100 90 80 90 80 90,09 7,750670939 0,05

Adaboost 100 100 100 90 70 100 90 90 90 100 93 9 3,38

SVM 100 72,72 100 80 80 100 100 90 90 90 90,27 9,475539879 0,11

Neural Network 100 81,81 100 90 80 100 100 90 90 100 93,18 7,522556015 2,2

KNN 100 81,81 100 80 80 100 100 90 90 100 92,18 8,482384629 0,03

41

6 Conclusions

 Every Data Analysts dream would be to be able to use an algorithm that had the

best performance in terms of accuracy and time of execution, regardless the dataset he

tests it. There are many researches on the performance of Data Mining algorithms either

on a particular problem, for example image recognition (Martin Weis, 2017) or a more

empirical comparison on different datasets (Rich Caruana, 2006) like the one you are

reading now.

 Even though XGBoost won the competition against the other algorithms in the

first two datasets, could not outperform the Multilayer Perceptron in the third case study.

 The outcome from every research, including this one, is the same, no single

algorithm performs best across all datasets (Christopher Sibona, 2012). There are many

conclusions that can be drawn and several statements to be formulated, such as the

boosting and bagging algorithms have an increased efficiency compared to older

algorithms (Kristína Machová, 2006). The comparison between boosting and bagging

tends to be in favor of boosting with boosting based algorithms having better results.

 In many cases, methods that clearly perform poorly on average can outperform

every other algorithm. It is a Data Analysts duty to have in-depth knowledge of the

mechanics of Data Mining methods, in order to be able to choose the most fitting method

to the problem he is trying to solve.

The classification of facts, the recognition of their sequence and relative significance is

the function of science, and the habit of forming a judgment upon these facts unbiased by

personal feeling is characteristic of what may be termed the scientific frame of mind.

 —Karl Pearson, The Grammar of Science

42

Bibliography

Arthur, S. (1959). Some Studies in Machine Learning Using the Game of Checkers. IBM

Journal of Research and Development, pp 210-229.

Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal

margin classifiers. COLT '92 Proceedings of the fifth annual workshop on

Computational learning theory (pp. 144-152). Pittsburgh: ACM .

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and

Regression Trees. New York.

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE:

Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence

Research, 321–357.

Christopher Sibona, J. B. (2012). A Statistical Comparison of Classification Algorithms

on a Single Data Set. AMCIS.

Freund, Y., & Schapire, R. E. (1997). Decision-Theoretic Generalization of On-Line

Learning and an Application to Boosting. Journal of computer and system

sciences, pp. 119-139.

Ho, T. K. (1995). Random Decision Forests. IEEE.

Khozeimeh, F., Alizadehsani, R., Roshanzamir, M., Khosravi, A., Layegh, P., & S.

Nahavandi. (2017, 1 2). An expert system for selecting wart treatment method.

Computers in Biology and Medicine, vol. 81, pp. pp 167-175.

Khozeimeh, F., Azad, F. J., Oskouei, Y. M., Jafari, M., Tehranian, S., & Alizadehsani, R.

(2017). Intralesional immunotherapy compared to cryotherapy in the treatment of

warts. International Journal of Dermatology. doi:DOI: 10.1111/ijd.13535

Kristína Machová, M. P. (2006). A Comparison of the Bagging and the Boosting

Methods Using the Decision Trees Classifiers. Computer Science and

Information Systems, 3.

Martin Weis, T. R. (2017). Comparison of different classification algorithms for weed

detection from images based on shape parameters. Image Analysis for

Agricultural Products and Processes, BAB Volume 94.

43

Minsky, M., & Papert, S. (1969). Perceptrons: An Introduction to Computational

Geometry, The MIT Press, 1969. The MIT Press.

Ozan, E. C., Riabchenko, E., & Kiranyaz, S. (2016). An Optimized k-NN Approach for

Classification on Imbalanced Datasets with Missing Data. Advances in Intelligent

Data Analysis XV. Springer.

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, Volume 1(Issue 1),

pp. 81-106. doi:https://doi.org/10.1007/BF00116251

Quinlan, J. R. (2014). C4.5: Programs for Machine Learning. Elsevier.

Rich Caruana, A. N.-M. (2006). An Empirical Comparison of Supervised Learning

Algorithms. 23 rd International Conference on Machine Learning. Pittsburgh.

Zarchi, M. a. (2018). SCADI: A standard dataset for self-care problems classification of

children with physical and motor disability. International Journal of Medical

Informatics.

Zhou, Z.-H. (2012). Ensemble Methods : Foundations and Algorithms. Chapman & Hall

/ CRC Press.

