
UNIVERSITY OF MACEDONIA

SCHOOL OF INFORMATION SCIENCES

DEPARTMENT OF APPLIED INFORMATICS

Software-Defined Networks

for Wireless Devices with Constrained

Resources

Ph.D. Dissertation

of

Tryfon Theodorou

Supervisor: Asst. Prof. Lefteris Mamatas

Thessaloniki, September 2020

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ∆ΟΝΙΑΣ

ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΠΛΗΡΟΦΟΡΙΑΣ

ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΡΟΓΡΑΜΜΑΤΙΖΟΜΕΝΑ ∆ΙΚΤΥΑ

ΓΙΑ ΑΣΥΡΜΑΤΕΣ ΣΥΣΚΕΥΕΣ ΜΕ ΠΕΡΙΟΡΙΣΜΕΝΟΥΣ ΠΟΡΟΥΣ

∆ιδακτορική ∆ιατριβή

του

Θεοδώρου Τρύφωνα

Θεσσαλονίκη, Σεπτέµβριος 2020

Abstract

The Internet of Things (IoT) is gradually incorporating multiple environmental, peo-

ple, or industrial monitoring deployments with diverse communication and appli-

cation requirements. The main routing protocols used in the IoT, such as the IPv6

Routing Protocol for Low-Power and Lossy Networks (RPL), are focusing on the

many-to-one communication of resource-constraint devices over wireless multi-

hop topologies, i.e., due to their legacy of the Wireless Sensor Networks (WSN).

The Software-Defined Networking (SDN) paradigm appeared as a promising ap-

proach to implement alternative routing control strategies, enriching the set of IoT

applications that can be delivered, by enabling global protocol strategies and pro-

grammability of the network environment. However, SDN can be associated with

significant network control overhead. In this thesis, we propose an approach that

advances Low-power WSN to the era of IoT through centralized, programmable

network control and operation, aligned to the SDN paradigm that brings the fol-

lowing novelties in contrast to the state-of-the-art works: (i) programmable routing

control with reduced control overhead through inherent protocol support of a long-

range control channel; and (ii) a modular SDN controller and an OpenFlow-like

protocol improving the quality of communication in a wide range of IoT scenarios

that employ heterogeneous mobile or static constraint devices, through support-

ing alternative topology discovery and control as well as flow establishment and

routing mechanisms that dynamically adapt to different network deployments. We

explore our proposed mechanisms and processes implementing a series of modu-

lar open-source frameworks (i.e., CORAL-SDN, VERO-SDN, SD-MIoT and MINOS).

We evaluate the outcomes through a series of simulated experiments of alternative

IoT use-case scenarios that include different topologies, network sizes, mobility

characteristics, and high-volume transmissions with alternative communication

patterns. The results prove our initial hypothesis as they verify that the SDN

based programmable routing and control helps to overcome the challenges that

IoT applications bring to WSN, providing flexible, efficient and robust performance

with reduced control overhead.

Keywords: Software-Defined Networks, Internet of Things, Mobility, Wire-

less Sensor Networks, Software-Defined Wireless Sensor Networks, Out-of-

band Control

Περίληψη

Το πεδίο της διδακτορικής διατριβής ϐασίζεται στη µελέτη των Ασύρµατων ∆ικτύων

Περιορισµένων Πόρων όπως τα Ασύρµατα ∆ίκτυα Αισθητήρων (Wireless Sensor Net-

works, WSN). Τα δίκτυα αυτά παρουσιάζουν ιδιαίτερο ενδιαφέρον, καθώς ϐρίσκουν

πληθώρα εφαρµογών σε πολλούς τοµείς µε κυριότερο το ∆ιαδίκτυο των Πραγµάτων

(Internet of Things, IoT). Το ∆ιαδίκτυο των Πραγµάτων, αποτελεί κεντρική τεχνολο-

γία της λεγόµενης 4ης ϐιοµηχανικής επανάστασης και δηµιουργεί πλήθος νέων και

σύνθετων απαιτήσεων στις δικτυακές επικοινωνίες καθώς ενσωµατώνει εφαρµογές που

εκτός από την ϐιοµηχανία εφαρµόζονται και στην καθηµερινότητα των ανθρώπων. Τα

κύρια πρωτόκολλα δροµολόγησης που χρησιµοποιούνται σήµερα στο ∆ιαδίκτυο των

Πραγµάτων, όπως το πρωτόκολλο δροµολόγησης RPL για Ασύρµατα ∆ίκτυα χαµηλής

ισχύος και περιορισµένων πόρων, λόγω της κατανεµηµένης αρχιτεκτονικής τους, πα-

ϱουσιάζουν σοβαρές αδυναµίες στην ευέλικτη διαχείρισή τους και κατ’ επέκταση στην

εφαρµογή τους στις σύγχρονες απαιτήσεις (δηλ. διαλειτουργικότητα, κινητικότητα,

ετερογένεια και ποιότητα υπηρεσίας - QoS). Σήµερα στην αιχµή της έρευνας και της

εξέλιξης των πρωτοκόλλων δροµολόγησης καθώς και της ϐελτίωσης των µεθόδων δια-

χείρισης δικτύων ϐρίσκονται τα Προγραµµατιζόµενα ∆ίκτυα (Software-Defined Net-

works, SDN). Τα δίκτυα αυτά ϐρίσκουν πρακτική εφαρµογή σε δίκτυα υποδοµής και

υποστηρίζονται από µεγάλες εταιρείες του χώρου και αποτελούν ένα νέο ερευνητικό

πεδίο, το οποίο ενδεχοµένως µπορεί να εφαρµοστεί και σε άλλους τύπους δικτύων.

Ωστόσο, τα Προγραµµατιζόµενα ∆ίκτυα παρουσιάζουν σηµαντική επιβάρυνση στην

κίνηση του δικτύου λόγω της πληθώρας των µηνυµάτων ελέγχου που χρειάζονται για

να λειτουργήσουν. Για το λόγο αυτό δεν ενδείκνυται η απευθείας εφαρµογή τους

σε τύπους δικτύων όπως τα Ασύρµατα ∆ίκτυα Αισθητήρων καθώς επιβαρύνουν τους

ήδη περιορισµένους πόρους τόσο των συσκευών όσο και του µέσου µετάδοσης του

δικτύου. Η διατριβή επικεντρώνεται στην εφαρµογή τεχνικών Προγραµµατιζόµενων

∆ικτύων µέσω του σχεδιασµού και της υλοποίησης αλγορίθµων και πρωτοκόλλων, τόσο

στο επίπεδο του κεντρικού διαχειριστή (controller) του δικτύου, όσο και στο επίπεδο

της επικοινωνίας δεδοµένων του δικτύου (data-plane). Ο στόχος είναι η ϐελτίωση της

διαχείρισης και λειτουργίας των Ασύρµατων ∆ικτύων Αισθητήρων στο περιβάλλον του

∆ιαδικτύου των Πραγµάτων λαµβάνοντας υπόψη χαρακτηριστικά όπως η κίνηση των

κόµβων του δικτύου, η ταχύτητα και η ποιότητα επικοινωνίας µεταξύ τους. Οι ερευ-

νητικοί στόχοι επικεντρώνονται στον σχεδιασµό, υλοποίηση και την αξιολόγηση προ-

γραµµατιζόµενων πρωτοκόλλων ελέγχου δροµολόγησης που λειτουργούν µε χαµηλή

επιβάρυνσή ελέγχου (δηλ. µειωµένο αριθµό µηνυµάτων ελέγχου) µέσω προτεινόµε-

νης καινοτόµου λύσης που υποστηρίζει ξεχωριστό κανάλι ελέγχου µεγάλης εµβέλειας.

Επιπλέον, τα πρωτόκολλα αυτά ακολουθώντας τις αρχές των Προγραµµατιζόµενων

∆ικτύων υποστηρίζονται από λογισµικό ελεγκτή δροµολόγησης και διαχείρισης του

δικτύου που ϐελτιώνει την ποιότητα λειτουργίας του δικτύου, σε ένα ευρύ ϕάσµα σε-

ναρίων που χρησιµοποιούν κινητές ή στατικές συσκευές µε περιορισµένους πόρους.

Η χρήση κεντρικού διαχειριστεί για τον έλεγχο του δικτύου επιτρέπει τη δηµιουργία

και υποστήριξη καινοτόµων αλγορίθµων για την εύρεση της τοπολογίας του δικτύου

και τον έλεγχο της δροµολόγησης των δεδοµένων, που µπορούν να λειτουργούν εναλ-

λακτικά και να προσαρµόζονται δυναµικά στις ιδιαιτερότητες και τα χαρακτηριστικά

του δικτύου. Οι προτεινόµενοι µηχανισµοί και διαδικασίες υλοποιούνται σε µια σειρά

ολοκληρωµένων λύσεων που υλοποιήθηκαν στα πλαίσια της διατριβής και διατίθενται

µε την άδεια ανοιχτού κώδικα (δηλ., CORAL-SDN, VERO-SDN, SD-MIoT και MINOS).

Η αξιολόγηση των προτεινόµενων λύσεων γίνεται µέσω µιας σειράς πειραµάτων που

προσοµοιώνουν εναλλακτικά σενάρια για το ΙοΤ χρησιµοποιώντας Προγραµµατιζόµε-

να ∆ίκτυα Αισθητήρων και περιλαµβάνουν διαφορετικές τοπολογίες, µεγέθη δικτύου,

χαρακτηριστικά κινητικότητας και µεταδόσεις µεγάλου όγκου δεδοµένων, µε εναλ-

λακτικά µοτίβα επικοινωνίας. Τα αποτελέσµατα επαληθεύουν την αρχική υπόθεση,

καθώς επιβεβαιώνουν ότι η εφαρµογή των Προγραµµατιζόµενων ∆ικτύων για τον έλεγ-

χο δροµολόγησης και διαχείρισης του δικτύου ϐοηθά να ξεπεραστούν οι προκλήσεις

που εισάγουν οι σηµερινές εφαρµογές στα Ασύρµατα ∆ίκτυα, παρέχοντας ευέλικτη,

αποτελεσµατική και στιβαρή απόδοση, µε µειωµένη επιβάρυνση ελέγχου.

Λέξεις Κλειδιά: Ασύρµατα ∆ίκτυα, ∆ιαδίκτυο των Πράγµατων, Ευφυή Προ-

γραµµατιζόµενα ∆ίκτυα

Acknowledgments

The doctorate dissertation is a road of loneliness that you cannot cross alone.

I had the honor of having Prof. Lefteris Mamatas as my academic supervisor.

I would like to express my gratitude for his guidance and support, as, without it,

I would not have been able to complete this endeavor. His endless energy and

commitment to hard work motivated me the most.

I would also like to thank my supervisors Prof. Alexander Chatzigeorgiou for

his support and advice when I most needed them during the challenging turns of

this journey as well as Prof. Sofia Petridou for helping me especially when I was

writing scientific papers.

I was fortunate to have George Violettas as a fellow traveler, friend, and col-

league in this long, steep uphill road. In many cases, it was not easy to tell if he

was pushing me or I was pulling him and vice versa until the end — George, ‘‘we

did it.’’

Most importantly, I would like to thank my wife, Maria, as, without her constant

support and patience, this work would not have been possible.

However, I would like to dedicate this work to my two boys Lazaros and Ioannis.

I hope that the effort and commitment they witnessed from my side on this work

during these years will be a raw model for their future endeavors.

Contents

1 Introduction 1

1.1 The era of Internet of Things . 2

1.2 Low-Power Wireless Sensor Networks 3

1.2.1 The Challenges of Low-Power WSN in the IoT era 6

1.3 Software-Defined Networks . 8

1.3.1 Software-Defined Wireless Sensor Networks 8

1.4 Evolving SDWSN in IoT . 9

1.4.1 Objectives . 10

1.4.2 Contribution . 10

1.4.3 Published Work . 13

1.4.4 Awards . 14

1.4.5 Conference Tutorials . 14

1.5 Dissertation Outline . 15

2 Literature Review 16

2.1 SDN inspired WSN Protocols . 16

2.1.1 Evolutionary approaches to softwarized IoTs 16

2.1.2 Revolutionary approaches to softwarized IoTs 17

2.2 Out-of-Band Control . 20

2.3 Mobility in WSNs . 22

2.4 Mobility Detection . 24

3 Evolution of Software-Defined Wireless Sensor Networks 27

3.1 Proposing Out-of-Band Control in SDWSN 28

3.2 VERO-SDN an IoT solution that applies out-of-band control 29

3.3 VERO-SDN Architecture . 32

3.3.1 Application plane . 32

3.3.2 Control plane . 34

3.3.3 Infrastructure plane . 35

3.4 Protocol API . 36

3.4.1 Northbound API . 36

3.4.2 Southbound API . 37

3.5 Network Topology Control Mechanisms 38

3.5.1 Topology Discovery using Node’s Advertisement Flooding (TC-

NA) . 38

3.5.2 Topology Discovery with Node’s Neighbors Requests solicited

from the Controller (TC-NR) 42

3.5.3 Topology Maintenance . 44

3.6 Network Routing Mechanisms . 47

3.6.1 Next-hop only flow rule establishment 49

3.6.2 Complete Path flow rule establishment method 51

3.7 VERO-SDN Scalability extensions 52

4 Evolving SDWSNs in Mobile and Heterogeneous environments 55

4.1 SD-MIoT: a Mobility aware SDWSN for IoT 55

4.1.1 SD-MIoT Architecture . 58

4.1.2 MCC: Mobility Control Component 60

4.1.3 MODE: Mobility Detection for Mobile Internet of Things . . . 64

4.2 MINOS: a Multi-protocol Framework for IoT 70

4.2.1 MINOS Architecture . 71

4.2.2 MINOS GUI . 76

5 Evaluation and Outcomes 78

5.1 Evaluating Topology Discovery in Networks with Fixed nodes 79

5.1.1 Use-case scenario: Smart Traffic Lights 79

5.1.2 Evaluation Methodology . 80

5.1.3 Simulation Setup . 83

5.1.4 Performance Metrics . 83

5.1.5 Evaluation Results and Discussion 85

5.2 Evaluating Routing Control in Networks with Fixed Nodes 88

5.2.1 Evaluation Methodology . 88

5.2.2 Simulation Setup . 90

5.2.3 Performance Metrics . 91

5.2.4 Evaluation Results of all-to-all scenario 92

5.2.5 Evaluation Results of many-to-one scenario 98

5.3 Evaluating Routing Control in Mobile Network environments 100

5.3.1 Use-case scenarios: Extreme-Sports & Amusement park . . 100

5.3.2 Evaluation Methodology & Simulation Setup 105

5.3.3 Performance Metrics . 106

5.3.4 Evaluation Results & Discussion 107

5.4 Evaluating Mobility Detector MODE 109

5.4.1 Evaluation Methodology & Simulation Setup 109

5.4.2 Evaluation Metrics, Results & Discussion 110

5.5 Evaluating Routing Control in Heterogeneous Network environments 113

5.5.1 Use-case scenario: Smart-Cities 113

5.5.2 Methodology & Metrics . 115

5.5.3 Evaluation Results & Discussion 117

6 Conclusions and Further Work Discussion 119

6.1 Summary and Conclusions . 119

6.2 Future Work Discussion . 121

References 124

Appendices 135

Appendix A Funding 135

Appendix B Implementation Insights 136

B.1 Control Plane Class Diagrams . 136

B.2 Southbound API Data-Plane Packet Descriptions 137

List of Figures

1 Wireless Sensor Network . 4

2 VERO-SDN operational framework schema where each node espouses

a dual-radio network interface, for long- and short-range communi-

cation. 31

3 VERO-SDN architecture . 33

4 VERO-SDN dashboard GUI; left-hand-side, configuration parame-

ters; right-hand-side, network topology graphical representation . . 34

5 Network topology discovery based on the Node’s Advertisement Flood-

ing algorithm (TC-NA) . 39

6 Network topology discovery with Node’s Neighbors Requests solicited

from the Controller (TC-NR) . 43

7 Three examples of VERO-SDN Next-hop only flow rule establishment

(FE-NH) in steps . 50

8 Three examples of VERO-SDN Next-hop only flow rule establishment

(FE-CP) in steps . 51

9 Multiple Border Routers Framework 53

10 SD-MIoT operational framework schema 57

11 SD-MIoT architecture . 58

12 Simple mobility detection scenario example 65

13 The MINOS architecture . 71

14 The MINOS Dashboard options . 76

15 Smart Traffic Lights Use-case scenario 80

16 Three scenarios of network topology connectivity graphs. The green

vertex indicates the border router, the black vertices represent the

regular network nodes, and the gray vertices are the potential node

expansions for any network size. The graph edges stand for connec-

tivity links . 81

17 Network discovery evaluation results for RPL, VERO-SDN TC-NA and

TC-NR with linear, rectangular and triangular grid network topologies 85

18 Routing evaluation scenario with a triangular grid network topology 89

19 The average PDR per protocol . 93

20 Total End-to-End Delay (TEED) time for selected paths from node X
to node Y . 94

21 The range of TEED values from each node to all other network nodes 96

22 The Network Overall End-to-end Delay (NOD), all-to-all scenario . . 97

23 The range of TEED values per protocol, all-to-all scenario 97

24 The Network Overall End-to-end Delay (NOD), many-to-one scenario 99

25 The range of TEED values per protocol, many-to-one scenario 100

26 Olympus Marathon Mythical Trail, extreme sports activity scenario,

Linear topology with 1 border router, 1 mobile, and 25 fixed nodes . 102

27 Water Park smart amusement park scenario, Grid topology with 1

border router, 5 mobile, and 24 fixed nodes 104

28 Extreme-sports & Water-park use-case results 107

29 Simulation results of MODE algorithm in the water-park use-case

scenario, using SMA on Transition Matrices series with window size 5111

30 Overall Mobility Condition Discovery Success Ratio (SmSR) for differ-

ent window values n in SMA Transition Matrices 112

31 The smart-city use-case . 114

32 MINOS experimental results for PDR and control overhead 116

B.1 VERO-SDN Controller Class Diagram 136

B.2 SD-MIoT Mobility Detector Class Diagram 137

List of Tables

1 IoT Use-Cases . 3

2 WSN-IoT vs TCP/IP protocol stack 4

3 VERO-SDN Southbound API . 38

4 Graph properties per topology type 82

5 The simulation setup of RPL . 83

6 The simulation setup of VERO-SDN data-plane 84

7 Graph distance matrix values for triangular grid networks of 6, 10
and 15 nodes per protocol . 90

8 Simulation parameters and configuration setups 105

9 Simulation setup of MODE evaluation 109

10 Experimentation Setup . 115

11 Protocol Packet Fields - Description 137

12 Southbound API Messages with Examples 138

List of Algorithms

1 TC-NA – Topology Discovery using Node’s Advertisement Flooding . . 40

2 TC-NR – Topology Discovery with Node’s Neighbors Requests solicited

from the Controller . 45

3 MOB-TD – Mobility Topology Discovery 62

4 MODE – Mobility Detector . 68

1 Introduction

Wireless Sensor Networks (WSN) operate at the edge of conventional network

infrastructures and provide communication means between the digital and the

physical world. WSN connect tens or hundreds of tiny wireless network devices

equipped with sensors and actuators, capable of measuring real-world phenomena

and interacting with a variety of hardware devices, e.g., industrial control equip-

ment. Their main features are: low cost, scalability, and low energy consumption.

Whereas, their drawbacks are the limited computational resources, limited band-

width, and low-quality radio communication [1]. Nowadays, the WSN motes are

getting smaller, cheaper, and smarter, enabling their usage in a wide range of ap-

plications, such as industrial monitoring, environmental and/or people’s surveil-

lance.

The support of Internet technologies from the WSN motes contributes in the new

Internet evolution known as the Internet of Things (IoT) [2], [3]. The advent of the IoT

arises new trends, such as enhanced network management, mobility, intelligent-

processing capability, efficient use of resources, adaptive network operation to

business conditions, and large-scale deployments, while maintaining the network’s

reliability, performance, and Quality of Service (QoS) [4]. These challenges impose

communication requirements that are difficult to be addressed by conventional

network protocols inherited from the WSN world.

An approach that targets the above challenges, exploits new flexible network ar-

chitectures, such as the Software-Defined Networking (SDN) [5]. SDN uses logically

centralized software, hosted in network nodes called SDN controllers, to control

the behavior of a network by reducing the network configuration and manage-

ment complexity. SDN was originally implemented for wired networks operating in

cloud data centers. Recent research endeavors [6] are blending SDN and SDN-like

architectures with Low-Power WSN technologies forming a new approach for SDN

called Software-Defined Wireless Sensor Networks (SDWSN). The SDWSN paradigm

brings new ways in the WSN control, management and operation. Although such

approaches inherit the advantages of the traditional OpenFlow-based solutions

1

Introduction

over fixed networks, they are not yet fully aligned with the unique requirements of

the IoT networks, e.g., the resource-constraint devices and the lossy nature of the

wireless medium [7].

In this chapter, we highlight the importance of WSN towards the IoT era and

the challenges posed by this imperative transition. Moreover, we feature the SDN

paradigm and underline the aesthesia that can bring into the IoT. Further in, we

list the aims and objectives of this dissertation along with its contributions, as

well as the publications and achievements gained through its course. The chapter

concludes with the overall dissertation structure.

1.1 The era of Internet of Things

Nowadays, the IoT technology holds a cardinal role as an enabler for a highly

diverse set of services with respect to their requirements, including extremely high

data-rates, ultra-low latency, low power consumption, a large number of connected

devices, and high mobility. It has evolved from an experimental to a backbone

technology able to connect myriads of people, things, and services for a broad

range of businesses. Furthermore, IoT systems and devices define a huge area of

innovation, allowing people to develop and design products, even at home [3]. In

fact, it is characterized by explosive growth that is rapidly changing our world.

Table 1 indicatively presents IoT use-cases characterized by different network

limitations, that express particular network conditions and device constraints, and

application requirements. As such, paramedics, a typical e-health example, cru-

cially demand high data-rates in real-time to support live video streaming to hospi-

tals. Moreover, a wide deployment of sensors measuring ground and atmospheric

metrics in large areas, as part of an agriculture application, prioritizes scalability

issues over data-rates. Traffic prioritization is a crucial requirement for a harsh

working environment that uses IoT devices’ deployments for safety reasons, i.e.,

to prevent or face an accident; in this case connectivity and QoS in traffic is

of paramount importance. Finally, applications with mobile IoT devices, such

as drones or humans with wearables, strive for efficient solutions, e.g., neighbor

discovery and routing, that handles mobility and takes into account device con-

straints, such as the remaining battery power.

2

Low-Power Wireless Sensor Networks

Table 1: IoT Use-Cases

IoT Use-Case Communication Constraints Application Requirements

E-Health reliability and performance
high data-rates, low latency

and high priority

Agriculture quality of service, scalability
low data-rates, low power,

low priority, large range

Harsh Workplace signal issues, reliability traffic prioritization

Mobile IoT

mobility handling, scalability,

resource-constraints and

location awareness

resource efficiency

Relevant scenarios can be also found in the literature [4], where traditionally

these applications are categorized in line with the type of communication as follows:

Data Collection for many-to-one, Alerts and Actions for point-to-point and Data

Dissemination for one-to-many communication.

A key enabling technology for the IoT suitable to implement a range of network-

ing applications integrated to the traditional Internet infrastructure is the WSN [1].

In the next section, we present the main features of WSN and the challenges of

employing them in IoT applications.

1.2 Low-Power Wireless Sensor Networks

WSNs consisting of wireless sensor nodes, mainly used to measure and monitor

real-world physical conditions of interest, in high precision and large scale. Among

the variety of WSN types, the low-power wireless sensor networks with constraint

devices are prominent because they can be used in a variety of IoT applications

utilizing characteristics like simplicity, low-cost communication, and multi-hop

wireless connectivity with limited power and throughput requirements [8]. We

explain that in this dissertation with the term WSN we refer to the low-power

wireless multi-hop sensor networks with constraint devices.

A typical WSN, as in Fig. 1 consists of multiple sensor nodes, called motes, scat-

tered across a field that measure physical phenomena like temperature, humidity,

atmospheric pressure, and deliver the measured values to a central node (aka the

Sink node) through multi-hop wireless transmissions.

For the communication among the resource-constrained nodes using IPv6, In-

ternet Engineering Task Force (IETF) that leads standardization of communication

3

Introduction

Figure 1: Wireless Sensor Network

protocols for Low Power and Lossy Networks (LLN) [9], [10] propose the IETF-IoT

protocol stack. In Table 2, we depict the IETF-IoT layers in contrast to the TCP/IP

protocol stack.

Table 2: WSN-IoT vs TCP/IP protocol stack

IETF IoT Protocol Stack TCP/IP Protocol Stack

Application Layer IETF COAP, MQTT HTTP, FTP, SMTP...

Transport Layer UDP TCP, UDP

Network Layer RPL, IPv6 IPv4, IPv6

Adaptation Layer IETF 6LoWPAN -

Data-link Layer IEEE 802.15.4 MAC Network Interface &

Network AccessPhysical Layer IEEE 802.15.4 PHY

The majority of protocol stacks implemented for Low-Power WSN, use the IEEE

802.15.4 standard in their lower layers [11]. IEEE 802.15.4 was initially intro-

duced in 2003, aiming to provide ultra-low complexity, low-cost, and extremely

low power wireless connectivity characteristics among inexpensive, fixed, portable

and moving devices [12]. It mainly describes the operation of the Physical Layer

and the Data Link Layer. In the Physical Layer, IEEE 802.15.4 operates in two

radio bands:

• the Low-band, with two Sub-GHz frequency options, the 868 MHz frequency,

with 1 channel and 20 kb/s bandwidth, and the 915 MHz frequency with 10

channels and 40 kb/s bandwidth, and

• the High-band, in the free 2.4 GHz frequency, offering 16 channels and

250 kb/s bandwidth.

4

Low-Power Wireless Sensor Networks

Depending on the frequency, the radio interface can achieve transmissions in a

range from few tenths of meters to a few kilometers. Both versions of the Physical

Layer use a common packet structure, enabling the definition of a common Data

Link Layer interface. The latter operates a Medium Access Control (MAC) sub-layer

that controls the access to the radio channel using the CSMA-CA mechanism. The

IEEE 802.15.4 MAC is responsible for flow control, frame validations, and network

synchronization, as well as implementing acknowledged frame delivery.

To enable IP connectivity in resource-constrained sensor networks, IETF IoT

stack utilizes the Adaptation Layer, an intermediate layer between the Network and

Data-link layers. The IPv6 over Low-Power WPAN (6LowPAN) Working Group [13]

established for the Adaptation Layer the 6LoWPAN protocol that applies IPv6 opti-

mization over the MAC and Physical Layers of IEEE 802.15.4. 6LowPAN manages to

maintain compatibility with IPv6 and mitigates the IPv6 large-packet-size problem

by using header-compression and packet-fragmentation.

Routing Over Low power and Lossy networks (ROLL) Working Group [14] de-

velops the distance vector protocol Routing over Low Power and Lossy Networks

(RPL) protocol [15]. RPL is the de facto standard routing protocol for Low-Power

WSN that, along with the IPv6 protocol, constitutes the IETF Network Layer. In

particular, RPL builds a logical routing topology graph as a Destination Oriented

Directed Acyclic Graph (DODAG) using an objective function and a set of met-

rics/constrains [16]. It is characterized by significant benefits, including multi-

hop communication, efficient operation over noisy channels, and IPv6 support.

RPL is architecturally specialized for many-to-one WSN scenarios (i.e., data col-

lection from all network nodes to a central node). Furthermore, it supports the

one-to-many communication pattern in storing mode, i.e., for the transmission of

queries to sensors or the transmission of actuation commands, when a control loop

is present. In this thesis, we focus mainly on processes and mechanisms related

to the Network Layer and particularly on routing and data forwarding processes.

The IETF Transport Layer favors UDP over TCP protocol because it is energy

efficient, and aligns with the majority of IoT application requirements (i.e., mon-

itoring and data collection). IETF IoT stack also supports the TCP protocol and,

although not included in Table 2, there are protocols, such as the Application Layer

5

Introduction

protocol MQTT that relies on it.

Lastly, on the Application Layer, IETF proposes various protocols such as CoAP

or MQTT. Each of these protocols, as discussed in [17], has different advantages

and disadvantages and make their use better or worse, depending on the IoT ap-

plication scenario.

Although IETF protocol stack contributes to the network’s operation and per-

formance we argue that the imperative transition of WSN to the era of the IoT and

the increasing complexity of the IoT applications has laid bare the shortcomings of

the existing WSN protocols revealing a number of exacerbating challenges related

to network control and operation. For example, back in 2009, when IETF speci-

fied RPL’s architectural characteristics, the communication patterns were mainly

motivated by the need to support monitoring applications and their routing require-

ments. However, although monitoring is still a key IoT application, the plethora of

emerging IoT applications requires an enhanced network protocol operation that

deals successfully with all communication patterns (i.e., one-to-one, one-to-many,

and many-to-one). Right after, we list the major challenges WSN facing today in

the context of the IoT.

1.2.1 The Challenges of Low-Power WSN in the IoT era

IoT brings new potentials in humans’ everyday life activities through a variate

of applications with challenging communication requirements for the underlying

WSN framework, such as QoS, mobility, elasticity, heterogeneity, interoperabil-

ity, adaptability, security, and energy efficiency [18], [19]. In detail, modern IoT

applications require from the Low-Power WSNs:

1. QoS: to implement efficiently multiple communication patterns with reduced

end-to-end delays, maintaining robust packet delivery and reduced control

overhead, utilizing advanced network topology control mechanisms, flexible

flow control rules, and intelligent routing-forwarding decisions that support

alternate paths enforcing the effectiveness and stability of network’s data

communication.

2. mobility: to handle issues raised from IoT devices’ mobility and consequent

connectivity hand-overs (e.g., additional control overhead to maintain the

topology), which become ‘‘costly’’ without suitable dynamic routing adjust-

6

Low-Power Wireless Sensor Networks

ments. Furthermore, mobility-aware mechanisms should not overload pos-

sible co-existing static nodes.

3. elasticity: to appropriately deploy and configure the protocol dynamically

toward satisfying the applications’ requirements; moreover, to adapt to the

network context environment (i.e., responding to the IoT’s network feedback)

by enforcing strategies for flexible and individual IoT devices’ configuration,

that improve performance and resource-allocation whilst reducing cost.

4. heterogeneity: to integrate hardware (e.g., communication interfaces) and

software (e.g., messaging protocols like CoAP) particularities, as well as

nodes’ characteristics (e.g., battery-powered or not). Carefully designed

abstractions are needed to hide heterogeneity and allow devices to export

common features to the higher control and application planes.

5. interoperability: to dispose of appropriate application interfaces and abstrac-

tion layers using compatible communication formats to work with other

products or systems, at present or in the future.

6. adaptability: to provide access to networking open-source software resources

and tools that maintain modular architectures allowing easy incremental

updates without restrictions.

7. security: to protect the network operation and data from several types of

attacks against different layers of the network stack [20] and in diverse ap-

plication domains, including critical infrastructure systems. Security issues

like authentication, authorization, integrity, and confidentiality are promi-

nent in the IoT.

8. energy efficiency: to introduce exceptional requirements in routing proto-

cols that should maintain low energy consumption through efficient proto-

col algorithms and mechanisms in terms of processing power and memory

capacity [21].

We clarify that in this dissertation, we propose solutions and mechanisms that

address the first six of the above challenges, while we leave the issues related to

security and energy efficiency as future work.

The need for introducing applications with diverse, potentially stringent perfor-

mance requirements calls for flexible and performance-efficient network protocols

7

Introduction

driven from sophisticated, low-overhead network control features that overcome

the above challenges. In this context, SDNs [5] are employing new flexible, logically-

centralized network architectures, as discussed in the next section.

1.3 Software-Defined Networks

SDNs provide a new, elastic network paradigm that transforms traditional network

backbones into flexible service-delivery platforms and improves the network’s uti-

lization [5]. They exploit a logically centralized network architecture that decouples

network control from the data plane using the OpenFlow protocol [22].

The primary entity of SDN is the controller, a network control software that

has the complete picture and control of the entire network. The data plane is

responsible for the network’s data forwarding process employing the rules in the

routing table. The data forwarding rules in the routing table are updated by the

controller utilizing the OpenFlow protocol messages.

The controller provides the means to optimize the network operation in real-

time and respond quickly to network usage changes without the need for manual

configurations to existing infrastructure or purchase of new hardware. Addition-

ally, this programmable approach allows the network to interact with applications

and effectively reshape the network based on their needs.

Although SDNs and the prominent OpenFlow protocol were introduced for in-

frastructure networks, recent research endeavors [23], [24] are blending SDN archi-

tectures with WSN technologies, forming a new approach called Software-Defined

W ireless Sensor Networks (SDWSN), considered in the next section.

1.3.1 Software-Defined Wireless Sensor Networks

The SDWSN paradigm brings new prospects to WSN architecture, control, man-

agement, and operation [25]. It allows new, improved WSN routing and topology

control protocols, utilizing the global centralized network view. The offloading of

network control intelligence from motes to a central controller reduces the compu-

tational process and memory footprint for the low memory and processing power

devices. Their centralized network control and programmability features allow for

efficient, bespoke network protocol operation to the particular requirements of IoT

applications.

8

Evolving SDWSN in IoT

To this end, efforts presented in [26] and [27], attempt to evolutionary enable the

above capabilities through the adaptation of SDN operations on top of existing WSN

protocols, e.g., the RPL protocol. Those solutions are predominantly confronted by

the restrictions of the underlying protocol operation (e.g., mainly supporting the

many-to-one type of communication) and the intensification of the control message

overhead in the wireless medium.

Other research endeavors follow a clean-slate approach [23], [24] and integrate

SDN Openflow-like architectures with the WSN technologies to provide new per-

spectives and grounds for the IoT applications. This new approach, called the

Software-Defined W ireless Sensor Networks (SDWSN), brings new ways of control-

ling and operating the WSN through applying logically-centralized network con-

trol [28]. For example, it improves routing and topology control techniques by

offloading network management intelligence to a central controller, reducing the

computational process requirements from the low memory, storage, and processing

power motes.

However, SDN is not fully aligned with the unique requirements of the IoT

networks and poses additional challenges not present in the conventional WSN

networks. In particular, SDN control communication messages with the controller

increases the number of control packets in the network drastically. This further

impairs the resource-constraint nodes as well as the low quality and lossy nature

of the wireless communication medium [7]. To this end, in the next section, we

present the goals and contributions of this thesis.

1.4 Evolving SDWSN in IoT

Inspired from the above, in this dissertation, we investigate the expansion of the

SDN concept to IoT networking facilities, like the Low-Power WSNs. To mitigate

the challenges discussed earlier, we propose innovative protocol architectures and

mechanisms for WSNs that fully align with the SDN paradigm. We also design and

implement novel SDWSN frameworks, and through extensive evaluation, we verify

our initial objectives.

In this section, we: (i) specify the objectives of this thesis; (ii) summarise its

contribution; (iii) record our scientific publications that support the results and

9

Introduction

conclusions; and (iv) report awards we achieved in the context of this research

work.

1.4.1 Objectives

In this dissertation, we aim to achieve the following objectives:

• To identify the main challenges that IoT brings to the already existing Low-

power WSN solutions, particularly for the state-of-the-art WSN routing pro-

tocols like RPL.

• To address those challenges, as described in section 1.2.1, utilizing the SDN

paradigm and avoiding the negative consequences, like the control overhead,

that SDN brings into the IoT constrained-devices.

• To design novel SD-based architectures and mechanisms that successfully

adapt and fuse with the Low-power WSN environment restrictions and pecu-

liarities.

• To develop open-source IoT frameworks and SDWSN protocols that provide

improved IoT network operation as well as new perspectives and grounds to

the modern IoT applications.

• To demonstrate the efficiency of the proposed solutions by measuring and

evaluating the results of various network communication metrics over real-

istic and versatile use-case scenarios.

• To suggest further improvements and key research areas that now and in the

future will exploit the benefits that the centralized control brings to WSN and

IoT applications.

1.4.2 Contribution

Here we enlist a summary of the contribution of this work.

• The topology discovery process and the representation graph of the network’s

connectivity are key features in WSN operation as well as one of the essen-

tial inputs for an SDN controller’s decision-making mechanisms. As such,

we implemented two novel topology discovery algorithms [29]: (i) the Node’s

Advertisement Flooding (TC-NA) algorithm; and (ii) the Node’s Neighbors Re-

quests from the Controller (TC-NR) algorithm. These algorithms realize topol-

ogy discovery and maintenance processes specifically designed to operate in

10

Evolving SDWSN in IoT

the SDN for WSN context, taking into account the advantages and flexibility

of the centralized SDN approach and the unique characteristics of the multi-

hop wireless communication medium. We evaluated such topology control

strategies using our novel SDN experimentation facility for IoT [30]. The

results demonstrate new significant improvements in WSNs management,

control features and performance in terms of topology construction time and

less topology maintenance overhead.

• To amalgamate SDN in the context of WSN we designed and developed CORAL-

SDN [31], an SDN solution for WSNs which: (i) uses modular intelligent cen-

tralized control mechanisms to adjust the protocol’s functionalities dynami-

cally; (ii) supports elasticity to the challenging requirements of the WSNs; (iii)

maintains a scalable architecture; and (iv) exhibits improved network man-

agement and operation in terms of performance and resource utilization.

CORAL-SDN provides a suitable environment for hands-on experimentation,

featuring the CORAL-SDN protocol operation in real test-beds and highlight-

ing the improvements that SDN brings to IoT.

• Towards reduced control communication overhead with improved robust

packet delivery and reduced End-to-end data transmission delay applying

multiple communication patterns, we evolved CORAL-SDN to VERO-SDN [32].

VERO-SDN is an OpenFlow-like SDWSN solution that improves the commu-

nication performance of a wide range of IoT applications while reducing the

SDN control overhead. VERO-SDN natively supports: (i) a separate wire-

less control channel that introduces one-hop communication with the SDN

controller, through adopting a double protocol stack and appropriate rout-

ing control; (ii) an SDN protocol and controller dynamically maintaining the

IoT topology based on the two aforementioned topology discovery algorithms;

and (iii) two types of flow-rule establishment processes able to either config-

ure only the Next Hop (FE-NH) of the node’s forwarding table or the Complete

end-to-end Path (FE-CP), configuring the forwarding tables of all nodes par-

ticipating in the path. Moreover, VERO-SDN evolves towards: (i) supporting

alternative application communication patterns (i.e., many-to-one, one-to-

many, one-to-one [33]); (ii) mitigating the increased amount of control packets

11

Introduction

due to the frequent communication between the network nodes with the SDN

controller; and (iii) considering in a greater extent the resource-constraints

of the involved IoT devices and the lossy nature of the wireless medium. The

impact of VERO-SDN operation is reflected in our extended evaluation (i.e.,

discussed in Chapter 5), highlighting VERO-SDN’s achievements in terms of

packet delivery ratio, network overhead, and end-to-end delivery time.

• En route to the need of Mobile IoT environments in this dissertation, we

propose SD-MIoT [34], an open-source SDN solution that suggests novel SD-

based mechanisms for Mobile IoT environments. In detail, it consists of a

modular SDN controller and an OpenFlow-like protocol that builds up on

top of VERO-SDN protocol, supporting: (i) MOB-TD, a mobility-aware topol-

ogy discovery mechanism utilizing a hybrid of globally- and locally-executed

topology discovery processes; (ii) routing policies adapted to mobility, employ-

ing data forwarding prioritization based on the nodes’ mobility status; (iii) a

hybrid combination of reactive and proactive flow-rule establishment meth-

ods; and (iv) MODE, a novel intelligent algorithm that detects passively in

real-time the network’s mobile nodes, utilizing the SDN controller’s connec-

tivity graph. We provide extensive evaluation results over realistic scenarios,

further confirming the suitability of SD-MIoT for mobile IoT environments and

demonstrating reliable operation in terms of successful data packet delivery

with low control overhead in Chapter 5.

• In the direction of IoT challenges like heterogeneity, elasticity, scalability and

as well as mobility, we designed and developed MINOS [35], a multi-protocol

SDN platform for IoT that implements service-awareness utilizing: (i) ap-

propriate SDN abstractions and interfaces for logically-centralized network

control of diverse and resource-constraint IoT environments; (ii) two network

protocols that are deployable and configurable on-demand; and (iii) a Graph-

ical User Interface (GUI) that provides a bespoke dashboard and a real-time

visualization tool. Due to its components, MINOS enables experimentation

with novel network control features and protocols that realize optimized rout-

ing over heterogeneous IoT nodes; application of real-time strategies as a

response to the dynamic network conditions; support of individual protocol

12

Evolving SDWSN in IoT

configurations per node; and flexibility to accommodate new protocols and

control algorithms.

1.4.3 Published Work

The outcomes of this dissertation have been documented in a number of papers

that have been published in the following scientific journals and international

conferences.

1.4.3.1 Scientific Journals

J.1 T. Theodorou, L. Mamatas, ‘‘SD-MIoT: A Software-Defined Networking So-

lution for Mobile Internet of Things,’’ IEEE Internet of Things Journal, 2020,

doi:10.1109/JIOT.2020.3027427.

J.2 T. Theodorou, L. Mamatas, ‘‘A Versatile Out-of-Band Software-Defined net-

working solution for the Internet of Things,’’ IEEE Access, vol. 8, pp. 103710-

103733, Jun. 2020.

J.3 T. Theodorou, G. Violettas, P. Valsamas, S. Petridou, Lefteris Mamatas,

‘‘A Multi-Protocol Software-Defined Networking Solution for the Internet of

Things,’’ IEEE Communications Magazine, vol. 57, no. 10, pp. 42-48, Oct.

2019.

1.4.3.2 International Scientific Conferences

C.1 T. Theodorou, L. Mamatas, ‘‘Software-Defined Topology Control Strategies

for the Internet of Things,’’ Conference on Network Function Virtualization

and Software Defined Networks – (NFVSDN), IEEE, Berlin Germany, Nov.

2017, pp. 236–241.

C.2 T. Theodorou, L. Mamatas, ‘‘CORAL-SDN: A Software-Defined Networking

Solution for the Internet of Things,’’ Conference on Network Function Vir-

tualization and Software Defined Networks – (NFVSDN) 2017, IEEE, Berlin

Germany, Nov. 2017.

C.3 G. Violettas, T. Theodorou, S. Petridou, A. Tsioukas, and L. Mamatas, ‘‘An

Experimentation Facility Enabling Flexible Network Control for the Internet

of Things,’’ International Conference on Computer Communications – (INFO-

13

Introduction

COM), IEEE, Atlanta USA, May. 2017.

1.4.4 Awards

We participated in the Elastic Wireless Networking Experimentation (eWINE) Grand

Challenge [36], in Oulu, Finland June 2018. The eWINE Grand Challenge, was

addressed to the research community and highly trained industry professionals,

providing the grounds for competition among solutions that deal with elastic con-

nectivity and routing that can scale to a high number of users in a short time-span

through the use of an agile infrastructure utilizing intelligent software mechanisms

and flexible hardware.

In this competition we received the 1st
runner-up award presenting the Intel-

ligent Network Control for the Internet of Things (INTER-IOT) project. INTER-IOT

demonstrates our research outcomes related to SDN-based efficient end-to-end

wireless communication with dynamically optimized routing for heterogeneous

mobility-aware networks. In detail, INTER-IOT is based on CORAL-SDN [31], our

protocol described in following sections, which implements elastic network adap-

tations, such as SDN-based network discovery, topology maintenance and routing,

over IoT devices to improve performance, reduce cost and resource utilization.

Moreover, INTER-IOT is exploiting the WiSHFUL [37] infrastructure and the eWINE

innovative intelligent facilities [38]. The project was presented and tested on the

IMEC w-iLab.2 test-bed [39], using our CORAL experimentation facility [30].

1.4.5 Conference Tutorials

In order to disseminate and demonstrate examples of the architectures and mech-

anisms developed in this dissertation we successfully conducted a half-day Confer-

ence Tutorial with the title ‘‘Softwarized Internet of Things with Lightweight Clouds

and Practices,’’ at the 3rd IEEE Conference on Network Function Virtualization

and Software Defined Networks in Berlin, Germany on Monday 6th of November

2017 (Tutorial-#3 [40]). The tutorial provided knowledge and hands-on experience

to participants particularly in developing IoT solutions in an SDN controlled en-

vironment deployed in the edge of the infrastructure network using a lightweight

clouding paradigm with single-purpose network functions.

14

Dissertation Outline

1.5 Dissertation Outline

The remainder of this dissertation is organized as follows.

Chapter 2 presents the state-of-the-art solutions addressing the SDWSN and

relevant WSN protocols as well as background information to the reader.

Chapter 3 elaborates on the proposed mechanisms and techniques we designed

and implemented in this dissertation towards the integration of SDN with WSN. We

present in detail the architectural characteristics of CORAL-SDN and VERO-SDN,

including their main components, functionalities and protocol mechanisms.

Chapter 4 provides the design details of SD-MIoT’s components, algorithms,

and its essential operation in Mobile IoT environments. Additionally, we describe

the architecture of the mutli-protocol approach that MINOS brings in scaled het-

erogeneous IoT environments.

Furthermore, an extensive evaluation is covered from Chapter 5, illustrating

the performance and reliability advantages of our solutions. For each evaluation

scenario, we provide motivating use-case scenarios highlighting the advantages of

the proposed platforms and protocols.

Finally, Chapter 6 concludes the dissertation while also discussing further im-

provements and research challenges identified through the experience gained from

the implementation of this research endeavor.

15

2 Literature Review

In this chapter, we present a comprehensive review of the existing related to this

dissertation research works. We mainly aim at SDWSN protocols and communica-

tion platforms, supporting our descriptions with necessary background informa-

tion and highlighting a range of prominent issues related to the contributions of

this work like network mobility and out-of-band control.

2.1 SDN inspired WSN Protocols

In the research front towards the adoption of the SDN paradigm from the IoT, we

single out two categories of approaches, as briefly discussed in the Introduction

Section 1.3.1. The first one proposes SDN-inspired network control facilities that

operate on top of existing WSN protocols, such as RPL [15], which centrally fine-

tune protocol parameters and processes. The second category of solutions covers

SDN protocols and their associated network controllers implementing forwarding

mechanisms that are harmonized with the traditional SDN architecture, i.e., sep-

arating the control from the data plane.

2.1.1 Evolutionary approaches to softwarized IoTs

The first category of proposals is evolving the WSN towards the SDN world. Oliveira

et al. [41], discuss the synergy between the SDWSN protocol TinySDN [42], [43]

with RPL and how they can benefit from each other to improve performance in

IoT deployments. The authors identify the benefits that a centralized approach

provides to WSN towards improved resource management. In particular, they

suggest a centralized route definition mechanism that coexists with the Collection

Tree Protocol (CTP) [44], the routing protocol of TinyOS [45] operating system, that

improves network lifetime.

µSDN [26] presents a lightweight SDN framework for low-power wireless IPv6

IoT networks, supporting interoperability with existing distributed routing proto-

cols such as RPL. The control overhead challenge that SDN introduces is miti-

gated through an architecture that uses a number of overhead reduction func-

tions and optimization techniques. µSDN, while maintaining comparable perfor-

16

SDN inspired WSN Protocols

mance and scalability with RPL-based IEEE 802.15.4-2012 networks, provides the

network with the SDN architecture opportunities like Global Knowledge, Network

(Re)Configurability and Virtualization. Through a scenario within a simple network

under intermittent interference, the authors show how µSDN provides redundancy

to priority flows, achieving QoS for critical network flows with a reduction in latency

and jitter compared to RPL.

A relevant to the above solution is Whisper [46], which manipulates RPL and

6TiSCH operation using a controller that remotely controls nodes’ forwarding and

cell allocation, sending carefully computed routing messages that are fully com-

patible with the protocols run in the network, i.e., RPL. Whisper achieves rerouting

around low-battery devices and provides run-time-defense to jamming attacks,

operating internal algorithms that aim for efficient network operation, reducing

the number of messages sent by the controller, to make the exerted control as

lightweight as possible.

Recent work from Violettas et al. [47], investigate two SDN-like routing control

strategies utilizing the controller’s global network view. More precisely, they in-

vestigate the Moderate RPL control that enables dynamic configurations from the

controller of RPL’s parameters to improve its operation in mobile environments and

the Deep RPL control that utilizes a new parent selection Objective Function that

enforces direct point-to-point paths through prioritization based on link-coloring.

Summarizing the above evolutionary softwarized IoT approaches, we clarify that

the prime advantage of such solutions is the backward compatibility with the tra-

ditional protocols. However, they fail to significantly improve the protocol’s perfor-

mance because they cannot fully exploit the SDN features due to interoperability

and backward compatibility limitations.

2.1.2 Revolutionary approaches to softwarized IoTs

The second category of solutions follows the reverse path through bringing the SDN

paradigm to the WSN environments, i.e., radically changing the network environ-

ment [48].

An early work by Luo et al. [49] is proposing the Sensor OpenFlow, a concep-

tual OpenFlow-based protocol [22] as a solution to WSN-inherent problems, i.e.,

application-specific deployment, underutilization of resources, rigidity in policy

17

Literature Review

changes, and difficult network management. This research endeavor is the first

that suggests the application of the OpenFlow protocol in WSN. The same paper

is identifying key technical challenges of Sensor OpenFlow, e.g., its increased con-

trol overhead. On the same track, Gante et al. [50] elaborate on benefits that SDN

brings to WSN, e.g., enhanced network management, advanced topology discovery,

and energy-saving. The authors propose a theoretical architecture for an SDWSN,

where the controller is integrated at the base station.

Early work from Costanzo et al. [51] proposes SDWN, an SDN framework ad-

dressing a number of technical requirements, in-network data aggregation, and

flexible definition of rules, to improve performance aspects, e.g., in terms of the

control messages overhead and the energy consumption. With SDN-WISE [52],

Galluccio et al. extend the same SDWN framework towards adopting stateful rout-

ing tables and proactive routing decisions to reduce the number of interactions with

the controller and improve the flow-rule establishment decisions. SDN-WISE aims

to simplify the management of the network towards the development of novel ap-

plications, and the experimentation of new networking solutions in WSNs. In [53],

the authors present a demo of SDN-WISE and provide access to the protocol’s

open-source and examples in (https://sdnwiselab.github.io/).

Towards a better integration of the SDN-enabled IoT with the fixed SDN envi-

ronments, Anadiotis et al. [54] propose an amalgamation of a network operating

system, the Open Network Operating System (ONOS), with the aforementioned SDN-

WISE platform. In the same context the work [55] presents SD-WISE, an SDWSN

solution which is integrated with an extended ONOS implementation. SD-WISE

provides abstractions of the nodes’ resources, enables network function virtual-

ization in WSN, and leverages the flexibility of flow definition and RDC control to

achieve energy efficiency.

TinySDN [42], [43] implements a distributed TinyOS-based control plane archi-

tecture based on multiple controllers. The authors propose an SDN architecture

with hierarchically organized multiple controllers aiming to manipulate the in-

creased control traffic between network nodes and the controller. The protocol

operates under the TinyOS [45] operating system for low-power devices. In [56],

TinySDN enabled nodes are enhanced with the Spotled, a 2-level hierarchy of phys-

18

SDN inspired WSN Protocols

ically distributed global and local SDN controllers. The local Spotled controllers use

local information to reply to nodes in their area while a global controller oversees

the whole network. This architecture strives to reduce control traffic by reducing

the distance that control messages travel in the WSN multi-hop environment.

Soft-WSN [57] supports application-aware service provisioning in IoT, imple-

menting basic SDN features, i.e., topology control, device and network manage-

ment to meet run-time and application-specific requirements. Additional to SDN

centralized control, the authors propose device control mechanisms that schedule

the sensing task and delay duration, as well as the active sleep period of the IoT

devices.

Alves et al. [58] propose IT-SDN, a SDWSN protocol inspired from TinySDN.

IT-SDN suggests an architecture that separates the southbound communication

protocol in two parts, i.e., neighbor discovery, and controller discovery. It is im-

plemented for Contiki OS [59], and the source code is provided to the research

community as open-source for experimentation. The paper [60] provides a com-

parison between IT-SDN and RPL routing protocol evaluating metrics related to

data delivery, data delay, control overhead, and energy consumption. The results

show that IT-SDN operation is sufficient only in small network setups, i.e., less

than 15 nodes. The authors suggest future work solutions that will improve its

performance, such as proactive flow setup or multiple node configuration through

a single control packet.

The major drawbacks of the above-quoted studies are, on the one hand, the

challenges of the additional complexity and overhead that SDN architecture brings

to WSN, and on the other hand, the reduced efficiency of the SDN operation due to

the dubious transmission of control messages over the LLN multi-hop medium.

Most recent work from Baddeley et al. [61], [62] towards the alienation of control

from data messages, suggests AtomicSDN. This SDWSN solution proposes a time-

sliced mechanism that separates the SDN control communication from the WSN

data plane layer messages using designated flooding periods for the control mes-

sages. The evaluation results demonstrate improved network latency, reliability,

and low energy consumption.

SDSense [63] implements an SDWSN architecture that separates the network

19

Literature Review

management in static and dynamic network events. The slow-changing static

phenomena (i.e., topology control) managed from a logically centralized controller

using the SDN approach. Whereas the rapidly changing dynamic phenomena (i.e.,

congestion control) are handled using an agile approach of local controllers respon-

sible for neighboring nodes. To reduce collisions and provide reliable performance,

SDSense is using Time Division Multiple Access (TDMA) transmission that sched-

ules the transmissions in times of globally synchronized slots. To optimize the

bandwidth allocation, it uses a centralized Network Utility Maximization algorithm

balancing between centralized solutions and the need for rapid reaction to dynamic

changes. The authors evaluate SDSense through simulations demonstrating im-

provements in network performance over other solutions. However, their imple-

mentation is not available for comparison against other SDN solutions. Besides,

the assumption that topology control is a static network process does not apply in

all network environments, e.g., mobile.

All prior frameworks advance the idea of the SDN paradigm utilization in the

WSN; nevertheless, the in-band physical coupling of control and data planes leads

to undesirable consequences, such as unreliable control plane operation and a

data communication plane encumbered with control messages. Moreover, none of

them operates on mobile environments or tackles network mobility or heterogeneity

issues.

Considering the advantages that the SDN paradigm brings to WSN, in this

dissertation, we propose an SDN-based solution that employs a separate out-of-

band control channel to overcome the above issues. As such, in the next section,

we present research works that adapt the approach of utilizing a second radio

communication channel to control network functions.

2.2 Out-of-Band Control

Out-of-Band control separates network control communication from user data and

passes all control data through a separate communication line. It requires dual-

network interfaces and communication medium. Its application in wireless net-

works is rather easy as the communication medium can accommodate multiple

channels easily. Along these lines, a limited amount of research studies inves-

20

Out-of-Band Control

tigates the usage of a separate radio channel for the control messages in more

traditional wireless multi-hop environments (e.g., WSN or ad-hoc networks).

In [64] and [65], present WaCo, a wake-up radio COOJA extension tool that

allows the exploration of a second radio channel. The separate channel acts as

a wake-up medium for activating and deactivating the primary data communica-

tion radio interface, aiming mainly to reduce the mote’s power consumption. The

results confirm that wake-up technology has great potential to offer significant

energy savings without compromising on reliability and latency. However, the so-

lution implements only a binary on-off control message that cannot be used in

more composite applications.

WASP [66] is an SDN inspired framework that implements a data plane for mo-

bile ad-hoc networks using the Wi-Fi Direct and manipulates its operation through

an LTE-based control plane. The controller, communicating through the wide-area

radio, controls mobile nodes’ traffic using neighbor information provided by the

mobile devices. WASP architecture can be used in different networks and applica-

tions; however, it currently considers only smartphone devices.

Gu et al. [67] suggest the physical separation between the control and data

plane for a network of Raspberry Pi computers utilizing the Zigbee protocol. They

implement one-hop out-of-band control communication between the network nodes

and a base station using LoRaWAN. The central base station improves the packet

delivery ratio by ad hoc interventions to forwarding decisions of the node’s routing

Collection Tree Protocol (CTP). The authors plan to systematically study network

performance and manageability issues as well as the impact on node energy con-

sumption.

Inspired by the above research projects, we came up with the idea of utilizing

two separate radio channels, one for control and one for data communication.

Hence, as described in Chapter 3, we materialize an SDWSN framework where the

SDN controller communicates with the network nodes through a separate one-hop

out-of-band communication channel.

21

Literature Review

2.3 Mobility in WSNs

Network mobility is a key feature that characterizes today’s IoT applications. How-

ever, WSNs were predominately used only for data collection applications with

static network nodes. As Such, RPL [15] the de-facto routing solution for con-

strained devices and WSNs was not originally designed for mobile environments

[68], [69]. Several studies surveyed in [70], [33], aiming to improve RPL perfor-

mance in mobile topologies. The majority suggests adaptations, including explicit

identification of mobile nodes, improvements of preferred node parent selection for

its topology graph formation, and adaptation of solicitation messages’ interval for

neighbor discovery.

Bouaziz et al. [19] identify, among others, three challenges that WSN protocols

must transcend for a sufficient operation in a mobility context: (i) robust topology

control, with reference to network connectivity and coverage area; (ii) elastic routing

and forwarding, regarding alternate paths and stability; and (iii) efficient QoS, in

terms of data loss rate and end-to-end delay.

Related research works that aim to address those challenges propose the ad-

justment of the network’s protocol configuration parameters to the mobility en-

vironment characteristics [71]. For example, they increase the frequency of the

node solicitation control messages, or avoid routing paths through mobile nodes,

or intensify the forwarding rules’ updates. Such solutions, although they improve

the routing efficiency, flood the network with control messages and increase the

protocol’s footprint, eventually reducing the network’s performance, especially in

LLN environments like Low-Power WSN.

In particular, Fotouhi et al. with mRPL [72] and its improved version mRPL+ [73]

implements a hand-off handling topology control mechanism for RPL, where the

mobile nodes can proactively disconnect from existing attachment points and con-

nect to more suitable ones, based on RSSI measurements. The solution maintains

multi-hop efficiency using traffic awareness filters as well as add-ons for best route

flow establishment towards the sink and routing loops avoidance. The mechanisms

reduce significantly packet loss and hand-off delays while maintaining backward

compatibility with the RPL protocol.

Another study [74] inspired by the [75] suggests BPRL, a dual routing protocol,

22

Mobility in WSNs

which can adaptively switch between RPL and Backpressure routing protocol [76],

depending on network conditions. Two adaptive algorithms QuickBeta and Quick-

Theta are used to improve node mobility and balance throughput, respectively.

Although it is not always the case in WSN applications, the solution requires a

constant flow of data in order to maintain the functionality of the Backpressure

routing protocol.

Recent work EMA-RPL [77] introduces a proactive process that can anticipate

and predict the movement of mobile nodes by comparing the radio signal strength

to its point of attachment and applying an energy-efficient parent replacement

strategy. To maintain efficient downwards-routing uses two types of DAO mes-

sages to inform previous and new parent node for its actions. To avoid routing

interruptions, EMA-RPL configures all mobile nodes as leaf-nodes. However, this

configuration option requires knowledge of mobile and fixed nodes before starting

up the network operation.

Similar to the above, in [78], the authors propose a predefined medical ap-

plication context where the mobile nodes are configured as leaf nodes to exclude

message-forwarding through the latter. At the same time, considering more gen-

eral cases, they enhance the trickle timer algorithm [79] (i.e., the topology refresh

mechanism of RPL) and adopt the preferred parent election metric to improve the

mobile node disconnection periods.

MARPL [80] enhances the mobility management of the RPL protocol based on

neighbor variability metrics. The design of MARPL encompasses mobility detection

and preferred parent unavailability detection mechanisms. The protocol adjusts

the DIO and DIS messages as well as the trickle algorithm to detect disconnections

and changes caused by the mobile nodes. The authors report results that indicate

improved performance in terms of overhead, residual energy, and packet delivery

rate in comparison with RPL and protocols mentioned above, like mRPL.

An SDN-inspired solution by Violettas et al. [27], configures the RPL proto-

col parameters based on the particular behavior of the nodes (e.g., whether they

are mobile or not) from a centralized controller that forms closed monitor-decide-

configure control loops. In practice, the controller dynamically changes the trickle

algorithm configuration parameters like Imins, and boost-up network solicitation

23

Literature Review

and discovery messages to timely detect network connectivity changes. The solu-

tion provides elasticity in RPL’s functionality by tackling mobility issues on-the-fly

through efficient decisions of protocol’s performance trade-offs, e.g., between suc-

cessful packet delivery and routing overhead.

We argue that, although the above suggestions improve RPL’s performance to

some extent, further improvements are hindered because it preserves architectural

features that do not fit well to mobile network conditions, like the topology control

trickle algorithm. Moreover, tweaking RPL parameters towards mobile topology

requirements inflates the frequency of node solicitation control messages and in-

tensifies the forwarding rules’ updates. These practices, although they improve the

routing efficiency, they flood the network with additional control messages that im-

pact on the network performance, especially for LLN network environments. More-

over, we point out that: (i) none of the above mobility aware solutions integrate

the SDN paradigm in their architectures; and (ii) none of the SDWSN frameworks

discussed in Section 2.1.2 operates on mobile environments or tackles network

mobility issues.

Motivated from the above open research area and considering the advantages

that the SDN paradigm can bring to WSN, in this dissertation, we suggest mo-

bility dedicated mechanisms that handle WSN mobility scenarios using the SDN

paradigm in the prospect of the IoT era, discussed in Chapter 4.

2.4 Mobility Detection

The majority of the research solutions discussed in the previous section to mitigate

challenges like the excess of control messages, apply separate policies only to

mobile nodes. Thus, the majority of them operate with the prerequisite knowledge

of the mobile nodes in a network. To this end, we identify four different strategies

that address this aspect, briefly described below:

• Human-in-the-loop proposals are based on an external observer (e.g., network

administrator) that acquires each node type (i.e., mobile or fixed) and either

pre-configures the protocol operation [70] or utilize additional network control

messages, in real-time, to adjust each node’s protocol operation according to

its type [27]. The main disadvantages are the external intervention to protocol

24

Mobility Detection

operation and the lack of flexibility.

• Hardware-based solutions are utilizing information from specialized hard-

ware (e.g., GPS antenna or accelerometer sensors) to realize the nodes’ mo-

bility behavior and adapt protocol operation accordingly [81]. Although this

solution can successfully recognize the mobile nodes, the specialized hard-

ware increases the implementation and deployment complexity.

• Protocol-based strategies are using mobility metrics (e.g., radio signal strength

indicators, or neighbor nodes connectivity changes). When the measure-

ments exceed pre-configured thresholds, such proposals adjust the protocol

topology discovery periods [82], e.g., the trickle or reverse trickle timer [69].

Although this method excels in flexibility compared to the previous approaches,

decision-making on a node level can lead to false positives, because of the

mobility metrics affinity with the behavior of neighbor nodes.

• Intelligent approaches exploiting Artificial Intelligence / Machine-Learning

techniques. For example, Dribble [83] suggests a learn-based timer scheme

selector for mobility management in IoT, utilizing an intelligent Multi-Layer

Perceptron classifier, on a node level, to detect mobility patterns. We argue

that memory and processing-intensive algorithms, such as intelligent clas-

sifiers, result in excessive consumption of energy and hardware resources

for the IoT devices. Moreover, the limited node-level visibility constrains the

algorithm’s input to local information only.

Inspired from the aforementioned intelligent approach and exploiting the SDN

paradigm features, we propose in Chapter 4 our intelligent solution that suggests

a new passive mobility detection algorithm. The algorithm compared to the above

solution successfully operates without any human or hardware intervention or any

additional overhead to the network or the low power devices, assisted by the SDN

global network view.

Concluding this chapter, we highlight the main limitations that the current

state-of-the-art solutions face towards the adoption of the SDN paradigm to the

WSN environment:

• SDN-inspired solutions on top of existing WSN protocols like RPL do not

fully exploit SDN potentials because of underlying backward compatibility

25

Literature Review

restrictions and inherited limitations.

• SDN-like solutions struggle because of the WSN lossy communication medium

impediment that undermines critical SDN operation features, i.e., the com-

munication with the SDN controller. Considering the experience gained from

the studies described in this chapter, we present in the next Chapter 3 our

proposed solutions.

• To our knowledge, there is no SDN solution for WSN, proficient in handling

network mobility issues. In Chapter 4, we demonstrate our SDN mechanisms

that address the challenges of mobile network environments.

26

3 Evolution of Software-Defined Wireless Sensor Net-

works

In the previous chapter, we described the state of the art solutions as well as

trends and challenges of WSN’s evolution towards the new era of IoT. In this chap-

ter, we elaborate on our proposal that suggests the evolution of WSN through

the adoption of the SDN paradigm, applying network programmability with cen-

tralized control, aiming to improve the network’s QoS. In detail, we propose an

operational framework that in contrast to the related works brings the following

novelties: (i) programmable routing control with reduced control overhead through

inherent protocol support of a long-range control channel; and (ii) a modular SDN

controller and an OpenFlow-like protocol improving the quality of communication

in a wide range of IoT scenarios (i.e., one-to-many, many-to-one and one-to-one)

through supporting two alternative topology discovery and two flow establishment

mechanisms.

The network topology and routing control are both important network control

functions of IoT environments. The former detects and maintains the network con-

nectivity, while the latter establishes and retains the communication paths among

the network nodes. The efficient design and implementation of these functions

have a direct impact on critical network operation performance aspects, e.g., in

terms of packet delivery ratio, end-to-end delay, and control overhead. An impor-

tant issue is their suitability to various network and application contexts, covering

both application-specific requirements and dynamic changes in the network envi-

ronment. Moreover, we elaborate on the main network control features and their

associated protocol aspects, i.e., residing at the controller and the data plane,

respectively.

The proposed mechanisms are implemented in our OpenFlow-like SDWSN solu-

tion VERO-SDN and evaluated through a series of simulations presented in Chap-

ter 5. In the subsections below, we present a high-level overview of those mecha-

nisms, their architecture, as well as the protocol operation and interfaces, includ-

ing a detailed description of the associated software and hardware components.

27

Evolution of Software-Defined Wireless Sensor Networks

Moreover, we describe the main network control features of VERO-SDN1
platform

and their associated protocol aspects, i.e., residing at the controller and the data

plane, respectively.

3.1 Proposing Out-of-Band Control in SDWSN

In contrast to the other approaches implementing the SDN paradigm over the

IoT as discussed in Chapter 2, we suggest rather than using the same medium

to communicate data and control messages (i.e., in-band control), to split out

the network communication control to a separate dedicated radio channel (i.e.,

out-of-band control). We argue that the separation of the control channel is an

important feature of an SDN solution for IoT, for the following reasons: (i) the

control channel associates with different communication requirements compared

to the data channel (e.g., in the level of robustness), so bespoke protocols can be

used for each one of them; and (ii) the control messages should not be causing

performance or reliability issues to the data communication.

This approach requires a second radio interface on the IoT mote device, the

appropriate secondary network protocol stack and bespoke network control mech-

anisms. A number of IoT motes are equipped with double radio interfaces, but

for installation flexibility mainly, i.e., employing a single protocol stack that uses

one of the two devices only, depending on the installation configuration. For ex-

ample, the Zolertia RE-Mote platform [84] supports two radio interfaces [85]: (i)

one long-range SubGHz 868/915MHz RF–transceiver with distance ranging from

712m to 5km, depending on the data rate and the amplification level; and (ii) one

short-range 2.4GHz transceiver with 50− 100m coverage distance. Consequently,

the long-range interface can be used for the SDN control channel and the short-

range for the data communication, depending on appropriate protocol and control

facilities that enable this strategy. Although a number of IoT motes already sup-

port double radio interfaces like the aforementioned Zolertia RE-Mote devices, the

utilization of the additional radio interface is not straightforward. Such exercise

requires systemic adaptations, spanning from the protocol level to the involved

SDN controller and its mechanisms.

1
The Italian word ‘‘vero’’ translates to ‘‘real’’, in the English language.

28

VERO-SDN an IoT solution that applies out-of-band control

Although an additional network interface increases the hardware complexity

and construction cost of the mote, we argue that this can be balanced out from

the benefits it brings to our solution, i.e., overcoming a major drawback of SDWSN

solutions; the unreliable and inefficient control message communication. This ap-

proach exploits the natural strength of wireless communication, i.e., the flexibility

of medium deployment. The construction cost of small hardware amendments

that enhance the usability of the device can be absorbed and not be reflected in its

market cost. For example, the first mobile phones with one GSM communication

interface were not cheaper than today’s mobile phones that contain dual-GSM,

GPS, WiFi, Bluetooth, and IR.

Moreover, we argue that the additional energy consumption of the secondary

channel is balanced by the energy-savings due to: (i) the transfer of computational

power from devices to the infrastructure network [7]; and (ii) the most informed and

accurate decisions for the network operation. Furthermore, the second channel

can enable new approaches for energy conservation, such as the proposals [64]

and [65]. However, as we mention in Chapter 1, this aspect is not part of this

dissertation context and deserves an independent study.

Although adopting a separate control channel is not a breakthrough, we are

the first to suggest and develop a solution that utilizes it in the context of SDN in

WSN. As a bottom line, we consider our secondary-channel approach as a viable

option to overcome the existing shortcomings of overhead and reliability issues in

the control channel of SDWSN solutions, which is currently an open problem. In

Chapter 5, through a series of simulations, we realize the significant benefits that

this design choice brings in terms of efficient resource allocation, communication

reliability, and IoT application performance.

In the next section, we describe the design and implementation of VERO-SDN

our SDN solution for WSN that utilize a separate out-of-band control channel to

communicate the SDN OpenFlow-like control messages.

3.2 VERO-SDN an IoT solution that applies out-of-band control

Along these lines, we describe the operational components and features of VERO-

SDN framework. The solution aims to improve the communication performance of

29

Evolution of Software-Defined Wireless Sensor Networks

a wide range of IoT applications while reducing the SDN control overhead utilizing

an approach of a separate control channel.

The VERO-SDN framework is an evolution and advancement of the CORAL-SDN

framework [31]. Both frameworks were developed as part of this research endeavor;

nevertheless, CORAL-SDN was the first to set the foundations for the development

of our SDN controller and the grounds to evaluate the early implementations of the

OpenFlow-like network control mechanisms, i.e., topology discovery and routing

control algorithms. Since all of CORAL-SDN mechanisms and functionalities are

inherited, improved, and exhaustively evaluated from VERO-SDN, we will concen-

trate our description on the latter. For clarity, detailed descriptions and informa-

tion about CORAL-SDN can be found in published papers [31] and [29] as well as in

Github repository [86] along with deployment documentation and related videos.

In detail, VERO-SDN natively supports: (i) a separate wireless control channel

that introduces one-hop communication with the SDN controller, through adopt-

ing a double protocol stack and appropriate routing control; and (ii) an SDN pro-

tocol and controller dynamically maintaining the IoT topology based on two novel

topology discovery and two flow control mechanisms. The impact of VERO-SDN

operation is reflected in our extended evaluation (i.e., discussed in Chapter 5), in

terms of packet delivery ratio, network overhead, and end-to-end delivery time.

Fig. 2 gives an overview of VERO-SDN operational structure based on a dual-

radio interface. In detail, it is composed of the following functional entities:

• The VERO-SDN Controller, located in the infrastructure network, constitutes

the heart of the WSN. Operating on a computer system with high computa-

tional power and memory, performs costly computations and equips the WSN

with centralized decision-making features.

• The VERO-SDN Adapter is responsible for communicating control messages

between the Controller and the Border Router (BR). Physically it is located

close to the latter and enables the former to be off-site.

• The BR handles the control messages from and to all other network nodes.

At the same time, acts, if needed, as the WSN sink mote, i.e., for the data

collection scenarios. It supports three interfaces: i) a long-range SubGHz

RF transceiver for the control-plane communication; ii) a short-range 2.4GHz

30

VERO-SDN an IoT solution that applies out-of-band control

Figure 2: VERO-SDN operational framework schema where each node espouses

a dual-radio network interface, for long- and short-range communication.

RF transceiver for the data-plane; and iii) a connection to the SDN adapter

(i.e., currently serial, for simplicity). In order to support very large topologies

and a high number of nodes (e.g., for a smart city deployment), VERO-SDN

protocol is designed to support multiple BR. This feature will be discussed

as part of the protocol’s scalability features in Section 3.7 at the end of this

chapter.

• The Network Nodes are low-power IoT motes that support dual RF transceivers

and a number of sensors and actuators being responsible for the data acqui-

sition and control.

• The Control Channel is responsible for the direct communication between

31

Evolution of Software-Defined Wireless Sensor Networks

all network nodes and the BR through the long-range radio interfaces. The

Control Channel forms a cone graph, where the BR is the universal vertex of

the undirected graph that is adjacent to all other network nodes, or graph

vertices. As such, the optimal position for the BR is in the center of the

network. However, the BR can be placed anywhere in the network terrain, but

within the nodes’ long-range distance. Control messages were intentionally

designed to be small-sized to adapt to the potentially low throughput of the

long-range wireless channel, e.g., 50kbps.

• For the Data Communication Channel, VERO-SDN designates the short-range

radio interfaces at 2.4GHz, where higher data rates, (e.g., 250kbps), are impor-

tant. The Data Communication Channel forms a undirected connected graph,

where messages are transferred to any peer node through multi-hop paths.

3.3 VERO-SDN Architecture

In this section, as in Fig. 3, we elaborate on a high-level representation of the

VERO-SDN solution that consists of three planes, aligned to the typical SDN ar-

chitecture [87]: (i) the Application plane providing high-level network management,

monitoring, and the IoT applications; (ii) the Control plane manipulating abstracted

and logically-centralized anatomy of the infrastructure network through applying

sophisticated network control algorithms; and (iii) the Infrastructure plane cover-

ing the dual network stacks that implement the control and data communication

channels, among the neighbor nodes and the BR.

In the following subsections, we elaborate on the three VERO-SDN planes and

their relevant functionalities.

3.3.1 Application plane

The Application plane monitors and manages VERO-SDN infrastructure from a

high-level viewpoint and enacts as the ground for user-defined IoT applications

utilizing the WSN infrastructure, i.e., through the VERO-SDN northbound API. Ac-

cording to [88], these applications can be classified as: (i) Data collection; (ii) Alerts

and Actions; and (iii) Data Dissemination applications. To demonstrate VERO-SDN

northbound API functionality and the overall protocol operation, we developed our

dashboard and visualization facility, the VERO-SDN Dashboard.

32

VERO-SDN Architecture

Figure 3: VERO-SDN architecture

VERO-SDN Dashboard is a flexible, web-based, and user-friendly GUI for the

overall network monitoring and system management, providing advanced system

visualization and configuration options, as shown in Fig. 4. The Dashboard is

implemented with the Node-RED framework [89], which is based on the Node.js

programming environment. Its functionality is divided into three modules:

• The Network Configuration, which provides a graphical user interface with

a list of network management configuration options and alternative protocol

33

Evolution of Software-Defined Wireless Sensor Networks

setups, e.g., the type of the topology discovery algorithm, the type of the

forwarding rules establishment, or the link quality metric options for the

routing decisions.

• The Network Visualizer providing graphical visualization of the network topol-

ogy along with details about the nodes and links. The network administrator

can observe various network parameters and performance measurements

through the monitoring section of the Visualizer, illustrating as well as eval-

uation results in charts and tables.

• The Node-RED Designer offering a library of pre-implemented Node-RED nodes

and flows that can be wired together, implementing and automating different

network management processes for VERO-SDN. The implementation decision

to develop this module in Node-RED provides extensibility since it offers the

flexibility to add and modify new VERO-SDN features.

Figure 4: VERO-SDN dashboard GUI; left-hand-side, configuration parameters;

right-hand-side, network topology graphical representation

3.3.2 Control plane

The Control plane acts as a hub between the Application and the Infrastructure

planes. It comprises of the VERO-SDN Controller, which constructs and maintains

an abstract representation of the infrastructure network, the Global Network Struc-

ture. This abstract view is an undirected connected graph, which nodes and links

correspond to the network devices and the wireless connections among them, re-

34

VERO-SDN Architecture

spectively. The Global Network Structure is kept at the Network Modeler module

and is updated with information, such as the nodes’ network address and energy

level, or adjacency information to neighbor nodes, e.g., the Link Quality Indicator

(LQI) and the Received Signal Strength Indicator (RSSI) values.

Moreover, VERO-SDN Controller is responsible for the centralized management

of the network’s routing decisions. In particular, it handles the following tasks: (i)

maintains an abstract view of the network through the supported topology control

algorithms; (ii) takes efficient routing decisions and performs dynamic forwarding

rules establishment; and (iii) adjusts the protocol parameters dynamically. VERO-

SDN Controller, through the northbound API, constantly provides the Application

plane with network monitoring information, for example, the Dashboard GUI visu-

alizes the network connectivity graph based on northbound API monitoring mes-

sages. In addition, it receives high-level configuration options and directives, such

as the selection of the link quality estimation metrics exploited from the flow deci-

sion algorithm (e.g., RSSI, LQI, or node’s energy). It actually provides to the network

administrators or to particular intelligent applications with the means to refine the

overall network operation. VERO-SDN Controller is implemented as open-source

software (i.e., [90]) based on the Java programming language. Its modular design

easily accommodates new modules or algorithms, facilitating new functionalities.

3.3.3 Infrastructure plane

The Infrastructure plane is composed of the multi-hop WSN motes. These motes are

either a border router or regular IoT motes. All motes contain two radio interfaces,

operated by the two VERO-SDN network stacks (i.e., the control network and the

data network stacks). Both of them are implemented using the C programming

language, for the Contiki-OS 3.0 [59], and are embedded into the IoT devices’

firmware. In the context of this work, we had to employ the following facilities to

implement mote devices with dual-radio interfaces:

1. Contiki fork with dual-radio features: Since the Contiki-OS does not support

a dual network stack operation in its standard version, we used as a basis a

relevant forked version of it [91]. Moreover, we had to ameliorate the Contiki

core network modules to enable the two network stacks.

2. Zolertia RE-Mote devices upgrade: Although the Zolertia RE-Mote devices

35

Evolution of Software-Defined Wireless Sensor Networks

contain two radio interfaces, in their standard version, they are not designed

to operate at the same time. Applying an upgrade suggested by Zoleria

[92], allowed these motes to become capable of using both radio interfaces

concurrently.

The Data Network Stack consists of the following layers: (i) the IEEE 802.15.4

Physical (PHY) and Media Access Layer (MAC) layers, offering standardized low-

power wireless communication and media access control in the band of 2.4GHz;

and (ii) the VERO-SDN forwarding layer, as a core aspect of our data-plane protocol

maintaining a forwarding table for the data packets. The Control Network Stack

consists of: (i) the IEEE 802.15.4 PHY and MAC layers with standardized low-power

and wireless communication and media access control in the band of 868MHz;

and (ii) the VERO-SDN control layer that manipulates the control messages and

operates the control processes.

In the next sections, we give a detailed description of the VERO-SDN protocol

mechanisms and communication methods.

3.4 Protocol API

Aligned with the SDN paradigm, the VERO-SDN Controller plane communicates

with the Application and Infrastructure planes using a northbound and a south-

bound API, respectively. The communication messages are formed as JavaScript

Object Notation (JSON) text strings, for simplifying the interaction with third-party

IoT applications.

3.4.1 Northbound API

VERO-SDN northbound API offers two categories of communication messages:

• The Configuration Messages that are outbound messages which either set

protocol’s configuration options (i.e., topology discovery algorithm type, flow

establishment type, and link quality estimation metrics), or control the pro-

tocol execution parameters (i.e., start, stop, update, and reconfigure). With

these commands, administrators or IoT applications can have full control

over the protocol’s operation.

• The Monitoring Messages, which are outbound messages used for monitoring

and the evaluation of the network status. They provide constant updates

36

Protocol API

about the network’s connectivity with an abundant number of parameters

(e.g., the nodes’ energy level, the network’s adjacency degree, the connection

links’ quality). The research community may utilize this information and

contribute to applications that enhance further its intelligent network man-

agement capabilities. To this end, we already integrated the Weka machine

learning software tool [93] with the Feature Extractor approach for the link

quality estimation and prediction proposed in [38]. This way, VERO-SDN

is able to establish flows based on predicted LQI. The results of this work

received the eWINE Grand Challenge first runner up award [36]. A further

discussion on this matter is out of this dissertation’s scope.

3.4.2 Southbound API

VERO-SDN southbound API handles the control messages the VERO-SDN Controller

exchanges with the network nodes. It is designed with the condition that the

Controller connects directly with the routing nodes, following a very similar com-

mand set to the OpenFlow SDN protocol. Although it is more complicated than

the northbound API, we intended to keep it as simple as possible, mainly because

simple protocol control messages allow easier maintenance and future extensions.

In Table 3, we enlist the southbound API messages classified into two categories

based on their use in the protocol (i.e., Topology Control and Routing). It is worth

mentioning that the Border Router messages are designed for managing a plethora

of BR nodes, supporting topologies with a high number of nodes.

The southbound messages are transmitted in two phases: (i) at the first stage,

they are JSON messages sent from the Controller’s Ethernet port to the Border

Router’s serial port through VERO-SDN Adapter’s conversion; (ii) at the second

stage, the BR node compacts them by removing the JSON tags and transmits them

through the long-range radio interface to the nodes. The size of these messages is

directly reflecting the protocol’s performance since the long-range radio has a low

throughput. As indicated in Table 3, the maximum payload size in the protocol is in

the Neighbor Response message with 27 bytes. Further details on the southbound

API messages can be found in Appendix B.2.

37

Evolution of Software-Defined Wireless Sensor Networks

Table 3: VERO-SDN Southbound API

Protocol

Operation

Message

Category

Message

Type

Payload

(bytes)

Topology

Control

Border

Router

New Border Router

Solicitation Request
2

New Border Router Registration 6

Node

Discovery

New Node Solicitation Request 6

New Node Response 15

Neighbor

Discovery

Neighbor Request TC-NA 9

Neighbor Request TC-NR 13

Neighbor Response 27

Routing

Missing

Route
Missing Forwarding Rule 14

Add Route
Add Forwarding Rule 23

Replace Forwarding Rule 23

Remove

Route

Remove Forwarding Rule 14

Remove All Forwarding Rules 14

3.5 Network Topology Control Mechanisms

Topology control is an important procedure for the efficient operation of an IoT

network. Its operation is divided into two parts, i.e., the topology discovery (or

construction) and the topology maintenance processes. For the former, VERO-SDN

implements two novel algorithms initially introduced in [29] and adapted to uti-

lize the out-of-bound control channel considered here: (i) the Node’s Advertisement

Flooding (TC-NA); and (ii) the Node’s Neighbors Requests from the Controller (TC-NR).

For the latter, VERO-SDN applies a topology update algorithm that is driven cen-

trally from the Controller and adapts dynamically to the context environment. The

details of such VERO-SDN topology discovery and maintenance processes follow.

3.5.1 Topology Discovery using Node’s Advertisement Flooding (TC-NA)

In Fig. 5, we illustrate a sequence diagram that elaborates on the Node’s Advertise-

ment Flooding topology discovery algorithm. This algorithm acquires the details of

the nodes and links through a topology discovery process the Controller initiates.

In practice, the latter transmits a topology discovery control packet to the BR. The

BR, in turn, is broadcasting a ‘‘Neighbors’ Discovery’’ short-range beacon message

advertising its location to the neighboring nodes in range. The short-range beacon

message, as shown in Algorithm 1 (lines 11 – 15), includes information such as the

38

Network Topology Control Mechanisms

Figure 5: Network topology discovery based on the Node’s Advertisement Flooding

algorithm (TC-NA)

sender’s id, the BR node id that initiated the topology discovery process, as well as

an index number defined by the Controller to identify each topology-discovery-run.

Each receiving neighbor node creates a response message to inform the Controller

for the existence of a link between the beacon node and itself. The total amount of

these messages in one topology-discovery-run is equal to the amount of unidirec-

tional links in the network.

Since the uncontrolled transmission of these messages could potentially flood

the network, especially in dense networks, TC-NA utilizes avoidance mechanisms

that we detail later in this subsection. The ‘‘New Neighbor’’ response message

(i.e., lines 18 – 21 of Algorithm 1) contains the identifications of both nodes as

well as the received signal strength and the link quality estimate. Moreover, it

includes data related to its operation status, e.g., its energy level. The message is

transmitted back to the Controller through the BR using the long-range radio link,

and subsequently, the Controller updates the network topology graph it maintains.

Each node receiving a short-range beacon message participates in the algo-

rithm’s process by re-transmitting a similar beacon message. As such, TC-NA

succeeds in collecting the network information in passive mode and reporting to

the Controller new nodes and links, whenever any node advertises its existence.

The repeated operation gradually detects the whole network. To avoid sending re-

cursively short-range messages backward in the network, TC-NA utilizes the Con-

39

Evolution of Software-Defined Wireless Sensor Networks

troller’s topology-discovery-run identification number (i.e., lines 8 – 9 of Algorithm

1), which is propagated through the beacon messages—this way each node sends

only one beacon message per topology-discovery-run.

Algorithm 1: TC-NA – Topology Discovery using Node’s Advertisement

Flooding

1 tdID← 0; // Initialize topology-discovery-run ID
2 ndi← 0; // Initialize traffic message counter (global)
3 while true do

4 pktR← receive();

5 if pktR.comm is Broadcast and pktR.radio is ShortR then

6 if pktR.type is "ND" then // ND=Neighbors’ Discovery
7 ndi← ndi + 1; // Increase traffic message counter
8 if tdID not equal pktR.tdID then // New topol. discovery
9 tdID← pktR.tdID; // Update topology-discovery-run ID

10 ndi← 1; // Restart traffic message counter
// Retransmit a Neighbors’ Discovery beacon message

11 pktB.type← "ND";

12 pktB.sender← this.nodeAddress;

13 pktB.BRaddress← pktR.BRaddress;

14 pktB.tdID← pktR.tdID;

15 pktB.retDelay← pktR.retDelay;

16 broadcast(pktB, ShortR, pktR.maxD);

17 end

// Respond to BR New Neighbor message
18 pktS.type← "NB"; // NB=New Neighbor
19 pktS.sender← this.nodeAddress;

20 pktS.receiver← pktR.BRaddress;

21 pktS.data← pktR.rssi&pktR.LQI&this.nodeEnergy;

22 unicast(pktS, LongR, pktR.maxD);

23 end

24 end

25 end

26 Thread unicast(pktS, radio, maxD)
27 sleep(rand(maxD));

28 sendunicast(pktS,radio);

29 Thread broadcast(pktB, radio, maxD)
30 sleep(rand(maxD));

31 if ndi <= maxT then // maxT=Maximum Traffic Constant
32 sendbroadcast(pktB,radio);
33 end

The TC-NA operation has similarities to the RPL’s topology discovery algorithm

[15]. The short-range beacon messages act like the RPL DIO control messages, i.e.,

advertising information to the neighbor nodes, whereas the long-range responses

to the BR act similarly to the DAO messages that inform the sink node about the

40

Network Topology Control Mechanisms

existence of new nodes, but with the difference that the long-range responses are

being transmitted in on-hop.

In broadcast-based epidemic algorithms like TC-NA, the multitude of topology

control message re-transmissions can cause the well known broadcast-storm prob-

lem [94]. Despite the fact that TC-NA uses small-sized topology discovery control

messages, such phenomena are still critical for the protocol’s operation and require

appropriate avoidance mechanisms. To alleviate the effect of the broadcast-storm,

TC-NA adopts two mechanisms that regulate the transmission of the topology dis-

covery control messages:

• Each node randomly selects to wait for an equal or less duration of maxD

time, before it propagates either a long-range response message to the BR

or a next short-range broadcast message that advances the topology discov-

ery procedure. The maxD value is an integer parameter representing the

maximum time the nodes suspend the transmission of these messages, in

hundreds of milliseconds (i.e., 1 is equal to 100 ms). The maxD is centrally

configured from the Controller and communicated to the nodes through the

short-range broadcast messages.

• To further reduce the probability of collisions, especially for dense networks,

TC-NA utilizes a maximum transmission suppression threshold value maxT .

Each time a node receives a neighbor’s discovery message, it counts the num-

ber of control messages transmitted from other nodes in its neighborhood,

until it propagates the message. If the counter value exceeds the value of

maxT , the algorithm assumes increased traffic and suppresses the transmis-

sion of the particular broadcast discovery message, i.e., to reduce the con-

gestion. maxT has a default value 10 and is configured dynamically from the

Controller through a specialized long-range broadcast message. This mech-

anism resembles RPL’s DIO flooding re-transmission suppression threshold

value k, in the trickle algorithm.

The maxD and maxT values can be dynamically configured through the Con-

troller, either from the network administrator (i.e., utilizing the application plane

GUI parameters option) as in the current version of VERO-SDN, or in a future

extension utilizing intelligent algorithms that model the impact of these configu-

41

Evolution of Software-Defined Wireless Sensor Networks

ration settings towards a use-case-driven optimization of the protocol’s operation.

For example, in a linear network topology where the broadcast-storm effect is not

intense, the maxD value can be substantially lower compared to a dense grid sce-

nario, which results in improved topology discovery time. Moreover, the utiliza-

tion of two channels reduces significantly, i.e., around in half, the magnitude of

the broadcast-storm problem, since the nodes forward the messages through the

short-range interface, but reply backward through the long-range interface. Fur-

thermore, the minimal message size, as well as the reduced number of control

messages of VERO-SDN, provides additional support towards the mitigation of the

broadcast-storm problem.

Finally, in order to further reduce such phenomena that may also be associated

with large-scale IoT deployments, our solution supports multiple BRs. In addition

to the geographic extension of our solution, the BRs achieve the separation of the

network in smaller control segments.

In our future goals, we plan to improve the TC-NA algorithm towards utilizing

combined control messages. For example, a node may apply short delay periods

when it waits for neighbor nodes advertisements and then transmits one sum-

marised control message.

To sum up, although TC-NA compared to solutions like RPL provides more

flexibility (e.g., a dynamic configuration of the broadcast-storm avoidance variable),

it is less adaptable compared to mechanisms like the one described next, mainly

because it is used for global network discovery only. In Chapter 5, we provide

simulations highlighting the improved performance of TC-NA compared to RPL,

with different network topology scenarios.

3.5.2 Topology Discovery with Node’s Neighbors Requests solicited from the

Controller (TC-NR)

In Fig. 6, we depict the sequence diagram for the topology discovery algorithm

based on the Controller’s direct requests to nodes, i.e., for providing details on

their neighbors. The algorithm carries out the detection of nodes and links in two

phases, as shown in Algorithm 2:

1. The Controller requests from a BR node to broadcast a beacon to all nodes

in range, through the long-range radio. Each time the nodes receive this

42

Network Topology Control Mechanisms

Figure 6: Network topology discovery with Node’s Neighbors Requests solicited

from the Controller (TC-NR)

solicitation message, they respond with long-range unicast messages to the

BR, (i.e., a new node registration message, lines 3–10 of Algorithm 2).

2. The Controller iterates through the list of newly registered nodes and initi-

ates the neighbor discovery process by sending a long-range control mes-

sage to each one of the new nodes, i.e., through the BR. To avoid the con-

gestion caused by the responses from the neighbor nodes, the Controller

regulates their rate using a first-come-first-serve policy and applies a delay

timer dt, dynamically adjusted to the long-range radio medium traffic. In de-

tail, the Controller monitors the number M of responses received in periods

of p = 50 ms and when the traffic increases above a threshold suppression

value st, it increases the dt value by an offset value. To avoid impulsive

reactions, it uses an Exponential Moving Average (EMA) for smoothing and

redeeming abrupt changes of the monitored data. The EMA is a weighted

moving average filter that gives more importance to the most recent data

observations. We convey the EMA at any given time period pt in Equation

(1), with n = 10 denoting the lag parameter.

EMA(pt) =
2

n+1
M(pt)+

n−1
n+1

EMA(pt−1) (1)

The dt timer is calculated based on Equation (2) with default configuration

43

Evolution of Software-Defined Wireless Sensor Networks

of offset = 50 ms and threshold suppression value of st = 3.

dt =


(dt +offset) if EMA(p) > st

dt otherwise
(2)

The above default configuration is successfully tested through simulated

scenarios with different topologies in Chapter 5, however it can be further

fine-tuned from the Controller to improve the topology discovery time with

use-case-driven strategies (e.g., align the configuration to the node density).

Each receiving node broadcasts a beacon message to all of its neighbor nodes

using the short-range radio interface (i.e., lines 11–19 of Algorithm 2). Each

adjacent node that receives the beacon responds to the Controller with a

long-range unicast packet, containing information about the identification

and status of the node (i.e., lines 20–28 of Algorithm 2). The Controller

updates the network topology graph, accordingly. To avoid a collision in

the responses from all neighbors, TC-NR utilizes a delay timer mechanism

configured from the Controller (lines 30–35 of Algorithm 2), likewise as the

one used from TC-NA.

TC-NR is a centralized topology discovery algorithm collecting the network in-

formation in an active mode, i.e., through individual requests to the nodes from the

Controller. This novel approach fits naturally with the SDN paradigm and exploits

the advantages of our out-of-bound network control approach. Although it uses

a higher number of control messages compared to TC-NA, its notable strength is

its flexibility due to the novel advancements the centralized network control brings

to the operation of the protocol, as shown in our evaluation results. For example,

the algorithm can send targeted topology requests on specific nodes or parts of the

network, as many times as needed, without overloading the rest of the network

with unnecessary topology control packets (i.e., topology discovery in specific net-

work areas that undergo frequent dynamic topology changes). The investigation of

TC-NR in mobile environments is an important issue that described in Chapter 4.

3.5.3 Topology Maintenance

The topology maintenance process retains the network topology representation up

to date. Its main task is to have a vivid perception of the network’s connectivity

44

Network Topology Control Mechanisms

Algorithm 2: TC-NR – Topology Discovery with Node’s Neighbors Requests

solicited from the Controller

1 while true do

2 pktR← receive();

// Respond to BR New Node message
3 if pktR.comm is Broadcast and pktR.radio is LongR then

4 if pktR.type is "NN" then // NN=New Node Solicitation
5 pktS.type← "NN"; // NN=NewNode
6 pktS.sender← this.nodeAddress;

7 pktS.receiver← pktR.BRaddress;

8 unicast(pktS, LongR, pktR.retDelay);

9 end

10 end

// Transmit a Neighbors’ Discovery beacon message
11 if pktR.comm is Unicast and pktR.radio is LongR then

12 if pktR.type is "ND" then // ND=Neighbors’ Discovery
13 pktB.type← "ND";

14 pktB.sender← this.nodeAddress;

15 pktB.BRaddress← pktR.BRaddress;

16 pktB.retDelay← pktR.retDelay;

17 broadcast(pktB, ShortR, 0);

18 end

19 end

// Respond to BR New Neighbor message
20 if pktR.comm is Broadcast and pktR.radio is ShortR then

21 if pktR.type is "ND" then // ND=Neighbors’ Discovery
22 pktS.type← "NB"; // NB=New Neighbor
23 pktS.sender← this.nodeAddress;

24 pktS.receiver← pktR.BRaddress;

25 pktS.data← pktR.rssi&pktR.LQI&this.nodeEnergy;

26 unicast(pktS, LongR, pktR.retDelay);

27 end

28 end

29 end

30 Thread unicast(pktS, radio, maxDelay)
31 sleep(rand(maxDelay));

32 sendunicast(pktS,radio);

33 Thread broadcast(pktB, radio, maxDelay)
34 sleep(rand(maxDelay));

35 sendbroadcast(pktB,radio);

structure by balancing the topology discovery time interval in such a way that

avoids the excess of node discovery control messages. While the topology mainte-

nance is of paramount importance for the network QoS, its optimal operation is

rather challenging, especially for networks with dynamic topologies.

Distributed protocols, like RPL, manage the frequency of topology discovery

45

Evolution of Software-Defined Wireless Sensor Networks

control messages, with the trickle timer algorithm [15]. The trickle timer, in or-

der to reduce the control traffic overhead, continuously decreases the frequency of

sending those messages, unless neighboring nodes are not responding anymore, or

when it detects inconsistencies in the protocol version numbers. The algorithm’s

configuration parameters (Imin and Idoubling) dictate the time intervals between topol-

ogy discovery processes, starting from the Imin value up to Imin× 2Idoubling. Such a

mechanism is oriented to fixed topologies and leads to extensive overhead during

frequent network topology changes [47].

Exploiting the centralized control approach and moving towards relevant novel

practices, VERO-SDN applies efficient topology maintenance, coordinated entirely

from the Controller. The interval of invoking the global topology discovery processes

is determined by the Controller’s topology refresh time parameter TRt. The TRt

value is an integer number representing in minutes the interval between topology-

discovery-runs, and its value is configured from the administrator through the

VERO-SDN Dashboard GUI. For static network topologies, like the ones we evaluate

in Section 5.1, the default configuration value is TRt = 9 min. We selected this

configuration as the rounded mean value between the RPL’s Imin and Imax values,

for Imin = 12. Lower values lead to more frequent topology-discovery-runs that

result in a timely representation of the network, but with an excessive number of

control messages, while larger values lead to the opposite behavior.

To adapt the topology maintenance process to networks with frequent topology

changes, VERO-SDN can utilize interchangeably or simultaneously the topology

discovery algorithms mentioned in the previous sections (i.e., imposes frequent TC-

NR topology requests to dynamic nodes or network areas, instead of continuously

flooding the network with frequent global TC-NA requests). This targeted approach

can regulate the number of control messages needed to achieve a vivid picture of

the network’s topology, especially in networks where topology changes dynamically.

More details of this hybrid strategy that avoid overloading the network with control

data will be discussed in the next chapter in Section 4.1.2 as part of the polices

used to mitigate topology changes of mobile networks.

The effective operation of the VERO-SDN topology control mechanisms is inter-

twined with the robust operation of the network as subsequent operations such

46

Network Routing Mechanisms

as the routing rely entirely on the accuracy of the representation of network con-

nectivity. As we detail in Chapter 5, the use of the centralized SDN approach, in

combination with the utilization of the out-of-bound control channel, are the main

reasons for the accuracy, flexibility, and reduced control messages of VERO-SDN

topology control mechanisms.

We point out that VERO-SDN topology discovery and maintenance mechanisms

provide a groundbreaking framework for ongoing research on intelligent solutions

that predict or recognize the behavior of a node or a network area, (i.e., mobile

nodes, or troublesome network areas), utilizing the centralized panoramic view of

the network and the novel topology control algorithms. More details on that matter

we describe in Section 4.1.3.

In the next section, we elaborate on VERO-SDN network control mechanisms

related to routing and flow establishment.

3.6 Network Routing Mechanisms

The network Routing process determines the end-to-end paths from source to des-

tination nodes, with the requirements of achieving low delays or resource utiliza-

tion, avoiding loops and deadlocks, as well as providing alternative paths. Network

packets advance from one node to the next utilizing the node’s flow forwarding

control mechanism, whereas the Forwarding or Routing table constitutes the key

instrument of this mechanism. This table contains the flow rules in tuples of

Destination and Next Hop node addresses. VERO-SDN Infrastructure plane main-

tains one table in each node, which is implemented as a dynamically linked list

structure. Its maximum size is configured centrally from the Controller based on

the characteristics of the IoT environment (i.e., size of the topology and physical

memory limitations in the motes).

The quality of a routing protocol is strongly related to the flow rule expiration

mechanism. This mechanism decides which flow rules are going to be removed from

the forwarding table to provide space for new rules or to allow the replacement of

the former with more suitable ones. Most of the routing protocols employ a ranking

parameter in the forwarding table for each flow rule. The value of this parameter

is based on metrics that include the usage frequency of the rule, or a fixed Time

To Live (TTL) value that is being periodically reduced by a time factor. VERO-SDN

47

Evolution of Software-Defined Wireless Sensor Networks

flow rule expiration mechanism is handled entirely by the Controller, using the last

three southbound API commands outlined in Table 3. By moving the intelligence

of this mechanism to the Controller, we elevate its flexibility and quality of decision

making, as its operation is blended with other network processes, like the topology

maintenance tuning the control message overhead trade-off.

The flow establishment process represents the mechanism that constructs and

maintains the forwarding table. The routing protocols can be classified into Reac-

tive, Proactive, and Predictive, depending on the adopted flow establishment oper-

ation approach:

• The Reactive routing establishes forwarding rules using a route discovery pro-

cess that locates an available path between two nodes (i.e., the Lightweight

On-demand Ad-hoc Distance-vector routing protocol LOADng [95]). This pro-

cess is activated when a node attempts to transmit data packets to an un-

known destination. The main drawback of the reactive routing is the poten-

tially increased time to establish a new route.

• The Proactive flow establishment proposals usually build a tree of connected

nodes considering one node as the root node, i.e., the sink node. For exam-

ple, RPL is a proactive protocol that builds DODAG using distance vectors.

Although DODAG offers efficient routing paths from any node to the sink

node, they fail to create efficient node-to-node paths from any to any other

node, especially when these nodes are at the network edge. Moreover, it

establishes and maintains routes that may not be used for long periods.

• The Predictive routing characterizes emerging flow establishment techniques

that attempt to reduce the negative effects of the previous two approaches.

They are utilizing intelligent decision-making modules (i.e., neural networks

[96]) that predict communication requirements among nodes and set up

proactively the routing paths. However, these techniques require substantial

processing power and data monitoring from multiple sources. To this end, we

argue that the SDN approach is an enabling technology for Predictive routing,

since it offloads the network intelligence to the infrastructure network, i.e.,

providing excessive computational power, while maintaining a global view of

the network.

48

Network Routing Mechanisms

Although VERO-SDN, due to its inherent flexibility derived from the SDN paradigm,

can potentially adopt any variation of the above techniques, we introduce two flow

establishment methods: (i) one reactive that is aligned to the OpenFlow protocol;

and (ii) one hybrid that combines reactive and proactive characteristics. For exam-

ple, when a node attempts to send a message to a destination address that does

not exist in its forwarding table, it transmits a miss of forwarding flow rule request

to the Controller through the southbound API, as defined in Table 3. The Controller

selects the best path by making use of the Dĳkstra algorithm [97] applied on the

Global Network Structure connectivity graph, considering as link weights a number

of parameters collected during the topology discovery process. These parameters

include the signal strength, the link quality, the number of hops, or the node’s

energy. The Controller responds to the requesting node with a flow rule establish-

ment control message. To this regard, VERO-SDN protocol provides two methods

for flow rule establishment, i.e.,next-hop only (FE-NH) and complete path (FE-CP)

flow rule establishment described in the next subsections.

3.6.1 Next-hop only flow rule establishment

The Next-hop only flow rule establishment method instructs the Controller to inform

the node with its own forwarding flow rule only, i.e., to reach just the next node.

In case the forwarding table of the next node misses the forwarding rule as well,

the process is repeated.

For example, in Fig. 7, we depict a simple network scenario with four nodes and

a BR in three consecutive transmission cases, with the assumption that initially,

all forwarding tables are empty:

1. Data message (3→ 5): For a data packet transmission request from node 3 to

5, node 3 reports to the Controller with a missing-route request, and receives

back an add-route response. The response is recorded into the forwarding

table and the data packet is forwarded to the next node 4. Since node 4

has no routing information, the previous process is repeated and the data

packet is transmitted successfully to node 5.

2. Data message (2→ 5): In this case, the forwarding tables of nodes 3 and 4

already know how to handle a message to node 5. As a result, the missing-

route request is issued only from node 2.

49

Evolution of Software-Defined Wireless Sensor Networks

Figure 7: Three examples of VERO-SDN Next-hop only flow rule establishment

(FE-NH) in steps

3. Data message (2→ 4): In the third case, we observe a request to a new

destination, node 4. As in the first case, the nodes involved one by one issue

missing-route requests and their forwarding tables are updated accordingly

with new records.

The FE-NH method resembles the OpenFlow flow establishment process. Its

main drawback is the high end-to-end delay, especially when the network is in the

initial phase and all nodes issue missing route requests. However, as we see in the

second example above, the problem is alleviated when the network has previously

50

Network Routing Mechanisms

established forwarding routes.

3.6.2 Complete Path flow rule establishment method

The Complete Path flow rule establishment method operates similarly to the pre-

vious one when a node issues a route miss request, but its response differs. The

Controller, after the selection of the best path, proactively informs all the interme-

diate nodes participating in the routing path.

Figure 8: Three examples of VERO-SDN Next-hop only flow rule establishment

(FE-CP) in steps

For example, for the same network with the previous subsection in Fig. 8, we

observe that in the first transmission 3→ 5, the first missing-route request from

51

Evolution of Software-Defined Wireless Sensor Networks

node 3 results add-route responses to all of the nodes that participate in the path,

i.e., nodes 3 and 4. In this case, the network transmits one less missing route

control message than the FE-NH method. However, in the second case 2→ 5, we

observe that FE-CP results two additional add-route responses to nodes 3 and 4

that is not required as both nodes’ forwarding tables are already updated.

With FE-CP, the Controller maintains absolute control over the entire route,

with the drawback of sending more control packets. This method is crucial for

network installations that require traffic prioritization communication paths. For

example, an IoT network in a harsh working environment may require setting up

specific priority flows, e.g., for the prevention of an accident.

VERO-SDN manages to operate the above mechanisms successfully based mainly

on the stability through direct communication provided by the out-of-bound con-

trol channel between the Controller and the network nodes. In addition, the Con-

troller’s ability to establish efficient routing paths in every direction, considering

the WSN specificities, confirms that VERO-SDN is capable of operating in various

applications utilizing any communication model (i.e., many-to-one, one-to-one, or

one-to-many).

3.7 VERO-SDN Scalability extensions

IoT applications typically require large-scale deployments in terms of device num-

bers and geolocation. However, this is a major challenge for centralized solutions

like SDWSNs. On the one hand, the distance of the Controller from the nodes af-

fects the response time of control messages, and on the other hand, the number of

devices that the Controller can concurrently support sets a ceiling to the network

size.

To overcome these challenges, we propose the deployment of multiple BRs,

which are acting as a neighborhood provosts and balance the control messages

load by splitting the network into smaller groups of nodes. This architectural

choice naturally fits VERO-SDN framework, due to the fact that this solution also

extends the network deployments beyond the maximum communication range of

the long-radio channel.

Fig. 9 depicts the extended multi-BR VERO-SDN framework that illustrates two

BRs, the green node 1 and the red node 2 serving the network nodes in each

52

VERO-SDN Scalability extensions

Figure 9: Multiple Border Routers Framework

control area. In detail, we enhance the VERO-SDN Controller to support many BR

nodes connected through low latency infrastructure lines, i.e., fiber-optics or fast

Ethernet connections, to avoid delays in the propagation time of control messages.

For sites that require wireless communication due to landscape or infrastructure

reasons, wireless connections such as 5G can be used instead. The positions of the

BRs require planning from the administrator to achieve maximum coverage with

a minimum number of BRs. Moreover, we enhance each southbound API control

message by including a BR identification number. This way, each node registers to

one BR, and each BR is responsible for the nodes in its long-range radio coverage

area. In areas where more than one long-range radio signal of BRs overlaps, the

nodes register to the BR node that reaches them first during the topology discovery

process.

The above enhancements allow VERO-SDN to be deployed in large-scale geo-

graphical areas maintaining robust communication for the control messages. For

example, considering that each BR supports 100 nodes (e.g., in Chapter 5 we con-

duct successfully experiments with 90 nodes on one BR) with 10 BR we can support

networks with 1000 nodes. Theoretically, the protocol is designed to support 100

BRs, but such large-scale deployments are considered outside of the dissertation

goals. Concluding, very-large-scale deployments of SDWSNs is an open research

area, and we suggest as future VERO-SDN extensions, the formation of hierarchical

53

Evolution of Software-Defined Wireless Sensor Networks

BR structures, or the operation of distributed Controllers.

This chapter has presented our proposed mechanisms and methods that evolve

WSNs towards the IoT environments. We elaborated on the architectural decisions

that amalgamate the SDN paradigm with Low power and Lossy WSNs using a

separate long-range wireless channel enabling one-hop communication with the

SDN Controller. The discussed algorithms and methods are implemented under

an SDWSN framework VERO-SDN, while the resulted improvements en route to

the initial challenges defined in Chapter 1 will be discussed in Chapter 5. In

the next chapter, we demonstrate architectural enhancements and mechanisms

that advance the VERO-SDN solution towards mobile and heterogeneous network

environments.

54

4 Evolving SDWSNs in Mobile and Heterogeneous en-

vironments

Among the challenges we described in Chapter 1, mobility is prominent as a sine

qua non for the emerging Mobile Internet of Things (MIoT) applications, including

monitoring and tracking systems for a plethora of everyday human activities, in-

cluding sports, entertainment, and healthcare [98], [99]. Such scenarios are char-

acterized by constant changes in their physical topology, constituting challenging

environments for the network routing protocols.

Moreover, heterogeneity, a common characteristic among IoT applications, un-

dermine the deployment of WSNs, especially on a large scale, such as smart-city

applications [100]. It is mainly caused by the diversity of hardware devices, the lack

of turnkey solutions and the absence of standardization. To handle heterogeneity

in an SDN context requires carefully designed abstractions to hide heterogeneity

and allow devices to export common features to the higher control and application

planes.

In this chapter, we propose two functional frameworks and their architectural

planes, followed by a detailed description of the proposed mechanisms that realize

the SDWSN platforms that aim at providing elasticity for heterogeneous and/or

mobile IoT deployments. More precisely, we propose:

• SD-MIoT [34] an SDWSN solution that improves network operation and per-

formance under mobility, described in Section 4.1, and

• MINOS [35] a Multi-protocol SDN platform for IoT that adapts the IoT network

to the application requirements by deploying on-demand the appropriate net-

work protocol while considering the constraints and required abstractions for

elastic network management and optimized routing over heterogeneous IoT

nodes, presented in Section 4.2.

4.1 SD-MIoT: a Mobility aware SDWSN for IoT

WSN protocols, such as RPL [15], are mainly focusing on data collection appli-

cations with static network nodes. Consequently, they appear inadequate for IoT

and their emerging applications, characterized by a diverse range of communica-

55

Evolving SDWSNs in Mobile and Heterogeneous environments

tion patterns and mobility. As we commented in Chapter 2, solutions that attempt

to improve RPL’s efficiency in mobile environments are impaired by its original ar-

chitecture. Additionally, in our knowledge, none of the available SDWSN solutions

consider WSN scenarios with mobility characteristics.

Along these lines, we propose the SD-MIoT framework (Fig. 10) aiming to ad-

dress the challenges that mobility brings to WSNs, including instability, control

overhead and performance issues. Aligned to the SDN paradigm, SD-MIoT decou-

ples control complexity from the network protocol and offloads it to a modular SDN

Controller deployed at the surrounding fixed infrastructure. The SD-MIoT Controller

implements programmable topology and routing control striving for improved QoS

through robust packet delivery as well as reduced control overhead for WSNs with

mobile nodes. At the infrastructure layer, it operates an OpenFlow-like protocol

improving the quality of communication through supporting alternative topology

discovery and flow establishment mechanisms adapted to the needs of a wide range

of mobile WSN scenarios.

SD-MIoT is an open-source software [101] designed and implemented utiliz-

ing our earlier experience in SDWSN protocol design and development, gained

from VERO-SDN framework described in the previous chapter. In particular, SD-

MIoT inherits from VERO-SDN the novel SDN centralized architectural character-

istics, including out-of-band control communication and its infrastructure plane

mechanisms. Consequently, SD-MIoT builds up on the significant advantages of

VERO-SDN in terms of reduced control overhead, robust operation, and support

of alternative IoT application requirements. It suggests new innovative ideas and

solutions that contribute to the transformation of traditional WSNs to solid infras-

tructure mediums for MIoT applications, including the Mobility Control Component

(MCC) and the MObility DEtection (MODE) algorithm, briefly described below.

MCC is an SD-MIoT Controller module aiming for better support of network

scenarios with mobile nodes. It adopts hybrid strategies for the fixed and mo-

bile nodes, including: (i) diverse topology discovery algorithms to the mobile and

static parts of the network, based on an up-to-date representation of the network,

achieving reduced control overhead; (ii) routing prioritization policies considering

the nodes’ mobility status for the establishment of robust data packet forwarding

56

SD-MIoT: a Mobility aware SDWSN for IoT

Figure 10: SD-MIoT operational framework schema

paths; and (iii) dynamically blending of reactive and proactive routing flow estab-

lishment techniques to maintain flow-rule establishment timeliness, especially for

the mobile motes that avoid packet-loss and routing loops, elevating Packet Deliv-

ery Ratio (PDR) and QoS.

The MODE algorithm applies data analysis and classification methods (i.e.,

the K-means algorithm [102]) on adjacent matrices generated from the network’s

connectivity graph to passively detect which nodes are moving and which are static,

at any given time. It operates at the application plane; as such, its outcome, apart

from an essential input for our MCC mechanisms, can be further used from third-

party IoT applications or other SDN controllers. To our knowledge, MODE is the

first attempt towards a smart decision-making algorithm that passively detects the

57

Evolving SDWSNs in Mobile and Heterogeneous environments

network’s mobility behavior, based on an SDN framework.

In the following subsections, we describe in detail the SD-MIoT architecture,

mechanisms, and operation.

4.1.1 SD-MIoT Architecture

Fig. 11 depicts a high-level view of SD-MIoT architectural structure with its basic

components and interfaces, marking as yellow its novel mobility handling func-

tionalities. Aligned to the typical three-tier SDN paradigm [87], it consists of the

following planes, described bottom-up as follows:

Figure 11: SD-MIoT architecture

1. Infrastructure plane is comprised of regular and border-router IoT motes.

SD-MIoT utilizes out-of-band radio network control through the VERO-SDN’s

58

SD-MIoT: a Mobility aware SDWSN for IoT

[32] dual network stacks for control and data communication channels, of-

fering standardized low-power wireless communication and media access

control through the IEEE 802.15.4 Physical and Media Access Layers. The

network layer operates four alternative protocol mechanisms: (i) two network

topology discovery algorithms, the Node’s Advertisement Flooding (TC-NA)

algorithm, that implements a global network discovery based on a node-to-

node broadcast advertisement process, and the Node’s Neighbors Requests

solicited from the Controller (TC-NR) algorithm, that acquires connectivity

information through targeted requests from the SDN controller to specific

nodes or network areas; and (ii) two types of flow-rule establishment pro-

cesses able to either configure only the Next Hop (FE-NH) of the node’s for-

warding table or the Complete end-to-end Path (FE-CP), configuring the for-

warding tables of all nodes participating in the path. We note that SD-MIoT

infrastructure plane is inherited from the VERO-SDN protocol, described in

detail in Chapter 3, i.e., SD-MIoT builds up on VERO-SDN’s robust and with

reduced overhead network control capabilities. The latter is utilized from

novel mobility handling mechanisms. The firmware of IoT devices is imple-

mented in C programming language for Contiki-OS 3.0 [59], either operating

in real test-beds or the Cooja emulator.

2. Control plane maintains the SD-MIoT Controller that manipulates the ab-

stracted anatomy of the infrastructure network and utilizes sophisticated

Network Control Algorithms, acclimatized to mobile WSN environments. In

particular, it handles the following tasks: (i) maintains an abstract view of

the network connectivity, the Network Graph, through the Network Modeler

module using a hybrid topology discovery process adapted to mobile topolo-

gies, using two kinds of topology discovery algorithms (i.e., local and global);

(ii) performs network routing and flow control decisions utilizing proactive

and reactive flow establishment methods; (iii) adjusts the data-plane pro-

tocol parameters dynamically; and (iv) incorporates a variety of cross-layer

connectivity information, like RSSI and LQI. The Controller’s adaptation

within the mobility context is orchestrated from the MCC module, described

in detail in the next subsection. The SD-MIoT Controller is implemented in

59

Evolving SDWSNs in Mobile and Heterogeneous environments

Java, and it is designed in a modular, scalable approach, i.e., also support-

ing multiple BR motes that accommodate new algorithms and intelligent

functionalities in a straightforward manner.

3. Application plane provides IoT applications (i.e., Data Collection, Alerts and

Actions, or Data Dissemination [88]), high-level network management and

monitoring (i.e., the SD-MIoT Dashboard, a highly flexible GUI), and the in-

telligent MODE module passively detecting, in real-time, the moving network

nodes, discussed in Section 4.1.3.

The SD-MIoT planes communicate through the northbound and southbound

API using JSON messages, which detailed technical specifications are provided in

[101].

In the next two subsections, we describe each of the MCC and MODE mobility

handling mechanisms separately, due to their significance in the operation of SD-

MIoT.

4.1.2 MCC: Mobility Control Component

Here, we introduce the Mobility Control Component (MCC) that augments SDN Con-

troller with mobility-aware features, i.e., to address the stability and performance

issues due to physical topology changes. MCC module applies protocol control poli-

cies that differentiate between fixed and mobile nodes, dynamically adapting SD-

MIoT topology discovery and flow establishment processes to particular network

conditions. In detail, MCC applies three policies, i.e., Mobility Topology Discov-

ery, Mobility Routing Prioritization, and Mobility Flow-rules Establishment, detailed

below.

4.1.2.1 MOB-TC: Hybrid Dynamic Topology Discovery in Mobile Environ-

ments

This policy aims at a mobility-friendly topology monitoring process that maintains

a vivid and up-to-date representation of the network’s connectivity, notwithstand-

ing the dynamic changes imposed by the moving nodes. The Mobility Topology

Discovery policy is implemented from the Mobility Topology Discovery (MOB-TD)

algorithm. The main concept of this algorithm is the early topology change detec-

tion using frequent topology maintenance requests to mobile nodes only, avoiding

60

SD-MIoT: a Mobility aware SDWSN for IoT

overloading the rest of the network with control messages.

In Algorithm 3, we depict the main steps of MOB-TD operation. MOB-TD uti-

lizes interchangeably the topology discovery algorithms mentioned in the previous

chapter, i.e., TC-NA (Algorithm 1) and TC-NR (Algorithm 2). In detail, is carrying

out infrequent global topology discoveries using TC-NA, i.e., for the static part of the

network, and frequent local topology discoveries using TC-NR, i.e., for the mobile

part only.

The interval of invoking the global topology discovery processes is determined

by the Controller’s topology refresh time parameter TRt. The TRt value is an integer

number representing, in minutes, the interval between topology-discovery-runs

and its value is configured from the administrator through the Dashboard GUI.

The TRt parameter of TC-NA is configured considering the requirements of a fixed

network.

In the interval between the global topology detection processes, MOB-TD exe-

cutes local network topology-discovery-runs to realize the dynamic changes caused

by mobility, using the TC-NR algorithm. In practical terms, the latter requests the

adjacent nodes for the moving nodes only. This targeted approach requires the

prior knowledge of the nodes’ characteristics (e.g., whether they are mobile or

fixed) as well as the targeted topology refresh rate TTRr, expressing the number of

targeted TC-NR requests within a TRt interval. In detail, the TTRr parameter ac-

cepts values from 1 to 10. The interval of these targeted topology refresh requests,

in seconds, is expressed in Equation (3).

TTRt =
60 ·TRt
TTRr

(3)

The administrator can configure the TTRr value through the Dashboard GUI to fur-

ther optimize the topology maintenance process based on various factors, e.g., the

number of mobile nodes or their speed. This hybrid strategy avoids the overloading

of the network with unnecessary control data for the fixed areas of the network.

The prerequisite for the operation of MOB-TD is the awareness of mobile nodes.

We comply with this need by introducing the MODE algorithm, i.e., detailed in

Section 4.1.3.

61

Evolving SDWSNs in Mobile and Heterogeneous environments

Algorithm 3: MOB-TD – Mobility Topology Discovery

Input: TRt - global topology refresh time

Input: TTRt - local (mobile) topology refresh time

Output: G - Network Connectivity graph structure

1 while true do

2 sleep(TTRt); // wait for TTRt seconds

// retrieve list of mobile nodes from MODE (Algorithm:4)

3 mobN←MODE(G,5);
4 if isExpired(TRt) then // global topology discovery

5 G←TC_NA(); // call TC-NA [29]

6 else // local topology discovery for mobile nodes

7 foreach element m in mobN do

8 G←TC_NR(m); // call TC-NR [29]

9 end

10 end

11 end

4.1.2.2 Routing Prioritization for Mobile Environments

SD-MIoT takes advantage of the SDN paradigm and its unique routing decision-

making capabilities. Utilizing the Controller’s computational resources, it is capa-

ble of analyzing the network connectivity graph with exhaustive search algorithms,

e.g., Dĳkstra, and a multitude of weighted-parameters (i.e., RSSI, LQI, or node’s

energy). As such, we enhance SD-MIoT with a routing prioritization policy that

considers mobility as an important routing criterion, i.e., to make efficient routing

decisions in mobile IoT contexts. In detail, it gives routing priority to the fixed nodes

over mobile nodes, taking into account the node type (i.e., fixed or mobile). As a

result, it gives a low priority to data-message forwarding through mobile nodes,

mitigating the adverse effects that mobile nodes can cause to the data packet deliv-

ery, as shown in the next chapter. This policy favors network installations where

the majority of nodes are fixed, like the two use-case scenarios described in Sec-

tion 5.3.1. In case there are no fixed points available in the node’s range, the

Controller decides based on the next available rule (e.g., RSSI). Since this aspect

deserves further analysis, it is part of our future plans described in Chapter 6.

4.1.2.3 Reactive and Proactive Flow Establishment

To further align SD-MIoT operation to mobile network environments, MCC proposes

enhanced flow-rule establishment processes, manipulating the forwarding table of

62

SD-MIoT: a Mobility aware SDWSN for IoT

the nodes. In a nutshell, it implements a routing policy that employs a combination

of reactive and proactive flow establishment mechanisms.

In Reactive routing path establishment protocols, e.g., OpenFlow [22] or Lightweight

On-demand Ad-hoc Distance-vector routing protocol LOADng [95], a next-hop de-

cision process is activated (e.g., a miss-route message to an SDN controller and

a relevant response) each time a node initiates a data packet transmission to an

unknown destination. These protocols achieve point-to-point communication be-

tween all nodes, with the main drawback being the delay in establishing a rule for

the first time. In static networks, this is not a significant disadvantage, since such

rules do not frequently change. Nonetheless, they are not suitable for dynamic net-

work environments, because outdated flow-rules in forwarding tables reduce the

network PDR, while a frequent forwarding rule establishment increases end-to-end

delay time and control messages overhead.

Proactive routing protocols, including RPL [15], build a tree of connected nodes

using distance vectors (i.e., Destination Oriented Directed Acyclic Graphs – DODAGs),

where nodes maintain paths through their parent node towards a root (or sink)

node. Such protocols operate efficiently and achieve low end-to-end delays, when

the data are always routed to known and predetermined destinations, while they

fail to create optimal point-to-point paths between nodes, because of complexity is-

sues. Moreover, in dynamic environments, although they can actively refresh their

routing tables by adjusting the protocol’s timers (e.g., the reverse trickle timer [69]),

the protocol overhead is substantially increased.

The Mobility Flow-rules Establishment policy exploits the advantages of both

methods, utilizing them interchangeably based on the nodes’ mobility behavior.

As such, it applies a reactive flow-rule establishment for fixed nodes, while mo-

bile nodes update their forwarding table proactively, whenever there is a topology

change. The result is a rigorous routing mechanism that avoids data packet loss

and routing loops due to obsolete flow-rules, while maintaining a high PDR. We

argue that such versatile mechanisms are enabled by the flexibility and centralized

view that SD-MIoT brings in Mobile IoT environments.

In Chapter 5, we demonstrate through simulations the significant improve-

ments of MCC policies, in terms of successful packet delivery and reduced amount

63

Evolving SDWSNs in Mobile and Heterogeneous environments

of control messages. However, MCC operation heavily depends on the accurate

identification of mobile nodes. In this respect, we present in the next section, a

novel mechanism capable of identifying the moving nodes in a network.

4.1.3 MODE: Mobility Detection for Mobile Internet of Things

To support the mechanisms of MCC module, we design, implement, and evaluate

a novel application plane component, the MObility DEtector (MODE). MODE sepa-

rates in real-time fixed from mobile nodes using cluster-analysis. Particularly, it

applies the K-means data-mining vector-quantization method on a time-series col-

lection of network adjacency matrices provided by the Controller’s Network Modeler

module through the northbound API (Fig. 11), i.e., as snapshots of the network’s

connectivity graph data-structure.

4.1.3.1 The Concept of Transition Matrices

To further elaborate on MODE, we consider the following simple network of four

nodes (i.e., three fixed and one mobile), as shown in Fig. 12. A snapshot of the

network’s connectivity map at a given time t is represented by a graph Gt(V,E),

with V vertices representing the network nodes and E edges representing the radio

links. The Mobility Modeler module of the Controller (Fig. 11) converts each Gt(V,E)

into a two dimensional symmetric V ×V matrix, defined from the graph theory as

the Adjacent matrix At of G. Each At(i, j) element contains values of zero and one as

in (4).

At(i, j) =


1 ∀i, j ∈V if i, j are connected (edge)

0 otherwise
(4)

To designate the network connectivity changes, we monitor a series of the n most

recent Adjacent matrices {At−(n−1), ...,At−1,At }. To realize the amount of connectivity

changes for each node, at a given time t, we calculate a set of two-dimensional V×V

square matrices, the Transition matrices {Tt−(n−2), ...,Tt−1,Tt }, as the subsequent

subtractions in absolute values of the n Adjacent matrices, in pairs of consecutive

times, as in Equation (5).

64

SD-MIoT: a Mobility aware SDWSN for IoT

Tt =‖At−At−1‖

Tt−1 =‖At−1−At−2‖
.
.
.

Tt−(n−2) =
∥∥∥At−(n−2)−At−(n−1)

∥∥∥
(5)

The Transition matrices, over time, serve as memory snapshots that depict all

network topology changes and constitute the primary data input for the MODE

decision-making process.

For example, as exemplified in Fig. 12, node 4 at time t = 1 is connected to

node 2 and then moving from left to right at time t = 2, disconnecting from node 2

and connecting to node 3. The Transition matrix of this example, at time t = 2, is

marked as T2 and calculated in (6).

Figure 12: Simple mobility detection scenario example

T2 =

∥∥∥∥∥∥∥∥∥∥∥∥

At=2
0 1 1 0
1 0 1 0

1 1 0 1

0 0 1 0

−
At=1

0 1 1 0
1 0 1 1

1 1 0 0

0 1 0 0


∥∥∥∥∥∥∥∥∥∥∥∥
=


0 0 0 0
0 0 0 1

0 0 0 1

0 1 1 0

 (6)

We are now analyzing matrix T2 per row. Each row represents the connectivity

changes of one node (i.e., first row for node 1, second row for node 2, etc.). In the

first row, all elements have a zero value, indicating no connectivity changes for

node 1, so we assume it is a fixed node. In the fourth row, two elements have the

value one, indicating that node 4 changed its connectivity status twice. As a result,

we hypothesize that node 4 is a mobile node. However, both nodes 2 and 3, i.e., in

65

Evolving SDWSNs in Mobile and Heterogeneous environments

the second and the third row, have one connectivity change due to the mobility of

node 4 and any attempt to decide for their mobility status is at stake.

To overcome the above false-positive identification challenge and enable accu-

rate decisions about nodes’ mobility, we enhance MODE with advanced processes

implemented by Data Aggregation-and-Smoothing and Decision Support modules

(Fig. 11), i.e., applying intelligent data analysis and data-mining classification

methods in Transition matrices’ data, respectively. We further describe these mod-

ules in detail in the next subsection.

4.1.3.2 Mobility Detection Algorithm

In Algorithm 4, we detail in a unified pseudocode the three modules (i.e., Mobil-

ity Modeler, Data Aggregation-and-Smoothing, and Decision Support) that MODE

employs to detect the mobile nodes.

Initially, the Mobility Modeler (i.e., lines 1 to 7) converts the input connectivity

graph G to its N×N Adjacency matrix J, i.e., N is the number of network nodes,

and adds it into list A. Subsequently, it calculates the Transition matrices through

subtracting the matrices in A, as in Equation (5), and inserts them into queue T .

The second part of algorithm (i.e., lines 8 to 12) implements the Data Aggregation-

and-Smoothing process, which further refines our data using the moving average

method, which apart from aggregation it is also used for normalizing data anoma-

lies. From the variety of moving average methods, we select the most common, the

Simple Moving Average (SMA). SMA is implemented by adding a set of data and then

dividing them by the number of observations n (aka SMA window), considering the

same weight to each observation [103]. In our case, we apply SMA on the latest n

observed Transition matrices in queue T , as in Equation (7).

TSMA(t) =
1
n

n−1

∑
i=0

T(t−i) (7)

The TSMA(i, j) {i, j ∈N} elements of the N×N Transition Matrix TSMA at a given time t,

contain the values representing the number of connectivity changes between each

pair of (i, j) nodes. The value of SMA window n is a prominent figure since it affects

the sensitivity of our algorithm in terms of early or late mobility detection, as well

66

SD-MIoT: a Mobility aware SDWSN for IoT

as the number of false-positive decisions. For example, small n values increase

the sensitivity in detecting topology changes earlier, as well as the chances of false

positives, whereas large n values result in late detection of changes. For this reason,

in our experimentation analysis in Section 5.4, we dedicate a further analysis that

fine-tunes the operation of our algorithm.

To calculate the total mobility behaviour for each node (i.e., total connectivity

changes between node x to all other nodes), we sum up the values of each row x in

TSMA(N×N) and insert the results in vector sumTSMA(N), as in Equation (8).

sumTSMA(x) =
N−1

∑
i=0

TSMA(x,i) (8)

The main Decision Support module algorithm, described in lines 13 to 20 of Al-

gorithm 4, detects the mobile nodes using the K-means clustering algorithm [104].

Although K-means is one of the first unsupervised clustering algorithms, it is still

widely used in data-mining applications, because it is relatively simple and can

easily adapt to new application areas, while it is characterized by a good intuition

about the data structure.

We use the K-means algorithm to separate the elements of sumTSMA = {x1,x2, ...,xN}

data-set in K number of clusters. We point out that the prior knowledge of K value

is very important for the efficiency of K-means algorithm. Since we expect to classify

the network nodes into two groups (i.e., mobile and fixed), the K parameter equals

to 2. K-means randomly selects two centroid points {c1,c2} from the data-set and

calculates the squared distance between each element of sumTSMA and the centroid

points. Then, it classifies each element in one of the two clusters {C1,C2} based

on the shortest squared distance between the element and the cluster’s centroid

point, as in Equation (9).

C1 = {{x} | ∀x ∈ sumTSMA,(x− c1)
2 6 (x− c2)

2}

C2 = {{x} | ∀x ∈ sumTSMA,(x− c2)
2 < (x− c1)

2}
(9)

The algorithm refines the values of its centroid points with the mean values of

each cluster and repeats the classification based on the new centroid values. This

process continues until the elements of both {C1,C2} remain the same, between

67

Evolving SDWSNs in Mobile and Heterogeneous environments

Algorithm 4: MODE – Mobility Detector

Input: G – network-connectivity graph

Input: n – moving average window size

Output: mD – list of mobile nodes

Static Parameter: A – list of Adjacency matrices

// A. Mobility Modeler module

1 J← G.getAd jacencyMatrix(); // J is 2D Adj. Matrix

2 A.addNewItem(J); // add a in queue A of Adj. Matrices

// To maintain n matrices in queue A, remove older items

3 if A.count()> n then A.removeOldestItem();
4 if A.count()≥ 2 then

5 for t← 2 to A.count() do

// calculate Transition matrix and add it to queue T
6 T.addNewItem(

∣∣A[t]−A[t−1]
∣∣);

7 end

// B. Data Aggregation-and-Smoothing module

// Average Transition matrices in window n using SMA

8 foreach element e of queue T do

9 Tsum← Tsum + e; // sum up all Transition matrices

10 end

11 Tsma← Tsum/T.count();
// Calculate vector sumT by adding each column of Tsma

12 sumTsma← sumPerColumn(Tsma);

// C. Decision Support module

// Split in two clusters using K-means data-mining

algorithm

13 C← wekaKmeans(sumTsma,2);
// Check for the case of one cluster, where all nodes are

fixed

14 if

∣∣avg(C[1])−avg(C[2])
∣∣< 1 then

15 mD← null; // all fixed

// The cluster with the highest average contains the mobile

nodes

16 else if avg(C[1])> avg(C[2]) then

17 mD←C[1]; // mobile nodes

18 else

19 mD←C[2]; // mobile nodes

20 end

21 return(mD); // return the list of mobile nodes

22 end

two consecutive runs.

Setting up apriori K = 2 creates an issue in the special case where all nodes re-

main static. In this situation, although there is one cluster, the algorithm still tries

68

SD-MIoT: a Mobility aware SDWSN for IoT

to divide the nodes into two based on minor differences. For this reason, we en-

hance MODE algorithm with an additional condition exploiting a particular feature

derived from the application’s scope: the Transition matrices for static networks

contain values very close to zero since there are no recorded changes in the net-

work topology. Therefore, both clusters contain similar values, which are also close

to zero. As in Equation (10), the MODE algorithm subtracts the average values of

the two clusters C1 and C2 with number of elements n1 and n2, respectively.∥∥∥∥∥∥ 1
n1

n1

∑
i=1

C1(i)−
1
n2

j

∑
k2=1

C2(j)

∥∥∥∥∥∥< 1 (10)

When the result is less than the value of one, we conclude that there is no mobility

action in the network. Otherwise, the algorithm returns the set of mobile nodes

to the Controller. Moreover, the one-cluster case with all nodes being mobile is

not possible in our implementation, since the SD-MIoT border router node is al-

ways a fixed node. Finally, although Algorithm 4 employs two-dimensional array

calculations, we omit the second dimension from the pseudocode, for simplicity.

4.1.3.3 MODE: Implementation Insights - Discussion

To our knowledge, we are the first to propose an unsupervised algorithm utilizing

the network connectivity behavior to detect in real-time its mobile nodes, as an

important SDWSN feature for Mobile IoT. MODE is implemented as an open-source

software [101] using the Java programming language. For the K-means clustering,

we integrated the WEKA machine-learning library [105] in our solution. The modu-

lar design of MODE component accommodates improvements easily; therefore, we

suggest the study of alternative intelligent mechanisms, including neural networks,

to either improve the current solution or to enhance it towards new applications

(i.e., detection of mobility patterns). Finally, we annotate that a similar methodol-

ogy based on the network’s Transition matrices, as proposed in this dissertation,

can be used in the detection of other network conditions and abnormalities (i.e.,

radio interference, physical obstacles, or security threats).

69

Evolving SDWSNs in Mobile and Heterogeneous environments

4.2 MINOS: a Multi-protocol Framework for IoT

Addressing today’s multi-application requirements hosted by IoT networks by a sin-

gle protocol or communication mechanism is not feasible. In response to the need

for agile and configurable solutions, SDN provides an elastic network paradigm

that can transform the traditional network backbones into flexible service-delivery

platforms.

Understanding the challenges resulting from the plethora of IoT hardware so-

lutions and application requirements, we propose MINOS an SDN platform aiming

at providing elasticity for heterogeneous IoT deployments, through the operation

and dynamic configuration of different protocols. We design and implement MINOS

using an SDN-based architecture that decouples the data from the control plane.

Briefly, we explain that this architectural decision keeps the network’s heterogene-

ity transparent to the control and application planes and employs programmable

interfaces for getting cross-layer measurements. Moreover, enforcing appropriate

strategies for adaptable topology and flow-control utilizing a software controller

providing logically-centralized control with reduced management cost and com-

plexity. The platform operates two network protocols that are benefited by the

SDN-based architecture:

1. the CORAL-SDN [31], a software-defined OpenFlow-like protocol, introduc-

ing adaptive topology control and routing strategies for IoT. The CORAL-SDN

dynamically enforces adaptive combinations of topology discovery and con-

trol algorithms, leveraging network’s elasticity.

2. the Adaptable-RPL [27] developed by G. Violettas as part of the CORAL re-

search project [106], an evolutionary extension of RPL with improvements

for mobile and heterogeneous IoT networks.

The main novelties of the MINOS platform are: i) accommodates and adapts

multiple IoT protocols because there is no ‘‘single protocol fitting all services’’ so-

lution; and ii) addresses different application and network requirements through

dynamic protocol adaptations (e.g., expressing particular network conditions and

device constraints). To the best of our knowledge, MINOS is the first Software-

Defined Multi-protocol platform for IoTs [107].

In the following subsections, we elaborate on the MINOS platform’s architecture.

70

MINOS: a Multi-protocol Framework for IoT

4.2.1 MINOS Architecture

The MINOS platform implements service-awareness by bringing together SDN with

IoT technologies. It adapts IoT networks to the application requirements by on-

demand deploying the appropriate network protocol, while considering the net-

work environment constraints (e.g., limited node resource availability, mobility

caused connectivity issues) by dynamically configuring the protocol in use. Fig. 13

presents a high-level view of the MINOS architecture.

Figure 13: The MINOS architecture

Aligned to the typical three-tier SDN paradigm, it consists of the following

planes, described bottom-up as follows:

1. The Data Communication plane accommodates multiple dynamically-configurable

protocols supporting diverse IoT devices operating either in real test-beds or

in the Cooja emulator. It also provides radio and network protocol measure-

ments to the upper layer, as well as on-demand protocol deployment.

2. The Control plane controls the network protocols at real-time based on in-

formation coming from both the Application plane (i.e., application require-

ments) and the Data Communication plane (i.e., network constraints). It

71

Evolving SDWSNs in Mobile and Heterogeneous environments

consists of: (i) the Protocol Decision Engine that selects the protocol and its

main configuration based on the application requirements; and (ii) protocol-

specific control and monitoring components that are responsible for the

run-time configuration adaptations and tracking the performance of the cor-

responding protocols, respectively.

3. The Application plane specifies the category of IoT application used (i.e., Data

Collection, Alerts and Actions, or Data Dissemination) and the particular

IoT node requirements, for example regarding their energy constraints and

mobility support.

In the next subsections, we present each of the MINOS planes, interfaces, and

functionalities individually.

4.2.1.1 Data Communication plane

The bottom layer of the MINOS architecture (i.e., the Data Communication plane)

supports multiple IoT protocols, real-time configuration and measuring of the pro-

tocols, as well as their deployment on-demand. MINOS currently supports two

protocols:

1. the CORAL-SDN is implemented in the context of the MINOS platform to

provide adaptability to a range of IoT applications and network constraints

(e.g., signal issues) through WSN protocol mechanisms adapted to the op-

eration of the SDN paradigm. Mechanisms like network topology discovery

and maintenance, as well as flow rule establishment methods, control the

routing and forwarding processes of the network. The protocol’s operation

is fine-tuned from MINOS to achieve alternative types of behavior that adapt

to the needs and characteristics of the application. CORAL-SDN also sup-

ports other configuration options; for example, the link quality estimation

method, the usage of acknowledgments, and the control messages’ interval

time for the topology control.

2. the Adaptable-RPL augments RPL, with dynamic reconfigurability to extend

its applicability to alternative use-cases and dynamic network environments

(e.g., it improves its responsiveness to sudden changes in the network condi-

tions). At this point, MINOS adjusts a number of important RPL parameters

72

MINOS: a Multi-protocol Framework for IoT

(e.g., Imin, Idoubling) reflecting the responsiveness but also the communication

overhead of the protocol, and the choice of the Objective Function to use

for the distance-vector functionality of RPL. For example, in order to tackle

the RPL’s performance issues in mobile environments [27], MINOS adjusts

the Imin parameter differently for nodes with particular characteristics, so

communication overhead is offloaded from the mobile to the fixed nodes.

Furthermore, the Data Communication plane provides to the Control plane real-

time measurements on the protocols’ performance, or the configuration values of

important parameters from both the radio (e.g., RSSI or LQI) and network view-

points (e.g., packet drops’ number). The MINOS southbound interfaces handle

these interactions by utilizing novel APIs provided by the WiSHFUL project [108].

In particular, the Universal Network and Radio Control Interfaces (UPIs), that is one

UPIN per protocol, for network layer variables, and UPIR for the radio channel. The

WiSHFUL facilities provide hooks for dynamic adaptations in IoT communication

protocols (e.g., RPL), and abstractions tackling the network or device heterogeneity.

Following the WiSHFUL platform evolution, we further enriched its protocol adjust-

ment capabilities, providing full support to our protocols via the MINOS platform.

4.2.1.2 Control plane

The Control plane triggers the protocol deployment in an interchangeable manner

through the Protocol Deployment Interface (PDI). This plane currently supports two

alternative ways for the on-demand protocol deployment: (i) proactively, for net-

work operation scenarios with relaxed time constraints, where protocol changes

are applied through updates in IoT devices’ firmware (i.e., a low memory-footprint

approach with moderate deployment time); and (ii) reactively, for rapid protocol de-

ployments, where a double-protocol stack above the link-layer dynamically selects

one of the two alternative protocols (i.e., trading memory for quick protocol switch-

ing). Currently, we support proactive protocol deployment through device-specific

Ansible [109] scripts updating IoT devices’ firmware. The reactive deployment is

an on-going work, as our plans include experimentation with over-the-air protocol

deployment approaches (e.g., utilizing elf Contiki-OS libraries).

The modular MINOS architecture allows easy existing protocols modifications

73

Evolving SDWSNs in Mobile and Heterogeneous environments

(i.e., support of extra mechanisms or parameters) or further additions of new ones.

As such, we are at the early stages of experimenting with an adaptable version of

the Back-Pressure Routing (BPR) protocol. Our protocol implementations support

diverse IoT hardware (e.g., RM090, and Zolertia Z1 devices).

The Control plane performs run-time network control and monitoring of the

network environment through the Protocol-specific Control and Monitoring compo-

nents, while it implements the service-awareness of MINOS, based on the applica-

tion requirements originating from the Application plane, and being handled by the

Protocol Decision Engine (PDE).

The Protocol-specific Control and Monitoring components implement technology-

specific local control loops for a subset, or all nodes, monitoring the behavior of the

network while adjusting a rich set of network protocols’ parameters to achieve the

performance goals set by a particular application. At this point, MINOS supports

two relevant components, reflecting the centralized network control features of the

CORAL-SDN and Adaptable-RPL protocols:

• The CORAL-SDN Control and Monitoring component implements SDN con-

troller functionalities that: (i) construct and maintain an abstract represen-

tation of the infrastructure network (i.e., a network connectivity structure

with run-time node or link information), as for example the devices’ bat-

tery level, or link quality measurements (e.g., RSSI or LQI); and (ii) perform

centralized control of the data flows and define dynamic forwarding rules,

responding to changes in the aforementioned network’s abstract view, while

matching the application requirements. For example, such control features

perform dynamically topology local adjustments in the case of mobile nodes,

to reduce the corresponding communication overhead.

• The Adaptable-RPL Control and Monitoring component collects measurements

from the RPL protocol and triggers dynamic adaptations in the protocol pa-

rameters after changes in the network behavior, or to match application

performance requirements. For example, an identification of mobile nodes

coming from the Application plane results in different Imin parameter values

for these particular nodes; that is to offload communication overhead to the

fixed nodes with a power source. Furthermore, if there is a need to prioritize a

74

MINOS: a Multi-protocol Framework for IoT

particular node-to-node communication (e.g., collecting data from all nodes

to the sink may trigger an alert between two nodes), the MINOS platform

may initiate minor topology changes through enforcing a new RPL Objective

Function that prioritizes such communication.

The Protocol Decision Engine (PDE) selects the protocol to deploy, its enabled

mechanisms (i.e., supported by the particular protocol) and initial configuration

parameters, based on an Application plane request, that is to specify the commu-

nication type required by the application, the number and main node capabilities,

as well as the global performance goals. Currently, PDE takes decisions based on

hard-coded protocol strategies aligned with our experimentation analysis. How-

ever, in the future, this task can be carried out from a relevant machine-learning

algorithm (i.e., neural network) inspired by [110].

4.2.1.3 Application plane

Lastly, the Application plane specifies through the Northbound API the require-

ments of the application to be realized by MINOS. Such process is handled from

the method: configure_network(communication_type, nodes_configuration, priori-

tized_KPIs), where:

• The communication_type parameter actually defines the communication type,

which can be: (i) many-to-one for the typical WSN Data Collection applica-

tions, where a set of nodes gather periodic measurements destined to a single

sink node; (ii) one-to-many for Data Dissemination applications, where the

sink node spreads data to all nodes in the network; and (iii) point-to-point for

Alerts and Actions scenarios, where a node has to urgently interact with only

one node. There is also the case of hybrid applications that support diverse

communication methods for different parts of the network.

• The nodes_configuration parameter defines the number and characteristics

of each IoT node, such as: (i) fixed or mobile; (ii) battery-powered or not; (iii)

information on the particular resource constraints (e.g., maximum firmware

size).

• The prioritized_KPIs parameter specifies the global performance goals for the

application to be supported by the IoT network. For example, an e-health

75

Evolving SDWSNs in Mobile and Heterogeneous environments

application may request high bandwidth and low latency.

4.2.2 MINOS GUI

(a) Network’s topology graph produced by the MINOS

(b) PDR measurement given by the adaptable

RPL protocol

(c) Queued packets’ statistics provided by the

adaptable BPR protocol

Figure 14: The MINOS Dashboard options

The MINOS platform interacts with the user through a highly flexible GUI im-

plemented in the Node-RED platform. The GUI allows the operator to override the

PDE and manually select the protocol and its corresponding parameters; then, the

visualization outcome varies according to the protocol deployed, as in Fig. 14. The

dashboard performs the overall monitoring while providing advanced functionality

and configuration options through three sub-modules:

1. the Experiment Manager, providing configuration options related to available

network protocols and experimentation set-ups;

2. the Network Visualizer, illustrating the network’s topology, experiments’

progress and results, and;

76

MINOS: a Multi-protocol Framework for IoT

3. the Node-RED Designer, offering a library of the basic MINOS features im-

plemented as Node-RED nodes and workflows. Hence, such features can be

easily configured through the user interface or parameterized short client-

side Node.js scripts.

In this chapter, we presented the design, implementation, and operational fea-

tures of two novel SDWSN frameworks that advance SDWSN protocols in IoT en-

vironments with prominent challenges like mobility and heterogeneity: i) SD-MIoT

that propose innovative centralized mechanisms which extend our VERO-SDN SD-

WSN solution towards mobile environments with dynamic topologies; and ii) MINOS

a multi-protocol platform that integrates under a three-tier SDN-like architecture

an elastic network management system that aims to optimize routing over hetero-

geneous IoT nodes.

In the following chapter, we present our experimental results and validate the

impact of the proposed solutions.

77

5 Evaluation and Outcomes

In this chapter, we provide our extensive evaluation and analysis of results that

highlight the performance advantages of the proposed solutions. The chapter is

organized into five sections that contain independent experimental scenarios and

evaluation results. Each section includes the corresponding evaluation methodol-

ogy, simulation setup, performance metrics, and evaluation results and discussion.

To further motivate our choices of experimental evaluations, we propose realistic

use case scenarios discussed at the beginning of each section. Briefly, in this

chapter, we elaborate on the evaluation of:

• VERO-SDN platform and its corresponding network control mechanisms. Our

main goal is to show that we provide an SDN solution for IoTs that covers

many cases of IoT deployments, beyond those adopting the traditional many-

to-one communication model of WSN. Our evaluation scenarios probe into

the two main network operation processes (i.e., topology control and routing)

through two sets of simulations that consider a wide range of network condi-

tions in terms of topology arrangements and sizes, discussed in sections 5.1

and 5.2.

• SD-MIoT platform and its corresponding network mobility control mecha-

nisms. We elaborate on our evaluation analysis in two sections. In section

5.3, we investigate the overall network operation in terms of packet delivery

and control overhead, aiming to verify the robust routing performance and

reduced control overhead of SD-MIoT. Whereas, in subsection 5.4, we devote

an independent analysis of the effectiveness of MODE algorithm with regards

to the success ratio of discovering the mobility conditions of the nodes.

• MINOS platform against handling mobility and heterogeneity in an IoT experi-

mentation setup of a smart city use-case scenario with static or mobile nodes

equipped with sensors (i.e., temperature, humidity, light noise, pollution to

offer city monitoring facilities). In Section 5.5, we employ the evaluation of

MINOS using two network protocols, i.e., the CORAL-SDN and the Adaptable

RPL, and we extract results regarding two metrics: the PDR and the control

78

Evaluating Topology Discovery in Networks with Fixed nodes

Overhead.

As a point of reference to contrast our solutions with the traditional IoT deploy-

ments, we selected RPL, the de-facto WSN routing protocol, for two main reasons:

(i) to investigate the advantages of the centralized against the de-centralized ap-

proach; and (ii) to retain a common denominator in order to compare our work with

any other, now and in the future, since the majority of research papers in SDWSN

provide comparisons with RPL, e.g., [27], [33], [73].

5.1 Evaluating Topology Discovery in Networks with Fixed nodes

The accurate and timely representation of the network’s topology is a critical pro-

tocol mechanism. In the following subsections, we evaluate the topology discovery

performance of VERO-SDN.

5.1.1 Use-case scenario: Smart Traffic Lights

Although monitoring is still a key IoT application, ‘‘smarter’’ IoT applications that

emerge are enhancing the application’s decision making and communication capa-

bilities. Such independence to decide and act comes with the requirement for more

complex communication patterns than the typical many-to-one, including direct

communication with other nodes. When it comes to applications that require all

types of communication patterns (i.e., one-to-one, one-to-many, and many-to-one),

RPL faces performance and reliability issues, which raises the question on whether

RPL can support today’s IoT requirements [111].

VERO-SDN supports all communication patters just as right, taking advantage

of SDN’s elasticity. To motivate our network evaluation scenarios, we consider a

use-case that can accommodate the features and functionalities offered by VERO-

SDN.

For example, in a smart traffic light system as in Fig. 15 apart from the ba-

sic needs for communication between the traffic lights and a central point (i.e.,

implementing many-to-one and one-to-many communication patterns), small con-

trol loops among nearby devices can implement fault tolerance tasks, like a green

traffic light that informs with node-to-node messaging other traffic lights in its

neighborhood of its state, i.e., to avoid conflicting traffic lights. As in this exam-

ple, the variability in communication patterns can further improve the network’s

79

Evaluation and Outcomes

Figure 15: Smart Traffic Lights Use-case scenario

performance due to the direct communication paths among nodes that avoid the

meddling of a sink node.

However, the possibility of alternative routes requires a very good knowledge of

the network’s connectivity. As such, the duration time for the discovery of the en-

tire network topology, as the main aspect of topology discovery, is a critical figure in

routing protocols. It is strongly related to the overall network performance because

the topology discovery process is repeated regularly from the topology maintenance

schema. In our evaluation plans, we include both VERO-SDN topology discovery

processes, the TC-NA and TC-NR, and compare them against RPL’s discovery mech-

anisms. In the following subsections, we aim to gather results through simulations

for each one of them within different network terrains.

5.1.2 Evaluation Methodology

To assess VERO-SDN topology discovery efficiency, we envisage three representa-

tive network topology scenarios associated to real-life IoT deployments, namely a

Linear (Fig. 16a), a Rectangular Grid (Fig. 16b), and a Triangular Grid (Fig. 16c).

80

Evaluating Topology Discovery in Networks with Fixed nodes

To designate theoretically the above scenarios, we consider three respective undi-

rected connected graphs G1(V1,E1), G2(V2,E2), G3(V3,E3), i.e., expressing the three

networks connectivity patterns, where V is the number of graph’s vertices repre-

senting the network nodes, and E is the numbers of graph’s edges representing

the networks communication links.

(a) Linear

G1

(b) Rectangular Grid G2 (c) Triangular Grid G3

Figure 16: Three scenarios of network topology connectivity graphs. The green
vertex indicates the border router, the black vertices represent the regular network

nodes, and the gray vertices are the potential node expansions for any network

size. The graph edges stand for connectivity links

In Table 4, we outline the graph properties related to our scenarios, including

the maximum ∆(G) and minimum δ (G) degrees, defined as the maximum and

minimum number of edges incident to its vertices, and the edge connectivity λ (G),

that manifests the size of the smallest edge cut that will disconnect any of the

G1, G2, G3 graphs. According to the graph theory, our graphs are maximally

connected and the network topology complexity is equal to the maximum degree

∆(G), because λ (G)=δ (G). The distance d(v,u) between two vertices v,u of a graph

G is the length of the shortest path between those vertices. The eccentricity e(v) of

vertex v is the maximum distance from v to any other vertex V (G), defined as e(v) =

max{d(v,u),u∈V (G)}. Furthermore, the diameter D(G) of graph G is the maximum

eccentricity value among the vertices of G, defined as D(G) = max{e(v),v ∈V (G)}.

The diameter is an important indication in our scenarios, because it represents the

longest distance path in the network.

We investigate the following requirements based on our three scenarios:

81

Evaluation and Outcomes

Table 4: Graph properties per topology type

D(Gx)
x ∆(Gx) δ (Gx) λ (Gx) V = 30 V = 90
1 2 1 1 29 89
2 4 2 2 9 17
3 6 2 2 7 12

• The Linear graph G1 represents a low complexity scenario where the maxi-

mum connectivity degree is the lowest, i.e., equal to two. However, it is an

exemplary scenario because it resembles real-life IoT applications (e.g., smart

streets). The main challenge of the scenario is the quality and accuracy of

neighbor detection because each node has one chance to detect a neighbor.

A failure to detect a neighbor at any point will lead to a disconnected network

because λ (G1) = 1.

• The Rectangular Grid graph G2 is a moderate scenario in terms of connectivity

density compared to the other two, with maximum complexity equal to four

(∆(G2) = 4). It also represents real-life IoT connectivity scenarios related to

monitoring and surveillance applications.

• The Triangular Grid graph G3 offers a dense connectivity environment, where

the inner nodes have a maximum complexity of six (∆(G3) = 6). In this case,

we investigate the behavior of our protocol under an intensive operation due

to the multitude of communication links.

To get an insight into the protocols’ performance for different network sizes,

we nominate one small and one large scale scenario in terms of the number of

nodes, with V = 30 and V = 90, respectively. For all simulations, we are using

a radio environment with data loss only related to distance factors, i.e., without

external interference. We apply this deterministic methodology because we focus

on comparing the effectiveness of our platform and algorithms at the architectural

level. Hence, there is no need to confirm the results’ statistical accuracy.

The selected network topologies for our evaluation are regularly-shaped graphs

in order to enhance our ability to:

• justify our findings utilizing the equivalent theoretical graph characteristics

and draw conclusions that can be further used as patterns for the improve-

ment and optimization of our mechanisms per topological structure.

82

Evaluating Topology Discovery in Networks with Fixed nodes

• compare the results on the behavior of the proposed mechanisms in the

three scenarios to each other, which process is simpler and clearer with

deterministic data.

5.1.3 Simulation Setup

In our simulations, we use the Cooja [112] simulator with emulated Zolertia Z1 IoT

devices. Cooja is a Linux based cross-layer WSN simulator for Contiki OS, which

enables the creation of virtual WSN scenarios. In Tables 5 and 6, we enlist the

setup parameters for both RPL and VERO-SDN protocols, respectively.

For both topology discovery mechanisms, we select their default configuration

values. We set RPL mode to storing-mode and for the trickle timer we keep the

default configuration values, as implemented in Contiki OS v3.0, which are: Imin =

12, Idoublings = 8 and the redundancy constant k = 10. In the case of VERO-SDN,

the default values of the parameters guiding the intervals of topology discovery for

both algorithms are: maxD = 3, and maxT = 10. These parameters are detailed in

section 3.5.

For both simulated networks, we set up the radio communication environment

quality at the maximum (i.e., TX/RX 100%). Although this configuration is not

attainable in real WSN applications, we intentionally consider a radio environment

with no signal issues in our evaluation methodology, since we focus our study on

processes and algorithms of the network layer. This approach provides a clearer

and easier comparison of our simulation results.

Table 5: The simulation setup of RPL

Network Layer Settings Notes

Transport UDP Packet size 128 B
Network RPL/IPv6

MAC CSMA

Physical IEEE 802.15.4

Radio Interface TX/RX 100% Transmission Range 50 m
OS Contiki-OS [59] ver 3.0

5.1.4 Performance Metrics

We carry out our simulations and analyze our results using the following two

metrics:

83

Evaluation and Outcomes

Table 6: The simulation setup of VERO-SDN data-plane

Network Layer Settings Notes

Transport UDP Packet size 128 B
Network VERO-SDN Forwarding

MAC CSMA

Physical IEEE 802.15.4

Radio Interface 1 SubGHz, TX/RX 100% Long Range 700 m
Radio Interface 2 2.4 GHz, TX/RX 100% Short Range 50 m
OS Contiki-OS [59] ver 3.0

• Topology Discovery Duration (TDD) Time: The TDD time represents the total

duration of time in seconds required to collect and construct the connectivity

graph for the entire network.

• Topology Discovery Control (TDC) Overhead: The TDC overhead represents

the total number of control messages exchanged among the motes in order

to construct the connectivity graph for the complete network.

For both metrics, we target at their lower values, since we desire to form the

network connectivity graphs in a short time and with a minimum communication

overhead. Since VERO-SDN and RPL follow a different approach for the topology

construction, i.e., centralized vs distributed, we devised a particular methodology

to measure the TDD and TDC metrics. In the case of VERO-SDN, we are using the

network monitoring data collected from the Controller for the network structure

construction process. We count as starting time of the topology discovery the first

broadcast message from the BR and the new node solicitation broadcast message

for TC-NA and TC-NR, respectively. As finishing time, we consider the appearance

of the last node in the network connectivity graph. For RPL, we are using Foren6

[113], an external 6LoWPAN network analysis tool that processes the Cooja radio

log output and reconstructs a visual and textual representation of the network con-

nectivity graph. As starting time, we consider the first DIO transmission from the

sink node and as finishing time the appearance of the last DAO message informing

the sink for the last discovered node in the network.

We carry out 15 simulation runs for each scenario and calculate the average

values for both metrics. For clarity purposes, we omit the standard deviation

values in the figures, since they are insignificant in all scenarios, in contrast to the

performance differences we observed.

84

Evaluating Topology Discovery in Networks with Fixed nodes

5.1.5 Evaluation Results and Discussion

In Fig. 17, we illustrate the network topology discovery evaluation results for all

the three topology scenarios. We depict our results using bar charts that exhibit

each algorithm’s performance based on the aforementioned metrics, i.e., TDD time

and TDC overhead, classified per topology scenario for both networks of 30 (i.e.,

Fig. 17a and Fig. 17b) and 90 nodes (i.e., Fig. 17c and Fig. 17d).

59.0

3.2
5.3

26.2

2.4 4.3

23.5

2.7
4.8

0

10

20

30

40

50

60

70

RPL TC-NA TC-NR RPL TC-NA TC-NR RPL TC-NA TC-NR

Linear Rectangular Grid Triangular Grid

Ti
m

e
(s

ec
)

(a) Total discovery duration time for networks of

30 nodes

189

88

149

215

128

189
194

164

225

0

50

100

150

200

250

RPL TC-NA TC-NR RPL TC-NA TC-NR RPL TC-NA TC-NR

Linear Rectangular Grid Triangular Grid

C
o

n
tr

o
l M

es
sa

ge
s

(b) Control messages overhead for networks of

30 nodes

106.0

6.3

21.5

53.0

4.1

17.8

49.0

4.4

19.1

0

10

20

30

40

50

60

70

80

90

100

110

RPL TC-NA TC-NR RPL TC-NA TC-NR RPL TC-NA TC-NR

Linear Rectangular Grid Triangular Grid

Ti
m

e
(s

ec
)

(c) Total discovery duration time for networks of

90 nodes

766

268

449

1083

412

593

981

554

735

0

200

400

600

800

1000

1200

RPL TC-NA TC-NR RPL TC-NA TC-NR RPL TC-NA TC-NR

Linear Rectangular Grid Triangular Grid

C
o

n
tr

o
l M

es
sa

ge
s

(d) Control messages overhead for networks of

90 nodes

Figure 17: Network discovery evaluation results for RPL, VERO-SDN TC-NA and

TC-NR with linear, rectangular and triangular grid network topologies

As an initial observation, we underline that VERO-SDN significantly outper-

forms RPL’s topology discovery performance both in terms of TDD time and the

number of TDC messages. TC-NA algorithm delivers the lowest TDD time results

in all circumstances while using the lower amount of control messages. TC-NR

algorithm, although it performs much better than RPL, it is considerably slower

compared to TC-NA, especially in large topologies.

85

Evaluation and Outcomes

We analyze our results in detail by comparing in pairs the performance of the

algorithms, for each topology scenario:

• RPL vs. TC-NA: In the Linear topology simulation with 30 nodes, we observe

that TC-NA is 18 times faster than RPL in respect of TDD time, while us-

ing lower than the half of control messages (i.e., the 53%). TC-NA achieved

similar results in the case of the 90 nodes topology, but with even fewer

control messages (i.e., the 65%). For the 30 nodes network in the Rectangu-

lar and Triangular Grid topologies, the TC-NA is 11 and 9 times faster than

RPL, respectively, and for the 90 nodes 13 and 11 times faster as well. Al-

though the TC-NA maintains similar performance in all topology scenarios,

the difference with RPL is reduced compared to the Linear topology because

RPL performs better in Grid network topologies due to their reduced DODAG

depth. Although the TC-NA retains fewer control messages compared to RPL,

we observe that the difference is reduced to 40% and 15% for the Grid topolo-

gies (Fig. 17b). Since the TC-NA informs the Controller for all available links

among the nodes, the highest complexity in terms of adjacent nodes leads

to increased numbers of control messages. It is interesting to look at the 90

nodes network (Fig. 17d) where we observe that the difference between TC-NA

and RPL, in terms of control messages, is significantly higher compared to

the 30 nodes network, i.e., from 40% to 62% and from 15% to 44% for the two

Grid topologies, respectively. That is an expected outcome, since the TC-NA

control messages increase linearly with respect to the topology size due to

the one-hop transmission. In contrast, RPL control messages depend on the

size of the network paths.

• RPL vs. TC-NR: Comparing the TC-NR topology discovery performance against

RPL’s, we realize directly proportional figures with the ones discussed for TC-

NA. Although the performance of TC-NR is not as good as TC-NA’s, it still

outperforms RPL’s results. In Fig. 17a for the 30 nodes TDD time we observe

improvements in the order of 11,6 and 5 times faster performance, which for

the 90 nodes in Fig. 17c, becomes 5,3 and 3 for each of the three topology

scenarios, respectively. Notable is that although the control messages of TC-

NR for the 30 nodes scenario are close to RPL’s, this is not the case for the 90

86

Evaluating Topology Discovery in Networks with Fixed nodes

nodes simulations for the same reasons with TC-NA. The increased amount

of control messages in TC-NR is the result of its architectural design and

operation that becomes more important as the topology complexity increases.

• TC-NR vs. TC-NA: Initially, we have to acknowledge that both algorithms

achieve the implementation of the topology discovery process. On the one

hand, the TC-NA algorithm succeeds in collecting the network information in

a passive mode, i.e., by reporting to the Controller the nodes that advertise

their existence. On the other hand, the TC-NR collects the complete network

information in an active mode, as it triggers the nodes to request a response

from their neighbors. The latter is an important architectural feature since

it allows targeted topology discovery requests. However, comparing the TDD

time results in Fig. 17a between the two topology discovery approaches, we

observe that regardless of the topology in the 30 nodes scenario, the TC-NA is

approximately twice as fast from the TC-NR, while in the 90 nodes network,

(Fig. 17c), the difference increases to quadruple figures. We conclude that

TC-NR is more affected by the size of the network than TC-NA. The above

conclusion is justified by the number of tasks each algorithm executes in

relation to the packets sent. TC-NR algorithm demonstrates a higher number

of executed tasks, and consequently, we argue that the TC-NR algorithm

produces inferior time performance results compared to TC-NA, especially

during the topology construction phase.

Generally, we conclude that the main reasons for the enhanced topology dis-

covery performance of the VERO-SDN are its architectural characteristics that the

SDN paradigm enables in combination with the employment of a separate control

channel. For VERO-SDN, the Controller manages the transmission of control mes-

sages in the network based on parameters that maintain linear characteristics, i.e.,

due to the one-hop transmissions of the former. On the contrary, RPL increases

the Imin parameter exponentially to avoid the instant flooding of the network with

control messages, while the response messages from every node to the sink node

(i.e., the DAO messages) use the same multi-hop medium. Consequently, they are

overloading the network with control messages and delaying its TDD time.

Furthermore, a general conclusion drawn from the simulations is that RPL’s

87

Evaluation and Outcomes

discovery performance depends on the network’s topology structure and size, while

the VERO-SDN algorithms do not. That occurs because RPL discovery process is

firmly bonded to the depth of the DODAG tree, as we observe an analogous change

in the TDD time performance with the graph’s diameter d(G) property shown in

Table 4. On the contrary, for each VERO-SDN algorithm, we observe similar TDD

time results regardless of the topologies used. We argue that this feature can

be beneficial in networks that require consistent performance, independent of the

topology environment (i.e., networks in industrial or hazardous environments) and

also underlines the general applicability of our proposal.

To sum up, in this subsection we demonstrated through simulations that VERO-

SDN implements successfully and efficiently the topology discovery process based

on novel architectural features that combine the support of a separate control

channel with the well-fine-tuned network coordination from the Controller. Fur-

thermore, we highlighted the applicability of VERO-SDN to a wide range of IoT

scenarios, since the performance of its topology discovery mechanisms, in terms of

discovery time and control overhead, does not depend on the topology structure.

5.2 Evaluating Routing Control in Networks with Fixed Nodes

The network’s flow management and the associated packet delivery times are es-

sential routing protocol factors, which are tightly bonded with the network’s QoS

and the overall performance. In the following subsections, we evaluate the central-

ized routing operation and performance of VERO-SDN and compare it against the

distributed approach of RPL. In our evaluation plans, we include the two VERO-SDN

flow establishment processes: (i) the Next-hop-only (FE-NH), where the Controller

responds to a miss-table request with one flow rule to the requesting node only;

and (ii) the Complete-path (FE-CP), where the Controller establishes flow rules to all

subsequent nodes that participate in the particular flow’s path. We now detail, for

this second set of simulations, the evaluation methodology, setup and discuss the

corresponding results.

5.2.1 Evaluation Methodology

In our evaluation, we use a network of 15 stations, arranged in a triangular grid

topology with the BR placed at the top of the triangle, as shown in Fig. 18. We

88

Evaluating Routing Control in Networks with Fixed Nodes

demonstrate the network connectivity using two types of lines: (i) the solid black

lines depicting the established connections of the RPL protocol, i.e., illustrating the

DODAG; and (ii) the dashed gray lines representing other possible wireless con-

nectivity links due to nodes proximity. The triangular graph topology is ideal for

providing our simulations with an abundance of different communication paths

among the network nodes in order to evaluate the quality of routing path selec-

tion and flow establishment. In terms of network operation, we choose a scenario

where all nodes send unicast messages to all other nodes. With this approach, we

confirm that our proposal achieves very good results in scenarios beyond the tra-

ditional many-to-one communication paradigm of WSN. Furthermore, this overall

communication exercise with a high multitude of messages confirms the suitability

of VERO-SDN in many different IoT deployment cases, including communication-

demanding environments.

Figure 18: Routing evaluation scenario with a triangular grid network topology

To analyze our simulation theoretically, we consider the network as a triangular

graph G(V,E) with V = 15 vertices representing the network nodes and E = 18

edges representing the radio links. Here, we use the graph theory’s concept of

89

Evaluation and Outcomes

distance matrices. A Distance Matrix M(G) of a graph G(V,E) is a two-dimensional

symmetric matrix V ×V that contains the distances between each pair of vectors.

We calculate the distance d(v,u) between v and u by counting the number of edges

in the shortest path. We define three metrics based on the distance matrix: (i) the

Total distance representing the summation of all shortest path distances among all

nodes, calculated as the addition of all M(G) distances; (ii) the Average distance

denoting the average shortest path distance, calculated by averaging all M(G)

elements; and (iii) the Max distance expressing the number of edges of the longest

distance path in G.

Table 7 enlists the values of the above three metrics obtained from the Distance

Matrices of three triangular graphs. One of 15 nodes, like in Fig. 18 and two sub-

graphs of 10 and 6 nodes, respectively. These graphs represent the routing graphs

of the two protocols, i.e., RPL and VERO-SDN. In the last column, we calculate the

total distance percentage difference for each pair of protocols, in order to evaluate

on a theoretical basis the quality of the paths implemented by each protocol. Since

the lower total distance numbers indicate shorter paths, we conclude that VERO-

SDN implements better paths than RPL. We also annotate that the associated

performance difference increases with the graph’s size. This happens because

VERO-SDN establishes flows by considering all possible connectivity options, while

RPL is using the DODAG’s connectivity links only.

Table 7: Graph distance matrix values for triangular grid networks of 6, 10 and 15
nodes per protocol

Graph

Vertices
Protocols

Total

distance

Average

distance

Max

distance

% Dif-

ference

6
RPL DODAG 55 1.83 4

24%
VERO-SDN 42 1.40 2

10
RPL DODAG 267 2.97 6

39%
VERO-SDN 162 1.80 3

15
RPL DODAG 807 3.84 8

43%
VERO-SDN 462 2.20 4

5.2.2 Simulation Setup

To justify the above theoretical insights, we create the network shown in Fig. 18 and

conduct simulations based on the same simulation setup environment described

90

Evaluating Routing Control in Networks with Fixed Nodes

in subsection 5.1.3. The protocol parameters for RPL and VERO-SDN protocols are

recorded in Tables 5 and 6, respectively.

Our evaluation plan includes two simulated scenarios:

• all-to-all: An intensive data packet traffic scenario that exhibits the one-to-

one communication pattern, where each mote transmits in total 350 60-byte

unicast messages for 100 minutes to all other motes in the network (i.e., each

node transmits 25 messages to each other node), which is equivalent to a

rate of 1 data-packet every 17 seconds. The network conveys in total 5,250

data-packets.

• many-to-one: A typical sensor monitoring and data collection scenario where

each of the 14 nodes transmits 200 data-packets of 60 bytes to the sink (node-

1), within 100 min, i.e., with a rate of 1 data-packet every 30 seconds. The

network conveys 2,800 data-packets in total.

5.2.3 Performance Metrics

We analyze and evaluate our simulations using the following metrics:

1. Packet Delivery Ratio (PDR): This metric measures the protocol’s quality in

terms of message delivery success ratio. It is calculated as the ratio of

received data messages Rx over sent data messages Sx transferred among

the motes, as in (11).

PDR =
∑Rx

∑Sx
(11)

2. Total End-to-End Delay (TEED): The End-to-end delay is the time needed for

a packet to be transmitted across a network from the source to the destina-

tion node, i.e., the One-way delay. The End-to-end delay [114] includes the:

(i) transmission delay, the packet transmission time into the transmission

medium; (ii) propagation delay, the signal traveling time over the distance;

and (iii) packet processing delay, the time the packet is being processed at

a network device. In the SDN paradigm, the End-to-end delay also includes

the delays due to the flow establishment, which are the: (i) table-miss flow

delay, the table-miss request transmission time to the Controller; and the

(ii) flow-rule establishment, the flow rule response time from the Controller.

These additional details occur mainly at the beginning of each flow com-

91

Evaluation and Outcomes

munication and should be balanced from the most informed and accurate

routing decisions due to the adoption of the SDN paradigm.

Considering the End-to-end delay d as the distance between a pair of net-

work nodes and in analogy with the above mentioned Distance Matrix, we

define the End-to-end Delay Distance Matrix (EED). For a network with N

nodes the EED is an N×N symmetric matrix with elements the End-to-end

delay times d(i, j),∀i, j ∈ N among all network nodes, as in (12).

EED(N,N) =


0 d1,2 d1,3 · · ·

d2,1 0 d2,3 · · ·

d3,1 d3,2 0 · · ·
.
.
.

.

.

.
.
.
.

. . .


(12)

Since it is not reliable to draw conclusions from one EED sample, we define

an aggregate metric, i.e., the Total End-to-End Delay (TEED) matrix, as the

summation of EED matrices over the course of time for an M number of mes-

sages transmitted in the network. We determine the TEED metric formula

with (13).

T EED(N,N) =
M

∑
m=1

EEDm (13)

3. Network Overall End-to-end Delay (NOD): To compare the overall network

performance of the VERO-SDN routing mechanisms with RPL, we define the

NOD as the total time of all the delay times required to send packets from

each node to all other nodes in the network. In (14), we depict the NOD

metric formula for a network of N nodes. Undelivered packets are excluded

from the calculations.

NOD =
N

∑
i=1

N

∑
j=1

T EED(i, j) (14)

5.2.4 Evaluation Results of all-to-all scenario

In Fig. 19, we depict VERO-SDN performance in terms of PDR. Although our sim-

ulation environment does not apply external radio interference, the PDR does not

reach the 100% because the multitude of messages causes radio collisions and

packet drops due to the extended routing delays. Nevertheless, we observe that

92

Evaluating Routing Control in Networks with Fixed Nodes

VERO-SDN with the complete-path flow establishment reaches up to 99.75% packet

delivery accuracy, which is by 1.64% higher compared to RPL. VERO-SDN next-hop

process also achieves 99.45% PDR, ascertaining the high reliability and integrity of

the VERO-SDN protocol. Since in our simulations we consider a reliable radio

channel, the improved PDR performance of VERO-SDN reflects its efficient com-

munication paths establishment among the network nodes, due to its novel routing

and forwarding processes, further justified later in this subsection.

98.11%

99.45%
99.75%

90%

91%

92%

93%

94%

95%

96%

97%

98%

99%

100%

RPL VERO-SDN
Next Hop

VERO-SDN
Complete Path

Pa
ck

et
 D

el
iv

er
y

R
at

io
 (

P
D

R
)

(%
)

Figure 19: The average PDR per protocol

To analyze VERO-SDN performance in terms of network communication delays

we expedite the evaluation results in three stages: (i) initially, we focus on commu-

nication examples of specific pairs of nodes; (ii) then we analyze the communication

behavior for each node to all other nodes separately; and (iii) finally, we present

the overall picture of network performance to draw general conclusions.

In the first stage, we selectively present the TEED evaluation results of four

paths between particular pairs of nodes (i.e., as swhon in Fig. 20):

• T EED(15,13) (i.e., from the node 15 to 13, designated as 15→ 13) presents a

clear superiority of both VERO-SDN’s flow establishment processes against

RPL with 60% and 40% improvements, respectively. To justify these results,

we demonstrate in Fig. 18 the flows that each protocol selects. The dark

blue arrows illustrate RPL’s flow through the established DODAG, while the

93

Evaluation and Outcomes

0

200

400

600

800

1000

1200

1400

15 to 13 11 to 14 4 to 11 1 to 11

Ti
m

e
(m

s)

RPL

VERO-SDN Next Hop

VERO-SDN Complete Path

Figure 20: Total End-to-End Delay (TEED) time for selected paths from node X to

node Y

thick red arrows represent the VERO-SDN path. The proof is evident as RPL

needs 6 hops to reach node 13 while VERO-SDN selects the shortest path

through the neighbor node 14 and delivers the message in 2 hops. We also

see that RPL fits naturally to the many-to-one communication model, while

VERO-SDN can efficiently support IoT applications requiring node-to-node

communication.

• T EED(11,14) results in the same pattern with the previous example, which

manifests the eminence of our protocol with improved numbers that reach

up to 70% and 44% for the next-hop and complete-path flow establishment

processes, respectively. These results reinforce the position that VERO-SDN

selects the shortest communication path.

Both 15→ 13 and 11→ 14 paths are specially selected as challenging com-

munication cases for RPL, as discussed above, that also demonstrate the im-

proved performance and flexibility of VERO-SDN over the proactive routing

protocols. The next two examples consist of cases, where the communication

paths belong to the established DODAG.

• T EED(4,11) illustrates a case where VERO-SDN routing for both flow estab-

lishment processes exhibits slightly deteriorating performance, since RPL

94

Evaluating Routing Control in Networks with Fixed Nodes

achieved better results in terms of TEED, i.e., 15% and 21%, respectively.

This is an expected outcome since both nodes 4 and 11 belong to the same

DODAG branch, and as a result, both RPL and VERO-SDN select the same

2 hops flow. RPL outruns VERO-SDN because the latter includes the flow

establishment delay.

• T EED(1,11) represents a similar case with the previous one, where both pro-

tocols use the same path, with the difference that 1→ 11 is a four hops

path. We observe that these results are very close, with VERO-SDN next-

hop performing 5% better than RPL and the RPL 6% better than VERO-SDN

complete-path process. Although VERO-SDN maintains the additional delay

of the flow establishment, the reason that RPL does not overrun VERO-SDN,

like in the previous case, is that the forwarding processes in VERO-SDN are

faster than RPL and as more hops intervene this becomes more obvious in

the simulation outcomes.

In the second stage, we further detail our evaluation results through presenting

in Fig. 21 a box and whisker plot that demonstrates the TEED performance of each

node to all other nodes, for all three protocols. This chart illustrates the distribution

of the results from minimum to maximum values and compares the concentration

of measurements around their mean values. This visual exercise assists us to draw

broad conclusions.

Comparing the mean values and the majority of measurements that concentrate

around them (i.e., the light and dark blue boxes), we observe that VERO-SDN next-

hop process produces much better TEED for all cases of nodes compared to RPL. It

is noteworthy that the lower we go into network topology, the worse the results for

RPL (i.e., node 11, 12, 13, 14, and 15). That converges with the earlier mentioned

performance results of the 15→ 13 path. However, in many cases (i.e., node 1,2

and 3), we notice that the highest TEED values of VERO-SDN are higher than

RPL’s, due to the initial flow establishment delay time. Evaluating VERO-SDN’s

complete-path performance, we identify in a number of cases (i.e., node 1, 2, 3, 4,

10, 11, 12, and 15) that it produces a considerable spread between very high to low

TEED values. The main reason is the slower flow rule establishment procedure

that causes high TEED values.

95

Evaluation and Outcomes

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

R
P

L

FE
-N

H

FE
-C

P

R
P

L

FE
-N

H

FE
-C

P

R
P

L

FE
-N

H

FE
-C

P

R
P

L

FE
-N

H

FE
-C

P

R
P

L

FE
-N

H

FE
-C

P

R
P

L

FE
-N

H

FE
-C

P

R
P

L

FE
-N

H

FE
-C

P

R
P

L

FE
-N

H

FE
-C

P

R
P

L

FE
-N

H

FE
-C

P

R
P

L

FE
-N

H

FE
-C

P

R
P

L

FE
-N

H

FE
-C

P

R
P

L

FE
-N

H

FE
-C

P

R
P

L

FE
-N

H

FE
-C

P

R
P

L

FE
-N

H

FE
-C

P

R
P

L

FE
-N

H

FE
-C

P

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8 Node 9 Node 10 Node 11 Node 12 Node 13 Node 14 Node 15

Ti
m

e
(m

s)

Figure 21: The range of TEED values from each node to all other network nodes

The network overall end-to-end delay NOD time can be seen in Fig. 22. We

observe that VERO-SDN routing with next-hop flow establishment mechanism

achieves to deliver the full network data workload in a total duration of 73,430 ms,

reduced by 47% compared to RPL’s performance. Similarly, VERO-SDN complete-

path performance achieves a reduction of 24% compared to RPL. In Fig. 23, we

observe a summary per-protocol of the TEED values in quartiles through the box

diagram. From this chart, we observe that 75% of VERO-SDN next-hop TEED

values are below 450 ms in total, while the same applies only to the best 25% of

RPL’s values. Moreover, we find that although VERO-SDN complete-path mecha-

nism produces some high numbers in terms of TEED delay (i.e., over 1,400 ms), in

general, the majority of results and the mean value are better than RPL.

Comparing the next-hop with the complete-path flow establishment mechanisms

of VERO-SDN, we observe that next-hop obtains 30% reduced NOD time and gener-

ally performs better, in most evaluation results. This outcome is not intimidating

for the use of the complete-path process since our data-intensive simulation sce-

nario is biased in favor of the next-hop process due to the multitude of data mes-

sages transmitted to all the network nodes. So, the established flow rules in parts

of the network are exploited by the next-hop for other intermediate transmissions,

96

Evaluating Routing Control in Networks with Fixed Nodes

138,231

73,430

105,044

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

RPL VERO-SDN
Next Hop

VERO-SDN
Complete Path

Ti
m

e
(m

s)

Figure 22: The Network Overall End-to-end Delay (NOD), all-to-all scenario

0

200

400

600

800

1000

1200

1400

1600

RPL VERO-SDN
Next Hop

VERO-SDN
Complete Path

Ti
m

e
(m

s)

Figure 23: The range of TEED values per protocol, all-to-all scenario

whereas the complete-path has to re-establish the flow rules for all nodes of the

path, regardless if some of them already had valid routing information. This ex-

cess of control messages that complete-path creates and the opportunities that the

all-to-all transmission provides to the next-hop can justify the above results. Our

immediate research plans include studying scenarios where the complete-path re-

97

Evaluation and Outcomes

establishment of flows can have a valuable effect, e.g., in emergency IoT scenarios,

where traffic prioritization, predefined path establishment, and the robustness that

the complete-path demonstrated in Fig. 19, can play a vital role in the network’s

operation and performance.

Based on the above, we conclude that VERO-SDN is capable of establishing

optimal flows for IoT communication requirements in the network, maintaining

reliable message delivery and high communication performance. Furthermore, the

adopted evaluation methodology highlighted its applicability for a wide range of IoT

scenarios, beyond the traditional WSN deployments.

5.2.5 Evaluation Results of many-to-one scenario

At this point, we evaluate the performance of VERO-SDN and compare it with RPL

in a many-to-one communication scenario, commonly used in WSN deployments.

These network setups are used in data collection applications, where the network

nodes are delivering data collected from sensor devices to a central node, with the

intention to be processed in the infrastructure network. In particular, for RPL, the

many-to-one scenario fits its original architectural specifications, since the DODAG

construction process produces optimized routing paths from each node towards the

central node, in contrast to its inability to establish efficient node-to-node routing

paths, which are characterized by extended delays and packet losses, as discussed

in the previous section.

According to the results of many-to-one scenario, all protocols achieved 100%

performance in terms of PDR, since our analysis focuses on the performance of

layer-3 protocols and assumes no radio interference. Moreover, the transmission

rate and the number of communication messages are less impacted, compared to

the all-to-all scenario (i.e., Fig. 24 and 25). These results verify the flawless oper-

ation of VERO-SDN for both next-hop and complete-path forwarding mechanisms,

as functionalities of the network layer.

In Fig. 24, we depict the network’s overall end-to-end delay (NOD) time results.

We observe that VERO-SDN with next-hop flow establishment mechanism achieves

the best time to deliver the full network data workload, in a total duration of

46,412 ms, i.e., improved by 19% compared to RPL’s performance. However, it is

less than half of the 47% difference that is observed in the previous scenario. The

98

Evaluating Routing Control in Networks with Fixed Nodes

main reason is the improved performance of RPL, as, in this scenario, its inability

to establish efficient one-to-one communication paths is not present. Since there is

a good quality in the routing paths for both protocols in this scenario, the improved

performance of VERO-SDN can be justified from the better informed decisions for

the routing paths, i.e., based on the whole topology.

57,246

46,412

58,489

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

RPL VERO-SDN
Next Hop

VERO-SDN
Complete Path

Ti
m

e
(m

s)

Figure 24: The Network Overall End-to-end Delay (NOD), many-to-one scenario

Regarding the performance of VERO-SDN’s complete-path flow establishment

mechanism, we observe that is slightly outperformed, i.e., by 2%, from the RPL,

and by 20% compared to the next-hop. As we explained in the previous section, this

is due to the requirements of the scenario that do not fully comply with the design

goals of complete-path, preferably targeting ad-hoc communication patterns rather

than transmissions from all nodes, which are typical in data collection application.

Moreover, the box and whisker diagram (i.e., Fig. 25) depicts a summary of the

TEED values in quartiles per-protocol. The results verify the above observations

and justify, especially for the complete-path mechanism, the delays caused by the

repeated process of establishing forwarding rules. The latter is the reason for the

highest TEED values observed in the simulation (i.e., of over 1,100 ms).

As a bottom line, we conclude that VERO-SDN’s forwarding mechanisms can

be successfully applied in traditional data collection communication scenarios,

since they are characterized by reliable message delivery and high communication

99

Evaluation and Outcomes

0

200

400

600

800

1000

1200

1400

1600

RPL VERO-SDN
Next Hop

VERO-SDN
Complete Path

Ti
m

e
(m

s)

Figure 25: The range of TEED values per protocol, many-to-one scenario

performance.

Right after, we carry on with the performance evaluation of the SD-MIoT pro-

posed mechanisms and processes in network scenarios that include mobile nodes.

5.3 Evaluating Routing Control in Mobile Network environments

In this section, we provide our extensive evaluation analysis highlighting the per-

formance advantages of SD-MIoT and its corresponding network mobility control

mechanisms. Our main goal is to achieve robust packet delivery performance and

reduced network control overhead for mobile IoT communication environments.

Therefore, we carried out a variety of realistic simulations utilizing real human

mobility traces as well as synthetic based on the random waypoint (RWP) mobil-

ity model [115]. Our proposal is compared against RPL, and the results highlight

the improvements of SD-MIoT in terms of successful data delivery with efficient

network control overhead.

5.3.1 Use-case scenarios: Extreme-Sports & Amusement park

To further motivate our experimentation analysis, we discuss two representative

use-cases, i.e., the extreme-sports activity and the smart amusement park scenar-

ios. We emphasize the research challenges that emerge in each case and how to

100

Evaluating Routing Control in Mobile Network environments

tackle them by the appropriate WSN deployment. Briefly, both use-cases contain

a border router node and a mixture of mobile or fixed regular nodes in linear and

grid topologies. The network’s operation is characterized by devices’ mobility is-

sues and the requirement for robust network operation. Specifically, the extreme

sports activity emerges the need for network operation with routing and forwarding

stability, reliable data delivery, and enhanced QoS due to the critical environment

for human life. In contrast the amusement park requires traffic prioritization and

reliable network connectivity due to intensive data transmission challenges dur-

ing peak times and dynamic topology changes. We further elaborate on the two

use-cases below, and we evaluate the performance of SD-MIoT in terms of packet

delivery ratio and control overhead for both scenarios through simulations in the

same section.

5.3.1.1 Extreme sports use-case

Action or Extreme sports are activities that often involve speed, height, and a high

level of physical exertion combined with uncontrollable factors like the weather and

terrain, including mountains, snow, water, and wind. This combination is also well

known for involving a high degree of risk for the participants. Mountain sports,

e.g., skiing, mountain running, and mountaineering, are among the most famous

extreme sports that attract people of all ages, providing satisfaction and unique

experiences. Mount Olympus, the Greek mythical ‘‘Mountain of the gods,’’ attracts

approximately 10,000 climbers per year. Moreover, several running racing events

are held in mountains annually, i.e., the Olympus Marathon [116] and the Olympus

Mythical Trail [117], a unique trail running event of about 100 km length and 6700 m

altitude to overcome. A high-risk sport requires excellent preparation and use of

safety measures and precautions to reduce the probability of accidents, which

unfortunately may occur in physically isolated areas with low proximity to medical

facilities. In such cases, exchanging timely information between the injured party

and the rescuers is of paramount importance. Inspired by this, we investigate and

evaluate the effectiveness of SD-MIoT, in such a harsh and dangerous terrain.

In this context, we suggest the deployment of a WSN using a linear topol-

ogy of wireless fixed-position environmental sensor nodes placed in a ‘‘W’’ shape,

101

Evaluation and Outcomes

to achieve maximum radio coverage in width, along both sides of the trail. The

runners use wearable mobile sensor nodes capable of measuring vital signs and

delivering alerts. The nodes can either operate as forwarding devices or informa-

tion sinks. Fig. 26 depicts on a Google map [118] a 40 min duration and 1800 m

distance of real mobility trace data [119], recorded at the highest altitude and most

dangerous part of the Olympus Mythical Trail race in 2016, located on the Olym-

pus mountain peak named ‘‘Mytikas". At the start of the running trail, we assume

a racing campsite, where we locate the network control facilities. A race mon-

itoring software application utilizing the many-to-one traffic pattern of SD-MIoT,

continuously collects environmental conditions and runners’ vital signs. Respec-

tively, when necessary, the application reacts actuating alerts using one-to-one or

one-to-many traffic patterns.

Figure 26: Olympus Marathon Mythical Trail, extreme sports activity scenario,

Linear topology with 1 border router, 1 mobile, and 25 fixed nodes

The key challenge in this scenario is the network reliability and QoS in terms of

timely and without interruption delivery of data for all nodes, i.e., fixed or mobile.

Since we focus on mobility issues, we consider outside of this research context the

102

Evaluating Routing Control in Mobile Network environments

physical threats or other challenges related to the harsh mountain environment,

which may also affect the reliability of the network. SD-MIoT addresses the above

problem using two main features: (i) adaptive topology discovery mechanisms uti-

lizing timely and reliable knowledge of the network and targeting specific parts of

the network, i.e., the mobile nodes, to achieve robust communication with reduced

control overhead; and (ii) proactive, dynamic deployment of forwarding rules and

configurations to mobile nodes, based on centralized intelligent decision-making,

utilizing an abstract network representation graph of multivariate weights.

5.3.1.2 Amusement park use-case

Amusement or thematic parks are typical enterprises in which innovative IoT appli-

cations can leverage their business operations and enhance the customer experi-

ence to a level that was not possible in the past, using the traditional management

and operation methods. In Fig. 27 [120], we consider a water-park being moni-

tored from a central control room using two types of monitoring nodes, i.e., wireless

nodes placed at fixed positions in a grid topology and wearable devices used for

monitoring visitors (e.g., their location in the park), delivering useful notifications

and alerts, as well as exchanging messages among users.

There is a wide variety of applications that can be potentially applied in this

scenario; however, introducing several challenges to the network infrastructure,

for example: (i) safety and surveillance applications (i.e., helping parents to find

lost children), demand network reliability and robustness; (ii) customer service

improvement through the big-data collection and predictive analytics applications

(i.e., park activities, traffic congestion analysis, and queue waiting time reduction),

require centralized control and processing power; and (iii) proximity marketing

applications using real-time information and alerts (i.e., providing information tips

and promotion notifications based on the time of day or the location of the visitors),

involve low latency end-to-end communication.

To confront these challenges, especially in dynamic network environments with

mobile nodes, the SD-MIoT framework enables an OpenFlow-like centralized net-

work protocol management. By offloading the control operations from the resource-

constrained devices to the fixed infrastructure, SD-MIoT takes accurate mobility-

103

Evaluation and Outcomes

Figure 27: Water Park smart amusement park scenario, Grid topology with 1

border router, 5 mobile, and 24 fixed nodes

aware network control decisions, utilizing the global network view. In this context,

routing prioritization policies adaptable to the type of device in terms of mobility be-

havior can establish efficient paths, e.g., forwarding the information from wearable

devices, preferably through fixed nodes to avoid communication disruptions.

Moreover, in Fig. 27, we demonstrate cases of routing decisions that SD-MIoT

can tackle, utilizing its novel mechanisms and a timely, robust view of the network

topology. Mobile node 2 employs the closest fixed node 15 to deliver data to the sink.

Although mobile node 3 can opportunistically forward packets through another

mobile (i.e., node 5), it selects a path through nodes 12 and 11 to guarantee a

robust delivery. Furthermore, node 4 exchanges information with node 6 and the

network Controller realizes that node 6 moves away from node 18, initially serving

their communication. The Controller is proactively establishing a new forwarding

path to handle this situation, i.e., through nodes 24, 23 and 22. To sum up, such

facilities can benefit from SD-MIoT centralized management framework and its

intelligent network control and routing decisions based on link quality estimations,

104

Evaluating Routing Control in Mobile Network environments

along with its adaptive topology discovery to mobile environments.

5.3.2 Evaluation Methodology & Simulation Setup

Here, we investigate the capability of SD-MIoT to address the main research chal-

lenges defined in Chapter 1, like mobility and network’s QoS. We consider two

distinct scenarios corresponding to the use-cases defined above. Our two sets of

simulations probe into two main network operation processes, i.e., topology discov-

ery and flow management, unveiling the improvements that MCC brings in mobile

network environments. These essential routing protocol factors are associated with

successful packet delivery and are tightly bonded with the QoS of the network.

In this context, we compare SD-MIoT against RPL. Although RPL primarily tar-

gets fixed environments [19], as we explain at the beginning of this chapter, we

use it as a point of reference for our results and as a common denominator for

comparisons with other works in the future.

Table 8: Simulation parameters and configuration setups

Parameters Configurations

Extreme-sports

Mobility model Real Traces [119]

Linear topology 500×500 m
Border routers 1 node

Fixed 25 nodes

Mobile 1 node

Water-park

Mobility model RWP max.speed 5 km/h
Linear topology 300×300 m
Border routers 1 node

Fixed 24 nodes

Mobile 5 nodes

Data

Packet size 128 Bytes
Period of fixed nodes 6 data-packets/h

Period of mobile nodes 120 data-packets/h

Network

Transport UDP

Network SD-MIoT / RPL

Physical/MAC IEEE 802.15.4

Hardware

Radio Interface 2.4 GHz
Radio Range 50 m
Mote Zolertia Z1

Simulation

Simulator COOJA [112]

Duration 40 min
OS Contiki ver 3.0

In Table 8, we show the experimental setups of both simulation scenarios. We

105

Evaluation and Outcomes

highlight that the extreme-sports scenario, as described earlier, considers a linear

topology with one mobile node utilizing real traces, and through its simplicity, aims

to provide proof-of-concept outcomes. While the water-park scenario, probes into

a real-life grid topology scenario using synthetic mobility traces generated from

the RWP model, reproducing human mobility characteristics (i.e., speed less or

equal to 5 km/h), for five nodes. Moreover, for RPL we configure the trickle timer

to its default values as implemented in Contiki OS v3.0 (i.e, Imin = 12, Idoublings = 8

and the redundancy constant k = 10). Whereas for SD-MIoT, we set up the MOB-

TD parameters TRt = 10 min and TTRr = 10, which result in a TTRt = 60 sec for the

mobile nodes. Since we focus our study on routing processes and algorithms under

mobility, we assume a radio environment with data loss only related to distance

and no other signal issues. This configuration provides explicit conclusions related

to the network layer mechanisms only and creates a deterministic environment,

so there is no need to validate the statistical accuracy of our results. Finally, we

select higher data transmission rates for mobile nodes (i.e., 120 data packets/h)

compared to the fixed ones (i.e., 6 data packets/h), because we concentrate our

analysis towards the mobility aspects, due to the fact that it suits the requirements

of our use-cases.

5.3.3 Performance Metrics

In our experiments, we use two metrics:

1. Packet Delivery Ratio (PDR), to measure SD-MIoT’s reliability in terms of

message delivery success ratio as in Equation 11. Higher PDR values declare

reliable transmission, whereas lower values reveal deficiencies in routing

processes since, in our simulations, we assume no radio signal issues.

2. Control Messages Overhead (CMO), to show the efficiency of our solution.

This metric is a ratio calculated as the number of control messages Cx (i.e.,

routing packets) propagated by each mote throughout the network and the

total number of packets received by the destinations Tx = Rx +Cx, as in (15).

CMO =
∑Cx

∑Tx
(15)

Since the value of this metric is scenario-specific, we use it only for compar-

106

Evaluating Routing Control in Mobile Network environments

isons between simulation results within a scenario.

5.3.4 Evaluation Results & Discussion

In Fig. 28, we illustrate the simulation results of both use-case scenarios. In detail,

in Fig. 28a, for the extreme-sports scenario with one mobile node, we observe that at

the end of simulation (i.e., 40 min), in terms of PDR performance, SD-MIoT achieves

97.5% in reliable data transmission.

 60

 65

 70

 75

 80

 85

 90

 95

 100

 5 10 15 20 25 30 35 40

Pa
ck

e
t

D
e
liv

e
ry

 R
a
ti

o
 (

P
D

R
)

%

Time (min)

SD-MIoT
RPL

(a) Extreme-sports – PDR as a function of time

for all nodes

 40

 50

 60

 70

 80

 90

 100

 5 10 15 20 25 30 35 40

Pa
ck

e
t

D
e
liv

e
ry

 R
a
ti

o
 (

P
D

R
)

%

Time (min)

SD-MIoT
RPL

(b) Water-park – PDR as a function of time for all

nodes

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 5 10 15 20 25 30 35 40

Pa
ck

e
t

D
e
liv

e
ry

 R
a
ti

o
 (

P
D

R
)

%

Time (min)

SD-MIoT
RPL

(c) Extreme-sports – PDR as a function of time

for the mobile node

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 5 10 15 20 25 30 35 40

Pa
ck

e
t

D
e
liv

e
ry

 R
a
ti

o
 (

P
D

R
)

%

Time (min)

SD-MIoT
RPL

(d) Water-park – PDR as a function of time for

the mobile node

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 5 10 15 20 25 30 35 40

O
v
e
rh

e
a
d
 (

C
M

O
)

Time (min)

SD-MIoT
RPL

(e) Extreme-sports – Control Overhead as a func-

tion of time

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 5 10 15 20 25 30 35 40

O
v
e
rh

e
a
d
 (

C
M

O
)

Time (min)

SD-MIoT
RPL

(f) Water-park – Control Overhead as a function

of time

Figure 28: Extreme-sports & Water-park use-case results

107

Evaluation and Outcomes

This result is an early justification of our expectations for reliable performance

of our solution, while in the same chart, we remark that RPL produces worse

performance by 9%. The severity of the effect that mobility has in the network

reliability is predominately evident for RPL in Fig. 28c, where we observe that the

mobile node succeeds in delivering only one-fourth of the transmitted data (i.e.,

PDR = 25%). On the contrary, the mobile node with SD-MIoT fails to deliver only

10% of its data messages. Moreover, the control overhead produced from both

protocols, as shown in Fig. 28e, demonstrates similar characteristics to the PDR

results. In particular, SD-MIoT shows efficient operation with reduced CMO by

10% compared to RPL overhead. This outcome is important because it comes

from RPL having no specific control strategies to reinforce mobility. If we assume

that we apply any of the solutions focusing on RPL mobility behavior, the CMO

metric will only get worse due to the fact that the majority of them increase the

frequency of DIO control messages [47]. A relevant comparison between an early

version of SD-MIoT’s and Adaptable RPL [35], supports this claim. As a bottom line,

the discussed results of extreme-sports simulation justify our initial hypothesis to

suggest SD-MIoT in a critical for the human-life use-case scenario that requires

reliability and QoS.

The water-park simulation scenario with five mobile nodes, exhibits outcomes

in analogy to the extreme-sports scenario results detailed above, verifying the con-

sistency of SD-MIoT operation. In detail, in Fig. 28b, although SD-MIoT’s PDR

achieves lower values than in the extreme-sports scenario, it reaches 86% of suc-

cessful packet delivery, with an evident improved performance above 20%, com-

pared to RPL. Considering the mobile nodes separately from the rest of network

nodes, in Fig. 28d, we uncover why RPL performance is drastically reduced, since

the mobile nodes manage to deliver only 20% of the transmitted data, with SD-MIoT

resulting almost a 70% PDR. Since the number of topology discovery control mes-

sages of SD-MIoT depends on the number of mobile nodes in the network, as we

explain in Section 4.1.2, we observe that the produced overhead at the end of the

simulation is slightly worse than RPL’s (Fig. 28f). Nevertheless, this is expected

since the higher number of mobile nodes requires more control messages to detect

the dynamic changes in the network topology.

108

Evaluating Mobility Detector MODE

In conclusion, our results confirm the suitability of SD-MIoT in mobile IoT

environments, improving the routing efficiency and reducing the control overhead.

Proceeding with the evaluation of SD-MIoT in the next section, we extend upon the

presentation of MODE, the Mobility Detector of the SD-MIoT platform.

5.4 Evaluating Mobility Detector MODE

To investigate the effectiveness of MODE algorithm, we conduct a proof-of-concept

experimentation analysis confirming the algorithm’s accuracy in detecting node

mobility. Particularly we focus on its operational characteristics isolated from fac-

tors that affect the network connectivity, e.g., external radio interference. There-

after, we elaborate on the methodology and experimentation arrangements we fol-

low in our evaluation.

5.4.1 Evaluation Methodology & Simulation Setup

We conduct simulations aligned to the water-park use-case scenario (i.e, Sec-

tion 5.3.1.2) and considering a network of 30 nodes with one border router, 24

fixed nodes, 5 mobile nodes, and the parameters defined in Table 9. The mobile

nodes are moving according to the RWP model and follow a predefined mobility

pattern with starts and stops, as shown in Fig. 29a. The main goal of our eval-

uation is to assess the ability of MODE to successfully detect, at any given time,

the mobility-condition of each node in the network (i.e., whether they move or stay

motionless).

Table 9: Simulation setup of MODE evaluation

Settings Description Configuration

Clustering method K-means 2 clusters

Data-Smoothing method SMA window size 5
Recurrence Interval time (TTRt) 60 sec
Network nodes Zolertia Z1 30 motes

Network deployment Grid topology 300×300 m
Network protocol SD-MIoT [101]

Mobility model Random Way Point max speed 5 km/h
Mobility pattern 5 mobile, 25 fixed Figure 29a

Duration 80 min
Simulation Simulator COOJA [112]

OS Contiki-OS 3.0 [59]

109

Evaluation and Outcomes

5.4.2 Evaluation Metrics, Results & Discussion

We initially justify the validity of Transition Matrices, as the primary criterion for

identifying the moving nodes. In Fig. 29b, we depict a chart with the aggregated

values of sumTSMA per node over time. As described in the previous chapter in

subsection 4.1.3, these values represent the total connectivity changes for each

node, emerging from Equation (8), and they constitute the basic input for K-means

clustering process. From the chart, we observe significantly higher values for the

moving nodes, compared to the fixed ones. For example, nodes 5 and 6 consistently

maintain values above 4 until the 65 min, when their values start dropping as the

nodes stop moving. We observe similar behavior for nodes 2,3 and 4, since their

values drop when they stop at 20,50 and 65 min. Correspondingly, they increase

again when they start moving at 40 and 60 min. The fixed nodes maintain values

varying from zero to two, mainly due to surrounding moving nodes that affect

their adjacency matrices. The combined result of Fig. 29b and 29a is a visual

justification of how MODE utilizes the Transition Matrices as a decision-making

criterion.

To evaluate the efficiency of MODE algorithm, we use the Mobility Condition Dis-

covery Success Ratio (mSR) metric, expressing the ratio of nodes with a successful

identification on their mobility condition at a specific point in time. In particular,

at time t in a network of N nodes, we calculate the mSR value based on Equation

(16). The mobility pattern is reflected on vertex Pt = {n1,n2, ...,nN}, where n ∈ N

describes the actual mobility condition for each node, specifically n = 0 for static

and n = 1 for moving nodes. The result of MODE algorithm is represented by vertex

Dt = {d1,d2, ...,dN}, where d ∈ N expresses the detected mobility condition for each

node, with d = 0 for static and d = 1 for moving nodes.

mSRt =
1
N

N

∑
i=1


1 i f Pt(i) = Dt(i)

0 otherwise
(16)

The mSR results are presented as percentages in Fig. 29c for all network nodes

and in Fig. 29d for the five mobile ones. We clarify that MODE starts with the

assumption that all nodes are static and its first execution run is placed at time

110

Evaluating Mobility Detector MODE

0

1

2

3

4

5

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

N
o

d
e

Sa
tu

s

Time (min)

Nodes:2,3,4
Nodes:5,6
Nodes:1,7-30

Moving

Static

Moving

Moving

Static

Static

(a) Mobility scenario timeline for 30 nodes

0

2

4

6

8

10

12

0 10 20 30 40 50 60 70 80

Tr
an

si
ti

o
n

 M
at

ri
x

SM
A

 v
al

u
es

 p
e

r
n

o
d

e

Time (min)

 N1 N2 N3 N4 N5 N6 N7 N8 N9 N10

 N11 N12 N13 N14 N15 N16 N17 N18 N19 N20

 N21 N22 N23 N24 N25 N26 N27 N28 N29 N30

(b) Transition Matrix average values using Simple

Moving Average

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

D
is

co
ve

ry
 S

u
cc

e
ss

 R
at

io
 (

%
)

Time (min)

(c) Discovery Success Ratio for All nodes

0%

20%

40%

60%

80%

100%

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

D
is

co
ve

ry
 S

u
cc

e
ss

 R
at

io
 (

%
)

Time (min)

(d) Discovery Success Ratio for Mobile nodes

Figure 29: Simulation results of MODE algorithm in the water-park use-case

scenario, using SMA on Transition Matrices series with window size 5

0. From the first two samples, MODE starts detecting mobility in the network and

at the 6th
run (i.e., at 5 min, as we sample every minute), the algorithm detects the

mobility condition of all nodes successfully. During the first stop of nodes 2,3 and

4, MODE needs 3 min to realize the change, while it takes 2 min to detect that they

start moving again, i.e., at 40 min. We observe a similar behavior during the second

stop and start of the same nodes, as well as at 65 min, i.e., when all nodes stop

moving. Furthermore, we note the absence of false-positives for any of the fixed

nodes.

We now investigate the effect of SMA window parameter on the algorithm’s ef-

ficiency. We are aiming to experimentally optimize this parameter, based on the

Overall Mobility Condition Discovery Success Ratio (SmSR) metric. In detail, the lat-

ter represents the overall success ratio for all nodes, considering the total duration

of the simulation. We calculate SmSR as the average of all mSRt values, as shown

111

Evaluation and Outcomes

in Equation (17). We execute MODE in TTRt time intervals and S = {t0, t1, ..., tr}

contains all execution times t (i.e., t1 = t0 +TTRt), with r its total number.

SmSR =
1
r

r

∑
i=0

mSRSi (17)

In Fig. 30, we illustrate the results of five simulations with different SMA window

sizes n = 1,3,5,10, and 15. The n = 5 window size produces the best result, with

SmSR = 98.3%. Whereas window values lower than 5 make MODE very sensitive to

minor changes, i.e., producing false positives, while values above 5 jeopardize its

capability to rapidly detect changes in a node’s mobility condition.

93.06%

96.61%
98.31% 97.28%

95.84%

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

1 3 5 10 15

O
ve

ra
ll

D
is

co
ve

ry
 S

u
cc

es
s

R
at

io
 (

%
)

SMA window size n

Figure 30: Overall Mobility Condition Discovery Success Ratio (SmSR) for different

window values n in SMA Transition Matrices

Finally, we clarify that MODE success ratio is highly related to its alignment to

the topology refresh rate of the protocol. As in Algorithm 3, we suggest that MODE

execution interval should follow the protocol’s topology refresh rate, which in this

evaluation is 1 min. Although this topology discovery rate is challenging for the

majority of IoT protocols, we argue that it is feasible for SD-MIoT, because of the

hybrid operation of MOB-TD.

Immediately after, broadening the study on the effectiveness of the solutions

proposed in this dissertation, we proceed with the evaluation of the MINOS multi-

protocol platform.

112

Evaluating Routing Control in Heterogeneous Network environments

5.5 Evaluating Routing Control in Heterogeneous Network en-

vironments

We evaluated MINOS for handling mobility and heterogeneity in an IoT experi-

mentation setup; for example, we assume a smart city scenario similar to the one

described in the next subsection, where static nodes are located on buildings or

stations, co-existing with mobile ones being placed in vehicles (all equipped with

sensors offering city-monitoring facilities, e.g. temperature, humidity, noise, pol-

lution).

Through MINOS GUI we can proactively deploy our protocols (i.e. either the

CORAL-SDN, or the Adaptable-RPL). Once one of them is deployed each time, we

progress with extracting results regarding two metrics: (i) the PDR (i.e. the propor-

tion of packets delivered against total packets sent), and (ii) the control overhead

(i.e. ratio of control packets to the total packets).

In our comparative analysis, we use the default RPL as a baseline protocol, that

is to contrast the MINOS platform against traditional IoT deployments.

5.5.1 Use-case scenario: Smart-Cities

This section discusses a representative use-case, i.e., the the smart city scenario.

Briefly, the smart city scenario is characterized by devices’ heterogeneity and mo-

bility issues, as well as a requirement for elastic network operation.

A smart city is a large ecosystem with a high number of connected subsystems

and components. It is characterized by a wide range of communication challenges,

such as heterogeneity in terms of device type (e.g., mobile, wireless and sensor net-

works coexist), mobility behavior (e.g., humans, drones or vehicles are character-

ized by diverse mobility patterns) or application requirements (e.g., delay-sensitive

or real-time); and elasticity requirements (e.g., dynamic establishment of routing

paths in response to topology changes due to mobility). We argue that an SDN-

like platform can provide the necessary abstractions to support individual protocol

configurations per node and realize adaptive communication strategies mitigating

the above issues.

In the scenario illustrated in Fig. 31, a variety of heterogeneous wireless IoT-

devices (i.e., temperature, water and light sensors or flame detectors) are moni-

113

Evaluation and Outcomes

Figure 31: The smart-city use-case

toring a (smart) apartment. Each wireless node can operate as an end-point or a

forwarding device. Once a local controller in each apartment gathers and processes

the data, it sends a message about the apartment’s conditions to the global con-

troller. The latter resides at a central control room and is responsible for the entire

building. In case, for example, the global controller receives a crucial message

about a flame or a smoke detection, indicating the possibility of blaze, it transmits

a prioritized message triggering the necessary actions (e.g., activating an alarm for

the building evacuation).

Other examples can be: a) a drone hosting a local controller is flying around

to collect data from fixed or mobile IoT sensors about the city’s conditions or inci-

dents (e.g., weather, traffic, noise, pollution, car accidents); and b) human wear-

ables, sensors embedded to smartphones or vehicles moving with diverse mobility

patterns and being connected to multiple networks along their way. The local con-

114

Evaluating Routing Control in Heterogeneous Network environments

Table 10: Experimentation Setup

Layer Setting Description Notes

Transport UDP Packet size 60 B
Network IPv6/Rime RPL/CORAL-SDN

Adaptation 6LoWPAN

MAC CSMA

Physical IEEE 802.15.4 Channel 26

Radio Duty Cycle 128 Hz
IoT Motes Zolertia Z1 Transceiver 2.4 GHz
OS Contiki-OS ver 3.0
Simulation Cooja

TX/RX 100% Reliable Radio

Traffic load Mobile: 120 data pckt/h

Fixed: 6 data pckt/h

Mobility Model real traces [121] Canvas 750×750 m
Duration 1 h

trollers communicate with a global controller which in turn considers the detected

network conditions, according to the ‘‘big picture’’, and enforces the necessary

communication strategy, e.g., prioritizes crucial information to reach to a central

station.

We highlight in the next subsections that MINOS protocol can accommodate

a number of relevant IoT network configurations through dynamically adjusting

its parameters either per network or device. Moreover, we emphasize on the re-

search challenges that emerge in each case and should be tackled by a relevant

management platform.

5.5.2 Methodology & Metrics

The protocols, accommodated in the Data Communication plane of the MINOS

platform, are evaluated in a network with 21 IoT nodes (1 sink, 5 mobile, 15 static

nodes), exploiting real-traces extracted from Stockholm city buses’ routes, available

via the MONROE project [121]. All our experiments are deterministic, hence we do

not need to evaluate the results’ statistical accuracy with multiple experiment runs.

The combination of Cooja emulator scalability issues and the available processing

power (we used an Intel(R) Core(TM) i5-2410M, 2.30 GHz processor), along with

real-traces order of magnitude limitations, allows experimentation of this scale.

Table 10 summarizes all experiments’ settings.

Methodologically, we conducted the same scenario five times as follows: (i) the

115

Evaluation and Outcomes

15

20

25

30

35

40

45

50

10 20 30 40 50 60

P
a

ck
e

t
D

e
liv

e
ry

 R
a

tio
 (

P
D

R
)

(%
)

Time (min)

MINOS configures
parameters dynamicaly

CORAL-SDN
CORAL-SDN-D
Adaptable-RPL

Adaptable-RPL-D
default RPL

(a) PDR as a function of time for all nodes

15

20

25

30

35

40

45

50

10 20 30 40 50 60

P
a

ck
e

t
D

e
liv

e
ry

 R
a

tio
 (

P
D

R
)

(%
)

Time (min)

MINOS configures
parameters dynamicaly

CORAL-SDN
CORAL-SDN-D
Adaptable-RPL

Adaptable-RPL-D
default RPL

(b) PDR as a function of time for the mobile nodes

0.82

0.84

0.86

0.88

0.9

0.92

0.94

10 20 30 40 50 60

C
o

n
tr

o
l
O

ve
rh

e
a

d

Time (min)

MINOS configures
parameters dynamicaly

CORAL-SDN
CORA-SDN-D

Adaptable-RPL
Adaptable-RPL-D

default RPL

(c) Control overhead as a function of time

0

10

20

30

40

50

60

70

2 3 4 5 6 Mobiles
Average

P
a

ck
e

t
D

e
liv

e
ry

 R
a

tio
 (

P
D

R
)

(%
)

Node Id

default RPL
Adaptable RPL

CORAL-SDN

(d) PDR for mobile nodes and mobiles’ average

Figure 32: MINOS experimental results for PDR and control overhead

first run employs the default RPL to provide a ‘‘ground truth’’ curve (red line in

Figs. 32a-32c graphs); (ii) the next two runs consider the Adaptable-RPL, where

the MINOS either Dynamically configures its parameters on-the-fly (via the UPIs)

at the 30 min (results are indicated by the Adaptable-RPL-D green curve), or it

adapts its configuration parameters from the beginning of the experiment (blue

curve), and; (iii) the last two runs provide results for the CORAL-SDN, where the

MINOS again either Dynamically adapts its parameters at the 30 min (CORAL-SDN-

D purple curve), or it configures the protocol when the experiment starts (orange

curve). The MINOS interventions’ impacts are clearly shown in Figs. 32a-32c,

where after 30 min both the dynamically adapted scenarios (i.e. the Adaptable-

RPL-D and CORAL-SDN-D), are progressively converging to the Adaptable-RPL and

CORAL-SDN respectively, which in turn, are constantly superior to the default

RPL which keeps the default parameters (i.e. Imin = 12 and Idoubling = 8). For

the Adaptable-RPL-D scenario, after the 30 min, the Control and Monitoring RPL

116

Evaluating Routing Control in Heterogeneous Network environments

component of MINOS triggers only the sink and fixed nodes to look in a more

frequent basis for disconnected mobile nodes, that is tuning Imin = 8 and Idoubling =

0. Similarly, for the CORAL-SDN-D scenario, also after 30 min, the corresponding

component employs the neighbor request topology control algorithm that considers

the neighbor requests [31], and configures topology maintenance parameter’s rate

at 4 sec for the mobile nodes and 10 min for the static ones. These last values

could be adjusted by an intelligent algorithm or configured by the administrator to

match the typical mobility patterns of buses. The results demonstrate the positive

impact of dynamically tuning the aforementioned parameters through the MINOS

platform on the PDR. Even in low density networks, there is a trade-off between

PDR and control overhead, reflected differently in the two protocols.

5.5.3 Evaluation Results & Discussion

Figures 32a-32c show the performance of default RPL, Adaptable-RPL, and CORAL-

SDN protocols, in terms of PDR and control overhead. We use these graphs with the

time parameter on x-axis to demonstrate the ability of the MINOS to dynamically

configure its protocols. An important observation derived by all sub-figures is that

our platform and protocols outperform the default routing protocol regarding the

PDR; especially in the case of the mobile nodes, achieves an improvement up to

7.74% for the Adaptable-RPL and 19.4% for the CORAL-SDN in the whole network

(Fig. 32a), which rises up to 8.15% for the Adaptable-RPL and 21.5% for the CORAL-

SDN for the mobile nodes (Fig. 32b). This outcome also highlights the benefits of

offloading the control overhead to the static nodes. Since the mobility pattern for

the nodes 2− 6 is a moving buses’ emulation, there are long time periods of no

connectivity for the mobile nodes because of radio limitations. This explains the

fact that PDR does not exceed 50% in Fig. 32b. Another interesting outcome is

that our platform can achieve better PDR with relatively small control overhead

(Fig. 32c), in case of employing the CORAL-SDN protocol. Fig. 32d presents the

average PDR (over a period of 60 min) for each mobile node when the Adaptable-

RPL and CORAL-SDN are used to tune their mobility-aware parameters from the

beginning of the experiments. The bars clearly show that the mobile nodes can

be potentially double advanced by the MINOS treatment compared to the standard

RPL handling (e.g. nodes 2,3).

117

Evaluation and Outcomes

In general, the MINOS platform by selecting the CORAL-SDN protocol [31]

achieves a high PDR with a marginally worse control overhead. In practice, the

advanced topology construction algorithms of the protocol reduce the discovery

time, while avoiding to flood the network with control messages. We indicatively

found improvements in the PDR of the mobile nodes 2,3 and 6, up-to 37.1%, 41.3%,

and 15.7% respectively. This happens because the CORAL-SDN succeeds to route

messages through their neighboring mobile nodes. However, as previously indi-

cated, this performance is brought with the additional cost of equipping the devices

with a separate control channel. This investment is sensible in use-case scenarios

requiring reliability in routing crucial messages (e.g. a smoke detection alarm, or

critical infrastructure sectors).

Then again, in public heterogeneous networks such as the smart city envi-

ronment where the extra hardware cost may not be reasonable, low complexity

solutions like the Adaptable-RPL could be more suitable than the CORAL-SDN by

steadily offering a higher PDR compared to the default RPL protocol (Figs. 32a, 32b),

since the mobile nodes remain connected to the topology for longer periods. The

improved PDR is traded for the increased control overhead (Fig. 32c), occasionally

tolerated if, for example, the mobile nodes are powered by the hosting vehicle.

In this chapter, we presented an extensive evaluation analysis of the proposed

solutions that contributes to confirming the initial goals of this dissertation. In a

nutshell, we simulated several realistic scenarios using a plethora of different use-

cases and metrics carefully selected to draw objective and accurate conclusions in

our analysis. The results show significant improvements in a multitude of network

performance metrics that ameliorate the overall network QoS.

In the next chapter, we conclude this dissertation by summarizing its out-

comes and contributions. Withal, we enlist ideas and research areas for potential

future extensions of our work that arose from the experience and knowledge gained

through this endeavor.

118

6 Conclusions and Further Work Discussion

6.1 Summary and Conclusions

We are at the dawn of a new era of advanced network management integrating IoT

with traditional technologies like WSN and emerging technologies like 5G networks.

Notwithstanding, today’s IoT applications impel requirements like the catholic de-

mand for ultra-low latency, high bandwidth, and energy efficiency over heteroge-

neous networks and devices.

In this dissertation, we advocate the idea that the future belongs to platforms

that bringing elasticity, intelligence, and central management into mobile and het-

erogeneous IoT networks, utilizing the SDN paradigm for network control and man-

agement. Fusing those technologies is not a straightforward task as new challenges

emerge like the excessive use of control messages transmitted over the low power

and lossy communication environment.

In Chapter 2, we have described in detail the progress of the research commu-

nity to date on the above issues, highlighting their strengths and weaknesses and

citing the most important work, many of which have been a source of inspiration

for us. In Chapters 3, 4, 5, we delve into these problems and propose, design,

develop, and evaluate three novel SDWSN solutions that incorporate architectures

and mechanisms for IoT networks, which are fully aligned with the SDN model. In

detail we have presented respectively:

• VERO-SDN, our SDN OpenFlow-like framework for IoT networks, along with

simulations featuring its novel network control features, validating the suit-

ability of VERO-SDN for a wide range of IoT deployment conditions, e.g.,

topology structures and communication patterns. Our proposal architec-

turally adopts the usage of a separate long-range wireless channel that con-

nects the network nodes with the SDN Controller, within one-hop distance.

This innovative approach solves successfully major drawbacks of SDWSN,

including the increased control messages overhead and the unreliable com-

119

Conclusions and Further Work Discussion

munication with the SDN Controller. Furthermore, our platform can be easily

extended to support new algorithms, network protocol parameters and mea-

surements; its modular architecture makes it also feasible to connect with

external entities, such as machine-learning systems, providing intelligent

network manipulation decisions based on data inputs from VERO-SDN.

• SD-MIoT solution and its algorithms, mitigating the research issues arisen

in the rapidly growing research area of mobile IoT, including the unreliable

and high-overhead communication due to the dynamicity in the topology

introduced by mobile nodes. SD-MIoT addresses these issues through: (i)

a timely picture of the network topology in dynamic environments; (ii) reli-

able forwarding decisions based on mobility-aware routing prioritization; and

(iii) blended reactive and proactive flow rule establishment processes. Such

features are backed from a novel intelligent MODE algorithm, designed to

accurately and timely detect nodes under mobility. We validated the robust

with low control overhead performance of our solution in challenging real-

istic Mobile IoT use-cases, as well as the MODE detection accuracy. In our

understanding, SD-MIoT is the first SDWSN solution design for mobile IoT

environments and since we have released SD-MIoT as an open-source, we

expect further improvements and experiments from the scientific research

community.

• MINOS platform, a multi-protocol SDN facility, implementing service-awareness

as a feature that amplifies the cardinal role of IoT technology. It stands be-

tween revolutionary approaches fully exploiting the SDN paradigm to pro-

vide centralized control, and evolutionary ones, which enhance IoT-oriented

mechanisms with SDN-inspired functionalities to keep their pros, while mod-

erating their inabilities in terms of elasticity, heterogeneity, and mobility. We

adopt the SDN approach to build an architecture which can host multiple IoT

protocols while having the functional components to deploy them on-demand

according to the application requirements, and configuring them in real-time

responding to dynamic network conditions. MINOS follows a modular archi-

tecture and its planes serve as further experimentation place-holders. Fur-

thermore, our platform can be easily extended in a straightforward manner

120

Future Work Discussion

to support new algorithms, network protocol parameters and measurements;

its modular architecture makes it also feasible to connect with external enti-

ties, such as machine-learning systems, providing intelligent network control

decisions based on data inputs from the protocols.

Open and flexible architectures like those discussed in the dissertation can en-

able a plethora of new innovative applications that may not even be foreseeable

today since the future belongs to frameworks bringing elasticity, intelligence and

centralized management into the network operation, emerging from the require-

ments of today’s IoT applications.

Concluding, we envisage that our work and results will constitute the basis

and the common grounds for the research community to exploit further the ben-

efits that the centralized control brings to WSN and IoT applications. For this

reason, we provide our implementation as an open-source in the Github plat-

form [90], [101], [107], and [86], providing additional technical information and

deployment instructions omitted for reasons of clarity form this text.

6.2 Future Work Discussion

Emerging technologies for 5G networks such as Mobile Cloud, Edge and Fog Com-

puting, together with lightweight clouds and network slicing, have a significant

impact on future IoT evolution. 5G networks integrate networking, computing and

storage resources into one unified programmable infrastructure. This unification

allows for optimized and more dynamic usage of server and network resources and

the convergence of fixed, mobile, and broadcast services.

Here, we discuss a number of topics that we suggest as future work that can

further improve the impact and applicability of the proposed SDWSN frameworks,

including energy efficiency, security and scalability issues. Our main direction is

to introduce a number of relevant intelligent control mechanisms and also exploit

the advancements of 5G networks, such as incorporating Software Defined Radio

(SDR) technologies.

We now further define a non-exhaustive list of topics that our proposed plat-

forms can accommodate to enable future research:

• Energy Efficiency: Energy conservation is an essential feature in the operation

121

Conclusions and Further Work Discussion

of IoT networks. Although at this stage one could argue that our solutions

may introduce additional energy consumption because of the usage of two

radio channels, research works like [64] and [65] showed that a centralized

system with a separate control channel, like those described in this disser-

tation, can enable new methods in energy management for IoT networks.

• Scalability: Scaled up simulations with hundreds of network nodes are also

in our near-future plans, justifying the efficient operation of SDWSN plat-

forms in large scale network scenarios. Although we have tested our facility

with networks of 90 nodes in the context of this dissertation, as we dis-

cussed already in Section 3.7 we anticipate the operation of our solutions

like VERO-SDN engaging in experiments with many BR control nodes (i.e.,

either connected directly or through a hierarchical structure to the Controller)

will efficiently address large-scale scenarios, e.g., IoT deployments in Smart-

Cities).

• Industrial use: The evident reliable operation of our solutions motivates us

to further study its robustness in scenarios with unreliable and challenging

communication environments (e.g., IoT for critical infrastructure), by con-

ducting experiments aligned to relevant industrial use-cases.

• Predictive routing and flow establishment: This emerging flow establishment

technique attempts to proactively set up routing paths and flow rules based

on intelligent decision-making modules that utilize the SDN global network

view and the Controller’s excessive computational power. For example, such

research endeavors can be a natural evolution of the SD-MIoT framework.

• Mobility trajectory prediction: We envisage to augment MODE functionality

with the addition of mobility behavior modeling and relevant pattern extrac-

tion, aiming to provide advanced mobility trajectory prediction, as an addi-

tional Controller’s feature.

• Extensive experimentation: In the evolution of this work, we plan to perform

large scale experiments in realistic test-beds with mobile nodes, including

w-iLab.2 [39] and IoT-LAB [122] that both allowing multi-hop deployments.

• Security: Last but not least, the general network view of SDWSN can enable

the detection of intruders or malicious nodes (e.g., spot a node advertising

122

Future Work Discussion

signal levels that are significantly different from its neighbors). Furthermore,

researchers could implement machine-learning solutions to tackle security

issues.

Towards the advancements in 5G network technologies and in particular the

SDR solutions, where softwarized network interfaces are capable of communicating

in a flexible manner over multiple radio bands, we expect that protocols support-

ing a dual-radio channel communication will use this infrastructure terrain as

the catalyst for expanding further the integration between 5G and IoT networks.

Additionally, the modular architecture of our solutions and the well-designed API

interfaces can also enable the latest developments in networks, such as the net-

work data plane slicing.

As a bottom line, we consider the solutions proposed in this dissertation as

enabling platforms for research on SDN-like capabilities for IoT devices. Our goal

is to keep building on top of them, keep integrating new intelligence modules, and

exploit them to enable new unique protocol features.

123

References

[1] P. Rawat, K. D. Singh, H. Chaouchi, and J. M. Bonnin, ‘‘Wireless Sensor

Networks: A survey on recent developments and potential synergies,’’ The J.

of Supercomputing, vol. 68, no. 1, pp. 1–48, 2014.

[2] S. Li, L. Da Xu, and S. Zhao, ‘‘The internet of things: A survey,’’ Inf. Syst.

Frontiers, vol. 17, no. 2, pp. 243–259, 2015.

[3] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, ‘‘Internet of Things

(IoT): A vision, architectural elements, and future directions,’’ Future Gener.

Comput. Syst., vol. 29, no. 7, pp. 1645–1660, 2013.

[4] I. Yaqoob, E. Ahmed, I. A. T. Hashem, A. I. A. Ahmed, A. Gani, M. Imran, and

M. Guizani, ‘‘Internet of Things architecture: Recent advances, taxonomy,

requirements, and open challenges,’’ IEEE Wireless Commun., vol. 24, no. 3,

pp. 10–16, 2017.

[5] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky,

and S. Uhlig, ‘‘Software-defined networking: A comprehensive survey,’’ Proc.

IEEE, vol. 103, no. 1, pp. 14–76, 2014.

[6] I. T. Haque and N. Abu-Ghazaleh, ‘‘Wireless software defined networking: A

survey and taxonomy,’’ IEEE Commun. Surveys & Tutorials, vol. 18, no. 4,

pp. 2713–2737, 2016.

[7] K. M. Modieginyane, B. B. Letswamotse, R. Malekian, and A. M. Abu-

Mahfouz, ‘‘Software defined wireless sensor networks application opportu-

nities for efficient network management: A survey,’’ Comput. and Elect. Eng.,

vol. 66, pp. 274–287, 2018.

[8] J. Zheng and M. J. Lee, ‘‘A comprehensive performance study of ieee 802.15.

4,’’ Sensor network operations, vol. 4, pp. 218–237, 2006.

[9] Z. Sheng, S. Yang, Y. Yu, A. V. Vasilakos, J. A. McCann, and K. K. Leung,

‘‘A survey on the ietf protocol suite for the internet of things: Standards,

challenges, and opportunities,’’ IEEE Wireless Commun., vol. 20, no. 6, pp.

91–98, 2013.

[10] L. Atzori, A. Iera, and G. Morabito, ‘‘The internet of things: A survey,’’ Comp.

Netw., vol. 54, no. 15, pp. 2787–2805, 2010.

[11] IEEE, ‘‘IEEE Standard for Low-Rate Wireless Networks,’’ IEEE Std 802.15.4-

2015 (Revision of IEEE Std 802.15.4-2011), pp. 1–709, Apr. 2016.

124

[12] J. A. Gutiérrez, ‘‘On the use of ieee std. 802.15.4 to enable wireless sensor

networks in building automation,’’ International Journal of Wireless Informa-

tion Networks, vol. 14, no. 4, pp. 295–301, 2007.

[13] ‘‘IPv6 over Low power WPAN (6lowpan),’’ Accessed: Jul. 10, 2020. [Online].

Available: https://datatracker.ietf.org/wg/6lowpan/about/

[14] ‘‘Routing Over Low power and Lossy networks (roll),’’ Accessed: Jul. 10,

2020. [Online]. Available: https://datatracker.ietf.org/wg/roll/about/

[15] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister,

R. Struik, J. P. Vasseur, and R. Alexander, ‘‘RPL: IPv6 routing protocol for

low-power and lossy networks,’’ RFC 6550, IETF, Tech. Rep., Mar. 2012.

[16] T. Tsvetkov and A. Klein, ‘‘Rpl: Ipv6 routing protocol for low power and lossy

networks,’’ Network, vol. 59, pp. 59–66, 2011.

[17] V. Karagiannis, P. Chatzimisios, F. Vazquez-Gallego, and J. Alonso-Zarate,

‘‘A survey on application layer protocols for the internet of things,’’ Trans. on

IoT and Cloud Comput., vol. 3, no. 1, pp. 11–17, 2015.

[18] D. Singh, G. Tripathi, and A. J. Jara, ‘‘A survey of internet-of-things: Future

vision, architecture, challenges and services,’’ in IEEE world forum on Internet

of Things (WF-IoT). IEEE, 2014, pp. 287–292.

[19] M. Bouaziz and A. Rachedi, ‘‘A survey on mobility management protocols in

Wireless Sensor Networks based on 6LoWPAN technology,’’ Comput. Com-

mun., vol. 74, pp. 3–15, 2016.

[20] I. Tomić and J. A. McCann, ‘‘A survey of potential security issues in existing

wireless sensor network protocols,’’ IEEE Internet of Things J., vol. 4, no. 6,

pp. 1910–1923, 2017.

[21] N. A. Pantazis, S. A. Nikolidakis, and D. D. Vergados, ‘‘Energy-efficient rout-

ing protocols in wireless sensor networks: A survey,’’ IEEE Commun. surveys

& tutorials, vol. 15, no. 2, pp. 551–591, 2012.

[22] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rex-

ford, S. Shenker, and J. Turner, ‘‘Openflow: Enabling innovation in campus

networks,’’ SIGCOMM Comput. Commun. Rev., vol. 38, no. 2, pp. 69–74, Mar.

2008.

[23] K. Sood, S. Yu, and Y. Xiang, ‘‘Software-Defined Wireless Networks oppor-

tunities and challenges for Internet-of-Things: A review,’’ IEEE Internet of

Things J., vol. 3, no. 4, pp. 453–463, Aug 2016.

125

[24] S. Bera, S. Misra, and A. V. Vasilakos, ‘‘Software-defined networking for

internet of things: A survey,’’ IEEE Internet of Things J., vol. 4, no. 6, pp.

1994–2008, 2017.

[25] H. I. Kobo, A. M. Abu-Mahfouz, and G. P. Hancke, ‘‘A survey on software-

defined wireless sensor networks: Challenges and design requirements,’’

IEEE Access, vol. 5, pp. 1872–1899, 2017.

[26] M. Baddeley, R. Nejabati, G. Oikonomou, M. Sooriyabandara, and D. Sime-

onidou, ‘‘Evolving SDN for Low-Power IoT networks,’’ in 4th IEEE Conf. on

Netw. Softwarization and Workshops, Jun. 2018, pp. 71–79.

[27] G. Violettas, S. Petridou, and L. Mamatas, ‘‘Routing under heterogeneity and

mobility for the Internet of Things: A centralized control approach,’’ in IEEE

Global Commun. Conf. IEEE, 2018, pp. 1–7.

[28] R. C. Alves, D. A. Oliveira, G. A. N. Segura, and C. B. Margi, ‘‘The Cost of

Software-Defining Things: A Scalability Study of Software-Defined Sensor

Networks,’’ IEEE Access, vol. 7, pp. 115 093–115 108, 2019.

[29] T. Theodorou and L. Mamatas, ‘‘Software defined topology control strategies

for the Internet of Things,’’ in IEEE Conf. on Netw. Function Virtualization and

Softw. Defined Netw. (NFVSDN), Nov 2017, pp. 236–241.

[30] G. Violettas, T. Theodorou, S. Petridou, A. Tsioukas, and L. Mamatas, ‘‘An

experimentation facility enabling flexible network control for the Internet of

Things,’’ in IEEE Conf. on Comput. Commun. (INFOCOM). IEEE, 2017, pp.

992–993.

[31] T. Theodorou and L. Mamatas, ‘‘CORAL-SDN: A Software-Defined Network-

ing solution for the Internet of Things,’’ in IEEE Conf. on Netw. Function

Virtualization and Softw. Defined Netw. (NFVSDN), Nov 2017, pp. 1–2.

[32] T. Theodorou and L. Mamatas, ‘‘A Versatile Out-of-Band Software-Defined

networking solution for the Internet of Things,’’ IEEE Access, vol. 8, pp.

103 710–103 733, Jun 2020.

[33] D. Carels, E. De Poorter, I. Moerman, and P. Demeester, ‘‘RPL mobility sup-

port for point-to-point traffic flows towards mobile nodes,’’ Int. J. of Distrib.

Sensor Netw., vol. 11, no. 6, pp. 1–13, Jun 2015.

[34] T. Theodorou and L. Mamatas, ‘‘SD-MIoT: A Software-Defined Networking

Solution for Mobile Internet of Things,’’ IEEE Internet of Things J., 2020, doi:

10.1109/JIOT.2020.3027427.

126

[35] T. Theodorou, G. Violettas, P. Valsamas, S. Petridou, and L. Mamatas,

‘‘A Multi-Protocol Software-Defined networking solution for the Internet of

Things,’’ IEEE Commun. Mag., vol. 57, no. 10, pp. 42–48, Oct 2019.

[36] ‘‘eWINE Elastic Wireless Networking Experimentation grand challenge

awards,’’ Accessed: Jun. 10, 2020. [Online]. Available: https:

//ewine-project.eu/grand-challenge/

[37] C. Fortuna, P. Ruckebusch, C. Van Praet, I. Moerman, N. Kaminski,

L. DaSilva, I. Tinirello, G. Bianchi, F. Gringoli, A. Zubow et al., ‘‘Wireless

software and hardware platforms for flexible and unified radio and network

control,’’ in European Conf. on Netw. and Commun. (EUCNC 2015), 2015, pp.

712–717.

[38] M. Kulin, C. Fortuna, E. De Poorter, D. Deschrĳver, and I. Moerman, ‘‘Data-

driven design of intelligent wireless networks: An overview and tutorial,’’

Sensors, vol. 16, no. 6, p. 790, 2016.

[39] ‘‘IMEC w-iLab.2 testbed,’’ Accessed: Jun. 10, 2020. [Online]. Available:

http://wilab2.ilabt.iminds.be

[40] ‘‘Tutorial: Softwarized Internet of Things with Lightweight Clouds

in Practice,’’ Accessed: Jun. 10, 2020. [Online]. Available: https:

//nfvsdn2017.ieee-nfvsdn.org/program/tutorials/#tutorial3

[41] B. T. de Oliveira, R. C. A. Alves, and C. B. Margi, ‘‘Software-defined wireless

sensor networks and internet of things standardization synergism,’’ in 2015

IEEE Conf. on Standards for Commun. and Netw. (CSCN). IEEE, 2015, pp.

60–65.

[42] B. T. De Oliveira, L. B. Gabriel, and C. B. Margi, ‘‘TinySDN: Enabling mul-

tiple controllers for software-defined wireless sensor networks,’’ IEEE Latin

America Trans., vol. 13, no. 11, pp. 3690–3696, 2015.

[43] B. T. de Oliveira and C. B. Margi, ‘‘TinySDN: Enabling TinyOS to Software-

Defined Wireless Sensor Networks,’’ XXXIV Simpósio Brasileiro de Redes de

Computadores, pp. 1229–1237, 2016.

[44] O. Gnawali, R. Fonseca, K. Jamieson, M. Kazandjieva, D. Moss, and P. Levis,

‘‘CTP: An efficient, robust, and reliable collection tree protocol for wireless

sensor networks,’’ ACM Transactions on Sensor Networks (TOSN), vol. 10,

no. 1, pp. 1–49, 2013.

[45] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay,

J. Hill, M. Welsh, E. Brewer et al., ‘‘TinyOS: An operating system for sensor

networks,’’ in Ambient intelligence. Springer, 2005, pp. 115–148.

127

[46] E. Municio, J. Marquez-Barja, S. Latré, and S. Vissicchio, ‘‘Whisper: Pro-

grammable and Flexible Control on Industrial IoT Networks,’’ Sensors,

vol. 18, no. 11, pp. 40–48, 2018.

[47] G. Violettas, S. Petridou, and L. Mamatas, ‘‘Evolutionary Software Defined

Networking-Inspired Routing Control Strategies for the Internet of Things,’’

IEEE Access, vol. 7, pp. 132 173–132 192, 2019.

[48] H. Mostafaei and M. Menth, ‘‘Software-defined wireless sensor networks: A

survey,’’ Journal of Network and Computer Applications, vol. 119, pp. 42–56,

2018.

[49] T. Luo, H.-P. Tan, and T. Q. Quek, ‘‘Sensor OpenFlow: Enabling software-

defined wireless sensor networks,’’ IEEE Commun. Letters, vol. 16, no. 11,

pp. 1896–1899, 2012.

[50] A. De Gante, M. Aslan, and A. Matrawy, ‘‘Smart wireless sensor network

management based on Software-Defined Networking,’’ in 27th Biennial Symp.

on Commun. (QBSC). IEEE, 2014, pp. 71–75.

[51] S. Costanzo, L. Galluccio, G. Morabito, and S. Palazzo, ‘‘Software defined

wireless networks (SDWN): Unbridling SDNs,’’ in European Workshop on

Softw. Defined Netw., 2012, pp. 1–6.

[52] L. Galluccio, S. Milardo, G. Morabito, and S. Palazzo, ‘‘SDN-WISE: Design,

prototyping and experimentation of a stateful SDN solution for WIreless SEn-

sor networks,’’ in IEEE Conf. on Comput. Commun. (INFOCOM), Apr. 2015, pp.

513–521.

[53] L. Galluccio, S. Milardo, G. Morabito, and S. Palazzo, ‘‘Reprogramming Wire-

less Sensor Networks by using SDN-WISE: A hands-on demo,’’ in 2015 IEEE

Conf. on Comput. Commun. Workshops (INFOCOM WKSHPS). IEEE, 2015,

pp. 19–20.

[54] A. G. Anadiotis, L. Galluccio, S. Milardo, G. Morabito, and S. Palazzo, ‘‘To-

wards a software-defined network operating system for the IoT,’’ in 2nd IEEE

World Forum on Internet of Things (WF-IoT), Dec 2015, pp. 579–584.

[55] A.-C. Anadiotis, L. Galluccio, S. Milardo, G. Morabito, and S. Palazzo,

‘‘SD-WISE: A Software-Defined WIreless SEnsor network,’’ Comput.

Netw., vol. 159, pp. 84 – 95, 2019. [Online]. Available: http:

//www.sciencedirect.com/science/article/pii/S1389128618312192

[56] B. T. de Oliveira and C. B. Margi, ‘‘Distributed control plane architecture

for software-defined wireless sensor networks,’’ in 2016 IEEE Int. Symp. on

Consumer Electron (ISCE). IEEE, 2016, pp. 85–86.

128

[57] S. Bera, S. Misra, S. K. Roy, and M. S. Obaidat, ‘‘Soft-WSN: Software-defined

WSN management system for IoT applications,’’ IEEE Syst. J., vol. 12, no. 3,

pp. 2074–2081, 2016.

[58] R. Alves, D. Oliveira, G. Nez, and C. B. Margi, ‘‘It-sdn: Improved architec-

ture for sdwsn,’’ in XXXV Brazilian Symposium on Computer Networks and

Distributed Systems, 2017.

[59] A. Dunkels, B. Gronvall, and T. Voigt, ‘‘Contiki-a lightweight and flexible

operating system for tiny networked sensors,’’ in 29th Ann. IEEE Int. Conf.

on Local Comput. Netw. IEEE, 2004, pp. 455–462.

[60] C. B. Margi, R. C. Alves, G. A. N. Segura, and D. A. Oliveira, ‘‘Software-

defined wireless sensor networks approach: Southbound protocol and its

performance evaluation,’’ Open J. of Internet Of Things (OJIOT), vol. 4, no. 1,

pp. 99–108, 2018.

[61] M. Baddeley, U. Raza, A. Stanoev, G. Oikonomou, R. Nejabati, M. Sooriya-

bandara, and D. Simeonidou, ‘‘Atomic-SDN: Is Synchronous Flooding the

Solution to Software-Defined Networking in IoT?’’ IEEE Access, vol. 7, pp.

96 019–96 034, 2019.

[62] M. Baddeley, U. Raza, M. Sooriyabandara, G. Oikonomou, R. Nejabati, and

D. Simeonidou, ‘‘Poster: Atomic-SDN: A synchronous flooding framework

for SDN control of Low-Power Wireless,’’ in Proc. of the 2019 Int. Conf. on

Embedded Wireless Syst. and Netw. Junction Publishing, 2019, pp. 206–

207.

[63] I. Haque, M. Nurujjaman, J. Harms, and N. Abu-Ghazaleh, ‘‘SDSense: An

agile and flexible SDN-based framework for wireless sensor networks,’’ IEEE

Trans. on Vehicular Technol., vol. 68, no. 2, pp. 1866–1876, 2018.

[64] M. Del Prete, D. Masotti, A. Costanzo, M. Magno, and L. Benini, ‘‘A 2.4 GHz-

868 MHz dual-band wake-up radio for wireless sensor network and IoT,’’

in 2015 IEEE 11th Int. Conf. on Wireless and Mobile Comput., Netw. and

Commun. (WiMob), Oct 2015, pp. 322–328.

[65] R. Piyare, T. Istomin, and A. L. Murphy, ‘‘WaCo: A Wake-Up Radio COOJA

Extension for Simulating Ultra Low Power Radios,’’ in Proc. of the 2017 Int.

Conf. on Embedded Wireless Syst. and Netw. USA: Junction Publishing,

2017, pp. 48–53.

[66] M. Kaplan, C. Zheng, M. Monaco, E. Keller, and D. Sicker, ‘‘WASP: A

software-defined communication layer for hybrid wireless networks,’’ in 2014

ACM/IEEE Symposium on Architectures for Netw. and Commun. Syst. (ANCS),

Oct 2014, pp. 5–15.

129

[67] C. Gu, R. Tan, X. Lou, and D. Niyato, ‘‘One-hop out-of-band control planes

for low-power multi-hop wireless networks,’’ in 2018 IEEE Conf. on Comput.

Commun. (INFOCOM), April 2018, pp. 1187–1195.

[68] D. Carels, E. De Poorter, I. Moerman, and P. Demeester, ‘‘RPL mobility sup-

port for point-to-point traffic flows towards mobile nodes,’’ Int. J. of Distrib.

Sensor Netw., vol. 11, no. 6, pp. 1–13, 2015.

[69] C. Cobarzan, J. Montavont, and T. Noel, ‘‘Analysis and performance evalua-

tion of RPL under mobility,’’ in IEEE Symp. on Comput. and Commun. (ISCC).

IEEE, 2014, pp. 1–6.

[70] I. El Korbi, M. B. Brahim, C. Adjih, and L. A. Saidane, ‘‘Mobility enhanced

RPL for wireless sensor networks,’’ in 3rd Int. Conf. on the Netw. of the Future

(NOF). IEEE, 2012, pp. 1–8.

[71] A. Oliveira and T. Vazão, ‘‘Low-power and lossy networks under mobility: A

survey,’’ Comput. Netw., vol. 107, pp. 339–352, 2016.

[72] H. Fotouhi, D. Moreira, and M. Alves, ‘‘mRPL: Boosting mobility in the Inter-

net of Things,’’ Ad Hoc Networks, vol. 26, pp. 17–35, 2015.

[73] H. Fotouhi, D. Moreira, M. Alves, and P. M. Yomsi, ‘‘mRPL+: A mobility

management framework in RPL/6LoWPAN,’’ Comput. Commun., vol. 104,

pp. 34–54, 2017.

[74] Y. Tahir, S. Yang, and J. McCann, ‘‘BRPL: Backpressure RPL for high-

throughput and mobile IoTs,’’ IEEE Trans. Mobile Comput., vol. 17, no. 1,

pp. 29–43, 2017.

[75] L. Tassiulas and A. Ephremides, ‘‘Stability properties of constrained queue-

ing systems and scheduling policies for maximum throughput in multihop

radio networks,’’ IEEE Transactions on Automatic Control, vol. 37, no. 12, pp.

1936–1948, 1992.

[76] M. J. Neely and R. Urgaonkar, ‘‘Optimal backpressure routing for wireless

networks with multi-receiver diversity,’’ Ad Hoc Networks, vol. 7, no. 5, pp.

862–881, 2009.

[77] M. Bouaziz, A. Rachedi, A. Belghith, M. Berbineau, and S. Al-Ahmadi, ‘‘EMA-

RPL: Energy and mobility aware routing for the Internet of Mobile Things,’’

Future Generation Comput. Syst., vol. 97, pp. 247–258, 2019.

[78] F. Gara, L. B. Saad, R. B. Ayed, and B. Tourancheau, ‘‘A new scheme for

RPL to handle mobility in wireless sensor networks,’’ Int. J. of Ad Hoc and

Ubiquitous Comput., vol. 30, no. 3, pp. 173–186, 2019.

130

[79] P. Levis, T. Clausen, J. Hui, O. Gnawali, and J. Ko, ‘‘The Trickle

Algorithm,’’ IETF, Tech. Rep. RFC 6206, Mar. 2011. [Online]. Available:

https://tools.ietf.org/html/rfc6206

[80] V. de Figueiredo Marques and J. Kniess, ‘‘Mobility Aware RPL (MARPL): Pro-

viding Mobility Support for RPL Protocol,’’ in Anais Principais do XXXVII

Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuı́dos. SBC,

2019, pp. 211–223.

[81] G. Han, J. Jiang, C. Zhang, T. Q. Duong, M. Guizani, and G. K. Karagianni-

dis, ‘‘A survey on mobile anchor node assisted localization in wireless sensor

networks,’’ IEEE Commun. Surveys Tuts., vol. 18, no. 3, pp. 2220–2243,

2016.

[82] B. P. Santos, O. Goussevskaia, L. F. Vieira, M. A. Vieira, and A. A. Loureiro,

‘‘Mobile matrix: Routing under mobility in iot, iomt, and social iot,’’ Ad Hoc

Netw., vol. 78, pp. 84–98, 2018.

[83] B. P. Santos, P. H. Rettore, L. F. Vieira, and A. A. Loureiro, ‘‘Dribble: A

learn-based timer scheme selector for mobility management in IoT,’’ in IEEE

Wireless Commun. and Netw. Conf. (WCNC). IEEE, 2019, pp. 1–6.

[84] ‘‘Zolertia RE-Mote platform,’’ Accessed: Dec. 10, 2019. [Online]. Available:

https://github.com/Zolertia/Resources/wiki/RE-Mote

[85] R. Wallace, ‘‘Achieving optimum radio range,’’ Texas Instruments Incorpo-

rated, Dallas, Texas 75265, Tech. Rep. SWRA479A, 9 2017.

[86] ‘‘CORAL-SDN open-source software and demo videos,’’ Accessed: May. 1,

2020. [Online]. Available: https://github.com/SWNRG/coral-sdn

[87] Open Networking Foundation, ‘‘SDN architecture 1.1,’’ Open Netw. Found.,

Palo Alto, CA, USA, Tech. Rep. ONF TR-521, Feb. 2016. [Online].

Available: https://www.opennetworking.org/wp-content/uploads/2014/

10/TR-521_SDN_Architecture_issue_1.1.pdf

[88] M. Gigli and S. G. Koo, ‘‘Internet of Things: Services and applications cate-

gorization,’’ Adv. Internet of Things, vol. 1, no. 2, pp. 27–31, 2011.

[89] ‘‘Node-RED,’’ Accessed: Dec. 10, 2019. [Online]. Available: https:

//nodered.org

[90] ‘‘VERO-SDN open-source software and demo videos,’’ Accessed: May. 1,

2020. [Online]. Available: https://github.com/SWNRG/vero-sdn

[91] ‘‘Contiki OS enhanced with dual-radio features open-source software,’’

Accessed: May. 08, 2019. [Online]. Available: https://github.com/

clovervnd/Dual-radio-simulation

131

[92] ‘‘RE-Mote 2.4GHz dual antenna,’’ Accessed: Dec. 10, 2019. [On-

line]. Available: https://github.com/Zolertia/Resources/wiki/RE-Mote-2.

4GHz-dual-antenna

[93] ‘‘Weka 3: Machine Learning Software in Java,’’ Accessed: Jun. 10, 2020.

[Online]. Available: https://www.cs.waikato.ac.nz/∼ml/weka

[94] Y.-C. Tseng, S.-Y. Ni, Y.-S. Chen, and J.-P. Sheu, ‘‘The broadcast storm

problem in a mobile ad hoc network,’’ Wireless Netw., vol. 8, no. 2-3, pp.

153–167, 2002.

[95] J. V. Sobral, J. J. Rodrigues, R. A. Rabêlo, J. Al-Muhtadi, and V. Korotaev,

‘‘Routing protocols for low power and lossy networks in Internet of Things

applications,’’ Sensors, vol. 19, no. 9, p. 2144, 2019.

[96] S. Milardo, A. Venkatasubramanian, K. Vĳayan, P. Nagaradjane, and

G. Morabito, ‘‘From Reactive to Predictive Flow Instantiation: An artificial

Neural Network approach to the SD-IoT,’’ in 2018 24th European Wireless

Conf., May 2018, pp. 1–6.

[97] E. W. Dĳkstra et al., ‘‘A note on two problems in connexion with graphs,’’

Numerische mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[98] E. Borgia, ‘‘The internet of things vision: Key features, applications and open

issues,’’ Comput. Commun., vol. 54, pp. 1–31, 2014.

[99] S. R. Islam, D. Kwak, M. H. Kabir, M. Hossain, and K. Kwak, ‘‘The Internet

of Things for health care: A comprehensive survey,’’ IEEE Access, vol. 3, pp.

678–708, 2015.

[100] L. Lan, R. Shi, B. Wang, and L. Zhang, ‘‘An iot unified access platform for

heterogeneity sensing devices based on edge computing,’’ IEEE Access, vol. 7,

pp. 44 199–44 211, 2019.

[101] ‘‘SD-MIoT open-source software and demo videos,’’ [Accessed: May. 10,

2020]. [Online]. Available: https://github.com/SWNRG/SD-MIoT

[102] T. Hastie, R. Tibshirani, J. Friedman, and J. Franklin, ‘‘The elements of sta-

tistical learning: data mining, inference and prediction,’’ The Mathematical

Intelligencer, vol. 27, no. 2, pp. 83–85, 2005.

[103] C. D. Kirkpatrick II and R. Julie, ‘‘Moving averages,’’ in CMT Level II The

Theory and Analysis of Technical Analysis. John Wiley & Sons, 2017, ch. 2.

[104] A. K. Jain, ‘‘Data clustering: 50 years beyond k-means,’’ Pattern Recognition

Letters, vol. 31, no. 8, pp. 651–666, 2010.

132

[105] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining: Practical

machine learning tools and techniques, 4th ed. Morgan Kaufmann, 2016.

[106] ‘‘2nd Open Call Scheme of the Wireless Software and Hardware

platforms for Flexible and Unified radio and network controL project

(WiSHFUL),’’ Accessed: Jul. 20, 2020. [Online]. Available: http:

//www.wishful-project.eu/OpenCall2.html

[107] ‘‘MINOS open-source software and demo videos,’’ [Accessed: Jun. 18, 2020].

[Online]. Available: https://github.com/SWNRG/minos

[108] P. Ruckebusch, S. Giannoulis, D. Garlisi, P. Gallo, P. Gawlowicz, A. Zubow,

M. Chwalisz, E. De Poorter, I. Moerman, I. Tinnirello et al., ‘‘Wishful:

Enabling coordination solutions for managing heterogeneous wireless net-

works,’’ IEEE Commun. Mag., vol. 55, no. 9, pp. 118–125, 2017.

[109] ‘‘Ansible is Simple IT Automation Platform,’’ Accessed: Jun. 10, 2020. [On-

line]. Available: https://www.ansible.com/products/automation-platform

[110] S. A. Seidel et al., ‘‘Analysis of large-scale experimental data from wireless

networks,’’ in IEEE Conf. on Comput. Commun. Workshops, Apr. 2018, pp.

535–540.

[111] O. Iova, P. Picco, T. Istomin, and C. Kiraly, ‘‘RPL: The routing standard for

the internet of things... or is it?’’ IEEE Commun. Mag., vol. 54, no. 12, pp.

16–22, 2016.

[112] F. Österlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt, ‘‘Cross-level

sensor network simulation with cooja,’’ in 1st IEEE Int. Workshop on Practical

Issues in Building Sensor Netw. Appl. (SenseApp), 2006.

[113] ‘‘6LoWPAN Troubleshooting with Foren6,’’ Accessed: Apr. 10, 2020. [Online].

Available: https://cetic.github.io/foren6

[114] G. Almes, S. Kalidindi, and M. Zekauskas, ‘‘A One-Way Delay Metric for

IP Performance Metrics (IPPM),’’ IETF, Tech. Rep. RFC 7679, Jan. 2016.

[Online]. Available: https://tools.ietf.org/html/rfc7679

[115] P. Nain, D. Towsley, B. Liu, and Z. Liu, ‘‘Properties of random direction mod-

els,’’ in Proc. IEEE 24th Ann. Joint Conf. of the IEEE Comput. and Commun.

Societies, vol. 3. IEEE, 2005, pp. 1897–1907.

[116] ‘‘Olympus Marathon,’’ [Accessed: Feb.15, 2020]. [Online]. Available:

https://www.olympus-marathon.com

[117] ‘‘Olympus Mythical Trail,’’ [Accessed: Dec.10, 2019]. [Online]. Available:

https://www.omt100.com

133

[118] Google-maps, ‘‘Olympus mountain, Mytikas pick 2,919m, Greece,’’

[Accessed: Jun. 10, 2020]. [Online]. Available: https://goo.gl/maps/

Udbq2fmX6HE1Td9P9

[119] ‘‘Olympus Trails on GPSies.com,’’ [Accessed: Jul. 24, 2019]. [Online].

Available: https://www.gpsies.com/

[120] Google-maps, ‘‘Waterland water park, Thessaloniki, Greece,’’ [Ac-

cessed: Jun. 10, 2020]. [Online]. Available: https://goo.gl/maps/

J3orcXAEw3wScCubA

[121] O. Alay et al., ‘‘MONROE: Measuring mobile broadband networks in Europe,’’

in IRTF & ISOC Workshop on Res. and Appl. of Internet Measurements, 2015.

[122] ‘‘IoT-LAB,’’ Accessed: Jun. 10, 2020. [Online]. Available: https:

//www.iot-lab.info

134

Appendices

A Funding

This work was supported in part by the EU’s Horizon 2020 Research and Inno-

vation Program through the EU-BRA Horizon 2020 NECOS Project under Grant agr.

no 777067, in part by the European Commission and the Brazilian Ministry of Sci-

ence, Technology, Innovation, and Communication (MCTIC) through the Brazilian

National Research and Educational Network (RNP) and Directorate for Computer &

Information Science & Engineering (CTIC), and in part by the Open Call Scheme of

the Wireless Software and Hardware platforms for Flexible and Unified radio and

network controL project (WiSHFUL) under Grant agr. no 645274.

135

B Implementation Insights

B.1 Control Plane Class Diagrams

Figure B.1: VERO-SDN Controller Class Diagram

136

Figure B.2: SD-MIoT Mobility Detector Class Diagram

B.2 Southbound API Data-Plane Packet Descriptions

Table 11: Protocol Packet Fields - Description

Field

Code
Description Data Type

Size

(bytes)

PTY Packet Type String 2

BID Border Router Address Address 4

NID Node Address Address 4

NBR Neighbor Address Address 4

TCT Topology Control Algorithm Type Unsigned Short Integer 1

ACK Acknowledgement request Unsigned Short Integer 1

RET Control Message Retransmission Delay Unsigned Short Integer 1

RSS Radio Signal Strength Indicator Integer 4

LQI Link Quality Indictor Integer 4

ENG Node Battery Energy Integer 5

137

T
a
b
le

1
2
:

S
o
u

t
h

b
o
u

n
d

A
P
I

M
e
s
s
a
g
e
s

w
it

h
E

x
a
m

p
le

s

M
e
s
s
a
g
e

T
y
p
e

C
o
d
e

S
i
z
e

(b
y
t
e
s
)

P
a
y
lo

a
d

F
i
e
ld

s
(a

s
i
n

T
a
b
le

1
1
)

P
a
c
k
e
t

E
x
a
m

p
le

N
e
w

B
o
r
d
e
r

R
o
u

t
e
r

S
o
li
c
it

a
t
io

n
R

e
q
u

e
s
t

B
R

2
P
T
Y

(2
)

{P
T
Y

:B
R

}

N
e
w

B
o
r
d
e
r

r
o
u

t
e
r

r
e
g
is

t
r
a
t
io

n
B

R
6

P
T
Y

(2
),

B
ID

(4
)

{P
T
Y

:B
R

,
B

ID
:0

1
.0

0
}

N
e
w

N
o
d
e

S
o
li
c
it

a
t
io

n
R

e
q
u

e
s
t

N
N

6
P
T
Y

(2
),

B
ID

(4
)

{P
T
Y

:N
N

,
B

ID
:0

1
.0

0
}

N
e
w

N
o
d
e

r
e
s
p
o
n

s
e

N
N

1
5

P
T
Y

(2
),

B
ID

(4
),

N
ID

(4
),

E
N

G
(5

)
{P

T
Y

:N
N

,
B

ID
:0

1
.0

0
,

N
ID

:0
X

.0
0

,E
N

G
:1

2
3
4
5
}

N
e
ig

h
b
o
r

R
e
q
u

e
s
t

T
C

-
N

A
N

D
9

P
T
Y

(2
),

B
ID

(4
),

T
C

T
(1

),
A
C

K
(1

),
R

E
T
(1

)
{P

T
Y

:N
D

,
B

ID
:0

1
.0

0
,

T
C

T
:1

,
A
C

K
:1

,
R

E
T
:2

}

N
e
ig

h
b
o
r

R
e
q
u

e
s
t

T
C

-
N

R
N

D
1
3

P
T
Y

(2
),

B
ID

(4
),

N
ID

(4
),

T
C

T
(1

),
A
C

K
(1

),

R
E

T
(1

)

{P
T
Y

:N
D

,
B

ID
:0

1
.0

0
,

N
ID

:0
X

.0
0
,

T
C

T
:1

,

A
C

K
:1

,
R

E
T
:2

}

N
e
ig

h
b
o
r

R
e
s
p
o
n

s
e

N
B

2
7

P
T
Y

(2
),

B
ID

(4
),

N
ID

(4
),

N
B

R
(4

),
R

S
S

(4
),

L
Q

I(
4
),

E
N

G
(5

)

{P
T
Y

:N
B

,
B

ID
:0

1
.0

0
,

N
ID

:0
X

.0
0
,

N
B

R
:0

Z
.0

0
,

R
S

S
:9

4
,

L
Q

I:
1
0
5
,

E
N

G
:1

3
0
0
2
}

M
is

s
in

g
F

o
r
w

a
r
d
in

g
R

u
le

M
R

1
4

P
T
Y

(2
),

B
ID

(4
),

N
ID

(4
),
D

ID
(4

)
{P

T
Y

:M
R

,B
ID

:0
1
.0

0
,N

ID
:0

3
.0

0
,D

ID
:0

1
.0

0
}

A
d
d

F
o
r
w

a
r
d
in

g
R

u
le

A
D

2
3

P
T
Y

(2
),

B
ID

(4
),

N
ID

(4
),

D
ID

(4
),

N
X

H
(4

),

C
S

T
(3

),
S

E
Q

(2
)

{P
T
Y

:A
D

,B
ID

:0
1
.0

0
,N

ID
:0

2
.0

0
,D

ID
:0

1
.0

0
,

N
X

H
:0

1
.0

0
,C

S
T
:1

0
7
,S

E
Q

:0
0
}

R
e
p
la

c
e

F
o
r
w

a
r
d
in

g
R

u
le

A
R

2
3

P
T
Y

(2
),

B
ID

(4
),

N
ID

(4
),

D
ID

(4
),

N
X

H
(4

),

C
S

T
(3

),
S

E
Q

(2
)

{P
T
Y

:A
R

,B
ID

:0
1
.0

0
,N

ID
:0

2
.0

0
,D

ID
:0

1
.0

0
,

N
X

H
:0

1
.0

0
,C

S
T
:1

0
7
,S

E
Q

:0
0
}

R
e
m

o
v
e

S
p
e
c
ifi

c
F

o
r
w

a
r
d
in

g
R

u
le

R
M

1
4

P
T
Y

(2
),

B
ID

(4
),

N
ID

(4
),
D

ID
(4

)
{P

T
Y

:R
M

,B
ID

:0
1
.0

0
,N

ID
:0

9
.0

0
,D

ID
:0

3
.0

0
}

R
e
m

o
v
e

A
ll

F
o
r
w

a
r
d
in

g

R
u

le
R

e
c
o
r
d
s

U
n

ic
a
s
t

R
M

1
4

P
T
Y

(2
),

B
ID

(4
),

N
ID

(4
),
D

ID
(4

)
{P

T
Y

:R
M

,B
ID

:0
1
.0

0
,N

ID
:0

9
.0

0
,D

ID
:0

0
.0

0
}

R
e
m

o
v
e

A
ll

F
o
r
w

a
r
d
in

g

R
u

le
R

e
c
o
r
d
s

B
r
o
a
d
c
a
s
t

R
M

1
4

P
T
Y

(2
),

B
ID

(4
),

N
ID

(4
),
D

ID
(4

)
{P

T
Y

:R
M

,B
ID

:0
1
.0

0
,N

ID
:0

0
.0

0
,D

ID
:0

0
.0

0
}

138

