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Iepiinyn

H ypnon tov cvotudtov cuotdcemv (recommender systems) €yel apyioet
Vo YIVETOL amopoitnIn OTIC LEPEC LOC KOL YO TIC NAEKTPOVIKES EMLYEPNOELS
KOl Yyl Tovg meEAdTEC, AOY® TG Toeiog avamTuENG Tov AadIKTOOV GE
oLVOVOGUO UE TO TPOPANLO TG CLGCOPEVONC TANPOPOoPLOY. Ta cvcTHHaTO
oLOTACEMV KOl EQTOUTKELONG YPTCUYLOTOLOVVTOL EVPEWMS GTO NAEKTPOVIKO
eunoplo yw va mpoteivovioan mpoidvia 1 vinpeciec oe ypnoteg ( my
OVOTACELS YO OaYOpPEC, OVAYVOGY €WONCEWV, OLVOECELS KOWMVIKNG
diktvwong, towvieg K.o.). ‘Eva ovotmuo cvotdoewv maipvel cuvibwg og
€l0000 TTPOCHOTIKEG TANPOPOPIEG OO TOV YPNOTY, XPNOLUOTOLDVTIAS EVOV
alyoplBpo omuovpyel TIC GLOTAGELS Kl EUEAVILEL KATOLEG TPOTAGELS GTOV
ypnot. ‘Evag amd 1ovg mo  dwdedopévovg  alyopiBuovg  mov
ypnoomoteitan eival to ovvepyatikd eaitpapiopa (Collaborative filtering).
H Boaowkn 10éa eivar va evtomiotodv ot ypnoteg mov potpdlovror to it
EVOLLPEPOVTOL UE TOV EVOLOPEPOUEVO YPNOTN ©TO TOaPEABOV, &vd O
alyopiBuog ommpiletor ot0 OTL OL YPNOTEG TOL  €YOVV  TOPOUOLES
TPOTIUNGELS, Pabuoroyovv kol a&loAoyovv pe mapopoto tpomo. Ot texviKeg
avtéc cuvnOm¢ AapPdvouvv Eva cuvolo Le Tig BabLoroyieg TV ¥PNOTOV TOV
CLGTNUOTOG KOl TTApAyovy TPOPAEWELS OYETIKA pe TO TL XperdleTor £vog
¥PNOTNG, PacilOUEVEG GTOVS MO KOVIIVOUG (MG TPOG TIG TPOTIUNCELS) O
aVTOV YPNOTES

210%0G NG OMAMUATIKNG epyaciag givor 1 oyediaon Kot vAomoinomn evog
S10OPACTIKOD GLGTNHUOTOS GLOTAGE®MY TOV Asttovpyel pe T péBodo tov
ocuvepyatikob PAtpapicpatos. To cvotua Ba Aaupavel avadpoon and To
ypNot kot Bo Tpocapuolel avaroya TIG TPOTAGELS OV ERPOvVilel. Oa 600l
Eupoom oty oxedioon e OlEmaPng ¥PNoTN Kol GTNV TOPOVLGINCT] TOV
OMOTEAEGUATOV £TGL MGTE VO ELVOEITAL 1] SLCONTIKY] AAANAETIOPOOT| [LE TO
xpnotm

A€Eerg Kheona
recommendation system, collaborative filtering, user feedback, Rochio
algorithm, Django, Python, Angular, RestFul web services, Celery, Redis



Abstract

Due to the rapid development of the Internet coupled with the problem of
information accumulation, the use of recommender systems has become
essential nowadays for e-businesses and customers. Recommendations
systems are widely used in e-commerce to recommend products or services
to users (eg marketplace suggestions, news reports, social links, movies,
etc.). A recommendation system usually receives personal information from
the user, using an algorithm that creates the recommendations and displays
some suggestions to the user. One of the most widely used algorithms is
Collaborative filtering. The basic idea is to identify users who share the
same interests with the concerned user, while the algorithm is based on the
fact that users who have similar preferences rate and evaluate in a similar
way. These techniques usually take a set of system user ratings and make
predictions about what a user needs.

The aim of the thesis is to design and implement an interactive
recommendation system that works with the collaborative filtering method.
The system will receive feedback from the user and tailor its suggestions
accordingly. Emphasis will be given to the design of the user interface and
the presentation of results so as to promote intuitive interaction with the user

Keywords:
recommendation system, collaborative filtering, user feedback, Rochio
algorithm, Django, Python, Angular, RestFul web services, Celery, Redis
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1.Introduction

1.1 Problem - importance of recommendation systems

During the last few decades, recommender systems have taken more and
more place in our lives. Some real-world examples include suggestions for
products on Amazon, friends’ suggestions on social applications like
Facebook, Twitter, LinkedIn and video recommendations on Youtube, news
recommendations on Google News and so on. Recommender systems are
really critical in some industries as they can generate a huge amount of
income. Their intention is to facilitate users to find what they need
effectively and immediately, creating a delightful user experience while
driving incremental revenue.

The main goal of recommender system is to provide relevant suggestions to
online users to make better decisions from many alternatives available over
the web. A better recommendation system is directed more towards
personalized recommendations by taking into consideration the user’s
feedback, user-demographic details etc. An important catalyst in building
successful recommendation engines is the ease with which the web enables
user’s feedback about their likes and dislikes. For example users are able to
provide a feedback by rating items, reviewing items etc. Other forms of
feedback are not quite as explicit but are even easier to collect them. For
example, the simple act of viewing a recommended item can be considered
as endorsement for that item.

The biggest challenge of recommendation systems is to find a way to
recommend relevant items, personalized on wuser’s preferences. The

recommendations need to be adjusted on real time, based on user’s
feedback.

1.2 Goals of thesis

This thesis aims to build an interactive recommender system. Some initial
recommendations are returned to users, as they have been calculated by
implementing a collaborative algorithm. Based on users’ feedback the
recommendations are updated on real time and more relevant recommended
items are displayed to users.

A demo books recommendation application has been developed. Some
online available datasets including users, books and ratings were used to fill
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application’s database and a collaborative filtering algorithm was
implemented in first place to calculate users’ recommended books. The
recommended books for every user are stored into database. User is able to
register/login in this application, and gets a list with all books and a list with
recommended books. If user views a recommended book, it is considered as
positive feedback, otherwise it is considered as negative feedback.

This thesis has the purpose of suggesting a possible implementation of
Rochio algorithm in order to build an interactive real time recommendation
system and all the required stages to develop it are described. Some testing
cases were carried out on books application in order to see how the
interactive recommendation systems reacts on different user’s actions. The
code of demo application can be found on github repository:

https://github.com/fotein1/book recommender

1.3 Thesis layout

The structure of thesis is the following:

Chapter 2 discusses the fundamental concepts of recommendation systems’
theory, including collaborative filtering algorithms, content based algorithms
etc. In chapter 3, we analyze the demo books recommendation application,
the database structure, what technologies we used to build backend/frontend
part of application, the scripts used to load the online datasets on
application’s database, the scripts used to calculate similar books and users’
recommendations and the implementation of Rochio algorithm to readjust
users’ recommendations. In chapter 4, we run some user test cases in demo
application and we analyze how recommendations changed based on user
feedback. Last but not least, the final conclusions of thesis are mentioned in

chapter 5.
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2. Recommendations - Theory background

2.1 Definition

Recommendation systems are powerful tool and techniques to analyse huge
volumes of data, especially product information and user information, and
they provide relevant suggestions based on data mining approaches. In
technical term, a recommendation engine problem is to develop a
mathematical model which can predict how a user will like an item.

2.2 Goals of recommendation system
The goals of a recommendation system should be the following:

e Relevance: A recommender system should recommend items that are
relevant to the user. Users are more likely to consume items they find
interesting.

e Novelty: Recommender systems are more helpful when the
recommended item is something that the user has not seen in the past.

e Serendipity: The recommended items are somewhat unexpected to the
user. Serendipity i1s different from novelty in that the
recommendations are surprising to the user, rather than simply
something they did not know about before. It may often be the case
that a particular user may only be consuming items of a specific type,
although a latent interest in items of other types may exist which the
user might themselves find surprising. Unlike novelty, serendipitous
methods focus on discovering such recommendations.

e Increasing recommendation diversity: Recommender systems
typically suggest a list of top-k items. When all these recommended
items are very similar, it increases the risk that the user might not like
any of these items. On the other hand, when the recommended list
contains items of different types, there is a greater chance that the user
might like at least one of these items.

2.3 Types of recommendation systems

The basic principle of recommendations is that significant dependencies

exist between user- and item-centric activity. For example, a user who is

interested in a sci fiction book is more likely to be interested in another sci

fiction book, rather than a historical book. In many cases, various categories

of items may show significant correlations, which can be leveraged to make
13



more accurate recommendations.These dependencies can be learned in a
data-driven manner from the ratings matrix, and the resulting model is used
to make predictions for target users. The larger the number of rated items
that are available for a user, the easier it is to make robust predictions about
the future behavior of the user. Different learning models can be used to
accomplish this task.The basic models of recommender systems work with
two kinds of data, which are the user-item interactions, such as ratings or
buying behaviour and the attribute information about the users and the
items like the textual profiles or relevant keywords. Methods that use the
former are referred as collaborative filtering methods, whereas methods that
use the latter are referred as content-based-recommender methods.

Collaborative filtering models

In this type of recommendation engine, filtering items from a large set of
alternatives is done collaboratively by user’s preferences. The term
“collaborative filtering” refers to the use of ratings from multiple users in a
collaborative way to predict missing ratings

The basic assumption in a collaborative filtering recommendation system is
that if two users shared the same interests as each other in the past they will
also have similar tastes in the future. There are two types of collaborative
filtering recommender systems:

1. User based collaborative filtering:

In user based collaborative filtering, recommendations are generated by
considering the preferences of similar users. If, for example user A and user
B have similar books preferences and user A read Harry Potter books,
which user B has not read yet then the idea is to recommend them to user B.

User based collaborative filtering is done in two steps:

o Identify similar users

14



e Recommend new items to an active user based on the rating given by
similar users on the items not rated by the active users

&
@AQ&TE;Q (D)

1. User based collaborative filtering diagram. Source
hitps://dzone.com/articles/recommendation-engine-model

2. Item based collaborative filtering:

In item based collaborative filtering, recommendations are based on the
similarity of items. Unlike user based collaborative filtering, we first find
similarities between items and then recommend items which are similar to
the items the active user has rated in the past. If, for example user A has
rated Harry Potter books, we can recommend to him similar books.

The recommender systems are constructed in two steps:

e C(Calculate the item similarity based on the item preferences.
e Find the top not rated similar items to rated items by user and
recommend them

buy

\d
likely buy %

2. Item based collaborative filtering diagram. Source
http://2.bp.blogspot.com/-YEEMSPYuTA/TmHGPMDYICI/AAAAAAAAAILS/8VImMO-7PyYM/s1600/P1.

png
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The advantage of collaborative filtering system is that they are simple to
implement and very accurate. However, they have their own set of
limitations, such as the cold start problem which means that collaborative
filtering systems fail to recommend to the first time users whose information
is not available in the system.

Content based recommender svstems

As the name indicates, a content based recommender system uses the
content information of the items for building the recommendation model.
The content based recommender system recommends items to users by
taking the content or features of items and user profiles. The basic idea is
that user interests can be modeled on the basis of properties (or attributes) of
the items they have rated or accessed in the past.

Knowledge based recommender systems

In these recommendation systems, users interactively specify their interests,
and the user specification is combined with domain knowledge to provide
recommendations.

Cortext-aware recommendation system

User preferences may differ with the context, such as time of day, season,
mood, place, location, and so on. A person at a different location, at a
different time with different people may need different things. A
context-aware recommender systems takes the context into account before
computing or serving recommendations. This recommender system caters
for the different needs of people differently in different contexts.

Hybrid recommender systems

This type of recommendation engines is built by combining various
recommender systems to build a more robust system. For example, by
combining collaborative filtering methods, when the model fails when new
items don’t have ratings, with the content-based systems, where the
information about the items is available, new items can be recommended.

2.4 Collaborative filtering nearest neighborhood models

The standard method of Collaborative Filtering is known as Nearest
Neighborhood algorithm. There are user-based CF and item-based CF. At
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User-based CF, we have an n x m matrix of ratings, with user u;, 1 =1, ...n
and item plJ, j=1, ...m. Now we want to predict the rating r;[ | if target user 1
did not watch/rate an item j. The process is to calculate the similarities
between target user 1 and all other users, select the top X similar users, and
take the weighted average of ratings from these X users with similarities as
weights.

Y. similarities(u;,u)ry;

_ k&
rij " number of ratings

While different people may have different baselines when giving ratings,
some people tend to give high scores generally, some are pretty strict even
though they are satisfied with items. To avoid this bias, we can subtract each
user’s average rating of all items when computing weighted average, and
add it back for target user, shown as below.

% similarities(ugu)(ry—ry)

ij i number of ratings

Two ways to calculate similarity are Pearson Correlation and Cosine
Similarity.

?U DT

\/Z(r i) X
J J

%:(ry_r,‘)(rk/_ )

7,
il
Z(rl.j—ri)2 Z(rkj—rk)2
J J

Basically, the idea is to find the most similar users to your target user
(nearest neighbors) and weight their ratings of an item as the prediction of
the rating of this item for target user. Without knowing anything about items
and users themselves, we think two users are similar when they give the
same item similar ratings . Analogously, for Item-based CF, we say two
items are similar when they received similar ratings from a same user. Then,
we will make prediction for a target user on an item by calculating weighted
average of ratings on most X similar items from this user. One key
advantage of Item-based CF is the stability which is that the ratings on a

Pearson Correlation: Sim(u;,u;) =

T

Cosine similarity: Sim(u;,u,) =

17



given item will not change significantly over time, unlike the tastes of
human beings.

Neighborhood methods have several advantages related to their simplicity
and intuitive approach. Because of the simple and intuitive approach of
these methods, they are easy to implement and debug. It is often easy to
justify why a specific item is recommended, and the interpretability of
item-based methods is particularly notable. Such justifications are often not
easily available in many of the model-based methods discussed in later
chapters. Furthermore, the recommendations are relatively stable with the
addition of new items and users. It is also possible to create incremental
approximations of these methods.

The main disadvantage of these methods is that the offline phase can
sometimes be impractical in large-scale settings. The offline phase of the
user-based method requires at least O(m?) time and space. This might
sometimes be too slow or space-intensive with desktop hardware, when m is
of the order of tens of millions. Nevertheless, the online phase of
neighborhood methods is always efficient. The other main disadvantage of
these methods is their limited coverage because of sparsity.

2.5 Relevance feedback Rochio algorithm

The idea of relevance feedback (RF) is to involve the user in the retrieval
process so as to improve the final result set. In particular, the user gives
feedback on the relevance of the results he gets. The relevance feedback is
used widely by information retrieval. The art of IR is to get the relevant
objects from a large collection of information objects (usually documents).
A user formulates a query in which he tries to communicate his information
need. The relevance feedback can be also implemented on recommendation
systems.

The Rocchio Algorithm is the classic algorithm for implementing relevance
feedback. It models a way of incorporating relevance feedback information
into the vector space. The algorithm proposes using the modified query ¢,

_ 1 1
dn = aqo *bpy 2 di-cpg L4
€D,

J

where ¢0 is the original query vector, Dr and Dnr are the set of known rel-
evant and nonrelevant documents respectively, and a, b, and ¢ are weights
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attached to each term. These control the balance between trusting the judged
document set versus the query: if we have a lot of judged documents, we
would like a higher » and c. Starting from ¢,, the new query moves you
some distance toward the centroid of the relevant documents and some
distance away from the centroid of the non relevant documents. This new
query can be used for retrieval in the standard vector space model. We can
easily leave the positive quadrant of the vector space by subtracting off a
non relevant document’s vector. In the Rocchio algorithm, negative term
weights are ignored. That is, the term weight is set to 0.

X non-relevant documents

Optimal
0 relevant documents

query
3.Optimize initial query with Rochio algorithm Source:

The relevance feedback with Rochio algorithm can be implemented on
recommendation system with the following process:

e The system returns an initial set of retrieval results.

e [f the user clicks some items from results, these items are considered
as relevant while the rest of them are considered as not relevant.

e The system computes a better representation of the information need
based on the user feedback.

e The system displays a revised set of retrieval results.

19



3. Books recommendations application

We are going to build a books recommendation application. User will be
able to register/login in this application, he will get a list with all books and
a list with recommended books. Based on user’s feedback (eg click a
recommended book) the recommended books are readjusted, implementing
the Rochio algorithm. In this chapter we are going to analyze all the parts of
application.

00k-Crossi... Book-Crossi... Create Custo... MAPOYZIALX... dione.lib.uni... Introduction... P1.png 397x... My Journ
fot4 Logout
Books
Books
Image Title Author Publisher
w Lord of the Silent: A Novel of Suspense Elizabeth Peters Avon
-
‘Whisper to Me of Love Shirlee Busbee Harper Mass Market Paperbacks

B Wuthering Heights EMILY BRONTE Bantam
;% The Stars Shine Down Sidney Sheldon Warner Books
ﬁ Toxin Robin Cook Berkley Publishing Group
g This Present Darkness Frank E. Peretti Sagebrush Bound
Eg The Mothman Prophecies John A. Keel Tor Books
2 0¥ § Meet the Stars of Buffy the Vampire Slayer Stefanie Scott Scholastic

Rush to the Altar (Twin Brides) Rebecca Winters Harlequin

All-American Girl Meg Cabot HarperTrophy

El2 3 4 5 .. 100 Next »

My Recommendations

SR

& T | == = : el A

‘he The American He Could Be Man at Work Stardust The The Harry He

jolden Subtle Gods the One (Avon (Avon Light Neil Wolves in Bonesetter's Potter and Pc

Jompass Knife (His _ Light Contemporary g the Walls Daughter the the
3 Neil Gaiman

His Dark Dark Gai Contemporary Romances) Neil Ary T Chamber of

Aaterials Matarials =iman Romannaes) o Y fan of Secrats R

4.Books recommendation applications

3.1 Technologies

In order to build the above application the following technologies have been
used:
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Django

Django is a high level Python free and open-resource framework, which
follows the model template view. It consists of an object-relational-mapper
(ORM) that mediates between data models (defined as Python classes) and a
relational database (Model), a system for processing HTTP requests with a
web templating system (View), and a regular expression based
URLdispatcher (Controller). Django also offers a lightweight and standalone
web server for development and testing and powerful and flexible toolkit for
building Web APIs(Django REST framework). We ran the backend part of
application on Django server, we created the required database tables using
django models and we also built the required RestFul web services with the
Django framework.

Redis

Redis is an open source (BSD licensed), in-memory data structure store,
used as a database, cache and message broker. It supports data structures
such as strings, hashes, lists, sets, sorted sets with range queries, bitmaps,
hyperloglogs, geospatial indexes with radius queries and streams. Redis was
used to cache user’s recommended books in order to reduce the database hits
and improve the performance of application.

Celery
Celery is an asynchronous task queue/job queue based on distributed

message passing.It is focused on real-time operation, but supports
scheduling as well.The execution units, called tasks, are executed
concurrently on a single or more worker servers using
multiprocessing.Tasks can execute asynchronously (in the background) or
synchronously (wait until ready). The celery queue was used on books
recommendations application to run on background some heavy tasks, like
readjusting user’s recommendations by implementing the Rochio algorithm.

Angular
Angular is a Typescript-based open source software engineering framework

used for building single-page web apps. Angular]JS uses the
Model-View-Controller(MVC) architecture, which is used in web app
development. This type of architecture consists of: Model — the data
structure that manages information and receives input from the controller,
View — the representation of information and Controller — responds to input
and interacts with the model. In the context of Angular]S, the model is the
framework, while the view is HTML, and the control is JavaScript. We used
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Angular framework to build the frontend part of books recommendations
applications.

Pvython libraries/Packages

We used Pandas, a Python Data Analysis Library to read, analyse and
convert csv files to datasets. NumPy, a fundamental package for scientific
computing with Python. was used in many calculations. Last but not least
the python scikit-learn package was used to implement some machine
learning algorithms.

3.2 Datasets

For the purposes of this thesis the Book Crossing dataset has been used. This
dataset has been compiled by Cai-Nicolas Ziegler in 2004, and it comprises
of three tables for users, books and ratings. Explicit ratings are expressed on
a scale from 1-10 (higher values denoting higher appreciation) and implicit
rating is expressed by 0.

e BX-Book-Ratings.csv (1149780 items)
e BX-Books.csv (271360 items)
e BX-Users.csv (278858 items)

3.3 Database structure

We have opted to work with sqlite database. We have created the relevant
django models to add the following tables in database. The django models
are located in model.py file. For example the django model to create the
Book table is the following:

class Book(models.Model):
ISBN = models.CharField(unique=True, primary key=True, max length=255)
title = models.CharField(max length=255)
author = models.CharField(max length=255)
year_of publication = models.CharField(max length=255)
publisher = models.CharField(max_length=255)
image url s = models.CharField(max_length=255)

image url m = models.CharField(max_length=255)
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image url 1= models.CharField(max length=255)

Book User_data Book_rating

ISBEN user_id User_id
title username ISBN
author password rating
yvear_of_publication
publisher
image_url_s
;m:g:_a::_[ﬂ Book_view User_Book_prediction

— USEI’_id Urser_id

ISBN ISEN
prediction

‘ Book_similarities ‘

ISBN
ISBN_similar

5.Database structure

Book: db table to store books data

User data: db table to store user data

Book rating; db table to store books ratings of users

Book view: db table to store books user has viewed

User Book prediction: db table to store the predicted ratings for books user
has not rated yet

Book similarities: db table to store the similar books for every book

3.4 ETL(Extract Transform Load) process

After installing django framework, setting up django server and creating the
above db tables we need to fill the local database with the online datasets.
This process 1s known as ETL. ETL i1s short for extract, transform, load,
three database functions that are combined into one tool to pull data out of
one database(csv files in our case) and place it into another database.

e Extract is the process of reading data from a database. In this stage,
the data is collected, often from multiple and different types of
sources.

e Transform is the process of converting the extracted data from its
previous form into the form it needs to be in so that it can be placed
into another database. Transformation occurs by using rules or lookup
tables or by combining the data with other data.
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e Load is the process of writing the data into the target database.

To implement the ETL process we created some django scripts. These
scripts are located in folder management/commands of django project. At
these scripts we load the csv files, we read and convert them to datasets
using pandas library commands and we store the data at the relevant
database tables. We can execute these scripts through command line:

load books:
With this script we load books in our database table books. The script
load_books.py has the following structure:

import pandas as pd

import numpy as np

from django.core.management.base import BaseCommand, CommandError
from django.contrib.auth.models import User

from books.models import Book

class Command(BaseCommand):
def handle(self, *args, **options):
books = pd.read csv('data/BX-Books.csv', sep=";
encoding="latin-1")
books.columns = ['ISBN', 'bookTitle', 'bookAuthor', 'yearOfPublication', 'publisher’,
'imageUrlS', 'imageUrIM', 'imageUrlL'"]
books.apply(self.save book from row, axis=1)

!

, error_bad lines=False,

def save book from row(self, book row):
book = Book()
book.ISBN = book row['ISBN']
book.title = book row['bookTitle']
book.author = book row|['bookAuthor']
book.year of publication = book row['yearOfPublication']
book.publisher = book row['publisher']
book.image url s =book row['imageUrlS']
book.image url m = book row['imageUrIM']
book.image url 1=book row['imageUrlL']
book.save()

We execute command python manage.py load books to run the above
script.

load users:
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In a similar way we load the users from users dataset on user data database
table with the script load users.py.
We execute command python manage.py load users to run the script.

load_ratings:
In a similar way we load the ratings from rating datasets on book rating

database table with the script load_ratings.py
We execute command python manage.py load ratingss to run the script.

Load book_similarites:

To fill the user book similarities database table, we will need to calculate
the similar books for every book. We decided to implement a collaborative
item based filtering recommendation systems. The reason was that in our
application the items(books) won't be changed so often. On the other hand
new users could be registered and use the books recommendation system.
As a result, it make more sense to us to calculate offline the similarities
between books, store them in our database and access them when it is
needed. Furthermore, generally item based algorithm has a better
performance.

In order to find out the similar books, we used the item based
neighbourhood models, we reduced the dataset size, taking into account
users who have rated at least 100 books and books who have at least 100
ratings. Then we generated a user-term matrix based on rating table.
Similarities need to be computed between the columns of rating matrix.

Before computing the similarities between the columns, each row of the
ratings matrix is centered to a mean of zero. As in the case of user-based
ratings, the average rating of each item in the ratings matrix is subtracted
from each rating to create a mean-centered matrix.

This similarity is referred to as the adjusted cosine similarity because the
ratings are mean- centered before computing the similarity value. We
calculate the similar books and store them in our database with the following
functions:

import pandas as pd

import numpy as np

from django.core.management.base import BaseCommand, CommandError
from django.contrib.auth.models import User

from books.models import Book similarities

import sklearn.metrics as metrics

from sklearn.neighbors import NearestNeighbors
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from scipy.spatial.distance import correlation, cosine
from sklearn.metrics import pairwise distances

from sklearn.metrics import mean_squared_error
from math import sqrt

import sys, 0s

from contextlib import contextmanager

class Command(BaseCommand):
metric = 'cosine’'

k=6
sample limit = 10000
user id =183

def handle(self, *args, **options):
ratings = pd.read_csv('data/BX-Book-Ratings.csv', sep=";', error_bad_lines=False,
encoding="latin-1")
ratings.columns = ['userID', 'ISBN', 'bookRating']

#Reduce the dataset size, take into account users who have rated at least 100 books
#and books which have at least 100 ratings
counts1 = ratings['userID'].value counts()
ratings_explicit = ratings[ratings['userID'].isin(counts1[counts] >= 100].index)]
counts = ratings_explicit['bookRating'].value counts
ratings_explicit = ratings_explicit[ratings explicit['bookRating'].isin(counts[counts
>=100].index)]

#Generate a user-item ratings matrix from the ratings table.
ratings_matrix = ratings_explicit.pivot(index="userID', columns="ISBN',
values='bookRating")
for col in ratings_matrix:
ratings_matrix[col].fillna(0, inplace=True)
self.calculateSimilarBooks(ratings matrix)

nman

Calculate similarities of books
(@param obj self The pointer of class
def calculateSimilarBooks(self, ratings matrix):
counter =0
for 1 in range(ratings matrix.shape[1]):
item_1id = str(ratings_matrix.columns][i])
similarities, indices= self.findksimilaritems(item_1id, ratings matrix)
for 1 in range(0, len(indices.flatten())):
if (similarities[i] != 0):
index = indices.flatten()[i]
similar item id = str(ratings matrix.columns[index])
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self.saveSimilarBooks(item id,similar item_id)
counter = counter + 1
if (counter > self.sample_limit):

break

nmn

Find similarities between items
(@param obj self The pointer of class
@param int item_1d The id of item
(@param arr ratings_matrix The matrix of ratings
mnn
def findksimilaritems(self, item_id, ratings matrix):
similarities=[]
indices=[ ]
ratings = ratings matrix. T
loc = ratings.index.get loc(item_id)
model knn = NearestNeighbors(metric = 'cosine', algorithm = 'brute')
model knn.fit(ratings)
distances, indices = model knn.kneighbors(ratings.iloc[loc, :].values.reshape(1, -1),
n_neighbors = self.k + 1)
similarities = 1-distances.flatten()
return similarities,indices

nmnn

Save user book predictions into db

(@param obj self  The pointer of class
@param int item_id The id of item
(@param int similar_id The similar id

def saveSimilarBooks(self, item _id, similar id):
book similarities = Book similarities()
book similarities.ISBN = item_id
book similarities. ISBN_similar = similar_id
book similarities.save()

We execute command python manage.py calculate similar items to run the
above script.

Load user books ratings predictions

The basic idea is to leverage the user’s own ratings on similar items in the

final step of making the prediction. For example, in a book recommendation

system, the item peer group will typically be similar books. The ratings

history of the same user on such books is a very reliable predictor of the
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interests of that user. To predict the user’s ratings for the books, we calculate
the similar books as above. This calculation is a weighted sum. A weight
function is a mathematical device used when performing a sum, integral, or
average to give some elements more "weight" or influence on the result than
other elements in the same set. The result of this application of a weight
function is a weighted sum or weighted mean. The weighted mean is defined
as:

2 flayw(a)

a€A4

2 wa)

a€4

This form of recommendation is analogous to "people who rate item X
highly, like you, also tend to rate item Y highly, and you haven't rated item
Y yet, so you should try it". We calculate the user’s predictions as
following:

class Command(BaseCommand):

metric = 'cosine'

k=6
sample_limit = 10000
user_id = 183

def handle(self, *args, **options):

users = User data.objects.all()
for user in users:
self.recommendltem(user|[‘user_id’], rating_matrix)

mnmn

Predict user's rating for an item

(@param obj self The pointer of class
@param int user_id The id of user
(@param int item_id The id of item
(@param arr ratings matrix A matrix of ratings
i
def recommendItem(self, user_id, ratings_matrix):
if (user_id not in ratings matrix.index.values):
print('user is should be a valid integer')
return

else:
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counter =0
for i in range(ratings matrix.shape[1]):
if (ratings_matrix[str(ratings_matrix.columnsl[i])][user_id] !=0):
item_id = str(ratings matrix.columns[i])
prediction = self.predict_itembased(user_id, item_id , ratings_matrix)

self.save user book prediction(user id, item_id, prediction)

counter = counter + 1
if (counter > self.sample limit):
break

nmn

Predict user's rating for an item

(@param obj self The pointer of class
(@param int user_id The id of user
@param int item_id The id of item
(@param arr ratings_matrix A matrix of ratings
i
def predict itembased(self, user id, item_1id, ratings matrix):
prediction = wtd_sum =0
user_loc = ratings_matrix.index.get loc(user_id)
item_loc = ratings matrix.columns.get loc(item_id)
similarities, indices= self.findksimilaritems(item_id, ratings matrix)
sum_wt = np.sum(similarities) - 1
product = 1
for i in range(0, len(indices.flatten())):
if indices.flatten()[i] == item_loc:
continu
else:
product = ratings matrix.iloc[user loc, indices.flatten()[i]] * (similarities[i])
wtd_sum = wtd_sum + product

prediction = int(round(wtd_sum/sum_wt))
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if prediction <= 0:
prediction = 1
elif prediction > 10:
prediction = 10

return prediction

We execute command python manage.py load users books predictions to
run the script.

3.5 RestFul web services

We have built with Django API framework the required RestFul web
services to serve client and return the required data. RESTful Web Services
are basically REST Architecture based Web Services. In REST Architecture
everything is a resource and a resource is accessed by a common interface
using HTTP standard methods. Following four HTTP methods are
commonly used in REST based architecture.

GET — Provides a read only access to a resource.

POST — Used to create a new resource.

DELETE — Used to remove a resource.

PUT — Used to update a existing resource or create a new resource.
PATCH - Used for a partial update of a resource.

A RESTful web service usually defines a URI(Uniform Resource Identifier)
and provides resource representation such as JSON. Clients just make a
HTTP request at the specified URI, with the required headers and payload
body and get the response.RESTful web services are lightweight, highly
scalable and maintainable and are very commonly used to create APIs for
web-based applications. For the books recommendation application we
created the required web services for the following functionalities:

Register user

Login user

Get book list

Get recommended books
Rate a book
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e View a book

All the web services are running on Django server and they are accessible at
base url http://127.0.0.1:8000.

The details of every web service are mentioned at the following table:

1. Restful web services definition

Functionality | URL method Request body | Response

login user /api/sessions POST { status_code:
. L 201
username : {

‘password’: ’ user id’:”’
} }
Logout user /api/sessions DELETE { status code:
_ 204
user_id’:”’
}

Register user /api/accounts POST { status code:
. L 201
username :

‘password’: ’
}
Get books list | /api/books?page=1 | GET status code:
200
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http://127.0.0.1:8000/api/books-recommendations/users/507

[

'TSBN'": ©°,
'title': <7,
'author": *’,

'yvear_of publicati

[

on": “’,

'publisher’: ’,
'image url s": “,
'image url m': ©’,

'image url I

|

Get
recommended
books

/api/books-recomm
endations/users/1

GET

status code;
200

[{
'ISBN": ©°,
'title": <7,

'author': °,

'year_of publicati

1.6

on" ,

'publisher': *’,
'image_url s" °,
'image _url m': ©’,

'image_url 1" ¢

H|

32




Rate a book /api/books-rates POST { status code:
, 201
user_id: ©’,
ISBN: <, ¢
) user id: ’,
rating: -
ISBN: ©,
H
rating: ©’
3
View a book /api/books-views POST { status code
, 201
‘user_id’: ©,
‘ISBN’: ©

j
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Every web service in Django consists of url definition at url.py, the
controller function at view.py, the model function at model.py and a
serializer object defined at serializer.py, used mainly by GET methods
where a json object with resource’s details is returned to user. For example
the login web service is built widh django framework as following:

// urls.py
sessions_urls = [
url(r'""$', sessionAPIView.as_view(), name='"sessions')

]

urlpatterns = [
url(r'*sessions', include(sessions_urls)),

]

/] Views.py
class sessionAPIView(APIView):
def post(self, request):
body unicode = request.body.decode(‘utf-8')
body = json.loads(request.body)
username = body['username']
password = body|['password']

try:

user = User_data.objects.get(username=username, password=password)
except:

return HttpResponseNotFound( "User not found")

request.session['member_id'] = user.user_id

return Response({'user_id': user.user id})

3.6 Frontend client

The frontend part of books recommendation application was built with
angular framework. Angular is a platform and framework for building client
applications in HTML and TypeScript. Angular is written in TypeScript. It
implements core and optional functionality as a set of TypeScript libraries
that are imported into app. An Angular app is defined by a set of
NgModules, the basic building blocks. An app always has at least a root
module that enables bootstrapping, and typically has many more feature
modules.

The following modules have been created for the books recommendation

app:

® nav-menu
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This module is responsible for the navigation menu. It consists of
nav-menu.css file, nav-menu.html template and nav-menu.ts typescript file
where the navigation menu component is defined. This component uses the
login/logout/register functionalities from session service.

REGISTER

6. Login/Register view of books recommendations app
® books

This module is responsible for the books list. It consists of books.css file,
books.html template and books.ts typescript file where the books component
is defined. This component calls the get list of books functionality of books
service.

aaaaa

nnnnn

Rush to the Altar (Twin Brides) Rebecca Winter re Harlequin

- Lord of the Silent: A Novel of Suspense Elizabeth Peters. Avon
WhispertoMeoftove ~ Shirlee Busbee Harper Mass Market Paperbacks
F Wauthering Heights EMILY BRONTE Bantam
,@. The Stars Shine Down Sidney Sheidon Warner Books
i Toxin Robin Cook Berkley Publishing Group
5 This Present Darkness Frank E. Peretti ‘Sagebrush Bound
E “The Mothman Prophecies John A. Keel Tor Books
Meet the Stars of Buffy the Vampire Slayer Stefanie Scott Scholastic

All-American Girl Meg Cabot HarperTrophy

0
LAl

BNz s 45 .. 100 Next »

7. View of books list
e book-detail
This module is responsible for the detailed view of book. It consists of
book-detail.css, book-detail.html and book-detail.ts where the book-details

component is defined. This component calls the functionalities get details of
book, view book of books service and rate book from rate book service .
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Books

TOXIN Details

8. View of books details
e book-recommendations

This module is responsible for the list of recommended books. It consists of
book-recommendations.css, book-recommendations.html and
book-recommendations.ts where the book-details component is defined.
This component calls the functionalities get recommended books of
recommendations service.

T Meet the Stars of Buffy the Vampire Slayer Stefanie Scott Scholastic
Rush to the Altar (Twin Brides) Rebecca Winters Harlequin

All-American Girl

Meg Cabot HarperTrophy

The Te of Guitty a
Piglet sin
TAMI
HOAG

Benjamin
Hoff

PHILIP
PULLMAN

9. View of recommendations list

The frontend part of books recommendation app is running on npm server at
url: http://localhost:4200/books

3.7 Project structure

The following images describe the folder structure of application’s backend and
frontend part.
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http://localhost:4200/books

BOOK_RECOMMENDER
4 book_recommender
» __pycache_
—init_.py ‘;az‘;okfdetail
celery.py > books
settings.py
urls.py
wsgi.py
4 books
» __pycache__
b data
4 management
4 commands
» __pycache__
b data
calculate_similar_items.py
load_books.1.py
load_books.py
load_ratings.py
load_users_books_predictions.py
load_users.py

b migrations
__init__.py
admin.py
apps.py
models.py

recommendationLib.py

10. Project structure

3.8 Design of recommendation system

Get recommendations

In this stage we have stored into our database the users’ predicted ratings for
books they have not rated yet. As mentioned earlier, a web service has been
created to return the recommendations to user. At views.py, the controller
function of web service is defined. We store in redis cache for every user a
flag which expires every hour and the recommendations for this user. If the
flag in cache has not expired yet, the cached recommendations are returned
to user if exist. Otherwise, the user’s recommendations are extracted again
from database.

/] Views.py

class userBookRecommendationsAPIView(APIView):
def get(self, request, user_id, *args, **kwargs):
recommendations = []
recommendation_expire_cache name = 'recommendation_expire '+ user_id
reocmmendations_user_cache name = 'recommendations '+ user id

recommendations = cache.get(reocmmendations_user cache name)
if recommendation_expire cache name in cache and reocmmendations user cache name in cache and
recommendations:
recommendations = cache.get(reocmmendations user cache name)
else:
recommendations = []
recommendations = getUserPredictions(user id, recommendations, False)

try:
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find recommended _items.delay(user id, recommendations)
except:
return HttpResponseNotFound("Recommendations not found")

return Response(recommendations)

if not recommendations:
recommendations = getUserPredictions(user_id, recommendations, True)

return Response(recommendations)

All the functions used by the recommendation system are included in a
library file recommendationLib.py. If predictions for the logged in user are
stored into our db, the recommended books are returned to him, as they have
been calculated by the above scripts. The results are returned ordered by
prediction value. If there are not predictions for the logged in user into
database, the top rated books are returned as recommendations.

// recommendationLib.py

nmn

Get user predictions

@param int user_id The id of user
@param int recommendations An array with recommendations
@param boo get default  True to get the default recommended items

@return arr An array with predictions

nnn

def getUserPredictions(user_id, recommendations, get default)

prediction = User Book prediction.objects.filter(user id=user id).order by('-prediction’)
if not predictions or get default == True:
try:
ratings = Book rating.objects.values('ISBN').annotate(score =
Sum('rating')).order_by("-score")[:100]
for rating in ratings:
result = rating
try:
book = Book.objects.get(ISBN=result['ISBN'])
result['book'] = bookSerializer(book, many=False).data
except:
result['book'] ="

recommendations.append(result)
except:
return HttpResponseNotFound("Recommendations not found")

if predictions and get default == False:
for prediction in predictions:
result = bookUserPredictionSerializer(prediction, many=False).data
try:
book = Book.objects.get(ISBN=result['ISBN'])
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result['book'] = bookSerializer(book, many=False).data
except:
result['book'] ="

recommendations.append(result)
return recommendations

User feedback

As we can see from the code of above controller function, when the cached
flag for the logged in user expires after an hour, the user’s predictions are
extracted again from database while a task is triggered and added on celery
queue to adjust user’s recommendations. Based on user’s feedback(books
which user has viewed) the predictions are adjusted and the updated

recommended items are set in cache. The celery task is defined at task.py
file:

// task.py

(@shared_task

def find recommended _items(user_id, recommendations):
recommendation_expire cache name = recommendation_expire '+ user id
reocmmendations_user_cache name = 'recommendations '+ user i
recommendations = getUserPredictions(user_id, recommendations, False)
book views = getUserBookViews(user_id)
adjustPredictionsByUserFeedback(recommendations, book views, user_id)
recommendations = getUserPredictions(user id, recommendations, False)
cache.set(recommendation_expire _cache name, True, timeout=10)

cache.set(reocmmendations_user cache name, recommendations, timeout=10)

In order to adjust the recommendations for the logged in user, we get the
books user has viewed, by calling the relevant function defined at
recommendationLib.py.

// recommendationLib.py
"”Get user book views
@param int user id The id of user

@return arr An array with book views
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nmn

def getUserBookViews(user id):
book views =[]
try:
user_book views = Book view.objects.filter(user_id=user_id)
except:
return HttpResponseNotFound("User has not viewed books yet")
if user_book views:
for view in user_book views
result = bookViewSerializer(view, many=False).data
book views.append(result['ISBN']
return book views

return HttpResponseNotFound("User has not viewed books yet")

Afterwards, we find the similar books of every recommended book viewed
by user. We also find the similar books of recommended books which have
not been viewed by user.

o
Adjust predictions based on user feedback
(@param arr recommendations An array with recommendations
@param arr book views  An array with book views
@param int user_id The user id
o
def adjustPredictionsByUserFeedback(recommendations, book views, user_id):
ISBN positive similar_ids =[]
ISBN negative similar_ids =[]
for recommendation in recommendations:

if recommendation['ISBN'] in book views:
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try:
similar_books = Book_similarities.objects.filter(ISBN=recommendation['ISBN')
for book in similar_books:
if book['ISBN_similar'] not in ISBN_positive similar_ids:
ISBN_positive similar_ids.append(book['ISBN_simila
ISBN positive similar_ids.append(recommendation['ISBN'])
except:
ISBN _positive_similar_ids.append(recommendation['ISBN'])
if recommendation['ISBN'] not in book views:
try:
similar_books = Book_similarities.objects.filter(ISBN=recommendation['ISBN'])
for book in similar_books:
book = bookSimilaritiesSerializer(book, many=False).data
if book['ISBN_similar'] not in ISBN_negative similar ids:
ISBN negative similar_ids.append(book['ISBN _similar'])
ISBN negative similar_ids.append(recommendation['ISBN'])
except:
ISBN negative similar_ids.append(recommendation['ISBN']
insert_predictions = False
user_predictions = User_Book_prediction.objects.filter(user_id=user id).order by('-prediction")[:37]
if not user_predictions:
insert_predictions = True
if ISBN_positive similar_ids:
savePositivePredictionsOfRecommendedItems(ISBN_positive similar ids, user id, user predictions)
if ISBN negative similar ids:

saveNegativePredictionsOfRecommendedItems(ISBN negative similar ids, user id,
user_predictions)

After having separated books into ISBN positive similar ids and
ISBN negative similar ids arrays, we call the relevant functions to update
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their prediction value. When user clicks and views a recommended book, it
i1s considered as positive feedback, while if user has not clicked the
recommended book, it is considered as negative feedback. We use the
algorithm Rochio to readjust the recommendations. We are having a vector
with the original predictions (books and predicted ratings). We have stored
in database the books every user has viewed and we also store the similar
books as they have been calculated by the above scripts. Taking into account
the books user has viewed and also their similar books we calculate the new
predicted rating as following:

0.75%(prediction,+.... + predictiony,).
n

positive_prediction = intitial_prediction +

0.15%(prediction,+.... + predictiony,).
n

negative_prediction = intitial_prediction —

The rochio weight 1s calculated with the following function in
recommendationLib.py:

nn

Calculate weight = rochio_weight*(sum_of predictions/predicted itemss
(@param arr recommendations An array with recommendations

@param arr book views  An array with book views

nmn

def calculateWeight(rochio_weight, predicted items_counter, predictions_sum):

return rochio_weight*predictions_sum/predicted items_counter

nnn

If user has predictions stored into database, we calculate their new
prediction value with the above function and update their value into
database. If user does not have any initial prediction stored into database,
we get the books viewed by user and their similar books and we insert them
into user prediction database with a prediction equal with ‘1°. Books not
viewed by user and their similar are inserted itno db with a prediction value
‘0’. The function to update the user’s predictions with the positive weight is
the following:
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Adjust the predicted items with a positive weigh
@param arr ISBN_positive similar_ids An array with positive similar ids
@param int user_id The user id

(@param boo insert predictions True, to insert the predictions into db, false to update the existed
predictions

def savePositivePredictionsOfRecommendedItems(ISBN_positive _similar_ids, user_id,
insert predictions):

predicted items_counter = 0
predictions_sum =0
if insert_predictions is False:
predictions = User Book prediction.objects.filter(ISBN _ in=ISBN_positive similar ids)
if predictions:
for prediction in predictions:
prediction = bookUserPredictionSerializer(prediction, many=False).data
predicted items_counter = predicted items_counter + 1

predictions_sum = predictions_sum + prediction['prediction']

positive_weigh=calculateWeight(ROCHIO POSITIVE WEIGHT,predicted items_counter,
predictions_sum)

if positive weight < 0 or positive weight > 10:
positive_weight = 10
User Book prediction.objects.filter(ISBN__ in=ISBN_positive_similar ids).update(prediction=F('predictio
n') + abs(positive_weight))
if insert predictions is True::
for item_id in ISBN_positive similar_ids:
positive_weight = 1
user_book predicition = User Book prediction()

user_book predicition.user_id = user_id
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user_book predicition.ISBN = item id
user_book predicition.prediction = positive weight

user_book predicition.save()

We follow a similar process to update the prediction value of items with the

negative value:

nmn

Adjust the predicted items with a negtive weight

(@param arr ISBN negative similar ids An array with negative similar ids

@param int user_id The user id

@param boo insert_predictions Flag to insert predictions
def saveNegativePredictionsOfRecommendedItems(ISBN _negative similar_ids,
insert_predictions):

predicted items_counter = 0
predictions_sum =0

if insert predictions is False:

predictions = User Book prediction.objects.filter(ISBN__ in=ISBN_negative similar_ids)

if predictions:
for prediction in predictions:
prediction = bookUserPredictionSerializer(prediction, many=False).data
predicted items counter = predicted items counter + 1

predictions_sum = predictions_sum + prediction['prediction']

user_id,

negative_ weight = calculateWeight(ROCHIO NEGATIVE WEIGHT, predicted items counter,

predictions_sum)
if negative_weight < 0 or negative_weight > 10:

negative weight =

User Book prediction.objects.filter(ISBN _ in=ISBN negative similar ids).update(prediction=F('predicti

on') - abs(negative weight))
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if insert_predictions is True:
for item_id in ISBN negative similar ids:
positive_weight =0
user_book predicition = User_Book prediction()
user_book predicition.user_id = user_id
user _book predicition.ISBN = item_id
user book predicition.prediction = positive weight

user_book_predicition.save()

After one hour, we repeat the above process and we adjust again users’
predictions. The following diagrams explains the whole process:

DB table:

books details Books views ws books,_ views

user visits the books details

Y

>

POST /api/books-views

Y

Insert book viewed by user in db

A

User clicks a book
from recommedations Response
list

11. Workflow when user visits the details of book view.
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books list

user visits the books list

>

e

GET /api/recommendations

e

User visits books list

Recommendations

i)
in cache

Return the recommendated books

if flag has not expired and there

recommendations_expire

Celery
queue

DE: table
User_Book_Prediction

1.Get user predictions from db or the

top rated books

Return the recommendated books to user

are recommendatior

frcache
return the recommerjded books

|

Update the results in cache
so the updated results will be returned to user the
next user vistis the books list

bool

2.Trigger a background task and

stack it on celery queug,This tasks
adjust the recommedations based on
s views implementing the rochio algorithm

T

e T

12. Workflow when user visits the books list

4. Test cases of books recommendation system

After developing the books recommendation system, we carried out some
test cases scenarios to see how the recommendation system reacts on
different user’s action:

1st scenario:Existed user with user id=11676(having data for him into

database) clicks some recommended items

When the user signs in books recommendation application, he gets a list
with the initial recommendations, as they have been calculated with
collaborative filtering algorithm.

2. st test case:

table with initial recommendations

Rank of ISBN Title Author

recommended

items

1 0001944711 Count Duckula: Maureen Spurgeon
Vampire Vacation

2 0002005018 Clara Calla Richard Bruce
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Wright

3 0002118580 Audacity to believe | Sheila Cassidy
4 0002176432 The Financial post | Eva Inne
selects the 100 best
companies to work
for in Canada
5 0002184974 Nigel Mansell My | Nigel Mansell
Autobiograph
6 0002250810 Santa Speaks: The | Michael Patrick
Wit and Wisdom of | Collins
Santas Across the
Nation
7 0002251485 Love Isn't Easy Charles M. Schulz
(Passionate
Peanuts)
8 0002255014 Leaning, leaning Frances Itani
over water: A novel
in ten stories
9 0002258560 Is Shane Tim Bradford
MacGowan Still
Alive?
10 000225929X MARBLE HEART | Gretta Mulrooney
11 0002558122 Angelas Ashes Frank Mccourt
12 0006131409 The Trojan horse Hammond Innes
13 0006143199 SNOW TIGER Bagley Desmond
14 0006171982 Sharpes Honor Bernard Cornwell
15 0006176747 Medusa Hammond Innes
16 0006177492 Home Run Gerald Seymour
17 0006363121 The Picnic and Gerald Durrell
Suchlike
Pandemonium
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18 0006366023 Drawing On the Betty Edwards
Right Side of the
Brain

19 0006379702 My \\Star Trek\\\" | William Shatner
Memories\"

20 000648302X Before and After Matthew Thomas

21 0006492347 Insights from the Charles Schulz
Outfield (Peanuts at
Work &amp; Play)

22 0006498493 Rogue Lion Safaris | Simon Barnes

23 0006512062 Trials of Tiffany Isabel Wolff
Trott

24 0006512208 Lion Time Robert Silverberg
Collected Stories 6

25 0006543545 The bookshop Penelope Fitzgerald

26 0006546684 Postcards E Annie Proulx

27 0006547834 Miss Smillas Peter Hoeg
Feeling for Snow

28 0006550789 253 Geoff Ryman

29 0006551076 Ocean In lowa Peter Hedges

30 0006552390 The Kindest Use a | Vanessa Jones
Knife

31 0006729835 The Callender Cynthia Voight
Papers

32 0006928323 A Figure in Hiding | Franklin W. Dixon
(The Hardy Boys)

33 0007106572 Guilty Creatures Sue Welfar

34 0007107900 street bible, the Robert Lacey

35 0007110928 Billy Pamela Stephenso

36 0007118465 Peacocks Dancing | Sharon Maas

37 0007139411 The Crash of Patrick Ness
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Hennington

Rank of recommended items

Rank
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13.1st test case: Diagram with initial recommendations for user
User clicks the following books from recommendations list:
3. Ist test case: table with viewed books
ISBN Title Author
0002176432 The Financial post selects | Eva Inne
the 100 best companies to
work for in Canada
0002005018 Clara Calla Richard Bruce Wright
0002184974 Nigel Mansell My Nigel Mansell
Autobiograph
0002250810 Santa Speaks: The Wit and | Michael Patrick Collins
Wisdom of Santas Across
the Nation
0002258560 Is Shane MacGowan Still | Tim Bradford
Alive?
000225929X MARBLE HEART Gretta Mulrooney
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After an hour, we take into consideration the books user has viewed and we
adjust the recommended books, implementing the rochio algorithm.

4. Ist test case: table with adjusted recommendations with rochio

Rank of ISBN Title Author
recommended
items
1 0002005018 Clara Calla Richard Bruce
Wright
2 0002176432 The Financial post | Eva Inne
selects the 100 best
companies to work
for in Canada
3 0002184974 Nigel Mansell My | Nigel Mansell
Autobiograph
4 0002250810 Santa Speaks: The | Michael Patrick
Wit and Wisdom of | Collins
Santas Across the
Nation
5 0002258560 Is Shane Tim Bradford
MacGowan Still
Alive?
6 000225929X MARBLE HEART | Gretta Mulrooney
7 0030491916 And That's My G.B. Trudeau
Final Offer! (His A
Doonesbury book)
8 0030686784 Sheilah B Bruce
The radish day
jubile
9 0043720455 Outrageous fortune | Susan Kelly
10 0060002492 Amazonia James Rollins
11 006000438X The Death of Manil Suri
Vishnu: A Novel
12 006000469X Engaged to Die : A | Carolyn Har

Death on Demand
Mystery (Hart,
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Carolyn G)

13

0060005424

Lirael: Daughter of
the Clayr

Garth Nix

14

0060005521

Nicola and the
Viscount (An Avon
True Romance)

Meg Cabot

15

006000553X

Victoria and the
Rogue (An Avon
True Romance)

Meg Cabot

16

0060007788

Finding Fish: A
Memoi

Antwone Q. Fisher

17

0060008032

Angels

Marian Keye

18

0060008369

The Shadows of
Power

James W. Huston

19

0060009012

The Lost Son: A
Life in Pursuit of
Justice

Bernard B. Keri

20

006000942X

How to Read
Literature Like a
Professor : A
Lively and
Entertaining Guide
to Reading
Between the Lines

Thomas C. Foster

21

0060012781

A Cook's Tour :
Global Adventures
in Extreme
Cuisines

Anthony Bourdain

22

0060013508

Gunsights

Elmore Leonard

23

0060014040

My Stroke of Luc

Kirk Douglas

24

0060083263

Sleeping Beauty
(Margolin, Phillip)

Phillip Margoli

25

0060083956

Mr. Paradise: A
Novel

Elmore Leonard
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26 0060085452 Boy Meets Girl Meg Cabo

27 0060086637 Barracuda 945 Patrick Robinso

28 0060086661 Lily Dale: The True | Christine Wicker
Story of the Town
that talks to the
Dead

29 0060090367 Watermelon Marian Keyes

30 0060090626 The Schooling of Janis Owen
Claybird Catts

31 0060092653 Scandalous Again | Christina Dodd

32 0060093579 Wildfire at Mary Stewart
Midnight

33 0060104910 The Chaneysville David Bradley
Incident: A Novel

34 0060155027 he World: An Geoffrey Parker
Illustrated History

35 0060156961 Guillaume John Hulme
Chequespierre and
the Oise Salon: An
Anthology

36 0060159081 Oscar and Lucind Peter Carey

37 0060159383 A Thief of Time: A | Tony Hillerman

Novel (Harper
Novel of Suspense)
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Rank of recommended items
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14.1st test case: Diagram with adjusted recommendations for user

As we can see from the above table and diagrams, the clicked
recommended books and their similar books are ranked higher on the list,
such as the “Clara Calla”, “The Financial post selects the 100 best
companies to work for in Canada”, “The Financial post selects the 100 best
companies to work for in Canada”, “Santa Speaks: The Wit and Wisdom of
Santas Across the Nation” etc.. On the other hand, the previous
recommended books which have not been clicked by the user, they have
been replaced by new recommendations as a negative wight has been added
on their initial prediction value. For example some new books are appeared
on recommendations list like Outrageous fortune, Amazon etc.
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rochio.

2nd_scenario:Existed user with userid=276680 (having data for him into

database) clicks all recommended items

When user signs in books recommendation application, he gets a list with
the initial recommendations, as they have been calculated with collaborative

filtering algorithm.

5. 2nd test case: table with initial recommendations

Rank of ISBN Title Author

recommended

items

1 0020236107 FUNERAL Cathie Pelletier
MAKERS

2 0060934905 Middle Age: A Joyce Carol Oates
Romance

3 0312280696 The Year of Jubilo : | Howard Bahr
A Novel of the
Civil War

4 0316095575 The Evidence Robb Forman Dew
Against Her: A
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Novel

5 0375401466 Old School TOBIAS WOLF

6 0375701524 The Hundred Secret | Amy Tan
Senses

7 0385307756 The Copper Beech | Maeve Binchy

8 038572117X In a Dark Wood: A | Amanda Craig
Novel

9 0425169626 Walking the Dead | Scott Spence

10 0452281296 In the Cut Susanna Moore

11 0670880973 Cordelia Van Reid
Underwood: Or the
Marvelous
Beginnings of the
Moosepath League

12 0671516949 A MARRIAGE Cathie Pelletier
MADE AT
WOODSTOCK

13 0671724479 ONCE UPON A Cathie Pelletier
TIME ON THE
BANKS : ONCE
UPON A TIME
ON THE BANKS

14 0671883925 LOVE (Virago Elizabeth Von
Modern Classics) arnim

15 089587167X Something Blue Jean Christopher

Spaugh

16 1402201435 The One True Sarah Beth Martin
Ocean

17 1573221562 Affinity Sarah Water

18 1888173408 Fairy Tale Alice Thomas Ellis
(Common Reader
Editions)

19 0140282653 Jacob's Ladder: A | Donald McCaig
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Story of Virginia
During the War

20

0316196452

Talking to the Dead
: A Novel Tag:
Winner of the
Orange Prize

Helen Dunmor

21

0449001016

Object Lessons
(Ballantine
Reader's Circle)

Anna Quindlen

22

067179387X

The WEIGHT OF
WINTER

Cathie Pelletier

23

0743203232

The Nature of
Water and Air

Regina McBride

24

0803727356

The River Between
Us

Richard Peck

25

0805073337

What Was She
Thinking?: Notes
on a Scandal: A
Novel

Zoe Heller

26

1888173564

Parnassus on
Wheels (Common
Reader Editions)

Christopher Morley

27

0449911217

In the Beauty of the
Lilies

John Updike

28

0345439481

The High Flyer: A
Novel (Ballantine
Reader's Circle)

Susan Howatch

29

0684849720

The Quilter's
Apprentice : A
Novel

Jennifer Chiaverini

30

0140264795

Rosie: A Novel

Anne Lamott

31

0385503857

Oryx and Crake

Margaret Atwood

32

0743418735

Perfect Match: A
Novel

Jodi Picoult

33

0060176784

Saying Grace: A

Beth Gutcheon

56




Novel

34 0060283130 The Reptile Room | Lemony Snicket
(A Series of
Unfortunate Events,
Book 2)

35 0060925493 Feather Crowns Bobbie Ann Maso

36 0066214750 Twelve Times Jacquelyn Mitchard
Blessed (Mitchard,
Jacqueline)

37 0156001942 Winter's Tale Mark Helprin

Rank of recommended items
B Rank
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16. 2nd test case: Diagram with initial recommendations

User clicks all the recommended items and after an hour, the adjusted
recommendations are returned to him. We get the following results:

6. 2nd test case: table with adjusted recommendations

Rank of ISBN Title Author
recommended
items
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1 0020236107 FUNERAL Cathie Pelletier
MAKERS
2 0060934905 Middle Age: A Joyce Carol Oates
Romance
3 0312280696 The Year of Jubilo : | Howard Bahr
A Novel of the
Civil War
4 0316095575 The Evidence Robb Forman Dew
Against Her: A
Novel
5 0375401466 Old School TOBIAS WOLF
6 0375701524 The Hundred Secret | Amy Tan
Senses
7 0385307756 The Copper Beech | Maeve Binchy
8 038572117X In a Dark Wood: A | Amanda Craig
Novel
9 0425169626 Walking the Dead | Scott Spence
10 0452281296 In the Cut Susanna Moore
11 0670880973 Cordelia Van Reid
Underwood: Or the
Marvelous
Beginnings of the
Moosepath League
12 0671516949 A MARRIAGE Cathie Pelletier
MADE AT
WOODSTOCK
13 0671724479 ONCE UPON A Cathie Pelletier
TIME ON THE
BANKS : ONCE
UPON A TIME
ON THE BANKS
14 0671883925 LOVE (Virago Elizabeth Von
Modern Classics) arnim
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15 089587167X Something Blue Jean Christopher
Spaugh

16 1402201435 The One True Sarah Beth Martin
Ocean

17 1573221562 Affinity Sarah Water

18 1888173408 Fairy Tale Alice Thomas Ellis
(Common Reader
Editions)

19 0140282653 Jacob's Ladder: A Donald McCaig
Story of Virginia
During the War

20 0316196452 Talking to the Dead | Helen Dunmor
: A Novel Tag:
Winner of the
Orange Prize

21 0449001016 Object Lessons Anna Quindlen
(Ballantine
Reader's Circle)

22 067179387X The WEIGHT OF Cathie Pelletier
WINTER

23 0743203232 The Nature of Regina McBride
Water and Air

24 0803727356 The River Between | Richard Peck
Us

25 0805073337 What Was She Zoe Heller
Thinking?: Notes
on a Scandal: A
Novel

26 1888173564 Parnassus on Christopher Morley
Wheels (Common
Reader Editions)

27 0449911217 In the Beauty of the | John Updike
Lilies

28 0345439481 The High Flyer: A | Susan Howatch

Novel (Ballantine
Reader's Circle)
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29 0684849720 The Quilter's Jennifer Chiaverini
Apprentice : A
Novel
30 0140264795 Rosie: A Novel Anne Lamott
31 0385503857 Oryx and Crake Margaret Atwood
32 0743418735 Perfect Match: A Jodi Picoult
Novel
33 0156028778 The Crimson Petal | Michel Faber
and the White
34 0312283784 Alice's Tulips Sandra Dallas
35 0312421273 The Corrections: A | Jonathan Franzen
Novel
36 0312422156 Middlesex: A Jeffrey Eugenides
Novel
37 0316341118 Forever: A Novel Pete Hamill
Rank of recommended items
B Rank
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17. 2nd test case: Diagram with the adjusted recommendations

The recommended items are quite similar with the original, but some new
recommended items are appeared on the end of the list. These books are
similar with some books clicked by user. As it is obvious from the following
diagram, only the last recommended books are different like “Perfect Match:
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A Novel”, “The Crimson Petal and the White” , “Alice's Tulips”, “The
Corrections: A Novel”, “Middlesex: A Nove”, “Forever: A Novel”

Rank of recommendations (Purple before Rochio - Pink after
Rochio
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18. 2nd test case: Comparative diagram of recommendations before/after rochio.

3rd scenario:Existed user with user id=11677(having data for him into

database) does not click any recommended item

When user signs in books recommendation application, he gets a list with
the initial recommendations, as they have been calculated with collaborative

filtering algorithm.

7. 3rd test case: table with initial recommendations

Rank of ISBN Title Author
recommended
items
1 0345257189 Power That stephen R
Preserves Covenant | Donaldson
3
2 0345300777 Magician's Gambit | David Eddings
(Eddings, David. ,
the Belgariad, Bk.
3)
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0345300793

Queen of Sorcery
(Eddings, David. ,
the Belgariad, Bk.
2)

David Eddings

0345309979

Belgariad Part One
(Eddings, David. ,
the Belgariad, Bk.
1.)

David Eddings

0345363310

Demon Lord of
Karanda
(Malloreon
(Paperback
Random House))

DAVID EDDINGS

0486240649

Burnham's Celestial
Handbook, Volume
2, Rev. Edition

Robert Burnha

0486240657

Burnhams Celestial
Handbook Volume
3

Robert Burnham

0028713303

Music in the
Romantic Period:
An Anthology with
Commentary

F. E. Kirby

0132323311

Html Cd: An
Internet Publishing
Toolkit for
Windows/Book and
Cd-Rom

Vivian Neou

10

0140620516

Dr Jekyll and Mr
Hyde (Penguin
Popular Classics)

Robert Louis
Stevenson

11

0345274318

Fahrenheit 451

Bradbury

12

0345276353

Master of the Five
Magics 1

Lyndon Hardy

13

0345373243

Belgarath the
Sorcerer

David Eddings
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14 0345416627 Polgara the David Eddings
Sorceress

15 0380015390 Satanic Bible Anton Szandor

Lavey

16 0446384038 How to Master the | Tom Hopkin
Art of Selling

17 0553095412 The Truce at Kathy Tyer
Bakura (Star Wars)

18 0609810022 Kiss and Make-Up | Gene Simmons

19 0671887173 DAILY Stephen R. Covey
REFLECTIONS
FOR HIGHLY
EFFECTIVE
PEOPLE : Living
The 7 Habits Of
Highly Successful
People Every Day

20 0831716991 Complete Works of | William
William Shakespeare
Shakespeare

21 0938636057 Official Guide to Tom Hopkins
Success (Official
Guide to Success)

22 1558532862 Satisfaction Byrd Baggett
Guaranteed

23 1932564462 Shadowrun: 25000 | Fanpro

24 034527444X Sword of Shannar | Brooks

25 0345296044 The Hobbit: Or J. R. R. Tolkien
There and Back
Again

26 0345300785 Enchanters' End David Eddings
Game (The
Belgariad, Book 5)

27 0345358805 King of the Murgos | David Edding
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(Malloreon
(Paperback
Random House))

28

0345369351

Sorceress of
Darshiva
(Malloreon
(Paperback
Random House))

David Eddings

29

0345377591

The Seeress of Kell
(The Malloreon,
Book 5)

David Eddings

30

0446391069

Leadership Secrets
of Attila the Hun

Wess Roberts

31

0767913795

Who's Looking Out
for You?

BILL O'REILLY

32

0880296879

Nasty Peopl

Jay Carter

33

1562450662

Life's Winning Tips

Dennis Connor

34

1882770099

Red-Tailed Boas
(General Care and
Maintenance of
Series)

Philippe De Vosjoli

35

0345300807

Castle of Wizardry
(The Belgariad,
Book 4)

David Eddings

36

0515123366

Zero Minus Ten

Raymond Benson

37

0785815198

Complete
Encyclopedia Of
Pistols And
Revolvers

A. E. Hartnik
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19. 3rd test case: Diagram with initial recommendations
User does not click any recommended item. Every hour, we adjust the

recommended items and a negative weight is added on their predictive
value.

8. 3rd test case: table with adjusted recommendations

Rank of ISBN Title Author
recommended
items
1 0380015390 Satanic Bible Anton Szandor
Lavey
2 0446384038 How to Master the | Tom Hopkin
Art of Selling
3 0609810022 Kiss and Make-Up | Gene Simmons
4 0671887173 DAILY Stephen R. Covey
REFLECTIONS
FOR HIGHLY
EFFECTIVE
PEOPLE : Living
The 7 Habits Of
Highly Successful
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People Every Day

0938636057

Official Guide to
Success (Official
Guide to Success)

Tom Hopkins

1558532862

Satisfaction
Guaranteed

Byrd Baggett

0345296044

The Hobbit: Or
There and Back
Again

J. R. R. Tolkien

0345300785

Enchanters' End
Game (The
Belgariad, Book 5)

David Eddings

0345358805

King of the Murgos
(Malloreon
(Paperback
Random House))

David Eddings

10

0345369351

Sorceress of
Darshiva
(Malloreon
(Paperback
Random House))

David Edding

11

0345377591

The Seeress of Kell
(The Malloreon,
Book 5)

David Edding

12

0446391069

Leadership Secrets
of Attila the Hun

Wess Roberts

13

0767913795

Who's Looking Out
for You?

BILL O'REILLY

14

0345296052

The Fellowship of
the Ring (Lord of
the Rings
(Paperback))

J. R. R. Tolkien

15

0345296060

The Two Towers
(Lord of the Rings
(Paperback))

J. R. R. Tolkien

16

0345296087

The Return of the
King (Lord of the

J. R. R. Tolkien
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Rings (Paperback))

17

0345296567

Illearth War

Stephen R
Donaldson

18

0684846713

HOLDING OUT :
A NOVEL

Anne O. Faul

19

0140714103

Othello the Moor of
Venice (The
Pelican
Shakespeare)

William
Shakespeare

20

0345296575

Lord Foul Ban

Stephen R
Donaldso

21

0880381744

Dragons of Winter
Night

Margaret Weis

22

0307136671

Night Sky : A Field
Guide to the
Heavens

Mark Chartrand

23

0394745787

War of the Twins
(Dragonlance
Legends, Vol. 2)

Margaret Weis

24

042507160X

Dune (Dune
Chronicles
(Berkley
Paperback))

Frank Herbert

25

0446677450

Rich Dad, Poor
Dad: What the Rich
Teach Their Kids
About
Money--That the
Poor and Middle
Class Do Not!

Robert T. Kiyosak

26

0553089285

Star Wars: The
Courtship of
Princess Leia (Star
wars)

Dave Wolverton

27

0553091867

The Last Command
(Star Wars, Vol 3)

Timothy Zahn
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28

0743456866

He Sees You When
You're Sleeping : A
Novel

Carol Higgins
Clark

29

0842373195

Let's Roll: Ordinary
People,
Extraordinary
Courage

Lisa Beamer

30

0880382651

Time of the Twins
Legends 1
(Dragonlance
Legends Trilogy,
Vol 1)

Margaret Weis

31

0880382678

Test of the Twins
(DragonLance
Legends, Vol 3)

Margaret Weis

32

0345352661

Guardians of the
West (Book 1 of
the Malloreon)

David Eddings

33

0440967694

The Outsiders

S. E. Hinton

34

067100042X

Silent Night : A
Christmas Suspense
Story

Mary Higgins Clark

35

0880381736

Dragons of Autumn
Twilight
(Dragonlance
Chronicles, Vol 1)

Margaret Weis

36

0880381752

Dragons of Spring
Dawning
(Dragonlance
Chronicles, Vol 3)

Margaret Weis

37

0345257189

Power That
Preserves Covenant
3

stephen R
Donaldson
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21. 3rd test case: Comparative Diagram with recommendations before and after rochio.
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4rth scenario: New registered user(not having data for him into database)

clicks some of the recommended items

When a new user is registered on application, he gets a list with the top rated

books as recommendations.

9. 4rth test case: table with initial recommendations

Rank of ISBN Title Author

recommended

items

1 0316666343 The Lovely Bones: | Alice Sebol
A Novel

2 0385504209 The Da Vinci Code | Dan Brown

3 0312195516 The Red Tent Anita Diaman
(Bestselling
Backlist)

4 059035342X Harry Potter and J. K. Rowling
the Sorcerer's Stone
(Harry Potter
(Paperback))

5 0142001740 The Secret Life of | Sue Monk Kidd
Bee

6 0971880107 Wild Animus Rich Shapero

7 0060928336 Divine Secrets of Rebecca Wells
the Ya-Ya
Sisterhood: A
Novel

8 0446672211 Where the Heart Is | Billie Letts
(Oprah's Book Club
(Paperback))

9 0452282152 Girl with a Pearl Tracy Chevalie
Earrin

10 0671027360 Angels &amp; Dan Brown
Demon

11 044023722X A Painted House John Grisham
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12

0316601950

Novel

The Pilot's Wife : A

Anita Shreve

13

067976402X

Snow Falling on
Cedars

David Guterson

14

0786868716

The Five People
You Meet in
Heaven

Mitch Albo

15

0446310786

ToKill a
Mockingbird

Harper Le

16

0743418174

Good in Bed

Jennifer Weine

17

0316769487

The Catcher in the
Rye

J.D. Salinger

18

043935806X

Harry Potter and
the Order of the
Phoenix (Book 5)

J. K. Rowlin

19

0156027321

Life of Pi

Yann Marte

20

0345337662

Interview with the
Vampire

Anne Rice

21

0060930535

The Poisonwood
Bible: A Nove

Barbara Kingsolve

22

0385484518

Tuesdays with
Morrie: An Old
Man, a Young
Man, and Life's
Greatest Lesson

MITCH ALBOM

23

0312278586

A Novel

The Nanny Diaries:

Emma McLaughlin

24

0375727345

House of Sand and
Fo

Andre Dubus 11

25

0671021001

She's Come
Undone (Oprah's
Book Club)

Wally Lam

26

0439064872

Harry Potter and
the Chamber of
Secrets (Book 2)

J. K. Rowlin
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27 044021145X The Firm John Grisham
28 0440226430 Summer Sisters Judy Blum
29 0804106304 The Joy Luck Club | Amy Tan
30 0446605239 The Notebook Nicholas Spark
31 0345370775 Jurassic Park Michael Crichton
32 0671003755 She's Come Wally Lamb
Undone (Oprah's
Book Club
(Paperback))
33 0345361792 A Prayer for Owen | John Irving
Meany
34 0440211727 A Time to Kill JOHN GRISHA
35 0345417623 Timeline MICHAEL
CRICHTON
36 1400034779 The No. 1 Ladies' | Alexander McCall
Detective Agency Smith
(Today Show Book
Club #8)
37 0440241073 The Summon John Grisha
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Rank of recommended items

I Rank
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22. 4rth test case: Diagram with initial recommendations
User clicks the following recommended books: "0385504209",
"0439064872" , "0142001740", "0140503528", "043935806X",
"0439064872", "0345337662"
After a while he gets the following recommendations:
10.4rth case: table with adjusted recommendations
Rank of ISBN Title Author
recommended
items
1 0439064872 Harry Potter and J. K. Rowling
the Chamber of
Secrets (Book 2)
2 0385504209 The Da Vinci Code | Dan Brown
3 0142001740 The Secret Life of | Sue Monk Kidd
Bees
4 0140503528 Pocket for Don Freeman
Corduroy (Picture
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Puffins)

5 0060959037 Prodigal Summer: | Barbara Kingsolver
A Novel

6 0140367144 Jo's Boys (Puffin Louisa May Alcott
Classics)

7 0020280505 HOW TO STAY Bradford Angier
ALIVE IN THE
WOODS

8 0304353884 Valentinas Four Valentina Harris
Seasons Cookbook

9 0345417623 Timeline MICHAEL

CRICHTON

10 1400034779 The No. 1 Ladies' Alexander McCall
Detective Agency | Smith
(Today Show Book
Club #8)

11 0971880107 Wild Animu Rich Shapero

12 0060928336 Divine Secrets of Rebecca Wells
the Ya-Ya
Sisterhood: A
Novel

13 0446672211 Where the Heart Is | Billie Letts
(Oprah's Book Club
(Paperback))

14 0671027360 Angels &amp; Dan Brown
Demons

15 044023722X A Painted House John Grisham

16 0316601950 The Pilot's Wife : A | Anita Shreve
Novel

17 067976402X Snow Falling on David Guterson

Cedars
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18 0786868716 The Five People Mitch Albom
You Meet in
Heaven

19 0446310786 To Kill a Harper Lee
Mockingbird

20 0743418174 Good in Bed Jennifer Weine

21 0316769487 The Catcher in the [ J.D. Salinger
Rye

22 0156027321 Life of Pi Yann Martel

23 0140256369 Of Love and Other | Gabriel Garcia
Demons (Penguin Marque
Great Books of the
20th Century)

24 0449211827 Plague Dogs RICHARD ADAM

25 0449912108 The Witches of John Updike
Eastwick

26 0385334923 Tulip Fever DEBORAH

MOGGACH

27 0156027321 Life of Pi Yann Martel

28 0345337662 Interview with the Anne Rice
Vampire

29 0060930535 The Poisonwood Barbara Kingsolver
Bible: A Novel

30 0385484518 Tuesdays with MITCH ALBOM
Morrie: An Old
Man, a Young
Man, and Life's
QGreatest Lesson

31 0312278586 The Nanny Diaries: | Emma McLaughli
A Novel

32 0375727345 House of Sand and | Andre Dubus 11
Fog

33 0671021001 She's Come Wally Lam
Undone (Oprah's
Book Club)
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34 0440226430 Summer Sisters Judy Blume

35 0804106304 The Joy Luck Club | Amy Ta

36 0446605239 The Notebook Nicholas Sparks
37 0345370775 Jurassic Park Michael Crichton

Rank of recommended items
C B Rank
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23. 4rth case: Diagram with adjusted recommendations

As we can see, the order of results has been changed, while new
recommended books are appeared on list which are considered similar with
the books user has clicked.

Rank of recommendations (green before Rochio - yellow after
Rochio
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24. 4rth case: Comparative diagram with recommendations before/after rochio.
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5. Conclusion

Taking everything into consideration, the books recommendation system
built for this thesis’s purpose is quite effective. From performance aspect,
the implementation is not so demanded, as the original recommendations
and the similarity between items can be calculated offline and then we just
need to adjust them based on user’s feedback, implementing the Rochio
algorithm. Some common problems like cold start and users not clicking any
recommended item can be solved easily. In order to handle the users not
having data about them (cold start problem) we can just return to user the
top rated books and then adjust the results based on user’s feedback. If user
does not click any recommended item, a negative weight is added on item’s
prediction value, and new recommended items are appeared on list. The
algorithm to adjust user’s recommended items does not require complicated
calculations and user can get the updated recommended items immediately.
As future improvements, different approaches could be tried on the first part
where the initial recommendations are calculated for the user. Maybe a deep
learning model could result in more precise initial recommendations. The
deep learning model could combine collaborative-filtering and
content-based information and predict users' recommended items given
their previous activities (search queries and videos watched) and static
information (gender, location, etc.). Also the recommendations system could
become more scalable if an unified analytics engine for large-scale data
processing like Apache spark or Handoop was used to calculate the initial
recommendations. As far as the second part of recommendations’
adjustment based on users’ feedback is concerned, more user’s actions could
be taken into account to adjust the recommendations like user’s latest
ratings, reviews etc. The Rochio algorithm could be implemented to train the
initial deep learning model based on user’s feedback.
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