

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ
ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ

ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ

Διαδραστικό σύστημα συστάσεων

Διπλωματική Εργασία

της

Γκιουλέκας Φωτεινής

Θεσσαλονίκη, Νοέμβριος 2019

UNIVERSITY OF MACEDONIA

GRADUATE MASTER PROGRAM
DEPARTMENT APPLIED INFORMATICS

Interactive Recommendation System

Diploma thesis
of

Gkiouleka Foteini

Thessaloniki, November 2019

4

INTERACTIVE RECOMMENDATION SYSTEM

Γκιουλέκα Φωτεινή

 Πτυχίο Ηλεκτρολόγων μηχανικών, ΑΠΘ, 2016

Διπλωματική Εργασία

υποβαλλόμενη για τη μερική εκπλήρωση των απαιτήσεων του

ΜΕΤΑΠΤΥΧΙΑΚΟΥ ΤΙΤΛΟΥ ΣΠΟΥΔΩΝ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ
ΠΛΗΡΟΦΟΡΙΚΗ

Επιβλέπων/ουσα Καθηγητής/τρια
Ονοματεπώνυμο Καθηγητή/τριας

Εγκρίθηκε από την τριμελή εξεταστική επιτροπή την ηη/μμ/εεεε

Ονοματεπώνυμο 1 Ονοματεπώνυμο 2 Ονοματεπώνυμο 3

...................................

Πληκτρολογήστε εδώ το ονοματεπώνυμο σας

...................................

5

Περίληψη

H χρήση των συστημάτων συστάσεων (recommender systems) έχει αρχίσει
να γίνεται απαραίτητη στις μέρες μας και για τις ηλεκτρονικές επιχειρήσεις
και για τους πελάτες, λόγω της ταχείας ανάπτυξης του Διαδικτύου σε
συνδυασμό με το πρόβλημα της συσσώρευσης πληροφοριών. Τα συστήματα
συστάσεων και εξατομίκευσης χρησιμοποιούνται ευρέως στο ηλεκτρονικό
εμπόριο για να προτείνονται προϊόντα ή υπηρεσίες σε χρήστες (π.χ
συστάσεις για αγορές, ανάγνωση ειδήσεων, συνδέσεις κοινωνικής
δικτύωσης, ταινίες κ.α.). Ένα σύστημα συστάσεων παίρνει συνήθως ως
είσοδο προσωπικές πληροφορίες από τον χρήστη, χρησιμοποιώντας έναν
αλγόριθμο δημιουργεί τις συστάσεις και εμφανίζει κάποιες προτάσεις στον
χρήστη. Ένας από τους πιο διαδεδομένους αλγορίθμους που
χρησιμοποιείται είναι το συνεργατικό φιλτράρισμα (Collaborative filtering).
H βασική ιδέα είναι να εντοπιστούν οι χρήστες που μοιράζονται τα ίδια
ενδιαφέροντα με τον ενδιαφερόμενο χρήστη στο παρελθόν, ενώ ο
αλγόριθμος στηρίζεται στο ότι οι χρήστες που έχουν παρόμοιες
προτιμήσεις, βαθμολογούν και αξιολογούν με παρόμοιο τρόπο. Οι τεχνικές
αυτές συνήθως λαμβάνουν ένα σύνολο με τις βαθμολογίες των χρηστών του
συστήματος και παράγουν προβλέψεις σχετικά με το τι χρειάζεται ένας
χρήστης, βασιζόμενες στους πιο κοντινούς (ως προς τις προτιμήσεις) σε
αυτόν χρήστες

Στόχος της διπλωματικής εργασίας είναι η σχεδίαση και υλοποίηση ενός
διαδραστικού συστήματος συστάσεων που λειτουργεί με τη μέθοδο του
συνεργατικού φιλτραρίσματος. Το σύστημα θα λαμβάνει ανάδραση από το
χρήστη και θα προσαρμόζει ανάλογα τις προτάσεις που εμφανίζει. Θα δοθεί
έμφαση στην σχεδίαση της διεπαφής χρήστη και στην παρουσίαση των
αποτελεσμάτων έτσι ώστε να ευνοείται η διαισθητική αλληλεπίδραση με το
χρήστη

Λέξεις κλειδιά
recommendation system, collaborative filtering, user feedback, Rochio
algorithm, Django, Python, Angular, RestFul web services, Celery, Redis

6

Abstract

Due to the rapid development of the Internet coupled with the problem of
information accumulation, the use of recommender systems has become
essential nowadays for e-businesses and customers. Recommendations
systems are widely used in e-commerce to recommend products or services
to users (eg marketplace suggestions, news reports, social links, movies,
etc.). ​A recommendation system usually receives personal information from
the user, using an algorithm that creates the recommendations and displays
some suggestions to the user. One of the most widely used algorithms is
Collaborative filtering​. ​The basic idea is to identify users who share the
same interests with the concerned user, while the algorithm is based on the
fact that users who have similar preferences rate and evaluate in a similar
way. These techniques usually take a set of system user ratings and make
predictions about what a user needs.

The aim of the thesis is to design and implement an interactive
recommendation system that works with the collaborative filtering method.
The system will receive feedback from the user and tailor its suggestions
accordingly. Emphasis will be given to the design of the user interface and
the presentation of results so as to promote intuitive interaction with the user

Keywords:
recommendation system, collaborative filtering, user feedback, Rochio
algorithm, Django, Python, Angular, RestFul web services, Celery, Redis

7

Contents

Introduction 11
1.1 Problem - importance of recommendation systems 11
1.2 Goals of thesis 11
1.3 Thesis layout 12

2. Recommendations - Theory background 12
2.1 Definition 12
2.2 Goals of recommendation system 13
2.3 Types of recommendation systems 13
2.4 Collaborative filtering nearest neighborhood models 16
2.5 Relevance feedback Rochio algorithm 18

3.Books recommendations application 19
3.1 Technologies 20
3.2 Datasets 22
3.3 Database structure 22
3.4 ETL(Extract Transform Load) process 23
3.5 RestFul web services 30
3.6 Frontend client 34
3.7 Project structure 36
3.8 Design of recommendation system 37

4. Test cases of books recommendation system 46

5. Conclusion 78

6. Bibliography 79
6.1 Books 79
6.2 Articles 79
6.3 Web sites 79

8

List of images

1. User based collaborative filtering diagram

2. Item based collaborative filtering diagram

3.Optimize initial query with Rochio algorithm

4.Books recommendation applications

5.Database structure

6. Login/Register view of books recommendations app

7.View of books list

8. View of book details

9. View of book recommendations

10.Project structure

11.Workflow when user visits the details of book view

12.Workflow when user visits the books list

13.1st test case: Diagram with initial recommendations for user

14.1st test case: Diagram with adjusted recommendations for user

15.1st test case: Comparative diagram of recommendations

16. 2nd test case: Diagram with initial recommendations

17.2nd test case: Diagram with the adjusted recommendations

18. 2nd test case: Comparative diagram of recommendations before/after rochio.

19. 3rd test case: Diagram with initial recommendations

20. 3rd test case: Diagram with adjusted recommendations

21. 3rd test case: Comparative Diagram with recommendations before and after rochio.

22. 4rth test case: Diagram with initial recommendations

23. 4rth case: Diagram with adjusted recommendations

24. 4rth case: Comparative diagram with recommendations before/after rochio

9

List of tables

1.Restful web services definition

2.1st test case: table with initial recommendations

3.1st test case: table with viewed books

4. 1st test case: table with adjusted recommendations with rochio

5. 2nd test case: table with initial recommendations

6. 2nd test case: table with adjusted recommendations

7. 3rd test case: table with initial recommendations

8. 3rd test case: table with adjusted recommendations

9. 4rth test case: table with initial recommendations

10.4rth case: table with adjusted recommendations

10

1.Introduction

1.1 Problem - importance of recommendation systems

During the last few decades, recommender systems have taken more and
more place in our lives. Some real-world examples include suggestions for
products on Amazon, friends’ suggestions on social applications like
Facebook, Twitter, LinkedIn and video recommendations on Youtube, news
recommendations on Google News and so on. Recommender systems are
really critical in some industries as they can generate a huge amount of
income. Their intention is to facilitate users to find what they need
effectively and immediately, creating a delightful user experience while
driving incremental revenue.

The main goal of recommender system is to provide relevant suggestions to
online users to make better decisions from many alternatives available over
the web. A better recommendation system is directed more towards
personalized recommendations by taking into consideration the user’s
feedback, user-demographic details etc. An important catalyst in building
successful recommendation engines is the ease with which the web enables
user’s feedback about their likes and dislikes. For example users are able to
provide a feedback by rating items, reviewing items etc. Other forms of
feedback are not quite as explicit but are even easier to collect them. For
example, the simple act of viewing a recommended item can be considered
as endorsement for that item.

The biggest challenge of recommendation systems is to find a way to
recommend relevant items, personalized on user’s preferences. The
recommendations need to be adjusted on real time, based on user’s
feedback.

1.2 Goals of thesis

This thesis aims to build an interactive recommender system. Some initial
recommendations are returned to users, as they have been calculated by
implementing a collaborative algorithm. Based on users’ feedback the
recommendations are updated on real time and more relevant recommended
items are displayed to users.

A demo books recommendation application has been developed. Some
online available datasets including users, books and ratings were used to fill

11

application’s database and a collaborative filtering algorithm was
implemented in first place to calculate users’ recommended books. The
recommended books for every user are stored into database. User is able to
register/login in this application, and gets a list with all books and a list with
recommended books. If user views a recommended book, it is considered as
positive feedback, otherwise it is considered as negative feedback.

This thesis has the purpose of suggesting a possible implementation of
Rochio algorithm in order to build an interactive real time recommendation
system and all the required stages to develop it are described. Some testing
cases were carried out on books application in order to see how the
interactive recommendation systems reacts on different user’s actions. The
code of demo application can be found on github repository:
https://github.com/fotein1/book_recommender

1.3 Thesis layout

The structure of thesis is the following:
Chapter 2 discusses the fundamental concepts of recommendation systems’
theory, including collaborative filtering algorithms, content based algorithms
etc. In chapter 3, we analyze the demo books recommendation application,
the database structure, what technologies we used to build backend/frontend
part of application, the scripts used to load the online datasets on
application’s database, the scripts used to calculate similar books and users’
recommendations and the implementation of Rochio algorithm to readjust
users’ recommendations. In chapter 4, we run some user test cases in demo
application and we analyze how recommendations changed based on user
feedback. Last but not least, the final conclusions of thesis are mentioned in
chapter 5.

12

https://github.com/fotein1/book_recommender

2. Recommendations - Theory background

2.1 Definition

Recommendation systems are powerful tool and techniques to analyse huge
volumes of data, especially product information and user information, and
they provide relevant suggestions based on data mining approaches. In
technical term, a recommendation engine problem is to develop a
mathematical model which can predict how a user will like an item.

2.2 Goals of recommendation system

The goals of a recommendation system should be the following:

● Relevance: A recommender system should recommend items that are
relevant to the user. Users are more likely to consume items they find
interesting.

● Novelty: Recommender systems are more helpful when the
recommended item is something that the user has not seen in the past.

● Serendipity: The recommended items are somewhat unexpected to the
user. Serendipity is different from novelty in that the
recommendations are surprising to the user, rather than simply
something they did not know about before. It may often be the case
that a particular user may only be consuming items of a specific type,
although a latent interest in items of other types may exist which the
user might themselves find surprising. Unlike novelty, serendipitous
methods focus on discovering such recommendations.

● Increasing recommendation diversity: Recommender systems

typically suggest a list of top-k items. When all these recommended
items are very similar, it increases the risk that the user might not like
any of these items. On the other hand, when the recommended list
contains items of different types, there is a greater chance that the user
might like at least one of these items.

2.3 Types of recommendation systems

The basic principle of recommendations is that significant dependencies
exist between user- and item-centric activity. For example, a user who is
interested in a sci fiction book is more likely to be interested in another sci
fiction book, rather than a historical book. In many cases, various categories
of items may show significant correlations, which can be leveraged to make

13

more accurate recommendations.These dependencies can be learned in a
data-driven manner from the ratings matrix, and the resulting model is used
to make predictions for target users. The larger the number of rated items
that are available for a user, the easier it is to make robust predictions about
the future behavior of the user. Different learning models can be used to
accomplish this task.The basic models of recommender systems work with
two kinds of data, which are the user-item interactions, such as ratings or
buying behaviour and the attribute information about the users and the
items like the textual profiles or relevant keywords. Methods that use the
former are referred as collaborative filtering methods, whereas methods that
use the latter are referred as content-based-recommender methods.

Collaborative filtering models
In this type of recommendation engine, filtering items from a large set of
alternatives is done collaboratively by user’s preferences. The term
“collaborative filtering” refers to the use of ratings from multiple users in a
collaborative way to predict missing ratings
The basic assumption in a collaborative filtering recommendation system is
that if two users shared the same interests as each other in the past they will
also have similar tastes in the future. There are two types of collaborative
filtering recommender systems:

1. User based collaborative filtering:

In user based collaborative filtering, recommendations are generated by
considering the preferences of similar users. If, for example user A and user
B have similar books preferences and user A read Harry Potter books,
which user B has not read yet then the idea is to recommend them to user B.

 User based collaborative filtering is done in two steps:

● Identify similar users

14

● Recommend new items to an active user based on the rating given by
similar users on the items not rated by the active users

 ​1. User based collaborative filtering diagram. Source
https://dzone.com/articles/recommendation-engine-model

2. Item based collaborative filtering:

In item based collaborative filtering, recommendations are based on the
similarity of items. Unlike user based collaborative filtering, we first find
similarities between items and then recommend items which are similar to
the items the active user has rated in the past. If, for example user A has
rated Harry Potter books, we can recommend to him similar books.
The recommender systems are constructed in two steps:

● Calculate the item similarity based on the item preferences.
● Find the top not rated similar items to rated items by user and

recommend them

2. Item based collaborative filtering diagram. Source
http://2.bp.blogspot.com/-YEEM5PYuTAI/TmHGPmDYICI/AAAAAAAAAls/8VIm0-7PyYM/s1600/P1.

png

15

https://dzone.com/articles/recommendation-engine-models
http://2.bp.blogspot.com/-YEEM5PYuTAI/TmHGPmDYICI/AAAAAAAAAls/8VIm0-7PyYM/s1600/P1.png
http://2.bp.blogspot.com/-YEEM5PYuTAI/TmHGPmDYICI/AAAAAAAAAls/8VIm0-7PyYM/s1600/P1.png

The advantage of collaborative filtering system is that they are simple to
implement and very accurate. However, they have their own set of
limitations, such as the cold start problem which means that collaborative
filtering systems fail to recommend to the first time users whose information
is not available in the system.

Content based recommender systems

As the name indicates, a content based recommender system uses the
content information of the items for building the recommendation model.
The content based recommender system recommends items to users by
taking the content or features of items and user profiles. The basic idea is
that user interests can be modeled on the basis of properties (or attributes) of
the items they have rated or accessed in the past.

Knowledge based recommender systems
In these recommendation systems, users interactively specify their interests,
and the user specification is combined with domain knowledge to provide
recommendations.

Cortext-aware recommendation system
User preferences may differ with the context, such as time of day, season,
mood, place, location, and so on. A person at a different location, at a
different time with different people may need different things. A
context-aware recommender systems takes the context into account before
computing or serving recommendations. This recommender system caters
for the different needs of people differently in different contexts.

Hybrid recommender systems
This type of recommendation engines is built by combining various
recommender systems to build a more robust system. For example, by
combining collaborative filtering methods, when the model fails when new
items don’t have ratings, with the content-based systems, where the
information about the items is available, new items can be recommended.

2.4 Collaborative filtering nearest neighborhood models

The standard method of Collaborative Filtering is known as ​Nearest
Neighborhood ​algorithm. There are user-based CF and item-based CF. At

16

User-based CF, we have an n × m matrix of ratings, with user uᵢ, i = 1, ...n
and item p�, j=1, …m. Now we want to predict the rating rᵢ� if target user i
did not watch/rate an item j. The process is to calculate the similarities
between target user i and all other users, select the top X similar users, and
take the weighted average of ratings from these X users with similarities as
weights.

rij = number of ratings

imilarities(u ,u)r∑

k
s i k kj

While different people may have different baselines when giving ratings,
some people tend to give high scores generally, some are pretty strict even
though they are satisfied with items. To avoid this bias, we can subtract each
user’s average rating of all items when computing weighted average, and
add it back for target user, shown as below.

rij = ri + number of ratings

imilarities(u ,u)(r −r)∑

k
s i k kj k

Two ways to calculate similarity are ​Pearson Correlation and ​Cosine
Similarity​.

Pearson Correlation: im(u ,) S i uk =
(r −r)(r − r)∑

j ij i kj k

√ (r −r) (r −r)∑

j ij i
2 ∑

j kj k
2

Cosine similarity: im(u ,) S i uk = r ·ri k

r r| i|| k| =
(r −r)(r − r)∑

j ij i kj k

√ (r −r) (r −r)∑

j ij i
2 ∑

j kj k
2

Basically, the idea is to find the most similar users to your target user
(nearest neighbors) and weight their ratings of an item as the prediction of
the rating of this item for target user. Without knowing anything about items
and users themselves, we think two users are similar when they give the
same item similar ratings . Analogously, for ​I​tem-based CF, we say two
items are similar when they received similar ratings from a same user. Then,
we will make prediction for a target user on an item by calculating weighted
average of ratings on most X similar items from this user. One key
advantage of Item-based CF is the stability which is that the ratings on a

17

given item will not change significantly over time, unlike the tastes of
human beings.

Neighborhood methods have several advantages related to their simplicity
and intuitive approach. Because of the simple and intuitive approach of
these methods, they are easy to implement and debug. It is often easy to
justify why a specific item is recommended, and the interpretability of
item-based methods is particularly notable. Such justifications are often not
easily available in many of the model-based methods discussed in later
chapters. Furthermore, the recommendations are relatively stable with the
addition of new items and users. It is also possible to create incremental
approximations of these methods.

The main disadvantage of these methods is that the offline phase can
sometimes be impractical in large-scale settings. The offline phase of the
user-based method requires at least O(m​2​) time and space. This might
sometimes be too slow or space-intensive with desktop hardware, when m is
of the order of tens of millions. Nevertheless, the online phase of
neighborhood methods is always efficient. The other main disadvantage of
these methods is their limited coverage because of sparsity.

2.5 Relevance feedback Rochio algorithm

The idea of ​relevance feedback ​(RF) is to involve the user in the retrieval
process so as to improve the final result set. In particular, the user gives
feedback on the relevance of the results he gets. The relevance feedback is
used widely by information retrieval. The art of IR is to get the relevant
objects from a large collection of information objects (usually documents).
A user formulates a query in which he tries to communicate his information
need. The relevance feedback can be also implemented on recommendation
systems.

The Rocchio Algorithm is the classic algorithm for implementing relevance
feedback. It models a way of incorporating relevance feedback information
into the vector space. The algorithm proposes using the modified query qm

 + b - c aqm = q0
1

D| r |
∑

d ∈Dj r

dj
1

D| nr |
∑

d ∈Dj nr

dj

where ​q​0 is the original query vector, ​Dr ​and ​Dnr ​are the set of known rel-
evant and nonrelevant documents respectively, and ​a​, ​b​, and ​c ​are weights

18

attached to each term. These control the balance between trusting the judged
document set versus the query: if we have a lot of judged documents, we
would like a higher ​b ​and ​c​. Starting from ​q​0​, the new query moves you
some distance toward the centroid of the relevant documents and some
distance away from the centroid of the non relevant documents. This new
query can be used for retrieval in the standard vector space model. We can
easily leave the positive quadrant of the vector space by subtracting off a
non relevant document’s vector. In the Rocchio algorithm, negative term
weights are ignored. That is, the term weight is set to 0.

3.Optimize initial query with Rochio algorithm Source:

The relevance feedback with Rochio algorithm can be implemented on
recommendation system with the following process:

● The system returns an initial set of retrieval results.

● If the user clicks some items from results, these items are considered
as relevant while the rest of them are considered as not relevant.

● The system computes a better representation of the information need
based on the user feedback.

● The system displays a revised set of retrieval results.

19

3. Books recommendations application

We are going to build a books recommendation application. User will be
able to register/login in this application, he will get a list with all books and
a list with recommended books. Based on user’s feedback (eg click a
recommended book) the recommended books are readjusted, implementing
the Rochio algorithm. In this chapter we are going to analyze all the parts of
application.

4.Books recommendation applications

3.1 Technologies

In order to build the above application the following technologies have been
used:

20

Django
Django is a high level Python free and open-resource framework, ​which
follows the model template view. It consists of an object-relational-mapper
(ORM) that mediates between data models (defined as Python classes) and a
relational database (Model), a system for processing HTTP requests with a
web templating system (View), and a regular expression based
URL​dispatcher (Controller). Django also offers a lightweight and standalone
web server for development and testing and powerful and flexible toolkit for
building Web APIs(Django REST framework). We ran the backend part of
application on Django server, we created the required database tables using
django models and we also built the required RestFul web services with the
Django framework.

Redis
Redis is an open source (BSD licensed), in-memory data structure store,
used as a database, cache and message broker. It supports data structures
such as strings, hashes, lists, sets, sorted sets with range queries, bitmaps,
hyperloglogs, geospatial indexes with radius queries and streams. Redis was
used to cache user’s recommended books in order to reduce the database hits
and improve the performance of application.

Celery
Celery is an asynchronous task queue/job queue based on distributed
message passing.It is focused on real-time operation, but supports
scheduling as well.The execution units, called tasks, are executed
concurrently on a single or more worker servers using
multiprocessing.Tasks can execute asynchronously (in the background) or
synchronously (wait until ready). The celery queue was used on books
recommendations application to run on background some heavy tasks, like
readjusting user’s recommendations by implementing the Rochio algorithm.

Angular
Angular is a Typescript-based open source software engineering framework
used for building single-page web apps. AngularJS uses the
Model-View-Controller(MVC) architecture, which is used in web app
development. This type of architecture consists of: Model – the data
structure that manages information and receives input from the controller,
View – the representation of information and Controller – responds to input
and interacts with the model. In the context of AngularJS, the model is the
framework, while the view is HTML, and the control is JavaScript. We used

21

https://en.wikipedia.org/wiki/Uniform_Resource_Locator

Angular framework to build the frontend part of books recommendations
applications.

Python libraries/Packages
We used Pandas, a Python Data Analysis Library to read, analyse and
convert csv files to datasets. NumPy​, a fundamental package for scientific
computing with Python. was used in many calculations. Last but not least
the python scikit-learn package was used to implement some machine
learning algorithms.

3.2 Datasets
For the purposes of this thesis the ​Book Crossing dataset has been used. This
dataset has been compiled by Cai-Nicolas Ziegler in 2004, and it comprises
of three tables for users, books and ratings. Explicit ratings are expressed on
a scale from 1–10 (higher values denoting higher appreciation) and implicit
rating is expressed by 0.

● BX-Book-Ratings.csv (1149780 items)
● BX-Books.csv (271360 items)
● BX-Users.csv (278858 items)

3.3 Database structure

We have opted to work with sqlite database. We have created the relevant
django models to add the following tables in database. The django models
are located in model.py file. For example the django model to create the
Book table is the following:

class Book(models.Model):

 ISBN = models.CharField(unique=True, primary_key=True, max_length=255)

 title = models.CharField(max_length=255)

 author = models.CharField(max_length=255)

 year_of_publication = models.CharField(max_length=255)

 publisher = models.CharField(max_length=255)

 image_url_s = models.CharField(max_length=255)

 image_url_m = models.CharField(max_length=255)

22

http://www2.informatik.uni-freiburg.de/~cziegler/BX/
http://www2.informatik.uni-freiburg.de/~cziegler/BX/

 image_url_l = models.CharField(max_length=255)

5.Database structure

Book: db table to store books data
User_data: db table to store user data
Book_rating; db table to store books ratings of users
Book_view: db table to store books user has viewed
User_Book_prediction: db table to store the predicted ratings for books user
has not rated yet
Book_similarities: db table to store the similar books for every book

3.4 ETL(Extract Transform Load) process

After installing django framework, setting up django server and creating the
above db tables we need to fill the local database with the online datasets.
This process is known as ETL. ETL is short for ​e​xtract, ​t​ransform, ​l​oad​,
three database functions that are combined into one tool to pull data out of
one database(csv files in our case) and place it into another database.

● Extract ​is the process of ​reading data​ from a database. In this stage,
the data is collected, often from multiple and different types of
sources.

● Transform​ is​ ​the process of ​converting the extracted data​ from its
previous form into the form it needs to be in so that it can be placed
into another database. Transformation occurs by using rules or lookup
tables or by combining the data with other data.

23

● Load​ is the process of ​writing the data​ into the target database.

To implement the ETL process we created some django scripts. These
scripts are located in folder management/commands of django project. At
these scripts we load the csv files, we read and convert them to datasets
using pandas library commands and we store the data at the relevant
database tables. We can execute these scripts through command line:

load books:
With this script we load books in our database table books. The script
load_books.py has the following structure:

import pandas as pd
import numpy as np
from django.core.management.base import BaseCommand, CommandError
from django.contrib.auth.models import User
from books.models import Book

class Command(BaseCommand):
 def handle(self, *args, **options):

books = pd.read_csv('data/BX-Books.csv', sep=';', error_bad_lines=False,
encoding="latin-1")

books.columns = ['ISBN', 'bookTitle', 'bookAuthor', 'yearOfPublication', 'publisher',
'imageUrlS', 'imageUrlM', 'imageUrlL']
 books.apply(self.save_book_from_row, axis=1)

 def save_book_from_row(self, book_row):
 book = Book()
 book.ISBN = book_row['ISBN']
 book.title = book_row['bookTitle']
 book.author = book_row['bookAuthor']
 book.year_of_publication = book_row['yearOfPublication']
 book.publisher = book_row['publisher']
 book.image_url_s = book_row['imageUrlS']
 book.image_url_m = book_row['imageUrlM']
 book.image_url_l = book_row['imageUrlL']
 book.save()

We execute command ​python manage.py load_books ​to run the above
script.

load_users:

24

In a similar way we load the users from users dataset on user_data database
table with the script load_users.py.
We execute command​ ​python manage.py load_users ​to run the script.

load_ratings:
In a similar way we load the ratings from rating datasets on book_rating
database table with the script load_ratings.py
We execute command​ ​python manage.py load_ratingss ​to run the script.

Load book_similarites:
To fill the user_book_similarities database table, we will need to calculate
the similar books for every book. We decided to implement a collaborative
item based filtering recommendation systems. The reason was that in our
application the items(books) won't be changed so often. On the other hand
new users could be registered and use the books recommendation system.
As a result, it make more sense to us to calculate offline the similarities
between books, store them in our database and access them when it is
needed. Furthermore, generally item based algorithm has a better
performance.

In order to find out the similar books, we used the item based
neighbourhood models, we reduced the dataset size, taking into account
users who have rated at least 100 books and books who have at least 100
ratings. Then we generated a user-term matrix based on rating table.
Similarities need to be computed between the columns of rating matrix.

Before computing the similarities between the columns, each row of the
ratings matrix is centered to a mean of zero. As in the case of user-based
ratings, the average rating of each item in the ratings matrix is subtracted
from each rating to create a mean-centered matrix.

This similarity is referred to as the adjusted cosine similarity because the
ratings are mean- centered before computing the similarity value. We
calculate the similar books and store them in our database with the following
functions:

import pandas as pd
import numpy as np
from django.core.management.base import BaseCommand, CommandError
from django.contrib.auth.models import User
from books.models import Book_similarities
import sklearn.metrics as metrics
from sklearn.neighbors import NearestNeighbors

25

from scipy.spatial.distance import correlation, cosine
from sklearn.metrics import pairwise_distances
from sklearn.metrics import mean_squared_error
from math import sqrt
import sys, os
from contextlib import contextmanager

class Command(BaseCommand):
 metric = 'cosine'
 k = 6
 sample_limit = 10000
 user_id = 183

 def handle(self, *args, **options):

ratings = pd.read_csv('data/BX-Book-Ratings.csv', sep=';', error_bad_lines=False,
encoding="latin-1")
 ratings.columns = ['userID', 'ISBN', 'bookRating']

 #Reduce the dataset size, take into account users who have rated at least 100 books
 #and books which have at least 100 ratings
 counts1 = ratings['userID'].value_counts()
 ratings_explicit = ratings[ratings['userID'].isin(counts1[counts1 >= 100].index)]
 counts = ratings_explicit['bookRating'].value_counts

ratings_explicit = ratings_explicit[ratings_explicit['bookRating'].isin(counts[counts
>= 100].index)]

 #Generate a user-item ratings matrix from the ratings table.

ratings_matrix = ratings_explicit.pivot(index='userID', columns='ISBN',
values='bookRating')
 for col in ratings_matrix:
 ratings_matrix[col].fillna(0, inplace=True)
 self.calculateSimilarBooks(ratings_matrix)

 """
 Calculate similarities of books
 @param obj self The pointer of class
 """
 def calculateSimilarBooks(self, ratings_matrix):
 counter = 0
 for i in range(ratings_matrix.shape[1]):
 item_id = str(ratings_matrix.columns[i])
 similarities, indices= self.findksimilaritems(item_id, ratings_matrix)
 for i in range(0, len(indices.flatten())):
 if (similarities[i] != 0):
 index = indices.flatten()[i]
 similar_item_id = str(ratings_matrix.columns[index])

26

 self.saveSimilarBooks(item_id,similar_item_id)
 counter = counter + 1
 if (counter > self.sample_limit):
 break

 """
 Find similarities between items
 @param obj self The pointer of class
 @param int item_id The id of item
 @param arr ratings_matrix The matrix of ratings
 """
 def findksimilaritems(self, item_id, ratings_matrix):
 similarities=[]
 indices=[]
 ratings = ratings_matrix.T
 loc = ratings.index.get_loc(item_id)
 model_knn = NearestNeighbors(metric = 'cosine', algorithm = 'brute')
 model_knn.fit(ratings)

distances, indices = model_knn.kneighbors(ratings.iloc[loc, :].values.reshape(1, -1),
n_neighbors = self.k + 1)
 similarities = 1-distances.flatten()
return similarities,indices

 """
 Save user book predictions into db

 @param obj self The pointer of class
 @param int item_id The id of item
 @param int similar_id The similar id
 """
 def saveSimilarBooks(self, item_id, similar_id):
 book_similarities = Book_similarities()
 book_similarities.ISBN = item_id
 book_similarities.ISBN_similar = similar_id
 book_similarities.save()

We execute command ​python manage.py calculate_similar_items ​to run the
above script.

Load user books ratings predictions
The basic idea is to leverage the user’s own ratings on similar items in the
final step of making the prediction. For example, in a book recommendation
system, the item peer group will typically be similar books. The ratings
history of the same user on such books is a very reliable predictor of the

27

interests of that user. To predict the user’s ratings for the books, we calculate
the similar books as above​. This calculation is a ​weighted sum​. A weight
function is a mathematical device used when performing a sum, integral, or
average to give some elements more "weight" or influence on the result than
other elements in the same set. The result of this application of a weight
function is a weighted sum or weighted mean. The weighted mean is defined
as:

(a)∑

a∈A
w

(a)w(a)∑

a∈A
f

This form of recommendation is analogous to "people who rate item X
highly, like you, also tend to rate item Y highly, and you haven't rated item
Y yet, so you should try it". We calculate the user’s predictions as
following:
class Command(BaseCommand):

 metric = 'cosine'
 k = 6
 sample_limit = 10000
 user_id = 183

 def handle(self, *args, **options):

……
users = User_data.objects.all()

 for user in users:
 self.recommendItem(user[‘user_id’], rating_matrix)

 """

 Predict user's rating for an item

 @param obj self The pointer of class

 @param int user_id The id of user

 @param int item_id The id of item

 @param arr ratings_matrix A matrix of ratings

""

 def recommendItem(self, user_id, ratings_matrix):

 if (user_id not in ratings_matrix.index.values):

 print('user is should be a valid integer')

 return

 else:

28

 counter = 0

 for i in range(ratings_matrix.shape[1]):

 if (ratings_matrix[str(ratings_matrix.columns[i])][user_id] != 0):

 item_id = str(ratings_matrix.columns[i])

 prediction = self.predict_itembased(user_id, item_id , ratings_matrix)

 self.save_user_book_prediction(user_id, item_id, prediction)

 counter = counter + 1

 if (counter > self.sample_limit):

 break

 """

 Predict user's rating for an item

 @param obj self The pointer of class

 @param int user_id The id of user

 @param int item_id The id of item

 @param arr ratings_matrix A matrix of ratings

 """

 def predict_itembased(self, user_id, item_id, ratings_matrix):

 prediction = wtd_sum = 0

 user_loc = ratings_matrix.index.get_loc(user_id)

 item_loc = ratings_matrix.columns.get_loc(item_id)

 similarities, indices= self.findksimilaritems(item_id, ratings_matrix)

 sum_wt = np.sum(similarities) - 1

 product = 1

 for i in range(0, len(indices.flatten())):

 if indices.flatten()[i] == item_loc:

 continu

 else:

 product = ratings_matrix.iloc[user_loc, indices.flatten()[i]] * (similarities[i])

 wtd_sum = wtd_sum + product

 prediction = int(round(wtd_sum/sum_wt))

29

 if prediction <= 0:

 prediction = 1

 elif prediction > 10:

 prediction = 10

 return prediction

We execute command ​python manage.py load_users_books_predictions ​to
run the script.

3.5 RestFul web services

We have built with Django API framework the required RestFul web
services to serve client and return the required data. RESTful Web Services
are basically REST Architecture based Web Services. In REST Architecture
everything is a resource and a resource is accessed by a common interface
using HTTP standard methods. Following four HTTP methods are
commonly used in REST based architecture.

● GET − Provides a read only access to a resource.
● POST − Used to create a new resource.
● DELETE − Used to remove a resource.
● PUT − Used to update a existing resource or create a new resource.
● PATCH - Used for a partial update of a resource.

A RESTful web service usually defines a URI(Uniform Resource Identifier)
and provides resource representation such as JSON. Clients just make a
HTTP request at the specified URI, with the required headers and payload
body and get the response.RESTful web services are lightweight, highly
scalable and maintainable and are very commonly used to create APIs for
web-based applications. For the books recommendation application we
created the required web services for the following functionalities:

● Register user
● Login user
● Get book list
● Get recommended books
● Rate a book

30

● View a book

All the web services are running on Django server and they are accessible at
base url ​http://127.0.0.1:8000​.

The details of every web service are mentioned at the following table:

1. Restful web services definition

Functionality URL method Request body Response

login user /api/sessions POST {

 ‘username’: ‘’

 ‘password’: ’

}

status_code​:
201
{

 user_id’:’’

}

Logout user /api/sessions DELETE {

 user_id’:’’

}

status code:
204

Register user /api/accounts POST {

 ‘username’: ‘’

 ‘password’: ’

}

status code:
201

Get books list /api/books?page=1 GET status code:
200

31

http://127.0.0.1:8000/api/books-recommendations/users/507

[{

'ISBN': ‘’,

'title': ‘’,

'author': ‘’,

'year_of_publicati
on': ‘’,

'publisher': ‘’,

'image_url_s': ‘’,

'image_url_m' : ‘’,

'image_url_l': ‘’

}]

Get
recommended
books

/api/books-recomm
endations/users/1

GET status code;
200

[{

'ISBN': ‘’,

'title': ‘’,

'author': ‘’,

'year_of_publicati
on': ‘’,

'publisher': ‘’,

'image_url_s': ‘’,

'image_url_m' : ‘’,

'image_url_l': ‘’

}]

32

Rate a book /api/books-rates POST {

user_id: ‘’,

ISBN: ‘’,

rating: ‘’

}

status code:
201

{

user_id: ‘’,

ISBN: ‘’,

rating: ‘’

}

View a book /api/books-views POST {

‘user_id’: ‘’,

‘ISBN’: ‘’

}

status code
201

33

Every web service in Django consists of url definition at url.py, the
controller function at view.py, the model function at model.py and a
serializer object defined at serializer.py, used mainly by GET methods
where a json object with resource’s details is returned to user. For example
the login web service is built widh django framework as following:

// urls.py
sessions_urls = [
 url(r'^$', sessionAPIView.as_view(), name='sessions')
]

urlpatterns = [
 url(r'^sessions', include(sessions_urls)),
]

// views.py
class sessionAPIView(APIView):
 def post(self, request):
 body_unicode = request.body.decode('utf-8')
 body = json.loads(request.body)
 username = body['username']
 password = body['password']

 try:
 user = User_data.objects.get(username=username, password=password)
 except:
 return HttpResponseNotFound("User not found")

 request.session['member_id'] = user.user_id

 return Response({'user_id': user.user_id})

3.6 Frontend client

The frontend part of books recommendation application was built with
angular framework. ​Angular is a platform and framework for building client
applications in HTML and TypeScript. Angular is written in TypeScript. It
implements core and optional functionality as a set of TypeScript libraries
that are imported into app. An Angular app is defined by a set of
NgModules, the basic building blocks. An app always has at least a ​root
module that enables bootstrapping, and typically has many more ​feature
modules.
The following modules have been created for the books recommendation
app:

● nav-menu
34

This module is responsible for the navigation menu. It consists of
nav-menu.css file, nav-menu.html template and nav-menu.ts typescript file
where the navigation menu component is defined. This component uses the
login/logout/register functionalities from session service.

6. Login/Register view of books recommendations app

● books

This module is responsible for the books list. It consists of books.css file,
books.html template and books.ts typescript file where the books component
is defined. This component calls the get list of books functionality of books
service.

7. View of books list

● book-detail

This module is responsible for the detailed view of book. It consists of
book-detail.css, book-detail.html and book-detail.ts where the book-details
component is defined. This component calls the functionalities get details of
book, view book of books service and rate book from rate book service .

35

8. View of books details

● book-recommendations

This module is responsible for the list of recommended books. It consists of
book-recommendations.css, book-recommendations.html and
book-recommendations.ts where the book-details component is defined.
This component calls the functionalities get recommended books of
recommendations service.

9. View of recommendations list

The frontend part of books recommendation app is running on npm server at
url: ​http://localhost:4200/books

3.7 Project structure

The f​ollowing images describe the folder structure of application’s backend and
frontend part.

36

http://localhost:4200/books

10. Project structure

3.8 Design of recommendation system

Get recommendations
In this stage we have stored into our database the users’ predicted ratings for
books they have not rated yet. As mentioned earlier, a web service has been
created to return the recommendations to user. At views.py, the controller
function of web service is defined. We store in redis cache for every user a
flag which expires every hour and the recommendations for this user. If the
flag in cache has not expired yet, the cached recommendations are returned
to user if exist. Otherwise, the user’s recommendations are extracted again
from database.

// views.py

class userBookRecommendationsAPIView(APIView):
 def get(self, request, user_id, *args, **kwargs):
 recommendations = []
 recommendation_expire_cache_name = 'recommendation_expire_' + user_id
 reocmmendations_user_cache_name = 'recommendations_' + user_id

 recommendations = cache.get(reocmmendations_user_cache_name)

if recommendation_expire_cache_name in cache and reocmmendations_user_cache_name in cache and
recommendations:
 recommendations = cache.get(reocmmendations_user_cache_name)
 else:
 recommendations = []
 recommendations = getUserPredictions(user_id, recommendations, False)

 try:

37

 find_recommended_items.delay(user_id, recommendations)
 except:
 return HttpResponseNotFound("Recommendations not found")

 return Response(recommendations)

 if not recommendations:
 recommendations = getUserPredictions(user_id, recommendations, True)

 return Response(recommendations)

All the functions used by the recommendation system are included in a
library file recommendationLib.py. If predictions for the logged in user are
stored into our db, the recommended books are returned to him, as they have
been calculated by the above scripts. The results are returned ordered by
prediction value. If there are not predictions for the logged in user into
database, the top rated books are returned as recommendations.

// recommendationLib.py
"""
 Get user predictions

 @param int user_id The id of user
 @param int recommendations An array with recommendations
 @param boo get_default True to get the default recommended items

 @return arr An array with predictions
"""
def getUserPredictions(user_id, recommendations, get_default)

prediction = User_Book_prediction.objects.filter(user_id=user_id).order_by('-prediction')
 if not predictions or get_default == True:
 try:

ratings = Book_rating.objects.values('ISBN').annotate(score =
Sum('rating')).order_by('-score')[:100]
 for rating in ratings:
 result = rating
 try:
 book = Book.objects.get(ISBN=result['ISBN'])
 result['book'] = bookSerializer(book, many=False).data
 except:
 result['book'] = ''

 recommendations.append(result)
 except:
 return HttpResponseNotFound("Recommendations not found")

 if predictions and get_default == False:
 for prediction in predictions:
 result = bookUserPredictionSerializer(prediction, many=False).data
 try:
 book = Book.objects.get(ISBN=result['ISBN'])

38

 result['book'] = bookSerializer(book, many=False).data
 except:
 result['book'] = ''

 recommendations.append(result)
 return recommendations

User feedback
As we can see from the code of above controller function, when the cached
flag for the logged in user expires after an hour, the user’s predictions are
extracted again from database while a task is triggered and added on celery
queue to adjust user’s recommendations. Based on user’s feedback(books
which user has viewed) the predictions are adjusted and the updated
recommended items are set in cache. The celery task is defined at task.py
file:

// task.py

@shared_task

def find_recommended_items(user_id, recommendations):

 recommendation_expire_cache_name = 'recommendation_expire_' + user_id

 reocmmendations_user_cache_name = 'recommendations_' + user_i

 recommendations = getUserPredictions(user_id, recommendations, False)

 book_views = getUserBookViews(user_id)

 adjustPredictionsByUserFeedback(recommendations, book_views, user_id)

 recommendations = getUserPredictions(user_id, recommendations, False)

 cache.set(recommendation_expire_cache_name, True, timeout=10)

 cache.set(reocmmendations_user_cache_name, recommendations, timeout=10)

In order to adjust the recommendations for the logged in user, we get the
books user has viewed, by calling the relevant function defined at
recommendationLib.py.

// recommendationLib.py

"”Get user book views

 @param int user_id The id of user

 @return arr An array with book views

39

"""

def getUserBookViews(user_id):

 book_views = []

 try:

 user_book_views = Book_view.objects.filter(user_id=user_id)

 except:

 return HttpResponseNotFound("User has not viewed books yet")

 if user_book_views:

 for view in user_book_views

 result = bookViewSerializer(view, many=False).data

 book_views.append(result['ISBN']

 return book_views

 return HttpResponseNotFound("User has not viewed books yet")

Afterwards, we find the similar books of every recommended book viewed
by user. We also find the similar books of recommended books which have
not been viewed by user.

"""

 Adjust predictions based on user feedback

 @param arr recommendations An array with recommendations

 @param arr book_views An array with book views

 @param int user_id The user id

"""

def adjustPredictionsByUserFeedback(recommendations, book_views, user_id):

 ISBN_positive_similar_ids = []

 ISBN_negative_similar_ids = []

 for recommendation in recommendations:

 if recommendation['ISBN'] in book_views:

40

 try:

 similar_books = Book_similarities.objects.filter(ISBN=recommendation['ISBN'])

 for book in similar_books:

 if book['ISBN_similar'] not in ISBN_positive_similar_ids:

 ISBN_positive_similar_ids.append(book['ISBN_simila

 ISBN_positive_similar_ids.append(recommendation['ISBN'])

 except:

 ISBN_positive_similar_ids.append(recommendation['ISBN'])

 if recommendation['ISBN'] not in book_views:

 try:

 similar_books = Book_similarities.objects.filter(ISBN=recommendation['ISBN'])

 for book in similar_books:

 book = bookSimilaritiesSerializer(book, many=False).data

 if book['ISBN_similar'] not in ISBN_negative_similar_ids:

 ISBN_negative_similar_ids.append(book['ISBN_similar'])

 ISBN_negative_similar_ids.append(recommendation['ISBN'])

 except:

 ISBN_negative_similar_ids.append(recommendation['ISBN']

 insert_predictions = False

 user_predictions = User_Book_prediction.objects.filter(user_id=user_id).order_by('-prediction')[:37]

 if not user_predictions:

 insert_predictions = True

 if ISBN_positive_similar_ids:

 savePositivePredictionsOfRecommendedItems(ISBN_positive_similar_ids, user_id, user_predictions)

 if ISBN_negative_similar_ids:

saveNegativePredictionsOfRecommendedItems(ISBN_negative_similar_ids, user_id,
user_predictions)

After having separated books into ISBN_positive_similar_ids and
ISBN_negative_similar_ids arrays, we call the relevant functions to update

41

their prediction value. When user clicks and views a recommended book, it
is considered as positive feedback, while if user has not clicked the
recommended book, it is considered as negative feedback. We use the
algorithm Rochio to readjust the recommendations. We are having a vector
with the original predictions (books and predicted ratings). We have stored
in database the books every user has viewed and we also store the similar
books as they have been calculated by the above scripts. Taking into account
the books user has viewed and also their similar books we calculate the new
predicted rating as following:

ositive prediction ntitial prediction p − = i − + n
0.75 (prediction +.... + prediction).* 1 n

egative prediction ntitial prediction n − = i − − n

0.15 (prediction +.... + prediction).* 1 n

The rochio weight is calculated with the following function in
recommendationLib.py:

"""

 Calculate weight = rochio_weight*(sum_of_predictions/predicted_itemss

 @param arr recommendations An array with recommendations

 @param arr book_views An array with book views

"""

def calculateWeight(rochio_weight, predicted_items_counter, predictions_sum):

 return rochio_weight*predictions_sum/predicted_items_counter

"""

If user has predictions stored into database, we calculate their new
prediction value with the above function and update their value into
database. If user does not have any initial prediction stored into database,
we get the books viewed by user and their similar books and we insert them
into user_prediction database with a prediction equal with ‘1’. Books not
viewed by user and their similar are inserted itno db with a prediction value
‘0’. The function to update the user’s predictions with the positive weight is
the following:

42

 Adjust the predicted items with a positive weigh

 @param arr ISBN_positive_similar_ids An array with positive similar ids

 @param int user_id The user id

@param boo insert_predictions True, to insert the predictions into db, false to update the existed
predictions

"""

def savePositivePredictionsOfRecommendedItems(ISBN_positive_similar_ids, user_id,
insert_predictions):

 predicted_items_counter = 0

 predictions_sum = 0

 if insert_predictions is False:

 predictions = User_Book_prediction.objects.filter(ISBN__in=ISBN_positive_similar_ids)

 if predictions:

 for prediction in predictions:

 prediction = bookUserPredictionSerializer(prediction, many=False).data

 predicted_items_counter = predicted_items_counter + 1

 predictions_sum = predictions_sum + prediction['prediction']

positive_weigh=calculateWeight(ROCHIO_POSITIVE_WEIGHT,predicted_items_counter,
predictions_sum)

 if positive_weight < 0 or positive_weight > 10:

 positive_weight = 10

User_Book_prediction.objects.filter(ISBN__in=ISBN_positive_similar_ids).update(prediction=F('predictio
n') + abs(positive_weight))

 if insert_predictions is True::

 for item_id in ISBN_positive_similar_ids:

 positive_weight = 1

 user_book_predicition = User_Book_prediction()

 user_book_predicition.user_id = user_id

43

 user_book_predicition.ISBN = item_id

 user_book_predicition.prediction = positive_weight

 user_book_predicition.save()

We follow a similar process to update the prediction value of items with the
negative value:

"""

 Adjust the predicted items with a negtive weight

 @param arr ISBN_negative_similar_ids An array with negative similar ids

 @param int user_id The user id

 @param boo insert_predictions Flag to insert predictions

"""

def saveNegativePredictionsOfRecommendedItems(ISBN_negative_similar_ids, user_id,
insert_predictions):

 predicted_items_counter = 0

 predictions_sum = 0

 if insert_predictions is False:

 predictions = User_Book_prediction.objects.filter(ISBN__in=ISBN_negative_similar_ids)

 if predictions:

 for prediction in predictions:

 prediction = bookUserPredictionSerializer(prediction, many=False).data

 predicted_items_counter = predicted_items_counter + 1

 predictions_sum = predictions_sum + prediction['prediction']

negative_weight = calculateWeight(ROCHIO_NEGATIVE_WEIGHT, predicted_items_counter,
predictions_sum)

 if negative_weight < 0 or negative_weight > 10:

 negative_weight =

User_Book_prediction.objects.filter(ISBN__in=ISBN_negative_similar_ids).update(prediction=F('predicti
on') - abs(negative_weight))

44

 if insert_predictions is True:

 for item_id in ISBN_negative_similar_ids:

 positive_weight = 0

 user_book_predicition = User_Book_prediction()

 user_book_predicition.user_id = user_id

 user_book_predicition.ISBN = item_id

 user_book_predicition.prediction = positive_weight

 user_book_predicition.save()

After one hour, we repeat the above process and we adjust again users’
predictions. The following diagrams explains the whole process:

11. Workflow when user visits the details of book view.

45

12. Workflow when user visits the books list

4. Test cases of books recommendation system

After developing the books recommendation system, we carried out some
test cases scenarios to see how the recommendation system reacts on
different user’s action:

1st scenario:Existed user with user_id=11676(having data for him into
database) clicks some recommended items

When the user signs in books recommendation application, he gets a list
with the initial recommendations, as they have been calculated with
collaborative filtering algorithm.

2. 1st test case: table with initial recommendations

Rank of
recommended
items

ISBN Title Author

1 0001944711 Count Duckula:
Vampire Vacation

Maureen Spurgeon

2 0002005018 Clara Calla Richard Bruce

46

Wright

3 0002118580 Audacity to believe Sheila Cassidy

4 0002176432 The Financial post
selects the 100 best
companies to work
for in Canada

Eva Inne

5 0002184974 Nigel Mansell My
Autobiograph

Nigel Mansell

6 0002250810 Santa Speaks: The
Wit and Wisdom of
Santas Across the
Nation

Michael Patrick
Collins

7 0002251485 Love Isn't Easy
(Passionate
Peanuts)

Charles M. Schulz

8 0002255014 Leaning, leaning
over water: A novel
in ten stories

Frances Itani

9 0002258560 Is Shane
MacGowan Still
Alive?

Tim Bradford

10 000225929X MARBLE HEART Gretta Mulrooney

11 0002558122 Angelas Ashes Frank Mccourt

12 0006131409 The Trojan horse Hammond Innes

13 0006143199 SNOW TIGER Bagley Desmond

14 0006171982 Sharpes Honor Bernard Cornwell

15 0006176747 Medusa Hammond Innes

16 0006177492 Home Run Gerald Seymour

17 0006363121 The Picnic and
Suchlike
Pandemonium

Gerald Durrell

47

18 0006366023 Drawing On the
Right Side of the
Brain

Betty Edwards

19 0006379702 My \\Star Trek\\\"
Memories\"

William Shatner

20 000648302X Before and After Matthew Thomas

21 0006492347 Insights from the
Outfield (Peanuts at
Work & Play)

Charles Schulz

22 0006498493 Rogue Lion Safaris Simon Barnes

23 0006512062 Trials of Tiffany
Trott

Isabel Wolff

24 0006512208 Lion Time
Collected Stories 6

Robert Silverberg

25 0006543545 The bookshop Penelope Fitzgerald

26 0006546684 Postcards E Annie Proulx

27 0006547834 Miss Smillas
Feeling for Snow

Peter Hoeg

28 0006550789 253 Geoff Ryman

29 0006551076 Ocean In Iowa Peter Hedges

30 0006552390 The Kindest Use a
Knife

Vanessa Jones

31 0006729835 The Callender
Papers

Cynthia Voight

32 0006928323 A Figure in Hiding
(The Hardy Boys)

Franklin W. Dixon

33 0007106572 Guilty Creatures Sue Welfar

34 0007107900 street bible, the Robert Lacey

35 0007110928 Billy Pamela Stephenso

36 0007118465 Peacocks Dancing Sharon Maas

37 0007139411 The Crash of Patrick Ness

48

Hennington

13.1st test case: Diagram with initial recommendations for user

User clicks the following books from recommendations list:

3. 1st test case: table with viewed books

ISBN Title Author

0002176432 The Financial post selects
the 100 best companies to
work for in Canada

Eva Inne

0002005018 Clara Calla Richard Bruce Wright

0002184974 Nigel Mansell My
Autobiograph

Nigel Mansell

0002250810 Santa Speaks: The Wit and
Wisdom of Santas Across
the Nation

Michael Patrick Collins

0002258560 Is Shane MacGowan Still
Alive?

Tim Bradford

000225929X MARBLE HEART Gretta Mulrooney

49

After an hour, we take into consideration the books user has viewed and we
adjust the recommended books, implementing the rochio algorithm.

4. 1st test case: table with adjusted recommendations with rochio

Rank of
recommended
items

ISBN Title Author

1 0002005018 Clara Calla Richard Bruce
Wright

2 0002176432 The Financial post
selects the 100 best
companies to work
for in Canada

Eva Inne

3 0002184974 Nigel Mansell My
Autobiograph

Nigel Mansell

4 0002250810 Santa Speaks: The
Wit and Wisdom of
Santas Across the
Nation

Michael Patrick
Collins

5 0002258560 Is Shane
MacGowan Still
Alive?

Tim Bradford

6 000225929X MARBLE HEART Gretta Mulrooney

7 0030491916 And That's My
Final Offer! (His A
Doonesbury book)

G.B. Trudeau

8 0030686784
The radish day
jubile

Sheilah B Bruce

9 0043720455 Outrageous fortune Susan Kelly

10 0060002492 Amazonia James Rollins

11 006000438X The Death of
Vishnu: A Novel

Manil Suri

12 006000469X Engaged to Die : A
Death on Demand
Mystery (Hart,

Carolyn Har

50

Carolyn G)

13 0060005424 Lirael: Daughter of
the Clayr

Garth Nix

14 0060005521 Nicola and the
Viscount (An Avon
True Romance)

Meg Cabot

15 006000553X Victoria and the
Rogue (An Avon
True Romance)

Meg Cabot

16 0060007788 Finding Fish: A
Memoi

Antwone Q. Fisher

17 0060008032 Angels Marian Keye

18 0060008369 The Shadows of
Power

James W. Huston

19 0060009012 The Lost Son: A
Life in Pursuit of
Justice

Bernard B. Keri

20 006000942X How to Read
Literature Like a
Professor : A
Lively and
Entertaining Guide
to Reading
Between the Lines

Thomas C. Foster

21 0060012781 A Cook's Tour :
Global Adventures
in Extreme
Cuisines

Anthony Bourdain

22 0060013508 Gunsights Elmore Leonard

23 0060014040 My Stroke of Luc Kirk Douglas

24 0060083263 Sleeping Beauty
(Margolin, Phillip)

Phillip Margoli

25 0060083956 Mr. Paradise: A
Novel

Elmore Leonard

51

26 0060085452 Boy Meets Girl Meg Cabo

27 0060086637 Barracuda 945 Patrick Robinso

28 0060086661 Lily Dale: The True
Story of the Town
that talks to the
Dead

Christine Wicker

29 0060090367 Watermelon Marian Keyes

30 0060090626 The Schooling of
Claybird Catts

Janis Owen

31 0060092653 Scandalous Again Christina Dodd

32 0060093579 Wildfire at
Midnight

Mary Stewart

33 0060104910 The Chaneysville
Incident: A Novel

David Bradley

34 0060155027 he World: An
Illustrated History

Geoffrey Parker

35 0060156961 Guillaume
Chequespierre and
the Oise Salon: An
Anthology

John Hulme

36 0060159081 Oscar and Lucind Peter Carey

37 0060159383 A Thief of Time: A
Novel (Harper
Novel of Suspense)

Tony Hillerman

52

14.1st test case: Diagram with adjusted recommendations for user

As we can see from the above table and diagrams, the clicked
recommended books and their similar books are ranked higher on the list,
such as the “Clara Calla”, “The Financial post selects the 100 best
companies to work for in Canada”, “The Financial post selects the 100 best
companies to work for in Canada”, “Santa Speaks: The Wit and Wisdom of
Santas Across the Nation” etc.​. On the other hand, the previous
recommended books which have not been clicked by the user, they have
been replaced by new recommendations as a negative wight has been added
on their initial prediction value. For example some new books are appeared
on recommendations list like Outrageous fortune, Amazon etc.

53

15.1st test case: Comparative diagram of recommendations before/after implementing

rochio.

2nd​ scenario:Existed user with userid=276680 (having data for him into
database) clicks all recommended items

When user signs in books recommendation application, he gets a list with
the initial recommendations, as they have been calculated with collaborative
filtering algorithm.

5. 2nd test case: table with initial recommendations

Rank of
recommended
items

ISBN Title Author

1 0020236107 FUNERAL
MAKERS

Cathie Pelletier

2 0060934905 Middle Age: A
Romance

Joyce Carol Oates

3 0312280696 The Year of Jubilo :
A Novel of the
Civil War

Howard Bahr

4 0316095575 The Evidence
Against Her: A

Robb Forman Dew

54

Novel

5 0375401466 Old School TOBIAS WOLF

6 0375701524 The Hundred Secret
Senses

Amy Tan

7 0385307756 The Copper Beech Maeve Binchy

8 038572117X In a Dark Wood: A
Novel

Amanda Craig

9 0425169626 Walking the Dead Scott Spence

10 0452281296 In the Cut Susanna Moore

11 0670880973 Cordelia
Underwood: Or the
Marvelous
Beginnings of the
Moosepath League

Van Reid

12 0671516949 A MARRIAGE
MADE AT
WOODSTOCK

Cathie Pelletier

13 0671724479 ONCE UPON A
TIME ON THE
BANKS : ONCE
UPON A TIME
ON THE BANKS

Cathie Pelletier

14 0671883925 LOVE (Virago
Modern Classics)

Elizabeth Von
arnim

15 089587167X Something Blue Jean Christopher
Spaugh

16 1402201435 The One True
Ocean

Sarah Beth Martin

17 1573221562 Affinity Sarah Water

18 1888173408 Fairy Tale
(Common Reader
Editions)

Alice Thomas Ellis

19 0140282653 Jacob's Ladder: A Donald McCaig

55

Story of Virginia
During the War

20 0316196452 Talking to the Dead
: A Novel Tag:
Winner of the
Orange Prize

Helen Dunmor

21 0449001016 Object Lessons
(Ballantine
Reader's Circle)

Anna Quindlen

22 067179387X The WEIGHT OF
WINTER

Cathie Pelletier

23 0743203232 The Nature of
Water and Air

Regina McBride

24 0803727356 The River Between
Us

Richard Peck

25 0805073337 What Was She
Thinking?: Notes
on a Scandal: A
Novel

Zoe Heller

26 1888173564 Parnassus on
Wheels (Common
Reader Editions)

Christopher Morley

27 0449911217 In the Beauty of the
Lilies

John Updike

28 0345439481 The High Flyer: A
Novel (Ballantine
Reader's Circle)

Susan Howatch

29 0684849720 The Quilter's
Apprentice : A
Novel

Jennifer Chiaverini

30 0140264795 Rosie: A Novel Anne Lamott

31 0385503857 Oryx and Crake Margaret Atwood

32 0743418735 Perfect Match: A
Novel

Jodi Picoult

33 0060176784 Saying Grace: A Beth Gutcheon

56

Novel

34 0060283130 The Reptile Room
(A Series of
Unfortunate Events,
Book 2)

Lemony Snicket

35 0060925493 Feather Crowns Bobbie Ann Maso

36 0066214750 Twelve Times
Blessed (Mitchard,
Jacqueline)

Jacquelyn Mitchard

37 0156001942 Winter's Tale Mark Helprin

16. 2nd test case: Diagram with initial recommendations

User clicks all the recommended items and after an hour, the adjusted
recommendations are returned to him. We get the following results:

6. 2nd test case: table with adjusted recommendations

Rank of
recommended
items

ISBN Title Author

57

1 0020236107 FUNERAL
MAKERS

Cathie Pelletier

2 0060934905 Middle Age: A
Romance

Joyce Carol Oates

3 0312280696 The Year of Jubilo :
A Novel of the
Civil War

Howard Bahr

4 0316095575 The Evidence
Against Her: A
Novel

Robb Forman Dew

5 0375401466 Old School TOBIAS WOLF

6 0375701524 The Hundred Secret
Senses

Amy Tan

7 0385307756 The Copper Beech Maeve Binchy

8 038572117X In a Dark Wood: A
Novel

Amanda Craig

9 0425169626 Walking the Dead Scott Spence

10 0452281296 In the Cut Susanna Moore

11 0670880973 Cordelia
Underwood: Or the
Marvelous
Beginnings of the
Moosepath League

Van Reid

12 0671516949 A MARRIAGE
MADE AT
WOODSTOCK

Cathie Pelletier

13 0671724479 ONCE UPON A
TIME ON THE
BANKS : ONCE
UPON A TIME
ON THE BANKS

Cathie Pelletier

14 0671883925 LOVE (Virago
Modern Classics)

Elizabeth Von
arnim

58

15 089587167X Something Blue Jean Christopher
Spaugh

16 1402201435 The One True
Ocean

Sarah Beth Martin

17 1573221562 Affinity Sarah Water

18 1888173408 Fairy Tale
(Common Reader
Editions)

Alice Thomas Ellis

19 0140282653 Jacob's Ladder: A
Story of Virginia
During the War

Donald McCaig

20 0316196452 Talking to the Dead
: A Novel Tag:
Winner of the
Orange Prize

Helen Dunmor

21 0449001016 Object Lessons
(Ballantine
Reader's Circle)

Anna Quindlen

22 067179387X The WEIGHT OF
WINTER

Cathie Pelletier

23 0743203232 The Nature of
Water and Air

Regina McBride

24 0803727356 The River Between
Us

Richard Peck

25 0805073337 What Was She
Thinking?: Notes
on a Scandal: A
Novel

Zoe Heller

26 1888173564 Parnassus on
Wheels (Common
Reader Editions)

Christopher Morley

27 0449911217 In the Beauty of the
Lilies

John Updike

28 0345439481 The High Flyer: A
Novel (Ballantine
Reader's Circle)

Susan Howatch

59

29 0684849720 The Quilter's
Apprentice : A
Novel

Jennifer Chiaverini

30 0140264795 Rosie: A Novel Anne Lamott

31 0385503857 Oryx and Crake Margaret Atwood

32 0743418735 Perfect Match: A
Novel

Jodi Picoult

33 0156028778 The Crimson Petal
and the White

Michel Faber

34 0312283784 Alice's Tulips Sandra Dallas

35 0312421273 The Corrections: A
Novel

Jonathan Franzen

36 0312422156 Middlesex: A
Novel

Jeffrey Eugenides

37 0316341118 Forever: A Novel Pete Hamill

17. 2nd test case: Diagram with the adjusted recommendations

The recommended items are quite similar with the original, but some new
recommended items are appeared on the end of the list. These books are
similar with some books clicked by user. As it is obvious from the following
diagram, only the last recommended books are different like “Perfect Match:

60

A Novel”, “The Crimson Petal and the White” , “Alice's Tulips”, “The
Corrections: A Novel”, “Middlesex: A Nove”, “Forever: A Novel”

18. 2nd test case: Comparative diagram of recommendations before/after rochio.

3rd ​scenario:Existed user with user_id=11677(having data for him into
database) does not click any recommended item

When user signs in books recommendation application, he gets a list with
the initial recommendations, as they have been calculated with collaborative
filtering algorithm.

7. 3rd test case: table with initial recommendations

Rank of
recommended
items

ISBN Title Author

1 0345257189 Power That
Preserves Covenant
3

stephen R
Donaldson

2 0345300777 Magician's Gambit
(Eddings, David. ,
the Belgariad, Bk.
3.)

David Eddings

61

3 0345300793 Queen of Sorcery
(Eddings, David. ,
the Belgariad, Bk.
2.)

David Eddings

4 0345309979 Belgariad Part One
(Eddings, David. ,
the Belgariad, Bk.
1.)

David Eddings

5 0345363310 Demon Lord of
Karanda
(Malloreon
(Paperback
Random House))

DAVID EDDINGS

6 0486240649 Burnham's Celestial
Handbook, Volume
2, Rev. Edition

Robert Burnha

7 0486240657 Burnhams Celestial
Handbook Volume
3

Robert Burnham

8 0028713303 Music in the
Romantic Period:
An Anthology with
Commentary

F. E. Kirby

9 0132323311 Html Cd: An
Internet Publishing
Toolkit for
Windows/Book and
Cd-Rom

Vivian Neou

10 0140620516 Dr Jekyll and Mr
Hyde (Penguin
Popular Classics)

Robert Louis
Stevenson

11 0345274318 Fahrenheit 451 Bradbury

12 0345276353 Master of the Five
Magics 1

Lyndon Hardy

13 0345373243 Belgarath the
Sorcerer

David Eddings

62

14 0345416627 Polgara the
Sorceress

David Eddings

15 0380015390 Satanic Bible Anton Szandor
Lavey

16 0446384038 How to Master the
Art of Selling

Tom Hopkin

17 0553095412 The Truce at
Bakura (Star Wars)

Kathy Tyer

18 0609810022 Kiss and Make-Up Gene Simmons

19 0671887173 DAILY
REFLECTIONS
FOR HIGHLY
EFFECTIVE
PEOPLE : Living
The 7 Habits Of
Highly Successful
People Every Day

Stephen R. Covey

20 0831716991 Complete Works of
William
Shakespeare

William
Shakespeare

21 0938636057 Official Guide to
Success (Official
Guide to Success)

Tom Hopkins

22 1558532862 Satisfaction
Guaranteed

Byrd Baggett

23 1932564462 Shadowrun: 25000 Fanpro

24 034527444X Sword of Shannar Brooks

25 0345296044 The Hobbit: Or
There and Back
Again

J. R. R. Tolkien

26 0345300785 Enchanters' End
Game (The
Belgariad, Book 5)

David Eddings

27 0345358805 King of the Murgos David Edding

63

(Malloreon
(Paperback
Random House))

28 0345369351 Sorceress of
Darshiva
(Malloreon
(Paperback
Random House))

David Eddings

29 0345377591 The Seeress of Kell
(The Malloreon,
Book 5)

David Eddings

30 0446391069 Leadership Secrets
of Attila the Hun

Wess Roberts

31 0767913795 Who's Looking Out
for You?

BILL O'REILLY

32 0880296879 Nasty Peopl Jay Carter

33 1562450662 Life's Winning Tips Dennis Connor

34 1882770099 Red-Tailed Boas
(General Care and
Maintenance of
Series)

Philippe De Vosjoli

35 0345300807 Castle of Wizardry
(The Belgariad,
Book 4)

David Eddings

36 0515123366 Zero Minus Ten Raymond Benson

37 0785815198 Complete
Encyclopedia Of
Pistols And
Revolvers

A. E. Hartnik

64

19. 3rd test case: Diagram with initial recommendations

User does not click any recommended item. Every hour, we adjust the
recommended items and a negative weight is added on their predictive
value.

8. 3rd test case: table with adjusted recommendations

Rank of
recommended
items

ISBN Title Author

1 0380015390 Satanic Bible Anton Szandor
Lavey

2 0446384038 How to Master the
Art of Selling

Tom Hopkin

3 0609810022 Kiss and Make-Up Gene Simmons

4 0671887173 DAILY
REFLECTIONS
FOR HIGHLY
EFFECTIVE
PEOPLE : Living
The 7 Habits Of
Highly Successful

Stephen R. Covey

65

People Every Day

5 0938636057 Official Guide to
Success (Official
Guide to Success)

Tom Hopkins

6 1558532862 Satisfaction
Guaranteed

Byrd Baggett

7 0345296044 The Hobbit: Or
There and Back
Again

J. R. R. Tolkien

8 0345300785 Enchanters' End
Game (The
Belgariad, Book 5)

David Eddings

9 0345358805 King of the Murgos
(Malloreon
(Paperback
Random House))

David Eddings

10 0345369351 Sorceress of
Darshiva
(Malloreon
(Paperback
Random House))

David Edding

11 0345377591 The Seeress of Kell
(The Malloreon,
Book 5)

David Edding

12 0446391069 Leadership Secrets
of Attila the Hun

Wess Roberts

13 0767913795 Who's Looking Out
for You?

BILL O'REILLY

14 0345296052 The Fellowship of
the Ring (Lord of
the Rings
(Paperback))

J. R. R. Tolkien

15 0345296060 The Two Towers
(Lord of the Rings
(Paperback))

J. R. R. Tolkien

16 0345296087 The Return of the
King (Lord of the

J. R. R. Tolkien

66

Rings (Paperback))

17 0345296567 Illearth War Stephen R
Donaldson

18 0684846713 HOLDING OUT :
A NOVEL

Anne O. Faul

19 0140714103 Othello the Moor of
Venice (The
Pelican
Shakespeare)

William
Shakespeare

20 0345296575 Lord Foul Ban Stephen R
Donaldso

21 0880381744 Dragons of Winter
Night

Margaret Weis

22 0307136671 Night Sky : A Field
Guide to the
Heavens

Mark Chartrand

23 0394745787 War of the Twins
(Dragonlance
Legends, Vol. 2)

Margaret Weis

24 042507160X Dune (Dune
Chronicles
(Berkley
Paperback))

Frank Herbert

25 0446677450 Rich Dad, Poor
Dad: What the Rich
Teach Their Kids
About
Money--That the
Poor and Middle
Class Do Not!

Robert T. Kiyosak

26 0553089285 Star Wars: The
Courtship of
Princess Leia (Star
wars)

Dave Wolverton

27 0553091867 The Last Command
(Star Wars, Vol 3)

Timothy Zahn

67

28 0743456866 He Sees You When
You're Sleeping : A
Novel

Carol Higgins
Clark

29 0842373195 Let's Roll: Ordinary
People,
Extraordinary
Courage

Lisa Beamer

30 0880382651 Time of the Twins
Legends 1
(Dragonlance
Legends Trilogy,
Vol 1)

Margaret Weis

31 0880382678 Test of the Twins
(DragonLance
Legends, Vol 3)

Margaret Weis

32 0345352661 Guardians of the
West (Book 1 of
the Malloreon)

David Eddings

33 0440967694 The Outsiders S. E. Hinton

34 067100042X Silent Night : A
Christmas Suspense
Story

Mary Higgins Clark

35 0880381736 Dragons of Autumn
Twilight
(Dragonlance
Chronicles, Vol 1)

Margaret Weis

36 0880381752 Dragons of Spring
Dawning
(Dragonlance
Chronicles, Vol 3)

Margaret Weis

37 0345257189 Power That
Preserves Covenant
3

stephen R
Donaldson

68

20. 3rd test case: Diagram with adjusted recommendations

As we can see from the above diagram, after some time, new items are
recommended to user while the order of existed recommended books has
been also changed. Some books like “Satanic Bible” are still appeared on
list, while recommendations list has been enriched with new suggestions like
the “Fellowship of the ring”

21. 3rd test case: Comparative Diagram with recommendations before and after rochio.

69

4rth scenario: New registered user(not having data for him into database)
clicks some of the recommended items

When a new user is registered on application, he gets a list with the top rated
books as recommendations.

9. 4rth test case: table with initial recommendations

Rank of
recommended
items

ISBN Title Author

1 0316666343 The Lovely Bones:
A Novel

Alice Sebol

2 0385504209 The Da Vinci Code Dan Brown

3 0312195516 The Red Tent
(Bestselling
Backlist)

Anita Diaman

4 059035342X Harry Potter and
the Sorcerer's Stone
(Harry Potter
(Paperback))

J. K. Rowling

5 0142001740 The Secret Life of
Bee

Sue Monk Kidd

6 0971880107 Wild Animus Rich Shapero

7 0060928336 Divine Secrets of
the Ya-Ya
Sisterhood: A
Novel

Rebecca Wells

8 0446672211 Where the Heart Is
(Oprah's Book Club
(Paperback))

Billie Letts

9 0452282152 Girl with a Pearl
Earrin

Tracy Chevalie

10 0671027360 Angels &
Demon

Dan Brown

11 044023722X A Painted House John Grisham

70

12 0316601950 The Pilot's Wife : A
Novel

Anita Shreve

13 067976402X Snow Falling on
Cedars

David Guterson

14 0786868716 The Five People
You Meet in
Heaven

Mitch Albo

15 0446310786 To Kill a
Mockingbird

Harper Le

16 0743418174 Good in Bed Jennifer Weine

17 0316769487 The Catcher in the
Rye

J.D. Salinger

18 043935806X Harry Potter and
the Order of the
Phoenix (Book 5)

J. K. Rowlin

19 0156027321 Life of Pi Yann Marte

20 0345337662 Interview with the
Vampire

Anne Rice

21 0060930535 The Poisonwood
Bible: A Nove

Barbara Kingsolve

22 0385484518 Tuesdays with
Morrie: An Old
Man, a Young
Man, and Life's
Greatest Lesson

MITCH ALBOM

23 0312278586 The Nanny Diaries:
A Novel

Emma McLaughlin

24 0375727345 House of Sand and
Fo

Andre Dubus II

25 0671021001 She's Come
Undone (Oprah's
Book Club)

Wally Lam

26 0439064872 Harry Potter and
the Chamber of
Secrets (Book 2)

J. K. Rowlin

71

27 044021145X The Firm John Grisham

28 0440226430 Summer Sisters Judy Blum

29 0804106304 The Joy Luck Club Amy Tan

30 0446605239 The Notebook Nicholas Spark

31 0345370775 Jurassic Park Michael Crichton

32 0671003755 She's Come
Undone (Oprah's
Book Club
(Paperback))

Wally Lamb

33 0345361792 A Prayer for Owen
Meany

John Irving

34 0440211727 A Time to Kill JOHN GRISHA

35 0345417623 Timeline MICHAEL
CRICHTON

36 1400034779 The No. 1 Ladies'
Detective Agency
(Today Show Book
Club #8)

Alexander McCall
Smith

37 0440241073 The Summon John Grisha

72

22. 4rth test case: Diagram with initial recommendations

User clicks the following recommended books: "0385504209",
"0439064872" , "0142001740", "0140503528", "043935806X",
"0439064872", "0345337662"

After a while he gets the following recommendations:

10.4rth case: table with adjusted recommendations

Rank of
recommended
items

ISBN Title Author

1 0439064872 Harry Potter and
the Chamber of
Secrets (Book 2)

J. K. Rowling

2 0385504209 The Da Vinci Code Dan Brown

3 0142001740 The Secret Life of
Bees

Sue Monk Kidd

4 0140503528 Pocket for
Corduroy (Picture

Don Freeman

73

Puffins)

5 0060959037 Prodigal Summer:
A Novel

Barbara Kingsolver

6 0140367144 Jo's Boys (Puffin
Classics)

Louisa May Alcott

7 0020280505 HOW TO STAY
ALIVE IN THE
WOODS

Bradford Angier

8 0304353884 Valentinas Four
Seasons Cookbook

Valentina Harris

9 0345417623 Timeline MICHAEL
CRICHTON

10 1400034779 The No. 1 Ladies'
Detective Agency
(Today Show Book
Club #8)

Alexander McCall
Smith

11 0971880107 Wild Animu Rich Shapero

12 0060928336 Divine Secrets of
the Ya-Ya
Sisterhood: A
Novel

Rebecca Wells

13 0446672211 Where the Heart Is
(Oprah's Book Club
(Paperback))

Billie Letts

14 0671027360 Angels &
Demons

Dan Brown

15 044023722X A Painted House John Grisham

16 0316601950 The Pilot's Wife : A
Novel

Anita Shreve

17 067976402X Snow Falling on
Cedars

David Guterson

74

18 0786868716 The Five People
You Meet in
Heaven

Mitch Albom

19 0446310786 To Kill a
Mockingbird

Harper Lee

20 0743418174 Good in Bed Jennifer Weine

21 0316769487 The Catcher in the
Rye

J.D. Salinger

22 0156027321 Life of Pi Yann Martel

23 0140256369 Of Love and Other
Demons (Penguin
Great Books of the
20th Century)

Gabriel Garcia
Marque

24 0449211827 Plague Dogs RICHARD ADAM

25 0449912108 The Witches of
Eastwick

John Updike

26 0385334923 Tulip Fever DEBORAH
MOGGACH

27 0156027321 Life of Pi Yann Martel

28 0345337662 Interview with the
Vampire

Anne Rice

29 0060930535 The Poisonwood
Bible: A Novel

Barbara Kingsolver

30 0385484518 Tuesdays with
Morrie: An Old
Man, a Young
Man, and Life's
Greatest Lesson

MITCH ALBOM

31 0312278586 The Nanny Diaries:
A Novel

Emma McLaughli

32 0375727345 House of Sand and
Fog

Andre Dubus II

33 0671021001 She's Come
Undone (Oprah's
Book Club)

Wally Lam

75

34 0440226430 Summer Sisters Judy Blume

35 0804106304 The Joy Luck Club Amy Ta

36 0446605239 The Notebook Nicholas Sparks

37 0345370775 Jurassic Park Michael Crichton

23. 4rth case: Diagram with adjusted recommendations

As we can see, the order of results has been changed, while new
recommended books are appeared on list which are considered similar with
the books user has clicked.

24. 4rth case: Comparative diagram with recommendations before/after rochio.

76

77

5. Conclusion

Taking everything into consideration, the books recommendation system
built for this thesis’s purpose is quite effective. From performance aspect,
the implementation is not so demanded, as the original recommendations
and the similarity between items can be calculated offline and then we just
need to adjust them based on user’s feedback, implementing the Rochio
algorithm. Some common problems like cold start and users not clicking any
recommended item can be solved easily. In order to handle the users not
having data about them (cold start problem) we can just return to user the
top rated books and then adjust the results based on user’s feedback. If user
does not click any recommended item, a negative weight is added on item’s
prediction value, and new recommended items are appeared on list. The
algorithm to adjust user’s recommended items does not require complicated
calculations and user can get the updated recommended items immediately.
As future improvements, different approaches could be tried on the first part
where the initial recommendations are calculated for the user. Maybe a ​deep
learning model could result in more precise initial recommendations. The
deep learning model could combine collaborative-filtering and
content-based information and predict users' recommended items given
their previous activities (search queries and videos watched) and static
information (gender, location, etc.). Also the recommendations system could
become more scalable if an unified analytics engine for large-scale data
processing like Apache spark or Handoop was used to calculate the initial
recommendations. As far as the second part of recommendations’
adjustment based on users’ feedback is concerned, more user’s actions could
be taken into account to adjust the recommendations like user’s latest
ratings, reviews etc. The Rochio algorithm could be implemented to train the
initial deep learning model based on user’s feedback.

78

6. Bibliography

6.1 Books

Charu C. Aggarval​: “Recommender Systems, The textbook”​, Yorktown Heights, NY, USA, Springer

Suresh Kumar Gorakala, “Building Recommendation Engine” , Birmingham, Uk, Paclt Publishing Ltd 2016

Francois Chollet, “Deep learning with Pyhton”, Shelter Island, NY, Manning Publications Co. 2018

Christopher D.Manning, Prabhakar Raghavan, Hinrich Schutze, “An introduction to Information Retrieval”,
Cambridge England, Cambridge University Press 2009

Dietmar Jannach, Markus Zanker, Alexander Felfernig, Gerhard Friedich “Recommender Systems An Introduction”,
Cambridge University Press 2011

Francesco Ricci and Lior Rokach and Bracha Shapira, “​Introduction to Recommender Systems Handbook”,​ ​Springer
Science+Business Media, LLC 2011, 2011

6.2 Articles
K. Goldberg, T. Roeder, D. Gupta, and C. Perkins, “Eigentaste: a constant time collaborative filtering algorithm,”
Information Retrieval, vol. 4, no. 2, pp. 133–151, 2001

Linden, B. Smith, and J. York, “Amazon.com recommendations: item-to-item collaborative filtering,”
IEEE Internet Computing, vol. 7, no. 1, pp. 76–80, 2003.

Mark van Uden, “Rochio: Relevance feedback in learning Classification Algorithms”, Department of
Computing Science, University of Nijmegen

Ladislav Peska, “Using the Context of User Feedback in Recommender Systems”, Faculty of Mathematics
and Physics, Charles University in Prague,, Prague, Czech Republic

6.3 Web sites

https://towardsdatascience.com/intro-to-recommender-system-collaborative-filtering-64a238194a26

https://towardsdatascience.com/recommender-systems-in-practice-cef9033bb23a

https://www.geeksforgeeks.org/python-implementation-of-movie-recommender-system/

https://www.djangoproject.com

https://angularjs.org

https://pandas.pydata.org

https://redis.io

http://www.celeryproject.org/

79

https://towardsdatascience.com/intro-to-recommender-system-collaborative-filtering-64a238194a26
https://towardsdatascience.com/recommender-systems-in-practice-cef9033bb23a
https://www.geeksforgeeks.org/python-implementation-of-movie-recommender-system/
https://www.djangoproject.com/
https://angularjs.org/
https://pandas.pydata.org/
https://redis.io/
http://www.celeryproject.org/

80

81

