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Περίληψη 
 
H χρήση των συστημάτων συστάσεων (recommender systems) έχει αρχίσει         
να γίνεται απαραίτητη στις μέρες μας και για τις ηλεκτρονικές επιχειρήσεις           
και για τους πελάτες, λόγω της ταχείας ανάπτυξης του Διαδικτύου σε           
συνδυασμό με το πρόβλημα της συσσώρευσης πληροφοριών. Τα συστήματα         
συστάσεων και εξατομίκευσης χρησιμοποιούνται ευρέως στο ηλεκτρονικό       
εμπόριο για να προτείνονται προϊόντα ή υπηρεσίες σε χρήστες ( π.χ           
συστάσεις για αγορές, ανάγνωση ειδήσεων, συνδέσεις κοινωνικής       
δικτύωσης, ταινίες κ.α.). Ένα σύστημα συστάσεων παίρνει συνήθως ως         
είσοδο προσωπικές πληροφορίες από τον χρήστη, χρησιμοποιώντας έναν        
αλγόριθμο δημιουργεί τις συστάσεις και εμφανίζει κάποιες προτάσεις στον         
χρήστη. Ένας από τους πιο διαδεδομένους αλγορίθμους που        
χρησιμοποιείται είναι το συνεργατικό φιλτράρισμα (Collaborative filtering).       
H βασική ιδέα είναι να εντοπιστούν οι χρήστες που μοιράζονται τα ίδια            
ενδιαφέροντα με τον ενδιαφερόμενο χρήστη στο παρελθόν, ενώ ο         
αλγόριθμος στηρίζεται στο ότι οι χρήστες που έχουν παρόμοιες         
προτιμήσεις, βαθμολογούν και αξιολογούν με παρόμοιο τρόπο. Οι τεχνικές         
αυτές συνήθως λαμβάνουν ένα σύνολο με τις βαθμολογίες των χρηστών του           
συστήματος και παράγουν προβλέψεις σχετικά με το τι χρειάζεται ένας          
χρήστης, βασιζόμενες στους πιο κοντινούς (ως προς τις προτιμήσεις) σε          
αυτόν χρήστες  
 
Στόχος της διπλωματικής εργασίας είναι η σχεδίαση και υλοποίηση ενός          
διαδραστικού συστήματος συστάσεων που λειτουργεί με τη μέθοδο του         
συνεργατικού φιλτραρίσματος. Το σύστημα θα λαμβάνει ανάδραση από το         
χρήστη και θα προσαρμόζει ανάλογα τις προτάσεις που εμφανίζει. Θα δοθεί           
έμφαση στην σχεδίαση της διεπαφής χρήστη και στην παρουσίαση των          
αποτελεσμάτων έτσι ώστε να ευνοείται η διαισθητική αλληλεπίδραση με το          
χρήστη 
 
Λέξεις κλειδιά 
recommendation system, collaborative filtering, user feedback, Rochio 
algorithm, Django, Python, Angular, RestFul web services, Celery, Redis 
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Abstract 
 
Due to the rapid development of the Internet coupled with the problem of             
information accumulation, the use of recommender systems has become         
essential nowadays for e-businesses and customers. Recommendations       
systems are widely used in e-commerce to recommend products or services           
to users (eg marketplace suggestions, news reports, social links, movies,          
etc.). ​A recommendation system usually receives personal information from         
the user, using an algorithm that creates the recommendations and displays           
some suggestions to the user. One of the most widely used algorithms is             
Collaborative filtering​. ​The basic idea is to identify users who share the            
same interests with the concerned user, while the algorithm is based on the             
fact that users who have similar preferences rate and evaluate in a similar             
way. These techniques usually take a set of system user ratings and make             
predictions about what a user needs. 
 
The aim of the thesis is to design and implement an interactive            
recommendation system that works with the collaborative filtering method.         
The system will receive feedback from the user and tailor its suggestions            
accordingly. Emphasis will be given to the design of the user interface and             
the presentation of results so as to promote intuitive interaction with the user 

 
Keywords:  
recommendation system, collaborative filtering, user feedback, Rochio 
algorithm, Django, Python, Angular, RestFul web services, Celery, Redis 
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1.Introduction 

1.1 Problem - importance of  recommendation systems 

During the last few decades, recommender systems have taken more and           
more place in our lives. Some real-world examples include suggestions for           
products on Amazon, friends’ suggestions on social applications like         
Facebook, Twitter, LinkedIn and video recommendations on Youtube, news         
recommendations on Google News and so on. Recommender systems are          
really critical in some industries as they can generate a huge amount of             
income. Their intention is to facilitate users to find what they need            
effectively and immediately, creating a delightful user experience while         
driving incremental revenue.  

The main goal of recommender system is to provide relevant suggestions to            
online users to make better decisions from many alternatives available over           
the web. A better recommendation system is directed more towards          
personalized recommendations by taking into consideration the user’s        
feedback, user-demographic details etc. An important catalyst in building         
successful recommendation engines is the ease with which the web enables           
user’s feedback about their likes and dislikes. For example users are able to             
provide a feedback by rating items, reviewing items etc. Other forms of            
feedback are not quite as explicit but are even easier to collect them. For              
example, the simple act of viewing a recommended item can be considered            
as endorsement for that item. 

The biggest challenge of recommendation systems is to find a way to            
recommend relevant items, personalized on user’s preferences. The        
recommendations need to be adjusted on real time, based on user’s           
feedback.  

1.2 Goals of thesis 

This thesis aims to build an interactive recommender system. Some initial           
recommendations are returned to users, as they have been calculated by           
implementing a collaborative algorithm. Based on users’ feedback the         
recommendations are updated on real time and more relevant recommended          
items are displayed to users. 
  
A demo books recommendation application has been developed. Some         
online available datasets including users, books and ratings were used to fill            
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application’s database and a collaborative filtering algorithm was        
implemented in first place to calculate users’ recommended books. The          
recommended books for every user are stored into database. User is able to             
register/login in this application, and gets a list with all books and a list with               
recommended books. If user views a recommended book, it is considered as            
positive feedback, otherwise it is considered as negative feedback. 
 
This thesis has the purpose of suggesting a possible implementation of           
Rochio algorithm in order to build an interactive real time recommendation           
system and all the required stages to develop it are described. Some testing             
cases were carried out on books application in order to see how the             
interactive recommendation systems reacts on different user’s actions. The         
code of demo application can be found on github repository:          
https://github.com/fotein1/book_recommender 
  
 

1.3 Thesis layout 

The structure of thesis is the following:  
Chapter 2 discusses the fundamental concepts of recommendation systems’         
theory, including collaborative filtering algorithms, content based algorithms        
etc. In chapter 3, we analyze the demo books recommendation application,           
the database structure, what technologies we used to build backend/frontend          
part of application, the scripts used to load the online datasets on            
application’s database, the scripts used to calculate similar books and users’           
recommendations and the implementation of Rochio algorithm to readjust         
users’ recommendations. In chapter 4, we run some user test cases in demo             
application and we analyze how recommendations changed based on user          
feedback. Last but not least, the final conclusions of thesis are mentioned in             
chapter 5.  
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2. Recommendations - Theory background 

2.1 Definition 

Recommendation systems are powerful tool and techniques to analyse huge          
volumes of data, especially product information and user information, and          
they provide relevant suggestions based on data mining approaches. In          
technical term, a recommendation engine problem is to develop a          
mathematical model which can predict how a user will like an item. 

2.2 Goals of recommendation system 

The goals of a recommendation system should be the following: 

● Relevance: A recommender system should recommend items that are         
relevant to the user. Users are more likely to consume items they find             
interesting.  

● Novelty: Recommender systems are more helpful when the        
recommended item is something that the user has not seen in the past. 

● Serendipity: The recommended items are somewhat unexpected to the         
user. Serendipity is different from novelty in that the         
recommendations are surprising to the user, rather than simply         
something they did not know about before. It may often be the case             
that a particular user may only be consuming items of a specific type,             
although a latent interest in items of other types may exist which the             
user might themselves find surprising. Unlike novelty, serendipitous        
methods focus on discovering such recommendations. 

 
● Increasing recommendation diversity: Recommender systems     

typically suggest a list of top-k items. When all these recommended           
items are very similar, it increases the risk that the user might not like              
any of these items. On the other hand, when the recommended list            
contains items of different types, there is a greater chance that the user             
might like at least one of these items.  

2.3 Types of recommendation systems  

The basic principle of recommendations is that significant dependencies         
exist between user- and item-centric activity. For example, a user who is            
interested in a sci fiction book is more likely to be interested in another sci               
fiction book, rather than a historical book. In many cases, various categories            
of items may show significant correlations, which can be leveraged to make            
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more accurate recommendations.These dependencies can be learned in a         
data-driven manner from the ratings matrix, and the resulting model is used            
to make predictions for target users. The larger the number of rated items             
that are available for a user, the easier it is to make robust predictions about               
the future behavior of the user. Different learning models can be used to             
accomplish this task.The basic models of recommender systems work with          
two kinds of data, which are the user-item interactions, such as ratings or             
buying behaviour and the attribute information about the users and the           
items like the textual profiles or relevant keywords. Methods that use the            
former are referred as collaborative filtering methods, whereas methods that          
use the latter are referred as content-based-recommender methods.  

 
Collaborative filtering models 
In this type of recommendation engine, filtering items from a large set of             
alternatives is done collaboratively by user’s preferences. The term         
“collaborative filtering” refers to the use of ratings from multiple users in a             
collaborative way to predict missing ratings  
The basic assumption in a collaborative filtering recommendation system is          
that if two users shared the same interests as each other in the past they will                
also have similar tastes in the future. There are two types of collaborative             
filtering recommender systems: 
 

1. User based collaborative filtering: 

In user based collaborative filtering, recommendations are generated by         
considering the preferences of similar users. If, for example user A and user             
B have similar books preferences and user A read Harry Potter books,            
which user B has not read yet then the idea is to recommend them to user B. 
 
 User based collaborative filtering is done in two steps: 

● Identify similar users 
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● Recommend new items to an active user based on the rating given by 
similar users on the items not rated by the active users

 

           ​1. User based collaborative filtering diagram. Source 
https://dzone.com/articles/recommendation-engine-model 

2. Item based collaborative filtering: 

In item based collaborative filtering, recommendations are based on the          
similarity of items. Unlike user based collaborative filtering, we first find           
similarities between items and then recommend items which are similar to           
the items the active user has rated in the past. If, for example user A has                
rated Harry Potter books, we can recommend to him similar books. 
The recommender systems are constructed in two steps: 

● Calculate the item similarity based on the item preferences. 
● Find the top not rated similar items to rated items by user and 

recommend them 

 

2. Item based collaborative filtering diagram. Source 
http://2.bp.blogspot.com/-YEEM5PYuTAI/TmHGPmDYICI/AAAAAAAAAls/8VIm0-7PyYM/s1600/P1.

png 
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The advantage of collaborative filtering system is that they are simple to            
implement and very accurate. However, they have their own set of           
limitations, such as the cold start problem which means that collaborative           
filtering systems fail to recommend to the first time users whose information            
is not available in the system. 

 

Content based recommender systems  

As the name indicates, a content based recommender system uses the           
content information of the items for building the recommendation model.          
The content based recommender system recommends items to users by          
taking the content or features of items and user profiles. The basic idea is              
that user interests can be modeled on the basis of properties (or attributes) of              
the items they have rated or accessed in the past.  

Knowledge based recommender systems 
In these recommendation systems, users interactively specify their interests,         
and the user specification is combined with domain knowledge to provide           
recommendations.  

 
Cortext-aware recommendation system 
User preferences may differ with the context, such as time of day, season,             
mood, place, location, and so on. A person at a different location, at a              
different time with different people may need different things. A          
context-aware recommender systems takes the context into account before         
computing or serving recommendations. This recommender system caters        
for the different needs of people differently in different contexts. 
 
Hybrid recommender systems 
This type of recommendation engines is built by combining various          
recommender systems to build a more robust system. For example, by           
combining collaborative filtering methods, when the model fails when new          
items don’t have ratings, with the content-based systems, where the          
information about the items is available, new items can be recommended. 
 

2.4 Collaborative filtering nearest neighborhood models  

The standard method of Collaborative Filtering is known as ​Nearest          
Neighborhood ​algorithm. There are user-based CF and item-based CF. At          
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User-based CF, we have an n × m matrix of ratings, with user uᵢ, i = 1, ...n                  
and item p�, j=1, …m. Now we want to predict the rating rᵢ� if target user i                 
did not watch/rate an item j. The process is to calculate the similarities             
between target user i and all other users, select the top X similar users, and               
take the weighted average of ratings from these X users with similarities as             
weights. 

rij = number of  ratings

imilarities(u ,u )r∑
 

k
s i k kj   

 

While different people may have different baselines when giving ratings,          
some people tend to give high scores generally, some are pretty strict even             
though they are satisfied with items. To avoid this bias, we can subtract each              
user’s average rating of all items when computing weighted average, and           
add it back for target user, shown as below. 

rij = ri + number of  ratings

imilarities(u ,u )(r −r )∑
 

k
s i k kj k   

 

Two ways to calculate similarity are ​Pearson Correlation and ​Cosine          
Similarity​.  

Pearson Correlation: im(u , )  S i uk =
(r −r )(r − r )∑

 

j ij i kj k

√ (r −r ) (r −r )∑
 

j ij i
2 ∑

 

j kj k
2

 

Cosine similarity: im(u , )  S i uk = r ·ri k

r r| i|| k| =
(r −r )(r − r )∑

 

j ij i kj k

√ (r −r ) (r −r )∑
 

j ij i
2 ∑

 

j kj k
2

 

Basically, the idea is to find the most similar users to your target user              
(nearest neighbors) and weight their ratings of an item as the prediction of             
the rating of this item for target user. Without knowing anything about items             
and users themselves, we think two users are similar when they give the             
same item similar ratings . Analogously, for ​I​tem-based CF, we say two            
items are similar when they received similar ratings from a same user. Then,             
we will make prediction for a target user on an item by calculating weighted              
average of ratings on most X similar items from this user. One key             
advantage of Item-based CF is the stability which is that the ratings on a              
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given item will not change significantly over time, unlike the tastes of            
human beings.  

Neighborhood methods have several advantages related to their simplicity         
and intuitive approach. Because of the simple and intuitive approach of           
these methods, they are easy to implement and debug. It is often easy to              
justify why a specific item is recommended, and the interpretability of           
item-based methods is particularly notable. Such justifications are often not          
easily available in many of the model-based methods discussed in later           
chapters. Furthermore, the recommendations are relatively stable with the         
addition of new items and users. It is also possible to create incremental             
approximations of these methods.  

The main disadvantage of these methods is that the offline phase can            
sometimes be impractical in large-scale settings. The offline phase of the           
user-based method requires at least O(m​2​) time and space. This might           
sometimes be too slow or space-intensive with desktop hardware, when m is            
of the order of tens of millions. Nevertheless, the online phase of            
neighborhood methods is always efficient. The other main disadvantage of          
these methods is their limited coverage because of sparsity.

 

2.5 Relevance feedback Rochio algorithm  

The idea of ​relevance feedback ​(RF) is to involve the user in the retrieval              
process so as to improve the final result set. In particular, the user gives              
feedback on the relevance of the results he gets. The relevance feedback is             
used widely by information retrieval. The art of IR is to get the relevant              
objects from a large collection of information objects (usually documents).          
A user formulates a query in which he tries to communicate his information             
need. The relevance feedback can be also implemented on recommendation          
systems. 

The Rocchio Algorithm is the classic algorithm for implementing relevance          
feedback. It models a way of incorporating relevance feedback information          
into the vector space. The algorithm proposes using the modified query qm  

 + b  - c   aqm =  q0
1

D| r |
∑
 

d ∈Dj r

dj
1

D| nr |
∑
 

d ∈Dj nr

dj  

where ​q​0 is the original query vector, ​Dr ​and ​Dnr ​are the set of known rel-                
evant and nonrelevant documents respectively, and ​a​, ​b​, and ​c ​are weights            
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attached to each term. These control the balance between trusting the judged            
document set versus the query: if we have a lot of judged documents, we              
would like a higher ​b ​and ​c​. Starting from ​q​0​, the new query moves you               
some distance toward the centroid of the relevant documents and some           
distance away from the centroid of the non relevant documents. This new            
query can be used for retrieval in the standard vector space model. We can              
easily leave the positive quadrant of the vector space by subtracting off a             
non relevant document’s vector. In the Rocchio algorithm, negative term          
weights are ignored. That is, the term weight is set to 0.  

 

3.Optimize initial query with Rochio algorithm Source: 

The relevance feedback with Rochio algorithm can be implemented on          
recommendation system with the following process:   

● The system returns an initial set of retrieval results. 
  

● If the user clicks some items from results, these items are considered 
as relevant while the rest of them are considered as not relevant. 
  

● The system computes a better representation of the information need 
based on the user feedback. 
  

● The system displays a revised set of retrieval results.  
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3. Books recommendations application 

We are going to build a books recommendation application. User will be            
able to register/login in this application, he will get a list with all books and               
a list with recommended books. Based on user’s feedback (eg click a            
recommended book) the recommended books are readjusted, implementing        
the Rochio algorithm. In this chapter we are going to analyze all the parts of               
application. 
 

 
 

4.Books recommendation applications 
 
 

3.1 Technologies 
 
In order to build the above application the following technologies have been            
used: 
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Django  
Django is a high level Python free and open-resource framework, ​which           
follows the model template view. It consists of an object-relational-mapper          
(ORM) that mediates between data models (defined as Python classes) and a            
relational database (Model), a system for processing HTTP requests with a           
web templating system (View), and a regular expression based         
URL​dispatcher (Controller). Django also offers a lightweight and standalone         
web server for development and testing and powerful and flexible toolkit for            
building Web APIs(Django REST framework). We ran the backend part of           
application on Django server, we created the required database tables using           
django models and we also built the required RestFul web services with the             
Django framework.  
 
Redis 
Redis is an open source (BSD licensed), in-memory data structure store,           
used as a database, cache and message broker. It supports data structures            
such as strings, hashes, lists, sets, sorted sets with range queries, bitmaps,            
hyperloglogs, geospatial indexes with radius queries and streams. Redis was          
used to cache user’s recommended books in order to reduce the database hits             
and improve the performance of application. 
 
Celery 
Celery is an asynchronous task queue/job queue based on distributed          
message passing.It is focused on real-time operation, but supports         
scheduling as well.The execution units, called tasks, are executed         
concurrently on a single or more worker servers using         
multiprocessing.Tasks can execute asynchronously (in the background) or        
synchronously (wait until ready). The celery queue was used on books           
recommendations application to run on background some heavy tasks, like          
readjusting user’s recommendations by implementing the Rochio algorithm. 
 
Angular 
Angular is a Typescript-based open source software engineering framework         
used for building single-page web apps. AngularJS uses the         
Model-View-Controller(MVC) architecture, which is used in web app        
development. This type of architecture consists of: Model – the data           
structure that manages information and receives input from the controller,          
View – the representation of information and Controller – responds to input            
and interacts with the model. In the context of AngularJS, the model is the              
framework, while the view is HTML, and the control is JavaScript. We used             
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Angular framework to build the frontend part of books recommendations          
applications. 
 
Python libraries/Packages 
We used Pandas, a Python Data Analysis Library to read, analyse and            
convert csv files to datasets. NumPy​, a fundamental package for scientific           
computing with Python. was used in many calculations. Last but not least            
the python scikit-learn package was used to implement some machine          
learning algorithms. 
 

3.2 Datasets 
For the purposes of this thesis the ​Book Crossing dataset has been used. This              
dataset has been compiled by Cai-Nicolas Ziegler in 2004, and it comprises            
of three tables for users, books and ratings. Explicit ratings are expressed on             
a scale from 1–10 (higher values denoting higher appreciation) and implicit           
rating is expressed by 0. 

● BX-Book-Ratings.csv (1149780 items) 
● BX-Books.csv (271360 items) 
● BX-Users.csv (278858 items) 

3.3 Database structure 

We have opted to work with sqlite database. We have created the relevant 
django models to add the following tables in database. The django models 
are located in model.py file. For example the django model to create the 
Book table is the following: 

class Book(models.Model): 

 ISBN       = models.CharField(unique=True, primary_key=True, max_length=255) 

  title      = models.CharField(max_length=255) 

  author     = models.CharField(max_length=255) 

  year_of_publication = models.CharField(max_length=255) 

  publisher   = models.CharField(max_length=255) 

  image_url_s = models.CharField(max_length=255) 

  image_url_m = models.CharField(max_length=255) 
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  image_url_l = models.CharField(max_length=255) 

 

5.Database structure 

 
Book: db table to store books data 
User_data: db table to store user data 
Book_rating; db table to store books ratings of users 
Book_view: db table to store books user has viewed 
User_Book_prediction: db table to store the predicted ratings for books user 
has not rated yet 
Book_similarities: db table to store the similar books for every book 

3.4 ETL(Extract Transform Load) process 

After installing django framework, setting up django server and creating the           
above db tables we need to fill the local database with the online datasets.              
This process is known as ETL. ETL is short for ​e​xtract, ​t​ransform, ​l​oad​,             
three database functions that are combined into one tool to pull data out of              
one database(csv files in our case)  and place it into another database. 

● Extract ​is the process of ​reading data​ from a database. In this stage, 
the data is collected, often from multiple and different types of 
sources. 
 

● Transform​ is​ ​the process of ​converting the extracted data​ from its 
previous form into the form it needs to be in so that it can be placed 
into another database. Transformation occurs by using rules or lookup 
tables or by combining the data with other data. 
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● Load​ is the process of ​writing the data​ into the target database. 
 
To implement the ETL process we created some django scripts. These           
scripts are located in folder management/commands of django project. At          
these scripts we load the csv files, we read and convert them to datasets              
using pandas library commands and we store the data at the relevant            
database tables. We can execute these scripts through command line: 
 
 
load books: 
With this script we load books in our database table books. The script             
load_books.py has the following structure: 
 
 
import pandas as pd 
import numpy as np 
from django.core.management.base import BaseCommand, CommandError 
from django.contrib.auth.models import User 
from books.models import Book 
 
class Command(BaseCommand):  
    def handle(self, *args, **options): 

books = pd.read_csv('data/BX-Books.csv', sep=';', error_bad_lines=False,      
encoding="latin-1") 

books.columns = ['ISBN', 'bookTitle', 'bookAuthor', 'yearOfPublication', 'publisher',        
'imageUrlS', 'imageUrlM', 'imageUrlL'] 
        books.apply(self.save_book_from_row, axis=1) 
 
    def save_book_from_row(self, book_row): 
        book = Book() 
        book.ISBN = book_row['ISBN'] 
        book.title = book_row['bookTitle'] 
        book.author = book_row['bookAuthor'] 
        book.year_of_publication = book_row['yearOfPublication'] 
        book.publisher = book_row['publisher'] 
        book.image_url_s = book_row['imageUrlS'] 
        book.image_url_m = book_row['imageUrlM'] 
        book.image_url_l = book_row['imageUrlL'] 
        book.save() 
 

We execute command ​python manage.py load_books ​to run the above          
script. 
 
load_users: 
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In a similar way we load the users from users dataset on user_data database              
table with the script load_users.py. 
We execute command​ ​python manage.py load_users ​to run the script. 
 
load_ratings: 
In a similar way we load the ratings from rating datasets on book_rating             
database table with the script load_ratings.py 
We execute command​ ​python manage.py load_ratingss ​to run the script. 
 
Load book_similarites: 
To fill the user_book_similarities database table, we will need to calculate           
the similar books for every book. We decided to implement a collaborative            
item based filtering recommendation systems. The reason was that in our           
application the items(books) won't be changed so often. On the other hand            
new users could be registered and use the books recommendation system.           
As a result, it make more sense to us to calculate offline the similarities              
between books, store them in our database and access them when it is             
needed. Furthermore, generally item based algorithm has a better         
performance. 
 
In order to find out the similar books, we used the item based             
neighbourhood models, we reduced the dataset size, taking into account          
users who have rated at least 100 books and books who have at least 100               
ratings. Then we generated a user-term matrix based on rating table.           
Similarities need to be computed between the columns of rating matrix.  
 
Before computing the similarities between the columns, each row of the           
ratings matrix is centered to a mean of zero. As in the case of user-based               
ratings, the average rating of each item in the ratings matrix is subtracted             
from each rating to create a mean-centered matrix. 

This similarity is referred to as the adjusted cosine similarity because the            
ratings are mean- centered before computing the similarity value. We          
calculate the similar books and store them in our database with the following             
functions: 

import pandas as pd 
import numpy as np 
from django.core.management.base import BaseCommand, CommandError 
from django.contrib.auth.models import User 
from books.models import Book_similarities 
import sklearn.metrics as metrics 
from sklearn.neighbors import NearestNeighbors 
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from scipy.spatial.distance import correlation, cosine 
from sklearn.metrics import pairwise_distances 
from sklearn.metrics import mean_squared_error 
from math import sqrt 
import sys, os 
from contextlib import contextmanager 
 
class Command(BaseCommand): 
    metric = 'cosine' 
    k = 6 
    sample_limit = 10000 
    user_id = 183 
  
    def handle(self, *args, **options): 

ratings = pd.read_csv('data/BX-Book-Ratings.csv', sep=';', error_bad_lines=False,      
encoding="latin-1") 
        ratings.columns = ['userID', 'ISBN', 'bookRating'] 
 
        #Reduce the dataset size, take into account users who have rated at least 100 books 
        #and books which have at least 100 ratings 
        counts1 = ratings['userID'].value_counts() 
        ratings_explicit = ratings[ratings['userID'].isin(counts1[counts1 >= 100].index)] 
        counts = ratings_explicit['bookRating'].value_counts 

ratings_explicit = ratings_explicit[ratings_explicit['bookRating'].isin(counts[counts    
>= 100].index)] 
 
        #Generate a user-item ratings matrix from the ratings table. 

ratings_matrix = ratings_explicit.pivot(index='userID', columns='ISBN',     
values='bookRating') 
        for col in ratings_matrix: 
            ratings_matrix[col].fillna(0, inplace=True) 
        self.calculateSimilarBooks(ratings_matrix) 
 
 
    """ 
        Calculate similarities of books 
        @param obj self           The pointer of class 
    """ 
    def calculateSimilarBooks(self, ratings_matrix): 
        counter = 0 
        for i in range(ratings_matrix.shape[1]): 
            item_id = str(ratings_matrix.columns[i]) 
            similarities, indices= self.findksimilaritems(item_id, ratings_matrix)  
            for i in range(0, len(indices.flatten())): 
                if (similarities[i] != 0): 
                    index = indices.flatten()[i]  
                    similar_item_id = str(ratings_matrix.columns[index]) 
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                    self.saveSimilarBooks(item_id,similar_item_id) 
                counter = counter + 1 
                if (counter > self.sample_limit): 
                    break  
 
  """ 
        Find similarities between items  
        @param obj self           The pointer of class 
        @param int item_id        The id of item 
        @param arr ratings_matrix The matrix of ratings 
    """ 
    def findksimilaritems(self, item_id, ratings_matrix): 
        similarities=[] 
        indices=[] 
        ratings = ratings_matrix.T 
        loc = ratings.index.get_loc(item_id) 
        model_knn = NearestNeighbors(metric = 'cosine', algorithm = 'brute')  
        model_knn.fit(ratings) 

distances, indices = model_knn.kneighbors(ratings.iloc[loc, :].values.reshape(1, -1),       
n_neighbors = self.k + 1) 
        similarities = 1-distances.flatten() 
return similarities,indices 
 
    """ 
        Save user book predictions into db 
  
        @param obj self       The pointer of class 
        @param int item_id    The id of item 
        @param int similar_id The similar id 
    """  
    def saveSimilarBooks(self, item_id, similar_id): 
        book_similarities = Book_similarities() 
        book_similarities.ISBN = item_id 
        book_similarities.ISBN_similar = similar_id 
        book_similarities.save() 
 
We execute command ​python manage.py calculate_similar_items ​to run the         
above script. 
 
 
 
Load user books ratings predictions 
The basic idea is to leverage the user’s own ratings on similar items in the               
final step of making the prediction. For example, in a book recommendation            
system, the item peer group will typically be similar books. The ratings            
history of the same user on such books is a very reliable predictor of the               
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interests of that user. To predict the user’s ratings for the books, we calculate              
the similar books as above​. This calculation is a ​weighted sum​. A weight             
function is a mathematical device used when performing a sum, integral, or            
average to give some elements more "weight" or influence on the result than             
other elements in the same set. The result of this application of a weight              
function is a weighted sum or weighted mean. The weighted mean is defined             
as: 

(a)∑
 

a∈A
w

(a)w(a)∑
 

a∈A
f

 

This form of recommendation is analogous to "people who rate item X            
highly, like you, also tend to rate item Y highly, and you haven't rated item               
Y yet, so you should try it". We calculate the user’s predictions as             
following: 
class Command(BaseCommand): 

    metric = 'cosine' 
    k = 6 
    sample_limit = 10000 
    user_id = 183 
  
    def handle(self, *args, **options): 

…… 
users = User_data.objects.all() 

                 for user in users: 
        self.recommendItem(user[‘user_id’], rating_matrix) 

 """ 

    Predict user's rating for an item  

  

    @param obj self           The pointer of class 

    @param int user_id        The id of user 

    @param int item_id        The id of item 

    @param arr ratings_matrix A matrix of ratings 

"" 

 def recommendItem(self, user_id, ratings_matrix): 

        if (user_id not in ratings_matrix.index.values): 

            print('user is should be a valid integer') 

            return 

        else: 
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            counter = 0 

            for i in range(ratings_matrix.shape[1]): 

                if (ratings_matrix[str(ratings_matrix.columns[i])][user_id] != 0): 

                    item_id = str(ratings_matrix.columns[i]) 

                    prediction = self.predict_itembased(user_id, item_id , ratings_matrix) 

                    self.save_user_book_prediction(user_id, item_id, prediction) 

  

                    counter = counter + 1 

                    if (counter > self.sample_limit): 

                        break 

  """ 

        Predict user's rating for an item  

 

          @param obj self           The pointer of class 

        @param int user_id        The id of user 

        @param int item_id        The id of item 

        @param arr ratings_matrix A matrix of ratings 

    """ 

    def predict_itembased(self, user_id, item_id, ratings_matrix): 

        prediction = wtd_sum = 0 

        user_loc = ratings_matrix.index.get_loc(user_id) 

        item_loc = ratings_matrix.columns.get_loc(item_id) 

        similarities, indices= self.findksimilaritems(item_id, ratings_matrix)  

        sum_wt = np.sum(similarities) - 1 

        product = 1 

        for i in range(0, len(indices.flatten())): 

            if indices.flatten()[i] == item_loc: 

                continu 

        else:  

                product = ratings_matrix.iloc[user_loc, indices.flatten()[i]] * (similarities[i]) 

                wtd_sum = wtd_sum + product 

        prediction = int(round(wtd_sum/sum_wt)) 
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        if prediction <= 0: 

            prediction = 1 

        elif prediction > 10: 

            prediction = 10 

        return prediction 

 

We execute command ​python manage.py load_users_books_predictions ​to       
run the script. 

 

3.5 RestFul web services  

We have built with Django API framework the required RestFul web           
services to serve client and return the required data. RESTful Web Services            
are basically REST Architecture based Web Services. In REST Architecture          
everything is a resource and a resource is accessed by a common interface             
using HTTP standard methods. Following four HTTP methods are         
commonly used in REST based architecture. 

● GET − Provides a read only access to a resource. 
● POST − Used to create a new resource. 
● DELETE − Used to remove a resource. 
● PUT − Used to update a existing resource or create a new resource. 
● PATCH - Used for a partial update of a resource. 

A RESTful web service usually defines a URI(Uniform Resource Identifier)          
and provides resource representation such as JSON. Clients just make a           
HTTP request at the specified URI, with the required headers and payload            
body and get the response.RESTful web services are lightweight, highly          
scalable and maintainable and are very commonly used to create APIs for            
web-based applications. For the books recommendation application we        
created the required web services for the following functionalities: 

● Register user 
● Login user 
● Get book list 
● Get recommended books 
● Rate a book 
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● View a book 

All the web services are running on Django server and they are accessible at 
base url ​http://127.0.0.1:8000​.  

The details of every web service are mentioned at the following table: 

1. Restful web services definition 

Functionality URL method Request body Response 

login user /api/sessions POST { 

  ‘username’: ‘’ 

  ‘password’:  ’ 

} 

 

status_code​: 
201 
{ 

    user_id’:’’ 

} 

 

Logout user /api/sessions DELETE { 

    user_id’:’’ 

} 

status code: 
204 

Register user /api/accounts POST { 

  ‘username’: ‘’ 

  ‘password’:  ’ 

} 

status code: 
201 

Get books list /api/books?page=1 GET  status code: 
200 
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[{ 

'ISBN': ‘’, 

'title': ‘’, 

'author': ‘’, 

'year_of_publicati
on': ‘’, 

'publisher': ‘’, 

'image_url_s': ‘’, 

'image_url_m' : ‘’, 

'image_url_l': ‘’ 

}] 

Get 
recommended 
books 

/api/books-recomm
endations/users/1 

GET  status code; 
200 

[{ 

'ISBN': ‘’, 

'title': ‘’, 

'author': ‘’, 

'year_of_publicati
on': ‘’, 

'publisher': ‘’, 

'image_url_s': ‘’, 

'image_url_m' : ‘’, 

'image_url_l': ‘’ 

}] 
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Rate a book /api/books-rates POST { 

user_id: ‘’, 

ISBN: ‘’, 

rating: ‘’ 

} 

status code: 
201 

{ 

user_id: ‘’, 

ISBN: ‘’, 

rating: ‘’ 

} 

View a book /api/books-views POST { 

‘user_id’: ‘’, 

‘ISBN’: ‘’ 

} 

status code 
201 
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Every web service in Django consists of url definition at url.py, the            
controller function at view.py, the model function at model.py and a           
serializer object defined at serializer.py, used mainly by GET methods          
where a json object with resource’s details is returned to user. For example             
the login web service is built widh django framework  as following: 
 
// urls.py 
sessions_urls = [ 
  url(r'^$', sessionAPIView.as_view(), name='sessions') 
] 
 
urlpatterns = [ 
  url(r'^sessions', include(sessions_urls)), 
] 
 
// views.py 
class sessionAPIView(APIView): 
    def post(self, request): 
        body_unicode = request.body.decode('utf-8') 
        body = json.loads(request.body) 
        username = body['username'] 
        password = body['password'] 
 
        try: 
            user = User_data.objects.get(username=username, password=password) 
        except: 
            return HttpResponseNotFound( "User not found") 
 
        request.session['member_id'] = user.user_id 
 
        return Response({'user_id': user.user_id}) 
 
 

3.6 Frontend client 
 
The frontend part of books recommendation application was built with          
angular framework. ​Angular is a platform and framework for building client           
applications in HTML and TypeScript. Angular is written in TypeScript. It           
implements core and optional functionality as a set of TypeScript libraries           
that are imported into app. An Angular app is defined by a set of              
NgModules, the basic building blocks. An app always has at least a ​root             
module that enables bootstrapping, and typically has many more ​feature          
modules. 
The following modules have been created for the books recommendation          
app: 
 

● nav-menu 
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This module is responsible for the navigation menu. It consists of           
nav-menu.css file, nav-menu.html template and nav-menu.ts typescript file        
where the navigation menu component is defined. This component uses the           
login/logout/register functionalities from session service. 

            
6. Login/Register view of books recommendations app 

● books 

This module is responsible for the books list. It consists of books.css file, 
books.html template and books.ts typescript file where the books component 
is defined. This component calls the get list of books functionality of books 
service. 

 

7. View of books list 

● book-detail 

This module is responsible for the detailed view of book. It consists of 
book-detail.css, book-detail.html and book-detail.ts where the book-details 
component is defined. This component calls the functionalities get details of 
book, view book of books service and rate book from rate book service . 
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8. View of books details 

● book-recommendations 

This module is responsible for the list of recommended books. It consists of 
book-recommendations.css, book-recommendations.html and 
book-recommendations.ts where the book-details component is defined. 
This component calls the functionalities get recommended books of 
recommendations service. 

 
9. View of recommendations list 

 
The frontend part of books recommendation app is running on npm server at             
url: ​http://localhost:4200/books 
 

3.7 Project structure 

The f​ollowing images describe the folder structure of application’s backend and           
frontend part. 
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10. Project structure 

 

3.8 Design of recommendation system 

Get recommendations 
In this stage we have stored into our database the users’ predicted ratings for              
books they have not rated yet. As mentioned earlier, a web service has been              
created to return the recommendations to user. At views.py, the controller           
function of web service is defined. We store in redis cache for every user a               
flag which expires every hour and the recommendations for this user. If the             
flag in cache has not expired yet, the cached recommendations are returned            
to user if exist. Otherwise, the user’s recommendations are extracted again           
from database. 

// views.py 

class userBookRecommendationsAPIView(APIView): 
    def get(self, request, user_id, *args, **kwargs): 
        recommendations = [] 
        recommendation_expire_cache_name = 'recommendation_expire_' + user_id 
        reocmmendations_user_cache_name  = 'recommendations_' + user_id 
 
        recommendations = cache.get(reocmmendations_user_cache_name) 

if recommendation_expire_cache_name in cache and reocmmendations_user_cache_name in cache and          
recommendations:  
            recommendations = cache.get(reocmmendations_user_cache_name) 
        else: 
            recommendations = [] 
            recommendations = getUserPredictions(user_id, recommendations, False) 
 
            try: 
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                find_recommended_items.delay(user_id, recommendations) 
            except: 
                return HttpResponseNotFound("Recommendations not found") 
 
            return Response(recommendations) 
 
        if not recommendations: 
            recommendations = getUserPredictions(user_id, recommendations, True) 
 
        return Response(recommendations) 
 
 
All the functions used by the recommendation system are included in a            
library file recommendationLib.py. If predictions for the logged in user are           
stored into our db, the recommended books are returned to him, as they have              
been calculated by the above scripts. The results are returned ordered by            
prediction value. If there are not predictions for the logged in user into             
database, the top rated books are returned as recommendations.  
  
// recommendationLib.py  
""" 
    Get user predictions 
  
    @param int user_id          The id of user 
    @param int recommendations  An array with recommendations 
    @param boo get_default      True to get the default recommended items 
 
    @return arr                 An array with predictions 
""" 
def getUserPredictions(user_id, recommendations, get_default) 
 
prediction = User_Book_prediction.objects.filter(user_id=user_id).order_by('-prediction') 
    if not predictions or get_default == True: 
        try: 

ratings = Book_rating.objects.values('ISBN').annotate(score =     
Sum('rating')).order_by('-score')[:100] 
            for rating in ratings: 
                result = rating 
                try: 
                    book   = Book.objects.get(ISBN=result['ISBN']) 
                    result['book'] = bookSerializer(book, many=False).data 
                except: 
                    result['book'] = '' 
 
                recommendations.append(result) 
        except: 
            return HttpResponseNotFound("Recommendations not found") 
 
    if predictions and get_default == False: 
        for prediction in predictions: 
            result = bookUserPredictionSerializer(prediction, many=False).data 
            try: 
                book   = Book.objects.get(ISBN=result['ISBN']) 
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                result['book'] = bookSerializer(book, many=False).data 
            except: 
                result['book'] = '' 
 
            recommendations.append(result) 
    return recommendations 
 
User feedback 
As we can see from the code of above controller function, when the cached              
flag for the logged in user expires after an hour, the user’s predictions are              
extracted again from database while a task is triggered and added on celery             
queue to adjust user’s recommendations. Based on user’s feedback(books         
which user has viewed) the predictions are adjusted and the updated           
recommended items are set in cache. The celery task is defined at task.py             
file: 

// task.py  

@shared_task 

def find_recommended_items(user_id, recommendations): 

    recommendation_expire_cache_name = 'recommendation_expire_' + user_id 

    reocmmendations_user_cache_name  = 'recommendations_' + user_i 

    recommendations = getUserPredictions(user_id, recommendations, False) 

    book_views = getUserBookViews(user_id) 

    adjustPredictionsByUserFeedback(recommendations, book_views, user_id) 

    recommendations = getUserPredictions(user_id, recommendations, False) 

    cache.set(recommendation_expire_cache_name, True, timeout=10) 

    cache.set(reocmmendations_user_cache_name, recommendations, timeout=10) 

 

In order to adjust the recommendations for the logged in user, we get the              
books user has viewed, by calling the relevant function defined at           
recommendationLib.py. 

// recommendationLib.py 

"”Get user book views 

    @param int user_id  The id of user 

    @return arr               An array with book views 
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""" 

def getUserBookViews(user_id): 

    book_views = [] 

    try: 

        user_book_views = Book_view.objects.filter(user_id=user_id) 

    except: 

      return HttpResponseNotFound("User has not viewed books yet") 

    if user_book_views: 

        for view in user_book_views 

            result = bookViewSerializer(view, many=False).data 

            book_views.append(result['ISBN'] 

        return book_views  

    return HttpResponseNotFound("User has not viewed books yet") 

 

Afterwards, we find the similar books of every recommended book viewed           
by user. We also find the similar books of recommended books which have             
not been viewed by user. 

""" 

    Adjust predictions based on user feedback 

     @param arr recommendations An array with recommendations 

    @param arr book_views      An array with book views 

    @param int user_id         The user id 

""" 

def adjustPredictionsByUserFeedback(recommendations, book_views, user_id): 

    ISBN_positive_similar_ids = [] 

    ISBN_negative_similar_ids = [] 

    for recommendation in recommendations: 

     if recommendation['ISBN'] in book_views: 
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            try: 

                similar_books = Book_similarities.objects.filter(ISBN=recommendation['ISBN']) 

                for book in similar_books: 

                    if book['ISBN_similar'] not in ISBN_positive_similar_ids: 

                        ISBN_positive_similar_ids.append(book['ISBN_simila 

                     ISBN_positive_similar_ids.append(recommendation['ISBN']) 

            except: 

                ISBN_positive_similar_ids.append(recommendation['ISBN']) 

           if recommendation['ISBN'] not in book_views: 

            try: 

                similar_books = Book_similarities.objects.filter(ISBN=recommendation['ISBN']) 

                for book in similar_books: 

                    book = bookSimilaritiesSerializer(book, many=False).data 

                    if book['ISBN_similar'] not in ISBN_negative_similar_ids: 

                        ISBN_negative_similar_ids.append(book['ISBN_similar']) 

                ISBN_negative_similar_ids.append(recommendation['ISBN']) 

            except: 

                ISBN_negative_similar_ids.append(recommendation['ISBN'] 

     insert_predictions = False 

    user_predictions = User_Book_prediction.objects.filter(user_id=user_id).order_by('-prediction')[:37] 

    if not user_predictions: 

        insert_predictions = True 

    if  ISBN_positive_similar_ids:  

        savePositivePredictionsOfRecommendedItems(ISBN_positive_similar_ids, user_id, user_predictions) 

    if ISBN_negative_similar_ids: 

saveNegativePredictionsOfRecommendedItems(ISBN_negative_similar_ids, user_id,   
user_predictions)  

After having separated books into ISBN_positive_similar_ids and       
ISBN_negative_similar_ids arrays, we call the relevant functions to update         
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their prediction value. When user clicks and views a recommended book, it            
is considered as positive feedback, while if user has not clicked the            
recommended book, it is considered as negative feedback. We use the           
algorithm Rochio to readjust the recommendations. We are having a vector           
with the original predictions (books and predicted ratings). We have stored           
in database the books every user has viewed and we also store the similar              
books as they have been calculated by the above scripts. Taking into account             
the books user has viewed and also their similar books we calculate the new              
predicted rating as following: 
 

ositive prediction ntitial prediction  p − = i − + n
0.75 (prediction +.... + prediction ).* 1 n  

 
egative prediction ntitial prediction  n − = i − − n

0.15 (prediction +.... + prediction ).* 1 n  
 
The rochio weight is calculated with the following function in          
recommendationLib.py: 

""" 

    Calculate weight = rochio_weight*(sum_of_predictions/predicted_itemss 

    @param arr recommendations An array with recommendations 

    @param arr book_views      An array with book views 

""" 

def calculateWeight(rochio_weight, predicted_items_counter, predictions_sum): 

    return rochio_weight*predictions_sum/predicted_items_counter 

""" 

 
If user has predictions stored into database, we calculate their new           
prediction value with the above function and update their value into           
database. If user does not have any initial prediction stored into database,            
we get the books viewed by user and their similar books and we insert them               
into user_prediction database with a prediction equal with ‘1’. Books not           
viewed by user and their similar are inserted itno db with a prediction value              
‘0’. The function to update the user’s predictions with the positive weight is             
the following: 
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    Adjust the predicted items with a positive weigh  

    @param arr ISBN_positive_similar_ids An array with positive similar ids 

    @param int user_id                The user id 

@param boo insert_predictions True, to insert the predictions into db, false to update the existed               
predictions 

""" 

def savePositivePredictionsOfRecommendedItems(ISBN_positive_similar_ids, user_id,   
insert_predictions): 

    predicted_items_counter = 0 

    predictions_sum = 0 

   if insert_predictions is False: 

        predictions = User_Book_prediction.objects.filter(ISBN__in=ISBN_positive_similar_ids) 

        if predictions: 

             for prediction in predictions: 

                 prediction = bookUserPredictionSerializer(prediction, many=False).data 

                 predicted_items_counter = predicted_items_counter + 1 

                 predictions_sum = predictions_sum + prediction['prediction'] 

  

positive_weigh=calculateWeight(ROCHIO_POSITIVE_WEIGHT,predicted_items_counter, 
predictions_sum) 

        if positive_weight < 0 or positive_weight > 10: 

            positive_weight =  10 

 
User_Book_prediction.objects.filter(ISBN__in=ISBN_positive_similar_ids).update(prediction=F('predictio
n') + abs(positive_weight)) 

    if insert_predictions is True:: 

        for item_id in ISBN_positive_similar_ids: 

            positive_weight = 1 

            user_book_predicition = User_Book_prediction() 

            user_book_predicition.user_id = user_id 
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            user_book_predicition.ISBN = item_id 

            user_book_predicition.prediction = positive_weight 

            user_book_predicition.save() 

 

We follow a similar process to update the prediction value of items with the              
negative value: 

""" 

    Adjust the predicted items with a negtive weight 

     @param arr ISBN_negative_similar_ids An array with negative similar ids 

    @param int user_id                                  The user id 

    @param boo insert_predictions                Flag to insert predictions 

""" 

def saveNegativePredictionsOfRecommendedItems(ISBN_negative_similar_ids, user_id,   
insert_predictions): 

    predicted_items_counter = 0 

    predictions_sum = 0 

    if insert_predictions is False: 

    predictions = User_Book_prediction.objects.filter(ISBN__in=ISBN_negative_similar_ids) 

    if predictions: 

        for prediction in predictions: 

            prediction = bookUserPredictionSerializer(prediction, many=False).data 

            predicted_items_counter = predicted_items_counter + 1 

            predictions_sum = predictions_sum + prediction['prediction'] 

negative_weight = calculateWeight(ROCHIO_NEGATIVE_WEIGHT, predicted_items_counter,     
predictions_sum) 

        if negative_weight < 0 or negative_weight > 10: 

            negative_weight =  

 
User_Book_prediction.objects.filter(ISBN__in=ISBN_negative_similar_ids).update(prediction=F('predicti
on') - abs(negative_weight)) 
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    if insert_predictions is True: 

        for item_id in ISBN_negative_similar_ids: 

            positive_weight = 0 

            user_book_predicition = User_Book_prediction() 

            user_book_predicition.user_id = user_id 

            user_book_predicition.ISBN = item_id 

            user_book_predicition.prediction = positive_weight 

            user_book_predicition.save() 

 
After one hour, we repeat the above process and we adjust again users’             
predictions. The following diagrams explains the whole process: 

 

11. Workflow when user visits the details of book view. 
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12. Workflow when user visits the books list 

4. Test cases of  books recommendation system 

After developing the books recommendation system, we carried out  some 
test cases scenarios to see how the recommendation system reacts on 
different user’s action: 
 
1st scenario:Existed user with user_id=11676(having data for him into 
database) clicks some recommended items 
 
When the  user signs in books recommendation application, he gets a list 
with the initial recommendations, as they have been calculated with 
collaborative filtering algorithm. 
 

2. 1st test case: table with initial recommendations 
 

Rank of 
recommended 
items 

ISBN Title Author 

1 0001944711 Count Duckula: 
Vampire Vacation 

Maureen Spurgeon 

2 0002005018 Clara Calla Richard Bruce 
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Wright 

3 0002118580 Audacity to believe Sheila Cassidy 

4 0002176432 The Financial post 
selects the 100 best 
companies to work 
for in Canada 

Eva Inne 

5 0002184974 Nigel Mansell My 
Autobiograph 

Nigel Mansell 

6 0002250810 Santa Speaks: The 
Wit and Wisdom of 
Santas Across the 
Nation 

Michael Patrick 
Collins 

7 0002251485 Love Isn't Easy 
(Passionate 
Peanuts) 

Charles M. Schulz 

8 0002255014 Leaning, leaning 
over water: A novel 
in ten stories 
 
 

Frances Itani 

9 0002258560 Is Shane 
MacGowan Still 
Alive? 

Tim Bradford 

10 000225929X MARBLE HEART Gretta Mulrooney 

11 0002558122 Angelas Ashes Frank Mccourt 

12 0006131409 The Trojan horse Hammond Innes 

13 0006143199 SNOW TIGER Bagley Desmond 

14 0006171982 Sharpes Honor Bernard Cornwell 

15 0006176747 Medusa Hammond Innes 

16 0006177492 Home Run Gerald Seymour 

17 0006363121 The Picnic and 
Suchlike 
Pandemonium 

Gerald Durrell 
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18 0006366023 Drawing On the 
Right Side of the 
Brain 

Betty Edwards 

19 0006379702 My \\Star Trek\\\" 
Memories\" 

William Shatner 

20 000648302X Before and After Matthew Thomas 

21 0006492347 Insights from the 
Outfield (Peanuts at 
Work &amp; Play) 

Charles Schulz 

22 0006498493 Rogue Lion Safaris Simon Barnes 

23 0006512062 Trials of Tiffany 
Trott 

Isabel Wolff 

24 0006512208 Lion Time 
Collected Stories 6 

Robert Silverberg 

25 0006543545 The bookshop Penelope Fitzgerald 

26 0006546684 Postcards E Annie Proulx 

27 0006547834 Miss Smillas 
Feeling for Snow 

Peter Hoeg 

28 0006550789 253 Geoff Ryman 

29 0006551076 Ocean In Iowa Peter Hedges 

30 0006552390 The Kindest Use a 
Knife 

Vanessa Jones 

31 0006729835 The Callender 
Papers 

Cynthia Voight 

32 0006928323 A Figure in Hiding 
(The Hardy Boys) 

Franklin W. Dixon 

33 0007106572 Guilty Creatures Sue Welfar 

34 0007107900 street bible, the Robert Lacey 

35 0007110928 Billy Pamela Stephenso 

36 0007118465 Peacocks Dancing Sharon Maas 

37 0007139411 The Crash of Patrick Ness 
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Hennington 

 

 
13.1st test case: Diagram with initial recommendations for user 

 
User clicks the following books from recommendations list: 
 
3. 1st test case: table with viewed books 
 

ISBN Title Author 

0002176432 The Financial post selects 
the 100 best companies to 
work for in Canada 

Eva Inne 

0002005018 Clara Calla Richard Bruce Wright 

0002184974 Nigel Mansell My 
Autobiograph 

Nigel Mansell 

0002250810 Santa Speaks: The Wit and 
Wisdom of Santas Across 
the Nation 

Michael Patrick Collins 

0002258560 Is Shane MacGowan Still 
Alive? 

Tim Bradford 

000225929X MARBLE HEART Gretta Mulrooney 
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After an hour, we take into consideration the books user has viewed and we 
adjust the recommended books, implementing the rochio algorithm. 
 
4. 1st test case: table with adjusted recommendations with rochio 

Rank of 
recommended 
items 

ISBN Title Author 

1 0002005018 Clara Calla Richard Bruce 
Wright 

2 0002176432 The Financial post 
selects the 100 best 
companies to work 
for in Canada 

Eva Inne 

3 0002184974 Nigel Mansell My 
Autobiograph 

Nigel Mansell 

4 0002250810 Santa Speaks: The 
Wit and Wisdom of 
Santas Across the 
Nation 

Michael Patrick 
Collins 

5 0002258560 Is Shane 
MacGowan Still 
Alive? 

Tim Bradford 

6 000225929X MARBLE HEART Gretta Mulrooney 

7 0030491916 And That's My 
Final Offer! (His A 
Doonesbury book) 

G.B. Trudeau 

8 0030686784  
The radish day 
jubile 
 

Sheilah B Bruce 

9 0043720455 Outrageous fortune Susan Kelly 

10 0060002492 Amazonia James Rollins 

11 006000438X The Death of 
Vishnu: A Novel 

Manil Suri 

12 006000469X Engaged to Die : A 
Death on Demand 
Mystery (Hart, 

Carolyn Har 
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Carolyn G) 

13 0060005424 Lirael: Daughter of 
the Clayr 

Garth Nix 

14 0060005521 Nicola and the 
Viscount (An Avon 
True Romance) 

Meg Cabot 

15 006000553X Victoria and the 
Rogue (An Avon 
True Romance) 

Meg Cabot 

16 0060007788 Finding Fish: A 
Memoi 

Antwone Q. Fisher 

17 0060008032 Angels Marian Keye 

18 0060008369 The Shadows of 
Power 

James W. Huston 

19 0060009012 The Lost Son: A 
Life in Pursuit of 
Justice 

Bernard B. Keri 

20 006000942X How to Read 
Literature Like a 
Professor : A 
Lively and 
Entertaining Guide 
to Reading 
Between the Lines 

Thomas C. Foster 

21 0060012781 A Cook's Tour : 
Global Adventures 
in Extreme 
Cuisines 

Anthony Bourdain 

22 0060013508 Gunsights Elmore Leonard 

23 0060014040 My Stroke of Luc Kirk Douglas 

24 0060083263 Sleeping Beauty 
(Margolin, Phillip) 

Phillip Margoli 

25 0060083956 Mr. Paradise:  A 
Novel 

Elmore Leonard 
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26 0060085452 Boy Meets Girl Meg Cabo 

27 0060086637 Barracuda 945 Patrick Robinso 

28 0060086661 Lily Dale: The True 
Story of the Town 
that talks to the 
Dead 

Christine Wicker 

29 0060090367 Watermelon Marian Keyes 

30 0060090626 The Schooling of 
Claybird Catts 

Janis Owen 

31 0060092653 Scandalous Again Christina Dodd 

32 0060093579 Wildfire at 
Midnight 

Mary Stewart 

33 0060104910 The Chaneysville 
Incident: A Novel 

David Bradley 

34 0060155027 he World: An 
Illustrated History 

Geoffrey Parker 

35 0060156961 Guillaume 
Chequespierre and 
the Oise Salon: An 
Anthology 

John Hulme 

36 0060159081 Oscar and Lucind Peter Carey 

37 0060159383 A Thief of Time: A 
Novel (Harper 
Novel of Suspense) 

Tony Hillerman 
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14.1st test case: Diagram with adjusted recommendations for user 
 
 
As we can see from the above table and diagrams, the clicked            
recommended books and their similar books are ranked higher on the list,            
such as the “Clara Calla”, “The Financial post selects the 100 best            
companies to work for in Canada”, “The Financial post selects the 100 best             
companies to work for in Canada”, “Santa Speaks: The Wit and Wisdom of             
Santas Across the Nation” etc.​. On the other hand, the previous           
recommended books which have not been clicked by the user, they have            
been replaced by new recommendations as a negative wight has been added            
on their initial prediction value. For example some new books are appeared            
on recommendations list like Outrageous fortune, Amazon etc. 
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15.1st test case: Comparative diagram of recommendations before/after implementing 

rochio. 
 
2nd​ scenario:Existed user with userid=276680 (having data for him into 
database) clicks all recommended items 
 
When user signs in books recommendation application, he gets a list with 
the initial recommendations, as they have been calculated with collaborative 
filtering algorithm. 
 
5. 2nd test case: table with initial recommendations 
 

Rank of 
recommended 
items 

ISBN Title Author 

1 0020236107 FUNERAL 
MAKERS 

Cathie Pelletier 

2 0060934905 Middle Age: A 
Romance 

Joyce Carol Oates 

3 0312280696 The Year of Jubilo : 
A Novel of the 
Civil War 

Howard Bahr 

4 0316095575 The Evidence 
Against Her: A 

Robb Forman Dew 
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Novel 

5 0375401466 Old School TOBIAS WOLF 

6 0375701524 The Hundred Secret 
Senses 

Amy Tan 

7 0385307756 The Copper Beech Maeve Binchy 

8 038572117X In a Dark Wood: A 
Novel 
 
 

Amanda Craig 

9 0425169626 Walking the Dead Scott Spence 

10 0452281296 In the Cut Susanna Moore 

11 0670880973 Cordelia 
Underwood: Or the 
Marvelous 
Beginnings of the 
Moosepath League 

Van Reid 

12 0671516949 A MARRIAGE 
MADE AT 
WOODSTOCK 

Cathie Pelletier 

13 0671724479 ONCE UPON A 
TIME ON THE 
BANKS : ONCE 
UPON A TIME 
ON THE BANKS 

Cathie Pelletier 

14 0671883925 LOVE (Virago 
Modern Classics) 

Elizabeth Von 
arnim 

15 089587167X Something Blue Jean Christopher 
Spaugh 

16 1402201435 The One True 
Ocean 

Sarah Beth Martin 

17 1573221562 Affinity Sarah Water 

18 1888173408 Fairy Tale 
(Common Reader 
Editions) 

Alice Thomas Ellis 

19 0140282653 Jacob's Ladder: A Donald McCaig 

55 



 

Story of Virginia 
During the War 

20 0316196452 Talking to the Dead 
: A Novel Tag: 
Winner of the 
Orange Prize 

Helen Dunmor 

21 0449001016 Object Lessons 
(Ballantine 
Reader's Circle) 

Anna Quindlen 

22 067179387X The WEIGHT OF 
WINTER 

Cathie Pelletier 

23 0743203232 The Nature of 
Water and Air 

Regina McBride 

24 0803727356 The River Between 
Us 

Richard Peck 

25 0805073337 What Was She 
Thinking?: Notes 
on a Scandal: A 
Novel 

Zoe Heller 

26 1888173564 Parnassus on 
Wheels (Common 
Reader Editions) 

Christopher Morley 

27 0449911217 In the Beauty of the 
Lilies 

John Updike 

28 0345439481 The High Flyer: A 
Novel (Ballantine 
Reader's Circle) 

Susan Howatch 

29 0684849720 The Quilter's 
Apprentice : A 
Novel 

Jennifer Chiaverini 

30 0140264795 Rosie: A Novel Anne Lamott 

31 0385503857 Oryx and Crake Margaret Atwood 

32 0743418735 Perfect Match: A 
Novel 

Jodi Picoult 

33 0060176784 Saying Grace: A Beth Gutcheon 
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Novel 

34 0060283130 The Reptile Room 
(A Series of 
Unfortunate Events, 
Book 2) 

Lemony Snicket 

35 0060925493 Feather Crowns Bobbie Ann Maso 

36 0066214750 Twelve Times 
Blessed (Mitchard, 
Jacqueline) 

Jacquelyn Mitchard 

37 0156001942 Winter's Tale Mark Helprin 

 
 

 
16. 2nd test case: Diagram with initial recommendations 

 
 
 
User clicks all the recommended items and after an hour, the adjusted            
recommendations are returned to him. We get the following results: 
 
6. 2nd test case: table with adjusted recommendations 
 

Rank of 
recommended 
items 

ISBN Title Author 
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1 0020236107 FUNERAL 
MAKERS 

Cathie Pelletier 

2 0060934905 Middle Age: A 
Romance 

Joyce Carol Oates 

3 0312280696 The Year of Jubilo : 
A Novel of the 
Civil War 

Howard Bahr 

4 0316095575 The Evidence 
Against Her: A 
Novel 

Robb Forman Dew 

5 0375401466 Old School TOBIAS WOLF 

6 0375701524 The Hundred Secret 
Senses 

Amy Tan 

7 0385307756 The Copper Beech Maeve Binchy 

8 038572117X In a Dark Wood: A 
Novel 
 
 

Amanda Craig 

9 0425169626 Walking the Dead Scott Spence 

10 0452281296 In the Cut Susanna Moore 

11 0670880973 Cordelia 
Underwood: Or the 
Marvelous 
Beginnings of the 
Moosepath League 

Van Reid 

12 0671516949 A MARRIAGE 
MADE AT 
WOODSTOCK 

Cathie Pelletier 

13 0671724479 ONCE UPON A 
TIME ON THE 
BANKS : ONCE 
UPON A TIME 
ON THE BANKS 

Cathie Pelletier 

14 0671883925 LOVE (Virago 
Modern Classics) 

Elizabeth Von 
arnim 
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15 089587167X Something Blue Jean Christopher 
Spaugh 

16 1402201435 The One True 
Ocean 

Sarah Beth Martin 

17 1573221562 Affinity Sarah Water 

18 1888173408 Fairy Tale 
(Common Reader 
Editions) 

Alice Thomas Ellis 

19 0140282653 Jacob's Ladder: A 
Story of Virginia 
During the War 

Donald McCaig 

20 0316196452 Talking to the Dead 
: A Novel Tag: 
Winner of the 
Orange Prize 

Helen Dunmor 

21 0449001016 Object Lessons 
(Ballantine 
Reader's Circle) 

Anna Quindlen 

22 067179387X The WEIGHT OF 
WINTER 

Cathie Pelletier 

23 0743203232 The Nature of 
Water and Air 

Regina McBride 

24 0803727356 The River Between 
Us 

Richard Peck 

25 0805073337 What Was She 
Thinking?: Notes 
on a Scandal: A 
Novel 

Zoe Heller 

26 1888173564 Parnassus on 
Wheels (Common 
Reader Editions) 

Christopher Morley 

27 0449911217 In the Beauty of the 
Lilies 

John Updike 

28 0345439481 The High Flyer: A 
Novel (Ballantine 
Reader's Circle) 

Susan Howatch 
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29 0684849720 The Quilter's 
Apprentice : A 
Novel 

Jennifer Chiaverini 

30 0140264795 Rosie: A Novel Anne Lamott 

31 0385503857 Oryx and Crake Margaret Atwood 

32 0743418735 Perfect Match: A 
Novel 

Jodi Picoult 

33 0156028778 The Crimson Petal 
and the White 

Michel Faber 

34 0312283784 Alice's Tulips Sandra Dallas 

35 0312421273 The Corrections: A 
Novel 

Jonathan Franzen 

36 0312422156 Middlesex: A 
Novel 

Jeffrey Eugenides 

37 0316341118 Forever: A Novel Pete Hamill 

 

 
17. 2nd test case: Diagram with the adjusted recommendations 

 
The recommended items are quite similar with the original, but some new            
recommended items are appeared on the end of the list. These books are             
similar with some books clicked by user. As it is obvious from the following              
diagram, only the last recommended books are different like “Perfect Match:           
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A Novel”, “The Crimson Petal and the White” , “Alice's Tulips”, “The            
Corrections: A Novel”, “Middlesex: A Nove”, “Forever: A Novel” 
 

 
18. 2nd test case: Comparative diagram of recommendations before/after rochio.  

 
3rd ​scenario:Existed user with user_id=11677(having data for him into 
database) does not click any recommended item 
 
When user signs in books recommendation application, he gets a list with 
the initial recommendations, as they have been calculated with collaborative 
filtering algorithm. 
 
7. 3rd test case: table with initial recommendations 
 

Rank of 
recommended 
items 

ISBN Title Author 

1 0345257189 Power That 
Preserves Covenant 
3 

stephen R 
Donaldson 

2 0345300777 Magician's Gambit 
(Eddings, David. , 
the Belgariad, Bk. 
3.) 

David Eddings 
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3 0345300793 Queen of Sorcery 
(Eddings, David. , 
the Belgariad, Bk. 
2.) 

David Eddings 

4 0345309979 Belgariad Part One 
(Eddings, David. , 
the Belgariad, Bk. 
1.) 

David Eddings 

5 0345363310 Demon Lord of 
Karanda 
(Malloreon 
(Paperback 
Random House)) 

DAVID EDDINGS 

6 0486240649 Burnham's Celestial 
Handbook, Volume 
2, Rev. Edition 

Robert Burnha 

7 0486240657 Burnhams Celestial 
Handbook Volume 
3 

Robert Burnham 

8 0028713303 Music in the 
Romantic Period: 
An Anthology with 
Commentary 
 
 

F. E. Kirby 

9 0132323311 Html Cd: An 
Internet Publishing 
Toolkit for 
Windows/Book and 
Cd-Rom 

Vivian Neou 

10 0140620516 Dr Jekyll and Mr 
Hyde (Penguin 
Popular Classics) 

Robert Louis 
Stevenson 

11 0345274318 Fahrenheit 451 Bradbury 

12 0345276353 Master of the Five 
Magics 1 

Lyndon Hardy 

13 0345373243 Belgarath the 
Sorcerer 

David Eddings 
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14 0345416627 Polgara the 
Sorceress 

David Eddings 

15 0380015390 Satanic Bible Anton Szandor 
Lavey 

16 0446384038 How to Master the 
Art of Selling 

Tom Hopkin 

17 0553095412 The Truce at 
Bakura (Star Wars) 

Kathy Tyer 

18 0609810022 Kiss and Make-Up Gene Simmons 

19 0671887173 DAILY 
REFLECTIONS 
FOR HIGHLY 
EFFECTIVE 
PEOPLE : Living 
The 7 Habits Of 
Highly Successful 
People Every Day 

Stephen R. Covey 

20 0831716991 Complete Works of 
William 
Shakespeare 

William 
Shakespeare 

21 0938636057 Official Guide to 
Success (Official 
Guide to Success) 

Tom Hopkins 

22 1558532862 Satisfaction 
Guaranteed 

Byrd Baggett 

23 1932564462 Shadowrun: 25000 Fanpro 

24 034527444X Sword of Shannar Brooks 

25 0345296044 The Hobbit: Or 
There and Back 
Again 

J. R. R. Tolkien 

26 0345300785 Enchanters' End 
Game (The 
Belgariad, Book 5) 

David Eddings 

27 0345358805 King of the Murgos David Edding 
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(Malloreon 
(Paperback 
Random House)) 

28 0345369351 Sorceress of 
Darshiva 
(Malloreon 
(Paperback 
Random House)) 

David Eddings 

29 0345377591 The Seeress of Kell 
(The Malloreon, 
Book 5) 

David Eddings 

30 0446391069 Leadership Secrets 
of Attila the Hun 

Wess Roberts 

31 0767913795 Who's Looking Out 
for You? 

BILL O'REILLY 

32 0880296879 Nasty Peopl Jay Carter 

33 1562450662 Life's Winning Tips Dennis Connor 

34 1882770099 Red-Tailed Boas 
(General Care and 
Maintenance of 
Series) 

Philippe De Vosjoli 

35 0345300807 Castle of Wizardry 
(The Belgariad, 
Book 4) 

David Eddings 

36 0515123366 Zero Minus Ten Raymond Benson 

37 0785815198 Complete 
Encyclopedia Of 
Pistols And 
Revolvers 

A. E. Hartnik 
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19. 3rd test case: Diagram with initial recommendations  

 
User does not click any recommended item. Every hour, we adjust the            
recommended items and a negative weight is added on their predictive           
value.  
 
 
8. 3rd test case: table with adjusted  recommendations 
  

Rank of 
recommended 
items 

ISBN Title Author 

1 0380015390 Satanic Bible Anton Szandor 
Lavey 

2 0446384038 How to Master the 
Art of Selling 

Tom Hopkin 

3 0609810022 Kiss and Make-Up Gene Simmons 

4 0671887173 DAILY 
REFLECTIONS 
FOR HIGHLY 
EFFECTIVE 
PEOPLE : Living 
The 7 Habits Of 
Highly Successful 

Stephen R. Covey 
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People Every Day 

5 0938636057 Official Guide to 
Success (Official 
Guide to Success) 

Tom Hopkins 

6 1558532862 Satisfaction 
Guaranteed 

Byrd Baggett 

7 0345296044 The Hobbit: Or 
There and Back 
Again 

J. R. R. Tolkien 

8 0345300785 Enchanters' End 
Game (The 
Belgariad, Book 5) 

David Eddings 

9 0345358805 King of the Murgos 
(Malloreon 
(Paperback 
Random House)) 

David Eddings 

10 0345369351 Sorceress of 
Darshiva 
(Malloreon 
(Paperback 
Random House)) 

David Edding 

11 0345377591 The Seeress of Kell 
(The Malloreon, 
Book 5) 

David Edding 

12 0446391069 Leadership Secrets 
of Attila the Hun 

Wess Roberts 

13 0767913795 Who's Looking Out 
for You? 

BILL O'REILLY 

14 0345296052 The Fellowship of 
the Ring (Lord of 
the Rings 
(Paperback)) 

J. R. R. Tolkien 

15 0345296060 The Two Towers 
(Lord of the Rings 
(Paperback)) 

J. R. R. Tolkien 

16 0345296087 The Return of the 
King (Lord of the 

J. R. R. Tolkien 
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Rings (Paperback)) 

17 0345296567 Illearth War Stephen R 
Donaldson 

18 0684846713 HOLDING OUT : 
A NOVEL 

Anne O. Faul 

19 0140714103 Othello the Moor of 
Venice (The 
Pelican 
Shakespeare) 

William 
Shakespeare 

20 0345296575 Lord Foul Ban Stephen R 
Donaldso 

21 0880381744 Dragons of Winter 
Night 

Margaret Weis 

22 0307136671 Night Sky : A Field 
Guide to the 
Heavens 

Mark Chartrand 

23 0394745787 War of the Twins 
(Dragonlance 
Legends, Vol. 2) 

Margaret Weis 

24 042507160X Dune (Dune 
Chronicles 
(Berkley 
Paperback)) 

Frank Herbert 

25 0446677450 Rich Dad, Poor 
Dad: What the Rich 
Teach Their Kids 
About 
Money--That the 
Poor and Middle 
Class Do Not! 

Robert T. Kiyosak 

26 0553089285 Star Wars: The 
Courtship of 
Princess Leia (Star 
wars) 

Dave Wolverton 

27 0553091867 The Last Command 
(Star Wars, Vol 3) 

Timothy Zahn 
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28 0743456866 He Sees You When 
You're Sleeping : A 
Novel 

Carol Higgins 
Clark 

29 0842373195 Let's Roll: Ordinary 
People, 
Extraordinary 
Courage 

Lisa Beamer 

30 0880382651 Time of the Twins 
Legends 1 
(Dragonlance 
Legends Trilogy, 
Vol 1) 

Margaret Weis 

31 0880382678 Test of the Twins 
(DragonLance 
Legends, Vol 3) 

Margaret Weis 

32 0345352661 Guardians of the 
West (Book 1 of 
the Malloreon) 

David Eddings 

33 0440967694 The Outsiders S. E. Hinton 

34 067100042X Silent Night : A 
Christmas Suspense 
Story 

Mary Higgins Clark 

35 0880381736 Dragons of Autumn 
Twilight 
(Dragonlance 
Chronicles, Vol 1) 

Margaret Weis 

36 0880381752 Dragons of Spring 
Dawning 
(Dragonlance 
Chronicles, Vol 3) 

Margaret Weis 

37 0345257189 Power That 
Preserves Covenant 
3 

stephen R 
Donaldson 

 
 
 

68 



 

 

 

 
20. 3rd test case: Diagram with adjusted recommendations  

 
 
As we can see from the above diagram, after some time, new items are              
recommended to user while the order of existed recommended books has           
been also changed. Some books like “Satanic Bible” are still appeared on            
list, while recommendations list has been enriched with new suggestions like           
the “Fellowship of the ring” 

 

 
21. 3rd test case: Comparative Diagram with recommendations before and after rochio. 
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4rth scenario: New registered user(not having data for him into database) 
clicks some of the recommended items 
 
When a new user is registered on application, he gets a list with the top rated 
books as recommendations. 
 
9. 4rth test case: table with initial  recommendations 

Rank of 
recommended 
items 

ISBN Title Author 

1 0316666343 The Lovely Bones: 
A Novel 

Alice Sebol 

2 0385504209 The Da Vinci Code Dan Brown 

3 0312195516 The Red Tent 
(Bestselling 
Backlist) 

Anita Diaman 

4 059035342X Harry Potter and 
the Sorcerer's Stone 
(Harry Potter 
(Paperback)) 

J. K. Rowling 

5 0142001740 The Secret Life of 
Bee 

Sue Monk Kidd 

6 0971880107 Wild Animus Rich Shapero 

7 0060928336 Divine Secrets of 
the Ya-Ya 
Sisterhood: A 
Novel 

Rebecca Wells 

8 0446672211 Where the Heart Is 
(Oprah's Book Club 
(Paperback)) 
 
 

Billie Letts 

9 0452282152 Girl with a Pearl 
Earrin 

Tracy Chevalie 

10 0671027360 Angels &amp; 
Demon 

Dan Brown 

11 044023722X A Painted House John Grisham 
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12 0316601950 The Pilot's Wife : A 
Novel 

Anita Shreve 

13 067976402X Snow Falling on 
Cedars 

David Guterson 

14 0786868716 The Five People 
You Meet in 
Heaven 

Mitch Albo 

15 0446310786 To Kill a 
Mockingbird 

Harper Le 

16 0743418174 Good in Bed Jennifer Weine 

17 0316769487 The Catcher in the 
Rye 

J.D. Salinger 

18 043935806X Harry Potter and 
the Order of the 
Phoenix (Book 5) 

J. K. Rowlin 

19 0156027321 Life of Pi Yann Marte 

20 0345337662 Interview with the 
Vampire 

Anne Rice 

21 0060930535 The Poisonwood 
Bible: A Nove 

Barbara Kingsolve 

22 0385484518 Tuesdays with 
Morrie: An Old 
Man, a Young 
Man, and Life's 
Greatest Lesson 

MITCH ALBOM 

23 0312278586 The Nanny Diaries: 
A Novel 

Emma McLaughlin 

24 0375727345 House of Sand and 
Fo 

Andre Dubus II 

25 0671021001 She's Come 
Undone (Oprah's 
Book Club) 

Wally Lam 

26 0439064872 Harry Potter and 
the Chamber of 
Secrets (Book 2) 

J. K. Rowlin 
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27 044021145X The Firm John Grisham 

28 0440226430 Summer Sisters Judy Blum 

29 0804106304 The Joy Luck Club Amy Tan 

30 0446605239 The Notebook Nicholas Spark 

31 0345370775 Jurassic Park Michael Crichton 

32 0671003755 She's Come 
Undone (Oprah's 
Book Club 
(Paperback)) 

Wally Lamb 

33 0345361792 A Prayer for Owen 
Meany 

John Irving 

34 0440211727 A Time to Kill JOHN GRISHA 

35 0345417623 Timeline MICHAEL 
CRICHTON 

36 1400034779 The No. 1 Ladies' 
Detective Agency 
(Today Show Book 
Club #8) 

Alexander McCall 
Smith 

37 0440241073 The Summon John Grisha 
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22. 4rth test case: Diagram with initial recommendations 

 
User clicks the following recommended books: "0385504209", 
"0439064872" , "0142001740",  "0140503528",  "043935806X", 
"0439064872",  "0345337662" 
 
 
 
After  a while he gets the following recommendations: 
 
10.4rth case: table with adjusted recommendations 

Rank of 
recommended 
items 

ISBN Title Author 

1 0439064872 Harry Potter and 
the Chamber of 
Secrets (Book 2) 

J. K. Rowling 

2 0385504209 The Da Vinci Code Dan Brown 

3 0142001740 The Secret Life of 
Bees 

Sue Monk Kidd 

4 0140503528 Pocket for 
Corduroy (Picture 

Don Freeman 
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Puffins) 

5 0060959037 Prodigal Summer: 
A Novel 
 

Barbara Kingsolver 

6 0140367144 Jo's Boys (Puffin 
Classics) 

Louisa May Alcott 

7 0020280505 HOW TO STAY 
ALIVE IN THE 
WOODS 

Bradford Angier 

8 0304353884 Valentinas Four 
Seasons Cookbook 
 
 

Valentina Harris 

9 0345417623 Timeline MICHAEL 
CRICHTON 

10 1400034779 The No. 1 Ladies' 
Detective Agency 
(Today Show Book 
Club #8) 

Alexander McCall 
Smith 

11 0971880107 Wild Animu Rich Shapero 

12 0060928336  Divine Secrets of 
the Ya-Ya 
Sisterhood: A 
Novel 
 

Rebecca Wells 

13 0446672211 Where the Heart Is 
(Oprah's Book Club 
(Paperback)) 

Billie Letts 

14 0671027360 Angels &amp; 
Demons 

Dan Brown 

15 044023722X A Painted House John Grisham 

16 0316601950 The Pilot's Wife : A 
Novel 

Anita Shreve 

17 067976402X Snow Falling on 
Cedars 

David Guterson 
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18 0786868716 The Five People 
You Meet in 
Heaven 

Mitch Albom 

19 0446310786 To Kill a 
Mockingbird 

Harper Lee 

20 0743418174 Good in Bed Jennifer Weine 

21 0316769487 The Catcher in the 
Rye 

J.D. Salinger 

22 0156027321 Life of Pi Yann Martel 

23 0140256369 Of Love and Other 
Demons (Penguin 
Great Books of the 
20th Century) 

Gabriel Garcia 
Marque 

24 0449211827 Plague Dogs RICHARD ADAM 

25 0449912108 The Witches of 
Eastwick 

John Updike 

26 0385334923 Tulip Fever DEBORAH 
MOGGACH 

27 0156027321 Life of Pi Yann Martel 

28 0345337662 Interview with the 
Vampire 

Anne Rice 

29 0060930535 The Poisonwood 
Bible: A Novel 

Barbara Kingsolver 

30 0385484518 Tuesdays with 
Morrie: An Old 
Man, a Young 
Man, and Life's 
Greatest Lesson 

MITCH ALBOM 

31 0312278586 The Nanny Diaries: 
A Novel 

Emma McLaughli 

32 0375727345 House of Sand and 
Fog 

Andre Dubus II 

33 0671021001 She's Come 
Undone (Oprah's 
Book Club) 

Wally Lam 
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34 0440226430 Summer Sisters Judy Blume 

35 0804106304 The Joy Luck Club Amy Ta 

36 0446605239 The Notebook Nicholas Sparks 

37 0345370775 Jurassic Park Michael Crichton 

 
 

 
23. 4rth case: Diagram with adjusted recommendations 

 
As we can see, the order of results has been changed, while new             
recommended books are appeared on list which are considered similar with           
the books user has clicked. 
 
 

 
24. 4rth case: Comparative diagram with recommendations before/after rochio. 
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5. Conclusion 

Taking everything into consideration, the books recommendation system        
built for this thesis’s purpose is quite effective. From performance aspect,           
the implementation is not so demanded, as the original recommendations          
and the similarity between items can be calculated offline and then we just             
need to adjust them based on user’s feedback, implementing the Rochio           
algorithm. Some common problems like cold start and users not clicking any            
recommended item can be solved easily. In order to handle the users not             
having data about them (cold start problem) we can just return to user the              
top rated books and then adjust the results based on user’s feedback. If user              
does not click any recommended item, a negative weight is added on item’s             
prediction value, and new recommended items are appeared on list. The           
algorithm to adjust user’s recommended items does not require complicated          
calculations and user can get the updated recommended items immediately.          
As future improvements, different approaches could be tried on the first part            
where the initial recommendations are calculated for the user. Maybe a ​deep            
learning model could result in more precise initial recommendations. The          
deep learning model could combine collaborative-filtering and       
content-based information and predict users' recommended items given        
their previous activities (search queries and videos watched) and static          
information (gender, location, etc.). Also the recommendations system could         
become more scalable if an unified analytics engine for large-scale data           
processing like Apache spark or Handoop was used to calculate the initial            
recommendations. As far as the second part of recommendations’         
adjustment based on users’ feedback is concerned, more user’s actions could           
be taken into account to adjust the recommendations like user’s latest           
ratings, reviews etc. The Rochio algorithm could be implemented to train the            
initial deep learning model based on user’s feedback. 
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