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Περίληψη 

 

Σκοπός αυτής της διπλωματικής εργασίας είναι η μελέτη των διάφορων 

αλγορίθμων κατηγοριοποίησης, η κατασκευή ενός προβλεπτικού μοντέλου για κάθε 

αλγόριθμο με την βοήθεια της γλώσσας προγραμματισμού Python και βιβλιοθηκών 

μηχανικής μάθησης (Scikit , imblearn , XGBoost) και η σύγκριση της απόδοσης αυτών 

των μοντέλων. 

Η αλγόριθμοι που θα μελετηθούν είναι : 

1. Νευρωνικά δίκτυα (Multilayer Perceptron), 

2.  K πλησιέστεροι γείτονες (Κ-ΝΝ)  

3. Naive Bayes 

4. Boosting (Adaboost και XGBoost), 

5. Δέντρα απόφασης (CART) 

6. Support Vector Machines  

7.  Random Forest. 

Για την κατασκευή ενός μοντέλου για κάθε αλγορίθμου, θα χρησιμοποιηθούν 

σύνολα δεδομένων από το UC Irvine Machine Learning Repository. 

 

  

 

Λέξεις Κλειδιά:  

XGBoost, Support Vector Machine, SVM, Adaboost, Random Forest, K-NN, 

Decision Trees, boosting, bagging , Neural Network, Multilayer Perceptron, Naïve Bayes 
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Abstract 

The purpose of this research is the use and study of the variety of available 

Classification methods, building model with the use of Python and Machine Learning 

packaged (Scikit, Imblearn and XGBoost) and finally the comparison of those algorithms 

in terms of speed and accuracy, where the metric of accuracy will be determined based 

on the nature of the data for each dataset 

The algorithms that are going to be studied are : 

1. Neural Networks (Multilayer Perceptron), 

2.  K nearest neighbors (Κ-ΝΝ)  

3. Naive Bayes 

4. Boosting algorithms (Adaboost και XGBoost), 

5. Decision Trees (CART) 

6. Support Vector Machines  

7.  Random Forest (Bagging Algorithm) 

The datasets that are going to be used where taken from UC Irvine Machine 

Learning Repository and are available online. 

 

Keywords:  

XGBoost, Support Vector Machine, SVM, Adaboost, Random Forest, K-NN, 

Decision Trees, boosting, bagging , Neural Network, Multilayer Perceptron, Naïve Bayes 
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 1  Introduction 

Machine learning is a field in Computer Science that has been around since 1950 

when for the first time the term appeared (Arthur, 1959). It has gained in popularity the 

last decade with an increasing number of companies using Machine Learning to interpret 

their data and gain valuable insights. 

We can use it for a variety of subjects such as computer vision, email filtering but 

also for Data Mining, a subset of Machine Learning that discovers patterns in data sets. 

The process of Data Mining we are interested in this study is Classification, which is 

closely related to categorization. For Classification tasks, our goal is to predict a certain 

label of given instance based on the rest of its features. 

 1.1  Problem definition 

There is a great variety of algorithms that can be used for Classification, such as 

Decision Trees, Support vector machines or Neural Networks. Due to the differences in 

the way each algorithm works there is not any guideline to choose which algorithm fits 

better the data we have in order to produce the best model that describes our data. 

 1.2  Objectives 

The purpose of this research is to compare the most common classification 

algorithms in datasets of various complexity. To determine the effectiveness of each 

algorithm we are going to use the accuracy of the model that was produced from each 

one. For the Scania dataset a custom metric was used in order to compare each algorithm 

as it was requested at the Industrial Challenge 2016 at The 15th International Symposium 

on Intelligent Data Analysis (IDA). Finally, we are going to compare the time it takes for 

each algorithm to create a model. 

 1.3  Thesis Structure 

In chapter two, a brief description of the classification algorithms is given in 

order to help the reader understand the basics of how each algorithm works. There is also 

a summary of the algorithms used as a part of the preprocessing for some datasets. 
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 In chapters three to five we study the datasets that were donated to UCI. In each 

chapter a brief description of the dataset, the feature is contains and it’s class attribute is 

presented in order to gain a better understanding of the dataset. Afterwards the 

processing methodology that was used is explained and finally the results of each 

algorithm (accuracy and running time until completion) is presented. 

 Finally at chapter 6 are the conclusions based on the overall results of all 

algorithms. 

  



11 
 



12 
 

2 Background 

In this section, all the algorithms that are going to be used are briefly explained, 

in order for every reader to gain basic understanding of them.   

 

Ensemble Methods 

Ensemble methods are techniques that create multiple “models”, which are 

combined to create improved results. Models are usually predictive models such as 

decision trees, neural networks or support vector machines (Zhou, 2012). There are two 

major categories of ensemble methods, based on the way the predictive models (also 

called based learners) are created.  

The algorithms where the models are created sequentially are called boosting 

algorithms, with Adaboost as a representative while on the other hand when they are 

created in parallel they with Bagging  as a representative. The ensemble algorithms we 

are going to examine are Adaboost and XGBoost that belong to the Boosting framework 

and Random Forests from the Bagging framework. 

 

2.1 AdaBoost 

 

AdaBoost algorithm is a machine learning meta-algorithm that was first 

introduced in 1996 (Freund & Schapire, 1997). Suppose we are given a training set of N 

samples {(𝑥1, 𝑦1), … , (𝑥𝑁 , 𝑦𝑁)} and our initial distribution 𝐷1 𝑡ℎ𝑎𝑡 𝑖𝑠 {
1

𝑁
, … ,

1

𝑁
}. At 

initialization, all training examples begin with the same weight and our weight vector 𝑤1 

at step 1 is equal to the distribution 𝐷1.  

At each step, some classifier creates a simple model (also referred to as 

hypothesis). The weak learners (or base learners) are usually decision trees with a depth 

of 1 (also called stamps). The error of this model is then calculated by adding the weights 

of all the misclassified instances with the mathematical formula:  
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A weight 𝑎𝑡 is calculated for that hypothesis to minimize the error of the final 

model where 𝑎𝑡 =  
1

2
ln (

1−𝜀𝜏

𝜀𝜏
) and new weights are calculated for the training set. Finally 

we update our distribution  𝐷𝑡+1 =  
𝐷𝑡(𝑖)𝑒−𝑎𝑡𝑦𝑖ℎ𝑖(𝑥𝑖)

𝑍𝑡
 where 𝑍𝑡 is a normalization factor. We 

set out weight vector to be equal to our new distribution and we repeat this process. 

 

2.2 XGBoost (Gradient Boosting Framework) 

Gradient Boosting is an ensemble method based in the boosting framework. Like 

all boosting algorithms, it builds a strong learner by sequentially adding weak learners. 

The initial model 𝑓0(𝑥) should be a function that minimizes the loss function or the 

MSE: 

𝑓0(𝑥) = 𝑎𝑟𝑔𝑚𝑖𝑛𝛾 (∑ 𝐿(𝑦𝑖, 𝛾)

𝑛

𝜄=1

) = 𝑎𝑟𝑔𝑚𝑖𝑛𝛾 ∑(𝑦𝑖 − 𝛾)2

𝑛

𝜄=1

 

 

By taking the first differential of the above equation we can see that 𝑓0(𝑥) 

minimizes at the mean. This means that the first prediction for all out data is the average 

of the class we want to predict. After calculating the differences (residuals) 𝑟𝑖 between 

the actual values of the class and our predictions, we fit a weak learner ℎ1(𝑥) using the 

training set{(𝑥𝑖, 𝑟𝑖)}𝑖=1
𝑛 . 

Then a weight 𝛾1 is calculated for that model using the formula: 

𝛾𝑚 =  𝑎𝑟𝑔𝑚𝑖𝑛𝛾 ∑ 𝐿(𝑦𝑖, 𝐹𝑚−1(𝑥𝑖) + 𝛾ℎ𝑚(𝑥𝑖))

𝑛

𝜄=1

 

Finally, we update out model 𝐹𝑚(𝑥) =  𝐹𝑚−1(𝑥) + 𝛾𝑚ℎ𝑚(𝑥) 

 

 

2.3 Random Forest 

Random Forest is a supervised learning algorithm that creates a random 

collection (“forest”) of trees. The trees it creates are Decision Trees that are trained using 

the bagging method. 
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Bagging is selecting a random sample from the dataset with replacement. The 

extension (Ho, 1995) that Random Forest adds is that the Decision Tree is trained in a 

subset of the available features. 

 

Figure 1: Random Forest 

 After all the trees are created, the prediction for the class of any given instance is 

done using voting (for classification).  

 

2.4 Decision Trees (C. A. R. T implementation) 

 

Decision Tree algorithms ID3 (Quinlan J. R., 1986) and C4.5 (Quinlan J. R., 

2014) were invented by John Ross Quinlan and both build a tree from a set of training 

data using the concept of information gain. Around the same time with Quinlan, Breiman 

created his own implementation of decision trees named Classification and Regression 

Trees (C.A.R.T) (Breiman, Friedman, Olshen, & Stone, 1984) and is very similar to 

C4.5. 

A key difference between C.A.R.T and C4.5 is that it supports numerical target 

variables (regression) and it does not compute rule sets. The Python package skicit-learn 

uses an optimized version of the C.A.R.T algorithm. 

Let us suppose we are given a set of training vectors S = {s1… 𝑠𝑙} of classified 

samples 𝑠𝑖 ∈ 𝑅𝑛 and a label vector y. At each node N, for each feature j and given a 

threshold 𝑡𝑁 we partition the data into 𝑄𝑟𝑖𝑔ℎ𝑡({𝑗, 𝑡𝑁}) and 𝑄𝑙𝑒𝑓𝑡({𝑗, 𝑡𝑁}) where 

𝑄𝑟𝑖𝑔ℎ𝑡({𝑗, 𝑡𝑁}) = (𝑥, 𝑦)|𝑥𝑗 > 𝑡𝑁 and 𝑄𝑙𝑒𝑓𝑡({𝑗, 𝑡𝑁}) = 𝑄 − 𝑄𝑟𝑖𝑔ℎ𝑡. 
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The quality of the split is called impurity and is measured using a function H(), 

but the quality measures used are usually entropy or Gini index. The choice of the 

measuring function depends on the task being solved, classification or regression. 

Then we calculate the Gini index for node N and split at the j feature: 

𝐺(𝑁, {𝑗, 𝑡𝑁}) =  
𝑛𝑙𝑒𝑓𝑡

𝑁𝑁
𝐻 (𝑄𝑙𝑒𝑓𝑡({𝑗, 𝑡𝑁})) +

𝑛𝑟𝑖𝑔ℎ𝑡

𝑁𝑁
𝐻 (𝑄𝑟𝑖𝑔ℎ𝑡({𝑗, 𝑡𝑁}))  

 

We split our data on the feature that minimizes 𝐺(𝑁, {𝑗, 𝑡𝑁}) and continue the same 

procedure recursively for 𝑄𝑙𝑒𝑓𝑡 and 𝑄𝑟𝑖𝑔ℎ𝑡 until the stopping criteria are met. 

 

2.5 Naïve Bayes 

 

Naïve Bayes is a conditional probability model that makes use of Bayes’ 

Theorem to calculate the probability for each class label  𝐶𝑘 . Given a training set of N 

feature and an instance x represented by a vector 𝑥 = {𝑥1, … , 𝑥𝑁} using the formula: 

𝑝(𝐶𝑘|𝑥) =  
𝑝(𝐶𝑘)𝑝(𝑥|𝐶𝑘)

𝑝(𝑥)
 

 

We are interested in calculating the numerator of our fraction that is equal to the 

joint probability model 𝑝(𝐶𝑘, 𝑥1, … , 𝑥𝑁).Using the chain rule we can rewrite this 

probability as follows:  

𝑝(𝐶𝑘, 𝑥1, … , 𝑥𝑁) = 𝑝(𝑥1|𝑥2, … , 𝑥𝑁 , 𝐶𝑘)𝑝(𝑥2|𝑥3, … , 𝑥𝑁 , 𝐶𝑘) … 𝑝(𝑥𝑁−1|𝑥𝑁 , 𝐶𝑘)𝑝(𝑥𝑁|𝐶𝑘)    

This classifier is called “naïve” because we assume that all features are mutually 

independent, conditional on the category 𝐶𝑘. 

Based on this assumption we can do the following approximation: 

𝑝(𝑥𝑖|𝑥𝑖+1, … , 𝑥𝑁 , 𝐶𝑘) = 𝑝(𝑥𝑖|𝐶𝑘) 

so now we can rewrite 𝑝(𝐶𝑘, 𝑥1, … , 𝑥𝑁) =
1

𝐾
𝑝(𝐶𝑘) ∏ 𝑝(𝑥𝑖|𝐶𝑘)𝑁

𝑖=1  where 
1

𝐾
 

is a normalization factor. 

After the model is build given an instance we can calculate the probability to 

belong in each class label. Then we apply a decision rule to find the class of this instance. 

The most common decision rule is known as the maximum a posteriori rule, which 

means we assign the class label with the highest probability. 
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2.6 Support Vector Machines 

Support Vector Machines, also known as Support Vector Networks (Boser, 

Guyon, & Vapnik, 1992) are supervised learning methods that can be used for both 

classification and regression.   

This algorithm performs classification by calculating the hyperplane (a simple line in two 

dimensions) that best differentiates the classes of the dataset. 

Out of an infinite number of 

hyperplanes SVM calculates 

the optimal using a subset of 

training samples, the support 

vectors. Support vectors are 

data points that lie closest to the 

decision surface and are the 

most difficult to classify.  

Let’s suppose that our 

separating line has a form of 𝑤 ∙

𝑥 − 𝑏 = 0 where the variable b 

let’s us move the line without having to pass through the origin O and w is the weight 

vector we have to calculate in order to find our hyperplane. In order to maximize the 

margin between the classes we need the parallel hyperplanes to the optimal one that are 

closest to the support vectors of either class. Those hyperplanes can be described by 

equations 𝑤 ∙ 𝑥 − 𝑏 = 1  and 𝑤 ∙ 𝑥 − 𝑏 = −1. 

Figure 2 : Support Vectors 



17 
 

 The distance between these 

hyperplanes is 
2

|𝑤|
, thus to 

maximize the margin we have 

to minimize ||𝑤||. To ensure 

that no data points are going to 

be inside our margin then for 

every i either 𝑤 ∙ 𝑥𝑖 − 𝑏 ≥ 1  

or 𝑤 ∙ 𝑥𝑖 − 𝑏 ≤ −1. 

That is a quadratic constrained 

problem and can be solved by 

Lagrangian multiplier method. 

The Lagrangian formulation of 

the problem is: 

min 𝐿𝑝 =
1

2
||𝑤||2 − ∑ 𝑎𝑖𝑦𝑖(𝑥𝑖 ∙ 𝑤 + 𝑏) + ∑ 𝑎𝑖

𝑙

𝑖=1

𝑙

𝑖=1

 

 subject to : 

 ∀ 𝑖 , 𝑎𝑖 ≥ 0  

where α are the Lagrange multipliers and l is the number of training instances.  

Instead of solving this problem in the Scikit implementation, the dual problem is 

solved with the help of the Kuhn – Tucker theorem. The solution will be the same for the 

original problem.  

The dual problem formulation is:  

𝑚𝑎𝑥𝐿𝐷(𝑎𝑗) = ∑ 𝑎𝑖 −
1

2

𝑙

𝑖=1

∑ 𝑎𝑖𝑎𝑗𝑦𝑖𝑦𝑗(𝑥𝑖 ∙ 𝑥𝑗)

𝑙

𝑖=1

 

subject to: 

     ∑ 𝑎𝑖𝑦𝑖 = 0 𝑎𝑛𝑑 𝑎𝑖 ≥ 0𝑙
𝑖=1  

Knowing the 𝑎𝑖 we can calculate the weights 𝑤 = ∑ 𝑎𝑖𝑦𝑖𝑥𝑖
𝑙
𝑖=1  and given a known point 

of 𝑥𝑖 features we can classify it by looking at the sign of  

𝑓(𝑥) = 𝑤 ∙ 𝑢 + 𝑏 = (∑ 𝑎𝑖𝑦𝑖𝑥𝑖

𝑙

𝑖=1

∙ 𝑢) + 𝑏 

. 

Figure 3 : Margins of SVM 



18 
 

2.7 Multilayer Perceptron (Neural Networks Framework) 

 

Artificial Neural Networks is a computational model inspired by nature and the 

way biological neural networks in the human brain works. It consists of a collection of 

nodes called artificial neurons. For every input given a weight is assigned for every 

feature of this input and a bias is included.  

Learning occurs in the perceptron by changing connection weights after each 

piece of data is processed, based on the amount of error in the output compared to the 

expected result. Then the sum of all the inputs multiplied by their weights goes through 

an activation function producing a single output producing the final output of our model. 

 

Figure 4 : An artificial neuron 

 

It was proven that a model with a single perceptron can only solve linear 

separable problems (Minsky & Papert, 1969) so then need to expand this had arisen. That 

led to the use of Multi-Layer Perceptron models that consists of many neurons divided 

into layers. 
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Figure 5 : A Multilayer Perceptron 

The leftmost layer, known as the input layer, consists of a set of neurons 

{xi|x1,x2,...,xm} representing the input features. Each neuron in the hidden layer 

transforms the values from the previous layer with a weighted linear summation 

w1x1+w2x2+...+wmxm, followed by a non-linear activation function g(⋅):R→R - like 

the hyperbolic tan function. The output layer receives the values from the last hidden 

layer and transforms them into output values. 

Although the weights of the nodes for each layer are initially assigned at random, 

in order to maximize the capabilities of a neural network they should be tuned based on 

the training data. The backpropagation algorithm is applied on a feed-forward neural 

network to adjust the weights at each node based on the output of the outcome of the 

nodes of the next layer that it is connected to.  

The advantages of Multi-layer Perceptron are: 

● Capability to learn non-linear models. 

The disadvantages of Multi-layer Perceptron (MLP) include: 

● MLP with hidden layers have a non-convex loss function where there exists 

more than one local minimum. Therefore different random weight 

initializations can lead to different validation accuracy. 

● MLP requires tuning a number of hyper parameters such as the number of 

hidden neurons, layers, and iterations. 

● MLP is sensitive to feature scaling 
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2.8 K-NN 

K-NN algorithm is a non-parametric method used for classification and is 

amongst the simplest classification algorithms. Given a set of training examples and a 

custom distance metric (usually the Euclidian metric is used) we can predict the class of 

a new instance by a plurality vote of its neighbors.  

Using the distance metric provided, we are looking for the k nearest neighbors of 

the new instance, and based on their label we decide for the label of the given instance. 

 

Figure 6 : 3-NN and 5-NN example for unlabel instance (green dot) 
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3 Case Study: Immunotherapy and Cryotherapy datasets 

3.1 Introduction 

Immunotherapy and Cryotherapy are two medical datasets donated by the 

dermatology clinic of Ghaem Hospital, Mashhad, Iran to the UCI Machine Learning 

Repository (Khozeimeh, et al., 2017). A study has been conducted on these datasets 

where a fuzzy rule-based method was applied to create a model with an accuracy of 

83.33% in the Immunotherapy dataset and 80% in Cryotherapy dataset. Our purpose is to 

compare the performance of the classic classification algorithms and to build a more 

effective model in terms of accuracy. 

 

3.2 Preprocessing 

3.2.1 Data Merging 

In order to be able to build a model with every algorithm both Cryotherapy and 

Immunotherapy datasets had to be combined resulting into a single dataset. The 

Immunotherapy dataset has an extra feature (‘Induration_diameter’) resulting in the 

addition of 90 missing values for the instances that come from the Cryotherapy dataset. 

A zero value was assigned to them. 

 

3.2.2 Data Transformation – Data Cleaning 

The class attributes for both Immunotherapy and Cryotherapy datasets where 0 if it 

was negative and 1 if the Response to treatment was positive. After merging the two 

datasets, the class values for the instances that come from the Immunotherapy dataset 

remained the same, while the ones coming from the Cryotherapy dataset were set to 2 

and 3 respectively. In addition, the Cryotherapy dataset contains a duplicate value, two 

instance with the exact same attributes. It was considered noise and was removed from 

the dataset to avoid disturbances in the underlying distribution of the data.  
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Figure 7 : Overview Table of resulting dataset 

 

  

3.2.3 Class balancing 

Cryotherapy dataset is balanced having almost equal number of positive and 

negative responses to treatment, but that is not the case for the Immunotherapy dataset 

where the positive responses were more. 

 

Figure 8 : Count plot of joined dataset classes 

In order to balance the dataset we could use random oversampling to create a few 

dummy data of class 0, or we could use an even more advanced technique like Synthetic 

Minority Oversampling Technique (S.M.O.TE) (Chawla, Bowyer, Hall, & Kegelmeyer, 

2002). After experimentation, it was found that the best choice would be to not use any 

oversampling technique and proceed with the dataset as it is. 
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3.2.4 Outlier Detection 

In figure 9 we notice that the ‘Surface Area of Warts’ feature has a high variance 

and that can indicate that there are some outliers. Also in the pair-plot matrix (Fig. 11), 

we can see two possible outliers of type 3 warts at the Result-Area pair. Looking at the 

distribution of the data from both Cryotherapy and Immunotherapy datasets, we can see 

that the ‘Surface Area’ feature has a Poisson distribution with extreme values. 

 

 

Figure 9 : Count plot of Surface Area for Cryotherapy and Immunotherapy Dataset 

After merging the two datasets, we get the following distribution. The fact that the 

resulting distribution seems Poisson-like and we have a small dataset with 180 

observations allows as to assume that those two values are not outliers. 

 

 

Figure 10 : Countplot of Area feature in joined dataset 
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3.3 Exploratory Data Analysis 

3.3.1 Pairplot Visualization 

To gain more insight about the relations between the features, and possibly find 

some pattern in our data, we are can use a set of visualizations that are going to help us 

explore and understand our data better. The Python package Seaborn provides us a 

plethora of different type of plots depending on the type of data you want to visualize 

(Relational, Categorical, and Distributions etc.). The result of the pairplot function (Fig 

11) allows us to see a matrix of scatter plots for every combination of our dataset 

features. We also have the ability to color our data points based on some feature. Here 

they are colored based on the Type feature. 

 

Figure 11 : Seaborn's pairplot  

 

3.3.2 Univariate Analysis 

 After visualizing the relations between the features, we need to understand how 

each feature interacts with the class we want to predict. At Figure 12, we can see for 

every feature the distribution for every class attribute. A feature where those distributions 

are well separated is a good feature to be used in order to predictions. On the other hand, 

a feature with overlapping distributions, doesn’t add much information. For example at 
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Figure 12 we can see that for the ‘Number of Warts’ attribute all class attributes have the 

same distribution, which makes it really hard to distinguish the class only by looking at 

this feature. 

 

Figure 12 : Distribution plots for every feature colored by class attribute 

 That’s not the case for ‘Age’ and ‘Time’ attributes where the distributions may 

not be totally separated but there is a significant difference in the mean. 

3.3.3 Boxplot Analysis - ‘Violinplot Analysis’ 

 Another helpful visualization that is also often used in outlier detection is the 

boxplot. Instead of a regular boxplot we can see at Figure 13 Seaborn’s violinplot which 

is a combination of a regular boxplot in the center of every ‘violin’, and a distribution 

plot on the sides.   

 

Figure 13 : Violinplot of every dataset feature 
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In figure 14 we can see that for the feature ‘Time’ classes 1 and 3 have a lower 

mean classes 0 and 2 have a higher mean but also smaller variance, which makes the date 

more concentrated around the mean. The use of this feature will help as distinguish the 

classes easier.    

 

Figure 14 : Violin Plot for the feature Time 

 On the other hand, as we can see from the violinplot of feature ‘Number of 

Warts’ (Fig 15) the mean for every class is almost the same which makes this feature 

weaker compared to the predictive power of ‘Time’.  

  

Figure 15 : Violinplot for Number of Warts feature 

3.3.4 Correlation Matrix 

To select the best features that describe our dataset we also calculated the 

correlation matrix (Figure 16) using the Spearman method. Because the Spearman 

correlation coefficient is based on the ranks of the data rather than the actual data, makes 

it a better choice for examining the relationships between variables with unequal 

variances, and of non-normal distribution. 
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Figure 16 : Spearman Correlation Matrix 

 The features with the greatest relevance with the Result of Treatment were the 

induration diameter with a correlation coefficient of -0.85, age with -0.28 and Time with 

-0.16. The rest of the features had a less significant correlation coefficient and also based 

on our boxplot and univariate analysis, only the top three features were used to build the 

models.  

3.4 Results 

 Each algorithm was tested using 10-fold cross validation, with a fixed seed to 

ensure that all algorithms are going to be trained and tested on the same training and 

testing sets. The class attribute was considered balanced so the metric that was used to 

compare the performance of the algorithms was the accuracy of the predictions. Except 

from the resulting dataset after combining Immunotherapy and Cryotherapy datasets, 

each algorithm was also tested on the original datasets in order to see if their combination 

would result in a better performance. 

 As we can see from tables, 1-9 the highest accuracy on the combined dataset was 

by XGBoost with a 92.22% accuracy and a standard deviation of 5.6%. For every 

algorithm except XGBoost and Support Vector Machine, the accuracy on Cryotherapy 

was higher than both Immunotherapy and combined datasets. Also the accuracy on 

Immunotherapy dataset was the lowest for every algorithm except Support Vector 

Machine where Cryotherapy had the lowest accuracy score. 
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Table 1 : XGB results on both standalone and combined datasets 

 

Table 2 : Random Forest results on both standalone and combined datasets 

 

Table 3 : C.A.R.T results on both standalone and combined datasets 

 

Table 4 : Adaboost results on both standalone and combined datasets 

 

Table 5 : Neural Network results on both standalone and combined datasets 

 

Table 6 : SVM results on both standalone and combined datasets 

 

Table 7 : Naive Bayes results on both standalone and combined datasets 

 

Table 8 : KNN results on both standalone and combined datasets 

 

Finally at Table 9 we can see the time it took for every algorithm to train, predict 

and measure the accuracy of the model, for every fold, in total.  

Dataset\Fold 1 2 3 4 5 6 7 8 9 10 Mean Sd

Immunotherapy 0,777 0,666 1 0,777 0,555 0,777 1 0,777 1 1 0,833 0,15

Cryotherapy 0,888 1 1 0,888 0,888 0,888 0,666 0,888 0,888 0,888 0,888 0,086

Combined 0,833 0,944 0,944 0,833 0,888 0,944 1 0,944 0,888 1 0,922 0,056

Dataset\Fold 1 2 3 4 5 6 7 8 9 10 Mean Sd

Immunotherapy 0,888 1 1 0,777 0,777 0,777 1 0,777 0,777 1 0,878 0,1

Cryotherapy 0,888 1 1 0,888 1 0,888 0,777 1 0,888 0,666 0,9 0,1

Combined 0,833 1 0,833 0,833 0,888 0,944 1 0,888 0,888 0,777 0,888 0,07

Dataset\Fold 1 2 3 4 5 6 7 8 9 10 Mean Sd

Immunotherapy 0,777 0,777 1 0,777 0,666 0,777 1 0,777 1 1 0,855 0,12

Cryotherapy 0,888 1 1 0,888 1 0,888 0,888 1 1 0,666 0,922 0,1

Combined 0,777 0,833 0,777 0,833 0,777 0,888 1 0,888 0,833 0,888 0,85 0,06

Dataset\Fold 1 2 3 4 5 6 7 8 9 10 Mean Sd

Immunotherapy 0,888 0,888 0,888 0,666 0,555 0,777 1 0,777 0,777 1 0,822 0,13

Cryotherapy 0,888 1 1 0,888 0,888 0,888 0,777 1 0,888 0,666 0,888 0,09

Combined 0,777 0,888 0,888 0,833 0,888 0,888 0,944 0,833 0,888 0,777 0,861 0,05

Dataset\Fold 1 2 3 4 5 6 7 8 9 10 Mean Sd

Immunotherapy 0,888 1 0,777 0,777 0,777 0,777 0,777 0,777 0,666 0,666 0,788 0,092

Cryotherapy 0,888 1 0,777 0,888 0,888 0,888 0,666 0,888 1 0,777 0,866 0,096

Combined 0,722 1 0,888 0,777 0,888 0,777 0,944 0,833 0,833 0,722 0,838 0,087

Dataset\Fold 1 2 3 4 5 6 7 8 9 10 Mean Sd

Immunotherapy 0,888 0,666 0,666 0,222 0,555 0,222 0,555 0,666 0,555 0,666 0,566 0,195

Cryotherapy 0,222 0,666 0,444 0,444 0,555 0,777 0,333 0,222 0,444 0,777 0,488 0,193

Combined 0,722 0,944 0,888 0,777 0,888 0,888 0,888 0,722 0,833 0,833 0,838 0,072

Dataset\Fold 1 2 3 4 5 6 7 8 9 10 Mean Sd

Immunotherapy 0,777 0,888 0,888 0,666 0,777 0,666 0,888 0,777 0,777 0,888 0,799 0,083

Cryotherapy 0,888 1 1 0,888 0,888 0,888 0,555 0,888 0,666 0,888 0,855 0,13

Combined 0,611 0,944 0,888 0,722 0,833 0,833 0,833 0,777 0,833 0,888 0,816 0,089

Dataset\Fold 1 2 3 4 5 6 7 8 9 10 Mean Sd

Immunotherapy 0,777 0,555 1 0,888 0,666 0,777 0,888 0,888 0,777 0,555 0,777 0,14

Cryotherapy 1 0,888 1 0,888 1 0,888 0,888 1 0,777 0,888 0,922 0,07

Combined 0,888 0,888 0,777 0,666 0,888 0,888 1 0,777 0,777 0,888 0,844 0,08



29 
 

Table 9 : Performance results on Immunotherapy & Cryotherapy combined  dataset 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm\Fold 1 2 3 4 5 6 7 8 9 10 Mean Sd Time

XGBoost 83.3% 94.4% 94.4% 83.3% 88.8% 94.4% 100% 94.4% 88.8% 100% 92.2% 5.6% 0.17

Random Forest 83.3% 100% 83.3% 83.3% 88.8% 94.4% 100% 88.8% 88.8% 77.7% 88.8% 7% 1.54

C.A.R.T 77.7% 83.3% 77.7% 83.3% 77.7% 88.8% 100% 88.8% 83.3% 88.8% 85% 6.5% 0.07

Adaboost 77.7% 88.8% 88.8% 83.3% 88.8% 88.8% 94.4% 83.3% 88.8% 77.7% 86.1% 5.1% 3.75

Neural Network 72.2% 100% 88.8% 77.7% 88.8% 77.7% 100% 83.3% 83.3% 72.2% 83.8% 8.7% 2

SVM 72.2% 94.4% 88.8% 77.7% 88.8% 88.8% 88.8% 72.2% 83.3% 83.3% 83.8% 7.2% 0.06

Naïve Bayes 61.1% 94.4% 88.8% 72.2% 83.3% 83.3% 83.3% 77.7% 83.3% 88.8% 81.6% 8.9% 0.07

KNN 88.8% 88.8% 77.7% 66.6% 88.8% 88.8% 100% 77.7% 77.7% 88.8% 84.4% 8.8% 0.07
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4 Case Study: APS Failure at Scania Trucks Dataset 

4.1 Introduction  

Scania, a major Swedish manufacturer of commercial vehicles, donated the APS 

failure dataset to UCI Machine Learning Repository. It contains data collected from 

heavy Scania trucks in everyday usage. The dataset is already split in a testing and a 

training set. The datasets consists of two classes, where the positive class corresponds to 

trucks with failures associated to the Air Pressure System (APS) while the negative class 

corresponds to trucks with failures that are not connected to it. 

 It has 170 feature columns that have been anonymized, for example ‘aa_000’ and 

‘ab_000’ are the first two features. There are two types of features, the usual standalone 

type where one column is one feature and the histogram type. The histogram features are 

groups of 10 feature columns that in fact are bins of a histogram. For example, the 

features ‘az_000’-‘az_009’ (Fig 18) belong to a single histogram. There are 70 features 

that belong to a histogram thus there are seven histograms in our data. 

 

 

Figure 17 : Histogram of ba_000 - ba_009 features in Row 1 

 

Figure 18 : Histogram of az_000 - az_009 features in Row 1 
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4.2 Preprocessing 

One of the most common tasks of a data analyst, when preparing a dataset to be 

used for constructing a predictive model, is to handle the missing values of his dataset (if 

those exist). In this particular dataset, 850.015 missing values take up to 8.3% of the total 

data. 

4.2.1 Removing insignificant rows 

As we can see in figure 19 that is the distribution of the count of missing values per 

row, that there are rows with more than 150 missing values out of 170 features. These 

rows can be safely removed, as they do not add any information to the dataset. For the 

final models only rows with less than 60 missing values were kept.  

 

Figure 19 : Frequency plot of number of missing values 

 

Removing rows should be done in consideration with the class that those rows 

belong to. Due to the fact that this is a highly imbalanced dataset, having only 1000 rows 

that belong to the positive class and 59.000 rows that belong to the negative class, 

removing can reduce even more the instances that belong to the positive class. For that 

reason only rows with more than 60 missing values where removed resulting in a dataset 

with 58.026 rows with 947 instances belonging in the positive class and 57079 instances 

belonging in the negative class. 

4.2.2 Filling the missing values 

One of the most common ways to replace missing values is to substitute them 

with either the average or the median of that feature. Using the median or a simply 

average to replace the missing values isn’t a valid method for this dataset, cause there are 

features (columns) that have a really high percentage of missing values, (e.x columns 
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‘ab_000’,‘bn_000’,’bo_000’,’bp_000’ have 46329,44009,46333 and 47740 missing 

values respectively) and doing so would disrupt the underlying distribution. 

I decided to use a machine learning approach using the mean of the values of the 

50 nearest neighbors to estimate each missing value (Ozan, Riabchenko, & Kiranyaz, 

2016). The metric used to compute the distance between instances was the following: 

𝐷(𝑥, 𝑦) = ∑ 𝐷𝑖(𝑥𝑖, 𝑦𝑖) 𝑡ℎ𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑟𝑜𝑤𝑠 𝑥 𝑎𝑛𝑑 𝑦 

𝑤ℎ𝑒𝑟𝑒 𝐷𝑖(𝑥𝑖 , 𝑦𝑖) =  {
1 𝑖𝑓 𝑥𝑖 𝑜𝑟 𝑦𝑖  𝑖𝑠 𝑛𝑎

|𝑥𝑖 − 𝑦𝑖|
  

𝑎𝑛𝑑 𝑥𝑖, 𝑦𝑖 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑜𝑓 𝑥 𝑎𝑛𝑑 𝑦 𝑟𝑜𝑤𝑠 𝑎𝑡 𝑖 𝑐𝑜𝑙𝑢𝑚𝑛  

4.2.3 Dimensionality  Reduction 

Another problem about this dataset is the number of columns it has making the 

computation times longer. To overcome this I tried various dimension reduction 

techniques such as Principal Component Analysis (PCA) and Singular Value 

Decomposition (SVD). 

To determine the best dimension to use for our classification task, as well as the 

best technique for dimension reductions, I trained an XGB model and evaluated it using 

10 fold cross validation and taking the average cost.   

 

 

Figure 20 : Performance of PCA and SVD per Number of Neighbors 
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We can achieve minimum cost projecting our data into 140 dimensional space using 

PCA algorithm. 

4.2.4 Class balancing 

Finally the last thing we have to take in consideration is that this dataset is highly 

imbalanced. It has only 947 instances belonging to the positive class and 57079 samples 

belonging to the negative class. 

To help build better model with all algorithms there are many techniques for 

oversampling. Oversampling is the creation of dummy instances that are going to be 

added to our dataset. Those instances are going to be of the desired class, in our case the 

positive class. There are many algorithms for oversampling and I chose to use Synthetic 

Minority Oversampling Technique (S.M.O.TE). 

 

Figure 21 : Performance of S.M.O.TE per number of Neighbors 

The best results where achieved when creating synthetic samples considering the 15 

closest neighbors.  

4.3 Results 

 

To compare the performance of every algorithm the dataset was split using 10-

fold cross validation. A fixed seed was used to ensure that all algorithms use the same 

training and testing subset. In Table 10 we can see the cost of each algorithm in each 

fold, with XGBoost algorithm having the minimum average cost of 12253 units and the 

second lowest standard deviation of 5.6 after Naïve Bayes classifier. 
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Table 10 : Performance results on Scania dataset 

 

  

Algorithm\fold 1 2 3 4 5 6 7 8 9 10 Mean StDev Time

XGBoost 12010 12370 11950 12110 11640 12120 12590 12650 12460 12630 12253 321,654 2255.5

CART 20000 22480 29200 23240 23210 33130 21140 20640 33330 25410 25178 4738,55 336.9

Random Forest 12660 12330 15940 12410 12430 14960 12690 13360 13570 11310 13166 1298,22 113.1

Naïve Bayes 16660 16300 16700 16710 16690 16640 16640 16660 16660 16660 16632 112,942 5.7

Adaboost 15600 14520 16950 15910 14310 15220 15880 14240 14030 16970 15363 1029,64 1130.3

SVM 29830 26410 49750 29000 29190 62380 38670 36530 27130 49230 37812 11570,1 9064.4

Neural Network 13040 16580 19620 16720 13630 13370 13510 12940 13860 14830 14810 2064,12 794.7

KNN 18920 20150 18940 18930 18900 18910 19910 18950 18920 19910 19244 492,467 641.6
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5 Case Study: S.C.A.D.I DATASET 

5.1 Introduction 

Self-Care Activities Dataset contains 206 features of 70 children with physical 

and motor disabilities based on International Classification of Functioning, Disability and 

Health for Children and Youth (ICF – CY) (Zarchi, 2018). Our first two features are 

gender (1 for male and 0 for female) and age while features 3-205 are self-care activities 

based on ICF-CY. An ICF-CY code consists of four levels where the first level classifies 

general activities (Body Functions, Body Structures, Activities and Participation and 

finally Environmental Factors). Self-Care problems is a subset of Activities and 

Participation and starts with d5. 

The prediction class consists of the following seven labels:  

1. class 1 : Caring for body parts problem  

2. class 2 : Toileting problem  

3. class 3 : Dressing problem  

4. class 4 : Washing oneself and Caring for body parts and Dressing problem 

5. class 5 : Washing oneself, Caring for body parts, Toileting and Dressing 

problem  

6. class 6 : Eating, Drinking, Washing oneself, Caring for body parts, 

Toileting, Dressing, Looking after one’s health and Looking after one’s 

safety problem  

7. class 7 : No problem 

5.2 Exploratory Data Analysis 

As we can see at figure 22 class 6 is the most common in our dataset while 

classes 1, 3 and 5 have only two, one and three cases respectively. 
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Figure 22 : Count plot of class labels 

As we can see due to the small size of this dataset the classes are not equally 

distributed between genders. There were only female cases of class 5 and 3 and only 

male cases of class 1 and we can see a huge difference in proportion in class 6. 

 

Figure 23 : Distribution of class labels per sex 

5.3 Preprocessing 

Using Seaborn’s cluster map function we can see the various clusters of instances 

(using hierarchical algorithm) but the first thing we can notice is that a black column in 

the cluster map means that all instances have the same value (zero) in that feature. For 

example features d 5602-8 and d 5602-9 has the value 0 across all dataset. When a 

column has the same value for all the instances of a dataset means that all instances have 
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the same feature which adds zero information that would help us with our classification 

task. As a result we can drop 63 out of 202 columns. 

 

Figure 24 : Seaborn's clustermap 
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After using Scikit’s LabelEncoder class we encode our class labels from strings to 

numbers in order for all algorithms to be able to process the data. For this dataset the 

problems we have to overcome is the huge number of features and the fact that some of 

the class labels are undersampled. 

  Three kinds of preprocessing where tested on this dataset: 

 Use all the features without using any oversampling technique to balance 

the class feature. 

 Use all the features using RandomOversampler as an oversampling 

technique. 

 After training an XGB model using the first preprocessing we extract the 

feature importance and used only the best features without any 

oversampling. 

 

Figure 25 : Importance of Features from XGBoost model 



39 
 

At figure 26 we can see that using oversample had the best average accuracy after 

using 10-fold cross validation as an evaluation technique across all algorithms. That is 

not the case for XGB that had the best results when using only the top 12 features (those 

that had an f-score that was equal or greater than 30) without using any oversampling. 

 

 

 

Figure 26 : Performance of preprocessing type for each algorithm 

5.4 Results 

To compare the performance of every algorithm the dataset was split using 10-

fold cross validation. A fixed seed was used to ensure that all algorithms use the same 

training and testing subset. In Table 11 we can see the accuracy of each algorithm in each 

fold, with  Neural Network algorithms having the highest average accuracy of 93.18% 

and the lowest standard deviation. 
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Table 11 : Performance results on S.C.A.D.I dataset 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Algorithm\fold 1 2 3 4 5 6 7 8 9 10 Mean StDev Time

XGBoost 81,81 54,54 100 80 70 100 90 70 100 80 82,64 14,42932933 13,15

CART 90,9 81,81 90,9 80 70 100 100 90 100 100 90,36 9,835613301 0,05

Random Forest 100 72,72 100 80 80 100 100 90 90 100 91,27 9,911702982 1,59

Naïve Bayes 100 90,9 100 90 80 100 90 80 90 80 90,09 7,750670939 0,05

Adaboost 100 100 100 90 70 100 90 90 90 100 93 9 3,38

SVM 100 72,72 100 80 80 100 100 90 90 90 90,27 9,475539879 0,11

Neural Network 100 81,81 100 90 80 100 100 90 90 100 93,18 7,522556015 2,2

KNN 100 81,81 100 80 80 100 100 90 90 100 92,18 8,482384629 0,03
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6 Conclusions  

 Every Data Analysts dream would be to be able to use an algorithm that had the 

best performance in terms of accuracy and time of execution, regardless the dataset he 

tests it. There are many researches on the performance of Data Mining algorithms either 

on a particular problem, for example image recognition (Martin Weis, 2017) or a more 

empirical comparison on different datasets (Rich Caruana, 2006) like the one you are 

reading now. 

 Even though XGBoost won the competition against the other algorithms in the 

first two datasets, could not outperform the Multilayer Perceptron in the third case study.  

 The outcome from every research, including this one, is the same, no single 

algorithm performs best across all datasets (Christopher Sibona, 2012). There are many 

conclusions that can be drawn and several statements to be formulated, such as the 

boosting and bagging algorithms have an increased efficiency compared to older 

algorithms (Kristína Machová, 2006). The comparison between boosting and bagging 

tends to be in favor of boosting with boosting based algorithms having better results. 

 In many cases, methods that clearly perform poorly on average can outperform 

every other algorithm. It is a Data Analysts duty to have in-depth knowledge of the 

mechanics of Data Mining methods, in order to be able to choose the most fitting method 

to the problem he is trying to solve. 

 

 

The classification of facts, the recognition of their sequence and relative significance is 

the function of science, and the habit of forming a judgment upon these facts unbiased by 

personal feeling is characteristic of what may be termed the scientific frame of mind. 

      —Karl Pearson, The Grammar of Science 
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