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This dissertation’s innovation is concentrated on the introduction and 

description of a reference network framework for Cognitive Medium Access Control and 

SDR Services and Abstract Cognitive Medium Access Control and SDR Services 

integration and deployment on all the OSI layers in a heterogeneous wireless network. The 

necessity of lower layers services and applications conceptualization within the Cognitive 

Radio Cycle  is the main issue that this dissertation manifests whilst providing algorithms 

for  responding to diverse issues within the Cognitive Radio Network and Cognitive Radio 

Network Cloud.  

The current challenges in Cognitive Radio Network (CRN) are storing of large 

amount of data, processing them in real time and the exchanging of nodes’ current status 

on-the-fly. These challenges are in contrast to the limited storage and processing ability 

(plus battery lifetime) of Cognitive Devices thus the need for additional capabilities 

arise. Cognitive Radio Network Cloud (CRNC) is an infra-structure consisting of 

mobile nodes and the cloud whose primary goal is to keep an up-to-date status of the 

spectrum availability in the network. Demanding tasks, e.g. signal intelligence, could 

be off-loaded to powerful nodes locally allowing the local network to be self-organized. 

By allowing self-organizing networks to be deployed locally, huge heterogeneous 

wireless networks such as 5G and 6G evolve, which can mitigate their dynamic 

spectrum access and control to meet the end users and wireless network performance 

requirements. 

Self-organizing Cognitive Radio Networks in an immense heterogeneous 

wireless network along with Dynamic Spectrum Access, Management and Control 

Mitigation on demand or not on demand to respond to network needs in real time and 

on the fly can be realized with high level abstraction and conceptualization of Cognitive 

Medium Access Control and SDR Services and Abstract Cognitive Medium Access 

Control and SDR Services integration and deployment on all the Open Systems 
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Interconnection (OSI) layers, cross-platform and cross-network, cross-operator. Central 

coordination would be applicable for triggering local nomad network to be self-organized, 

as well for hand-off or for meeting QoE, radio network performance, institutional  metrics.  

Network clustering on Cognitive Medium Access Control and SDR 

Services/Applications and Abstract Cognitive Medium Access Control and SDR 

Services/Applications Level may be feasible. Artificial Intelligence and other technologies 

will enable efficient distributed control. Radio Environment Maps are powerful technology 

to this direction.  Off-loading to local powerful nodes increase network performance and 

QoE which are essential for 5G, 6G network for urban and rural radio environments. 

A new mathematic method of mathematic game unfolding is introduced i.e. a new 

mathematic method for generating games without coordination and a corresponding 

mathematic game model as an application of the proposed mathematic method to for the 

Cognitive Radio Network and Cognitive Radio Cloud Security was introduced. Other 

mathematic game reaching Nash Equilibriums also were introduced.  Deterministic 

automata and Machine Learning were also introduced as well as other mathematic formulas 

applicable to the corresponding network protocols, mathematic models for steady-state- 

Lyapunov filtering algorithm for enhanced CRN-SDR signal processing and mathematic 

formulas for Non-Reciprocal Channels in Massive MIMO CRN were also introduced in 

this dissertation.  
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Formulating Imperfect Game Models of coordination without collaboration, Multiscale 
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Cognitive radio is a promising technology that answers the spectrum scarcity 

problem arising with the growth of usage of wireless networks and mobile services. 

Cognitive Radio Network and Cognitive Radio Network Cloud will a key technologies 

for 5G and 6G Heterogeneous Network deployment for next generation Space-Air-

Ground-Sea integrated communication and wireless tactile network.  

.  

 

1.1. INTRODUCTION 

Radio Spectrum is a public good and the recent years due to the vast increase of mobile 

users and mobile applications as well as the need for Quality of Experience (QoE) of the end 

user, a spectrum scarcity was a main issue in wireless networks leading to the introduction of a 

new key technology namely the Cognitive Radio for the underutilized licensed spectrum bands 

broadening the radio spectrum usage and management.  So far the unlicensed band i.e. the 

Industrial Scientific Medical Band was overcrowded. So, the necessity for utilizing the  licensed 

spectrum band when the unlicensed users do not interfere with the licensed users and Cognitive 

management of the Spectrum i.e. intelligent access and  management  also called Dynamic 

Spectrum Access arise. The Cognitive Radio research has been started in the USA by utilizing 

the TV white spaces and now Cognitive Radio technology follows a cognition cycle for 

effectively utilizing all frequencies [5G Deployment, State of Play in Europe, USA and Asia, 

Directorate General for Internal Policies, European Union, April 2019]. 

  

1.2. PROBLEM STATEMENT 

Cognitive radio based on the Software Defined Radio (SDR) that can 

reconfigures its parameters - modulation, frequency etc., it adds a cognitive cycle in 

order to observe the environment, orient, plan, design, act and learn from past 

experiences. 
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There are three important quality metrics that define efficiency of spectrum 

sensing which are a) the detection probability (Pd) i.e. the probability that the PU is 

present and the sensing outcome is PU present, b) false alarm probability (Pf) the 

probability that PU is not present and the sensing outcome is PU present c) misdetection 

probability i.e. the probability that PU is present and the sensing outcome id not present. 

Both false alarm and misdetection probabilities degrade sensing efficiency.  If the 

secondary user detects a signal y(n), the decision on spectrum sensing may be given by 

double hypothesis test: 

𝐻𝐻1:𝑦𝑦(𝑛𝑛) = 𝑥𝑥(𝑛𝑛) + 𝑤𝑤(𝑛𝑛)   (1) 

𝐻𝐻0:𝑦𝑦(𝑛𝑛) = 𝑤𝑤(𝑛𝑛)               (2) 

        The  𝐻𝐻1 shows that the primary user’s signal 𝑥𝑥(𝑛𝑛) and noise 𝑤𝑤(𝑛𝑛) are present 

whilst in 𝐻𝐻0 only noise 𝑤𝑤(𝑛𝑛) is present. Then in cooperative mode the SUs sensing 

outcome may be forwarded to the fusion center as simple bit “1” for PU presence or 

“0” for PU absence and then a hard decision will be reached which may not be accurate 

or the sample bits may be forwarded to the fusion center and a soft decision will be 

reached based on applied rule. 

Interference is a main issue in the Cognitive Radio Network (CRN) and as long 

as the interference threshold is not reached the unlicensed or secondary users of the 

Cognitive Radio Network may transmit.  

The Cognitive Radio Network perceives the radio environment. The CRN learn 

the radio environment and adjusts the internal states to the statistical changes of RF 

mainly and the configuration parameters such as frequency band, modulation, 

transmission power in real-time. It is a network that establishes the communication 

between the nodes/users of the Cognitive Radio Network. Parameter reconfiguration is 

made according to the wireless environment, topology, the operating conditions and the 

user requirements. The quality of communication for the licensed i.e. primary users and 

unlicensed users i.e. secondary users which should not interfere to the former primary 

users’ communications and the optimal spectrum usage as well as the network 

performance are main goals. 
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1.3. METHODOLOGY 

 

This dissertation’s innovation is concentrated on the introduction and 

description of a reference network framework for Cognitive Medium Access Control and 

SDR Services and Abstract Cognitive Medium Access Control and SDR Services 

integration and deployment on all the OSI layers in a heterogeneous wireless network 

providing reference protocol communication and platform definition, reference 

heterogeneous network architecture and system architecture, related technologies to be 

encompassed. The necessity of lower layers services and applications conceptualization 

within the Cognitive Radio Cycle  is the main issue that this dissertation manifests whilst 

providing algorithms for  responding to diverse issues within the Cognitive Radio Network 

and Cognitive Radio Network Cloud and evaluating them with experiments where 

appropriate. References are provided where necessary and within the evaluation sections.  

As the proposed algorithms, architecture, systems as part of the immense 

heterogeneous network respond to a specific issue and network problem each time e.g. 

Machine Learning, Software Defined Networking, Optimal Signal Processing, 

Broadcasting, Sustainability, Security, Channel Non-Reciprocity for Massive MIMO, 

Radio Environments Maps, the metrics which are defined each time correspond to the 

particular cases whilst new formulas, mathematic models as well as a new mathematic 

method of mathematic game unfolding in game theory, mathematic game models reaching 

Nash Equilibriums, deterministic automata are introduced.  

 

 

1.4.  THESIS STATEMENT 

The current challenges in Cognitive Radio Network are storing of large amount 

of data, processing them in real time and the exchanging of nodes’ current status on-

the-fly. These challenges are in contrast to the limited storage and processing ability 

(plus battery lifetime) of Cognitive Devices thus the need for additional capabilities 

arise. Cognitive Radio Network Cloud (CRNC) is an infra-structure consisting of 

mobile nodes and the cloud whose primary goal is to keep an up-to-date status of the 

spectrum availability in the network. The large amount of sensing data and processing 
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of MIMO antennae as well as the signal intelligence as a whole can be mitigated to the 

cloud. 

Demanding tasks, e.g. signal intelligence, could be off-loaded to powerful nodes 

locally allowing the local network to be self-organized. By allowing self-organizing 

networks to be deployed locally, huge heterogeneous wireless networks such as 5G and 

6G evolve, which can mitigate their dynamic spectrum access and control to meet the 

end users and wireless network performance requirements.   A critical issue in CR 

Infrastructure-less network deployment on the cloud would be the Standard Interface 

Operability (SIO) for CR users to connect to the cloud or local powerful nodes. SIO 

would allow easy access and utilization of powerful wireless and mobile local nodes 

and infrastructure network front-end.  

This dissertation and research work presented in the following chapters 

participated in this effort or the international research community on wireless network  

by introducing Cognitive Medium Access Control and SDR Services and Abstract Cognitive 

Medium Access Control and SDR Services integration to achieve  higher degree of 

conceptualization of Cognitive Medium Access Control and SDR Services utilized in the upper 

stack layers of OSI and meet a common goal such as smart radio environment utilization locally 

or globally, QoE, higher wireless network performance. The technologies that may be 

employed are current technologies such as Virtual Machines and Network Function 

Virtualization, Network Chaining. The concept of Cognitive Medium Access Control and SDR 

Services and their conceptualization to an abstract level covering the  seven layers of  the OSI 

stack and respond to edge requirements of the huge 5G, 6G heterogeneous networks. 

Cognitive Medium Access Control and SDR Services integration and deployment 

on all the OSI layers and 5G and 6G huge and heterogeneous network would require high 

level of scheduling and interaction. High level of scheduling and interaction will trigger 

eventually adaptation “knobs” within the local and global system would necessiate high 

level of interaction on all OSI stack layers of Cognitive Medium Access Control and SDR 

Services and Abstract Cognitive Medium Access Control and SDR Services in this 

reference network framework for cross-operator, cross-network operability context 

generation, QoE, radio network demands, cross-operator, cross-border. 

This dissertation and the subsequent research work introduced a framework of 

this Cognitive Medium Access Control and SDR Services and application and Abstract 

Cognitive Medium Access Control and SDR Services integration and deployment 
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framework. In particular in this framework optimal algorithms have been introduced to 

implement protocols for solving diverse issues such as native Cognitive Medium Access 

Control,  Software Defined Networking coordination, Sustainability, Broadcasting, 

Security, massive MIMO technology and imperfect CSI for reciprocal channels, Multiscale 

Decision Making with Machine Learning and Game Theory for Efficient Sensing 

Scheduling and Spectrum Sensing Control, Enhanced Signal Processing and Radio 

Environment Maps for  the Cognitive Radio Network and Cognitive Radio Cloud. As huge 

heterogeneous next generation wireless networks  is  a necessity, proposing such high level 

design of low layer services and applications cross-layer, cross-network, cross-operator 

would make feasible 5G and 6G - Space-Air-Ground-Sea integrated communication and 

wireless tactile network- and allow them to evolve. 

 

1.5. OUTLINE 

 

This document is structured in fifteen chapters. In the second, third, fourth and 

fifth chapters include the introduction and description of  a reference network 

framework for Cognitive Medium Access Control and SDR Services and  Abstract 

Cognitive Medium Access Control and SDR Services integration and deployment on all 

the OSI layers in a heterogeneous wireless network providing reference protocol 

communication and platform definition,  reference heterogeneous network architecture and 

system architecture, related technologies to be encompassed. Chapter six includes sensing 

algorithms comparison for CRN, chapter seven a Reinforcement Learning Scheme for 

Dynamic Spectrum Access, chapter eight a proposal for Software Define Networking 

solution in Cognitive Radio Sensor Networks. Chapter nine provides a solution for 

supporting CRN Sustainability. 

 Chapter ten introduce network solutions for CRN Broadcasting, and chapter eleven 

introduces a new mathematic model in game theory and a new game form and applies it to 

security problem in CRN.  Chapter twelve introduces Multi-Scale Decision Making 

machine learning to Control Spectrum Sensing and Scheduling. In chapter thirteen 

enhanced signal processing is proposed and chapter fourteen provides the formulas for 

Massive MIMO in CRN with imperfect CSI and Non-reciprocal channels. Finally Radio 

Environment Maps technology Architecture is proposed for CRN and CRNC enhancement. 
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Cognitive radio is a promising technology that answers the spectrum scarcity 

problem arising with the growth of usage of wireless networks and mobile services. 

Cognitive Radio Network Edge Computing will enhance the Cognitive Radio Network 

(CRN) capabilities and along with some adjustments in its operation will be a key 

technology for 5G Heterogeneous Network deployment.  

Cognitive radio based on the Software Defined Radio (SDR) that can 

reconfigures its parameters - modulation, frequency etc., it adds a cognitive cycle [1] 

in order to observe the environment, orient, plan, design, act and learn from past 

experiences. Cognitive radio senses the spectrum for vacancies, so called “spectrum 

holes”, for the Cognitive Radio Network (CRN) Users to transmit. In case of the 

licensed spectrum when the licensed users, i.e. Primary Users (PUs), vacate the 

spectrum the CRN users, also called Secondary Users (SUs), can access it.  There are 

limitations to the interference the Secondary Users can cause to the Primary Users.  On 

the other hand, the underutilized spectrum resulted in an immense need for Dynamic 

Spectrum Access that exploits spectrum opportunistically. 

Dynamic Spectrum Access includes amongst others sensing, spectrum 

management, spectrum sharing and spectrum mobility. For spectrum sensing - Primary 

Users detection - Cognitive Radio uses filter detection, energy detection and feature 

detection.  The spectrum management includes characterization, selection and 

reconfiguration of the spectrum (channel, modulation, bandwidth, power and 

transmission time). On appearance of the Primary User, the Secondary User has to 

vacate the channel immediately and continue transmission in another vacant channel.  

Spectrum sharing is essential for avoiding overlapping of multiple cognitive radios as 

well as handoff (loss of connection for mobile Secondary User or poor Quality of 

Service). 

CRN uses machine learning, genetic algorithms, game theory techniques, 

knowledge representation and optimization techniques for efficient resources 

allocation. Further, the CRN learns the network conditions [2] and encompasses past 

experiences to its cognitive cycle.  
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The Cognitive Radio uses the first OSI layer (Software Defined Radio - SDR) and 

second OSI layer (Cognitive Medium Access Control - MAC) basically but actually 

relies on the whole OSI stack and the decisions made in the CRN have to meet the 

whole network’s needs. 

 

1.1. SOFTWARE DEFINED RADIO 

 

The Software Defined Radio where the parameters of transmission such as 

frequency, modulation, protocol are reconfigured, is the precursor of Cognitive Radio 

Network. Reconfiguration is achieved with algorithms for signal processing which are 

controlled by software.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: The SDR tranceiver 

 

 

 

The SDR main functions are following: 

 

1. Operating in various frequencies for various users. 

2.  Supporting various patterns and interfaces for the same pattern. 

3. Supporting various services such as telephony and broadband wireless 

access to internet. 

4. Transmitting and receiving in various frequencies simulteneusly. 
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Those parameters can be configured for each user, can be configured for some 

times in the system’ lifetime, can be configured for each connection or dynamically for 

each slot.  

1.2. COGNITIVE RADIO NETWORK 

The Cognitive Radio Networks (CRN) employ SDR but provide intelligent 

functionality for spectrum management and access by unlicensed users. 

The CRN term was introduced by Haykin [1] describing an intelligent wireless 

communication system which perceives the radio environment. The CRN learn the 

radio environment and adjusts the internal states to the statistical changes of RF mainly 

and the configuration parameters such as frequency band, modulation, transmission 

power in real-time. It is a network that establishes the communication between the 

nodes/users of the Cognitive Radio Network. Parameter reconfiguration is made 

according to the wireless environment, topology, the operating conditions and the user 

requirements. The quality of communication for the licensed i.e. primary users and 

unlicensed users i.e. secondary users which should not interfere to the former primary 

users’ communications and the optimal spectrum usage are main goals. 

The physical layer architecture of SDR and the higher levels which adjust such 

as the Medium Access Control or higher which cooperate to compose applications and 

services for the Cognitive Radio Network.  

 

 

 

 

 

 

 

 

Figure 1.2: The Cognitive Radio Network Protocol Stack 
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1.3. FUNCTIONALITY 

 

Spectrum sensing is a main function which ascertains the spectrum status and 

the primary users’ presence. The Cognitive Transceiver utilizes each transmission 

opportunity so called spectrum hole i.e. spectrum frequencies which are not in use and 

to proceed in optimal spectrum management for the CRN user in terms of transmission 

power and transmission duration. 

 Spectrum management may be central and in that case there is cooperative 

control i.e. a controller updates the radio environment information of the rest of the 

nodes. Spectrum management may be not-cooperative and in that case each terminal is 

responsible to update the radio environment information so the complexity is increased. 

Spectrum analysis utilizes the former information to detect the next transmission 

opportunity for the secondary users i.e. the spectrum hole which is defined by the 

interference, spectrum vacancy duration, collission probability with the primary users, 

as well as the acceptable level of interference to the primary users’ transmissions so to 

meet the quality metrics for transmission.  

Spectrum Access is determined by the Cognitive Radio Medium Access Control 

Protocol (CR-MAC) which is responsible to further avoid collisions with the primary 

users and to follow fixed allocation such as FDMA, TDMA, CDMA or random access 

schemes such as ALOHA,CSMA/CA [3]. 

Spectrum mobility is when a primary user begins transmission at a spectrum 

hole then the secondary users should vacate the frequency and continue transmission in 

another spectrum hole without performance degradation. This spectrum hand-off 

triggers the parameters’ update of the protocols of all levels.  

 

1.4. DYNAMIC SPECTRUM ACCESS 

Dynamic Spectrum Access is defines as the mechanism [2] which adapts the 

spectrum resources usage in the near future to the dynamic radio environment.  

According to [4] there is the common use model which allows the users to 

access the spectrum in the ISM band, the networks may be homogeneous or 
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heterogeneous with cognitive capabilities which then will be defined as symmetric or 

non-symmetric respectively [3][5].  

In the shared-use model both the primary and secondary users access the 

spectrum opportunistically and in the exclusive-use model the primary/licensed users 

provide the use to the secondary user. 

Opportunistic spectrum use may restrict the secondary users’ transmissions as 

the transmission power cannot exceed a certain limit of temperature interference to the 

primary users’ transmissions. In that case, a solution may be the transmission to a 

broader spectrum band with lower transmission power which assumes that the primary 

users transmit continually.  

Opportunistic spectrum use allows the secondary users to detect spectrum holes 

in space, time and frequency and transmit.  The opportunistic spectrum access phases 

are the exploration so to sense the spectrum and analyze the results and the exploitation 

which involves the decision making and hand-off. 

 

1.5. COGNITIVE RADIO NETWORK COMPONENTS 

 

Cognitive Radio Network Components function follows a cognitive cycle of 

environment observation, priority setting, design, decision making, action, update of all 

stages of learning and the final update of the state of Cognitive Radio [6]. 

 

 

 

 

 

 

 

 

12 
 



IOANNA KAKALOU   Algorithms for Cognitive Radio Network and Cloud 2020 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                    

    Figure 1.3: The Cognitive Cycle 

 

 

The Cognitive Cycle is implemented by: 

• The transceiver and basically the SDR which performs the spectrum 

sensing i.e. the radio environment observation.  

• The spectrum analyser which uses known signals to detect the 
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processing to avoid  interference. 
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• Knowledge extraction and Learning: this process is implemented for 

observing and learning the primary users’ behavior so a knowledge database is 

maintained.  

• Decision Making: The optimal decision for spectrum access may be a 

cooperative or competitive process for secondary users.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 1.4: The Cognitive Radio Components 

 

 

 

1.6. INTERFERENCE TEMPERATURE 

The FCC Spectrum Policy Task Force of USA introduced a metric for 

unlicensed users’ interference to the licensed users which is the interference 

temperature  ΙΤ. Interference temperature is similar to the noise temperature but covers 

random noise and deterministic interference from other sources. The CR-receiver 

estimates for each frequency the interference temperature based on the quality of the 

signal. 
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 Interference temperature in degrees Kelvin is given by the equation below:  

ΙΤ (fc ,W)=P1 (fc ,W)/KW 

Where P1 is the average interference power in Watts for spectrum W Ηz and 

central frequency fc and Κ the Boltzman constant (K=1.38x10-23 Joules/degrees Kelvin). 

There are two models for interference temperature the ideal and the generalized. 

In the former, the estimation is performed during primary user’s transmission or it will 

not be accurate. The signal has to be known and the temperature will be measured with 

known signals at the right moment. The equation describing the interference limits is 

given below:  

ΙΤ (fi , Wi ) + Mi P/KWi ≤ IL (fi )      [7][8] 

If there are n signals of licensed users in the band with  i user of spectrum Wi  

with central frequency of fi . 

Where  I Є [1..n] , and 0≤Μi ≤1 a multiplicative factor of  attenuation due to 

path loss and fading. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5  : Interference Temperature for Licensed Users 
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In the generalized model there is no information about the primary user’s signal 

and the former equation is generalized and includes both licensed and unlicensed users 

and the interference temperature is estimated for the spectrum W of the unlicensed user. 

So, the upper limit of the transmission power is estimated to determine the permitted 

rate r:  

R=W log(1 + S/(σ2 + PI ), 

S: the transmission powerς, σ2 : noise power, PI :interference power. 

 

1.7. SPECTRUM ANALYSIS 

 

Spectrum Analysis detects the licensed users’ signals with or without the 

cooperation of unlicensed users relying on the interference control. If the unlicensed 

users do not cooperate and consequently exchange measurements and observations the 

model is described by the equation below: 

𝑥𝑥(𝑡𝑡) = � 𝑛𝑛
(𝑡𝑡),                      𝐻𝐻0

ℎ × 𝑠𝑠(𝑡𝑡) +  𝑛𝑛(𝑡𝑡),𝐻𝐻1
 

 

x(t) is the received signal of the unlicensed user, s(t) is the licensed user signal, 

n(t) is the white Gaussian noise and h is the channel gain. The Η0 , Η1  describe the non-

presence and presence of the licensed user.  

The probability Pd =probability (H1 , H1 ) : describes the successive detection, 

the probability Pf  =probability(H1 ,H0 ): describes the non-successive detection and the 

probability Pm = probability (H0 ,H1 ): describes misdetection. 

There are three methods a) that of matched filter detection or coherent detection,  

b) transmitter power detection c) cyclostationary feature detection [8]. 
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Figure 1.6: Spectrum Sensing 

 

In the former case the filter will optimize the SNR of the received signal and 

will compare it to a known template. Known signal can be created if the licensed user’s 

signal includes prefixes, timestamps, codes that can create the signal. For the Gaussian 

noise such a filter is optimal [8] [9]. That is to say this method is applicable only if the 

licensed user’s signal is known.  

If the signal is not known then the second method is preferred as it applies a 

band pass filter as long as the observation takes place and checks whether a certain limit 

has been exceeded which denotes the primary user’s presence in the spectrum band.  If 

there is no fading the probabilities are given by the equations below: 

𝑃𝑃𝑑𝑑 = 𝑄𝑄(�2𝛾𝛾,√𝜆𝜆 ) 

𝑃𝑃_𝑓𝑓 = 𝛤𝛤(𝑚𝑚, 𝜆𝜆/2)/𝛤𝛤(𝑚𝑚) 

Where γ is the SNR of the received signl and λ  the energy detection limit, Q is 

the generalized Marcum Q-function. 

If there is shadowing and multipath fading the probabilities are given below: 

𝑃𝑃𝑑𝑑 = � 𝑄𝑄(�2𝛾𝛾
𝑥𝑥

,√𝜆𝜆)𝑓𝑓𝛾𝛾(𝑥𝑥)𝑑𝑑𝑑𝑑  

Where 𝑓𝑓𝛾𝛾(𝑥𝑥) is the probability distribution function for SNR. 

Spectrum Sensing 

Non-cooperativeς Cooperative Interference oriented 

Power Detection Matched Filter 
Detection 

Cyclostationary Feature 
Detection 
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If the detection error probability is high then there must be other secondary users 

beside the primary user.  

The cyclostationary feature detection method depends on the autocorrelation of 

primary user’s signal i.e. if it is periodical. This method is more accurate but requires 

longer processing time and pattern recognition may be applied. 

Both methods can be combined for better results. The power detection method 

nay be applied to a more crowded spectrum band and then in band zone with low energy 

cyclostationary feature detection may be applied.  

The spectrum sensing with information exchange between the secondary nodes 

which increases the complexity may respond to the hidden terminal node problem 

where the hidden node due to geographical position cannot detect the othe r secondary 

node and communication establishment with a third node is required to overcome this 

misdetection.  

 

Figure  1.7 : The hidden terminal problem 

In spectrum sensing based on interference algorithms measure the 

noise/interference level by all signal sources to the primary receiver. This information 

will be utilized by the secondary users to decide their spectrum access without 

exceeding the temperature interference level.  

1.8. SPECTRUM ANALYSIS AND DECISION MAKING 

Spectrum analysis will characterize spectrum band according to frequency, 

bandwidth, interference, channel capacity and primary users’ activity. 
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 The analysis may be local or cooperative by exchanging information and has 

to consider that the spectrum sensing may be inaccurate, and how the spectrum holes 

will be utilized e.g. modulation, power and how they will be assigned to the secondary 

users.  

Decision making may be locally-competitively as local optimum or globally 

cooperatively for global optimum to be achieved with central or distributed process. If 

the decision making is centralized then spectrum management is easier whilst the 

distributed method suffers by the hidden terminal problem and the increased control 

information exchange.  

 

1.9. CHALLENGES FOR COGNITIVE RADIO RESEARCH 

The interference limit estimation may be inaccurate e.g. if the secondary user 

does not know the primary user’s position which is essential for interference estimation 

or if the primary user is a passive device. 

In multiple users networks the spectrum sensing information may be 

cooperatively managed and coordinated. The longer the observation period the more 

accurate the result and the shorter the transmission duration i.e. higher throughput. If 

the observation is not accurate the collisions and interference in licensed users’ 

transmissions will occur.  

In multichannel transmission like OFDM, the channel which are sensed are 

more that the available interfaces at the transceiver so that some of them will  be 

selected each time for sensing affecting the system’ performance. Some of the channels 

which are most occupied by licensed users should not be preferred. Channel selection 

is an optimization problem.  
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Figure 1.8 : Long Observation Period 

 

 

 

 

 

 

 

Figure 1.9:  Short Observation Period 

 

1.10. SPECTRUM SENSING  

Each spectrum access opportunity quality for the unlicensed user depends on 

duration, SNR, correlation with the other spectrum access opportunities. This 

information may in accurate and noisy. Artificial Intelligent is applied for better results. 

In a decision model the transmission duration and SNR of the spectrum as well as the 

optimization of the throughput and the minimization of interference to the licensed 

users has to be considered.  

1.1. Spectrum Sensing Spectrum Access 

Detection probability is high 

Collision probability and interference probability 
is high 

Spectrum Sensing Spectrum Access 

Spectrum access period of licensed users 
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In a radio environment where licensed and unlicensed users coexist it is vital 

the policy which each user follows to be known. In case that all users cooperate for 

common goal then provided that there are certain limitations information exchange in 

a distributed manner, negotiation and coordination must be achieved. 

In the competitive policy each user aims to optimize the throughput while 

minimizing the total interference to the licensed users. The optimal decision making is 

a matter of rest users’ activity observation i.e. the need for a distributed algorithm arise.  

 

1.1.1. SPECTRUM TRANSFER  

When a licensed user starts transmitting then the unlicensed users have to vacate 

those frequencies and transfer their transmissions to another spectrum band. For this 

reason spectrum holes i.e. spectrum vacancies for transmission should be known and 

this information should available and updated periodically or on demand.   

This transfer requires certain time which should be considered by the upper 

protocol stack levels so to adjust their timers. An adaptive cross-layer framework 

should be developed. 

 When this transmission transfer to another spectrum band occurs the target 

band should be vacant from other unlicensed users too, which is known with the term 

self-coexistence- synchronization is a matter which should be considered by the 

Cognitive Radio Medium Access Control Protocol.  

 

 

1.12. CROSS-LAYER DESIGN 

 

The Cognitive Radio Networks due to their ability to adapt to the radio 

environment, they need to update information and send messages in a hierarchical 

layers communication model. The information exchange affects the operation of each 

layer separately should be dedicated to each one without the intervention of other 

layers. This may be possible with cross-layer design which would undertake 

information update.  
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According to [8] : 

The physical layer would adapt power of transmission, modulation, frequency, 

spectrum band, gain, channel coding, wavelength and rate. 

The medium access control level would adapt the packet type, the packet length, 

the rate, the slot, channel assignment, retransmission probability and protocol.  

The network and transport levels would assign routing metrics, algorithms, 

parameters for congestion control and throughput control. 

The application level would assign source coding e.g. for video when the data 

rate is decreased due to coding. 

As the layers’ goal may collide, an optimal solution should be achieved each 

time. This increases complexity and provided that information may be inaccurate, 

methods which decrease computation complexity of an optimization problem should 

be explored.  

 

1.13. TOPOLOGY EXPLOITATION 

 

Local transmission information may be updated periodically and exploited by 

the unlicensed users. GPS is utilized in the form of geolocation databases and local 

beacons [8] [10].  

In the geolocation databases information model the licensed  users  broadcast 

the information related to their transmission and geolocation e.g. for TV band  there is 

a base station for  unlicensed users which performs channel and slot assignment and 

forwards this information to the base station of the licensed users for approval. 

When local beacon are utilized the base station receives the information 

periodically from the unlicensed users and this information is broadcasted to them and 

then they proceed to spectrum access and report to the base station so that a common 

spectrum management view is maintained.    

The geolocation information accuracy will define the level of interference.  
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Cognitive radio is a promising technology that answers the spectrum scarcity 

problem arising with the growth of usage of wireless networks and mobile services. 

Cognitive Radio Network Edge Computing will enhance the Cognitive Radio Network 

(CRN) capabilities and along with some adjustments in its operation  and expansion of 

its operation on all seven layer OSI stack, Cognitive Radio Network Cloud [11] [12] 

would be feasible and  designated as a key technology for 5G and 6G Heterogeneous 

Network deployment.  

 

1.1. MOBILE CLOUD 

 

Mobile Cloud Computing Forum introduced Cloud Computing leveraging to 

the Mobile Network. “Mobile Cloud Computing at its simplest refers to an 

infrastructure where both the data storage and the Data Processing happen outside of 

the mobile device. Mobile cloud applications move the computing power and data 

storage away from mobile phones and into the cloud, bringing applications and mobile 

computing to not just smart phone users but a much broader range of mobile 

subscribers” - Mobile Cloud Computing Forum (MCC-Forum, 2011).  

There are several existing definitions of “Mobile Cloud Computing”, and 

different concepts of the “Mobile Cloud”:  applications run as thin clients to powerful 

remote servers on the one hand and on the other hand mobile devices may establish 

peer-to-peer connections locally with other powerful devices providing resources 

without the cost of latency and bandwidth issues. These systems are self-organized [13] 

and they could offload jobs on local mobile resources. A cloudlet may be a cluster of 

multi-core computers connected to the cloud and if it is not available, the mobile device 

will have to be served by the cloud. A virtual machine is built in the cloudlet to which 

the mobile devices connect as thin clients. Open issues are the distribution of 

processing, storage and networking capacity, the trade-off between QoS and cost for 

cloudlet providers and security. The CloudClone is another implementation of local 
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service infrastructure that creates a clone of an application. CloudClones do not 

virtualize native resources.  

Mobile Cloud has to address, besides the basic requirements of the cloud, i.e. 

scalability, availability and self-awareness, the loss of connectivity, mobility and power 

issues. 

Cloud Computing can serve Mobile Cloud in many aspects [13]:  

• Extend battery life. Actually remote application execution can save 

energy up to 45% for numerical computations 

• Improve Data storage and processing power 

• Improve reliability. 

 

 

1.2. COGNITIVE RADIO NETWORK CLOUD 

 

Multiple Virtual Machines (VMs) can be deployed in a single platform to share 

the hardware resources. Traffic can be routed to a VM from a physical interface and 

from VM back to the physical interface. Cloud and virtualization technologies are key 

enablers. 

The current challenges in Cognitive Radio Network are storing of large amount 

of data, processing them in real time and the exchanging of nodes’ current status on-

the-fly. These challenges are in contrast to the limited storage and processing ability 

(plus battery lifetime) of Cognitive Devices thus the need for additional capabilities 

arise. Cognitive Radio Network Cloud (CRNC) is an infra-structure consisting of 

mobile nodes and the cloud whose primary goal is to keep an up-to-date status of the 

spectrum availability in the network for all (Primary and Secondary Users) to access. 

The network status will be maintained in the cloud and updated by the networks nodes. 

The need for intense and accurate sensing made Multiple-Input/Multiple-Output 

(MIMO) technology appropriate for Cognitive Radio. The large amount of sensing data 

and processing of MIMO antennae as well as the signal intelligence as a whole can be 

mitigated to the cloud. Current research on Cognitive Radio Mobile Cloud is limited. 

In the following paragraphs, a review on the existing research work on this field is 
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presented along with the arising Cognitive Radio Network Cloud challenges and 

requirements. 

A CRNC prototype, as proposed in [13], collects sensing data, processes them 

in real time, and provides the results to all nodes. So, CRNC should also be able of 

running the cognition cycle for the network.  The nodes will continually report to the 

cloud their status, store and process their data and plan. Thus the control messages 

exchange between the mobile nodes will be eliminated and only data transfer will occur.  

In [14] the data transfer between a mobile node A and B will occur after the 

cloud has reserved the resources in the multi-hop cognitive network path: A->Ci->B 

(where Ci denotes all the rest cognitive nodes in the path) or the data transfer will take 

place directly between node A and node B as soon as the necessary resources 

reservation has been made by the cloud.  Another issue that will be answered by the 

cloud architecture is that there will be no data loss upon Primary User arrival.   

Actually, there are two options of implementing data transmission:   

• the cloud will reserve the resources along the transmission path and then 

transmission will occur between the wireless nodes without the cloud’s interception   

• the data will be send to the cloud and then will be copied to the 

destination node.  

In the latter case, there will be no data loss upon Primary User arrival as they 

will be stored in the cloud instead. The Secondary Users’ requests for spectrum access 

will arrive to the cloud in First Come First Served (FCFS) order but policies can be 

applied on the queue for implementing QoS classes. 

 Overlapping, hidden terminal node problem or exposed terminal problem will 

be avoided [15] as the cloud keeps the geolocation position of each node – the 

overlapping nodes will be well-known for a given data transmission - whilst  the 

handoff will be seamless. Common Control Channel (CCC) was the solution in ad-hoc 

networks to handle the coordination and resources management between the nodes as 

well as the hidden terminal problem. When all the control messages of the network are 

transmitted via one channel, this make the network vulnerable to congestion and attacks 

(there are protocols [16] that deal with this problem though); the cloud overcomes the 

CCC problem.   

CRNC should cover both Cognitive Radio (CR) Infrastructure Networks and 

Cognitive Radio Infrastructure-less Networks (Figure 3.1). Cognitive Radio 
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Infrastructure-less networks, although they are self-organized and implement 

distributed resources allocation, still suffer the limited storage, processing ability and 

power supply. Demanding tasks, e.g. signal intelligence, could be off-loaded to 

powerful nodes locally allowing the local network to be self-organized.  A critical issue 

in CR Infrastructure-less network deployment on the cloud would be the Standard 

Interface Operability for CR users to connect to the cloud or local powerful nodes.  

 

 
Figure 3.1: The Cognitive Radio Network Cloud 

 

The CRNC should accommodate databases for past experience information and 

databases for the sensing data. Cognitive Radio use the past experience to learn its 
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environment and plan.   The cognitive nodes will connect to cloud front devices playing 

the broker’s role to provide their sensing reports as proposed in [14] or data for 

processing. Those devices will split data and the processing load to the intermediate 

cloud computers.  There is a tradeoff between the degree of parallelism and the data 

exchange. In [14] they use a scalable method to partition the geographical area 

according to the SUs’ density in order to eliminate the processing time and then call the 

Map/Reduce; the time and location are the keys for Map and location the key for 

Reduce. The Sparse Bayesian Learning Algorithm is used in [14] to estimate the 

cooperative sensing outcome. The CRNC architecture in [15] includes the Interface, the 

Controller, the Query Processor, Database and the Knowledge Database. A Game 

Theoretic Resources Allocation in the CRNC is presented in [17], where the Secondary 

Users adapt their power in a distributed manner and the greedy behavior is controlled 

by the cloud manager. 

In [18] the geolocation of idle bands and the SUs’ transmission requirements 

such as data rate and the timestamp, are reported to the cloud server. The decision for 

a channel availability is taken upon the energy detection threshold and the bandwidth 

threshold. The cloud server reports the available channels to the nodes which then select 

the channel that satisfies their transmission requirements best. The authors consider 

both device-to-device and device-to-infrastructure communication. The authors in [19] 

propose a cloud architecture for Cognitive Radio Networks where the SUs are equipped 

with a GPS - sensing by the SUs is avoided at all.  

The authors in [20] introduce powerful mobile devices which act as resources 

providers serving the Cognitive Radio Network when the application data size and 

complexity is below a threshold, otherwise they are served by the cloud.  They have 

also developed a technology called MapReduce on Opportunistic Environments or 

Opportunistic Cloud to ensure job completion and good performance of MapReduce 

[21] by building a private cloud where dedicated nodes in the cloud supplement are 

volatile wireless nodes e.g. in terms of jamming.  Cooperative sensing and localization 

for Power Map reconstruction are proposed in [22] [23]. 

Multiple-input/multiple-output (MIMO) systems are capable of achieving a 

capacity gain and/or increasing link robustness in CRN but they increase processing 

time, energy consumption and processing data amount [24].  In [25]   they propose a 

sub-optimal solution with parallel QR-factorization algorithms to establish an adaptive 
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transmitter system by dynamically selecting the antennae - making use of the parallel 

computing of the cloud.  
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A necessity for a Cognitive Medium Access Control on the Cloud arises: as the 

Primary Users can utilize the spectrum anytime, continuous sensing and storage of the 

huge amount of sensing data as well as real-time processing are required. A Mobile 

Edge Computing architecture and Cognitive Radio Network Virtualization would make 

feasible Lower layers’ Services and Applications that could decrease latency, increase 

the QoE and security. Lower layer Cognitive Radio Services and applications would 

increase capabilities not only within the RAN but within local mobile network on a 

peer-to-peer basis for access and backhauling. 

The current challenges in Cognitive Radio Network are storing of large amount 

of data, processing them in real time and the exchanging of nodes’ current status on-

the-fly. These challenges are in contrast to the limited storage and processing ability 

(plus battery lifetime) of Cognitive Devices thus the need for additional capabilities 

arise. Cognitive Radio Network Cloud (CRNC) is an infra-structure consisting of 

mobile nodes and the cloud whose primary goal is to keep an up-to-date status of the 

spectrum availability in the network for all (Primary and Secondary Users) to access. 

The network status will be maintained in the cloud and updated by the networks nodes. 

The need for intense and accurate sensing made Multiple-Input/Multiple-Output 

(MIMO)  technology appropriate for Cognitive Radio. The large amount of sensing 

data and processing of MIMO antennae as well as the signal intelligence as a whole can 

be mitigated to the cloud. 

A CRNC prototype, as proposed in [11], collects sensing data, processes them 

in real time, and provides the results to all nodes. So, CRNC should also be able of 

running the cognition cycle for the network.  The nodes will continually report to the 

cloud their status, store and process their data and plan. Thus the control messages 

exchange between the mobile nodes will be eliminated and only data transfer will occur.  

Actually, there are two options of implementing data transmission:   

• the cloud will reserve the resources along the transmission path and then 

transmission will occur between the wireless nodes without the cloud’s interception   
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• the data will be send to the cloud and then will be copied to the 

destination node.  

In the latter case, there will be no data loss upon Primary User arrival as they 

will be stored in the cloud instead. The Secondary Users’ requests for spectrum access 

will arrive to the cloud in First Come First Served (FCFS) order but policies can be 

applied on the queue for implementing QoS classes. 

Cognitive Radio Infrastructure-less networks, although they are self-organized 

and implement distributed resources allocation, still suffer the limited storage, 

processing ability and power supply. Demanding tasks, e.g. signal intelligence, could 

be off-loaded to powerful nodes locally allowing the local network to be self-organized.  

A critical issue in CR Infrastructure-less network deployment on the cloud would be 

the Standard Interface Operability for CR users to connect to the cloud or local powerful 

nodes. 

The CRNC should accommodate databases for past experience information and 

databases for the sensing data. Cognitive Radio use the past experience to learn its 

environment and plan. 

The cognitive nodes will connect to cloud front devices playing the broker’s 

role to provide their sensing reports as proposed in [11] or data for processing. Those 

devices will split data and the processing load to the intermediate cloud computers.  

There is a tradeoff between the degree of parallelism and the data exchange.  

A necessity for a Cognitive Medium Access Control on the Cloud arises: as the 

Primary Users can utilize the spectrum anytime, continuous sensing and storage of the 

huge amount of sensing data as well as real-time processing are required. A Mobile 

Edge Computing architecture and Cognitive Radio Network Virtualization would make 

feasible Lower layers’ Services and Applications that could decrease latency, increase 

the QoE and security. Lower layer Cognitive Radio Services and applications on the 

Edge Computing would increase capabilities not only within the RAN but within local 

mobile network on a peer-to-peer basis for access and backhauling. In the latter case, 

ad-hoc networks or vehicles would leverage powerful local nodes allowing them to be 

self-organized.    

A proposal for such an architecture is presented in Figure 4.1 with the Cognitive 

Radio Edge Computing (CREC) Server to offload storage and processing at the Radio 
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Access Network (RAN) or at the local powerful nodes in the form of access services 

provision for the Cognitive Radio Network by virtualizing the Cognitive Medium 

Access Control and SDR functionality and resources and leveraging the connection to 

the core network and the Cloud connection.  

 

 

Figure 5.3: The CREC Medium Access Server deployed on the RAN and locally 

 

The Cognitive Medium Access Control is available as a service and adapts to 

the wireless nodes’ requirements. The SU node will run the corresponding Virtual 

Machine for each Cognitive Medium Access Control service and its application. Virtual 

Machines communicate via the application platform which run on the server. The server 

would connect to the cloud for further support. The Cognitive Radio uses the first OSI layer 

(Software Defined Radio - SDR) and second OSI layer (Cognitive Medium Access Control - 

CMAC) basically but actually relies on the whole OSI stack and the decisions made in the CRN 

have to meet the whole network needs. A high degree of interaction takes place within the CRN 

to achieve optimal network performance. 
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Cognitive Medium Access Control and SDR Services would utilize upper stack 

functionality for amongst others QoE which is essential in next generation wireless 

networks.  As next generation wireless networks should respond to an increasing 

demand of mobile users and mobile applications along with QoE demand for urban and 

rural radio environments with satellite communications to participate in the 

communication coverage.  

The Cognitive Medium Access Control and SDR Services creation, quality and 

management would depend on the local network, core network themselves as well as 

the local radio environment and its interconnection with the surround networks so to 

speak of an heterogeneous radio environment and network cooperating amongst others 

to centralize or distribute control over the huge network on demand or not, on-the-fly 

as well, satisfying the needs of upper  stack layers i.e. responding to real life needs of 

users, providers, organizations etc.  

According to the Document WINNF-TS-0008 Version V2.0.0 of Wireless 

Innovation Forum [26] “an active instance of a service is defined as a running 

implementation of the service that is connected to the radio application in conformance 

with the service interface”. However as the definitions of Services as specified by the 

Wireless Innovation Forum cover up to the network OSI layer demands,  the need for 

more complicated Services as described in the previous paragraph arise in the 

demanding radio network as oriented by the next generation wireless networks 5G, 6G 

and satellite communications. Cognitive Medium Access Control and SDR Services 

integration to achieve a common goal such as higher wireless network performance or 

higher degree of conceptualization of Cognitive Medium Access Control and SDR 

Services utilized in the upper stack layers to satisfy the real life needs of users, 

providers, organizations etc. in the 5G and 6G framework which embody terahertz 

technologies, visible light communication, sparse theory, new channel coding 

technology, large scale antenna, Cognitive Radio, special technical issues for Space-

Air-Ground-Sea integrated communication and wireless tactile network.  

For example Document WINNF-TS-3001 of Wireless Innovation Forum 

defines the implementation of an “Energy Management Application Programming 

Interface (EM-API) Figure 4.2  with the objective of making it straight forward to manage 

energy consumption in Software Defined Systems (SDS), in particular in Software Defined 

Radios (SDRs) and the platforms with which SDRs may be integrated. 
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According to WINNF-TS-3001 “the EM-API assumes that an SDS may consist of 

various components. Such components may include any of the following:  

 a. an energy source (battery, vehicular power, prime power etc.),  

 b. a platform (people or vehicles of many different kinds),  

 c. one or more applications (reasons to exchange voice, video, data) to 

accomplish some task, and applications may operate embedded inside some device or may 

reside in a separate unit (like a smart phone),  

 d. remote controllers (for example a vehicular adapter for a radio, a remote 

controller for a drone or robot, or a smart display running an application to accomplish 

something for its user), and/or  

 e. a software Defined Radio (SDR) or Cognitive Radio (CR)  

Furthermore, many such SDSs may interact with each other as a network to 

accomplish one or more overall objectives, and at the systems of systems level may find 

adjustment of energy consumption at one location in the network could be desirable to 

many other system performance metrics. 

Often, the adaption mechanisms are also referred to as “knobs” even though these 

adaption mechanisms are changes internal to the software, not explicitly external knobs to 

be manipulated by a human.” 

Cognitive Radio Medium Access Control and SDR Services integration and 

deployment on all the OSI layers and 5G and 6G huge and heterogeneous network would 

require high level of scheduling and interaction which new key technologies [27] e.g. which 

shorten Transmission Time Interval (TTI) may enable.  High level of scheduling and 

interaction will trigger eventually adaptation “knobs” within the local and global system in 

the framework of Cognitive Medium Access Control and SDR Services and application 

and of new abstract Cognitive Medium Access Control and SDR Services and 

applications for cross-operator, cross-network operability context generation, QoE, radio 

network demands, cross-operator, cross-border. 
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Figure 4.2: Systems of Systems benefits- System Deployment 
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Cognitive radio is a promising technology that answers the spectrum scarcity 

problem arising with the growth of usage of wireless networks and mobile services. 

Cognitive Radio Network Edge Computing will enhance the Cognitive Radio Network 

(CRN) capabilities and along with some adjustments in its operation will be a key 

technology for 5G Heterogeneous Network deployment.  

Cognitive radio based on the Software Defined Radio (SDR) that can 

reconfigures its  parameters - modulation, frequency etc., it adds a cognitive cycle [11] 

[12] in order to observe the environment, orient, plan, design, act and learn from past 

experiences. Cognitive radio senses the spectrum for vacancies, so called “spectrum 

holes”, for the Cognitive Radio Network (CRN) Users to transmit. In case of the 

licensed spectrum when the licensed users, i.e. Primary Users (PUs), vacate the 

spectrum the CRN users, also called Secondary Users (SUs), can access it.  There are 

limitations to the interference the Secondary Users can cause to the Primary Users.  On 

the other hand, the underutilized spectrum resulted in an immense need for Dynamic 

Spectrum Access that exploits spectrum opportunistically. 

Dynamic Spectrum Access includes amongst others sensing, spectrum 

management, spectrum sharing and spectrum mobility. For spectrum sensing - Primary 

Users detection - Cognitive Radio uses filter detection, energy detection and feature 

detection.  The spectrum management includes characterization, selection and 

reconfiguration of the spectrum (channel, modulation, bandwidth, power and 

transmission time). On appearance of the Primary User, the Secondary User has to 

vacate the channel immediately and continue transmission in another vacant channel.  

Spectrum sharing is essential for avoiding overlapping of multiple cognitive radios as 

well as handoff (loss of connection for mobile Secondary User or poor Quality of 

Service). 

CRN uses machine learning, genetic algorithms, game theory techniques, 

knowledge representation and optimization techniques for efficient resources 

allocation. Further, the CRN learns the network conditions [16] and encompasses past 

experiences to its cognitive cycle [13].  
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The Cognitive Radio uses the first OSI layer (Software Defined Radio - SDR) 

and second OSI layer (Cognitive Radio Medium Access Control - CRMAC) basically 

but actually relies on the whole OSI stack and the decisions made in the CRN have to 

meet the whole networks needs. A high degree of interaction takes place within the 

CRN to achieve optimal network performance. Thus, the research work considers 

Cognitive Radio Cloud and proposes a Cognitive Radio Edge Computing architecture 

to expand the CRN’s capabilities and performance whilst by placing Network Service 

Chaining for the Access level as a key technology for an increasing Cognitive Radio 

Access diversity. The proposed solution would support the 5G Heterogeneous 

Networks as well – an analysis of challenges and requirements of 5G Network is 

provided to justify the former considerations and proposals within 5G. Although current 

research work on Cognitive Radio Network Cloud (CRNC) has started to unveil, this 

research work goes beyond and bypass the existing limitations in Cognitive Radio 

Network with enhancements on Radio Access capabilities to respond to the vast needs 

of future Wireless/Mobile Networks - the 5G example was presented.   

This chapter is organized as follows:  section (II) is an introduction to Mobile 

Cloud and Mobile Edge Computing, section (III) presents the CRN requirements and 

challenges, the CRNC, current research work on this field and proposes a server-based 

architecture for Cognitive Radio Access for Network Service Chaining on the Access 

Layer Level. Section (IV) is a brief discussion on the 5G requirements and challenges 

whilst section (V) combines the Cognitive Radio Access Network Service Chaining 

solution to the 5G Heterogeneous Network deployment. 

5.1 MOBILE-EDGE COMPUTING AND NETWORK SERVICE CHAINING 

Mobile-edge Computing provides a highly distributed computing environment 

that can be used to deploy services and delay-sensitive and context-aware applications 

to be executed in close proximity to mobile users. This creates an ecosystem where new 

services are developed in and around the base station.  

The work of ETSI MEC –RAN aims to provide IT and cloud-computing 

capabilities within the Radio Access Network (RAN). The key element of Mobile-edge 

Computing (MEC) is the MEC application server which is integrated at the RAN 
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element. The MEC-RAN provides computing resources, storage capacity, connectivity, 

and access to user traffic, radio and network information.  

Mobile-edge Computing allows cloud application services to be hosted 

alongside mobile network elements and also facilitates leveraging of the available real-

time network and radio information. The MEC-RAN delivers information from the 

radio network relating to users and cells, and is based on network-layer signaling 

messages. MEC-RAN also provides measurement and statistics information related to 

the user plane. 

Multiple Virtual Machines (VMs) can be deployed in a single platform to share 

the hardware resources. Traffic can be routed to a VM from a physical interface and 

from VM back to the physical interface. Cloud and virtualization technologies 

(Network Functions Virtualization-NFV) are key enablers for Mobile-edge Computing.  

The ETSI MEC-RAN covers network layer signaling only and does not 

infiltrate to the lower layers. As a consequence, the traffic shaping service is a basic 

service. 

Network service chaining is a key technology enabling automated provisioning 

of network applications with different characteristics. The “chain” in service chaining 

represents the services that can be connected across the network using software 

provisioning. New services can be instantiated as software-only, running on commodity 

hardware. 

Network service chaining capabilities mean that a large number of virtual 

network functions can be connected together in an NFV environment. Because it’s done 

in software using virtual circuits, these connections can be set up and torn down as 

needed with service chain provisioning through the “NFV orchestration layer”. 

5.2 COGNITIVE  RADIO NETWORK CLOUD 

A necessity for a Cognitive Medium Access Control on the Cloud arises: as the 

Primary Users can utilize the spectrum anytime, continuous sensing and storage of the 

huge amount of sensing data as well as real-time processing are required. A Mobile 

Edge Computing architecture and Cognitive Radio Network Virtualization would make 

feasible Lower layers’ Services and Applications that could decrease latency, increase 
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the QoE and security. Lower layer Cognitive Radio Services and applications on the 

Edge Computing would increase capabilities not only within the RAN but within local 

mobile network on a peer-to-peer basis for access and backhauling. In the latter case, 

ad-hoc networks or vehicles would leverage powerful local nodes allowing them to be 

self-organized.   A proposal for such an architecture is presented in Figure 5.2 with the 

Cognitive Radio Edge Computing (CREC) Server to offload storage and processing at 

the Radio Access Network (RAN) or at the local powerful nodes in the form of access 

services provision for the Cognitive Radio Network by virtualizing the lower layer’s 

functionality and resources and leveraging the connection to the core network and the 

Cloud connection.  

We can distinguish three parts of the CREC Access Server:  

• the basic one covers the lower layers’ functionality’s and resources’ 

virtualization i.e. Software Defined Radio (SDR) and resources, which are 

infrastructure-oriented  

• the application platform that supports the services such as Local 

Network Access Control, Handover etc. for the applications that would respond to 

e.g. QoS  

• the virtual machines with the applications. Each virtual machine with 

the application will run at the SU node.  

 Network Service Chaining allows the creation of new access capabilities and is 

performed at the application platform. The server may run at a RAN or at a powerful 

local/wireless node to which other nodes can connect on a peer-to-peer basis (device-

to-device communication) reducing latency. The Cognitive Medium Access Control is 

available as a service and adapts to the wireless nodes’ requirements. The SU node will 

run the corresponding Virtual Machine for each Cognitive Medium Access Control 

service and its application. Virtual Machines communicate via the application platform 

which run on the server. The server would connect to the cloud for further support. The 

proposed architecture is flexible, reduces latency and easily adaptable as more services 

and applications are adjusted in a simple way. 

Services can connect through the network composing a powerful Network 

Service Chaining for Cognitive Radio Networks controlling access and providing high 

level QoE to the network users.  
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The Cognitive Medium Access Control and SDR Services creation, quality and 

management would depend on the local network, core network themselves as well as 

the local radio environment and its interconnection with the surround networks so to 

speak of an heterogeneous radio environment and network cooperating amongst others 

to centralize or distribute control over the huge network on demand or not, on-the-fly 

as well, satisfying the needs of upper  stack layers i.e. responding to real life needs of 

users, providers, organizations etc. Cognitive Medium Access Control and SDR Services 

integration and deployment on all the OSI layers and 5G and 6G huge and heterogeneous 

network would require high level of scheduling and interaction which new key technologies 

may enable.  

High level of scheduling and interaction will trigger eventually adaptation “knobs” 

within the local and global system in the framework of Cognitive Medium Access Control 

and SDR Services and application and of new abstract Cognitive Medium Access 

Control and SDR Services and applications for cross-operator, cross-network 

operability context generation, QoE, radio network demands, cross-operator, cross-

border. 

In Figure 5.4 we can see an CREC Server being part of  the RAN and connected 

to the core network and the Cloud  and in the second case being part of powerful nodes 

operating locally  e.g. for an IoT network. In Figure 5.3 (a) we can see the Service, 

Application Registration and Data sending for computations and processing to the 

CREC Server operating at a powerful node of a local Network A. Later the CREC 

Server decides to initiate the handover process for the SU and sends a handover request 

to the local Network B. The SU is notified and registers to Network B. In Figure 5.4 (b) 

the Server operates at the RAN and the SU registers its Service and Application and 

sends Data to the Server for processing. The Server processes the amount of data that 

are not computationally intensive and the rest are passed to the Cloud for processing. 

Later a handover process is initiated and the request is passed to the Cloud e.g. to update 

the network topology database of the Cognitive Radio Network.  

5.3 5G - CHALLENGES AND  REQUIREMENTS 

Mobile networks will become the primary means of network access for person-

to-person and person-to-machine connectivity where access to information and data 

sharing are possible anywhere, anytime. An increasingly diverse set of services, 
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applications and users with diverse requirements and flexible spectrum use of all non-

contiguous spectrum would also characterize 5G, 6G technologies. A vastly diverse 

range of things (IoT) would be connected that imply new functions to be developed. 

Millions of low cost connected devices and sensors that need to operate on battery 

would require low energy consumption reduced by a factor of 1000 to improve 

connected device battery lifetime. 1,000 times the today’s traffic volume would be 

supported in an affordable, sustainable way, cost and energy efficiently.  

Next generation wireless-access networks would need to support fiber-like data 

rates at 10 Gbps to make possible ultra-high definition visual communications and 

immersive multimedia interactions and support mobile cloud service; 100 Mbps should 

be generally available whilst 1 Mbps should be the baseline everywhere (Figure 5.1).  

Ultra large data rates, latency of one millisecond, always-on users per cell 

reaching several millions and signaling loads to almost 100% would be included in 

performance requirements.  Another challenges for 5G network are: less than one 

millisecond latency for real-time mobile applications and communications, maximum 

ten milliseconds switching time between different radio access technologies for 

seamless delivery of services would be included, too. On the quest for efficient usage 

of radio link, modulation techniques like non-linear-multiple-user-pre-coding, joint 

modulation and coding, physical network coding and advanced physical layer 

adaptation are tested. For example, Non-Orthogonal-Multiple Access (NOMA) for 

multiple access which is an intra-cell multi-user multiplexing scheme using the power 

domain and Faster-Than-Nyquist (FTN) are included in research efforts. Air interface 

and Radio Access Network (RAN) would accommodate massive capacity, extremely 

large amount of connections, high speeds for new network deployments. Latency 

reduction will improve User Experience so techniques such as pre-scheduling, local 

gateway, local breakout, local server, local cache, shortened Transmission Time 

Interval (TTI), faster decoding and Quality of Service (QoS) will control network delay, 

backhaul delay, radio access delay and terminal delay.  The new RAT with new 

numerology - wider subcarrier spacing - will achieve shortened Transmission Time 

Interval (TTI) and thus reduced latency to 1ms. 
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Figure 5.1: 5G requirements per Use Case 
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Advanced antenna solutions with multiple elements (massive MIMO) including 

beam-forming and spatial multiplexing will achieve high data rates and capacity. 

Massive MIMO technologies experience small interference and consequently higher 

throughput. 

5G unlike previous mobile networks technologies will have to proceed not only 

to flexible and efficient use of available non—contiguous spectrum but extend the 

operation range  for wireless access into higher frequencies above 10GHz (the spectrum 

from 10GHz to 100GHz i.e. the mmW range is considered so that the multi-Gbps data 

rates to be feasible). Advances in waveform technologies, multiple access, coding and 

modulation would improve spectral efficiency so as to support scalability of massive 

IoT connectivity and decrease latency. Computationally intensive and adaptive new air 

interfaces are necessary. Single-frequency full-duplex radios will increase spectrum 

efficiency, reduce network cost and increase energy efficiency. Plug-and-play will be 

essential in deployment allowing nodes to self-organize spectrum blocks for access and 

backhauling.  

The extension of mobile devices’ capabilities would be necessary for device-

based on demand mobile networking for services like device-to-device 

communications. Advanced device-to-device communication would enhance spectrum 

efficiency and reduce latency as the offloading of network data locally will minimize 

processing cost and signaling. A single radio resources could be reused by different 

groups of users of the cellular network, if the interference occurred within those groups 

is tolerable. Advanced Small Cell technology will utilize higher frequencies bands 

taking advantage of the vast bandwidth makes it suitable for dense small cell 

deployment where massive MIMO will be essential. Furthermore, user-centric Virtual 

Cells that consist of a group of BSs are introduced for 5G. In-band wireless backhaul 

can be used between the BSs for cooperative communication reducing cost and 

complexity for the network backhaul.  

Service requirements need to be mapped to the best combinations of frequency 

and radio resources by spectrum access and programmable air interface technologies. 

Software Defined Networking and Cloud architectures will enable customization of 

mobile technologies and QoS guarantees.  Cloud computing would allow leveraging of 

new services and applications and provide on demand processing, storage and network 

capacity. The cloud will enable seamless connections between people and human-

machine and will coordinate network resources for inter-RAT, inter-frequency, inter-
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site radio access for efficient network management. Virtualization and Software 

Defined Networking are technologies that can simplify and optimize the 5G network. 

Multi-Radio Access Technologies (RAT) convergence and intelligent management 

would lie on the cloud. Not only that but in the 5G,  network capabilities such as 

bandwidth, latency, QoS would be configurable allowing the access to a wider range of 

services. 5G Network would integrate also existing and heterogeneous networks with 

diverse requirements.  

5.4 CRNC FOR 5G HETEROGENEOUS NETWORK 

In general, massive MIMO is an evolving technology of Next generation 

networks, which is energy efficient, robust, secure and spectrum efficient [25]. 

According to [25] Massive MIMO technology would: 

• improve energy efficiency by 100 times and the capacity of the order of 

10 and more  

• can be put together with the help of low power and less costly 

components  

• decrease  latency on the air interface  

• encompass simple  multiple access layer  

•  increase the signal strength against interference. The proposed 

Cognitive Radio Access Server (Figure 5.3) which is supported by the cloud would 

be an appropriate architecture for fast processing of the computational load of the 

Massive MIMO technology. 

There are mainly two spectrum sharing techniques that enable mobile 

broadband systems to share spectrum i.e. distributed solutions and centralized solutions 

in 5G. Distributed spectrum sharing techniques is more efficient as it can take place in 

a local framework. Besides the centralized and distributed spectrum sharing 

considerations, Cognitive Radio with Dynamic Spectrum Management will enhance the 

network and application performance in 5G. The proposed Cognitive Radio Access 

Server would accommodate centralized solutions and distributed solutions at local 

powerful nodes (Figure 5.4, Figure 5.5). Access and Backhauling convergence would 

45 
 



IOANNA KAKALOU    Algorithms for Cognitive Radio Network and Cloud 2020 

be easily deployed.   Furthermore, Full-Duplex Cognitive Radios will be empowered to 

support 5G. 

 

 

 

Figure 5.2: The Cognitive Radio Access Server 
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Figure 5.3: The CREC Medium Access Server deployed on the RAN and locally 

 

If a device links directly to another device or apprehends its transmission through 

the support of other devices, then it will be on the device level (device-to-device 

communication). So the combined resources of the numerous mobile devices and other 

available stationary devices in the local area will be exploited. This method supports 

user mobility and identifies the potential of mobile clouds to perform collective sensing. 

Cognitive Radio  Access  as a platform service  will enable 5G network to accommodate 

heterogeneous networks with diverse requirements e.g. for small cell dense 

environments when the Cognitive Radio Access Server runs the adaptive access 

services on the local vicinity and wireless backhaul between BSs for  
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Figure 5.4: CREC- Medium Access Server operating:  a) at a powerful local node; b) on the RAN

cooperative communication.  Network Service Chaining would be realized 

enabling end-user to make best choices, introducing high level QoE   based on the 
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enhanced air interfaces and capabilities of 5G signifying a new era in network 

infrastructures.  

5.5 CONCLUSION 

This research work [11] makes a revision of Cognitive Radio Network 

requirements and challenges - including Cognitive Radio Network Cloud, Mobile Edge 

Computing, Network Service Chaining - and provides a review of current research work 

on CRNC that would support all the rest. Distributed resources/spectrum management 

(devices as resources providers), centralized resources/spectrum management (cloud) 

and processing offloading would be easily feasible with the proposed Cognitive Radio 

Edge Computing Access Server paradigm. Furthermore, it introduces an Cognitive 

Radio Access Server  which will support the 5G Heterogeneous Network operating as 

a platform service providing Radio Access accelerating NFV and the dispersion of SDR 

and CRN MAC functioning to al OSI layers in case of a highly capacity backhaul when 

the cloud support is needed. Otherwise the resources/spectrum management will be 

performed locally, effectively enabling Network Service Chaining in end-user-oriented 

mode in the diverse wireless environment of 5G Network. Thus bypassing its 

limitations Cognitive Radio Network will respond to the vast needs of future 

Wireless/Mobile networks - the 5G example was presented. 
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Cognitive radio (CR) has emerged as one of the most promising candidate 

solutions to answer the spectrum scarcity problem. Spectrum sensing is an essential 

task in improving spectrum utilization efficiency. This research work [28] constitutes 

a brief survey of CR sensing algorithms along with the corresponding CR system 

characteristics as well as the techniques that enhance sensing   parameters.  Special 

attention is paid to the use of sub-Nyquist techniques, including compressive sensing 

(CS). Conclusions and future challenges in spectrum sensing in CR are further 

provided. 

 

6.1. INTRODUCTION 

 

CR technology has been proposed as a potential solution to increase the 

efficiency of underutilized spectrum band allowing opportunistic access to unlicensed 

users as soon as the licensed users do not transmit or co-exist, thus, when interference 

imposed to licensed users is below a certain threshold. Spectrum access may rely on a 

priori knowledge of PU’s activities or real time measurement of PU’s activity known 

as spectrum sensing. Reliable spectrum sensing is a key issue in efficient spectrum 

utilization. 

The next motivation for a continued research on spectrum sensing is the creation of 

the so-called Radio Environment Maps (REM), or other databases designed for 

storing and processing of the available context information. In the context of 5G or 

next generation systems historical knowledge, past experience and database 

information as well as real time spectrum sensing data will define the framework of 

an efficient spectrum management scheme. 

 

6.2. COOPERATIVE, NON-COOPERATIVE SPECTRUM SENSING 

 

 The hidden node problem, shadowing and fading problems degrade the 

performance of non-cooperative i.e. single node sensing thus making cooperation 

between the SUs on the spectrum sensing essential for mitigating those effects. In 

cooperative sensing the SUs perform local sensing and then forward the result to a 

fusion center where a global decision about PU presence will be made according to a 
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rule and on a decision threshold that will be applied at the fusion center. The selection 

of fusion center may be centralized, cluster-based, distributed and relay- assisted. The 

underlay paradigm allows SUs to operate simultaneously with the PUs provided that 

interference is maintained below a threshold.  In overlay systems the secondary users 

overhear the transmissions of the primary users, then use this information along with 

sophisticated signal processing and coding techniques to maintain or improve the 

performance of primary users, while also obtaining some additional bandwidth for 

their own communication. In interweave systems the secondary users detect the 

absence of primary user signals in space, time, or frequency, and opportunistically 

access the spectrum. 

There are three important quality metrics that define efficiency of spectrum 

sensing which are a) the detection probability (Pd) i.e. the probability that the PU is 

present and the sensing outcome is PU present, b) false alarm probability (Pf)  the 

probability that PU is not present and the sensing outcome is PU present c) 

misdetection probability i.e. the probability that PU is present and the sensing 

outcome id not present. Both false alarm and misdetection probabilities degrade 

sensing efficiency.  If the secondary user detects a signal y(n), the decision on 

spectrum sensing may be given by double hypothesis test: 

 

𝐻𝐻1:𝑦𝑦(𝑛𝑛) = 𝑥𝑥(𝑛𝑛) + 𝑤𝑤(𝑛𝑛)   (1) 

𝐻𝐻0:𝑦𝑦(𝑛𝑛) = 𝑤𝑤(𝑛𝑛)               (2) 

 

        The  𝐻𝐻1 shows that the primary user’s signal 𝑥𝑥(𝑛𝑛) and noise 𝑤𝑤(𝑛𝑛) are present 

whilst in 𝐻𝐻0 only noise 𝑤𝑤(𝑛𝑛) is present.Then in cooperative mode the SUs sensing 

outcome may be forwarded to the fusion center as simple bit “1” for PU presence or 

“0” for PU absence and then a hard decision will be reached which may not be 

accurate or the sample bits may be forwarded to the fusion center and a soft decision 

will be reached based on applied rule. The reported message from different SU node 

is combined by embracing the fusion rule and then building the final decision. 

Various combining rules (Fusion rules) are used: AND rule, OR rule, Majority rule 

and K outof N rule. Detection and False alarm probability is calculated globally to get 

the quality of detection and can be expressed as: 
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𝑄𝑄𝐷𝐷 = ∑ (1 − 𝑃𝑃𝐷𝐷)𝑁𝑁−𝑖𝑖𝑃𝑃𝐷𝐷𝑖𝑖         (3)𝑁𝑁
𝑖𝑖=𝐾𝐾   

𝑄𝑄𝐹𝐹 = �(1 − 𝑃𝑃𝐹𝐹)𝑁𝑁−𝑖𝑖𝑃𝑃𝐹𝐹𝑖𝑖          (4)
𝑁𝑁

𝑖𝑖=𝐾𝐾

 

where, QD is the global detection probability, Qf is the global false alarm probability. 

Finally the reporting of global information and global decision on the channel 

availability to different SU nodes is done. This step may differ depending upon the 

type of network topology used. 

 

6.3. ALGORITHMS AND PARAMETRS 

 

In Table 6.1 an overview of recent sensing algorithms proposed in literature 

and their differentiation on the system and algorithm characteristics are presented. 

Namely, topology and cooperative or non-cooperative sensing, the sensing technique, 

the hard/soft decision, the rule applied at the fusion node, the optimization of the 

threshold for the decision to be made at the fusion node, the evolutionarily algorithms 

or other efficient algorithms that contribute to the final decision, past experience 

sensing information that may be used, the hardware enhancements such as multiple 

receiver that increase SNR, the number the SUs, the multiple levels at the PU 

transmissions and Imperfect of Perfect Channel State Information (CSI) considered by 

the algorithm are presented.   

In many sensing schemes efficient optimization tools such as evolutionary 

algorithms [29] or immunological computation based on biological immune system 

have been applied. The differential evolution algorithm arised to a powerful 

optimization tool applied to many applications as with only few control parameters 

they solve numerous type problems including multi-objective, multi- constrained 

optimization problems.  

 

6.4. SPECTRUM SENSING TECHNIQUES 

 

There are various spectrum sensing methods proposed to identify the presence 

of spectrum hole and optimize the detection probability. The SUs perform spectrum 
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sensing with one of the following methods: on energy detection, cyclostationarity, 

matched filter, waveform, covariance, Eigen value, wavelet, and spectral estimation.  

The energy-detection scheme compares signal with a predefined threshold λE 

to make a decision about PU presence and avoids the need for prior knowledge of the 

PUs. Both the implementation and computational complexity are relatively  

low. A major drawback is that it has poor detection performance under low SNR 

scenarios, and cannot differentiate between the signals from PUs and the interference 

from other cognitive radio. 

The matched filtering method is an optimal approach for spectrum sensing 

since it maximizes the signal-to-noise ratio (SNR) in the presence of additive noise. 

This advantage is achieved by correlating the received signal with a template. 

Cyclostationary feature detection detects and distinguishes between different types of 

primary signals by exploiting their cyclostationary features. This technique is used at 

very low SNR detection. Wavelet Packet Transform (WPT) technique is based on the 

decomposition of frequency bands into lower and higher bands at different levels. The 

signal of interest is primarily of low frequency and noise is of high frequency. After 

filtration, half of the samples can be neglected according to Nyquist criterion.  

Covariance Based Method is based on the fact that the covariance of the 

wireless signal and the additive noise component is generally different. Filter Bank 

Method involves a set of bandpass filters for signal analysis. Multitaper Method uses 

orthonormal Slepian sequences as tapers where tapers indicate the window function. 

The Slepian sequences have most of the energy of its Fourier Transform is within a 

given frequency band for a finite sample size. This allows one to trade the spectral 

resolution for reduced variance of the spectral estimate without leaking signal energy 

into adjacent bands. Therefore, it is considered one of the suitable techniques for 

spectrum sensing. In Multiple Antenna Technique, CR receiver is outfitted with 

multiple antennas to improve the SNR of the received signal. The method is based by 

Maximal Ratio Combining (MRC) technique. MIMO enhances the performance of the 

signal detection by sensing at low SNRs. 
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6.5. NARROWBAND- WIDEBAND SENSING 

 

The wideband spectrum sensing techniques aim to sense a frequency 

bandwidth that exceeds the coherence bandwidth of the channel. The wideband signal 

is sampled by a high sampling rate at ADC, after which a serial-to-parallel conversion 

circuit is acquired to divide sampled data into parallel data streams. Fast Fourier 

transform (FFT) converts the wideband signals to the frequency domain. The 

wideband spectrum is divided into a series of narrowband spectra. Then binary 

hypotheses tests, where H0 denotes the absence of PUs and H1 denotes the presence 

of PUs define the spectrum opportunities.  

Compressive Sensing (CS) [41] is a novel sampling paradigm which states that 

it is feasible, with overwhelming probability that a signal is reconstructed based on 

samples taken but with far fewer samples than those dictated by the traditional well-

established Nyquist criterion stating that for accurate signal reconstruction one must 

adjust sampling rate to be at least twice the highest frequency present in the 

mathematical expression of the signal. Hence, the sub Nyquist rate that CS theory 

claims to be adequate for signal reconstruction is directly proportional to the actual 

signal bandwidth. The signal vector may have all but few elements set to zero (s-

sparse signal) or few elements with large magnitude while neglecting the rest of the 

entries.  

CS theory deals with recovering an s-sparse signal vector x of dimensions 

N×1, s<<N by means of a transformation matrix A of dimensions m×N, thus 

producing the measurement vector y of dimensions m×1 with m<N. The domain of 

signal x is called the sparsity domain. The mathematical expression of the above 

problem is given in (1):  

 

          0
minarg x               s.t. y=Ax                (5) 

        

   Further notion on finding the appropriate sparsity basis or the use of another lp norm 

than the l0 quasi-norm due to initial problem intractability is beyond the scope of this 

survey. The rest of this section is dedicated to CS theory applied to CR systems. 

The application of CS theory to CR systems is beneficial as in cognitive radio, 

because of the spectrum underutilization, sparsity condition is valid and transmitted 
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signals are compressible. In cognitive radio the signal sampling should be as fast as 

possible, even with high dimensional signals to reduce the processing time and 

accelerate the scanning process. The main benefit introduced by leveraging CS in 

cognitive radio systems is the ability to sense the same frequency band with fewer 

samples than those dictated by the traditional methods or a wider frequency band with 

the same number of samples. 

However in practice, there are limitations and challenges imposed on the 

design of a compressed sensing system related namely with the sensing matrix, 

sparsity, hardware implementation, uncertainty due to the noisy and interference, 

recovery uncertainty, and RIP proof [42]. The unstructured nature and randomness of 

the sensing matrix makes its construction complex, costly, and requires high memory 

storage. A straightforward problematic issue is that sparsity may not hold in the 

frequency domain hence finding a proper sparsification matrix is a major issue. 

Regarding the reconstruction process, the choice of the appropriate method depends 

on whether accuracy or computational speed is required i.e. when selecting iterative 

methods for CS recovery. Another scientific issue is considering an approximately 

sparse signal in the frequency domain, where CS provides an approximation of the 

sparse solution [42]. Regarding limitations in hardware, the application of CS allows 

tackling the issue of impractical or costly Analog-to-Digital-Converters for the 

purpose of wideband spectrum sensing. 

Most of the proposed compressive sensing techniques consider the Gaussian 

noise with known or unknown variance. Besides, interference, high level of noise 

uncertainty, channel uncertainty, and imperfections degrade the performance of CS in 

real scenarios [43] [44]. All these are open research issues [45] that have to be 

answered in order to leverage the potential benefits of CS. 

CS application to CR systems can be realized by means of both centralized 

and distributed techniques. In particular, in the distributed schemes and specifically 

sensor networks, the capability of simultaneous sensing and compression was 

investigated in [46]. 
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6.6 CONCLUSION AND FUTURE CHALLENGES 

 

Spectrum sensing is a cornerstone for efficient spectrum utilization in CR and 

the parameters that define its functionality were discussed in this brief survey. CS 

theory has been applied in this direction to alleviate computational burden and relieve 

hardware of impractical requirements in wideband sensing. Some challenges 

regarding CR systems with CS theory applied are sparsity order estimation given its 

time varying nature in realistic scenarios. The claim that adaptive learning of this 

sparsity order can be beneficial could be combined by the fact that in CS theory 

samples are non-adaptive. There may be a solution to the above contrast.  The 

specification of the desired sparsity basis is another important future challenge. A 

generic sensing matrix construction is missing from this field as the above matrices 

have a case dependent characteristic.  

The utilization of the huge amount of sensing data and efficient processing as 

well as historical or past experience data derived by the aforementioned sensing 

methods along with REMs, the realization of promising techniques such as CS and 

technologies e.g. MIMO along with improved hardware solutions that meet all 

requirements and constraints will define the framework of spectrum exploitation in 

the future CR networks and moreover the 5G and next generation networks. 
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A Multi-Channel Cognitive MAC Protocol for ad-hoc cognitive networks that uses a 

distributed learning reinforcement scheme is proposed in this research work [16]. The 

proposed protocol learns the Primary User (PU) traffic characteristics and then selects 

the best channel to transmit. The scheme, which addresses overlay cognitive 

networks, avoids collision with the PU nodes and manages to exceed the performance 

of the less adaptive statistical channel selection schemes in normal and especially 

bursty traffic environments. The simulation analysis results have shown that the 

performance of our proposed scheme outperforms that of the CREAM-MAC scheme.  

 

7.1. INTRODUCTION  

 
Cognitive Radio was introduced to answer the spectrum scarcity problem. The 

MAC protocol of a Cognitive Radio network is supposed to enable the so called 

Secondary Users (SU) network nodes to dynamically access unused or under-utilized 

licensed spectrum. The licensed users also called Primary Users (PUs) can share the 

spectrum with the SUs whom can access the spectrum in underlay and overlay mode. 

In underlay spectrum access the secondary user limits its transmission power below 

the interference temperature limit so as not to disturb licensed users’ transmission. 

The interference temperature is a metric of the quality of the received signal and 

includes noise and interference of other sources signals. In the overlay spectrum 

access, the SUs can only access the spectrum opportunistically at the absence of the 

PUs. The SUs have to sense the spectrum for vacancies namely “spectrum holes” and 

decide whether to access the spectrum or not usually based on the PU collision 

probability.  

In the Cognitive Radio Network (CRN), the SUs interfere with each other and 

this factor, i.e. aggregated interference, has to be considered and estimated. When the 

number of the SUs and their traffic characteristics are not known, then arises the 

problem that the common control channel answers. In ad-hoc networks that lack of a 

central entity, synchronization is difficult and thus has to be addressed by the 

protocol. Cluster-based architectures were introduced in CRNs to reduce congestion 

in channel access. These architectures do not share a common control channel. 

This research work introduces a MAC Protocol for CR wireless ad-hoc 

networks for opportunistically spectrum access with a distributed learning 
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reinforcement scheme for channel selection based on SUs observations of PU traffic 

and with minor computational demands and avoids collisions with the PUs and keeps 

SUs synchronised.  

 

7.2. RELATED WORK 

 
A scheduling algorithm for multi-hop CR network was proposed in [47] which 

determines the time slot and channel for transmission by SUs presuming that each SU 

has a different set of available channels. A heuristic-based distributed algorithm was 

proposed. It consists of two phases for allocating slots in all channels. In the first one 

each node chooses the time slot and the channel for each link and in the second this 

information is propagated in the network and each node makes the necessary 

adjustments.  

The statistical channel allocation MAC (SCA-MAC) [48] employs a control 

channel and aggregated data channels whilst the selection of the range of channels for 

transmission is an optimization problem. The protocol outperforms the random 

scheme. In [49] a cluster-based cognitive radio network was introduced where local 

traffic can be exchanged through cluster-heads and inter-cluster communication is 

achieved via the gateway node. There is no common control channel and the role of 

coordinator for nodes communication is assigned to the cluster head at the 

communication channel of the cluster-head. Transmission is based on superframes 

that include a beacon period for synchronization of the cluster heads resource 

allocation information.  

The CREAM-MAC [50] is a protocol based on IEEE 802.11 DCF that limits 

each channel access time to a value of Tdmax so as to limit the interference to PUs. 

Protocols that  reserve channels for data transmissions similar with the well-known 

IEEE 802.11 DCF standard are DSA-MAC [51], DCRMAC[8], HC-MAC [52],  

DDMAC [53], SMA[54]. 
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Figure 7.1. A stochastic learning automaton 

 

7.3. PRIMARY AND SUS MODEL AND PROTOCOL DESCRIPTION  

 

7.3.1. STOCHASTIC AUTOMATA AND REINFORCEMENT LEARNING 

 
A Learning Automaton is a control mechanism that follows a predetermined 

sequence of operations or adapts to changes in the environment. The adaptation is the 

result of the learning process i.e. the permanent change in the learning automaton 

behavior toward a final goal as a result of the past experience. The term stochastic 

refers to the adaptive nature of the learning automaton. A stochastic automaton has no 

information of the optimal action, but selects an action randomly then the 

environment is observed and the action probability is updated based on the response 

from the environment. This procedure is repeated and the algorithm that guarantees 

the desired learning process is called a reinforcement scheme. 

Let w1,w2,..wm be the mutually exclusive responses of the environment, Pi the 

probability of the occurrence of the ith response, then the reinforcement scheme of the 

Learning automaton can be described as: 

 

𝑃𝑃𝑃𝑃(𝑛𝑛 + 1) = 𝜆𝜆𝜆𝜆𝜆𝜆(𝑛𝑛) +  (1 − 𝜆𝜆)𝑎𝑎𝑖𝑖(𝑛𝑛) n=0,1,2 (1) 
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Where Pi(n) is the probability of the occurrence of the ith response on time n for the xi 

input. 

 

0 < 𝜆𝜆 < 1, 0 < 𝛼𝛼𝑖𝑖(𝑛𝑛) ≤ 1 

∑ 𝑎𝑎𝑖𝑖(𝑛𝑛) = 1        𝑚𝑚
𝑖𝑖=1  (2) 

Equation (1) describes a linear reinforcement scheme and it can be easily shown 

that if αi(n)=αi then:  

 

𝑃𝑃𝑖𝑖(𝑛𝑛 + 1) = 𝜆𝜆𝑛𝑛𝑃𝑃𝑛𝑛(0) + (1 − 𝜆𝜆𝑛𝑛)𝑎𝑎𝑖𝑖     (3) 

 

And  lim
𝑛𝑛→∞

𝑃𝑃𝑖𝑖(𝑛𝑛) = 𝑎𝑎𝑖𝑖         (4) 

 

The reinforcement learning can be formulated by learning automata. A stochastic 

learning automaton operating in a random environment is shown in Figure 7.1. At 

each step, the random environment provides a feedback of satisfactory or 

unsatisfactory performance to the stochastic learning automaton known as a penalty y 

= 0 with probability 1-πi and y = 1 with probability πi respectively. 

A stochastic learning automaton is a quintuple {Y,Q,U,F,G} where Y is the 

environment response set and it consists of only two elements i.e. If it takes 0 then is 

said P-Model, if it takes finite number values in the range [0,1] then is said Q-Model 

and if it takes arbitrary numbers in the range  

[0,1] then is said S-Model. Q is the finite set of states Q={q1,q2,…qs}, U is the finite 

set of the stochastic learning automaton outputs U={u1,u2,…,um}, F is the state 

transition function q(n+1)=F[y(n), q(n)] and G is the u(n)=G[q(n)]. The function G 

can be either stochastic or deterministic whilst function F is stochastic and this 

stochastic nature of learning automata makes them suitable for learning systems. 

If Imin=min{π1, π2,...,πm} then the optimal output of the stochastic learning 

automaton is uβ and the reinforcement scheme is said optimal if 

 

lim
𝑛𝑛→∞

𝔼𝔼�𝑃𝑃𝛽𝛽(𝑛𝑛)� = 1       (5) 

 

The reinforcement scheme is said ∈ −𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 if 
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lim
𝜆𝜆→0

lim
𝑛𝑛→∞

𝔼𝔼�𝑃𝑃𝛽𝛽(𝑛𝑛)� = 1   (6) 

 

And ∈ −𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ensures that the operation of the stochastic learning 

automaton is very close to optimality, where λ is the learning rate. 

 

 

7.3.2. TRANSMISSION OPPORTUNITY DETECTION  

 
We assume a wireless network of CR-enabled nodes equipped with a radio 

dedicated to the common control channel, a radio for data transmission and sensors 

for channel sensing. The spectrum licensed to PUs consists of M channels. The nodes’ 

transceivers can operate to any of the M channels. According to the sensing outcome 

of each sensing period, a state is assigned to each channel. The ON state represents 

that the PU transmit state and the OFF state means the SUs can opportunistically 

access the channel. A vector state[i] maps the state of each channel.  

Presuming that the traffic of PUs comes in bursts, the SUs have to detect those 

opportunities in spectrum that are “good” i.e. they are mostly likely for successful 

transmission as they will not be interrupted. Due to the burstyness of its traffic, a PU 

which transmits during a sensing slot, most likely will transmit during the next 

sensing slot in order to complete its transmission. 

To learn the burstyness of PUs’ traffic, each SU employs a learning automata 

mechanism for each channel i. The mechanism in [12] estimates the probability P[i,t] 

that channel i will be occupied via PU transmission at time t (where t is measured in 

sensing slots). 

 After each sensing period, this probability is updated according to the 

following scheme:  

• If channel i is occupied by a PU, then P [i,t] is increased:  P[i,t+1] =P[i,t] 

+L*(1-P[i,t] ) (7) 

• If channel i is occupied by PU, then P[i,t] is decreased:  P[i,t+1] =P[i,t] -

L*(P[i,t] -α)   (8) 

It holds that L,α  (0,1) and P[i,t]  (α,1) i,t. L is a parameter that governs 

the speed of the automaton(7)(8) convergence. 
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The lower the value of L, the more accurate the estimation made by the 

automaton; a fact that comes at the expense of convergence speed. Parameter “α” 

prevents the probabilities P[i,t] from taking values in the neighborhood of zero and 

thus increases the adaptivity of the automaton.  

After estimating the channel usage made by the PUs, the protocol has to 

identify transmission opportunities for the secondary ones. Thus, the probability that a 

SU at channel  I can transmit is then equal to S[i,t] =1-P[i,t]. We update (7) and (8) 

with S[i, t+1]=1-P[i, t+1] and S[i]=1-P[i]. We have the following linear reinforcement 

scheme for the stochastic learning automaton of P-Model: 

 

• If channel i is not occupied by a PU, then S [i,t] is increased:  S[i,t+1] =S[i,t] 

(1-L)+L*(1- a) (9) 

 

• If channel i is occupied by PU, then S[i,t] is decreased:  S[i,t+1] =S[i,t] (1-L)       

(10) 

 

Τhe probabilities S[i,t+1] are updated at the end of each sensing slot. As (1-α) 

is constant according to (1), (3), (4) and due to the use of very small value (i.e. 10-4) 

for parameter α mentioned above(7)(8)(9), during the burst of the licensed user at 

channel i, the S[i,t] will approach zero whilst during a spectrum hole on the channel, 

it will approach (1-α). For very small values of α and according to (5): 

 

lim
𝑡𝑡→∞

𝔼𝔼{𝑆𝑆[𝑖𝑖, 𝑡𝑡]} = 𝔼𝔼{ lim
𝑡𝑡→∞

𝑆𝑆[𝑖𝑖, 𝑡𝑡]} = 1           (11) 

 

Thus the channel selection learning reinforcement scheme is optimal for very 

small values of α. An opportunity discover function provides the SU with the best 

selection metric i.e. the first channel in S[i,t] that is also idle according to state[i] . 

The algorithm decreases the selection probability of channel i, if it is occupied by a 

PU during the last sensing slot and increases the selection probability of channel i, if 

the channel is not occupied by a PU. As PU traffic comes in bursts the selection 

probability of channel i keeps decreasing. On the other hand, as the spectrum holes 

are contiguous, the selection probability will increase when the PU is not transmitting 

on channel i.  
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This paper introduces an architecture where the SUs form clusters of nodes 

which experience the same PUs presence and local traffic can be exchanged within 

the cluster whilst remote traffic is achieved by the inter-cluster communication. A 

common control channel answers the problem of aggregated interference uncertainty. 

The protocol introduced in this paper employs a common control channel for resource 

reservation per cluster in order to limit the aggregated interference of SUs and to 

handle the hidden terminal and multi-channel hidden terminal problems. The common 

control channel is dynamically selected as the most reliable and with the best selection 

metric. 

The proposed protocol relies on the synchronization achieved within the 

cluster by the use of the distributed scheme as the sender and receiver experience the 

presence of the same PUs and they share the same channel selection probabilities. As 

there are no collisions between SUs and PUs, transmissions are identified and SUs are 

synchronized. For spectrum sensing, energy detection and cyclostationary feature 

detection can be employed. 

 

7.3.3. SPECTRUM SENSING INACCURACY 

 

If spectrum sensing is not accurate then the selection metric S[i,t+1] is 

modified by the term: 

 

𝑆𝑆′[𝑖𝑖, 𝑡𝑡 + 1] = 𝑆𝑆[𝑖𝑖, 𝑡𝑡 + 1] + 𝐿𝐿(1 − 𝛼𝛼)(1 − 𝐿𝐿)𝑁𝑁+1 (12) 

𝑆𝑆′[𝑖𝑖, 𝑡𝑡 + 1] = 𝑆𝑆[𝑖𝑖, 𝑡𝑡 + 1] − 𝐿𝐿(1 − 𝑎𝑎)(1 − 𝐿𝐿)𝑁𝑁+1(13) 

 

The equations above stand for PU misdetection and false alarm cases. In PU 

misdetection the selection metric is updated wrongly according to equation (9) for N 

slots in the sequence –as long as faulty sensing occurs- and then as the system seems 

to overcome misdetection, the selection update is done according to equation (10). 

Thus, we have an increase  
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Figure 7. 

2. Example of the proposed protocol operation 

 

in the term as appearing in equation (12). On the other hand, false alarm causes a 

selection metric update for N sensing slots in a sequence according to equation (10) 

and then the system overcomes false alarm by persistent updating the selection metric 

according to equation (9). Hence, we have again a decrease in the value of the 

selection metric by the term appearing at equation (13). 

The limit of the error term is zero: 

 

lim
𝑁𝑁→∞

𝐿𝐿(1 − 𝛼𝛼)(1− 𝐿𝐿)𝑁𝑁+1= 0      (14) 

 

Thus for higher values of L the error term reaches very small values around 

10-4 in a few slots. The proposed reinforcement learning scheme can operate in 
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inaccurate sensing conditions as the system overcomes inaccurate sensing easily when 

the value of L is high.  

 

7.3.4. SUS CHANNEL ACCESS 

 

The control packets are namely ReadyToSend / 

ClearToSend/ACKnowledgement. The ACKnowlegdement is returned to the sender 

at the successful completion of data transfer on the data channel. In case of 

unsuccessful handshake binary exponential back-off is invoked. The SU that wants to 

transmit and finds the control channel busy backs off for a period of 2CW 

*Min_Waiting_Period where CW is the contention window and Min_Waiting_Period 

is the minimal backoff period.  

The whole handshake procedure for data channel reservation is shown in Fig. 

2 for each user that wins the contention. If data transmission is interrupted by the PU 

presence then data transmission continues in the first available channel provided by 

the opportunity discover function. On successful data reception an ACK message is 

returned to the sender via the data channel.  

The RTS/CTS messages between the nodes of the same cluster do not include 

the available channels on each node as they experience the presence of the same PUs. 

The nodes remain synchronized with the learning automata and so the RTS/CTS 

messages hold other information useful for cluster operations e.g. for cluster 

orientation.  

Cluster operations are the necessary functions taking places in the control 

channel and they are responsible for the cluster orientation, neighborhood orientation, 

the voting process for the selection of the control channel. When the quality of the 

control channel drops or PU presence occurs and remains so for at least period Tc, a 

voting process based on both the quality of the signal and the learning reinforcement 

scheme metric will determine the next control channel of the cluster. Upon collapse of 

CC the cluster e.g. due to jamming, nodes will mitigate to the next channel with the 

better metric of all channels.   

 The cluster synchronization is necessary when a node entering the cluster or 

experiencing synchronization problems e.g. at the limits of the cluster, thus wants to 

synchronize itself with the rest of the cluster, they will be supported by the cluster via 
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the control messages. The nodes will demonstrate their cluster orientation information 

within their RTS/CTS messages. Each cluster operation is related to a certain field 

update with the appropriate information in the control messages.  

Neighboring clusters neither can share the same control channel nor allow data 

transmission on the control channels of their neighboring clusters. They cannot share 

the same control channel in order to allow nodes belonging to different clusters to 

communicate avoiding overlapping. Furthermore, data transmission with no collisions 

on the non-control channels is guaranteed by the control messages whilst the 

communication on the control channel can be guaranteed if the nodes of the 

neighboring clusters do not interfere with the control channel operation i.e. no data 

transmission can take place at a channel that operates as control channel of a 

neighboring cluster.  

SUs on different clusters communicate asynchronously-i.e. they have to agree 

upon data transmission channel- at the receiver’s Control Channel. 

 

7.4. PERFORMANCE EVALUATION 

 
We used simulation analysis in order to evaluate the performance of the 

proposed protocol. The OMNET package was used. As our main goal is to show the 

superiority of learning PUs’ traffic characteristics for identifying transmission 

opportunities, we compared the performance of the proposed scheme with that of 

CREAM-MAC [6], which identifies transmission opportunities via gathering statistics 

on licensed channels usage by PUs. The simulation parameters of CREAM-MAC 

were identical with those of  the paper [51] experiment. The parameters used in our 

simulations are: transmission rate of 2Mbps per channel, 30 SUs, 30 channels and 

PUs activity which follows the exponential distribution. The proposed protocol is 

compared to CREAM-MAC for a maximum interference period Tdmax = 10msec in 

terms of aggregate throughput (Figure. 7.3,7.4,7.5),  access delay (Figure. 7.7) and 

collision with the PU ratio (Figure 7.8). The data packet length is assumed to be 

20,000 bits and Min_Waiting_Period is assumed to be 10ms. A one cluster 

architecture was simulated for the proposed protocol. 

In all the experiments the Learning Automata-based Multi-Channel Cognitive 

MAC outperforms the CREAM-MAC.  
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In the former two experiments (see Figure 7.2, and Figure 7.3) the aggregated 

throughput is studied for different PU burst lengths when the bursts are generated 

every 2s and 0.1s 

However the proposed protocol seems to be less affected by the changes in PU 

burst length as it utilizes the most of the spectrum holes for every PU burst generation 

rate that learns, something that does not hold for CREAM-MAC as its performance 

drops significantly by the PU burst length. 

In the third experiment(Figure 7.5) the aggregated throughput is studied for 

different PU burst arrival rates when the PU burst length is 100,000 bits.. The fourth 

experiment (Figure 7.6) follows the results of the third experiment and studies the SU 

channel utilization for different PU burst arrival rates and PU burst length equal to 

100,000 bits. As the PU burst generation rate increases, the difference in performance 

of the two protocols also increases. This is due to the increase of the collisions with 

the licensed users that CREAM-MAC cannot predict; whereas these are avoided by 

our proposed protocol. 

 

 
 

 

 

 

Figure 7.3. The aggregated throughput versus the 

PU burst length for burst generation every 2s. 
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The access delay was studied for different PU burst arrival rates (Figure 7.7) 

with PU burst length of 100,000 bits. As the PU burst mean arrival rate increases, the 

variance of the PU traffic distribution decreases. Then the mean arrival rate of the 

statistics becomes better metric for the PU traffic and thus the performance of 

CREAM-MAC increases in terms of access delay. 

In the last experiment the burst length equals 100,000 bits (Figure 7.8). 

According to the results, the proposed protocol predicts and avoids completely 

collisions with the PUs. 

The main reason behind the superiority of the proposed protocol compared to 

CREAM-MAC, is that the former learns the PUs’ traffic-PU traffic distribution 

characteristics and burst As the Learning Reinforcement Scheme is optimal there is no 

collision with the PU packets. The statistics metrics seem inefficient as they do not 

avoid collision with the PU and they do not utilize sufficiently the spectrum holes; the 

CREAM-MAC does not differentiate its response to long and short spectrum holes, 

i.e. in the former

 

Figure 7.4. The aggregated throughput versus PU burst length for 

burst generation every 0.1s. 
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Figure 5: The aggregated throughput versus the burst arrival rate. 

 
Figure 7.6. The SU channel utilization versus burst arrival rate. 
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Figure 7.7: The access delay versus the burst arrival rate. 

 
Figure 7.8. The collision ratio versus the burst arrival rate

 

 

case it bypasses opportunities and in the latter it does not 

avoid collision. The statistics do not overtake opportunities on the channels with the 

worse statistics when they experience longer spectrum vacancies due to PU-traffic 

distribution variance. The statistics do not respond promptly to the network 

conditions.   
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7.5. CONCLUSION 

 

Most of the proposed MAC protocols reported in the literature utilize statistics 

on spectrum usage in licensed channels so as to identify transmission opportunities 

over these channels for SUs. However, using these statistics does not capture the fact 

that, nowadays, most traffic is of bursty nature; something that is not exploited in the 

identification of transmission opportunities. This research work proposes a Multi- 

Channel Cognitive MAC Protocol for ad-hoc cognitive networks that uses a 

reinforcement learning scheme for channel selection and access based on observations 

of PUs traffic. The protocol learns the bursty nature of PUs’ traffic to exceed the 

performance of the less adaptive statistical channel selection scheme as statistics 

change only when the PUs traffic pattern scheme changes and avoid collision with the 

PUs. The proposed scheme is shown to have better performance compared to the 

transmission opportunities via a statistics mechanism and avoids collision with the 

PUs. In the future work QoS will be considered in accordance with the proposed 

scheme. 
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Cognitive Radio is a promising technology to maximize spectrum efficiency that 

can be applied to dense residential infrastructure and heterogeneous networks. This 

research work [59] proposes a Software Defined Networking (SDN) system model for 

coordinated adaptive spectrum sharing and interference management; the SDN system 

model leverages the fact that Primary User (PU) network traffic is bursty with an 

optimal reinforcement learning scheme and takes into account network topology 

information and data rate requirements of active flows. The scheme learns PU traffic, 

and as a result, it optimizes spectrum brokerage to the active flows for QoS provisioning 

and performs interference mitigation. 

 

8.1. INTRODUCTION 

 

Cognitive Radio (CR) is a promising technology used to maximize spectrum 

efficiency through opportunistic spectrum access; i.e., Cognitive Radio Users-

Secondary Users (SUs) access the underutilized licensed spectrum when it is vacated 

by the Licensed Users (Primary Users). Due to rapid increase in the number of smart 

mobile devices, heterogeneous small cell networks for residential areas come to answer 

this need allowing high quality voice, data and multimedia services to mobile devices 

indoors. Heterogeneous Cognitive Networks (HCN) with multiple base station tiers are 

necessary to meet the high data rates. Critical issues in HCN are interference between 

overlapping Cognitive Base Stations and interference between Cognitive Cells and 

Primary Users (PU).  

There are major challenges to this scheme such as i) autonomous cross-tier and 

intra-tier interference mitigation and ii) full radio resource exploitation. Any 

uncoordinated spectrum access will result in interference between SUs and hence result 

in a low spectral efficiency [60].  

A Software Defined Network (SDN) controller may solve the spectrum allocation 

problem and find an optimal interference free spectrum assignment such that the 

throughput of all active flows, active virtual circuits, is maximized. This paper focuses 

on SU co-existence schemes in infrastructure and infrastructure-less environments as 
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soon as the latter facilitate a connection, i.e., a node connected to SDN that would play 

the role of coordinator and would operate as a self-organized network for information 

distribution. 

In this research work, an SDN-based Cognitive Radio architecture for residential 

networks is introduced that leverages the fact that the network traffic comes in bursts 

currently. The proposed scheme which enhances the MAC layer capabilities which role 

is crucial in the SDN network. The system employs an optimal reinforcement learning 

scheme and satisfies data rate requirements of active flows maximizes the minimum 

data rate per active flow, performs interference mitigation and has high performance 

according to the comparative study. To the best of the authors knowledge there is only 

another one research work for spectrum brokerage and interference management in 

residential SDN CR networks which the proposed research work outperforms. 

The rest of the chapter is organized as follows. Section II references related work. 

Section III presents the system model. Section IV presents the reinforcement learning 

scheme, while Section V the proposed system. In Section VI the simulation results are 

presented. The cloud-based SDN controller manages interference, while the 

Reinforcement Learning Scheme learns PU traffic and good transmission opportunities; 

as a result, the Reinforcement Learning Scheme outperforms spectrum brokerage in 

[61].  

 

8.2. RELATED WORK 

 

In [61], a spectrum allocation based on the active flows as defined by OpenFlow for 

secure channels and interference for dense residential areas is presented. To the best of 

our knowledge, this paper is the only research work that performs spectrum brokerage 

based on active-flows, so a comparative study with [61] was straightforward. In [62], a 

strategic game is developed for the intra-tier interference mitigation only, and this 

proposed scheme achieves required statistical delay guarantees. 

The user association problem in the heterogeneous cognitive networks is studied in 

[63], but it does not consider active flows, too. In [64], the authors proposed a control 

algorithm for cooperation under both the relay model and the interference model. In 

[65] an SDN architecture is introduced where there is no a spectrum brokerage scheme, 

but the CR-User Equipments (UEs) might ask for an extension of the requested time. 
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The work presented in [66] is an integration of an IP based cognitive network and an 

OpenFlow enabled fully functional WLAN into an SDN core.  

 

8.3. SYSTEM  MODEL 

 

This paper introduces an SDN-Medium Access Control (MAC) operating in 

Infrastructure and Infrastructure-less, i.e., two-tier Heterogeneous Network. In the 

former case, a Cognitive Radio Base Station (CR-BS) serves a number of End-User 

Equipment (CR-UEs), and in the latter case, a multi-tier node serves the ad hoc network 

nodes. In the rest of the paper, the terms BS/coordinator, CR-UE/ad hoc network nodes 

will be used within the system model as soon as OpenFlow interfaces exist. The CR-

BSs are connected to the Internet via a wired technology and the SDN controller for 

secure connections. The CR-BSs are deployed in dense residential areas, and this is the 

reason that CR-BSs may be stand-alone or collocated with other CR-BSs. In the former 

case, the CR-BS must handle interference with the Primary User only, while in the latter 

case, it must handle both interference with the PUs and interference with other CR-BSs. 

The communication between neighboring CR-BSs is limited to beacon exchange for 

neighbor discovery. 

The CR-BSs are connected to the cloud, where an SDN controller manages 

interference, coordinates the spectrum sharing in the Cognitive Radio Network of CR-

BSs and ensures that all CR-BSs in interference range are separated in frequency. 

According to network topology, the same controller controls collocated cells. Each 

Cognitive Device i.e., CR-UE, listens to these beacons, measures the signals and then 

connects to the CR-BS with the best receiving signal. Each CR-UE is associated with a 

CR-BS, and this information is sent to the SDN. In collocated CR-BSs, each CR-UE 

belongs to one CR-BS, and the SDN controller in the cloud manages interference. 

Spectrum sensing and interference measurement are performed in each Cognitive 

Radio Cell. As a CR-BS and its CR-UEs are in short distance, spectrum sensing is 

performed by the CR-BS offloading the end devices. Each CR-BS runs a Reinforcement 

Learning Scheme to learn and adapt to the PU traffic that prioritizes channel use, based 

on their provision of “good” transmission opportunities; i.e., the transmission would 

not be interrupted by PU arrival. The PU traffic comes in bursts, and this traffic is 

leveraged by the Reinforcement Learning Scheme to avoid interference with the PU. 
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The controller receives updates of the changing network traffic and interference 

conditions and coordinates channel sharing in time between the active flows of the cells. 

As PU traffic is bursty, a priority of the channel list changes in sufficient time intervals 

that do not degrade the performance of the system. 

 

8.4. PU  COLLISION AVOIDANCE 

 

A Reinforcement Learning Scheme for spectrum management is introduced to 

avoid interference with PU and find a good transmission opportunity, i.e., one in which 

the SU transmission will not collide with the PU. The stochastic learning automaton of 

the P-Model of the scheme runs on each CR-BS as described below: 

• If channel i is not occupied by a PU, the sensing outcome is 0 at sensing slot t; 

then the metric of probability of good transmission opportunity for channel 𝑖𝑖, 𝑆𝑆 [𝑖𝑖, 𝑡𝑡] is 

increased:  

 

 𝑆𝑆[𝑖𝑖, 𝑡𝑡 + 1] = 𝑆𝑆[𝑖𝑖, 𝑡𝑡] ∗ (1 − 𝐿𝐿) + 𝐿𝐿 ∗ (1 − 𝛼𝛼)                       (2) 

 

If channel 𝑖𝑖 is occupied by PU, the sensing outcome is 1, at sensing slot 𝑡𝑡, and 𝑆𝑆[𝑖𝑖, 𝑡𝑡] 

is decreased:  

 

𝑆𝑆[𝑖𝑖, 𝑡𝑡 + 1] = 𝑆𝑆[𝑖𝑖, 𝑡𝑡] ∗ (1 − 𝐿𝐿)                                                  (3) 

 

Τhe probabilities 𝑆𝑆[𝑖𝑖, 𝑡𝑡 + 1] are updated at the end of each sensing slot. The 

constants  𝐿𝐿,𝛼𝛼  (0,1) guide the speed of  learning automaton convergence. For very 

small values of 𝛼𝛼 and according to (1), the reinforcement learning scheme is optimal 

and avoids collision with PU totally: 

 

lim
𝑡𝑡→∞

𝔼𝔼{𝑆𝑆[𝑖𝑖, 𝑡𝑡]} = 𝔼𝔼{ lim
𝑡𝑡→∞

𝑆𝑆[𝑖𝑖, 𝑡𝑡]} = 1                            (4) 

 

Where 𝔼𝔼{. } stands for expectation. If spectrum sensing is not accurate, then the 

selection metric of prediction of 𝑡𝑡 + 1 slot 𝑆𝑆[𝑖𝑖, 𝑡𝑡 + 1] is modified by the term below, 
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i.e. for 𝑁𝑁 continuous slots the sensing outcome was  not PU present and the scheme 

increases (5)  or PU present and the scheme decreases (6) for false alarm:  

 

𝑆𝑆′[𝑖𝑖, 𝑡𝑡 + 1] = {𝑆𝑆[𝑖𝑖, 𝑡𝑡 + 1 − 𝑁𝑁] ∗ �(1 − 𝐿𝐿) + 𝐿𝐿 ∗ (1 − 𝛼𝛼)� + 

+{𝑆𝑆[𝑖𝑖, 𝑡𝑡 − 𝑁𝑁] ∗ (1 − 𝐿𝐿) + 𝐿𝐿 ∗ (1 − 𝛼𝛼)} + ⋯+ 

+{𝑆𝑆[𝑖𝑖, 𝑡𝑡 + 1 −𝑚𝑚] ∗ (1 − 𝐿𝐿) + 𝐿𝐿 ∗ (1 − 𝛼𝛼)} + ⋯+ 

+{𝑆𝑆[𝑖𝑖, 𝑡𝑡 + 1] ∗ (1 − 𝐿𝐿) + 𝐿𝐿 ∗ (1 − 𝛼𝛼)} = 

= 𝑆𝑆[𝑖𝑖, 𝑡𝑡 + 1] + 𝐿𝐿 ∗ (1 − 𝛼𝛼) ∗ (1 − 𝐿𝐿)𝑁𝑁+1                         (5) 

 

𝑆𝑆′[𝑖𝑖, 𝑡𝑡 + 1] = 𝑆𝑆[𝑖𝑖, 𝑡𝑡 + 1 − 𝑁𝑁] ∗ (1 − 𝐿𝐿) + 

+𝑆𝑆[𝑖𝑖, 𝑡𝑡 − 𝑁𝑁] ∗ (1 − 𝐿𝐿) + ⋯+ 

+𝑆𝑆[𝑖𝑖, 𝑡𝑡 + 1 −𝑚𝑚] ∗ (1 − 𝐿𝐿) + ⋯+ 𝑆𝑆[𝑖𝑖, 𝑡𝑡 + 1] ∗ (1 − 𝐿𝐿) = 

= 𝑆𝑆[𝑖𝑖, 𝑡𝑡 + 1] − 𝐿𝐿 ∗ (1 − 𝛼𝛼)(1 − 𝐿𝐿)𝑁𝑁+1                             (6)  

 

1 < 𝑚𝑚 < 𝑁𝑁 − 1 

In equations (5) and (6) the computations used the 𝑆𝑆[𝑖𝑖, 𝑡𝑡 + 1 − 𝑁𝑁]  outcome of the 

scheme i.e. when the non accurate sensing had started and the scheme was sequentially 

updated for the next N slot. Finally, all the terms were expressed in terms of   𝑆𝑆[𝑖𝑖, 𝑡𝑡 + 1]   

recursively. As shown by (5) and (6), the error for misdetection and false alarm is the 

term 𝐿𝐿 ∗ (1 − 𝛼𝛼)(1 − 𝐿𝐿)𝑁𝑁+1 , which increases or decreases the correct term 𝑆𝑆[𝑖𝑖, 𝑡𝑡 + 1]. 

The limit of the error for the PU misdetection and false alarm is zero.  

 

𝑙𝑙𝑙𝑙𝑚𝑚{𝑁𝑁→∞}(1 − 𝛼𝛼) ∗ (1 − 𝐿𝐿)𝑁𝑁+1 = 0                                (7)  

 

Thus, for higher values of L, the error term reaches very small values approximately 

10
-4 

in a few slots. The proposed reinforcement learning scheme can operate under 

inaccurate sensing conditions as the system overcomes inaccurate sensing, i.e., PU 

misdetection/false alarm, which occurs easily when the value of L is high. The authors 

in [2] did not make such considerations. 
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8.5. PROPOSED  SYSTEM 

 

The CR-BS collects the data of each CR-UE. The spectrum problem to be solved is 

to find the best spectrum vacancy each time for the Cognitive Radio Cell so that the 

transmission of the Cognitive User will not collide with the PU. We also want to 

maximize throughput of all active flows by prioritizing channel assignment for the max-

min fairness and avoiding interference. A collision with the PU may occur as soon as 

the SU starts transmission and PU arrives, so the Medium Access Control Protocol must 

handle this case as well. For that reason, the CR-BS runs the reinforcement learning 

scheme for each channel, and based on the sensing outcome, a channel list List[i] is 

computed as follows: 

 

𝐼𝐼𝐼𝐼 𝑆𝑆[𝑖𝑖, 𝑡𝑡] > 𝑆𝑆[𝑗𝑗, 𝑡𝑡] 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿[𝑘𝑘] = 𝑖𝑖  𝑎𝑎𝑎𝑎𝑎𝑎 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿[𝑛𝑛] = 𝑗𝑗,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑘𝑘

< 𝑛𝑛                                     (8) 

 

The sub-channel with the highest metric i.e., the channel that currently provides the 

best transmission opportunity, is put in the table with highest priority, i.e., as a first 

entry in the table List[]. The CR-BS measures the link quality and creates the SNR[] 

table with the SNR values of each sub-channel for all CR-UEs, which are under its 

coordination. If the channel suffers low quality that is below a certain threshold, this 

channel will not be selected for transmission: 

 

𝐼𝐼𝐼𝐼 𝑆𝑆𝑆𝑆𝑆𝑆[𝑖𝑖] < 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿[𝑘𝑘] = −1                    (9) 

 

The CR-BS sends the table List[] to the SDN-controller whenever the table List[]is 

updated. In case of collocated CR-BSs, they must avoid collision among themselves, in 

addition to collision with the PUs. The collocated CR-BSs send their tables List[] to the 

SDN-controller that keeps network topology information and a max cliques graph of 

the collocated BSs to avoid overlapping collocated BSs and interference. Even if the 

CR-BSs are collocated, they may have different table List[] lists because they 

experience different levels of interference. The CR-BS should select the first entry in 

its table List[]. If the entries of the tables of the CR-BS coincide, the SDN-controller 
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will proceed to channel sharing in time that is based on the active flows demand report 

of each CR-BS. Indeed, the SDN-controller will proceed in proportional channel 

sharing in time based on the number of active flows, their spectrum demands and tables 

List[]. Assignments will start from the first entry for each CR-BS by solving the max-

min fairness problem, which appears next. 

There is the set V of CR-BS nodes, and for each CR-BS 𝑣𝑣 ∈ 𝑉𝑉, there is a set of 

associated CR-UEs 𝑊𝑊𝑊𝑊. For each 𝑣𝑣 ∈ 𝑉𝑉, there is a set of sub-channels 𝑆𝑆𝑆𝑆, which are 

for secondary usage at node v. 

If channel i has a higher metric than j and it is assigned to an active flow, this implies 

that for N more slots channel i’s PU was not present, and as a result, the metric of the 

channel is higher than j’s. So, at time t-N, channel i’s metric is equal to the metric of 

channel j at time t. Ιt holds that 

 

𝑆𝑆[𝑖𝑖, 𝑡𝑡] − 𝑆𝑆[𝑗𝑗, 𝑡𝑡] = 𝑆𝑆[𝑖𝑖, 𝑡𝑡 − 𝑁𝑁](1 − 𝐿𝐿)𝑁𝑁 + 

+(1 − 𝛼𝛼)[1 − (1 − 𝐿𝐿)𝑁𝑁) − 𝑆𝑆[𝑗𝑗, 𝑡𝑡]  

        

  
𝑆𝑆[𝑖𝑖,𝑡𝑡−𝑁𝑁)=𝑆𝑆(𝑗𝑗,𝑡𝑡)=𝑆𝑆𝑆𝑆
���������������  

⇒𝐷𝐷 = 𝑆𝑆[𝑖𝑖, 𝑡𝑡] − 𝑆𝑆[𝑗𝑗, 𝑡𝑡] 

= (1 − 𝛼𝛼)[1 − (1 − 𝐿𝐿)𝑁𝑁] + [(1 − 𝐿𝐿)𝑁𝑁 − 1]𝑆𝑆𝑜𝑜 = 

= [1 − (1 − 𝐿𝐿)𝑁𝑁](1− 𝛼𝛼 − 𝑆𝑆𝑆𝑆)                                            (10) 

 

lim
𝑁𝑁→∞

𝐷𝐷 = 1 − 𝛼𝛼 − 𝑆𝑆𝑆𝑆                                                                         (11) 

 𝐼𝐼𝐼𝐼  𝐷𝐷 < 𝜀𝜀 ⇒ 𝑆𝑆𝑆𝑆 > 1 − 𝛼𝛼 − 𝜀𝜀,     0 < 𝜀𝜀 < 1                    (12) 

 

We can assume that channel i is assigned to an active flow only if the current metric 

value of i satisfies (12) to ensure that the assignment leads to a channel with good 

opportunities for transmission; i.e., the transmission will not be interrupted by PU 

arrivals. 

An optimal assignment matrix 𝐴𝐴𝑣𝑣,𝑠𝑠 based on table List[] has to be computed such 

that 

 

𝐴𝐴𝑣𝑣,𝑠𝑠 = � 0,   𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
1,𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑣𝑣 𝑎𝑎𝑎𝑎𝑎𝑎   𝑆𝑆𝑆𝑆>1−𝑎𝑎−𝜀𝜀 �              (13) 
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Where     𝜏𝜏𝑣𝑣,𝑤𝑤 is the time share given to CR-UE and  𝑓𝑓𝑣𝑣,𝑤𝑤  is the number of active flows 

in a link, BW is the subchannel’s bandwidth,      𝛾𝛾′𝑣𝑣,𝑤𝑤
𝑠𝑠  is the average per subchannel 

SNR > threshold. The minimum data rate per flow must be maximized. 

 

𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚 𝑣𝑣∈𝑉𝑉
𝑤𝑤∈𝑊𝑊𝑊𝑊 (

𝜏𝜏𝑣𝑣,𝑤𝑤
𝑓𝑓𝑣𝑣,𝑤𝑤

𝑥𝑥 ∑ 𝐴𝐴𝑣𝑣,𝑠𝑠  𝑥𝑥 𝑅𝑅′𝑣𝑣,𝑤𝑤
𝑠𝑠 )             (14)  𝑠𝑠∈𝑆𝑆                                                                                 

 

where the average bit rate per sub-channel is given by 

 

𝑅𝑅′𝑣𝑣,𝑤𝑤
𝑠𝑠 = 𝐵𝐵𝐵𝐵𝐵𝐵𝑙𝑙𝑙𝑙𝑙𝑙2�1 + 𝛾𝛾′𝑣𝑣,𝑤𝑤

𝑠𝑠 �                                          (15) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑡𝑡𝑡𝑡:   𝑅𝑅𝑣𝑣,𝑤𝑤 > 𝑅𝑅𝑣𝑣,𝑤𝑤
0                                           (16) 

 𝛾𝛾′𝑣𝑣,𝑤𝑤
𝑠𝑠 ≥ 𝛾𝛾𝛾𝛾                                                                      (17) 

  𝛾𝛾𝑚𝑚(𝑛𝑛) ≥ 𝛾𝛾0(𝑛𝑛)                                                           (18) 

 

Where  𝛾𝛾𝑚𝑚(𝑛𝑛) represents the interference caused to the Primary User n. Τhe 

transmission power 𝑃𝑃𝑗𝑗of a base station j and 𝑋𝑋𝑣𝑣𝑣𝑣the fast fading for CR-UE w, the power 

received by CR-UE w can be written: 𝑃𝑃𝑣𝑣𝐾𝐾𝐾𝐾𝑣𝑣,𝑤𝑤
−𝜂𝜂𝑋𝑋𝑣𝑣,𝑤𝑤𝑌𝑌𝑣𝑣,𝑤𝑤 which takes into account fading 

and shadowing, K represents the mean value of the received power at distance 𝑟𝑟𝑣𝑣,𝑤𝑤
−𝜂𝜂 

where 𝑋𝑋𝑣𝑣,𝑤𝑤   is a RV representing the Rayleigh fading effects, whose pdf is 𝑝𝑝(𝑥𝑥)  =

 𝑒𝑒 −𝑥𝑥 , the distance 𝑟𝑟𝑣𝑣,𝑤𝑤
−𝜂𝜂 from the transmitter (𝐶𝐶𝐶𝐶 − 𝐵𝐵𝐵𝐵𝑣𝑣 ), and where 𝑌𝑌𝑣𝑣,𝑤𝑤   = 10

𝜉𝜉𝑣𝑣,𝑤𝑤
10  

[66] represents the shadowing effect and is given by the form: 

 

     𝛾𝛾′𝑣𝑣,𝑤𝑤
𝑠𝑠 ≜

𝑃𝑃𝑣𝑣𝑟𝑟𝑣𝑣,𝑣𝑣
−𝜂𝜂𝑋𝑋𝑜𝑜𝑌𝑌0

∑ 𝑃𝑃𝑤𝑤𝑟𝑟𝑤𝑤,𝑣𝑣
−𝜂𝜂𝑋𝑋𝑤𝑤,𝑣𝑣𝑌𝑌𝑤𝑤,𝑣𝑣𝑤𝑤∈𝑊𝑊∪𝑉𝑉′∪𝑊𝑊′

                   (19) 

 

𝑊𝑊,𝑉𝑉′ and 𝑊𝑊′ are the sets of CR-UEs belonging to the same CR-BS, the 

neighboring CR-BSs and the CR-UEs that belong to neighboring CR-BSs. For  𝛾𝛾𝑚𝑚(𝑛𝑛) 

we consider that multi-path fading and shadowing are negligible comparing to path loss 

and is given by :  
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𝛾𝛾𝑚𝑚(𝑛𝑛)
𝑝𝑝𝑚𝑚(𝑛𝑛)𝑥𝑥𝐿𝐿𝑚𝑚,𝑚𝑚(𝑛𝑛)

𝑁𝑁𝑁𝑁 + ∑ 𝑝𝑝𝑗𝑗(𝑛𝑛)𝐿𝐿𝑗𝑗,𝑚𝑚(𝑛𝑛)∪𝑗𝑗
                                (20) 

 

Where 𝐿𝐿𝑗𝑗,𝑚𝑚 the path losses between the PU and SUs given by 𝐿𝐿𝑖𝑖,𝑗𝑗(𝑛𝑛) =
𝐺𝐺𝑡𝑡,𝑖𝑖𝐺𝐺𝑟𝑟,𝑗𝑗

𝑑𝑑𝑖𝑖.𝑗𝑗𝑎𝑎
� 𝑐𝑐
4𝜋𝜋𝑓𝑓

�      (21)  Gt,i  and Gr,j are the antenna gains of the transmitter and the 

receiver respectively, 𝑑𝑑𝑖𝑖𝑖𝑖is the distance between the transmitter i and receiver j, c the 

speed of light and f the frequency. 

The spectrum brokerage to active flows is based on the output List[] of the 

Reinforcing Learning Scheme. For example, when the SDN-controller assigns a sub-

channel to an active flow, it starts from the sub-channel that appears first in the List[], 

and if the data rate requirement is not satisfied, it will proceed to the next entry in the 

table List[] to avoid an assignment to a sub-channel at which a transmission is most 

likely to be interrupted by a PU arrival. The minimum data rate assignment has to be 

maximized always beginning from the first entry of table List[]. In [61], the sub-channel 

selection is based on the sub-channel statistics, and then the authors maximize the 

minimum data rate per flow; but this way, some good sub-channels for transmission are 

bypassed.   

 

8.6. EVALUATION 

 

Simulation is the evaluation method applied to the proposed system, and it is 

performed at the Medium Access Control (MAC) level; i.e., the requirements of active 

flows were passed to the MAC layer as parameters. The OMNET environment was 

used. The PU bursts were generated following an exponential distribution—one PU per 

channel, and the size of bursts varied between 50,000 to 200,000 bits. Thirty sub-

channels were considered for the experiments, and the polling slot was set to 10 ms.  

The transmission rate was set to 2 Mbps the channel that was selected for uplink or 

downlink. The PU distributions were every 0.001s, 0.005s, 0.02s, 0.033s, and 0.04s. 

The active flows have different data rate requirements. The experiments are a 

comparative study with [61]. The reinforcement learning scheme learns PU traffic 

avoiding collisions and predicting the best spectrum opportunities. So, active flows 
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transmission is not interrupted whilst the controller assures interference mitigation. The 

total throughput in uplink is evaluated in experiments which are described below. 

1st Experiment: The experiment considers two collocated CR-BSs that 

communicate with the SDN-controller. In the first CR-BS, there is only one active flow, 

and in the second CR-BS, the number of active flows is varying (Figure 8.1).  

2nd Experiment: In the second experiment, the conditions are the same as in first 

experiment, except for the low link quality that exists in some sub-channels in the cells, 

and those sub-channels are excluded from selection. (Figure 8.2). 

3rd Experiment: In the third experiment, the number of cells increases to three with 

one active flow in the first cell and two active flows in the second cell, while the number 

of active flows in the third cell varies (Figure 8.3).  

 

 
Figure 8.1: The first experiment for two cells 

 

 

Sub-channel selection in [61] does not differentiate short and long spectrum holes 

so that a collision with PU or a transmission opportunity loss may occur. It does not 

overtake opportunities on the channels with worse statistics when they experience 

longer spectrum vacancies due to PU-traffic distribution variance. Sub-channel 

selection also overlooks shorter spectrum holes in channels with good statistics; this 

action results in collisions with the PU and degrades the performance of the protocol 

[61].  
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8.7. CONCLUSION 

 

This research work proposes an SDN system for coordinated spectrum brokerage 

and interference mitigation in infrastructure and heterogeneous dense residential 

networks; the SDN system predicts PU network traffic to avoid collisions at all and 

maximize the throughput of active flows. The proposed system outperformed the only 

related research work dedicated to the same network.  

 

 
Figure  8.2: The second experiment for two cells 

 
Figure  8.3: The third experiment for three cells 
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Cognitive Radio is a promising technology that maximize spectrum 

efficiency and can apply to Wireless Sensor Networks.  This research work 

[68] proposes a system architecture which introduces enhancements at 

lower layers of a Software Defined Network of Wireless Sensors Network 

with Cognitive Radio capabilities for efficient sensors’ power management, 

energy consuming channel handoffs elimination, efficient spectrum 

brokerage, and QoS provision in terms of data rate to the sensors’ 

applications via the SDN flows. The large Wireless Sensors Network is 

divided into clusters for power efficiency- as sensors operate in lower 

power - which connect to a cloud-assisted Central Controller. The protocol 

encompasses an optimal reinforcement learning scheme for efficient 

spectrum utilization that enables efficient sensors’ data collection, while 

sustainability issues are satisfied. Software Defined Wireless Sensor 

Network dynamically adapts to the spectrum and interference conditions 

on per flow basis and predicts Primary Users’ traffic to totally avoid 

collision with the licensed users. The paper is concentrated on sustainable 

solutions for sensors’ data collection by the cluster heads leveraging the 

Cognitive Radio Network facilities and taking into account the demands of 

the applications running on the sensors. The Cognitive Radio Sensor 

Network is considered as large organized on a local basis to extend 

networks lifetime and allow resource reuse. 

 

9.1. INTRODUCTION 

 

Wireless Sensor Networks (WSNs) have various applications in many 

areas. However, the limitations in power and storage ability of the sensors make 

the cloud a strong backbone solution for the WSN [69] [70] as energy consump-
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tion, latency, quality of service etc. can be improved [71]. Cognitive Radio is a 

promising technology to maximize spectrum efficiency through opportunistic 

spectrum access, i.e. Cognitive Radio Users access the underutilized licensed 

spectrum, when it is vacated by the Licensed Users-Primary Users (PUs). Cog-

nitive Radio technology applied to WSN for better spectrum utilization.  

Software-defined Wireless Sensor Networks (SDSNs) consist of soft-

ware-defined sensor nodes that can dynamically load different programs on-

demand according to the real-time sensing requests. On an SDN Wireless Sen-

sor Network communications are performed via secure channels. Cloud compu-

ting helps SDWSN to fulfil its sensing requirements by reprogramming sensors 

on demand thus cloud-assisted SDWSN is gaining much of attention.  The sen-

sor nodes’ dense deployment make SDWSN a spectrum demanding network 

where opportunistic spectrum access increases spectrum efficiency.  Cognitive 

Radio Sensor Networks (CRSNs) can be also regarded as SDSNs as the radio 

access can be dynamically adjusted on-demand according to the real-time re-

quirements [72].   

The Cognitive Radio Base Station or Cognitive Radio Cluster Head in 

cluster-based architectures utilize thenetwork intelligence whilst the sensors as-

sume data forwarding [72].   

In CRSNs one main issue to be solved is minimization of the energy 

consuming spectrum handoffs due to Primary User’s (PU’s) arrival, i.e. the sen-

sors that operate as Secondary Users have to vacate the spectrum on a PU arri-

val. Maximization of energy efficiency to extend the sensors lifetime, fair spec-

trum allocation to the sensor nodes based on selected criteria, efficient spectrum 

utilization, interference management are some of the issues to be solved. Fur-

thermore, QoS requirements may be satisfied by the network and priorities to 

sensor nodes or data can also be employed to increase the efficiency of the net-

work. 

There are three categories or radio resource allocation schemes: a) cen-

tralized b) cluster-based c) distributed. In the centralized scheme, all the sensors 
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communicate directly with the Base Station (BS) or Sink Node (SN) making 

essential higher transmission power whilst allowing optimal global solutions to 

be feasible. Not only that but as the data collection time increases, it makes this 

solution inappropriate for delay sensitive applications. When the sensor network 

is extended, a cluster-based scheme is preferable as spectrum sensing and re-

source allocations are performed locally i.e. sensing reports do not have to be 

sent to the central BS and the spectrum resources do not have to be shared 

amongst all the sensors of the whole network. As the number of sensors belong-

ing to the cluster is smaller reducing signaling, the sensors can transmit on low-

er power. The distributed solution does not provide optimal resource allocation 

solution.  

 Mobile Sensor Networks have been introduced where Mobile Sinks col-

lect the data [73]. In Software Defined Networks (SDN) a cloud controller may 

solve the spectrum allocation problem and find an optimal interference free 

spectrum assignment for overlapping Cognitive Radio Base Stations or Clusters 

such that the throughput of all active flows is maximized. SDN technology has 

been applied to Mobile Sensor Networks [74], too. 

In this paper, optimal sustainable solutions for power allocation, data 

rate assignment based on the data rate requirements of the applications which 

run on the sensors, are proposed. Efficient spectrum brokerage is introduced for 

large SDN sensor networks which are divided to clusters to localize data collec-

tion, decisions and support time sensitive data. The research work is concentrat-

ed on sustainable solutions for sensors’ data collection by the cluster heads lev-

eraging the Cognitive Radio Network facilities and taking into account the de-

mands of the applications running on the sensors. As the data forwarding to the 

Base Station/Sink Node is performed via selected channels and can be opti-

mized via routing protocols or other techniques [ 75 ] [ 76 ] and the communica-

tion overhead of the proposed system with the cloud-assisted controller is min-

imum, the paper does not focus on this part of communication.   

Clusterization is essential for a large sensor network for to be functional.  
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The sensors communicate with the local Controller and the local controller with 

the Base Station/Sink Node via secure channels as defined by the SDN interfac-

es for wireless sensors networks. The network is organized in clusters so to ex-

tend its lifetime as the energy that the sensors need to operate for communi-

cating with Base Station/Sink Node is high. Spectrum reuse is also feasible 

throughout the network. Efficient power allocation at the sensors can reduce the 

total energy consumption in the network and increase the network lifetime.  

Furthermore efficient spectrum allocation is realized with a reinforce-

ment learning scheme which reduces the energy consuming spectrum handoffs 

in the cognitive radio network which are critical for sensor network and in the 

same time avoids collision with the PUs at all and realizes dynamic control 

channel assignment so to avoid control channel attacks. Although the network 

achieves sustainable sensor’s data collection in the same time allows QoS provi-

sion to the SDN flows in terms of data rate. The proposed protocol can be ap-

plied for Mobile Sensor Networks as soon as there exists SDN interfaces in the 

Mobile Sensor Network [77].  

The rest of the paper is organized as follows. Section 2 is a reference to 

the related work. Section 3 presents the System Model, section 4.1 introduces 

the Reinforcement Learning Scheme of the Proposed Protocol, section 4.2 pre-

sents the Control Channel selection process and section 4.4 introduces the opti-

mization problem solved for data rate assignment per flow and power and 4.4 

describes the proposed algorithm. Finally the simulation results are presented in 

section 5.   

9.2. RELATED WORK 

Software Defined Wireless Sensor Network (SDWSN) has become a 

promising approach for ubiquitous sensing and energy-efficient management of 

wireless sensor network [78] [79] [80] [81] [82] [83]. In particular, in SDWSNs, 

the control logic is separated from the data plane devices such as sensors and 

implemented in a logically centralized controller that provides the sensor net-
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work management process. The   limitations of WSNs are overcome with cloud-

assisted software defined wireless sensor network (CSDWSN) and software-

defined networking technologies for coordinating multiple resources. 

 Luo et al [78] synergized Software Defined Networking and Wireless 

Sensor Networks (WSN) and proposed a Software Defined WSN where the 

Sensor Open Flow was introduced in accordance to the Open Flow of Software 

Defined Wireless Networks. They propose a separation between data and con-

trol plane, and Sensor OpenFlow (SOF). The data plane consists of sensors per-

forming flow-based packet forwarding, and the control plane consists of one or 

more controllers that perform network control. “The whole idea is to make the 

underlying network (i.e., data plane) programmable by manipulating a user-

customizable flow table on each sensor via SOF”. 

The authors in [79] introduce the concept of Software Defined Wireless 

Sensor Network and enabling technologies for its realization. The collaboration 

among Cloud-assisted Software Defined Wireless Sensor Network providers for 

resource and revenue sharing is modelled as a coalition game [81].  In [79] a 

Software-Defined Networking implementation is presented that comprises two 

main components: the SDN-enabled sensor node, which has an SDN switch and 

an SDN end-user device, and the SDN controller node, is introduced. 

There have been also made efforts for distributing the control plane [84] 

[85] [86] [87] [88] [89] [90] [91].  

In [87] the authors exhibit an approach of resource and revenue sharing 

with coalition development among Cloud-assisted Software Defined Wireless 

Sensor Network (CSDWSN) providers. The proposed method models the col-

laborations among the CSDWSN providers as a coalition game.  A distributed 

solution for the control plane i.e. a clustering approach for an SDN ad-hoc IoT 

network has been introduced in [92] which testbed provides an environment for 

IoT and ad-hoc network deployment. It allows nodes to be connected with oth-

ers via one SDN-compatible OVS switch and at the same time this switch is 

controlled by an SDN controller. Scalable solutions for SDN are presented in 
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[96] [97]. In [98] [99] cluster-based architecture are introduced. 

Mobile Sensor Networks are proposed in [100], [101] where sensors can 

save energy by transmitting to mobile agents or mobile sinks and extend their 

lifetime. The mobile agent collects the data from the sensors and forwards them 

to the sink. The sink can be mobile, too, but it differs from the mobile agent as it 

can upload directly to the cloud.  As data collection time is reduced, [102] pro-

posed a routing protocol for time-sensitive applications. In [103] a routing pro-

tocol for hierarchical WSNs was proposed to extend network lifetime. A time 

adaptive schedule algorithm is designed to reduce data collection time and make 

system sustainable and in the same time mobile agents are used in [103]. There 

is some research on cognitive radio on spectrum handoffs but this is mainly 

achieved by using proactive sensing and use re-active sensing i.e. where a va-

cant channel is selected for handoff after the appearance of PU [105] [106] 

[107] [108] [109]. 

In this research work we introduce a Cluster-based Software Defined 

Sensor Network enhanced with Cognitive Radio capabilities. The sensors oper-

ate at lower energy as they communicate with the Cluster Head (CH) and not 

directly with the Base Station/Sink Node. Spectrum resources reuse and spec-

trum handoffs elimination is feasible throughout the whole Sensors Network. 

Collisions with the PUs are avoided. Cloud-assisted SDN controller allows op-

timization of data rate and power assignment based on the sensors’ application 

requirements and the sensors’ network lifetime constraints. To the best of au-

thors’ knowledge, there is no other research dedicated to such a network and 

furthermore which pairs sustainability issues with the provision of QoS to the 

sensors’ applications’. 

 

9.3. THE PROPOSED SYSTEM 

 
This research work considers an SDN Cognitive Radio sensors network 

where sensors are organized in Clusters (Figure 9.1). The SDN implementation, 
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makes it possible to support multiple applications running on the same infra-

structure in a plug-and-play manner. This is achieved through the programmable 

data plane that supports different types of packet forwarding rules and the con-

trol plane that decouples upper applications form physical devices (sensor 

nodes) and provides a global view of the underlying network to the applications 

[75]. The corresponding application data flows through the SDN architecture 

are referred as flows.  

This paper proposes enhancements to the SDN lower layers functionality 

i.e. medium access/physical, so that considerations like sustainability and QoS 

provisioning in terms of datarate/per flow and efficient spectrum brokerage with 

dynamic control channel assignment to avoid control channel attacks would be 

feasible. 

 In each Cluster there is a node that facilitates the control plane i.e. the 

Cluster Head, which serves the sensor nodes that are responsible only for data 

related functionality.  The CH communicates with the other CHs and the Sink 

via an inter-domain link. The Clusters traffic is eventually forwarded to the Sink 

Node which connects to the main SDN Controller the one that is cloud-assisted. 

In SDN Cognitive Radio Sensor Networks, the Cluster Head which real-

izes the Control Plane relies the traffic to the sink node via secure channels. The 

Cognitive Radio Sensor Network is considered as large so that its division to 

clusters is justified. The Clusters are organized on a local basis eliminating the 

transmission power required as transmitting to the CH consumes less energy 

than transmitting to the Sink Node directly i.e. extending Cluster’s lifetime and 

enabling spectrum reuse. 

The intra-Cluster communication is performed at a Control Channel that 

is selected such that neighboring Clusters’ Control Channels do not overlap. 

There are sensor nodes namely gateway nodes or intermediate nodes which are 

responsible for neighboring clusters communication.  

The Cluster Head (CH) performs SNR measurement of its available 

channels and if a channel’s SNR is below a certain threshold it excludes this 
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channel from the list of Cognitive Radio Channels that aim to be Control Chan-

nels. In order the CH to choose the best available channel as Control Channel, it 

runs an optimal Reinforcement Learning Scheme to learn the Primary Users 

(PU) traffic  and discovers the best transmission opportunities i.e. which they 

will not be disturbed by PU arrival. The sensors contribute to this process by 

reporting their SNR conditions. Although the cluster’s size is small and the SNR 

conditions tend to be equal within in the cluster, there may be exceptions and for 

this reason the sensors can report their SNR status to the CH.  

CH may be elected among other powerful sensor nodes and it is respon-

sible for cluster monitoring and securing the cluster from attacks.  

The CH also collects the data rate requirements of the sensors for their 

flows, and redirects this requirements to the sink to perform the optimization. 

The CHs cannot usually support highly computational tasks and for this reason 

those tasks are forwarded to the SN and the cloud.  Upon receiving the optimi-

zation results the Cluster accepts the flow data rates and the sensors adjust their 

transmission power accordingly and data rate. 

 
 

Figure 9.1: A Cluster-based SDN Cognitive Radio Sensors Network 

where we can distinguish the Cluster Heads (CH),   Gateway nodes (GTW) and 

Primary Users (PU) Network. 
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9.4. THE PROPOSED SYSTEM MODEL 

9.4.1. PU Colision Avoidance 

The system encompasses a Reinforcement Learning Scheme to avoid in-

terference to Primary Users and find a good transmission opportunity i.e. one 

that the SU’s transmission will not collide with the PU. The stochastic learning 

automaton of P-Model runs on CH and sensors which have cognitive radio ca-

pabilities and appears below: 

 

• If channel i is not occupied by a PU at sensing slot t, then the metric of 

probability of good transmission opportunity for channel   𝑖𝑖, 𝑆𝑆 [𝑖𝑖, 𝑡𝑡] is increased:  

 

𝑆𝑆[𝑖𝑖, 𝑡𝑡 + 1]  = 𝑆𝑆[𝑖𝑖, 𝑡𝑡] (1 − 𝐿𝐿) + 𝐿𝐿 ∗ (1 −  𝑎𝑎) (1)  

 

• If channel i is occupied by PU at sensing slot 𝑡𝑡, then 𝑆𝑆[𝑖𝑖, 𝑡𝑡] is de-

creased:  

 

𝑆𝑆[𝑖𝑖, 𝑡𝑡 + 1]  = 𝑆𝑆[𝑖𝑖, 𝑡𝑡] (1 − 𝐿𝐿) (2)  

 

Τhe probabilities 𝑆𝑆[𝑖𝑖, 𝑡𝑡 + 1] are updated at the end of the sensing slot. 

𝐿𝐿,𝛼𝛼 ∈  (0,1) are constants that guide the speed of learning automaton conver-

gence. For very small values of 𝛼𝛼 the limit of  𝑆𝑆[𝑖𝑖, 𝑡𝑡] is equal to unity so it is op-

timal, i.e. there would be no handoff during sensor data transmission: 

 

lim
𝑡𝑡→∞

𝔼𝔼{𝑆𝑆[𝑖𝑖, 𝑡𝑡]} = 𝔼𝔼{ lim
𝑡𝑡→∞

𝑆𝑆[𝑖𝑖, 𝑡𝑡]} = 1           (3) 

   

If spectrum sensing is not accurate then the selection metric 𝑆𝑆[𝑖𝑖, 𝑡𝑡 + 1] is 

modified by the term shown below for N continuous slots – i.e. at time 𝑡𝑡 − 𝑁𝑁 

misdetection or false alarm have started to occur and for the 𝑁𝑁 consequent slots 

the sensing outcome was not accurate:  
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𝑆𝑆′[𝑖𝑖, 𝑡𝑡 + 1] = {𝑆𝑆[𝑖𝑖, 𝑡𝑡 + 1 − 𝑁𝑁] ∗ �(1 − 𝐿𝐿) + 𝐿𝐿 ∗ (1 − 𝛼𝛼)� + 

+{𝑆𝑆[𝑖𝑖, 𝑡𝑡 + 2 − 𝑁𝑁] ∗ (1 − 𝐿𝐿) + 𝐿𝐿 ∗ (1 − 𝛼𝛼)} + ⋯+ 

+{𝑆𝑆[𝑖𝑖, 𝑡𝑡 + 1 −𝑚𝑚] ∗ (1 − 𝐿𝐿) + 𝐿𝐿 ∗ (1 − 𝛼𝛼)} + ⋯+ 

+{𝑆𝑆[𝑖𝑖, 𝑡𝑡 + 1] ∗ (1 − 𝐿𝐿) + 𝐿𝐿 ∗ (1 − 𝛼𝛼)} = 

= {𝑆𝑆[𝑖𝑖, 𝑡𝑡 − 𝑁𝑁] ∗ (1 − 𝐿𝐿) ∗ (1 − 𝐿𝐿) + 𝐿𝐿 ∗ (1 − 𝛼𝛼)} + 

+{𝑆𝑆[𝑖𝑖, 𝑡𝑡 + 1 − 𝑁𝑁] ∗ (1 − 𝐿𝐿) ∗ (1 − 𝐿𝐿) + 𝐿𝐿 ∗ (1 − 𝛼𝛼)}+. . + 

+{𝑆𝑆[𝑖𝑖, 𝑡𝑡 − 𝑚𝑚] ∗ (1 − 𝐿𝐿) ∗ (1 − 𝐿𝐿) + 𝐿𝐿 ∗ (1 − 𝛼𝛼)} + ⋯+ 

+{𝑆𝑆[𝑖𝑖, 𝑡𝑡] ∗ (1 − 𝐿𝐿) ∗ (1 − 𝐿𝐿) + 𝐿𝐿 ∗ (1 − 𝛼𝛼)} = ⋯ = 

= 𝑆𝑆[𝑖𝑖, 𝑡𝑡 + 1] + 𝐿𝐿 ∗ (1 − 𝛼𝛼) ∗ (1 − 𝐿𝐿)𝑁𝑁+1                        (4) 

 

𝑆𝑆′[𝑖𝑖, 𝑡𝑡 + 1] = 𝑆𝑆[𝑖𝑖, 𝑡𝑡 + 1 − 𝑁𝑁] ∗ (1 − 𝐿𝐿) + 

+𝑆𝑆[𝑖𝑖, 𝑡𝑡 + 2 − 𝑁𝑁] ∗ (1 − 𝐿𝐿) + ⋯+ 

+𝑆𝑆[𝑖𝑖, 𝑡𝑡 + 1 −𝑚𝑚] ∗ (1 − 𝐿𝐿) + ⋯+ 𝑆𝑆[𝑖𝑖, 𝑡𝑡 + 1] ∗ (1 − 𝐿𝐿) = 

= {𝑆𝑆[𝑖𝑖, 𝑡𝑡 − 𝑁𝑁] ∗ (1 − 𝐿𝐿) + 𝐿𝐿 ∗ (1 − 𝛼𝛼) ∗ (1 − 𝐿𝐿)} + 

+{𝑆𝑆[𝑖𝑖, 𝑡𝑡 + 1 − 𝑁𝑁] ∗ (1 − 𝐿𝐿) + 𝐿𝐿 ∗ (1 − 𝛼𝛼) ∗ (1 − 𝐿𝐿)}+. . + 

+{𝑆𝑆[𝑖𝑖, 𝑡𝑡 + 1 −𝑚𝑚] ∗ (1 − 𝐿𝐿) + 𝐿𝐿 ∗ (1 − 𝐿𝐿) ∗ (1 − 𝐿𝐿) + ⋯+ 

+𝑆𝑆[𝑖𝑖, 𝑡𝑡] ∗ (1 − 𝐿𝐿) + 𝐿𝐿 ∗ (1 − 𝐿𝐿) ∗ (1 − 𝐿𝐿) = ⋯ = 

= 𝑆𝑆[𝑖𝑖, 𝑡𝑡 + 1] − 𝐿𝐿 ∗ (1 − 𝛼𝛼)(1 − 𝐿𝐿)𝑁𝑁+1                             (5)  

 

As shown by (4) and (5) the error for misdetection and false alarm is the 

term 𝐿𝐿 ∗ (1 − 𝛼𝛼)(1 − 𝐿𝐿)𝑁𝑁+1  increasing or decreasing the correct term 𝑆𝑆[𝑖𝑖, 𝑡𝑡 +

1]. The limit of the error for PU misdetection and false alarm is zero:  

 

𝑙𝑙𝑙𝑙𝑚𝑚{𝑁𝑁→∞}(1 − 𝛼𝛼) ∗ (1 − 𝐿𝐿)𝑁𝑁+1 = 0                                (6)  

 

Thus for higher values of L the error term reaches very small values 

around 10-4 in a few slots. The proposed reinforcement learning scheme can op-

erate in inaccurate sensing conditions as the system overcomes inaccurate sens-

ing- i.e. PU misdetection/false alarm- easily when the value of L is high. 
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9.4.2. Control Channel Selection  

 
The spectrum problem to be solved is to find the best spectrum vacancy 

each time for the cluster’s control channel so that the Cognitive User’s transmis-

sion will not collide with the PU and maximize throughput. The sensor traffic is 

bursty as it is generated on event detection. 

For that reason, both the CH and sensors run the reinforcement learning 

scheme for each channel. As the cluster’s size is considered small and PUs op-

erate in high power, both CH and sensors will share the same outcome of the 

reinforcement learning scheme. So, they will be synchronized. 

 A channel table 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿[𝑖𝑖] is computed and updated by the reinforcement 

learning scheme outcome for each channel i at sensing slot t i.e. S[i,t] as fol-

lows: 

 

𝐼𝐼𝐼𝐼 𝑆𝑆[𝑖𝑖, 𝑡𝑡]  >  𝑆𝑆[𝑗𝑗, 𝑡𝑡] 𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝑗𝑗 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 

 

 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿[𝑘𝑘] = 𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿[𝑛𝑛] = 𝑗𝑗 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑘𝑘 > 𝑛𝑛 (7) 

 

The channel with the highest metric i.e. the channel that currently pro-

vides the best transmission opportunity is put in the table with highest priority 

i.e. as a first entry in the table 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿[].  We must notice that as PUs operate in 

high power there are more than one clusters that experience the presence of the 

same PU and as a results they coincide on the available channels but still they 

may suffer different levels of interference. So, the CH and sensors measure SNR 

too, and create a table with the current interference value for each channel i.e. 

𝑆𝑆𝑆𝑆𝑆𝑆[] and vector 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆[𝑖𝑖]. The entries of these tables will be set to either 1 or -

1 if the SNR of the corresponding channel 𝑖𝑖 is above or below the threshold re-

spectively. If the channel suffers of interference that is below a certain threshold 

then this channel will be excluded from transmission in current cluster: 
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𝐼𝐼𝐼𝐼 𝑆𝑆𝑆𝑆𝑆𝑆[𝑖𝑖] <  𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿[𝑘𝑘] = −1, 

  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆[𝑖𝑖] = −1 

 

(𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿[𝑘𝑘] 𝑤𝑤𝑤𝑤𝑤𝑤 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿[𝑘𝑘] = 𝑖𝑖) (8) 

 

The CH receives the  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 of all sensors and excludes those channels 

which SNR is below the threshold from its 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿[]. Creates the vector 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑗𝑗[]  for 

sensor j. Then sends the updated table 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿[] to the main Controller so that the 

Controller would update the changing network traffic and interference condi-

tions and coordinate channel brokerage in time between the clusters by avoiding 

Control Channel and back up control channel overlapping.  

As PU traffic comes in bursts there is sufficient interval for the updated 

List[] by the central Controller to be effective within the cluster.  Although the 

Clusters are nearby, they have different 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿[] lists because they experience dif-

ferent levels of channel interference. The CH uses the updated by the Controller 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿[] to send the  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿[]𝑋𝑋𝑋𝑋𝑋𝑋 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐽𝐽[] to the sensor j.  Upon PU presence at the 

control channel, as the whole cluster is synchronized, each sensor will transmit 

its sensing data to the next entry in the List[] table, i.e. backup control channel. 

Control Channel attacks are handled by the dynamic control channel allocation 

and no control channel information exchange among the sensors and the CH 

takes place. 

The sensor node can choose to switch to “sleep mode” for further power 

saving. When the sensor node returns to the “ready state” scans the spectrum for 

beacons of the CH to learn the current control channel and as soon as its learn-

ing automaton converges, creates its own 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿[] and estimates SNR. Then sends 

its 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆[] to the CH and waits to update its  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿[]. The scheme avoids PU col-

lisions at all. 
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9.4.3. Per Flow Data Rate and Power Computation 

 
 
We consider a large sensor network organized in clusters. If there are 𝑁𝑁 

sensors in a cluster, then as sensor traffic comes in bursts there would be K of 

them active each time and each would send its observation 𝜃𝜃𝑘𝑘 to the Cluster 

Head. Then the observation sent by sensor  𝑘𝑘 = 1, . . ,𝐾𝐾 under zero mean noise 

with covariance 𝜎𝜎𝑘𝑘 is: 

 

𝑥𝑥𝑘𝑘 = 𝜃𝜃𝑘𝑘 + 𝜎𝜎𝑘𝑘 ∶  𝑥𝑥𝑘𝑘 ∈ [−𝑊𝑊,𝑊𝑊]                                          (9) 

 

𝑊𝑊  is a known parameter depending on sensor’s dynamic range.  

 

 For observations 𝑥𝑥𝑘𝑘 based on a distribution having parameter value 

𝜃𝜃𝑘𝑘 ,𝑑𝑑(𝑥𝑥𝑘𝑘) an estimator of 𝜃𝜃𝑘𝑘 the bias is the mean of the difference 𝑏𝑏𝑏𝑏(𝜃𝜃) =

 𝐸𝐸[𝑑𝑑(𝑥𝑥𝑘𝑘)  −  𝜃𝜃𝜃𝜃].  If 𝑏𝑏𝑏𝑏(𝜃𝜃) = 0 for all values of the parameter, then 𝑑𝑑(𝑥𝑥𝑥𝑥) is 

called an unbiased estimator. 

 

We can assess the quality of the estimator by computing the Mean 

Square Error (MSE) with bias-variance decomposition presentation: 

 

𝑀𝑀𝑀𝑀𝑀𝑀 = 𝐸𝐸[(𝑥𝑥𝑘𝑘 − 𝜃𝜃𝑘𝑘)2] = 

 

= 𝐸𝐸(𝑥𝑥𝑘𝑘 − �𝐸𝐸�𝑥𝑥𝑘𝑘 − 𝑏𝑏𝑑𝑑(𝜃𝜃)�)2� = 

 

= 𝛦𝛦[(𝑥𝑥𝑘𝑘 − 𝐸𝐸[𝑥𝑥𝑘𝑘])2] + 2 ∗ 𝑏𝑏𝑑𝑑(𝜃𝜃) ∗ 𝛦𝛦�𝑥𝑥𝑘𝑘 − 𝐸𝐸[𝑥𝑥𝑘𝑘]� + 𝑏𝑏𝑑𝑑(𝜃𝜃)2 

 

= 𝑉𝑉𝑉𝑉𝑉𝑉(𝑥𝑥𝑘𝑘) + 𝑏𝑏𝑑𝑑(𝜃𝜃)2                                                 (10) 

 

Since the bias is zero the MSE depends on the variance of 𝑥𝑥𝑘𝑘. So, we do 

not have to know the pdf but only the variance of the received signal.  The sen-
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sors operate at a range [-W, W] and if we quantize the signal received by one 

sensor in equal intervals of length  2𝑊𝑊/2𝐿𝐿 − 1, and round the signal to the 

neighboring endpoints of these intervals as follows: 

 

 Let −𝑊𝑊 + 𝑖𝑖𝑖𝑖 ≤ 𝑥𝑥 ≤ −𝑊𝑊 + (𝑖𝑖 + 1)𝛥𝛥                          (11) 

 

0 ≤ 𝑖𝑖 ≤ 2𝐿𝐿 − 2                                                               (12) 

 

𝑃𝑃{𝑥𝑥𝐿𝐿 = −𝑊𝑊 + 𝑖𝑖𝑖𝑖} = 𝑟𝑟                                                   (13) 

 

𝑃𝑃{𝑥𝑥𝐿𝐿 = −𝑊𝑊 + (𝑖𝑖 + 1)𝛥𝛥} = 1 − 𝑟𝑟                                 (14) 

 

𝑟𝑟 = 𝑥𝑥 + 𝑊𝑊−𝑖𝑖𝑖𝑖
𝛥𝛥

∈ [1,1]                                                    (15) 

the received signal, 𝑥𝑥𝐿𝐿, at the CH, according to [39], is an unbiased esti-

mator of 𝜃𝜃𝐿𝐿with covariance 𝜎𝜎2   at an exponential  rate as 𝐿𝐿 increases.  

 

𝐸𝐸[|𝑥𝑥𝐿𝐿 − 𝜃𝜃𝐿𝐿|2] ≤  𝜎𝜎2 + 𝑊𝑊2

(2𝐿𝐿−1)2  𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝐿𝐿 > 0              (16) 

Where 𝑊𝑊2

(2𝐿𝐿−1)2  denotes the upper bound of quantization noise variance.  

For 𝐿𝐿 = 𝐵𝐵 i.e. the available bandwidth, we have the quantization of one bit. The 

Best Linear Ubiased Estimator (BLUE) is applicable to amplitude estimation of 

known signals in noise. 

We suppose that for each sensor there is a probabilistic bit rate assign-

ment to it 𝑏𝑏𝑘𝑘 [106] such that all sensor observations arrive at the Cluster Head 

(CH) at different bit rates according to the noise each sensor experience.   

The Mean Square Error of the quantized Best Linear Unbiased Estimator 

(BLUE) [106] estimator of the total observation for K sensors that is received 

by the CH is: 
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𝐸𝐸[|𝜃𝜃� − 𝜃𝜃|2] ≤ �∑ 1

𝜎𝜎𝜅𝜅2+
𝑊𝑊

(2𝑏𝑏𝑘𝑘−1)2

2
𝐾𝐾
𝑘𝑘=1 �

−1

                        (17) 

 

We want to optimize the network performance so we have to select the 

total bit rate for each sensor that is compliant to the noise which experiences and 

its total flows’ data rate requirements.  For example a sensor which experiences 

higher levels of noise should not be assigned high data rate unless it accepts to 

raise its transmission power something that would affect the sensors network 

lifetime in the long run, though.  The transmission power is a function of the bit 

rate and in this paper work we will consider M-QAM models. 

Each sensor based on its flows’ data rate requirements computes the total 

data rate that would serve all of its flows and forwards its request to the CH. 

The CH collects the data rate requests of all sensors of the cluster. Then, the CH 

forwards the vector with the data rate request for each sensor to the Sink Node. 

Although the wireless sensors network is large, the three vectors communication 

overhead is not considerable as those vectors will be forwarded to the Sink 

Node only when they have been changed. 

 The Sink Node and the central SDN controller which is cloud-assisted 

should guarantee for the whole network that a) neighboring clusters that may 

share the same available channels do not have overlapping control channels by 

exploiting the available channels vectors b) each sensor receives the requested 

data rate if the corresponding power is acceptable for the network’s lifetime by 

exploiting the data rate request vector. When the control or backup channels or 

data rate vectors change, the Sink Node has to be informed. The data rate alloca-

tion to each sensor can be formulated as a convex optimization problem solved 

at the cloud-assisted Sink Node. 

We form the convex optimization problem as follows: 
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𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛�∑ 1

𝜎𝜎𝑘𝑘
2+ 𝑊𝑊2

(2𝑏𝑏𝑘𝑘−1)2

𝐾𝐾
𝑘𝑘=1 � −1                  (18) 

 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡:   ∑ 𝑏𝑏𝑘𝑘𝐾𝐾
𝑘𝑘=1 ≤ 𝐵𝐵𝑐𝑐                            (19) 

 

𝑏𝑏𝑘𝑘 ≥ 𝐼𝐼𝑘𝑘                                                               (20) 

 

∑ 𝑃𝑃𝑘𝑘 ≤ 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐾𝐾
𝑘𝑘=1                                              (21) 

 

𝑃𝑃𝑘𝑘 = 𝑐𝑐𝑘𝑘 ∗ (2𝑏𝑏𝑘𝑘 − 1) ≥ 0                                   (22) 

 

 𝑏𝑏𝑘𝑘 = ∑ 𝑏𝑏𝑘𝑘𝑖𝑖
𝐹𝐹𝑘𝑘
𝑖𝑖=1                                                     (23) 

 

We consider 𝑃𝑃𝑘𝑘 = 𝑓𝑓(𝑏𝑏𝑘𝑘) = 𝑐𝑐𝑘𝑘 ∗ (2𝑏𝑏𝑘𝑘 − 1) the transmission power of the 

sensor which corresponds to its total flows’ data rate 𝑏𝑏𝑘𝑘 , 𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 the total ener-

gy that the cluster sensors can consume, 𝐵𝐵𝑐𝑐 the total bandwidth of channel 𝑐𝑐 i.e. 

the connection between sensors and the CH and 𝐼𝐼𝑘𝑘 the data rate requirement of 

all flows in sensor 𝑘𝑘 and 𝐹𝐹𝑘𝑘  the number of  flows at sensor 𝑘𝑘, and 𝑏𝑏𝑘𝑘𝑖𝑖   the data 

rate requirement of flow 𝑖𝑖 at sensor 𝑘𝑘. 

With the Lagrange method we transform the optimization problem (18) 

to its equivalent as follows: 

 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �∑ 𝜎𝜎𝑘𝑘2 + 𝑊𝑊2

(2𝑏𝑏𝑘𝑘−1)2
𝐾𝐾
𝑘𝑘=1 �

−1
                   (24) 

 

 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡:   ∑ 𝑏𝑏𝑘𝑘𝐾𝐾
𝑘𝑘=1 ≤ 𝐵𝐵                             (25) 

 

𝑏𝑏𝑘𝑘 ≥ 𝐼𝐼𝑘𝑘                                                               (26) 
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∑ 𝑐𝑐𝑘𝑘(2𝑏𝑏𝑘𝑘 − 1) ≤ 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐾𝐾
𝑘𝑘=1                               (27)                   

 

 

The Lagrange function 𝐿𝐿 is then: 

 

𝐿𝐿(𝑏𝑏𝑘𝑘, 𝜆𝜆1,𝜆𝜆2, 𝜇𝜇𝜅𝜅) = ���𝜎𝜎𝑘𝑘2 +
𝑊𝑊2

(2𝑏𝑏𝑘𝑘 − 1)2
�
−1𝐾𝐾

𝑘𝑘=1

� + 

+𝜆𝜆1 �𝐵𝐵 −�𝑏𝑏𝑘𝑘

𝐾𝐾

𝑘𝑘=1

� +  �𝜇𝜇𝑘𝑘

𝛫𝛫

𝑘𝑘=1

(𝑏𝑏𝑘𝑘 − 𝐼𝐼𝑘𝑘) + 

+𝜆𝜆2�𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 − (∑ (𝑐𝑐𝑘𝑘 (2𝑏𝑏𝑘𝑘 − 1)𝐾𝐾
𝑘𝑘=1 )�          (28) 

 

  

 

We have to solve then the equations below: 

 

𝜕𝜕 ��𝜎𝜎𝑘𝑘2 + 𝑊𝑊2

(2𝑏𝑏𝑘𝑘 − 1)2�
−1
�

𝜕𝜕𝑏𝑏𝑘𝑘
− 𝜆𝜆1𝐾𝐾 + �𝜇𝜇𝑘𝑘

𝐾𝐾

𝑘𝑘=1

− 

−𝜆𝜆2 ∑ 𝑐𝑐𝑘𝑘𝑏𝑏𝑘𝑘2𝑏𝑏𝑘𝑘−1𝐾𝐾
𝑘𝑘=1 = 0                              (29) 

 

 

 

𝜆𝜆1(∑ 𝑏𝑏𝑘𝑘𝐾𝐾
𝑘𝑘=1 − 𝐵𝐵𝑐𝑐)  = 0                                    (30) 

 

 

𝜇𝜇𝑘𝑘(𝑏𝑏𝑘𝑘 − 𝐼𝐼𝑘𝑘) = 0                                            (31) 

 

𝜆𝜆2(𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 − ∑ 𝑐𝑐𝑘𝑘(2𝑏𝑏𝑘𝑘 − 1)𝐾𝐾
𝑘𝑘=1 ) = 0          (32)           
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As soon as the total data rate per sensor is computed, the computation of 

the corresponding power per sensor is straightforward (22). The main controller 

returns to the CH two vectors with the data rates per flow: one for the control 

channel and one for the backup channel as they do not share the same band-

width.  

The Cluster also adjusts its control channel and backup control channel 

according to Controller’s indication, so that it does not overlap with the neigh-

boring clusters’ control channels. 

 

9.4.4. The proposed Algorithm 

 

At sensor node: 

 

• Scans for CH beacons  

• Senses the spectrum - Runs the Reinforcement Learning 

Scheme 

• Estimates SNR 

• Sends the SNR vector to CH 

• Waits for the updated XOR vector 

• Senses spectrum 

• Sends sensing data at the control channel or switches to 

backup channel is PU is present at the control channel and sends the data 

• Switches to sleep mode 

 

At the CH: 

Initialization Phase 

• Senses spectrum –Runs the Reinforcement Learning 

Scheme 
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• Estimates SNR  

• Sends its 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿[] to the Main Controller  

• Receives the 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿[] from the Main Controller 

• Starts sending beacons to the control channel 

• Waits for SNR vector from the sensors and the data rate 

requirements 

• Sends the updated 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿[] to the Main Controller 

• Receives the updated by the Main Controller 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿[] 

• Sends the XOR vector to the sensors 

 

Main Phase 

• Senses spectrum - Runs the Reinforcement Learning 

Scheme 

• Sends beacons at the control channel 

• Waits for SNR vector and data requirements from the 

sensors 

• Waits for the sensors’ data 

• If the 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿[] changes or the data rate requirements  i.e. the 

control channel or the backup channel are not the best opportunities for 

transmission according to the Reinforcement Learning Scheme or the 

SNR vectors of its own and the sensor or the data rate requirements 

change, sends the new 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿[]  and data rate requirements to the Main 

Controller. 

• Receives the new 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿[] and the data rates vector  from 

the Main Controller 

• Sends the XOR vector and data rate to the sensors 

• Switches to the new control channel 

• Sends beacons to the new control channel 

• Waits for  sensors’ data 
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• If the control channel is occupied by the PU switches to 

the backup control channel.  

o If the presence of PU at the control channel or the 

presence of PU at the backup control channel are followed by a 

change of the rank of those channels in the 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿[] table according 

to the Reinforcement Learning Scheme, then the sends the updat-

ed List[]to the Main Controller. 

o Waits for the response of Main Controller 

o Sends the XOR vector and data rates to the sen-

sors 

• Starts sending beacons to the new control channel 

and keeps the updated information about the backup control 

channel 

• Waits for sensors data 

 

At the Main Controller 

• Waits for the 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿[] and data rate requirements of the 

clusters 

• If it receives a request examines the 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿[] and the graph 

it maintains with overlapping clusters.  

o Finds the 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿[] tables associated with the over-

lapping clusters in graph. 

o Proceeds in control channel and backup control 

channels brokerage to the overlapping clusters so that their con-

trol channels and backup control channels do not overlap. The 

best choice for each cluster is provided in terms of control chan-

nel assignment and only if there is a collision the channel with 

the higher bandwidth will be assigned to the cluster with the 

highest data rate demands. 
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o If the request includes data rate update, solves the 

optimization problem for the specific cluster with the cloud assis-

tance and its record about the cluster power constraints. 

o Sends the updated 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿[] tables to all the associat-

ed clusters 

o Sends the data rate vector to the cluster that initi-

ated the request. 

• Waits for the 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿[]  and data rate requirements 

• If it receives only data rate request 

o Solves the optimization problem for the specific 

cluster with the cloud assistance and its record about the cluster 

power constraints for both the control channel and backup con-

trol channel. 

o Sends the data rate vector to the cluster that initi-

ated the request. 

• Waits for new requests to serve. 

 

9.5. EVALUATION 

 

The evaluation of the proposed architecture was concentrated on the 

evaluation of the cluster’s performance. So, the evaluation method applied to 

the proposed cluster functionality. Channel handoffs, collision avoidance with 

the PU, best control channel selection, interference management, data rate allo-

cation per flow among the clusters were tested. Power allocation and data rate 

assignment are used interchangeably.   

The experiments consider the cases where clusters are overlapping as 

this scenario imposes more constraints to the cluster performance. Various sce-

narios of flows with different data rate requirements and various number of sen-
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sors were applied.  The SNR conditions also vary in the experiments. Flow data 

rates were passed as parameters to the lower layer of the simulation as they have 

been pre-computed for each scenario [107]. The performance of the overlapping 

clusters depend on the available channels, the PUs traffic, the SNR they experi-

ence and the flows per sensor of each cluster. In experiments, we do not consid-

er raise of sensor’s power in case of very low SNR conditions. 

The proposed control channel selection scheme is compared to a similar 

cluster architecture where the control channel selection is based on PU traffic 

statistics which are computed continually during the experiments so that we 

evaluate the control channel selection scheme for various flow data rate assign-

ments scenarios. As the data rate assignment is optimal we consider optimal da-

ta rate assignement for both architectures in the comparative study. 

The PU traffic was generated in bursts following exponential distribu-

tion and the size of bursts was varying between 50,000 to 200,000 bits. Thirty 

channels were considered for the experiments. The transmission rate was set to 

2Mbps.  The experiments conducted are described below: 

The PUs’ distributions were  every (0.001)s but there was also a few 

channels with  burst generation at  (0.01)s, (0.005)s, (0.02)s,  (0.033)s, (0.04)s.  

 

1st Experiment: The experiment considers two overlapping clusters. In 

the first cluster there is only one active flow and in the second cluster the data 

rate requirements of the active flows are multiple of the data requirements of the 

first cluster’s flow. The Throughput is evaluated as the flows’ data rates in the 

second cluster increase. There are channels that suffer of very low SNR i.e. they 

are restricted for access. This experiment examines performance in the two clus-

ters as it is likely that the cluster with the increasing traffic will have to deal 

with a control channel switch more often as it utilizes the control channel more 

often, provided that there are various SNR scenarios in the channels and PU 

traffic scenarios as well (Figure 9.2). 
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Figure 9. 2: The first experiment with two overlapping clusters 

 

The proposed scheme outperforms the system with statistics as it lever-

ages the spectrum holes more efficiently and as a result it is not affected by the 

active flows increasing number the way statistics are affected. The statistics 

does not differentiate its response to long and short spectrum holes, i.e. in the 

former case it bypasses opportunities and in the latter it does not avoid collision. 

The statistics do not also overtake opportunities on the channels with the worse 

statistics when they experience longer spectrum vacancies due to PU-traffic dis-

tribution variance. The control channel selection based on statistics cannot pro-

ceed to fine spectrum utilization and as the number of active flows increases the 

performance drops significantly. These hold for all experiments. 

2nd Experiment: The second experiment’s conditions are the same with 

the first experiment but the number of overlapping clusters increases to three 

with one active flow in the first cluster, one active flow with the same data rate 

requirements in the second cluster whilst the flows data rate requirements of the 

third cluster vary i.e. are multiple of data rate requirements of the first cluster. 

The increasing number of data rates do not have such a drastic effect for the 

proposed scheme comparing to the control channel selection based on statistics 
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which is very sensitive to the number of overlapping clusters and flow data rates 

(Figure 9.3). 

3rd Experiment: In the third experiment there are two overlapping clus-

ters with the same flow data rates. Fifteen channels suffer of low SNR and are 

excluded by the CH (Figure 9.4).  

4th Experiment: In the fourth experiment there are three overlapping 

clusters with the same flow data rates.  There are eight channels suffering of 

very low SNR. The results for the proposed system are better in the fourth ex-

periment than the third as there are fewer channels suffering of very low SNR. 

On the other, the results of the system which use statistics for control channel 

selection are worse than its results on the third experiment where there were 

more channels with very low SNR and two clusters. The increasing number of 

flows data rates do not have such a drastic impact on the proposed scheme com-

paring to the channel selection based on statistics which is very sensitive to the 

number of clusters and data rate requirements (Figure 9.5). 

 

 
 

Figure 9. 3: The second experiment with three overlapping clusters 
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9.6. CONCLUSION 

 
 

This paper proposes a sustainable Software Defined Wireless Sensor 

Networks architecture and it is concentrated on sustainable solutions for sen-

sors’ data collection by the cluster heads leveraging the Cognitive Radio Net-

work facilities and taking into account the demands of the applications running 

on the sensors. The Cognitive Radio Network predicts PU network traffic and 

leverages bursty sensor traffic. The network is considered large and the Cluster 

architecture provides localization of decisions and support of time sensitive data 

collection as well as efficient spectrum reuse across network. Sustaianbility is 

applied in terms of sensors power operation, channel handoff elimination and 

collision avoidance with the PUs. Optimal solutions for power allocation, data 

rate assignment and spectrum utilization are introduced.  The sensors operate at 

Figure 9.4: In the third experiment there are two overlapping 

clusters with the same flows’ data rate requirements. 
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the minimum power allowing in the same time their applications to run at an 

acceptable QoS level. QoS provisioning in terms of data rate to the sensor appli-

cations is realized on per flow basis of the SDN network. The network’s sus-

tainability is improved by the clusters organization. An optimal Reinforcement 

Learning Scheme applied for control channel selection eliminates channel 

handoffs which consume a lot of energy as predicts PU traffic. The proposed 

solutions are optimal. 

 

 
 Figure 9. 5: In the fourth experiment there are three overlapping 

clusters with the same flows data rate requirements. 
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This research work [119] introduces a Broadcast protocol for Cognitive Radio 

Cloud that organizes secondary users (SUs) into clusters in an optimal distributed 

manner based on the locally available channels with a dynamically selected Common 

Control Channel (CCC) by an optimal Reinforcement Learning Scheme. The Scheme 

predicts the best available channel i.e. the one that is going to be idle for longer period, 

avoiding collisions with the licensed users for the cluster’s operation and providing 

reliable broadcast delivery i.e. a delivery that is not going to be disturbed and in the 

same time minimizing the CCC channel hopping which is energy consuming.  The 

Local optimums are achieved without global network information. The protocol 

outperforms existing literature in Cognitive Radio Multi-Hop Ad-Hoc Networks 

Broadcast supporting Collision Avoidance at receiver’s side whilst providing QoS 

without performance degradation filling a gap in literature. Collision Avoidance at 

receiver’s side saves energy and resources for the network. The clusters are self-

organized such that minimal radio equipment can be cloud-assisted on demand. 

 

 

10.1. INTRODUCTION 

 

In Cognitive Radio Networks, unlicensed users opportunistically access the 

spectrum [1] [11] [12]. Broadcasting may occur in the network to distribute packets of 

user-content or critical-content. Software Defined Radio (SDR) at physical layer and 

Cognitive Radio for Broadcasting have started to attract the attention of the scientific 

research community [120]. 

In Multi-Hop Ad-Hoc Networks broadcasting there is a large number of 

literature which is out-of-the scope of this paper, but for Cognitive Radio (CR) Multi-

Hop Ad Hoc Networks the literature is limited and special issues have to be considered 

for the Broadcasting Protocol design. In CRN both the transmitter and receiver have to 

be synchronized to the same channel, and this holds for broadcasting, too. In literature, 

because CRN broadcasting may be disrupted by PUs, some protocols propose 

simultaneous transmissions in multiple channels to assure successful broadcasting.  
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However, simultaneous broadcasting in multiple channels implies additional 

radios for the network nodes otherwise they have to perform them in sequence with 

significant impact on latency [121]. Neighboring SUs should be synchronized to deliver 

control packets. Another issue is that as broadcasting is realized as a packet flooding in 

the network, multiplications of a packet may arrive to a SU.  This is known as a 

Collision on the Receiver’s Side and Collision Avoidance at the receiver’s side is a 

problem that has to be handled by the broadcast protocol. Collision on the Receiver’s 

side consumes energy and resources of the network because or unnecessary 

retransmissions. 

The use of a Common Control Channel (CCC) which is applicable to Multi Hop 

Ad Hoc Networks , cannot ensure coordination in CRN as PUs’ transmissions are of 

higher priority and interrupt the opportunistically access of SUs. Primary Users operate 

at a high level of power, so the PU’s transmission radius is greater than the transmission 

radius of the SUs. Thus, SUs operate at lower power level i.e. locally. CCC 

establishment should consider the PU’s traffic characteristics and the dynamically 

changing network environment so that the CCC and Broadcast Channel satisfy the basic 

requirements of CCC establishment, i.e., availability and reliability. The dynamic CCC 

selection should be efficient so to minimize CCC hoppping and consequently energy 

consumption.  In [125] a distributed cluster-based architecture is proposed which does 

not refer to broadcasting and tits prerequisite such as collision avoidance at receiver’s 

side which arise at broadcasting networks. 

In [126], collision avoidance at receiver’s side is supported but simultaneous 

retransmissions over multiple channels degrade the performance - recipients are 

unsynchronized.  [126] does not provide QoS guarantees. 

Lazos et al [127] proposed a cluster organization but reclustering requires global 

network information. 

In CRBP [128], each node creates classes of the channels based on PU presence 

and combines them with bipartite connectivity graphs to form the local network 

topology. However, a bipartite graph search is needed when the broadcasting channel 

set is changed and requires global information. Collision avoidance on the receiver’s 

side is not implemented in [129]. In [130], the authors achieve a rendezvous of the 

transmitter-receiver in the 𝑀𝑀2 slots, where 𝑀𝑀 is the number of available channels, which 
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results in considerable delay and overhead. The authors in [131] engage global network 

information to reduce latency. 

[132] considers the problem of multiple and single transceivers. [133]  

implements broadcasting with multi-antenna transmitters and single antenna receivers 

using orthogonal beamforming.  

This research work introduces a broadcast protocol where no global network 

information is needed, where a dynamic common control channel is selected 

dynamically within a cluster. The common control channel is selected to ensure 

availability and reliability - with no collisions with PUs. Inter-cluster communication 

ensures collision avoidance on the receiver’s side avoiding retransmission and extra 

energy consumption whilst fast reclustering makes it appropriate for vehicle’s clouds 

[134]. So, no additional overhead and delay is achieved, and at the same time, the 

system provides QoS. To the best of our knowledge, there is no literature supporting 

both collision avoidance and QoS. Each SU is equipped with one radio and sensors. 

CRs converge to local optimums. There is no packet overhead and delay 

efficiency is achieved, as the broadcast packet is transmitted only in the CCC which is 

common for all nodes in the cluster (one-hop distance) thus packet retransmissions 

between network nodes are avoided. PU collision is avoided by employing machine 

learning. Although collision avoidance at the receiver is guaranteed by slot assignment 

to neighboring clusters, the broadcast data packets occupy all slots of the CCC. Thus 

the proposed protocol sets up non-overlapping broadcasting paths throughout the 

network for the broadcast data packets with the minimum packet transmissions. The 

cluster is deployed locally so that its nodes overhear each other’s beacons. 

The chapter is organized as follows. In section II, the system’s description is 

presented. Section III is a presentation of the bit rate maximization as achieved by the 

proposed protocol. In section IV, PU collision avoidance and channel hopping with the 

Reinforcement Learning Scheme is presented. The Broadcasting Protocol is presented 

in section V and the phases of the protocol in VI. Section VII is the evaluation section. 

Because the literature in Broadcast Protocols for Cognitive Radio Networks is limited 

the evaluation considered the most close to Broadcast Cognitive Radio Cloud network 

consept which is that of Broadcast Cognitive Radio Ad Hoc Networks. 
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10.2. SYSTEM DESCRIPTION 

 

The SUs are organized in clusters locally; i.e., all the SUs that listen to the same 

channels belong to the same cluster eventually [134]. Each cluster selects a CCC to use 

for broadcasting too - and a second channel as a Backup CCC. For this reason, SUs 

employs machine learning so to learn the PUs’ activity and select the best transmission 

opportunities for the unlicensed users. An SU transmission may be interrupted anytime 

by PU arrival so there is a need for efficient prediction and selection between spectrum 

vacancies. The CCC selection scheme is optimal and the channel with the best scheme’s 

metric becomes the CCC. The most available and reliable channels are selected. The 

bandwidth requirements are satisfied, too.  

As the SUs within a cluster share common PUs experience i.e. overhear the 

same PUs, the output of the reinforcement learning scheme is common for all. The 

scheme is optimal i.e. predicts PU traffic to avoid collision with the PUs. Despite that 

the SUs listen before transmit, collisions with the PU may occur if the PU arrives before 

the SU completes transmission. The Reinforcement Learning Scheme avoids such 

collisions as is optimal. The cluster head updates the channels selection list dynamically 

according to the sensing outcome in a descending order i.e. the best channel appears 

first at the list.  

An SU who wants to join the network has to listen for beacons and join the 

cluster. If he does not hear beacons then he establishes a cluster himself. After cluster 

establishment, continuous inter-cluster communication is responsible for non-

overlapping of the neighboring CCCs and B-CCCs. As the dynamic broadcast channel 

is selected such that collision with the PU is avoided, the broadcast packet is transmitted 

only once in the CCC within a cluster and is forwarded to the CCCs of the neighboring 

clusters i.e. two transmissions for a two-hop distance- no additional latency and delay. 

Inter-cluster communication is basically associated with broadcast idle period. 

The clusters are self-organized and edge nodes are responsible for inter-cluster 

communication, i.e., nodes that reside at more than one clusters. Each SU tunes its radio 

to its cluster’s CCC. The edge nodes tune their radios to the neighboring CCCs, too. In 

Figure 10.1 there are three PUs and their coverage areas and the secondary nodes are 

organized in two clusters with coordinating nodes Head 1 and Head 2. PU A and PU C 
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affect cluster 1 and PU B and PU C cluster 2. The edge node in cluster 1 overhears PU 

B and communicates with cluster 2 in PU B’s channel based on the PU B’s non  

occupacy of the corresponding channel. There is another one SU in cluster 1 which 

overhears PU B but is not selected as edge node- the rest of the cluster does not overhear 

PU B. The cluster may be assisted by cloud location-based database for inter-cluster 

information retrieval. Grouping SUs with similar channel lists implicitly implements 

hard-decision cooperative sensing.  

 

 

10.3. MAXIMIZATION OF BIT RATE FOR QOS PROVISION 

 

In order to facilitate QoS provisioning, the system leverages the cloud 

connection if needed to locally solve the problem of maximization of achievable bit 

rate. For that reason, a bipartite graph is constructed and then the maximization of bit 

rate assigned to the bipartite graph’s edges is solved locally i.e. for the neighboring 

clusters. The optimization problem is eliminated from the whole network to 

neighboring clusters. So, network performance is enhanced as PU activity is localized 

and by solving the optimization problem for local optimums instead of grouping SUs 

with similar channel lists for the whole network which is an NP-hard, is more efficient 

in terms of computational load and network responsiveness to radio network and 

network changes. In literature there are no cluster architectures for broadcast protocols 

with QoS provision and there are no broadcast protocols for cluster architectures 

supporting mobile users or vehicles in CRN. Mobile users and vehicles require frequent 

reclustering..  

 

A cluster C, namely, the SU chosen as the cluster’s head, creates a bipartite 

graph 𝐺𝐺(𝑋𝑋𝑋𝑋,𝑌𝑌𝑌𝑌,𝐴𝐴𝐴𝐴), where 𝑋𝑋𝑋𝑋 vertices represent the intermediate nodes – i.e., the nodes 

belonging to the neighbor cluster and responsible for the communication with cluster C 

– and 𝑌𝑌𝑌𝑌 represent the nodes belonging to the C cluster and playing the intermediate 

role for neighbor clusters, and 𝐴𝐴𝐴𝐴 is the edge between 𝑋𝑋𝑋𝑋 and 𝑌𝑌𝑌𝑌 when broadcasting 

takes place, with broadcasting messages coming from cluster 𝐶𝐶𝑋𝑋𝑋𝑋 and heading for the 

cluster for which nodes 𝑌𝑌𝑌𝑌 are the intermediate nodes through cluster 𝐶𝐶.  
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Figure 10.1: The cluster deployment 

 

 

The achievable bit rate for channel 𝑛𝑛 for a connection 𝑋𝑋𝑋𝑋 − 𝑌𝑌𝑌𝑌 is: 

 

𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 = 𝐵𝐵𝐵𝐵𝐵𝐵 log2�1 + 𝛾𝛾𝑖𝑖𝑖𝑖(𝑛𝑛)�          (1) 

 

where BW is the bandwidth and 𝛾𝛾𝑖𝑖, 𝑗𝑗 (𝑛𝑛) is the signal-to-interference-plus-

noise-ratio (SINR) for the connection 𝑋𝑋𝑋𝑋 − 𝑌𝑌𝑌𝑌. If we consider only path loss, 𝛾𝛾𝑖𝑖, 𝑗𝑗 (𝑛𝑛) 

is given by the following form: 

 

𝛾𝛾𝑖𝑖𝑖𝑖(𝑛𝑛) ≜
𝑝𝑝𝑖𝑖(𝑛𝑛)𝑥𝑥𝐿𝐿𝑖𝑖,𝑖𝑖(𝑛𝑛)

𝑁𝑁𝑁𝑁 + ∑ 𝑝𝑝𝑗𝑗(𝑛𝑛)𝐿𝐿𝑗𝑗,𝑖𝑖(𝑛𝑛)𝑗𝑗∈𝑌𝑌𝑌𝑌∪𝑀𝑀
            (2) 

 

where No stands for the additive white Gaussian noise with zero mean and 

variance No, whilst Li,i and Lj,i are the path losses for channel 𝑛𝑛 given by the form 

below: 
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𝐿𝐿𝑖𝑖,𝑗𝑗(𝑛𝑛) = 𝐺𝐺𝑡𝑡,𝑖𝑖𝐺𝐺𝑟𝑟,𝑗𝑗

𝑑𝑑𝑖𝑖.𝑗𝑗𝑎𝑎
� 𝑐𝑐
4𝜋𝜋𝜋𝜋

�                               (3) 

 

Gt,i and Gr,j are the antenna gains of the transmitter and the receiver, respectively, 

di,j is the distance between them.  

The formulas for the Signal to Interference Noise Ratio (SINR)  estimation may 

be updated to cover multi-path fading and shadowing. So, the SINR formulas will be 

selected locally based on the cluster’s radio environment e.g. for adapting to urban and 

rural areas. 

We want to maximize the achievable bit rate and at the same time not to disturb 

the PU’s activity; i.e., SU’ transmitting power should be below a threshold. The SINR 

of PUs at each channel should be kept above a threshold too. 

 

𝛾𝛾𝑚𝑚(𝑛𝑛) =
𝑝𝑝𝑚𝑚(𝑛𝑛)𝑥𝑥𝐿𝐿𝑚𝑚,𝑚𝑚(𝑛𝑛)

𝑁𝑁𝑁𝑁 + ∑ 𝑝𝑝𝑗𝑗(𝑛𝑛)𝐿𝐿𝑗𝑗,𝑚𝑚(𝑛𝑛)𝑗𝑗∈𝑌𝑌𝑌𝑌∪𝑋𝑋𝑋𝑋
            (4) 

 

The bipartite graph is updated and provides the connections of the broadcasting 

path.  

We need to maximize the achievable bit rate in all available channels that may 

become the CCC and B-CCC of the cluster by adjusting the transmission power of 

nodes to meet the SINR constraints. This is a convex optimization problem formulated 

as shown below: 

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 �𝑅𝑅𝑛𝑛(𝑖𝑖) =
𝑁𝑁

𝑛𝑛=1

�𝐵𝐵𝐵𝐵𝐵𝐵 log2[1 + 𝛾𝛾𝑖𝑖(𝑛𝑛)]
𝑁𝑁

𝑛𝑛=1

   (5) 

 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑡𝑡𝑡𝑡:             

𝛾𝛾𝛾𝛾(𝑛𝑛) ≥ 𝛾𝛾𝛾𝛾                                                           (6) 

𝑝𝑝𝑖𝑖(𝑛𝑛) ≥ 0, 𝑖𝑖 ∈ 𝑋𝑋𝑋𝑋                                                (7) 

𝑝𝑝𝑗𝑗(𝑛𝑛) ≥ 0, 𝑗𝑗 ∈ 𝑌𝑌𝑌𝑌                                               (8) 

𝛾𝛾𝛾𝛾(𝑛𝑛) ≥ 𝛾𝛾𝛾𝛾0                                                   (9) 

𝑝𝑝𝑝𝑝(𝑛𝑛) < 𝑃𝑃𝑃𝑃(𝑛𝑛),𝑘𝑘 ∈ 𝑋𝑋𝑋𝑋 ∪ 𝑌𝑌𝑌𝑌                         (10) 
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Inequality (6) satisfies the SINR constraint for the SUs, inequality (9) satisfies 

the SINR condition for the PU of channel 𝑛𝑛 and inequality (10) is the power constraint 

for the SUs’ transmissions. The intermediate nodes are informed with a beacon by 

Cluster C for the appropriate transmission power on all channels of cluster C that can 

be CCC or B-CCC and which offer the best transmission opportunities i.e. avoid 

collisions with the PUs. Thus the protocol supports mobile secondary users. 

Each cluster runs a Reinforcement Learning Scheme in a distributed manner to 

avoid collision with the PUs and creates the list with the most favorable channels in 

descending order. The neighboring clusters have then to decide upon the final selection 

of their CCCs and B-CCCs such that they do not overlap and in the same time maximize 

the transmission rates for those channels so to meet the QoS constraints.  

As the maximization of the bit rate concerns only the channels for which the 

signals do not suffer from low SINR and PU activity is below a threshold so that provide 

good transmission opportunities, the bipartite graph is updated only with the 

corresponding connections between the neighboring clusters. 

As SINR changes for the moving vehicle the optimization problem has to be 

solved whenever a change occurs. 

 

 

10.4. PU COLLISION AVOIDANCE AND CHANNEL HOPPING 

 

A Learning Automaton is a control mechanism that adapts to changes in the 

environment. The conditions for a stochastic learning automaton of P-Model to be 

appears in [134] as well as the definition of the stochastic learning automaton which is 

introduced for the proposed protocol which is optimal too. 𝑆𝑆[𝑖𝑖, 𝑡𝑡] is the learning 

automaton metric for channel 𝑖𝑖 at time 𝑡𝑡. 

  

 

 

lim
𝑡𝑡→∞

𝔼𝔼{𝑆𝑆[𝑖𝑖, 𝑡𝑡]} = 𝔼𝔼{ lim
𝑡𝑡→∞

𝑆𝑆[𝑖𝑖, 𝑡𝑡]} = 

 

𝔼𝔼{ lim
𝑡𝑡→∞

�𝑆𝑆[𝑖𝑖, 0](1 − 𝐿𝐿)𝑡𝑡 + 𝐿𝐿�(1 − 𝑎𝑎)(1 − 𝐿𝐿)𝑖𝑖
𝑡𝑡

𝑖𝑖=0

+ 𝐿𝐿(1 − 𝑎𝑎)(1 − 𝐿𝐿)�} = 
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𝑓𝑓𝑓𝑓𝑓𝑓 𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑛𝑛𝑛𝑛 𝑃𝑃𝑃𝑃 𝑎𝑎𝑎𝑎𝑎𝑎 𝑘𝑘 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑃𝑃𝑃𝑃=𝑡𝑡
�⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯� 

𝔼𝔼{ lim
𝑡𝑡→∞

�𝑆𝑆[𝑖𝑖, 0](1 − 𝐿𝐿)𝑡𝑡 + (1 − 𝑎𝑎)(1 − 𝐿𝐿2)�} ⟹ 

 

𝔼𝔼{ lim
𝑡𝑡→∞

𝑆𝑆[𝑖𝑖, 𝑡𝑡]} = 𝔼𝔼�(1 − 𝛼𝛼)�1 + 𝐿𝐿(1 − 𝐿𝐿)��           

= (1 − 𝛼𝛼)�1 + 𝐿𝐿(1 − 𝐿𝐿)�
𝑀𝑀𝑀𝑀𝑀𝑀�𝐿𝐿(1−𝐿𝐿)�=0.25
��������������� 

𝑎𝑎=0,2
���� lim

𝑡𝑡→∞
𝔼𝔼{𝑆𝑆[𝑖𝑖, 𝑡𝑡]} = 1                            (11) 

 

In the former paradigm it is optimal for 𝛼𝛼 = 0.2. So, as soon as we decide about 

the speed of converge we can choose the value for 𝛼𝛼 or 𝐿𝐿 respectively such that the 

scheme is optimal. If spectrum sensing is inaccurate i.e. in cases of false alarm and 

misdetection, then for N times in sequence, the sensing is inaccurate. The scheme for a 

false alarm decreases when it should increase, and for misdetection, the scheme 

increases when it should decrease for N times in sequence: 

 

𝑆𝑆′[𝑖𝑖, 𝑡𝑡 + 1] = {𝑆𝑆[𝑖𝑖, 𝑡𝑡 + 1 − 𝑁𝑁]((1 − 𝐿𝐿) + 𝐿𝐿 ∗ (1 − 𝛼𝛼)}�������������������������
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡+1−𝑁𝑁  

 + 

+⋯+  

+ { 𝑆𝑆[𝑖𝑖, 𝑡𝑡 + 1 −𝑚𝑚] ∗  (1 − 𝐿𝐿)  +  𝐿𝐿 ∗ (1 − 𝛼𝛼) }�����������������������������
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡+1−𝑚𝑚

 + ⋯+  

+ {𝑆𝑆[𝑖𝑖, 𝑡𝑡 + 1] ∗ (1 − 𝐿𝐿)   +  𝐿𝐿 ∗ (1 − 𝛼𝛼) }�������������������������
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡+1

 = 

= {𝑆𝑆[𝑖𝑖, 𝑡𝑡 − 𝑁𝑁](1 − 𝐿𝐿)(1− 𝐿𝐿) + 𝐿𝐿 ∗ (1 − 𝛼𝛼)}���������������������������
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡+1−𝑁𝑁 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑡𝑡𝑡𝑡 𝑡𝑡−𝑁𝑁

 + 

+. . + 

+ {𝑆𝑆[𝑖𝑖, 𝑡𝑡 − 𝑚𝑚] ∗ (1 − 𝐿𝐿)(1− 𝐿𝐿)  + 𝐿𝐿 ∗ (1 − 𝛼𝛼)}�����������������������������
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡+1−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  𝑡𝑡𝑡𝑡 𝑡𝑡−𝑚𝑚

+ ⋯+ 

+ {𝑆𝑆[𝑖𝑖, 𝑡𝑡] ∗ (1 − 𝐿𝐿) ∗ (1 − 𝐿𝐿)  +  𝐿𝐿 ∗ (1 − 𝛼𝛼)}���������������������������
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡+1 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑡𝑡𝑡𝑡 𝑡𝑡

= ⋯ = 

= 𝑆𝑆[𝑖𝑖, 𝑡𝑡 + 1] + 𝐿𝐿(1 − 𝛼𝛼)(1 − 𝐿𝐿)𝛮𝛮+1                                           (12) 

 

The second part of the sum in (19) refers to the number of times in sequence the 

sensing outcome is a misdetection. 

 

𝑆𝑆′[𝑖𝑖, 𝑡𝑡 + 1] = 
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= 𝑆𝑆[𝑖𝑖, 𝑡𝑡 + 1 − 𝑁𝑁](1 − 𝐿𝐿)���������������
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡+1−𝑁𝑁

+ 

 +⋯+ 𝑆𝑆[𝑖𝑖, 𝑡𝑡 + 1 −𝑚𝑚] ∗ (1 − 𝐿𝐿)�����������������
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡+1−𝑚𝑚

+ ⋯+ 

+ 𝑆𝑆[𝑖𝑖, 𝑡𝑡 + 1] ∗ (1 − 𝐿𝐿)�������������
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡+1

= 

= [ {𝑆𝑆[𝑖𝑖, 𝑡𝑡 − 𝑁𝑁](1 − 𝐿𝐿) + 𝐿𝐿 ∗ (1 − 𝛼𝛼)] ∗ (1 − 𝐿𝐿)}�����������������������������
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡+1−𝑁𝑁 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑡𝑡𝑡𝑡 𝑡𝑡−𝑁𝑁

 + 

+. . + 

+ {[𝑆𝑆[𝑖𝑖, 𝑡𝑡 − 𝑚𝑚] ∗ (1 − 𝐿𝐿) + 𝐿𝐿 ∗ (1 − 𝐿𝐿)](1 − 𝐿𝐿)}�����������������������������
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡+1−𝑚𝑚  𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑡𝑡𝑡𝑡 𝑡𝑡−𝑚𝑚

+. . + 

+ {[𝑆𝑆[𝑖𝑖, 𝑡𝑡] ∗ (1 − 𝐿𝐿) + 𝐿𝐿 ∗ (1 − 𝐿𝐿)](1 − 𝐿𝐿)}���������������������������
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡+1 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑡𝑡𝑡𝑡 𝑡𝑡

= ⋯ = 

= 𝑆𝑆[𝑖𝑖, 𝑡𝑡 + 1] − 𝐿𝐿(1 − 𝛼𝛼)(1 − 𝐿𝐿) 𝛮𝛮+1                                 (13) 

 

The second part of the sum in (20) refers to the number of times in sequence the 

sensing outcome is a false alarm. The error limit is zero [134] (11). 

 

The SUs form clusters on available channels and run the Reinforcement 

Learning Scheme for estimating the two most favorable available channels to be 

selected as the CCC, B-CCC and maximize throughput.  

If channel i has a higher metric than j and Control Channel Hopping has to take 

place, this implies that at time t-N, channel i’s the scheme’s outcome was equal to the 

outcome of channel j at time t: 

 

𝑆𝑆′[𝑖𝑖, 𝑡𝑡] − 𝑆𝑆′[𝑗𝑗, 𝑡𝑡] = 𝑆𝑆′[𝑖𝑖, 𝑡𝑡 − 𝑁𝑁](1 − 𝐿𝐿)𝑁𝑁 + 

+(1 − 𝛼𝛼)[1 − (1 − 𝐿𝐿)𝑁𝑁) − 𝑆𝑆′[𝑗𝑗, 𝑡𝑡] 
𝑆𝑆′[𝑖𝑖,𝑡𝑡−𝑁𝑁)=𝑆𝑆′(𝑗𝑗,𝑡𝑡)=𝑆𝑆𝑆𝑆
���������������� 

⇒𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝑆𝑆′[𝑖𝑖, 𝑡𝑡] − 𝑆𝑆′[𝑗𝑗, 𝑡𝑡] 

= (1 − 𝛼𝛼)[1 − (1 − 𝐿𝐿)𝑁𝑁] + [(1 − 𝐿𝐿)𝑁𝑁 − 1]𝑆𝑆′𝑜𝑜 = 

= [1 − (1 − 𝐿𝐿)𝑁𝑁](1− 𝛼𝛼 − 𝑆𝑆′𝑜𝑜)                                    (14) 

lim
𝑁𝑁→∞

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 1 − 𝛼𝛼 − 𝑆𝑆′𝑜𝑜                        (15)                 

𝑎𝑎𝑎𝑎𝑎𝑎 

𝐼𝐼𝐼𝐼  𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 < 𝜀𝜀1 ⇒ 𝑆𝑆′𝑜𝑜 > 1 − 𝛼𝛼 − 𝜀𝜀1                     (16)                  
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We accept a broadcast channel hopping to channel i, if  𝑆𝑆[𝑖𝑖, 𝑡𝑡] > 1 − 𝛼𝛼 − 𝜀𝜀1  to 

ensure that the hopping leads to a channel with good opportunities for transmission.  

As in Cognitive Radio Networks SUs transmissions are restricted by PU 

activity, not all the channel’s bandwidth is available to SU. So, the better transmission 

opportunities are detected i.e. higher channel metric, a higher rate of the actual 

channel’s bandwidth is available to Cognitive Radio Network. The reinforcement 

learning scheme does not depend on channel’s statistics. A scheme based on statistics 

due to PU’s traffic distribution variance would bypass longer vacancies in a channel 

with worse statistics and on the other hand would utilize shorter vacancies in a channel 

with better statistics. Thus, a scheme based on statistics does not utilize opportunities 

efficiently. As the scheme guarantees the best transmission opportunities and QoS is 

provided then the highest data rates (5) are leveraged.   

 

10.5. BROADCASTING PROTOCOL DESCRIPTION 

 

The CR-cluster head (CR-CH) collects the reinforcement learning scheme 

outcomes namely the channel table lists of central and edge cluster nodes and sets the 

channel table list of central nodes as the cluster’s channel list. The reinforcement 

learning scheme learns the PU traffic as it is optimal so avoids collisions with the PUs 

at all. The channel with the best metric is the first entry in the table List[].  

Each SU measures interference and creates a table with the current interference 

value for each channel, the 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆[]. If  SINR  for a  channel is below a certain threshold, 

it is restricted from transmission and updated as -1. 

The transmitter broadcasts bandwidth requirement control packet to prioritize 

the transmissions in channels that meet the bandwidth constraints before the 

broadcasting starts. Each cluster adjusts the power of the related SUs to maximize the 

transmission rate and creates a second list Bandwidth[] with highest achievable bit rate 

appearing first in the list based on (5). 
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               Figure 10.2:  The three phases of the Broadcasting Protocol  

 

 

 

The SU senses the spectrum and creates the List[], SINR[] and Bandwidth[] 

tables, which will be used for the creation of the final channel list List2[] as follows: 

Condition (16) must hold for a dedicated CCC or B-CCC to bypass the worst 

case scenario: PU collision. 

Control beacons assist the cluster on defining its limits, discover neighbors, their 

corresponding CCCs/B-CCCs and intermediate nodes. The latter undertake the task of 

overhearing the neighboring broadcast channels for updates. Inter-cluster 

communication is responsible for non-overlapping of CCC and B-CCC channels of 

neighboring clusters.  

In the meanwhile, the cluster nodes can receive assistance from the cloud. The 

clusters are self-organized locally (one-hop distance within the cluster as the 

communication is achieved via the CCC) with no global information is required but 

neighbor discovery. Dynamic broadcast channel avoids common control channel 

vulnerabilities, e.g., flooding attack sensitivity, and utilizes more efficiently time and 

space-varying spectrum opportunities. 
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Algorithm for CCC and B-CCC selection: 

 

𝐹𝐹𝐹𝐹𝐹𝐹 −𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 

{ 

  𝐹𝐹𝐹𝐹𝐹𝐹 − 𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 

  { 

   𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆      𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿[𝑖𝑖]     

    𝑖𝑖𝑖𝑖 (𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿[𝑖𝑖] = 𝑛𝑛 && 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆[𝑛𝑛]! = −1     &&  

(𝑆𝑆[𝑖𝑖, 𝑡𝑡] − 𝑆𝑆[0, 𝑡𝑡] > 1 − 𝛼𝛼 − 𝜀𝜀)) 

//𝑐𝑐ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛 

      { 

        /𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿2 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  𝑆𝑆𝑆𝑆𝑆𝑆𝑅𝑅 𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚′ 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 

 

                     𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿2[] = 𝑛𝑛; 

   } 

𝑅𝑅𝑅𝑅𝑅𝑅 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜 𝑏𝑏𝑏𝑏𝑏𝑏 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (5) 

 � 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖: 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑜𝑜𝑜𝑜  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿2[ ]𝑜𝑜𝑜𝑜 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑟𝑟′𝑠𝑠 𝑜𝑜𝑜𝑜𝑜𝑜

�      

      {𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜:      

            𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ[ ] 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙; 

      } 

// 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡ℎ𝑒𝑒 𝐶𝐶𝐶𝐶𝐶𝐶 𝑎𝑎𝑎𝑎𝑎𝑎 𝐵𝐵 − 𝐶𝐶𝐶𝐶𝐶𝐶 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

//𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡ℎ𝑒𝑒 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑎𝑎𝑎𝑎 𝐶𝐶𝐶𝐶𝐶𝐶 

            𝐶𝐶𝐶𝐶𝐶𝐶 =  𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ[0]; 

           𝐵𝐵 − 𝐶𝐶𝐶𝐶𝐶𝐶 =  𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ[1]; 

 /𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑒𝑒 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 − 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿[ ]𝑂𝑂𝑂𝑂 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆[ ]  

//𝑂𝑂𝑂𝑂  𝑛𝑛𝑛𝑛𝑛𝑛 𝑄𝑄𝑄𝑄𝑄𝑄 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑎𝑎𝑎𝑎𝑎𝑎 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢  

   }  //𝐸𝐸𝐸𝐸𝐸𝐸 −𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙   

 

Condition (16) must hold for a dedicated CCC or B-CCC to bypass the worst 

case scenario: PU collision. 
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Control beacons assist the cluster on defining its limits, discover neighbors, their 

corresponding CCCs/B-CCCs and intermediate nodes. The latter undertake the task of 

overhearing the neighboring broadcast channels for updates. Inter-cluster 

communication is responsible for non-overlapping of CCC and B-CCC channels of 

neighboring clusters.  

In the meanwhile, the cluster nodes can receive assistance from the cloud. The 

clusters are self-organized locally (one-hop distance within the cluster as the 

communication is achieved via the CCC) with no global information is required but 

neighbor discovery. Dynamic broadcast channel avoids common control channel 

vulnerabilities, e.g., flooding attack sensitivity, and utilizes more efficiently time and 

space-varying spectrum opportunities. 

 

 

10.6. BROADCAST PHASES DESCRIPTION 

 

Initialization phase 

o SU senses the spectrum and creates List[], SINR[], List2[] 

Bandwidth[]and identifies broadcasting channels CCC and B-CCC 

 

o Sends a beacon (ID and channels list) at the CCC initiating the cluster 

and gets the first ID in the cluster. If there is no response in CCC, i.e., there are no 

other SUs proceeding with the next entry in the List2[]and performing the same steps 

to initiate a cluster establishment. In the latter case, the SUs that are present seem to 

be in a wider range of distance. SUs respond with beacons. 
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   Figure 10.3:  Broadcasting Channel Hopping phase  

 

 

o Waits for the beacons of all other SUs sharing the same available 

channels. Beacons also synchronize the cluster. 

 

 

Neighborhood Discovery 

 

o The SU scans the List[] channels for beacons of neighboring clusters at 

their CCCs 

 

o If he overhears a neighboring cluster’s CCC, notifies the cluster nodes 

that will be the intermediate node for that cluster with a beacon (ID, Channel-ID) and 

sends a (ID, CCC, B-CCC) at the CCC’ informing the neighbors of its cluster’s own 

CCC, while the neighboring cluster replies with the slot number, which is given to its 

neighbors to transmit the BROADCAST_SETUP message in order to guarantee 

collision avoidance at the receiver’s site. A broadcast packet is transmitted only once 

at the CCC of the cluster.  
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o If more than one nodes aim to be an intermediate node for a particular 

cluster, the one with the highest SINR is selected as an intermediate node. The 

intermediate node gives the identity to the neighbor cluster. 

 

 

 
Figure 10.4: Backup Channel Hopping due to PU activity change during broadcasting 

 

 

Idle phase 

 

The intermediate nodes overhear the neighboring cluster’s broadcast channel for 

changes. 

 

If the intermediate node is unavailable the cluster may obtain assistance from the 

cloud’s database. 
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The cluster’s nodes send beacons periodically to reaffirm the broadcast channel, 

List2[] and for cluster synchronization. Each cluster informs its neighbors of the slot so 

that they can transmit a BROADCAST_SETUP.  

 

Broadcast phase 

 

o The cluster waits for BROADCAST_SETUP control message 

 

o Updates table Bandwidth[] 

o If a BROADCAST_SETUP control message arrives to the cluster from 

more than one neighboring clusters, then chooses the neighboring cluster whose 

intermediate node has the higher SINR to receive the broadcast messages from.  

o Then informs the selected neighboring cluster with a beacon. 

 

o Waits for broadcast BEGIN(BN) message.  

 

o Broadcast data packets occupy all the slots of the CCC.  

 

o Transmitter sends BROADCAST_END to end broadcast. 

 

Broadcast Channel Hopping 

 

o If the CCC has to change, the cluster and namely a node denoted as cluster 

head initiates the CCC hopping process and runs the Algorithm for CCC and B-CCC 

selection.  

o Neighboring clusters cannot share the same CCC. The cluster that initiates 

first a channel as CCC, this cluster keeps this channel as CCC.  

o Neighboring clusters exchange List2[] and CCC, B-CCC information with 

beacons 

o If the algorithm for CCC and B-CCC selection has to be initiated during 

broadcasting then a node of the cluster i.e. the cluster head runs the algorithm while the 
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intermediate nodes of the cluster participate in the broadcasting. When the new CCC 

and B-CCC have been computed then the cluster informs its member and its neighbors 

with beacons whilst the slots assigned between the neighboring clusters remain the 

same. As soon as the broadcasting ends the cluster head initiates CCC and B-CCC 

selection process again but this time all of the cluster nodes will participate. 

 

The proposed Broadcasting Protocol achieves fast reclustering, minimum control 

overhead, utilizes the spectrum efficiently by integrating an optimal machine learning 

scheme. Non-overlapping Broadcasting paths which restrict multiple copies of broadcast 

data packets are set during broadcast data delivery idle periods with beacons providing 

stability to the network and avoiding delay and bandwidth overhead. Each broadcast packet 

is transmitted at CCC with no additional delay, overhead and collision avoidance at 

receiver’s side. Local optimums are reached. 

 

10.7. SIMULATION RESULTS 

 

The simulation results cover a comparative study with a multi-hop broadcast 

protocol for a CR Ad Hoc Network, namely, Bracer [126], which supports collision 

avoidance on the receiver’s side, and with CRBP [128], which does not support collision 

avoidance on the receiver’s side. [126] implements retransmissions of each data packet on 

multiple channels. Not all experiments involve [128] as it does not support collision 

avoidance, so [126] outperforms [128]. Simulation was performed with OMNET software.  

For the experiments, a three-hop network was considered with five channels and 

ten channels, with PU traffic following an exponential distribution. One- hop delay was set 

to 1ms. There are two main groups of experiments, those with a five-channel cognitive 

network and those with a ten-channel cognitive network. For each main group of 

experiments, there were two sub-groups of experiments: one that included experiments that 

were conducted with various PU traffic scenarios and one that included experiments with 

various data packet lengths.  
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The average broadcast ratio, mean delay, broadcast overhead and collision rate 

were tested against a) six PU traffic scenarios for exponential distributed traffic: 1) 0.2s, 2) 

0.4s and 0.5s, 3) 0.5s, 4) 0.5s and 0.7s, 5) 0.6s and 0.8s, 6) 0.7s and 0.9s; and b) five 

scenarios of different packet lengths for 0.5s exponential PU traffic. The BEGIN packet 

length was 200 bits, and the broadcast data packet length was 2000bits for the experiments 

where broadcast ratio, overhead, mean delay and collision rate were tested against different 

PU traffic scenarios.  

For the proposed protocol, the broadcast burst following each BEGIN message was 

fourteen and twelve data packets. For [127], the parameter w=3 in the five-channel 

experiments; and w=4 in the ten-channel experiments.  

The proposed protocol transmits only once each packet, whilst [127] retransmits 

the same packet to multiple channels as the receivers are unsynchronized which is a 

considerable overhead. This is the reason that the proposed protocol outperforms [8]. In 

fact, the unsynchronized receivers at [127] cannot avoid collision which increase the time 

that a packet requires to reach a receiver and the overhead as multiple copies have to be 

resent. Mean delay, collision ration and overhead were tested only for the proposed 

protocol and [127] as they are both support collision avoidance at receiver’s side, i.e. [127] 

outperforms [129]. Broadcast ration experiments included and [10] as [10] could provide 

good results on this experiment. 

The experiments in Figure 10.8 and Figure 10.13 show that the proposed protocol 

is more tolerant to packet lengths increases than [127] as in [127] retransmissions occur 

blindly.   The proposed protocol learns the PU traffic and utilizes longer spectrum 

vacancies more efficiently for the increasing broadcast data packet lengths.   

Figure 10.5: Broadcast ration for six PU traffic scenarios and five channels 
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          Figure 10.5: Broadcast ration for six PU traffic scenarios and five channels 

 

 
 

          Figure 10.6: Collision Ratio for six PU traffic scenarios and five channels 
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Figure 10.7: Broadcast Ration for various packet lengths and five channels 

 

 

  

 
        Figure 10.8: Mean Delay for five packet lengths and five channels 
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    Figure 10.9: Collision Ratio for five packet lengths and five channels 

 
 

 
Figure 10.10: Overhead for six PU traffic scenarios and ten channels 
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Figure 10.11: Overhead for five packet lengths and ten channels 
 

 
 

Figure 10.12: Mean Delay for six PU traffic scenarios and ten channels 
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Figure 10.13: Mean Delay for five packet lengths and ten channels 

 

 
Figure 10.14: Broadcast Ration for five packet lengths and ten channels 
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Figure 10.15: Broadcast Ratio for six PU traffic scenarios and ten channels 

 

 

 

 The broadcast ratio, i.e., the percentage of the sender’s generated packets that reach 

the receiver node for each hop, is measured, as well as the mean delay, the overhead, i.e., 

the rate of outgoing and incoming bits (bits/bits) in a node, and the collision rate. The 

broadcast ratio and overhead measurements in experiments justify the difference in mean 

delay for various PU traffic scenarios and various data packet lengths as well; A priori 

broadcasting path establishment, allows rapid broadcasting in a PU environment. As traffic 

comes in bursts, the updates interval of channel conditions are long enough not to affect 

the protocol’s performance. 

 

10.8. CONCLUSION 

 

The proposed Broadcast Protocol achieves local optimums in channel sensing and 

bit rate maximization without global information. Collision avoidance at receiver’s side is 
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ensured saving energy and resources for the network. An optimal Machine learning 

Scheme predicts the best channel availability for broadcasting avoiding collisions and 

minimizing CCC hopping due to PUs’ arrival which is energy consuming. The network 

nodes can be unmovable but due to fast reclustering the protocol can be applied to movable 

nodes. Fast reclustering is feasible via relegation of computations to the cluster and its 

neighboring clusters level. The proposed protocol outperforms existing literature which 

supports Collision avoidance at receiver’s side and provides QoS without degradation.  
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Chapter 11 
 
 
 

SECURITY ISSUES IN COGNITIVE RADIO 
NETWORK AND CLOUD 

 
Coordination without Collaboration in 
Imperfect Games: the Primary User 
Emulation Attack Example  
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In cognitive radio networks, an adversary transmits signals with characteristics 

that emulate those of primary users to prevent secondary users from transmitting. Such 

an attack is called a primary user emulation (PUE) attack. In this research work [141], 

a game theoretical framework is proposed to study the primary user emulation attack 

(PUEA) on cognitive radio nodes as a game of imperfect information between the 

Secondary Users (SUs) who do not exchange game information between them against 

the adversaries generating the PUEA and to define optimal strategies with minor 

computational demands. When the SU challenges the PU Emulator successfully, 

updating the information on a Cloud-based database enables the rest of the network to 

know the identity of the PUE. As the game evolves, the grand coalition of the secondary 

users acts as one without collaboration against the PU Emulator playing a winning 

strategy. The performance of the game for optimal strategies is equal to the performance 

of the collaborative methods for PUEA detection. 

 

 

11.1 INTRODUCTION  

 

  Cognitive radio technology was introduced to answer the spectrum scarcity 

problem by enabling an unused or under-utilized spectrum to be used by users who are 

not licensed (secondary users-SUs) whenever the licensed users (primary users-PUs) 

vacate the spectrum. Although the SUs must periodically sense the spectrum, find the 

best spectrum band, dynamically access the spectrum - Dynamic Spectrum Access 

(DSA) and vacate it within a certain time upon the return of the primary user, the 

sensing mechanisms for PU detection do not guarantee a 100% accuracy. This 

vulnerability makes the cognitive network prone to Denial of Service (DoS) attacks, 

namely, Primary User Emulation Attacks (PUEAs). The selfish PUEA behavior is 

studied, i.e., when the adversaries do not act maliciously but want to gain the spectrum 

selfishly.   

Actually, the scheme that describes the coexistence with the primary network 

fall into three classes: Underlay, Overlay and Interweave. In the underlay approach, 

simultaneous secondary and primary transmissions are allowed as long as the 

interference level at the primary user side remains acceptable. In the overlay approach, 
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primary users share knowledge of their signal codebooks and messages with the 

cognitive users. Finally in the interweave approach, cognitive users sense the spectrum 

in different dimensions to find the abundant spectrum gaps.  Hybrid schemes using a 

combination of the aforementioned approaches improve the efficiency of spectrum 

sharing and maximize the transmission rate once a spectrum opportunity is detected. 

Due to the nature of dynamic spectrum access, the CR network became 

vulnerable to attacks by hostile users regarding all theits main functionalities such as 

spectrum sensing, spectrum mobility, spectrum sharing and spectrum management.  

The typical attacks on CR networks may include Primary User Emulation Attacks, 

Denial of Service (DoS) attacks, system penetration, repudiation, spoofing, 

authorization violation, malware infection, and data modification. These attacks cause 

potential threats to the information confidentiality, integrity and availability of the CR 

network. The Primary User Emulation Attack is considered here. 

This paper introduces a method beginning from an original imperfect game of 

non-partial observations of the players without collaboration/cooperation that 

eventually evolves to a perfect game with coordination between the players such that 

they make the same decisions without exchanging messages and then apply the 

formation to PUEA Detection problem. The PUEs will have a serious penalty for PU 

Emulation, if detected by the PU. The grand coalition of the SUs achieves coordination 

as the game evolves and acts as one SU player - without collaboration - who plays a 

zero-sum game with the PUE. It is considered one arrival of PUE each time. Perfect 

recall is also considered, i.e., the nodes are aware of all of their past actions and 

observations. The optimal strategy of the zero-sum game is calculated, and the value of 

the game is also calculated. Upon successful detection of a PUE a Cloud-based database 

is updated such that the rest of the network knows the identity of the attacker. The SU 

nodes connect to the Cloud-based database periodically. 

The real PUE transmission probability is eliminated over the range of 0.5% to 

1.3% for the PUE optimal strategy, the per SU basis high values up to 99%, while the 

PUE detection negative reaches 6%. The rest of the paper is organized as follows. 

Sections I and II are an introduction to the work reported in this paper and related work 

on PUE Attack, respectively. Section III is a thorough description of the system model, 

particularly subsection A, which is a presentation of Information Tracking in Games. 

Subsection B is a presentation of Epistemic Unfolding with Knowledge Sets and 

subsection C introduces the new game of imperfect information, which evolves, while 
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playing, to a game of perfect information based on Information Tracking and Epistemic 

Unfolding with Knowledge Sets. The new game is applied to the PUE problem, which 

is solved, and optimal strategies are computed. The results for optimal strategies are 

similar to the collaborative method results for PUE Detection. 

 

 

11.2 RELATED WORK 

 

 In [142], the authors study imperfect games and introduce the constraints for a 

safety game based only on the observations of the players, but they do not define best 

strategies. Best strategies and perfect coordination construction are introduced in [143] 

for imperfect games of players with partial observations - the observations of the game 

by the SUs are not partial. This limitation is overcome by combining both [142] and 

[143], extending them such that a new type of game is introduced that is not dependent 

on the states of the game but on the knowledge sets (knowledge gained) states that are 

extracted by the analysis of the game according to [142] and then by applying the 

Deterministic Finite Automaton of Knowledge states to play a winning strategy.  

Most studies on PUE Detection are location-based and use collaboration among 

the SU nodes. In [144], the authors compare the transmission origin with the previous 

known-PU position, and we identify similar approaches in [145], [146]. A coordinated 

decision is reached in [147] and in [148], [149] the position of the PUE is estimated. In 

[150], the authors use the phase noise of a local oscillator as a fingerprint to differentiate 

the incumbent signals from the attacking ones. Exploiting the collaboration between the 

nodes and the detection results reaches 99%. In [151], the signal activity pattern of the 

PU is used to detect a Primary User Emulation Attack. Coordination between one-hop 

nodes is used for PUE Detection in COOPON that reaches 87% for successful detection 

[152]. In [153], a two-level database-assisted detection approach is proposed to detect 

PUE attacks. Collaboration is the parameter that contributes more in detection [10]. 

In [154], the PUE Detection is formulated as a game, and a belief factor is 

introduced to learn the state of the primary user that is compared to a Bayesian belief 

estimation. The former achieves PU detection approximately 95.55%-95.29%, and the 

latter achieves PU detection approximately 83.57%-82.21%. The belief factor is 

updated with the information gathered by policy nodes, i.e., not real-time. The game 
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theory is used to detect the selfish attacks [155] in the system. Yu-Wei Chan et al. [156] 

describe the payoff problems between the users. In [157], the authors present a constant 

sum differential game approach to mitigate the PUE attack. Based on the assumption 

that the PUE attacker has less energy than the PUs, they look for the optimal sensing 

strategy of SU. The Nash equilibrium solution is obtained. The authors in [158] 

formulate a non-zero-sum game with incomplete information for selfish and malicious 

PUE attacks without coordination to be achieved between the SU players at some point 

with no schedule for network parameter update while playing.   In [159], they neither 

use collaboration nor past-PUE log information, and they achieve probability detection 

and false alarm probabilities equal to 90% and 10%, respectively.  A Cloud service for 

strong centralized trust management is introduced in [160]. 

This paper proposes a model for achieving coordination without collaboration 

in imperfect game systems with non-partial observations, something that holds for 

Cognitive Radio Network. This model is introduced in this paper and is later applied in 

the well-known PUE Attack Detection problem in a non-cooperative Cognitive Radio 

Network. To the best of our knowledge, this paper is the first to introduce coordination 

without collaboration between SUs in a CRN for handling PUEA. The system has high 

performance. The secondary nodes must follow the same strategy based on the well-

known penalties and gains that depend on the network conditions and are retrieved 

periodically from the Cloud database. 

 

 

11.3 SYSTEM MODEL  

 

11.3.1. Distributed Games and Information Tracking 

 

In [142], the authors address the fundamental problem in distributed systems of 

decomposing a global winning strategy such that the individual agents operate on the 

information they can access. The information tracking on game graphs of games with 

imperfect information and particularly the unwrapping of the information sets Ki in a 

graph game with finite tracking is presented. The authors decide on a deterministic finite 

automaton construction of information sets that satisfies winning conditions on a game 
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graph, and they add a choice function si(K), thus implementing a distributed winning 

strategy. The analysis does not include optimal strategies.   

A game with perfect information is a game where a player knows the state of 

the play at any stage. If the player does not, we speak of a game with imperfect 

information. Imperfect information arises naturally in computational models as an 

effect of locality of components, internal variables, privacy constraints, or incomplete 

specifications. One highly non-trivial issue regarding uncertainty in computational 

systems is whether the different players have the means to synchronize their moves. 

The general approach of solving games with imperfect information in the synchronous 

setting is the power-set construction proposed in for solving games for one player 

against nature [142]. 

 

 

11.3. 2. Perfect Coordination in Imperfect Games 

 

 

In [142], the authors transform an n-player game 𝐺𝐺 with imperfect information 

into a two-player zero-sum game 𝐺𝐺+
+ with perfect information and define the best 

strategies such that the grand coalition in 𝐺𝐺 has a winning strategy against nature if, and 

only if, the first player has a winning strategy in 𝐺𝐺+; winning strategies of the first player 

in 𝐺𝐺 + can be translated uniformly into joint winning strategies of the grand coalition in 

𝐺𝐺 and vice versa. To describe the knowledge acquired by the players during a play, they 

use epistemic models. An epistemic model over 𝐺𝐺 is a Kripke structure K = (K, (𝑃𝑃𝑃𝑃) 𝜐𝜐 ∈

 𝑉𝑉, (∼ 𝑖𝑖)𝑖𝑖 < 𝑛𝑛) where (𝑃𝑃𝑃𝑃) 𝜐𝜐 ∈  𝑉𝑉 is a transition of K, and each ∼i is an equivalence 

relation on K such that, for all 𝑘𝑘,𝑘𝑘’ ∈  K, 𝑖𝑖𝑖𝑖 𝑘𝑘 ∼ 𝑖𝑖 𝑘𝑘’, then 𝜐𝜐𝑘𝑘 ∼ 𝑖𝑖 𝜐𝜐𝑘𝑘’, with υk 

denoting the unique element from 𝑉𝑉 such that 𝑘𝑘 ∈  𝑃𝑃𝑃𝑃𝑘𝑘. 

 

 

11.3.4. Epistemic Unfolding with Knowledge Sets 

 

This paper proposes a system for solving an imperfect game 𝒢𝒢 in which players 

initially may pass through states of perfect information. The epistemic unfolding [142] 

is extended, and best strategies are defined. There are two phases for reaching the 
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solution. In the first phase, the initial game graph 𝐺𝐺 is unraveled, and the tracking of 𝐺𝐺 

is extracted to identify, if possible, and compute the Knowledge Sets and a finite-state 

automaton and, consequently, the distributed winning strategy. In the second phase, we 

compute the Kripke structures of the Knowledge Sets, and we perform epistemic 

unfolding in the new game in which the states are the Knowledge Sets of the 𝐺𝐺. We 

transform the game then to an equivalent one and inquire whether it is possible for the 

grand coalition to play a game of perfect information where

 
 

 

 

 

 

 

all players play a winning strategy and act as one, i.e., they are coordinated 

without cooperation, i.e., message exchange. 

It is necessary to provide some definitions for the imperfect information games, 

as well as several theorems and lemmas that have been considered as preliminaries for 

the epistemic unfolding with knowledge set solving of a game with imperfect 

information. 

Figure 11.1: Epistemic Unfolding of an imperfect information game with 
Player 1’s observations {A,B} and Player 2’s observations {0,1}. 
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We consider a game of n players against nature. We consider a set Α𝑖𝑖of actions 

available to player 𝑖𝑖 and a set of observations Β𝑖𝑖  for player   𝑖𝑖.𝐴𝐴   is the set of action 

profiles and Β the set of observation profiles.  Next, a game graph is a structure 𝐺𝐺 =

 (⋁,𝛥𝛥, (𝛽𝛽𝑖𝑖) 𝑖𝑖 <  𝑛𝑛  with V the set of positions, Δ the move relationship ∆⊆ ⋁ × Α × ⋁ 

and an observation function 𝛽𝛽𝑖𝑖: ⋁⟶ 𝐵𝐵𝑖𝑖 for each player 𝑖𝑖 < 𝑛𝑛.  G is a game tree if 

(⋁,𝛥𝛥) is a tree. A play 𝜋𝜋 starting from initial position 𝜐𝜐0 ∈ ⋁ in 𝐺𝐺 is an infinite sequence 

of actions and positions 𝜋𝜋 = 𝜐𝜐0,𝛼𝛼0, 𝜐𝜐1, 𝜐𝜐1, … where (𝜐𝜐𝑙𝑙,𝛼𝛼, 𝜐𝜐𝑙𝑙+1) ∈ Δ, for all 𝑙𝑙 ≥ 0. We 

can extend observations to 𝛽𝛽𝑖𝑖(𝜋𝜋) = 𝛽𝛽𝑖𝑖(𝜐𝜐0),𝛽𝛽𝑖𝑖(𝜐𝜐1), … Thus, a strategy for a player 𝑖𝑖 is 

a function 𝑠𝑠𝑖𝑖: (⋁𝐴𝐴) ∗ ⋁ ⟶ 𝐴𝐴𝑖𝑖 such that 𝑠𝑠𝑖𝑖(𝜋𝜋) = 𝑠𝑠𝑖𝑖(𝜋𝜋′) for plays 𝜋𝜋,𝜋𝜋′ if 𝛽𝛽𝑖𝑖(𝜋𝜋) =

𝛽𝛽𝑖𝑖(𝜋𝜋′). A play 𝜋𝜋 follows strategy 𝑠𝑠𝑖𝑖 ∈ 𝑆𝑆𝑖𝑖 if 𝛼𝛼𝑙𝑙𝑖𝑖 = 𝑠𝑠𝑖𝑖(𝜐𝜐0,𝛼𝛼0, 𝜐𝜐1, … ,𝛼𝛼𝑙𝑙−1, 𝜐𝜐𝑙𝑙) for every 

𝑙𝑙 ≥ 0.  

A winning condition over a game graph 𝐺𝐺 is a set 𝑊𝑊 ⊆ (⋁𝐴𝐴)𝜔𝜔 of plays. A game 

𝒢𝒢  consists of its game graph and a winning condition. A play 𝜋𝜋 is winning if 𝜋𝜋 ⊆ 𝑊𝑊.   

A strategy 𝑠𝑠𝐼𝐼 is a winning strategy if all outcomes are winning. A coloring function   

(𝐺𝐺,𝛥𝛥, (𝛽𝛽𝑖𝑖)𝑖𝑖<𝑛𝑛, 𝛾𝛾) is available for games such that we can say that a coloring is 

observable by player 𝑖𝑖 if 𝛽𝛽𝑖𝑖(𝜐𝜐) ≠ 𝛽𝛽𝑖𝑖(𝜐𝜐′). Then, the coloring holds that 𝛾𝛾(𝜐𝜐) ≠ 𝛾𝛾(𝜐𝜐′).  

A safety game is a game with two colors observable to all players 𝛾𝛾:⋁ ⟶

{𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛}  such that 𝑊𝑊 = {𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝜔𝜔}, i.e., a play 𝜋𝜋 is winning if it avoids all 

“𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛” colored positions. Α bisimulation between two game graphs 𝐺𝐺 and 𝐺𝐺′ is a 

binary relation Ζ ⊆ ⋁ × ⋁′ that preserves the colors and the observations. If two game 

trees Τ and Τ′ are bisimilar, then the games (Τ,𝑊𝑊) and (Τ′,𝑊𝑊)are equivalent for every 

winning condition   𝑊𝑊. The unravelling of a game graph 𝐺𝐺 from a position 𝜐𝜐0 is a game 

tree Τ(𝐺𝐺, 𝜐𝜐0) where the set of positions consists of all initial plays 𝐺𝐺, 𝜐𝜐0, the move 

relationship consists of edges (𝜋𝜋,𝛼𝛼,𝜋𝜋′) for all plays 𝜋𝜋 = 𝜐𝜐0,𝛼𝛼0, … , 𝜐𝜐𝑙𝑙 and 𝜋𝜋′ =

𝜐𝜐0,𝛼𝛼0, … , 𝜐𝜐𝑙𝑙,𝛼𝛼𝑙𝑙, 𝜐𝜐𝑙𝑙+1with 𝛼𝛼𝑙𝑙 = 𝛼𝛼, the observation function of Player 𝑖𝑖 maps every play 

𝜐𝜐0,𝛼𝛼0, … , 𝜐𝜐𝑙𝑙 to 𝛽𝛽𝑖𝑖(𝜐𝜐𝑙𝑙), and the coloring function maps every 𝜐𝜐0,𝛼𝛼0, … , 𝜐𝜐𝑙𝑙 to 𝛾𝛾𝑖𝑖(𝜐𝜐𝑙𝑙).  

Therefore, the projection Τ(𝐺𝐺, 𝜐𝜐0) ⟼ 𝐺𝐺, 𝜐𝜐0  sending every initial play to its last position 

defines a bisimulation between  Τ(𝐺𝐺, 𝜐𝜐0)  and 𝐺𝐺, 𝜐𝜐0.  Extending this projection to entire 

plays allows us to view any winning condition 𝑊𝑊 over a game graph as a winning 

condition over its unravelling and speak of (Τ(𝐺𝐺, 𝜐𝜐0),𝑊𝑊) as the unravelling of the game 

(𝐺𝐺, 𝜐𝜐0,𝑊𝑊) [142].   
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The indistinguishability relation of Player 𝑖𝑖 on game tree 𝒯𝒯 = (𝑇𝑇,𝛥𝛥, (𝛽𝛽𝑖𝑖)𝑖𝑖<𝑛𝑛 is 

defined as 

 

𝜋𝜋~𝑖𝑖𝜋𝜋′ if  𝑎𝑎𝑖𝑖(𝜋𝜋) = 𝛼𝛼𝑖𝑖(𝜋𝜋′) and  𝛽𝛽𝑖𝑖(𝜋𝜋) = 𝛽𝛽𝑖𝑖(𝜋𝜋′). 

 

The indistinguishability relation of Player 𝑖𝑖 on game graph 𝐺𝐺, 𝜐𝜐0 is his 

indistinguishability relation on the unravelling of 𝐺𝐺, 𝜐𝜐0 [142]. The indistinguishability 

relation on a game tree 𝒯𝒯 satisfies perfect recall. The extensive form 𝐸𝐸𝐸𝐸𝐸𝐸(𝐺𝐺, 𝜐𝜐0) of a 

game graph 𝐺𝐺, 𝜐𝜐0 is the extensive form obtained by unravelling the game graph from 

the initial position 𝜐𝜐0 and expanding the game graph with the indistinguishability 

relations of all players on the unravelling [142]. 

We consider a game tree 𝒯𝒯 = (𝑇𝑇,𝛥𝛥, (𝛽𝛽𝑖𝑖)𝑖𝑖<𝑛𝑛, 𝛾𝛾) and the   ≃maximal 

bisimulation relationship over its expansion (𝒯𝒯, (~𝑖𝑖)𝑖𝑖≤𝑛𝑛 ) with the indistinguishability 

relations of all players. The tracking 𝑇𝑇𝑇𝑇(𝒯𝒯) of  𝒯𝒯 is a game graph  𝐺𝐺 =

(⋁ ,𝛥𝛥′, (𝛽𝛽′𝑖𝑖)𝑖𝑖<𝑛𝑛, 𝛾𝛾′) with positions that correspond to the equivalence classes of   ≃, 

𝛥𝛥′ ≔ {[𝜋𝜋],𝑎𝑎, [𝜋𝜋′]: (𝜏𝜏, 𝑎𝑎, 𝜏𝜏′) ∈ 𝛥𝛥  

Figure 11.2: Epistemic Unfolding of an imperfect information game with Player 
1’s observations {A,B} and Player 2’s observations: Computation of 𝑇𝑇𝑇𝑇’𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
{0,1}. 
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for any 𝜏𝜏 ≃ 𝜋𝜋 and 𝜏𝜏′ ≃ 𝜋𝜋′},𝛽𝛽′𝑖𝑖([𝜋𝜋]) = 𝛽𝛽𝑖𝑖(𝜋𝜋), 𝛾𝛾′([𝜋𝜋]) = 𝛾𝛾(𝜋𝜋) and initial 

position that corresponds to the root of the 𝒯𝒯. The tracking of a game graph is the 

tracking of its unravelling, and each game is equivalent to its tracking [2].  

We must define knowledge set  𝒦𝒦𝑖𝑖  also as a partition induced by ≈𝑖𝑖 in 

𝐸𝐸𝐸𝐸𝐸𝐸(𝒢𝒢, 𝜐𝜐0). Thus, the 𝒦𝒦𝑖𝑖(𝜋𝜋) of a play 𝜋𝜋 is a unique set 𝒦𝒦 ∈ 𝒦𝒦𝑖𝑖 with 𝜋𝜋 ∈ 𝒦𝒦 that reflects 

the knowledge the player must acquire to play a safety game on 𝒢𝒢, 𝜐𝜐0. Then, by 

expanding the knowledge set from the extensive form to the tracking of the game by 

setting as  𝒦𝒦𝑖𝑖(𝜐𝜐) 𝑡𝑡he set 𝒦𝒦(𝜋𝜋) for any play ending at 𝜐𝜐 so that a player observes its 

current position to be sufficient. For all initial plays 𝜋𝜋, 𝜏𝜏 ending at the same node in 

𝑇𝑇𝑟𝑟(𝐺𝐺, 𝜐𝜐0), we have 𝒦𝒦𝑖𝑖(𝜋𝜋) = 𝒦𝒦𝑖𝑖(𝜏𝜏) [142].  

For every extensive game, if the grand coalition has a winning strategy, then it 

has a winning strategy such that 𝑠𝑠𝑖𝑖(𝑥𝑥) = 𝑠𝑠𝑖𝑖(𝑦𝑦) whenever 𝑥𝑥 ≈𝑖𝑖 𝑦𝑦 for all 𝑖𝑖 < 𝑛𝑛. 

If the tracking of a game is finite, then there is according to [142] a finite-state 

automaton over Α𝑖𝑖 × Β𝑖𝑖  for every player 𝑖𝑖 that recognizes the knowledge set 𝒦𝒦(𝜋𝜋) of 

any initial play 𝜋𝜋 = 𝜐𝜐0,𝛼𝛼0, 𝜐𝜐1 ,𝛼𝛼1, … ,𝛼𝛼𝑙𝑙 , 𝜐𝜐𝑙𝑙 for the action-observation sequence 

𝛼𝛼0𝑖𝑖 ,𝛽𝛽𝑖𝑖(𝜐𝜐1),𝛼𝛼1𝑖𝑖 ,𝛽𝛽𝑖𝑖(𝜐𝜐2), … ,𝛼𝛼𝑙𝑙−1𝑖𝑖 ,𝛽𝛽𝑖𝑖(𝜐𝜐𝑖𝑖).  If we add a choice function to the finite-state 

automaton 𝑠𝑠𝑖𝑖(𝒦𝒦) at every state 𝒦𝒦 ∈ 𝒦𝒦𝑖𝑖, then we have a distributed winning strategy. 

 

   As soon as we have computed the finite-state automaton of the initial game of 

imperfect information 𝒢𝒢, we will compute the Kripke structures of the Knowledge Sets 

that have been computed in phase one. Kripke structures hold all the information 

obtained by the players to play a safety game each time, i.e., to reach a winning 

condition.  
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An epistemic model of a game 𝒢𝒢 is a Kripke structure 𝔎𝔎 = (𝕂𝕂, (𝑃𝑃𝜐𝜐)𝜐𝜐∈⋁ ,(~𝑖𝑖)𝜄𝜄<𝜈𝜈) 

where (𝑃𝑃𝜐𝜐)𝜐𝜐∈⋁ is a partition of  𝕂𝕂 and each ~𝑖𝑖 is an equivalence relationship on 𝕂𝕂 such 

that for all 𝑘𝑘1,𝑘𝑘′1 ∈ 𝕂𝕂 if 𝑘𝑘1~𝑖𝑖𝑘𝑘′1, 𝑡𝑡hen 𝜐𝜐𝑘𝑘1~𝑖𝑖𝜐𝜐𝑘𝑘′1 with 𝜐𝜐𝑘𝑘1denotes the unique element 

from ⋁ such that 𝑘𝑘1 ∈ 𝑃𝑃𝜐𝜐𝜅𝜅1 . 

 𝔎𝔎 will connect with ~ ∪= ∪𝑖𝑖 ~𝑖𝑖.  A function 𝑓𝑓 is an homorphism from 𝔎𝔎 to 𝔎𝔎′ 

for  

𝔎𝔎′ = (𝕂𝕂′, (𝑃𝑃′𝜐𝜐)𝜐𝜐∈⋁ , (~′𝑖𝑖)𝑖𝑖<𝑛𝑛  if 𝑃𝑃𝜐𝜐(𝑘𝑘1) ⟹ 𝑃𝑃′𝜐𝜐(𝑓𝑓(𝑘𝑘1)  

and 𝑘𝑘1~𝑖𝑖𝑘𝑘′1 ⟹ 𝑓𝑓(𝑘𝑘1)~′𝑖𝑖𝑓𝑓(𝑘𝑘′1), the models 𝔎𝔎 ≈1  𝔎𝔎′ are homomorphically 

equivalent. and the composition of homomorphisms is homomorphism.  

The 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 of an epistemic model 𝔎𝔎 is a ′: 𝔎𝔎 ≈1 𝔎𝔎′ with the minimal number of 

elements, and the 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is unique up to homomorphism. To present the full knowledge 

that the players have at a certain stage of a play, we unfold the game 𝒢𝒢 and at the same 

time retain the information in the Kripke structures of an epistemic model.  

If (𝛼𝛼𝑘𝑘1)𝑘𝑘1∈𝕂𝕂 be a tuple of actions 𝑎𝑎𝑘𝑘1 ∈ 𝐴𝐴 compatible with the players’ 

knowledge, i.e., for every 𝑖𝑖 < 𝑛𝑛  and for all 𝑘𝑘1,𝑘𝑘′1 ∈ 𝕂𝕂 with 𝑘𝑘1~𝑖𝑖𝑘𝑘1,, (𝛼𝛼𝑘𝑘1)𝑖𝑖 = (𝛼𝛼𝑘𝑘′1)𝑖𝑖.   

By updating  

 
Figure 11.3: Game tree when there are no collisions between the PU-

PUE 
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𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈(𝔎𝔎, �𝑎𝑎𝑘𝑘′1)𝑘𝑘1∈𝕂𝕂� ≔ (𝕂𝕂′, (𝑃𝑃𝜐𝜐)𝜐𝜐∈⋁ ,(~𝜄𝜄)𝜄𝜄<𝑛𝑛   

where 𝕂𝕂′ = {𝑘𝑘1𝜐𝜐|𝑘𝑘1 ∈ 𝕂𝕂,𝑘𝑘1 ∈ 𝑃𝑃𝜓𝜓, (𝜓𝜓,𝑎𝑎𝑘𝑘1𝜐𝜐) ∈ 𝛥𝛥},  

  𝑃𝑃𝜐𝜐 = {𝑘𝑘1𝜐𝜐| 𝑘𝑘1𝜐𝜐 ∈ 𝕂𝕂′}, 𝑘𝑘1𝜐𝜐~𝑖𝑖 𝑘𝑘′1𝜐𝜐′ ⟺ 𝑘𝑘1~𝔎𝔎
𝑖𝑖 𝑘𝑘′1, 𝜐𝜐~𝐺𝐺

𝑖𝑖 𝜐𝜐′ 

   Τhe epistemic successor of 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝔎𝔎, (𝛼𝛼𝑘𝑘1)𝑘𝑘∈𝕂𝕂) 𝑐𝑐onsists of the ~ ∪ connected 

components of 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 (𝔎𝔎, (𝛼𝛼𝑘𝑘1)𝑘𝑘1∈𝕂𝕂). The initial element is the trivial structure 

{𝜐𝜐0,𝔎𝔎0 = ({𝜐𝜐0}, (𝑃𝑃𝜐𝜐)𝜐𝜐∈⋁, �~𝑖𝑖)𝑖𝑖<𝑛𝑛,𝑃𝑃𝜐𝜐0 = {𝜐𝜐0},𝑃𝑃𝜓𝜓 = ∅,𝜓𝜓 ≠ 𝜐𝜐0, ~𝑖𝑖 = {(𝜐𝜐0, 𝜐𝜐0)�.  

Therefore, with the epistemic unfolding, what we get is a game: 

 𝑇𝑇𝑟𝑟′(𝐺𝐺) ≔ (⋁ 𝑡𝑡 ,𝛥𝛥𝑡𝑡, (~𝑖𝑖)𝑖𝑖<𝑛𝑛,𝑊𝑊𝑡𝑡)  

• where 𝑉𝑉𝑡𝑡 is the set of all epistemic models 𝔎𝔎 over G with 𝕂𝕂 ⊆

𝑉𝑉∗ 

• 𝛥𝛥𝑡𝑡 = {(𝔎𝔎, �𝛼𝛼𝑘𝑘1)𝑘𝑘1∈𝕂𝕂,𝔎𝔎′�  (𝛼𝛼𝑘𝑘1)𝑘𝑘1∈𝕂𝕂 ∈  𝐴𝐴|𝕂𝕂|,𝔎𝔎′ ∈

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁( 𝔎𝔎, �𝛼𝛼𝑘𝑘1)𝑘𝑘1∈𝕂𝕂�} 

• 𝔎𝔎0,𝔎𝔎1, … ∈ 𝑊𝑊𝑡𝑡 if and only if for each sequence π = 𝑘𝑘10 ,𝑘𝑘11,..   

where  𝑘𝑘1𝑙𝑙 ∈ 𝔎𝔎𝑙𝑙 ,             𝑘𝑘1𝑙𝑙+1 = 𝑘𝑘1𝑙𝑙𝜐𝜐  for some υ with (𝜐𝜐𝑘𝑘1𝑙𝑙 ,𝛼𝛼, 𝜐𝜐 ∈ 𝛥𝛥   for some 

𝛼𝛼, 𝜐𝜐𝑘𝑘10 , 𝜐𝜐𝑘𝑘11 … .∈ 𝑊𝑊. 

 

The winning condition for 𝑇𝑇𝑇𝑇′(𝐺𝐺) requires that all paths through the sequence 

of Kripke structures be winning in the original game. In Figure 1, an example of 

epistemic unfolding is shown. The grand coalition has a winning strategy in the original 

game 𝒢𝒢, 𝜐𝜐0 if and only if the grand coalition has a winning strategy in 𝑇𝑇𝑟𝑟′(𝒢𝒢),𝔎𝔎0 [142].   

If the image of homomorphism in this tracking is the 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, i.e., the minimum number 

of elements, and we replace the repeated structures by their 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, we obtain  𝑇𝑇𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝒢𝒢)
′ , 

which is a game with perfect information.  

Starting from the game 𝒢𝒢 with observable winning conditions, i.e., when a 

player reaches the winning condition, all the others will be informed, we get the game 

𝑇𝑇𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝒢𝒢)
′ , and we solve the perfect information game 𝑇𝑇𝑟𝑟′_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝒢𝒢) instead (an example 

of 𝑇𝑇𝑇𝑇′_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is shown in Figure 11.2). 

The knowledge-sets   𝒦𝒦𝑖𝑖  are the full descriptions of the knowledge that players 

have at a certain stage of the play while the observations     𝛽𝛽𝑖𝑖(𝜐𝜐) 𝑜𝑜f the player are not.      

    We define the Kripke structure based on the Knowledge Sets computed in 

phase one as follows: 
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 𝔎𝔎 = (𝕂𝕂, (𝑃𝑃𝒦𝒦𝑖𝑖) 𝒦𝒦𝑖𝑖∈𝒦𝒦,(~𝑖𝑖)𝜄𝜄<𝑛𝑛) where (𝑃𝑃𝒦𝒦𝑖𝑖)𝒦𝒦𝑖𝑖∈𝒦𝒦 is a partition 𝕂𝕂, and each ~𝑖𝑖 is 

an equivalence relationship on 𝕂𝕂 such that for all 𝑘𝑘1, 𝑘𝑘′1 ∈ 𝕂𝕂 if 𝑘𝑘1~𝑖𝑖𝑘𝑘′1, 𝑡𝑡hen 

𝒦𝒦𝑖𝑖
𝑘𝑘1~𝑖𝑖𝒦𝒦𝑖𝑖

𝑘𝑘′1 with 𝒦𝒦𝑖𝑖
𝑘𝑘1denoting the unique element from 𝒦𝒦 such that 𝑘𝑘1 ∈ 𝑃𝑃𝒦𝒦𝑖𝑖

𝑘𝑘1
.  

We perform the epistemic unfolding and compute the 𝑇𝑇𝑇𝑇′(𝒢𝒢𝒦𝒦).  The Kripke 

structures of the knowledge sets of the players hold the knowledge of the current state of the 

game, and 𝑇𝑇𝑇𝑇′(𝒢𝒢𝒦𝒦) is thus a game of perfect information, i.e.: 

~𝑖𝑖 = {(𝔎𝔎,𝔎𝔎)|𝔎𝔎 ∈ 𝑉𝑉𝑡𝑡} 

The winning condition for 𝑇𝑇𝑇𝑇′(𝒢𝒢𝒦𝒦) requires that all paths through the sequence 

of the Kripke structures be winning in the original game 𝒢𝒢𝒦𝒦 that holds as the finite-

state automaton assures a winning condition.  

If the wining conditions are observable in the initial game 𝒢𝒢, i.e., it is a safety 

game with two colors observable to all players 𝛾𝛾:⋁ ⟶ {𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛} such that 

𝑊𝑊 = {𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝜔𝜔}, then it holds that 𝛾𝛾:𝒦𝒦 ⟶ {𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛} such that 𝑊𝑊 = {𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝜔𝜔}.  

Since epistemic models are connected ~ ∪, and the coloring is constant for a position 

𝔎𝔎 ∈ 𝑇𝑇𝑟𝑟′(𝒢𝒢𝒦𝒦), we have  𝛾𝛾(𝔎𝔎) 𝑎𝑎nd  𝔎𝔎0𝔎𝔎1 …𝔎𝔎𝑟𝑟 ∈ 𝑊𝑊𝑡𝑡 if and only if  𝛾𝛾(𝔎𝔎1)𝛾𝛾(𝔎𝔎2) … ∈

𝑊𝑊.   

Let us consider a winning strategy of the grand coalition in 𝒢𝒢𝒦𝒦, 𝑠𝑠 = 𝑠𝑠0𝑠𝑠1 … 𝑠𝑠𝑛𝑛−1 

and a play  𝜋𝜋𝑡𝑡 = 𝔎𝔎0𝔎𝔎1 … … in 𝑇𝑇𝑇𝑇′(𝒢𝒢𝒦𝒦) consistent with the strategy  𝜎𝜎𝑡𝑡 =

𝜎𝜎0𝑡𝑡𝜎𝜎1𝑡𝑡 …𝜎𝜎𝑛𝑛−1𝑡𝑡      with 𝜎𝜎𝑡𝑡(𝜋𝜋𝑡𝑡) = (𝛼𝛼𝑘𝑘1)𝑘𝑘1∈𝔎𝔎𝑟𝑟 ,𝛼𝛼𝑘𝑘1 = 𝜎𝜎(𝑘𝑘1)  for every 𝑘𝑘1 ∈ 𝕂𝕂 and  𝜌𝜌 =

𝑘𝑘10𝑘𝑘11 …  

any path through structures in 𝜋𝜋𝑡𝑡 such that 𝜋𝜋𝑡𝑡 follows strategy 𝜎𝜎𝑡𝑡 =

𝜎𝜎0𝜎𝜎1 …𝜎𝜎𝑛𝑛−1 and 𝑘𝑘1𝑖𝑖 = 𝒦𝒦0𝒦𝒦1. .𝒦𝒦𝑖𝑖 

. 

 so that 𝒦𝒦0𝒦𝒦1 …𝒦𝒦𝑖𝑖 is historically consistent with 𝑠𝑠, and if  𝒦𝒦0𝒦𝒦1 … ∈ 𝑊𝑊, then 

𝜋𝜋𝑡𝑡 ∈ 𝑊𝑊𝑡𝑡 and 𝜎𝜎𝑡𝑡is a winning strategy. If 𝜎𝜎𝑡𝑡 is a winning strategy over 𝑇𝑇𝑟𝑟′(𝒢𝒢), we 

construct each history-𝑠𝑠  𝜋𝜋 = 𝒦𝒦0𝒦𝒦1 …𝒦𝒦𝑟𝑟 in 𝒢𝒢𝒦𝒦 such that 𝜁𝜁(𝜋𝜋) = 𝔎𝔎0𝔎𝔎1 …𝔎𝔎𝑟𝑟 is 

consistent with 𝜎𝜎𝑡𝑡.  Then, any finite prefix 𝒦𝒦0𝒦𝒦1 …𝒦𝒦𝑙𝑙  is also a path through 𝜋𝜋𝑡𝑡 of the 

form 𝑘𝑘10𝑘𝑘11 … .𝑘𝑘1𝑙𝑙 and extends to the whole 𝜋𝜋. As 𝜋𝜋𝑡𝑡 is consistent with 𝜎𝜎𝑡𝑡 , which is a 

winning strategy, 𝜋𝜋𝑡𝑡 ∈ 𝑊𝑊𝑡𝑡 and consequently 𝜋𝜋 ∈ 𝑊𝑊. 

The grand coalition has also a winning strategy in 𝑇𝑇𝑇𝑇′_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝒢𝒢𝒦𝒦).  If 𝜋𝜋𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =

ℒ0ℒ1 … is a play in 𝑇𝑇𝑇𝑇′_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝒢𝒢𝒦𝒦) consistent with strategy 𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, there is 

homomorphism 𝑣𝑣𝑟𝑟: ℒ𝑟𝑟 ⟶ 𝔎𝔎𝑟𝑟.  such that it is consistent with 𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 . The sequence of 
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history 𝜇𝜇(𝜋𝜋𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐),𝜇𝜇(ℒ0),𝜇𝜇(ℒ0ℒ1), … yields a play 𝔎𝔎0𝔎𝔎1 …. in 𝑇𝑇𝑟𝑟′(𝒢𝒢𝒦𝒦). If 𝜋𝜋 = 𝑙𝑙0𝑙𝑙1 with  

𝑙𝑙𝑟𝑟 ∈ 𝐿𝐿𝑟𝑟 , 𝑙𝑙𝑟𝑟+1 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑙𝑙𝑟𝑟𝒦𝒦) and for 𝒦𝒦 with (𝒦𝒦𝑙𝑙𝑙𝑙 ,𝛼𝛼,𝒦𝒦) ∈ Δ  for some 𝛼𝛼. The 

homomorphism 𝑣𝑣𝑟𝑟(𝑙𝑙𝑟𝑟) ∈ 𝕂𝕂𝑟𝑟 so that  𝛾𝛾(𝒦𝒦𝑙𝑙0)𝛾𝛾(𝒦𝒦𝑙𝑙1) … = 𝛾𝛾(𝔎𝔎0)𝛾𝛾(𝔎𝔎1) …  and as 

𝔎𝔎0𝔎𝔎1 … ∈ 𝑊𝑊𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 then 𝛾𝛾(𝒦𝒦𝑙𝑙0)𝛾𝛾(𝒦𝒦𝑙𝑙1) … ∈ 𝑊𝑊       and 𝜋𝜋𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is winning and 𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 a 

winning strategy for the grand coalition.  The reverse also holds. 

As a consequence, during the second phase, we compute 𝑇𝑇𝑇𝑇′_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝒢𝒢𝒦𝒦), and as 

it is finite because of the finite-state automaton, we solve this game of perfect 

information instead; we solve a two-player game, i.e., the grand coalition of players 

against nature. The 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 element holds perfect knowledge of the game, so it is a stage 

of certainty that the equivalent of the 𝒢𝒢𝒦𝒦 game passes through. 

A distributed game of imperfect information is transformed to a perfect game, and 

players become synchronized. Each player 𝑖𝑖 based on his observations can decide about his 

current knowledge set 𝒦𝒦𝑖𝑖 for playing a safety game, i.e., 𝒦𝒦𝑖𝑖   is sufficient knowledge of the 

state of the game of player i based on his history. 

Then, the best strategies are defined by solving the two-player zero-sum game (the 

grand coalition acts as one player and the second player is nature).  The deterministic finite 

automaton reassures finite tracking of  𝑇𝑇𝑇𝑇′_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝒢𝒢𝒦𝒦) and the winning condition in the 

epistemic model. 

 The important task is to identify isomorphic Kripke structures in the game  

 𝑇𝑇𝑇𝑇′_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝒢𝒢𝒦𝒦). As soon as the isomorphic Kripke structures are identified, the game 

𝑇𝑇𝑇𝑇′_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is a finite game with perfect information. Likewise, games on graphs with the 

property that every cycle passes through a perfect-information state have recurring certainty, 

i.e., the uncertainty of players regarding the current state is temporary and vanishes after a 

finite number of rounds, i.e., the period of uncertainty equals the distance in 𝑇𝑇𝑇𝑇′_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝒢𝒢𝒦𝒦) 

of  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  recurrence [2].  

 

 

11.3.5. PUE Detection Game with no collisions between PU and PUE 

 
This research work considers the PU Emulator Detection as a distributed game of n 

players - the SUs - with imperfect information about the state of the game and the actions of 

the other players for each channel.  The SUs can connect to the Internet and a Cloud-based 

database. Many PUs/PUEs could be in a channel. The SUs define the same strategy based on 
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the well-known network constraints that are stored in the Cloud and upon hearing a 

transmission, the system covers both cases of static and mobile users, act 

{PU_Detection|PUE_Detection} and come to the corresponding state {PU_DET,PUE_DET}. 

The PUE is supposed to transmit with probability q=1-PUtransmission_probability. The SUs 

differentiate the PU or PUE transmissions from the SU signals. The channel upon PU or PUE 

arrival comes to states PU_TRANSMIT, PUE_TRANSMIT (not PU_TRANSMIT), and the SU 

will choose either to free the channel if his observations are of PU_DET or stay (PUE_DET). 

When an SU chooses to stay and PU transmits and then causes collision to PU and the state of 

the channel is COLSU_PU,  the SU can vacate the channel within a predefined interval for the 

network as soon as he realizes the PU presence. When the SU chooses to stay and PUE 

transmits, the channel comes to state COLSU_PUE, and the PUE leaves the channel as his 

intention is to gain spectrum. When a PUE is challenged, the SU knows that it wins. If the 

PUE transmits and PU arrives, then the channel comes to state COLPU_PUE, and the SU 

knows then that it was the PUE transmitting and the newcomer is the PU who stays in the 

channel. On PU arrival, PUE eventually leaves the channel; PUE will have a serious penalty. 

If the PUE is detected, he leaves the channel but another PUE may arrive.  

 
 

 

 

 

Following the section C analysis, the game tree is constructed as it appeared in Figure 

11. 3. The state I corresponds to the Idle Channel and when a transmission begins, the SU 

plays his strategy. As shown in Figure 11. 3, the game tree has two levels for each round of 

Figure 11.4: Deterministic automaton of the knowledge sets when 
there are no collisions between the PU-PUE 
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the game. Each round corresponds to a high energy transmission. In the game graph, under 

the indistinguishability, the equivalent games form the knowledge sets 𝐾𝐾1,𝐾𝐾2,𝐾𝐾3,𝐾𝐾4 

(Figure 11.4). The initial knowledge set is K0, and the terminating knowledge set is KW. 

The deterministic finite automaton is constructed by the knowledge sets Ki, 

which become the states of the game and the action/observations of the SU as the 

transitions shown in Figure  11.4.  We must decide upon the best strategies. The 

deterministic finite automaton assures winning conditions. The initial state of 

automaton is 𝐾𝐾0 and the final state is Kw, the winning state. Τhe 𝐾𝐾1 state corresponds 

to the case where the PUE is not detected and takes advantage of the spectrum. The SU 

is aware of the existence of the PUE but still vacates the spectrum. The K2 state of the 

automaton corresponds to the PU detection certainty and K3 to PUE detection certainty. 

The K4 knowledge set corresponds to total awareness as the PU and PUE are identified. 

(As the state transition proceeds in the deterministic finite automaton, the knowledge 

of the game evolves).  

In the Kripke structures of Ki as described in section C, the isomorphic Kripke 

structures are extracted. The tracking is finite.  As soon as the isomorphic Kripke 

structures are extracted, the game is a perfect game, and the uncertainty of players 

regarding the current state is temporary and vanishes after a finite number of rounds. 

The transitions in the tree of Kripke structures is restricted by the DFA that assures 

winning conditions. The uncertainty of the players is focused on the cases when they 

observe that PU is present, and their actions are PU Detection.  Then, the two-player 

(the grand coalition-one SU against nature, i.e., PUE) zero sum game is solved for 

defining the best strategies. A zero-sum game is the one where the sum of the payoffs 

of the players equals zero. 

The grand coalition acts as a super-player and the zero-sum game is based on 

the states {𝐾𝐾1,𝐾𝐾2,𝐾𝐾3}. Whenever the SU finds an opportunity for transmission, then 

he gains the spectrum   𝐺𝐺1. There is a penalty 𝐶𝐶 for SU interference to the PU and a 

penalty 𝑃𝑃𝑃𝑃 for PUE emulation.  The interference penalty implies that the SU will be 

discouraged with regard to transmissions. The attack gain of the PUE (causes SU-

confusion) is  𝐶𝐶’.    

According to the graphical solution, we must define p such that the SU 

maximize his guaranteed average winnings, and the 2xN zero-sum game thus involves 

solving a 2x2 zero-sum game. If there is an element a ij at the game matrix 2x2 of the 
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zero-sum game now 𝐴𝐴 𝑖𝑖𝑖𝑖  such that the SU player can win at least a ij by choosing row 

i and the player PUE can keep her loss at most a ij by playing column j, it is a saddle 

point. If in the matrix A, 𝑎𝑎11 >  𝑎𝑎12,𝑎𝑎12  < 𝑎𝑎22 ,𝑎𝑎22  >  𝑎𝑎21 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎21  < 𝑎𝑎11, there is 

no saddle point, then we solve by finding equalizing strategies. If the SU chooses the 

first row with probability p (i.e., uses the mixed strategy (𝑝𝑝, 1 − 𝑝𝑝)), we equate his 

average return when PUE uses columns 1 and 2, i.e., 𝑎𝑎11 𝑝𝑝 + 𝑎𝑎21 (1 −  𝑝𝑝)  =

 𝑎𝑎12 𝑝𝑝 +  𝑎𝑎22 (1 −  𝑝𝑝) (𝐼𝐼). We solve the equation for p. If the PUE chooses the first 

column with probability q (i.e., uses the mixed strategy (q, 1−q)), we equate her 

average return when SU uses rows 1 and 2, 𝑎𝑎11 𝑞𝑞 +  𝑎𝑎12 (1 −  𝑞𝑞)  =  𝑎𝑎21 𝑞𝑞 +

 𝑎𝑎22 (1 −  𝑞𝑞)(𝐼𝐼𝐼𝐼). We solve the equation for q. (I)=(II)=v is the value of the game 

when playing optimal strategies. 

There is no saddle point in the PUEA zero-sum-game, and there is an optimal 

strategy (𝑝𝑝, 1 − 𝑝𝑝) for the SU and (𝑞𝑞, 1 − 𝑞𝑞) for the PUE, and the value of the game 

will be 𝑣𝑣 by finding equalizing strategies. If the SU wants to maximize his average 

winnings, he has to play PUE_Detection with probability p and PU_Detection with 

probability 1−𝑝𝑝. If the PUE wants to minimize his average loses, he must attack with 

probability q and not attack with probability (1 − 𝑞𝑞). 

 

 

 

 

 

 

Table 11.1: Zero-sum game for SU with no collisions between PU-PUE 

 K1 K2 K3 

PUE_Detection G+Pn -C-C’ G+Pn 

PU_Detection -C’-G C -C’-G 



IOANNA KAKALOU    Algorithms for Cognitive Radio Network and Cloud 2020 
 

152 
 

 
 

 

 

 

The 2x3 zero sum game is solved by the 2x2 zero-sum game of columns K1K2. 

We can say that the critical state is K1 as this state represents uncertainty, and the SU 

can either be aggressive and play PUE_detection and earn 𝑃𝑃𝑃𝑃 + 𝐺𝐺 or play 

PU_detection and remain in the uncertainty with payoff –𝐶𝐶’− 𝐺𝐺.    Applying 

equalizing strategies, we get p and q: 

 

𝑝𝑝 =
𝐶𝐶 + 𝐶𝐶′ + 𝐺𝐺

𝑃𝑃𝑃𝑃 + 2(𝐶𝐶 + 𝐶𝐶′ + 𝐺𝐺) (𝛪𝛪𝛪𝛪𝛪𝛪) 

 

𝑞𝑞 = (2𝐶𝐶 + 𝐶𝐶′)/(𝑃𝑃𝑃𝑃 + 2(𝐶𝐶 + 𝐶𝐶^′ + 𝐺𝐺))(𝛪𝛪𝛪𝛪) 

 

 As the zero-sum game is a repeated game, we must consider probability δ, i.e., 

the probability that the game will continue and 1-δ, the probability that the game will 

end in the next stage. If the SU starts the game from uncertainty and plays 

PUE_detection, the game will come to a state of certainty and then will start again in 

Figure 11.5: States of the games and the knowledge sets Ki when there are 
collisions between PU and PUE 
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an uncertainty state, etc. Thus, the overall payoff v1 if the SU plays aggressively, i.e., 

PUE_detection would be 

 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝1 =
𝐺𝐺 + 𝑃𝑃𝑃𝑃 − 𝐶𝐶 − 𝐶𝐶′

1 + 𝛿𝛿
+
𝐺𝐺 + 𝑃𝑃𝑃𝑃 − 𝐶𝐶 − 𝐶𝐶′

1 + 𝛿𝛿
𝛿𝛿 + 

+
𝐺𝐺 + 𝑃𝑃𝑃𝑃 − 𝐶𝐶 − 𝐶𝐶′

1 + 𝛿𝛿
𝛿𝛿2 + ⋯ = 

= (𝐺𝐺 + 𝑃𝑃𝑃𝑃 − 𝐶𝐶 − 𝐶𝐶′)
1

1 − 𝛿𝛿
(𝑉𝑉) 

 

 

If the SU starts playing from uncertainty and plays PU detection continually, 

then it will remain in uncertainty and his payoff will be: 

 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2 =
𝐶𝐶 − 𝐶𝐶′ − 𝐺𝐺

1 + 𝛿𝛿
+
𝐶𝐶 − 𝐶𝐶′ − 𝐺𝐺

1 + 𝛿𝛿
𝛿𝛿 + 

 

+
𝐶𝐶 − 𝐶𝐶′ − 𝐺𝐺

1 + 𝛿𝛿
𝛿𝛿 + ⋯ . = (𝐶𝐶 − 𝐶𝐶′ − 𝐺𝐺)

1
1 − 𝛿𝛿

(𝑉𝑉𝑉𝑉) 

 

For the SU to have the incentives to continue playing, the constraints below 

must hold: 

 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝1 > 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2 ⟹
𝐺𝐺 + 𝑃𝑃𝑃𝑃 − 𝐶𝐶 − 𝐶𝐶′

1 − 𝛿𝛿

>
𝐶𝐶 − 𝐶𝐶′ − 𝐺𝐺

1 − 𝛿𝛿
⟹ 𝐺𝐺 + 𝑃𝑃𝑃𝑃 > 2𝐶𝐶 

′

        (𝑉𝑉𝑉𝑉𝑉𝑉) 

 

Similarly, if the SU is in uncertainty and decides to play PU_detection and from 

then on be aggressive, the payoff would be: 

 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝3 =
𝐶𝐶 − 𝐶𝐶′ − 𝐺𝐺

1 + 𝛿𝛿
+
𝐺𝐺 + 𝑃𝑃𝑃𝑃 − 𝐶𝐶 − 𝐶𝐶′

1 + 𝛿𝛿
𝛿𝛿 + 

 

+
𝐺𝐺 + 𝑃𝑃𝑃𝑃 − 𝐶𝐶 − 𝐶𝐶′

1 + 𝛿𝛿
𝛿𝛿2 + ⋯ = 
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=
𝐶𝐶 − 𝐶𝐶′ − 𝐺𝐺

1 + 𝛿𝛿
+
𝐺𝐺 + 𝑃𝑃𝑃𝑃 − 𝐶𝐶 − 𝐶𝐶′

1 + 𝛿𝛿
∗

𝛿𝛿
1 − 𝛿𝛿

 (𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉) 

 

If the SU is in uncertainty and plays PUE_detection once and then changes his 

strategy and plays PU_detection, the payoff would be: 

 

 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝4 =
𝐺𝐺 + 𝑃𝑃𝑃𝑃 − 𝐶𝐶 − 𝐶𝐶′

1 + 𝛿𝛿
+
𝐶𝐶 − 𝐶𝐶′ − 𝐺𝐺

1 + 𝛿𝛿
𝛿𝛿 +  

 

+
𝐶𝐶 − 𝐶𝐶′ − 𝐺𝐺

1 + 𝛿𝛿
𝛿𝛿2 + ⋯ = 

 

=
𝐺𝐺 + 𝑃𝑃𝑃𝑃 − 𝐶𝐶 − 𝐶𝐶′

1 + 𝛿𝛿
+
𝐶𝐶 − 𝐶𝐶′ − 𝐺𝐺

1 + 𝛿𝛿
∗

𝛿𝛿
1 − 𝛿𝛿

(𝛪𝛪𝛪𝛪𝛪𝛪) 

 

 

We expect SU to have incentives to change his initial strategy PU_detection and 

be more aggressive, i.e., play PUE_detection. If the SU plays PUE_detection at the 

beginning, the inequality must hold: 

 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝3 > 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝4 ⟹ 𝛿𝛿 >
𝑃𝑃𝑃𝑃 + 2𝐺𝐺 − 2𝐶𝐶

2𝑃𝑃𝑃𝑃 + 4𝐺𝐺 − 4𝐶𝐶
(𝐼𝐼𝐼𝐼) 

 

 The total payoff of the game thus will be the sum of the four possible outcomes 

of the game. Some constraints can also be considered on the parameters of the game: 

𝐶𝐶 >  𝐺𝐺1: (𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉). This constraint makes the SU avoid interference with the PU, 𝑃𝑃𝑃𝑃 >

 𝐺𝐺1: (IX). The network forces the PUE not to emulate the PU, 𝑃𝑃𝑃𝑃 > 𝐶𝐶’: (X). This 

constraint makes the PUE launch attacks but not be detected by the PU. 𝐶𝐶’ > 𝐺𝐺: (𝑋𝑋𝑋𝑋), 

this constraint makes the PUE have incentives to launch attacks.  

The parameters above that depend on the network conditions and govern the 

strategies of the game are stored at the Cloud database to which the SU nodes connect 

periodically to update their game parameters. At the Cloud, an optimization of the game 

payoff is performed as shown below: 
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Maximize SUs  

 

 payoff =payoff1+payoff2+payoff3+payoff4= 

 

= (𝐺𝐺 + 𝑃𝑃𝑃𝑃 − 𝐶𝐶 − 𝐶𝐶′) ∗
1

1 − 𝛿𝛿
+ (𝐶𝐶 − 𝐶𝐶′ − 𝐺𝐺) ∗ 

 

∗
1

1 − 𝛿𝛿
 +  

𝐶𝐶 − 𝐶𝐶′ − 𝐺𝐺
1 + 𝛿𝛿

+
𝐺𝐺 + 𝑃𝑃𝑃𝑃 − 𝐶𝐶 − 𝐶𝐶′

1 + 𝛿𝛿
 ∗

𝛿𝛿
1 − 𝛿𝛿 + 

 

+
𝐺𝐺 + 𝑃𝑃𝑃𝑃 − 𝐶𝐶 − 𝐶𝐶′

1 + 𝛿𝛿
+
𝐶𝐶 − 𝐶𝐶′ − 𝐺𝐺

1 + 𝛿𝛿
∗

𝛿𝛿
1 − 𝛿𝛿

 

 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑡𝑡𝑡𝑡:   𝐶𝐶 < 𝐺𝐺,𝐶𝐶’ < 𝑃𝑃𝑃𝑃 

                      𝐺𝐺 < 𝐶𝐶,𝐺𝐺 < 𝑃𝑃𝑃𝑃 

                      𝛿𝛿 < 1, 2𝐶𝐶 < 𝑃𝑃𝑃𝑃 + 𝐺𝐺 

 
𝑃𝑃𝑃𝑃 + 2𝐺𝐺 − 2𝐶𝐶

2𝑃𝑃𝑃𝑃 + 4𝐺𝐺 − 4𝐶𝐶
< 𝛿𝛿 

 

  The optimal solution, i.e., the values of network parameters, is delivered to the 

SU nodes. The SUs can differentiate the PU/PUE signals from other SU signals, but 

they do not know whether each one is a truly licensed use due to Primary User 

Emulation. 

 

11.3.6. PUE Detection Game with collisions between PU and PUE 

 
 
We consider that PU and PUE may collide, e.g., if PUE transmits and PU 

arrives. In that case, the game tree is shown in Figure 11.5, the deterministic automaton 

in Figure 6, and the game payoffs in Table 11.2. 
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 K1 K2 K3 K4 K5 

PUE Detection -C’-C -C-C’ Pn+G Pn+G -C 

PU Detection -C’ -C’ -C’-G -C’-G C’ 

 

Table 11.2: Zero-sum game for SU with collision between PU and PUE 

 

 

We solve the 2x5 zero-sum game of Table 11.2 graphically, and we get the 2x2 

zero-sum game of the 2nd and 3rd columns that give the same solution by applying 

equalizing strategies as (III) and (IV) for p and q. 

𝑝𝑝 =
𝐶𝐶 + 𝐶𝐶′ + 𝐺𝐺

𝑃𝑃𝑃𝑃 + 2(𝐶𝐶 + 𝐶𝐶′ + 𝐺𝐺) (𝛪𝛪𝛪𝛪𝛪𝛪) 

 

𝑞𝑞 = 2𝐶𝐶+𝐶𝐶′
𝑃𝑃𝑃𝑃+2(𝐶𝐶+𝐶𝐶′+𝐺𝐺)

(ΙV) 

 

If the game starts from an uncertainty state and the strategy of the SU is to 

always play PU_detection, then his payoff will be: 

 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝5 =
𝐶𝐶 − 𝐺𝐺
1 + 𝛿𝛿

+
𝐶𝐶 − 𝐺𝐺
1 + 𝛿𝛿

𝛿𝛿 +
𝐶𝐶 − 𝐺𝐺
1 + 𝛿𝛿

𝛿𝛿2 + ⋯ = 

 

=
𝐶𝐶 − 𝐺𝐺
1 + 𝛿𝛿

∗
1

1 − 𝛿𝛿
(𝛸𝛸𝛸𝛸𝛸𝛸) 

 

If the game starts from uncertainty and the strategy of the SU is to always play 

PUE_detection, the payoff of the game will be: 

 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝6 = 
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=
𝐺𝐺 + 𝑃𝑃𝑃𝑃 − 2𝐶𝐶 − 𝐶𝐶′

1 + 𝛿𝛿
+
𝐺𝐺 + 𝑃𝑃𝑃𝑃 − 2𝐶𝐶 − 𝐶𝐶′

1 + 𝛿𝛿
𝛿𝛿 + 

 

+
𝐺𝐺 + 𝑃𝑃𝑃𝑃 − 2𝐶𝐶 − 𝐶𝐶′

1 + 𝛿𝛿
𝛿𝛿2 + ⋯ = 

 

=
𝐺𝐺 + 𝑃𝑃𝑃𝑃 − 2𝐶𝐶 − 𝐶𝐶′

1 + 𝛿𝛿
1

1 − 𝛿𝛿
(𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋) 

 

If the game starts from an uncertainty state and the strategy of the SU is to play 

PU_detection once and then always play PUE_detection, then the payoff will be: 

 

 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝7 =
𝐶𝐶 − 𝐺𝐺
1 + 𝛿𝛿

+
𝐺𝐺 + 𝑃𝑃𝑃𝑃 − 2𝐶𝐶 − 𝐶𝐶′

1 + 𝛿𝛿
𝛿𝛿 + 

 

Figure 11.6: Deterministic automaton of the Knowledge Sets for the game when 
there are collisions between PU-PUE 
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+
𝐺𝐺 + 𝑃𝑃𝑃𝑃 − 2𝐶𝐶 − 𝐶𝐶′

1 + 𝛿𝛿
𝛿𝛿2 + ⋯ = 

 

=
𝐶𝐶 − 𝐺𝐺
1 + 𝛿𝛿

+
𝐺𝐺 + 𝑃𝑃𝑃𝑃 − 2𝐶𝐶 − 𝐶𝐶′

1 + 𝛿𝛿
𝛿𝛿

1 − 𝛿𝛿
(𝑋𝑋𝑋𝑋𝑋𝑋) 

 

 

If the game starts from an uncertainty state and the strategy of the SU is to play 

PUE_detection once and then always play PU_detection, then the payoff will be 

 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝8 =
𝐺𝐺 + 𝑃𝑃𝑃𝑃 − 2𝐶𝐶 − 𝐶𝐶′

1 + 𝛿𝛿
+
𝐶𝐶 − 𝐺𝐺
1 + 𝛿𝛿

𝛿𝛿 + 

 

+
𝐶𝐶 − 𝐺𝐺
1 + 𝛿𝛿

𝛿𝛿2 + ⋯ =
𝐺𝐺 + 𝑃𝑃𝑃𝑃 − 2𝐶𝐶 − 𝐶𝐶′

1 + 𝛿𝛿
+
𝐶𝐶 − 𝐺𝐺
1 + 𝛿𝛿

∗ 

 

∗
𝛿𝛿

1 − 𝛿𝛿
(𝛸𝛸𝛸𝛸) 

 

 

If we want SU to have incentives to play the game, the following inequalities 

must hold: 

 

 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝6 > 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝5  𝑤𝑤ℎ𝑐𝑐𝑐𝑐ℎ ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 (𝑋𝑋𝑋𝑋𝑋𝑋) 

 

and 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝7 > 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝8 ⟹ 

 

⟹
𝐶𝐶 − 𝐺𝐺
1 + 𝛿𝛿

+
𝐺𝐺 + 𝑃𝑃𝑃𝑃 − 2𝐶𝐶 − 𝐶𝐶′

1 + 𝛿𝛿
𝛿𝛿

1 − 𝛿𝛿
 

 

>
𝐺𝐺 + 𝑃𝑃𝑃𝑃 − 2𝐶𝐶 − 𝐶𝐶′

1 + 𝛿𝛿
+
𝐶𝐶 − 𝐺𝐺
1 + 𝛿𝛿

∗
𝛿𝛿

1 − 𝛿𝛿
⟹  
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⟹ 𝛿𝛿 >
2𝐺𝐺 + 𝑃𝑃𝑃𝑃 − 𝐶𝐶 − 𝐶𝐶′

4𝐺𝐺 + 2𝑃𝑃𝑃𝑃 − 5𝐶𝐶 − 2𝐶𝐶′
(𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋) 

           

 

If (XVII) does not hold, then SU had better stop playing PU_Detection for the 

rest of the game. 

 

The parameters above that depend on the network conditions and govern the 

strategies of the game are stored at the Cloud database to which the SU nodes connect 

periodically to update their game parameters. At the Cloud, the optimal solution of the 

game is computed: 

 

Maximize SU’s  

 

Payoff =payoff5+payoff6+payoff7+payoff8= 

 

=
𝐶𝐶 − 𝐺𝐺
1 + 𝛿𝛿

∗
1

1 − 𝛿𝛿
+
𝐺𝐺 + 𝑃𝑃𝑃𝑃 − 2𝐶𝐶 − 𝐶𝐶′

1 + 𝛿𝛿
1

1 − 𝛿𝛿
+
𝐶𝐶 − 𝐺𝐺
1 + 𝛿𝛿

 

 

+
𝐺𝐺 + 𝑃𝑃𝑃𝑃 − 2𝐶𝐶 − 𝐶𝐶′

1 + 𝛿𝛿
𝛿𝛿

1 − 𝛿𝛿
+
𝐺𝐺 + 𝑃𝑃𝑃𝑃 − 2𝐶𝐶 − 𝐶𝐶′

1 + 𝛿𝛿
 

 

+
𝐶𝐶 − 𝐺𝐺
1 + 𝛿𝛿

∗
𝛿𝛿

1 − 𝛿𝛿
  (𝑋𝑋𝑋𝑋𝑋𝑋) 

 

Subject to   C<G, C’<Pn 

                      G<C, G<Pn 

                      δ<1,   

 

2𝐺𝐺 + 𝑃𝑃𝑃𝑃 − 𝐶𝐶 − 𝐶𝐶′

4𝐺𝐺 + 2𝑃𝑃𝑃𝑃 − 5𝐶𝐶 − 2𝐶𝐶′
< 𝛿𝛿 
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11.3.6. SIMULATION RESULTS 

 
The simulation was conducted in OMNET with the PU and PUE packets being 

of equal size, i.e., 50000 bits, for five SUs. The PU and PUE traffic follows exponential 

distributions. The parameters used for the simulation for the proposed protocol are 

Pn=20, G=1, C=5, C’=2 and for equalizing strategies, the optimal strategy for PUE|PU 

is q|(1-q)~0.33|0.67 and for the SUs, the optimal strategy solution is p|(1-p)~0.22|0.78. 

The tests included the measurement of some metrics such as PU_Detection Positive, 

PUE_Detection_Positive, PUE_Detection_Negative.  

The probability PU_Detection_Positive equals the number of times that each 

SU played PU_Detection and he was right, divided by the total number of times the PU 

transmitted. The probability PUE_Detection_Positive equals the number of times each 

SU played PUE_Detection and he was right divided by the number of times PUE 

transmitted. The probability PUE_Detection_Negative equals the number of times each 

SU played PUE_Detection, and it was PU transmitting, divided by the total number of 

times the PUE transmitted. For the comparative study, the [159] was selected. In [159], 

there is a Network Management entity that could receive the results of all SUs acting 

as one player against the PUE and therefore can be considered to be a cooperative 

model. 

 In [159], the PUE does not know PU traffic as in the proposed protocol. For the 

Nash Equilibrium computation of [159], it was considered that a) the network, i.e., the 

SUs, can always utilize the spectrum released by the PUE detection, and b) the penalty 

to the PUE is high for emulation.  Therefore, the strategies computed showed that when 

the PU transmission probability drops to 0.5 and less, the PUE stops performing attacks, 

and the network management entity stops defending the network.  
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Figure 11.7: Detection probabilities for PUE optimal strategy for the 
proposed protocol 

Figure 11.8: Real payoffs for the SUs for p=0.22 (optimal strategy) 
for the proposed protocol 
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Figure 11.9a: PU detection positive for SU following optimal strategy in 
the proposed protocol and SU playing Nash Equilibrium in [18] 

Figure 11.9b: PUE detection positive for SU following optimal strategy in 
the proposed protocol and SU playing Nash Equilibrium in [18] 
 



IOANNA KAKALOU    Algorithms for Cognitive Radio Network and Cloud 2020 
 

163 
 

 

 
 

 

 

 
 

Figure 11.11: Real PUE transmission probability during the game for PUE-
optimal strategy for the proposed protocol 

Figure 11.10: Real PUE transmission probability for SU following optimal strategy 
in the proposed protocol and SU playing Nash Equilibrium in [18] 
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In the first experiment (Figure 11.7), the PUE plays optimal strategies 0.33|0.66, 

and the values of PUE|PU Detection versus the probability p of SU playing 

PUE_Detection are shown. The PU_Detection_Positive is 98% for p=0.1,0.2,0.3 and 

then decreases by increasing the p while q=0.33. There is more chance for misdetection 

and false alarm, i.e., that is why PUE_Detection_Negative increases. The 

PUE_Detection_Positive increases as there is more chance to detect the PUE when the 

SU becomes more aggressive and plays PUE_Detection more often. The 

PUE_Detection_Negative reaches 5%. In the second experiment (Figure 11.9), the SU 

plays optimal strategy 0.22|0.78, and the PU|PUE detection probabilities versus the 

probability q of PUE attacking are presented. Now, the PU_Detection_Positive reaches 

99% and the PU_Detection_Positive decreases as q increases. The SU, by playing 

PUE_Detection with probability 0.22, misses more PUE transmissions as q increases. 

The PUE_Detection_Negative increases as q increases because the SU becomes more 

confused by the PUE attacks while remaining a relatively low challenging probability 

of 0.22. The SU plays a winning strategy with the support of the deterministic finite 

automaton so the PU_Detection_Positive and PUE_Detection_Positive are high, but 

the PUE_Detection_Negative reaches 5%.  In [19], the network management entity 

plays more aggressively at NE strategies so that the PUE detection probabilities (Figure 

11.9a and Figure 11.9b) are good but collide with the PU according to 

PU_Detection_Positive, which is a reason for penalty for the Cognitive Radio Network. 

When the players choose optimal strategies, the results are like the results of the 

cooperative methods, which use message exchange for PUE attack detection. 

The real payoff for all SUs versus the PU transmission probability is shown in 

Figure 11.8 and is almost stable, taking values between 2.11 and 2.31. The real PUE 

transmission probability is eliminated despite the continuous arrival of PUEs to the 

network versus the PU transmission probability, when the SUs follow optimal strategy 

as shown in Figure 11.10. This probability is much lower than the 

PUE_Detection_Positive because the latter is estimated on a per SU basis, i.e., another 

SU may detect the PUE and so free the network of the PUE attack. The minimum value 

corresponds to the PUE optimal strategy, i.e., q=0.33 that is eliminated to 1%. Finally, 

the real PUE transmission probability versus the detection probability p, when the PUEs 

follow optimal strategy, is shown in Figure 11.11. Although the PUEs keep arriving 
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one after another, the penalty 𝑃𝑃𝑃𝑃 implies a backoff period for the PUEs, and the real 

PUE transmission probability is eliminated to the range [0.5%…1.3%], i.e., similar to 

the results of [19] for real PUE transmission probability. The system has a good 

response to the PU Emulation Attack as the coordinated SUs play a safety game from 

the beginning that assures winning condition and must decide upon the best strategy for 

optimal results.  

 

 

11.3.7. CONCLUSIONS 

 
This paper defined a new model of a game of imperfect information and applied 

it to the PUE Attack problem. As the game evolves, the SUs act as a grand coalition 

that achieves synchronization - all SUs make the same decisions without collaboration, 

i.e., without message exchange. To the best of our knowledge, this study is the first that 

addresses coordination without collaboration in the PUEA detection problem with 

results familiar to collaborative methods. Eventually, all SUs act as a super-user who 

plays a zero-sum safety game with the PUE and defines the optimal strategy. The 

uncertainty of players regarding the current state is temporary and vanishes after a finite 

number of rounds. Upon successful PUE detection, the PUE identity is stored in the 

Cloud. The proposed system has high performance, and the results are similar to the 

performance of cooperative methods applied for PUE Attack Detection.  In the future, 

research will be conducted on malicious nodes detection in the CRN. 

 



IOANNA KAKALOU     Algorithms for Cognitive Radio Network and Cloud 2020 
 

 
 
 
Chapter 12 

 

 

 

 

WIDEBAND SUB-NYQUIST SAMPLING IN COGNITIVE RADIO 
NETWORK 

 
 

Multiscale Decision Making Scheme for wideband 
spectrum sensing with sub-Nyquist sampling in CRN and 
fading channels 
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Cognitive Radio (CR) is a key technology in next generation Wireless Networks. This 

research work [161] proposes a multiscale decision making scheme for wideband 

sensing with sub-Nyquist sampling in Cognitive Radio Networks (CRNs) and fading 

channels.  The proposed scheme estimates the ability of each SU in the cooperative 

network to provide an accurate sensing decision in severe fading and shadowing 

conditions and proceeds in a selective sensing schedule based on machine learning and 

the achieved Nash Equilibrium. The channel conditions are considered varying. The 

scheme makes optimal decisions and has high performance in terms of accuracy and 

overhead. 

 

12.1. INTRODUCTION 

 

Spectrum sensing is an essential task in improving spectrum utilization efficiency and 

is a key issue in the Cognitive Radio Networks. There are basically two basic spectrum 

sensing techniques among the cognitive radio users: cooperative and non-cooperative 

sensing. Cooperative spectrum is more effective than non-cooperative sensing. 

However, cooperative sensing implies that there will be either a fusion center to receive 

the SUs’ sampling reports and reach a global decision based on a fusion rule or there 

would be intense direct message exchange between the SUs. In the former case, there 

are two options in current literature i.e. the soft decision and hard decision process 

where the SUs send only hard one-bit decisions to the fusion center. Soft decision 

solutions require signal acquisition, processing, energy consumption and transmission 

overhead. Hard decision schemes are easier to implement and they require less 

processing and transmission cost but they are less efficient than soft decision schemes. 

Sub-Nyquist wideband sensing elaborates fewer channels’ sensing which make it 

appropriate for cognitive radio networks while blind sub-Nyquist sampling recovers the 

signal based on the jointly sparse nature of multiband signals [162]. In literature, they 

have been introduced many cooperative soft decision schemes [163] [164] [165] [166] 

which handle cooperative sensing in terms of perfect or imperfect CSI, optimization of 

the decision’s threshold, optimal number of SUs participating in the decision. Some 

hard decision schemes are [167] [168] which again examine the previous network 

parameters, too. The authors in [162] consider sub-Nyquist sampling. 
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This research work proposes a two-step multiscale decision-making scheme for 

cooperative sub-Nyquist wideband sensing of fading channels in Cognitive Radio 

Networks.  The fusion center collects the samples of the SUs and updates a weight 

metric matrix which estimates the ability of each SU per sub-band to provide accurate 

sensing outcome about the Primary User’s (PU’s) presence in the Cognitive Network. 

A hierarchically interaction model between two agents i.e. the local and global agents 

respectively is assigned to each SU per sub-band reaching Nash Equilibrium when the 

local and global metric (reward) coincide. Then this SU is selected for participating in 

the sensing of the particular sub-band in the second step. The scheme provides optimal 

results. The fusion center can be cloud-assisted in its signal processing. To the best of 

the authors’ knowledge, there is no other reference that introduces a hard decision 

process with enhanced performance to the soft decision process’s level and which 

considers fading channels, and sub-Nyquist sampling. The proposed scheme learns the 

fading conditions of the SUs and proceeds to accurate predictions about the fading 

conditions that each SU is prone to experience. Thus the fusion center evaluates the 

SUs’ ability to contribute to spectrum sensing. 

The rest of the chapter is organized as follows: in section II, the system and network 

model is presented, in section III, the proposed scheme is analyzed and the evaluation 

process is provided in section IV. 

 

12.2. SYSTEM AND NETWORK MODEL 

 

The paper considers a cooperative wideband spectrum sensing in a cognitive radio 

network with a fusion center and secondary users SUs, which share the same spectrum 

with a PU network. In cognitive radio the signal sampling should be as fast as possible, 

even with high dimensional signals so to reduce the processing time and accelerate the 

scanning process. Compressive Sensing (CS) is a sampling paradigm which states that 

it is feasible, with overwhelming probability that a signal is reconstructed based on 

samples taken but with far fewer samples than those dictated by the traditional well-

established Nyquist criterion stating that for accurate signal reconstruction one must 

adjust sampling rate to be at least twice the highest frequency present in the 

mathematical expression of the signal. The main benefit introduced by leveraging CS 

in cognitive radio systems is the ability to sense the same frequency band with fewer 

samples than those dictated by the traditional methods or a wider frequency band with 
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the same number of samples. With no prior information about the band locations, blind 

sub-Nyquist sampling is implemented at each SU to estimate the active channel 

locations.  

For a number of narrowband channels 𝐿𝐿, multicoset sampling is considered at each 

SU by taking non-uniform samples at the time instants 𝑡𝑡 = (𝑚𝑚𝑚𝑚 + 𝑐𝑐𝑖𝑖)𝑇𝑇, where 𝑝𝑝 is the 

number of parallel cosets  𝑖𝑖 =  1. .𝑝𝑝;  𝑚𝑚 ∈  ℤ,𝑎𝑎𝑎𝑎𝑎𝑎 1/𝑇𝑇 =  𝑓𝑓𝑠𝑠 is the Nyquist sampling 

rate. The sampling pattern is defined as the set 𝐶𝐶 = {𝑐𝑐𝑖𝑖}𝑝𝑝 of 𝑝𝑝 integers selected from 

the range 1 … 𝐿𝐿 − 1.  A multi-coset sub-Nyquist sampling is introduced in [2]. A 

random number generator which runs at the fusion center creates the sampling patterns 

which are sent to the SUs of the network. 

As sub-Nyquist sampling is more prone to channel degradation, cooperative sensing 

arises as a solution [2]. Each SU experiences different fading and shadowing conditions 

that consequently affect their ability to make a decision about PUs’ presence in the 

spectrum. Although the SUs listen to the same PUs, they produce different sensing 

outcomes due to fading and shadowing.   

   Each time the fusion center, based on the sample 𝑣𝑣𝑠𝑠 received from the J SUs for 

each narrowband channel i updates its table Zs accordingly: 

 

𝒁𝒁𝒔𝒔 = [𝝂𝝂𝒔𝒔[1]𝑇𝑇 … . 𝝂𝝂𝒔𝒔[𝐿𝐿]𝑇𝑇]                                              (1)                                                                     

 

where  

        𝒗𝒗𝒔𝒔[𝒊𝒊]𝑻𝑻 = �𝝂𝝂𝒔𝒔
(𝟏𝟏)[𝑖𝑖]𝑇𝑇  𝝂𝝂𝒔𝒔

(𝟐𝟐)[𝑖𝑖]𝑇𝑇 … . .𝝂𝝂𝒔𝒔
(𝑱𝑱)[𝑖𝑖]𝑇𝑇�       (2)                                                       

 

is the vector with elements the 𝒗𝒗𝒔𝒔
(𝒋𝒋)[𝑖𝑖]𝑇𝑇 the sampling output of SU j for narrowband 

channel i. Samples for each sub-channel from more than one SU will be reported to the 

fusion center so there will be more than one sampling reports for each sub-band each 

time. Not all of the J SUs will participate in each 𝝂𝝂𝒔𝒔
(𝒋𝒋)[𝑖𝑖]𝑇𝑇 in sub-Nyquist sampling. The 

SUs which will participate in  𝝂𝝂𝒔𝒔
(𝒋𝒋)[𝑖𝑖]𝑇𝑇 are those whose sampling pattern includes the 

sub-band 𝑖𝑖 according to random number generator distribution and each SU senses only 

𝑝𝑝 sub-bands. However,  all the sub-bands will be sensed by more than one SU, if the 

sub-Nyquist sampling ratio is ensured. 

177 
 



IOANNA KAKALOU    Algorithms for Cognitive Radio Network and Cloud 2020 
 
 

The vector 𝝂𝝂𝒔𝒔[𝑖𝑖]𝑇𝑇 will be used when all SU report their samples.  For the original 

signal reconstruction the normalized Mean Squared Error (MSE) estimation which is 

shown below: 

 

𝑀𝑀𝑀𝑀𝑀𝑀 = ‖𝑋𝑋𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅−𝑋𝑋𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂‖
‖𝑋𝑋𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂‖

                   (3)                                                                                

 

 

Where 𝑋𝑋𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ,𝑋𝑋𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 the reconstructed and the original signal 

respectively. 

 

The proposed scheme considers that in the first step the necessary SUs’samples of 

sub-band sensing arrive at the fusion center which will be used by the  proposed scheme 

for the normalized MSE estimation of samples corresponding to narrow bands sensing.  

The normalized MSE error of the sensing of each SU per channel will be used further 

as input in a decision making model. It takes as inputs the samples of the SUs and 

provides as outputs the metrics describing the capability of each SU to perform accurate 

sensing in each narrow band because of the fading conditions he experiences and selects 

the SU with the best metric for each narrow band.  

During the first step the scheme needs as inputs the SUs’ samples to compute the 

metrics and prepare the second hard decision phase. As soon as the metrics reach a 

predefined value or the number of iterations is reached, the network proceeds to step 

two where the selected SUs send one-bit-hard decisions about the PUs presence at the 

narrow channels.  The Hard decision scheme is easy to implement and is not 

computationally intensive. The performance of the hard decision phase is superior to 

hard decisions schemes as its performance is equivalent to soft-decisions scheme. 

Optimal decisions and optimal rewards are achieved. However, the fusion center has to 

monitor network’s performance and trigger the sub-Nyquist sampling as network 

conditions change. As the proposed scheme provides metrics that predict the changes 

in the fading conditions that each SU experience at each channel both in first and the 

second step the fading conditions at each channel are considered as varying. 

 

 

178 
 



IOANNA KAKALOU    Algorithms for Cognitive Radio Network and Cloud 2020 
 
 

12.3. PROPOSED WIDEBAND SPECTRUM  SENSING SCHEME 

 

Multipath fading channels are considered where the signal degradation is mainly 

concentrated on amplitude and we consider the normalized error estimation of SU’s 

sample for each narrow channel as follows: 

 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖
𝑗𝑗 =

�𝑥𝑥𝑖𝑖
0−𝑥𝑥𝑖𝑖

𝑗𝑗�

�𝑥𝑥𝑖𝑖
0�

                                              (4)        

 

Where 𝑥𝑥𝑖𝑖
𝑗𝑗  is the signal sample received by the SU 𝑗𝑗 for narrowband channel 𝑖𝑖 and  𝑥𝑥𝑖𝑖0 

is the original signal for channel i and 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖
𝑗𝑗 is the normalized error of sensing of SU 

𝑗𝑗 for channel 𝑖𝑖. We consider the two agent model problem who has to make decisions 

which influence each other rewards and probabilities of decisions outcomes according 

to multiscale decision theory [168]. Each agent does not know the other’s agent’s 

decisions. A two-agent case analysis is presented in [169].  

The network performs sub-Nyquist sampling for 𝑛𝑛 times and each time the fusion 

center collects the reports of the SUs. For each SU estimates the normalized error 

according to (4) at each time 𝑛𝑛. The fusion center at each time 𝑛𝑛 knows the normalized 

error of each SU and the minimum normalized error reported by all SUs and with those 

values plays a two agent game for each SU where the local agent updates the reward 

for the SU according to his normalized error report and the global agent updates the 

reward with respect the best normalized error reported by some SU which participated 

in the sub-Nyquist sampling at time 𝑛𝑛.  

The Nash Equilibrium of the game is considered and the optimal coefficients are 

estimated for the decision scheme to make optimal decisions. If an SU experienced the 

minimum normalized error at time 𝑛𝑛, the fusion center will assign his normalized error 

to the best local error and if this is the best normalized error reported for the particular 

narrow band, the fusion center will assign his normalized error to the global error value 

for the particular narrow band. The coefficients of the games estimate the impact that 

the local error reporting will have to the global narrow band’s error estimation which 

then select the SU with the best global normalized reports in period of  𝑛𝑛 times.  
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As the fading conditions that each SU experiences will affect the normalized error of 

his sample, the fusion center during 𝑛𝑛 times learns the SUs that experience the least 

fading conditions and selects them for reporting at the corresponding narrow bands. 

We consider for each SU there exist two agents one making decisions on the SU’s 

𝑗𝑗 best local  error metric based on 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 for channel 𝑖𝑖 until time 𝑛𝑛 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖
𝑗𝑗(𝑛𝑛)   and 

the second agent makes decisions based on the comparison of the local 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖
𝑗𝑗(𝑛𝑛) with 

the current best outcome between SUs for channel 𝑖𝑖  at time 𝑛𝑛.  At each point 𝑛𝑛 at time 

the agents seek a decision which makes them switch to state 𝑠𝑠𝑖𝑖
𝑗𝑗,𝑛𝑛and choose and action 

𝛼𝛼𝑖𝑖
𝑗𝑗,𝑛𝑛 with probability 𝑝𝑝𝑖𝑖

𝑗𝑗,𝑛𝑛�𝑠𝑠𝑖𝑖
𝑗𝑗,𝑛𝑛+1�𝑠𝑠𝑗𝑗

𝑖𝑖,𝑛𝑛,𝛼𝛼𝑗𝑗
𝑖𝑖,𝑛𝑛�.   

The action space of the local agent includes two actions according to the feedback he 

receives from the environment which are {Update_Best_Local, 

Not_Update_Best_Local} = {𝛼𝛼𝑖𝑖
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑗𝑗,1,𝑎𝑎𝑖𝑖

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑗𝑗,2} and the corresponding states are 

{Local_Update, Not_Local_Update}={𝑠𝑠𝑖𝑖
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑗𝑗,1, 𝑠𝑠𝑖𝑖

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑗𝑗,2}. For the global agent 

associated with SU 𝑗𝑗 the action space includes the actions based on the environments 

feedback i.e. the 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 computation for all SUs in channel 𝑖𝑖, {Update_Best_Global, 

Not_Update_Best_Global}= {𝛼𝛼𝑖𝑖
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑗𝑗,1,𝛼𝛼𝑖𝑖

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑗𝑗,2} i.e. update the global value if  the 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 of the SU is lower  than that of the current MSE of all SUs for channel 𝑖𝑖 and the 

corresponding state space is {Update_Global, Not_Update_Global} = 

{𝑠𝑠𝑖𝑖
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑗𝑗,1, 𝑠𝑠𝑖𝑖

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑗𝑗,2}. 

 

𝑖𝑖𝑖𝑖 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖
𝑗𝑗(𝑛𝑛) < 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖

𝑗𝑗(𝑛𝑛) 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖
𝑗𝑗(𝑛𝑛)  = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖

𝑗𝑗(𝑛𝑛)   (5)                                                           

 

𝑖𝑖𝑖𝑖 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖
𝑗𝑗(𝑛𝑛) < 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑖𝑖 (𝑛𝑛) 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑖𝑖 (𝑛𝑛) = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖

𝑗𝑗(𝑛𝑛)                                                                       

(6) 

 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖
𝑗𝑗(𝑛𝑛) is the lowerst error occurred for SU 𝑗𝑗 at channel 𝑖𝑖 until time 𝑛𝑛. 

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑖𝑖 (𝑛𝑛) is the lowest error 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖
𝑗𝑗(𝑛𝑛) occurred for any SU at channel 𝑖𝑖 at time 𝑛𝑛. 

There are positive/negative rewards associated with each state for each agent. The 

initial rewards for each agent are: 

 

𝑟𝑟1,𝑛𝑛+1
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 �𝑠𝑠𝑖𝑖,𝑛𝑛+1

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑗𝑗,1� = 𝜌𝜌𝑖𝑖,𝑛𝑛
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑗𝑗,1,                                             (7) 
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𝑟𝑟1,𝑛𝑛+1
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 �𝑠𝑠𝑖𝑖,𝑛𝑛+1

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑗𝑗,2� = 𝜌𝜌𝑖𝑖,𝑛𝑛
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑗𝑗,2                                                (8) 

𝑟𝑟1,𝑛𝑛+1
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔�𝑠𝑠𝑖𝑖,𝑛𝑛+1

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑗𝑗,1� = 𝜌𝜌𝑖𝑖,𝑛𝑛
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑗𝑗,1,                                        (9)                                                                    

𝑟𝑟2,𝑛𝑛+1
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔�𝑠𝑠𝑖𝑖,𝑛𝑛+1

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑗𝑗,2� = 𝜌𝜌𝑖𝑖,𝑛𝑛
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑗𝑗,2                                       (10)                                                                     

 

The initial state-dependent transition probabilities for global agent are: 

 

𝑝𝑝�𝑠𝑠𝑖𝑖,𝑛𝑛+1
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑗𝑗,1�𝑠𝑠𝑖𝑖,𝑛𝑛

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑗𝑗,1,𝛼𝛼𝑖𝑖
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑗𝑗,1� = 𝛼𝛼𝑖𝑖

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑗𝑗,1,𝑘𝑘      (11)            

𝑝𝑝�𝑠𝑠𝑖𝑖,𝑛𝑛+1
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑗𝑗,2�𝑠𝑠𝑖𝑖,𝑛𝑛

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑗𝑗,1,𝛼𝛼𝑖𝑖
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑗𝑗,1� = 1 − 𝛼𝛼𝑖𝑖

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑗𝑗,1,𝑘𝑘    (12)   

𝑝𝑝�𝑠𝑠𝑖𝑖,𝑛𝑛+1
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑗𝑗,2�𝑠𝑠𝑖𝑖,𝑛𝑛

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑗𝑗,2,𝛼𝛼𝑖𝑖
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑗𝑗,2� = 𝛼𝛼𝑖𝑖

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑗𝑗,2,𝑘𝑘                   (13) 

𝑝𝑝�𝑠𝑠𝑖𝑖,𝑛𝑛+1
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑗𝑗,1�𝑠𝑠𝑖𝑖,𝑛𝑛

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑗𝑗,2,𝛼𝛼𝑖𝑖
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑙𝑙,𝑗𝑗,2� = 1 − 𝛼𝛼𝑖𝑖

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑗𝑗,2,𝑘𝑘       (14) 

For the local agent are: 

 

𝑝𝑝�𝑠𝑠𝑖𝑖,𝑛𝑛+1
,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,1�𝑠𝑠𝑖𝑖,𝑛𝑛

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑗𝑗,1,𝛼𝛼𝑖𝑖
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑗𝑗,1� = 𝛼𝛼𝑖𝑖

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑗𝑗,1,𝑘𝑘               (15)        

                                                                     

𝑝𝑝�𝑠𝑠𝑖𝑖,𝑛𝑛+1
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑗𝑗,2�𝑠𝑠𝑖𝑖,𝑛𝑛

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑗𝑗,1,𝛼𝛼𝑖𝑖
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑗𝑗,1� = 1 − 𝛼𝛼𝑖𝑖

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑗𝑗,1,𝑘𝑘        (16)      

                                                                     

𝑝𝑝�𝑠𝑠𝑖𝑖,𝑛𝑛+1
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑗𝑗,2�𝑠𝑠𝑖𝑖,𝑛𝑛

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑗𝑗,2,𝛼𝛼𝑖𝑖
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑗𝑗,2� = 𝛼𝛼𝑖𝑖

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑗𝑗,2,𝑘𝑘             (17)           

                                                              

𝑝𝑝�𝑠𝑠𝑖𝑖,𝑛𝑛+1
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑗𝑗,1�𝑠𝑠𝑖𝑖,𝑛𝑛

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑗𝑗,2,𝛼𝛼𝑖𝑖
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑗𝑗,2� = 1 − 𝛼𝛼𝑖𝑖

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑗𝑗,2,𝑘𝑘      (18)                                                                          

 

The final transition probability of global agent depends on the local agents decisions. 

This is expressed as: 

 

𝑝𝑝�𝑠𝑠𝑖𝑖,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑛𝑛+1
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑗𝑗,𝑣𝑣 �𝑠𝑠𝑖𝑖,𝑛𝑛

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑗𝑗,𝑘𝑘,𝛼𝛼𝑖𝑖
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑗𝑗,𝑚𝑚, 𝑠𝑠𝑖𝑖,𝑛𝑛+1

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑗𝑗,𝑙𝑙� =  𝑝𝑝�𝑠𝑠𝑖𝑖,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑛𝑛+1
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑗𝑗,𝑣𝑣 �𝑠𝑠𝑖𝑖,𝑛𝑛

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑗𝑗,𝑘𝑘,𝛼𝛼𝑖𝑖
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑗𝑗,𝑚𝑚� +

𝑓𝑓(𝑠𝑠𝑖𝑖,𝑛𝑛+1
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑗𝑗,𝑘𝑘|𝑠𝑠𝑖𝑖,𝑛𝑛+1

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑗𝑗,𝑙𝑙) (19)                                                 

Then the influence function f is considered as: 

 

𝑓𝑓�𝑠𝑠𝑖𝑖,𝑛𝑛+1
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑗𝑗,𝑘𝑘�𝑠𝑠𝑖𝑖,𝑛𝑛+1

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑗𝑗,𝑙𝑙� = � 𝑐𝑐𝑛𝑛 𝑖𝑖𝑖𝑖 𝑘𝑘 = 𝑙𝑙
−𝑐𝑐𝑛𝑛 𝑖𝑖𝑖𝑖 𝑘𝑘 ≠ 𝑙𝑙             (20)          
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The meaning of the coefficient 𝑐𝑐𝑛𝑛 is that state Local_Update increases the probability 

of state Global_Update and reduces the probability of state Not_Global_Update. The 

final reward 𝑤𝑤𝑖𝑖𝑖𝑖 for SU j for local agents’ decisions would depend partially to the 

decision of the global agent and the decision of the local agent: 

 

𝑤𝑤𝑖𝑖𝑖𝑖(𝑛𝑛 + 1) = 𝑟𝑟𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑙𝑙�𝑠𝑠𝑖𝑖,𝑛𝑛+1
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑗𝑗,𝑘𝑘�𝑠𝑠𝑖𝑖,𝑛𝑛+1

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑗𝑗,𝑙𝑙� = 

= 𝑐𝑐1,𝑛𝑛 ∗ 𝑟𝑟�𝑠𝑠𝑖𝑖,𝑛𝑛+1
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑗𝑗,𝑙𝑙� + 𝑐𝑐2,𝑛𝑛 ∗ 𝑟𝑟�𝑠𝑠𝑖𝑖,𝑛𝑛+1

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑗𝑗,𝑘𝑘� = 

= 𝑐𝑐1,𝑛𝑛 ∗ 𝜌𝜌𝑙𝑙,𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 𝑐𝑐2,𝑛𝑛 ∗ 𝜌𝜌𝑘𝑘,𝑛𝑛
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 =            

= 𝑐𝑐1,𝑛𝑛 ∗ 𝜌𝜌𝑙𝑙,𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + (1 − 𝑐𝑐1,𝑛𝑛) ∗ 𝜌𝜌𝑘𝑘,𝑛𝑛
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔                                                                                                    

𝑐𝑐1,𝑛𝑛, 𝑐𝑐2,𝑛𝑛 ∈ (0,1)                                                      (21) 

 

 

The reward for the global agent would be: 

 

𝑟𝑟�𝑠𝑠𝑖𝑖,𝑛𝑛+1
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑗𝑗,𝑘𝑘� = 𝑐𝑐1,𝑛𝑛𝜌𝜌𝑘𝑘,𝑛𝑛

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔                                         (22)                                                                                                     

𝜌𝜌𝑙𝑙,𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖,𝑙𝑙
𝑛𝑛 − 𝑤𝑤𝑖𝑖𝑖𝑖(𝑛𝑛)                                 (23)                                                                           

𝜌𝜌𝑘𝑘,𝑛𝑛
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖,𝑘𝑘

𝑛𝑛 − 𝑤𝑤𝑖𝑖𝑖𝑖(𝑛𝑛)                            (24)                                                                          

 

The following assumptions hold: 

 

𝜌𝜌1,𝑛𝑛
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 < 𝜌𝜌2,𝑛𝑛

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ,𝜌𝜌1,𝑛𝑛
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 < 𝜌𝜌2,𝑛𝑛

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔                             (25)      

                                                           

 

The expected reward for local agent of an SU for a period n is given by: 

 

𝔼𝔼�𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 |𝑠𝑠𝑖𝑖,𝑛𝑛
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, 𝑠𝑠𝑗𝑗,𝑛𝑛

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝛼𝛼𝑓𝑓,𝑛𝑛
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝛼𝛼𝑚𝑚,𝑛𝑛

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 � 

= ��𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 �𝑠𝑠𝑘𝑘,𝑛𝑛+1
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 , 𝑠𝑠𝑙𝑙,𝑛𝑛+1𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 � ∗ 𝑝𝑝𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

2

𝑙𝑙=1

2

𝑘𝑘=1

�𝑠𝑠𝑙𝑙,𝑛𝑛+1𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 |𝑠𝑠𝑗𝑗,𝑛𝑛
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝛼𝛼𝑓𝑓,𝑛𝑛

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙� 

∗ 𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑛𝑛
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 �𝑠𝑠𝑘𝑘,𝑛𝑛+1

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 |𝑠𝑠𝑖𝑖,𝑛𝑛
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, 𝑠𝑠𝑙𝑙,𝑛𝑛+1𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ,𝛼𝛼𝑚𝑚,𝑛𝑛

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔�                  (26)                                                            

 

The cumulative reward for local agent would be: 
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𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑛𝑛)
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 �𝑠𝑠𝑖𝑖,1

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, 𝑠𝑠𝑗𝑗,1
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙� = ∑ 𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 �𝑠𝑠𝑘𝑘,𝑛𝑛+1

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 , 𝑠𝑠𝑙𝑙,𝑛𝑛+1𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 �,   𝑛𝑛 = 1. . (𝑛𝑛 − 1)𝑁𝑁−1
𝑡𝑡=1         (27)                                                        

 

 

The expected cumulative reward for local agent for SU will be: 

𝔼𝔼�𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑛𝑛)
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 |𝑠𝑠𝑖𝑖,𝑛𝑛

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑙𝑙, 𝑠𝑠𝑗𝑗,𝑛𝑛
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝛼𝛼𝑚𝑚,𝑛𝑛

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝛼𝛼𝑓𝑓,𝑛𝑛
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�

= 𝔼𝔼�𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 |𝑠𝑠𝑖𝑖,𝑛𝑛
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, 𝑠𝑠𝑗𝑗,𝑛𝑛

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝛼𝛼𝑚𝑚,𝑛𝑛
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝛼𝛼𝑓𝑓,𝑛𝑛

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�

+ ���
𝑝𝑝𝑛𝑛�𝑠𝑠𝑘𝑘,𝑛𝑛+1

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 , 𝑠𝑠𝑙𝑙,𝑛𝑛+1𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 |𝑠𝑠𝑖𝑖,𝑛𝑛
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, 𝑠𝑠𝑗𝑗,𝑛𝑛

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝛼𝛼𝑚𝑚,𝑛𝑛
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝛼𝛼𝑓𝑓,𝑛𝑛

𝑙𝑙𝑜𝑜𝑜𝑜𝑜𝑜� ∗

𝔼𝔼∗�𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑛𝑛)
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 |𝑠𝑠𝑖𝑖,𝑛𝑛

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, 𝑠𝑠𝑗𝑗,𝑛𝑛
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�

�
2

𝑙𝑙=1

2

𝑘𝑘=1

 

(28) 

Where 

𝑝𝑝𝑛𝑛�𝑠𝑠𝑘𝑘,𝑛𝑛+1
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 , 𝑠𝑠𝑙𝑙,𝑛𝑛+1𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 |𝑠𝑠𝑖𝑖,𝑛𝑛

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, 𝑠𝑠𝑗𝑗,𝑛𝑛
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝛼𝛼𝑚𝑚,𝑛𝑛

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝛼𝛼𝑓𝑓,𝑛𝑛
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�

= 𝑝𝑝𝑛𝑛�𝑠𝑠𝑙𝑙,𝑛𝑛+1𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 |𝑠𝑠𝑗𝑗,𝑛𝑛
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑎𝑎𝑓𝑓,𝑛𝑛

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑛𝑛
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 �𝑠𝑠𝑘𝑘,𝑛𝑛+1

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 |𝑠𝑠𝑖𝑖,𝑛𝑛
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, 𝑠𝑠𝑙𝑙,𝑛𝑛+1𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ,𝛼𝛼𝑚𝑚,𝑛𝑛

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔� 

(29) 

The two agents reach a Nash equilibrium in their decisions when the  𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖
𝑗𝑗(𝑛𝑛) 

updates both  𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖
𝑗𝑗(𝑛𝑛) ,  𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑖𝑖 (𝑛𝑛). Then the rewards are minimized. The 

inequalities below hold: 

 

𝔼𝔼�𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑛𝑛)
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 |𝑠𝑠𝑖𝑖,𝑛𝑛

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, 𝑠𝑠𝑗𝑗,𝑛𝑛
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝛼𝛼1,𝑛𝑛

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝛼𝛼1,𝑛𝑛
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙� ≤ 𝔼𝔼�𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑛𝑛)

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 |𝑠𝑠𝑖𝑖,𝑛𝑛
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, 𝑠𝑠𝑗𝑗,𝑛𝑛

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝛼𝛼1,𝑛𝑛
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝛼𝛼2,𝑛𝑛

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�              

(30)                                              

 

𝔼𝔼�𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑛𝑛)
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 |𝑠𝑠𝑖𝑖,𝑛𝑛

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, 𝑠𝑠𝑗𝑗,𝑛𝑛
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝛼𝛼1,𝑛𝑛

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝛼𝛼1,𝑛𝑛
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙� ≤ 𝔼𝔼�𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑛𝑛)

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 |𝑠𝑠𝑖𝑖,𝑛𝑛
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, 𝑠𝑠𝑗𝑗,𝑛𝑛

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝛼𝛼2,𝑛𝑛
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝛼𝛼1,𝑛𝑛

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�               

(31)                               

 

𝔼𝔼�𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑛𝑛)
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 |𝑠𝑠𝑖𝑖,𝑛𝑛

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, 𝑠𝑠𝑗𝑗,𝑛𝑛
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝛼𝛼1,𝑛𝑛

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝛼𝛼1,𝑛𝑛
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙� ≤ 𝔼𝔼�𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑛𝑛)

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 |𝑠𝑠𝑖𝑖,𝑛𝑛
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, 𝑠𝑠𝑗𝑗,𝑛𝑛

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝛼𝛼2,𝑛𝑛
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝛼𝛼2,𝑛𝑛

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�           

(32)                       

 

Applying the inequalities to the expected reward and after computations, three 

conditions for the coefficients are derived which evolve as the agents operate in time as 

shown in Table 1 in APPENDIX 1. 
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The three conditions are applied at each step when the network defines the value of 

the coefficients based on the updated each time probabilities and rewards. For the 

coefficients   𝑐𝑐1,𝑛𝑛 selection of the scheme, the maximum value of 𝑐𝑐1,𝑛𝑛will be selected 

to reflect that the agents seek local and global optima   non-cooperatively. 

The fusion learns the fading conditions of each SU and then selects for each sub-band 

the SU whose weighted error metric  𝑤𝑤𝑖𝑖𝑖𝑖 is the lower. The first phase lasts as long as 

the weight matrix is stabilized i.e. a small number of iterations and then the hard 

decision phase occurs.  

 

12.4. EVALUATION 

 

The proposed scheme is evaluated with MATLAB simulations and 10 sub-bands with 

the same bandwidth. The sub-Nyquist sampling ratio was chosen as 𝛼𝛼 = 𝑝𝑝/𝐿𝐿 = 4/10 

and the 𝑝𝑝 was the number of distict integers for the sampling pattern.  

Rayleigh and Nakagami fading channels were considered. Some experimental data 

does not fit well into either Rayleigh or Rician distributions. Thus, a more general 

fading distribution was developed whose parameters can be adjusted to fit a variety of 

empirical measurements. This distribution is called the Nakagami fading distribution 

which is parameterized by 𝑃𝑃𝑃𝑃 and the fading parameter m. For 𝑚𝑚 =  1 the distribution 

reduces to Rayleigh fading. For 𝑚𝑚 =  (𝐾𝐾 + 1)2/(2𝐾𝐾 + 1) the distribution is 

approximately Rician fading with parameter  𝐾𝐾. For 𝑚𝑚 =  1 we get no fading [171]. 

Thus, the Nakagami distribution can model Rayleigh and Rician distributions, as well 

as more general ones. Note that some empirical measurements support values of the m 

parameter less than one, in which case the Nakagami fading causes more severe 

performance degradation than Rayleigh fading [171]. 

The simulated signal is generated as shown in the APPENDIX 2. 

 In Figure 12.1, the experiments with Rayleigh fading channels for 20, 30,40, 50 SUs 

and the fading conditions are continually changing for each SU and each sub-channel 

where the number of multi-paths were chosen between 5 and 16 randomly. A 

benchmarking soft decision process based on the MSE estimator is used for 

comparison. The MSE is considered in [163], too. For the benchmarking soft decision 

process, if the MSE was below 0.01 then it was considered that the sensing was 

accurate.  
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The scheme exceeds performance of soft decision scheme where all the SUs 

participate in the decision process and so they degrade the outcome as the fading is 

intensive for most of them whilst the proposed scheme selects the SUs for participating 

Figure 12.1. Detection Probability for 20,30,40,50 SUs and Rayleigh channels 

40 users 

50 users 
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in the sensing decision outcome which experience least fading and they are most likely 

to keep experience least fading conditions (Figure 12.2, Figure 12.3). The results are 

the same for all the channels because fading conditions were uniformly distributed 

random variables for the SUs per sub-band and for all sub-bands the fading parameters 

were the same. Parameter 𝑐𝑐1 was set to 0.9. For Nakagami fading channels conditions 

change continually, too. The proposed scheme’s performance for the Nakagami case 

stabilizes to 0.9 (Figure 12.4). 

 

 

 

 

 

(a) (b) 

Figure 12.2. Detection Probability for Rayleigh channels a)the Soft 

Decision and b) Proposed Scheme versus time 
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The threshold rule for benchmark hard decision scheme was set as: 

 

�𝑥𝑥𝑖𝑖
𝑗𝑗� > �𝑥𝑥𝑖𝑖0 − 𝑥𝑥𝑖𝑖

𝑗𝑗�                                            (33)        

 

Nakagami experiments’ parameters were 𝑀𝑀 = 3 and 𝑚𝑚 were chosen randomly and 

continually as 𝑚𝑚 = 3,4,5,6,7.  

Figure  12.3. Detection Probability for Nakagami channels a) Soft Scheme 
and ) Proposed Scheme versus time 

(a) (b) 
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For Rayleigh channels the Hard decision scheme performance is within 0.4-0.5 whilst 

for the proposed scheme the performance is excellent (Fig.3). In Nakagami fading 

channels the Hard decision scheme stabilizes to 0.8 whilst the proposed scheme reaches 

0.99 (Fig.3). The Proposed Scheme selects efficiently the SUs which participate in the 

decision making process and outperforms even soft decision scheme for the highly 

fading channels that were encountered in the experiments.  

 

Figure 12.4. Detection Probability for a) Rayleigh and b) Nakagami channels for 
the Proposed scheme and benchmark Hard Decision Scheme versus time 

(a) (b) 
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12.5. CONCLUSION 

 

In this paper a multiscale decision making scheme for wideband sensing in CRN and 

fading channels is proposed.  The proposed scheme estimates the ability of each SU in 

the cooperative network to provide an accurate sensing decision and proceeds in a SU 

selective optimal sensing schedule for a hard decision scheme establishment which is 

easy to implement, not computationally intensive and exhibited high performance. The 

scheme supports the sub-Nyquist sampling which is sensitive to the interference the 

SUs experience at each sub-band.  The fading conditions are considered continually 

varying for each SU at each sub-band. The evaluation results outperform MSE 

benchmark and they demonstrate the efficiency of the scheme in terms of performance, 

processing, transmission overhead and energy, although we considered highly fading 

channels. 
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ENHANCED SIGNAL PROCESSING FOR 
COGNITIVE RADIO NETWORK AND CLOUD 

AN OPTIMAL FILTER WITH KALMAN-LIKE FILTERING 
OF PARTICLES FOR NON-LINEAR STATE ESTIMATION   

Chapter 13 
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The state estimation problem can apply on various systems and applications such as 

signal processing and position tracking. This research work [172] considers a non-linear 
dynamic system with Gaussian noises and introduces a novel optimal filter namely a 
combination of an optimal Kalman-like filter which cooperates with a Particle filter to 
improve state estimation performance. The Proposed Filter refines the results of Particle 
Filtering for increased accuracy in state estimation. The novel optimal filter is evaluated 
with a well-studied system equation example and outperforms amongst others Particle filter 
and Kalman filter with fewer number of particles.  

 
 

13.2. INTRODUCTION 
 
In a dynamic process there are restrictions imposed to the measurements which have to 

be considered each time in order the system to proceed to reliable state estimations such as 
noise. Well-known probabilistic algorithms, such as Kalman Filter (KF) [173] and Particle 
Filter (PF) [173] [174] include noisy behavior in their models and depend on the estimation 
of the posterior density of the state vector by means of the Bayes rule. 

In this paper the problem of refining the estimation of the non-linear dynamic system’s 
state provided by Particle Filtering is considered. The paper introduces a novel filter where 
the Gaussian noisy measurements pass through efficient parameterized PF and KF-like 
filters in sequence to improve the accuracy of state estimation. The novel filter requires 
less particles than the PF filter which reduces complexity significantly. 

13.2. RELATED WORK 
 

In a dynamic system the state space model includes a hidden state from which partial 
information is obtained by observations [176]. In the Bayesian framework, this is done by 
computing or approximating the posterior distribution 𝑝𝑝(𝑥𝑥𝑘𝑘|𝑧𝑧1:𝑘𝑘)  for the state vector 
𝑥𝑥𝑘𝑘 providing the observations 𝑧𝑧1:𝑘𝑘 at that time 𝑘𝑘. Nonlinear filtering for discrete time 
nonlinear state models infers hidden state 𝑥𝑥𝑘𝑘 based on the observations 𝑧𝑧𝑘𝑘. 

The Kalman filter which combines knowledge state techniques and recursive algorithms 
unfolds in two basic steps: a)   prediction which is assisted by the dynamic model and b) 
correction where the observed measurements are used in order for the error covariance of the 
sensor to be reduced as we had an optimal sensor. 

In Kalman filter both the process and measurement noise are Gaussian and uncorrelated 
[177]. If the noise is not Gaussian but suffer of heavy tails then solutions have been 
introduced in literature [177][178]. Non-Gaussian noises for Kalman filtering are considered 
in [9]. Kalman Filter also does not support time-correlation. Τhe authors in [180] study time-
correlated  measurement processes. 

Particle filtering for non-linear model has better performance than Extended Kalman 
filter i.e. approaches the posterior density with more accuracy however the increased 
performance is achieved via an increased number of particles which increase significantly 
the computational load. 
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Particle Filter (PF) approaches non-linear and non-Gaussian state estimation [181] [182]. 
The PF is a Bayes filter particularization where the posterior density is discretized and is 
more accurate than EKF or other Bayes filters such as Monte Carlo. However the 
computational load of this Bayes filter is lower than others which make it appropriate for 
real time applications. The authors in [183] consider dependent noise processes. When the 
state space can be partitioned such that PF can be applied to a reduced state space partition 
and then a Kalman filter can be applied at each particle which “provides the conditional 
distribution of linear states 𝑥𝑥𝑘𝑘𝑙𝑙  conditioned over the trajectory of non-linear states 𝑥𝑥1:𝑘𝑘

𝑛𝑛  and 
the past observations”[185a] [185] and the filter is known as Marginilized Particle Filter 
or Rao-Blackwellized particle filter and the reduction of the state variance appears in [185].  
The authors in [177a] consider the cases where the observation likehood 𝑝𝑝(𝑧𝑧𝑘𝑘|𝑥𝑥𝑘𝑘) is 
multimodal or heavy-tailed or the the state space is very large and the state transition pdf 
is broad because when the state transition is narrow even if the observation likehood is 
multimodal, the optimal importance density i.e. the density for generating the samples such 
that the variance of weights of the samples is reduced, is unimodal. So, the authors propose 
an importance density conditioning on the states where observation likehood is unimodal. 

 
The chapter is organized as follows: section III.A describes the particle filter part of the 

filter and the parameters estimation excluded of the particle filtering processing which will 
be the inputs for the next phase.  Section III.B proposes the enhanced Kalman filter. The 
enhanced Kalman filter’s state estimation will be the final estimation of the Proposed Filter. 
In Section IV the performance of the Proposed Filter is illustrated . 

 

13.2. PROPOSED FILTER 
 

A. The  Particle Filter Part of the Proposed Filter 

The Proposed Filter considers the non-linear system model : 
 
𝑥𝑥𝑘𝑘+1 = 𝑓𝑓0(𝑥𝑥𝑘𝑘, 𝑣𝑣𝑘𝑘0) = 𝑓𝑓0′(𝑥𝑥𝑘𝑘) +  𝑣𝑣𝑘𝑘0  (1) 
 
𝑧𝑧𝑘𝑘 = ℎ0(𝑥𝑥𝑘𝑘,𝑤𝑤𝑘𝑘

0) = ℎ0′(𝑥𝑥𝑘𝑘) + 𝑤𝑤𝑘𝑘
0 (2) 

 
Where 𝑣𝑣𝑘𝑘0 is a stochastic noise process with known probability desnity function and 𝑤𝑤𝑘𝑘

0 
additive measurement noise.   

A stochastic process is a Markov process if  𝑝𝑝(𝑥𝑥𝑘𝑘+1|𝑥𝑥𝑘𝑘, 𝑥𝑥𝑘𝑘−1 … ) = 𝑝𝑝(𝑥𝑥𝑘𝑘+1|𝑥𝑥𝑘𝑘) and the 
state is Markov process if the state noise 𝑣𝑣𝑘𝑘0 is white in the strict sense i.e. all the {𝑣𝑣𝑘𝑘0} are 
independent of each other. Then the state pdf is given by Chapman-Kolmogorov equation: 

 
𝑝𝑝(𝑥𝑥𝑘𝑘+1) = ∫𝑝𝑝(𝑥𝑥𝑘𝑘+1|𝑥𝑥𝑘𝑘)𝑝𝑝(𝑥𝑥𝑘𝑘) (3) 
 
And the 𝑝𝑝(𝑥𝑥𝑘𝑘+1|𝑥𝑥𝑘𝑘) is determined by 𝑝𝑝(𝑣𝑣𝑘𝑘0). If both 𝑣𝑣𝑘𝑘0 and 𝑤𝑤𝑘𝑘

0 are and independent of 
the initial state then the 𝑥𝑥𝑘𝑘, 𝑧𝑧𝑘𝑘 are Gaussian signals and if 𝑣𝑣𝑘𝑘0 is white in strict sense and 
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independent of the initial state 𝑥𝑥0 then the model is a Gauss-Markov model and these hold 
for both a non-linear and a linear model. Then 𝑧𝑧 is given by  𝑔𝑔(𝑧𝑧𝑘𝑘|𝑥𝑥𝑘𝑘). 

In filtering the Bayesian approach for the state estimation is to compute the posterior 
density of the state given the observation 𝑝𝑝(𝑥𝑥𝑘𝑘|𝑧𝑧1:𝑘𝑘) where 𝑧𝑧1:𝑘𝑘 denotes al the observations 
from time 1 to 𝑘𝑘. Because of the Markov property it holds that 𝑝𝑝(𝑥𝑥𝑘𝑘+1|𝑥𝑥1:𝑘𝑘, 𝑧𝑧1:𝑘𝑘) =
𝑝𝑝(𝑥𝑥𝑘𝑘+1|𝑥𝑥𝑘𝑘) and 𝑔𝑔(𝑧𝑧𝑘𝑘|𝑥𝑥1:𝑘𝑘, 𝑧𝑧1:𝑘𝑘−1) = 𝑔𝑔(𝑧𝑧𝑘𝑘|𝑥𝑥𝑘𝑘) [4]. 

The particle generation �𝑥𝑥0:𝑘𝑘
𝑖𝑖 ,𝑤𝑤𝑘𝑘

𝑖𝑖 �
𝑖𝑖=1
𝑁𝑁

 i.e. N samples per state 𝑥𝑥0:𝑘𝑘 is a random measure 
of the true posterior density 𝑝𝑝(𝑥𝑥0:𝑘𝑘|𝑧𝑧0:𝑘𝑘). [4] where 𝑤𝑤𝑘𝑘

𝑖𝑖  the weight associated with each 
sample 𝑥𝑥0:𝑘𝑘

𝑖𝑖 . 
The model in (1) (2) is a non-linear Gauss-Markov model. The non-linear model passes 

through a particle filtering and the posterior density 𝑝𝑝(𝑥𝑥𝑘𝑘|𝑧𝑧1:𝑘𝑘) is estimated. In the same 
time the the state variance of the particles i.e. the error of the samples and the second order 
variance are estimated for each state 𝑥𝑥𝑘𝑘 which then pass as inputs to the second level of the 
proposed filter of the Kalman-like filtering to extract the imposed error. The output of the 
Kalman-like filter is the output of the Proposed filter providing more accurate estimations 
of the state of the non-linear dynamic system. 

One of the most important decisions on particle filtering is the choice of the importance 
density 𝑞𝑞(. ) which is the probability density with which the samples are generated such 
that the samples provided the importance density is a weighted approximation to the 
posterior density 𝑝𝑝(𝑥𝑥𝑘𝑘|𝑧𝑧𝑘𝑘): 

 

𝑝𝑝(𝑥𝑥𝑘𝑘|𝑧𝑧𝑘𝑘) = �𝑤𝑤𝑖𝑖𝛿𝛿(𝑥𝑥𝑘𝑘 − 𝑥𝑥𝑘𝑘𝑖𝑖 )
𝑁𝑁

𝑖𝑖=1

 

 
Where 𝑥𝑥𝑘𝑘𝑖𝑖  is the ith sample/particle, 𝑤𝑤𝑖𝑖 is the weight for the ith sample and 𝛿𝛿() is the 

Dirac function. The optimal importance density reduces the variance of 𝑤𝑤𝑖𝑖 given the 𝑥𝑥𝑘𝑘−1𝑖𝑖  
whatever sample is produced of: 

 
 𝑞𝑞𝑜𝑜𝑜𝑜𝑜𝑜�𝑥𝑥𝑘𝑘�𝑥𝑥𝑘𝑘−1𝑖𝑖 , 𝑧𝑧𝑘𝑘� = 𝑝𝑝�𝑥𝑥𝑘𝑘�𝑥𝑥𝑘𝑘−1𝑖𝑖 , 𝑧𝑧𝑘𝑘� 
 
Thus the weights are updated according to: 
 

𝑤𝑤𝑘𝑘
𝑖𝑖 ∝  𝑤𝑤𝑘𝑘−1

𝑖𝑖 𝑝𝑝�𝑥𝑥𝑘𝑘�𝑥𝑥𝑘𝑘−1𝑖𝑖 , 𝑧𝑧𝑘𝑘� = 𝑤𝑤𝑘𝑘−1
𝑖𝑖 �𝑝𝑝(𝑧𝑧𝑘𝑘|𝑥𝑥′𝑘𝑘)𝑝𝑝�𝑥𝑥′𝑘𝑘�𝑥𝑥𝑘𝑘−1𝑖𝑖 �𝑑𝑑𝑥𝑥′𝑘𝑘 

 
Where  
 

𝑝𝑝�𝑥𝑥𝑘𝑘�𝑥𝑥𝑘𝑘−1𝑖𝑖 � = 𝑆𝑆𝑆𝑆𝑆𝑆�𝑥𝑥𝑘𝑘�𝑥𝑥𝑘𝑘−1𝑖𝑖 � 
 
𝑆𝑆𝑆𝑆𝑆𝑆(. ) is the state transition prior density. However solving with this distribution and 

estimating the inregral is not possible with a few exceptions. For this reason sub-optimal 
approximations are considered for the proposal density such as the prior  𝑝𝑝(𝑥𝑥𝑘𝑘|𝑥𝑥𝑘𝑘−1𝑖𝑖 ) 
known and as bootstrap filter or SIR filter. 
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One common problem in particle filtering is that gradually most of the particles will have 
negligible weights and then the process of resampling takes place to select those particles 
with the higher weights. This is the degeneracy phenomenon. The negligible weights of 
particles imply that a lot of computational effort is not dedicated to the posterior estimation. 
A common measure of the degeneracy phenomenon is the effective sample size: 

 
 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑁𝑁

1+𝑉𝑉𝑉𝑉𝑉𝑉(𝑤𝑤𝑘𝑘
𝑖𝑖 )

 

 
A 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒 = 1 implies that all N samples have equal weights and contribute equally to the 

posterior estimation. When 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒 is small  resampling selects the samples with the higher 
weights. 

If the state space region where the observation likelihood density 𝑔𝑔(𝑧𝑧𝑘𝑘|𝑥𝑥𝑘𝑘) is significant 
is small comparing to the state space where the prior 𝑝𝑝(𝑥𝑥𝑘𝑘|𝑧𝑧𝑘𝑘−1) is significant then there 
will a large number of those samples which will be assigned negligible weights and thus 
will be discarded by resampling [175a]. This way the samples nearby the likelihood states 
will be selected repeatedly whilst the other will be discarded [175a].  Thus, the diversity of 
particles will be eliminated and this problem is known as sample improverishment. 
Although the weights of the selected samples by resampling will have small variance the 
probability density of the covariance of the samples will not be normal. The second order 
covariance of the samples then will provide the necessary information hidden in tails. 
Besides the 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒 , the pdf of the covariance of particles for each dimension of the state 
space is a measure of the success of  the design of  the particular particle filter, too.  

The paper considers a 𝐿𝐿-dimension state space model and SIR filter where the selection 
of the importance density is sub-optimal i.e. the prior.  For each state space dimension, the 
samples are generated by generating a sample of the process noise which is Gaussian 
𝒗𝒗𝑘𝑘−1
0,𝑖𝑖 ~𝒩𝒩(𝒗𝒗𝑘𝑘−10 ,𝑄𝑄) , Q is the covariance of the 𝑣𝑣𝑘𝑘0 ,and then setting 𝑋𝑋𝑃𝑃,𝑘𝑘

𝑖𝑖 =
𝑓𝑓0′�𝑋𝑋𝑃𝑃,𝑘𝑘−1

𝑖𝑖 ,𝒗𝒗𝑘𝑘−1
0,𝑖𝑖 � [172]. As resampling is applied at each stage 𝑤𝑤𝑘𝑘−1

𝑖𝑖 = 1
𝑁𝑁

, where N the 
number of samples,  the samples are accepted based on the: 

 
𝑊𝑊𝑘𝑘

𝑖𝑖 = 𝑔𝑔�𝑍𝑍𝑝𝑝,𝑘𝑘|𝑋𝑋𝑃𝑃,𝑘𝑘
𝑖𝑖 � 

 
For the vectors 𝑋𝑋𝑃𝑃,𝑘𝑘

𝑖𝑖 , 𝑍𝑍𝑝𝑝,𝑘𝑘, 𝒗𝒗𝑘𝑘−10 ,  𝒗𝒗𝑘𝑘−1
0,𝑖𝑖 of the 𝐿𝐿 −space model. 

This process “explores the state space without knowledge of observations and thus is 
sensitive to outliers” [173]. The aforementioned importance density performs well when 
the noise is not high. The proposed filter aims to employ sub-optimal importance density 
and reduced number of particles without  performance degradation. 
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For a Gaussian signal  𝑧𝑧𝑃𝑃,𝑘𝑘 the  𝑝𝑝�𝑧𝑧𝑃𝑃,𝑘𝑘�𝑥𝑥𝑝𝑝,𝑘𝑘

𝑖𝑖 � = 𝒩𝒩�𝑧𝑧𝑃𝑃,𝑘𝑘,ℎ0′�𝑥𝑥𝑝𝑝,𝑘𝑘
𝑖𝑖 �,𝑅𝑅� where R is the 

covariance of 𝑤𝑤𝑘𝑘
0 and Q is the covariance of the 𝑣𝑣𝑘𝑘0    and  𝑥𝑥𝑘𝑘 is the state estimation of 

particle filtering 𝑥𝑥𝑝𝑝,𝑘𝑘 . The particle can be generated by producing a random vector 𝑣𝑣𝑘𝑘0 and 
then computing 𝑥𝑥𝑘𝑘𝑖𝑖 = 𝑓𝑓0′�𝑥𝑥𝑝𝑝,𝑘𝑘−1

𝑖𝑖 � + 𝑣𝑣𝑘𝑘−1
0,𝑖𝑖  [173]. The particle at each epoch 𝑘𝑘 that fits to 

SIR Particle Algorithm[TutorialParticle] 
[{𝑥𝑥𝑘𝑘𝑖𝑖 ,𝑤𝑤𝑘𝑘𝑖𝑖 }𝑖𝑖=1

𝑁𝑁𝑝𝑝 ] = 𝑆𝑆𝑆𝑆𝑆𝑆[{𝑥𝑥𝑘𝑘𝑖𝑖 ,𝑤𝑤𝑘𝑘𝑖𝑖 }𝑖𝑖=1
𝑁𝑁𝑠𝑠 , 𝑧𝑧𝑃𝑃,𝑘𝑘] 

FOR 𝑖𝑖 = 1 ∶ 𝑁𝑁𝑝𝑝 
Draw 𝑥𝑥𝑘𝑘𝑖𝑖  from 𝑝𝑝(𝑥𝑥𝑃𝑃,𝑘𝑘|𝑥𝑥𝑝𝑝,𝑘𝑘−1

𝑖𝑖 ) 
Calculate 𝑤𝑤𝑘𝑘𝑖𝑖 = 𝑝𝑝(𝑧𝑧𝑝𝑝,𝑘𝑘|𝑥𝑥𝑝𝑝,𝑘𝑘

𝑖𝑖 ) 
END FOR 
Calculate total weight t=SUM{[𝑤𝑤𝑘𝑘𝑖𝑖 ]}𝑖𝑖=1

𝑁𝑁𝑠𝑠  
FOR i=1 : 𝑁𝑁𝑝𝑝 

Normalise 𝑤𝑤𝑘𝑘𝑖𝑖 = 𝑤𝑤𝑘𝑘
𝑖𝑖

𝑡𝑡
 

END FOR 
Resample 

RESAMPLE({𝑥𝑥𝑝𝑝,𝑘𝑘
𝑖𝑖 ,𝑤𝑤𝑘𝑘𝑖𝑖 }𝑖𝑖=1

𝑁𝑁𝑝𝑝 ) 
///////////////////////////////////////////////////////////////////////////
/////// 
𝑥𝑥𝑝𝑝,𝑘𝑘
𝑖𝑖  is the ith particle of state 𝑥𝑥𝑘𝑘  
𝑤𝑤𝑘𝑘𝑖𝑖  is the weight of 𝑥𝑥𝑝𝑝,𝑘𝑘

𝑖𝑖  particle 
𝑁𝑁𝑝𝑝 the number of particles for each state 
𝑥𝑥𝑃𝑃,𝑘𝑘| is the state estimate of the particle for epoch k 
𝑧𝑧𝑝𝑝,𝑘𝑘 the initial measurement of the non-linear 

 

Figure 13.2: The SIR Particle Algorithm as defined in [3] 

Figure 13.1: The Optimal Filter Diagram 
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the measurement best will be chosen as the state estimation of particle filtering for the 
epoch 𝑘𝑘. So, particles at each epoch given the initial non-linear model, are uncorrelated- 
i.e. there is no linear relation between them-and their difference i.e. the error of each 
particle, are uncorrelated between each other and the particles. 

The posterior density of the state given the observation 𝑝𝑝(𝑥𝑥𝑘𝑘|𝑧𝑧1:𝑘𝑘) can be expressed in 
relation to the particle error as follows: 

 
𝑝𝑝(𝑥𝑥𝑘𝑘|𝑧𝑧1:𝑘𝑘) = ∑ 𝑤𝑤𝑘𝑘

𝑖𝑖 𝛿𝛿(𝑁𝑁
𝑖𝑖=1 𝑥𝑥𝑘𝑘 − 𝑥𝑥𝑝𝑝,𝑘𝑘

𝑖𝑖 ) = ∑ 𝑤𝑤𝑘𝑘
𝑖𝑖 𝛿𝛿(𝑁𝑁

𝑖𝑖=1 𝑒𝑒𝑘𝑘
𝑃𝑃,𝑖𝑖)

𝑤𝑤𝑘𝑘
𝑖𝑖 =𝑝𝑝(𝑧𝑧𝑃𝑃,𝑘𝑘|𝑥𝑥𝑝𝑝,𝑘𝑘

𝑖𝑖 )
������������ ∑ 𝑝𝑝(𝑧𝑧𝑃𝑃,𝑘𝑘|𝑥𝑥𝑝𝑝,𝑘𝑘

𝑖𝑖 )𝛿𝛿(𝑁𝑁
𝑖𝑖=1 𝑒𝑒𝑘𝑘

𝑃𝑃,𝑖𝑖)                            (6) 
 
 
Where 𝑒𝑒𝑘𝑘

𝑃𝑃,𝑖𝑖 is the error of sample 𝑥𝑥𝑝𝑝,𝑘𝑘
𝑖𝑖 . 

 
∑ 𝑝𝑝(𝑧𝑧𝑃𝑃,𝑘𝑘|𝑥𝑥𝑘𝑘𝑖𝑖 )𝛿𝛿(𝑁𝑁
𝑖𝑖=1 𝑒𝑒𝑘𝑘

𝑃𝑃,𝑖𝑖) = 𝑒𝑒𝑘𝑘𝑃𝑃                                          (7) 
 
As the samples at each dimension are generated as: 
 
𝒗𝒗𝑘𝑘−1
0,𝑖𝑖 ~𝒩𝒩(𝒗𝒗𝑘𝑘−10 ,𝑄𝑄) and then setting 𝑥𝑥𝑃𝑃,𝑘𝑘

𝑖𝑖 = 𝑓𝑓0′�𝑥𝑥𝑃𝑃,𝑘𝑘−1
𝑖𝑖 ,𝒗𝒗𝑘𝑘−1

0,𝑖𝑖 � we have : 

𝑝𝑝�𝑥𝑥𝑝𝑝,𝑘𝑘�𝑧𝑧𝑝𝑝,1:𝑘𝑘� = �𝑤𝑤𝑘𝑘
𝑖𝑖𝛿𝛿(

𝑁𝑁

𝑖𝑖=1

𝑥𝑥𝑘𝑘 − 𝑥𝑥𝑝𝑝,𝑘𝑘
𝑖𝑖 ) 

= �𝑤𝑤𝑘𝑘
𝑖𝑖𝛿𝛿(

𝑁𝑁

𝑖𝑖=1

𝑥𝑥𝑝𝑝,𝑘𝑘 − 𝑓𝑓0′�𝑥𝑥𝑝𝑝,𝑘𝑘−1
𝑖𝑖 � − 𝑣𝑣𝑘𝑘−1

0,𝑖𝑖 ) 

= �𝑤𝑤𝑘𝑘
𝑖𝑖𝛿𝛿(

𝑁𝑁

𝑖𝑖=1

𝑓𝑓0′�𝑥𝑥𝑝𝑝,𝑘𝑘−1� + 𝑣𝑣𝑘𝑘−10 − 𝑓𝑓0′�𝑥𝑥𝑝𝑝,𝑘𝑘−1
𝑖𝑖 � − 𝑣𝑣𝑘𝑘−1

0,𝑖𝑖 ) = 

 

= �𝑤𝑤𝑘𝑘
𝑖𝑖𝛿𝛿(

𝑁𝑁

𝑖𝑖=1

�𝑓𝑓0′�𝑥𝑥𝑝𝑝,𝑘𝑘−1� − 𝑓𝑓0′�𝑥𝑥𝑝𝑝,𝑘𝑘−1
𝑖𝑖 �� + �𝑣𝑣𝑘𝑘−10 − 𝑣𝑣𝑘𝑘−1

0,𝑖𝑖 �) 

 
�𝑏𝑏𝑏𝑏 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑤𝑤𝑘𝑘

𝑖𝑖 = 𝑤𝑤𝑘𝑘−1
𝑖𝑖 𝑝𝑝(𝑧𝑧𝑃𝑃,𝑘𝑘|𝑥𝑥𝑝𝑝,𝑘𝑘

𝑖𝑖 )� 

= �𝑝𝑝(𝑧𝑧𝑃𝑃,𝑘𝑘|𝑥𝑥𝑝𝑝,𝑘𝑘
𝑖𝑖 )𝑤𝑤𝑘𝑘−1𝑖𝑖 𝛿𝛿(

𝑁𝑁

𝑖𝑖=1

�𝑓𝑓0′�𝑥𝑥𝑝𝑝,𝑘𝑘−1� − 𝑓𝑓0′�𝑥𝑥𝑝𝑝,𝑘𝑘−1
𝑖𝑖 �� + �𝑣𝑣𝑘𝑘−10 − 𝑣𝑣𝑘𝑘−1

0,𝑖𝑖 �) 

= �𝑝𝑝(𝑧𝑧𝑃𝑃,𝑘𝑘|𝑥𝑥𝑝𝑝,𝑘𝑘
𝑖𝑖 )𝑤𝑤𝑘𝑘−1𝑖𝑖 𝛿𝛿(

𝑁𝑁

𝑖𝑖=1

�𝑓𝑓0′�𝑥𝑥𝑝𝑝,𝑘𝑘−1� − 𝑓𝑓0′�𝑥𝑥𝑝𝑝,𝑘𝑘−1
𝑖𝑖 �� + �𝑣𝑣𝑘𝑘−10 − 𝑣𝑣𝑘𝑘−1

0,𝑖𝑖 �) 

 

= �𝑝𝑝(𝑧𝑧𝑃𝑃,𝑘𝑘|𝑥𝑥𝑝𝑝,𝑘𝑘
𝑖𝑖 )𝑤𝑤𝑘𝑘−1𝑖𝑖 𝛿𝛿(

𝑁𝑁

𝑖𝑖=1

�𝑓𝑓0′�𝑥𝑥𝑝𝑝,𝑘𝑘−1� − 𝑓𝑓0′�𝑥𝑥𝑝𝑝,𝑘𝑘−1
𝑖𝑖 �� + �𝑣𝑣𝑘𝑘−10 − 𝑣𝑣𝑘𝑘−1

0,𝑖𝑖 �) 
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= �𝑝𝑝�𝑧𝑧𝑃𝑃,𝑘𝑘�𝑥𝑥𝑝𝑝,𝑘𝑘
𝑖𝑖 �

𝑁𝑁

𝑖𝑖=1

1
𝑁𝑁
𝛿𝛿 �𝑓𝑓0′�𝑥𝑥𝑝𝑝,𝑘𝑘−1� − 𝑓𝑓0′�𝑥𝑥𝑝𝑝,𝑘𝑘−1

𝑖𝑖 �� + �
�𝑣𝑣𝑘𝑘−10 − 𝑣𝑣𝑘𝑘−1

0,𝑖𝑖 �
𝑁𝑁

𝑝𝑝�𝑧𝑧𝑃𝑃,𝑘𝑘�𝑥𝑥𝑝𝑝,𝑘𝑘
𝑖𝑖 �

𝑁𝑁

𝑖𝑖=1

 

 
 
 

𝑓𝑓0′�𝑥𝑥𝑝𝑝,𝑘𝑘−1�−𝑓𝑓0
′�𝑥𝑥𝑝𝑝,𝑘𝑘−1

𝑖𝑖 �=𝑒𝑒𝑘𝑘
𝑃𝑃,𝜄𝜄�

����������������������� 
 

𝑝𝑝�𝑥𝑥𝑝𝑝,𝑘𝑘�𝑧𝑧𝑝𝑝,1:𝑘𝑘� = �
1
𝑁𝑁
𝑝𝑝�𝑧𝑧𝑃𝑃,𝑘𝑘�𝑥𝑥𝑝𝑝,𝑘𝑘

𝑖𝑖 �
𝑁𝑁

𝑖𝑖=1

𝑒𝑒𝑘𝑘
𝑃𝑃,𝜄𝜄� + �

�𝑣𝑣𝑘𝑘−10 −𝒩𝒩(𝒗𝒗𝑘𝑘−10 ,𝑄𝑄)�
𝑁𝑁

𝑝𝑝�𝑧𝑧𝑃𝑃,𝑘𝑘�𝑥𝑥𝑝𝑝,𝑘𝑘
𝑖𝑖 �

𝑁𝑁

𝑖𝑖=1

 

 
 

= �
1
𝑁𝑁
𝑝𝑝�𝑧𝑧𝑃𝑃,𝑘𝑘�𝑥𝑥𝑝𝑝,𝑘𝑘

𝑖𝑖 �
𝑁𝑁

𝑖𝑖=1

𝑒𝑒𝑘𝑘
𝑃𝑃,𝜄𝜄� +

𝒩𝒩(0,𝑄𝑄)
𝑁𝑁

�
1
𝑁𝑁
𝑝𝑝�𝑧𝑧𝑃𝑃,𝑘𝑘�𝑥𝑥𝑝𝑝,𝑘𝑘

𝑖𝑖 �
𝑁𝑁

𝑖𝑖=1

 

 
 
 
 

𝑤𝑤𝑘𝑘
𝑖𝑖 =𝑝𝑝�𝑧𝑧𝑃𝑃,𝑘𝑘�𝑥𝑥𝑝𝑝,𝑘𝑘

𝑖𝑖 � 𝑎𝑎𝑎𝑎  𝑆𝑆𝑆𝑆𝑆𝑆
������������������� 

 

�𝑤𝑤𝑘𝑘
𝑖𝑖

𝑁𝑁

𝐼𝐼=1
=1 𝑏𝑏𝑏𝑏 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡

��������������������������� 
 
 

𝑝𝑝�𝑥𝑥𝑝𝑝,𝑘𝑘�𝑧𝑧𝑝𝑝,1:𝑘𝑘� =
1
𝑁𝑁
�𝑝𝑝�𝑧𝑧𝑃𝑃,𝑘𝑘�𝑥𝑥𝑝𝑝,𝑘𝑘

𝑖𝑖 �
𝑁𝑁

𝑖𝑖=1

𝑒𝑒𝑘𝑘
𝑃𝑃,𝜄𝜄� +

𝒩𝒩(0,𝑄𝑄)
𝑁𝑁

→ 

 
 
The probability of accepting a sample at SIR is  
 
 

𝑝𝑝�𝑧𝑧𝑃𝑃,𝑘𝑘�𝑥𝑥𝑝𝑝,𝑘𝑘
𝑖𝑖 � = 𝒩𝒩�𝑧𝑧𝑃𝑃,𝑘𝑘

𝑖𝑖,ℎ0′(𝑥𝑥𝑝𝑝,𝑘𝑘
𝑖𝑖 ),𝑅𝑅� 

 
 
→ 𝑝𝑝�𝑥𝑥𝑝𝑝,𝑘𝑘�𝑧𝑧𝑝𝑝,1:𝑘𝑘� = 1

𝑁𝑁
∑ 𝒩𝒩�𝑧𝑧𝑃𝑃,𝑘𝑘

𝑖𝑖,ℎ0′(𝑥𝑥𝑝𝑝,𝑘𝑘
𝑖𝑖 ),𝑅𝑅�𝑁𝑁

𝑖𝑖=1 𝑒𝑒𝑘𝑘
𝑃𝑃,𝜄𝜄� + 𝒩𝒩(0,𝑄𝑄)

𝑁𝑁
 (8) 

 
 
As the generation of the ith particle is a Gaussian signal and given the assumptions about 

particle filtering as appear in [174],  the  following equations hold : 
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𝑝𝑝�𝑥𝑥𝑘𝑘�𝑧𝑧𝑃𝑃,1:𝑘𝑘� =
1
𝑁𝑁
�𝒩𝒩�𝑧𝑧𝑃𝑃,𝑘𝑘

𝑖𝑖,ℎ0′(𝑥𝑥𝑘𝑘𝑖𝑖 ),𝑅𝑅�
𝑁𝑁

𝑖𝑖=1

𝑒𝑒𝑘𝑘
𝑃𝑃,𝜄𝜄� +  

𝒩𝒩(0,𝑄𝑄)
𝑁𝑁

 

=
1
𝑁𝑁
��𝒩𝒩�𝑧𝑧𝑃𝑃,𝑘𝑘

𝑖𝑖,ℎ0′(𝑥𝑥𝑃𝑃,𝑘𝑘
𝑖𝑖 ),𝑅𝑅� −𝒩𝒩�𝑧𝑧𝑃𝑃,𝑘𝑘,ℎ0′�𝑥𝑥𝑃𝑃,𝑘𝑘�,𝑅𝑅� + 𝒩𝒩�𝑧𝑧𝑃𝑃,𝑘𝑘,ℎ0′�𝑥𝑥𝑃𝑃,𝑘𝑘�,𝑅𝑅��𝑒𝑒𝑘𝑘

𝑃𝑃,𝜄𝜄�
𝑁𝑁

𝑖𝑖=1

+
𝒩𝒩(0,𝑄𝑄)

𝑁𝑁
= 

1
𝑁𝑁
��𝒩𝒩�𝑧𝑧𝑃𝑃,𝑘𝑘

𝑖𝑖, ℎ0′(𝑥𝑥𝑝𝑝,𝑘𝑘
𝑖𝑖 ),𝑅𝑅� −𝒩𝒩�𝑧𝑧𝑃𝑃,𝑘𝑘,ℎ0′(𝑥𝑥𝑝𝑝,𝑘𝑘),𝑅𝑅��𝑒𝑒𝑘𝑘

𝑃𝑃,𝜄𝜄�
𝑁𝑁

𝑖𝑖=1

+
1
𝑁𝑁
��𝒩𝒩�𝑧𝑧𝑃𝑃,𝑘𝑘,ℎ0′�𝑥𝑥𝑝𝑝,𝑘𝑘�,𝑅𝑅��𝑒𝑒𝑘𝑘

𝑃𝑃,𝜄𝜄� +
𝒩𝒩(0,𝑄𝑄)

𝑁𝑁
=

𝑁𝑁

𝑖𝑖=1

1
𝑁𝑁
��𝒩𝒩�𝑧𝑧𝑃𝑃,𝑘𝑘

𝑖𝑖
𝑁𝑁

𝑖𝑖=1

− 𝑧𝑧𝑃𝑃,𝑘𝑘,ℎ0′(𝑥𝑥𝑝𝑝,𝑘𝑘
𝑖𝑖 ) − ℎ0′(𝑥𝑥𝑝𝑝,𝑘𝑘),𝑅𝑅 + 𝑅𝑅��𝑒𝑒𝑘𝑘

𝑃𝑃,𝜄𝜄�

+
1
𝑁𝑁
��𝒩𝒩�𝑧𝑧𝑃𝑃,𝑘𝑘,ℎ0′(𝑥𝑥𝑝𝑝,𝑘𝑘),𝑅𝑅��𝑒𝑒𝑘𝑘

𝑃𝑃,𝜄𝜄� +
𝒩𝒩(0,𝑄𝑄)

𝑁𝑁

𝑁𝑁

𝑖𝑖=1

 

 
𝑒𝑒𝑧𝑧,𝑘𝑘

𝑖𝑖=ℎ0′(𝑥𝑥𝑘𝑘
𝑖𝑖 )−ℎ0′(𝑥𝑥𝑘𝑘)𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒  𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

����������������������������������������������� 
 
𝑝𝑝�𝑥𝑥𝑝𝑝,𝑘𝑘�𝑧𝑧𝑝𝑝,1:𝑘𝑘� = 1

𝑁𝑁
∑ �𝒩𝒩�𝑒𝑒𝑧𝑧,𝑘𝑘

𝑖𝑖, 2𝑅𝑅��𝑒𝑒𝑘𝑘
𝑃𝑃,𝜄𝜄� + 1

𝑁𝑁
∑ �𝒩𝒩�𝑧𝑧𝑃𝑃,𝑘𝑘,ℎ0′(𝑥𝑥𝑝𝑝,𝑘𝑘),𝑅𝑅��𝑒𝑒𝑘𝑘

𝑃𝑃,𝜄𝜄� +𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1

𝒩𝒩(0,𝑄𝑄)
𝑁𝑁

= 1
𝑁𝑁
∑ �𝒩𝒩�𝑒𝑒𝑧𝑧,𝑘𝑘

𝑖𝑖, 2𝑅𝑅��𝑒𝑒𝑘𝑘
𝑃𝑃,𝜄𝜄� + 𝒩𝒩�𝑧𝑧𝑃𝑃,𝑘𝑘,ℎ0′(𝑥𝑥𝑝𝑝,𝑘𝑘),𝑅𝑅� 1

𝑁𝑁
∑ 𝑒𝑒𝑘𝑘

𝑃𝑃,𝜄𝜄� +  𝒩𝒩(0,𝑄𝑄)
𝑁𝑁

𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1

𝑒𝑒𝑘𝑘
𝑃𝑃,𝜄𝜄� =�𝑒𝑒𝑘𝑘

𝑃𝑃,𝑖𝑖−�𝑣𝑣𝑘𝑘−1
0 −𝑣𝑣𝑘𝑘−1

0,𝑖𝑖 ��
�������������������   1

𝑁𝑁
∑ �𝒩𝒩�𝑒𝑒𝑧𝑧,𝑘𝑘

𝑖𝑖, 2𝑅𝑅��𝑒𝑒𝑘𝑘
𝑃𝑃,𝜄𝜄 −𝑁𝑁

𝑖𝑖=1

1
𝑁𝑁
∑ �𝒩𝒩�𝑒𝑒𝑧𝑧,𝑘𝑘

𝑖𝑖, 2𝑅𝑅�𝒩𝒩(0,𝑄𝑄)� +𝑁𝑁
𝑖𝑖=1

1
𝑁𝑁
�∑ 𝒩𝒩�𝑧𝑧𝑃𝑃,𝑘𝑘,ℎ0′�𝑥𝑥𝑝𝑝,𝑘𝑘�,𝑅𝑅�𝑒𝑒𝑘𝑘

𝑃𝑃,𝜄𝜄  𝑁𝑁
𝑖𝑖=1 � −

∑ 𝒩𝒩�𝑧𝑧𝑃𝑃,𝑘𝑘,ℎ0′(𝑥𝑥𝑝𝑝,𝑘𝑘),𝑅𝑅�𝒩𝒩(0,𝑄𝑄)
𝑁𝑁

𝑁𝑁
𝑖𝑖=1 + 𝒩𝒩(0,𝑄𝑄)

𝑁𝑁
⟹ 〈∑ 𝒩𝒩(0,𝑄𝑄)

𝑁𝑁
𝑁𝑁
𝑖𝑖=1 = �𝑄𝑄〉 ⟹ 𝑝𝑝�𝑥𝑥𝑝𝑝,𝑘𝑘�𝑧𝑧𝑝𝑝,1:𝑘𝑘� =

∑ 𝒩𝒩�𝑒𝑒𝑧𝑧,𝑘𝑘
𝑖𝑖, 2𝑅𝑅�𝑁𝑁

𝑖𝑖=1 ∑ 1
𝑁𝑁
𝑒𝑒𝑘𝑘
𝑃𝑃,𝜄𝜄𝑁𝑁

𝑖𝑖′=1 − ∑ 𝒩𝒩�𝑒𝑒𝑧𝑧,𝑘𝑘
𝑖𝑖, 2𝑅𝑅� 1

𝑁𝑁
𝑒𝑒𝑘𝑘
𝑃𝑃,𝑖𝑖′

𝑖𝑖≠𝑖𝑖′ −
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1
𝑁𝑁
∑ �𝒩𝒩�𝑒𝑒𝑧𝑧,𝑘𝑘

𝑖𝑖, 2𝑅𝑅�𝒩𝒩(0,𝑄𝑄)� + 𝒩𝒩�𝑧𝑧𝑃𝑃,𝑘𝑘,ℎ0′�𝑥𝑥𝑝𝑝,𝑘𝑘�,𝑅𝑅�𝑁𝑁
𝑖𝑖=1

1
𝑁𝑁
∑ 𝑒𝑒𝑘𝑘

𝑃𝑃,𝜄𝜄  𝑁𝑁
𝑖𝑖=1 −

�𝑄𝑄𝒩𝒩�𝑧𝑧𝑃𝑃,𝑘𝑘,ℎ0′(𝑥𝑥𝑝𝑝,𝑘𝑘),𝑅𝑅� +𝒩𝒩(0,𝑄𝑄)
𝑁𝑁

(9) 

 
(9) ⟹ 𝑝𝑝�𝑥𝑥𝑝𝑝,𝑘𝑘�𝑧𝑧𝑝𝑝,1:𝑘𝑘� = 

 
 

𝒩𝒩�𝑧𝑧𝑃𝑃,𝑘𝑘,ℎ0′�𝑥𝑥𝑝𝑝,𝑘𝑘�,𝑅𝑅� �
1
𝑁𝑁
�𝑒𝑒𝑘𝑘

𝑃𝑃,𝜄𝜄 − �𝑄𝑄 
𝑁𝑁

𝑖𝑖=1

� 

 

+
1
𝑁𝑁
��𝒩𝒩�𝑒𝑒𝑧𝑧,𝑘𝑘

𝑖𝑖, 2𝑅𝑅�
𝑁𝑁

𝑖𝑖=1

� 𝑒𝑒𝑘𝑘
𝑃𝑃,𝜄𝜄

𝑁𝑁

𝑖𝑖′=1

−�𝒩𝒩�𝑒𝑒𝑧𝑧,𝑘𝑘
𝑖𝑖, 2𝑅𝑅�𝑒𝑒𝑘𝑘

𝑃𝑃,𝑖𝑖′

𝑖𝑖≠𝑖𝑖′
� 

 
 
+𝒩𝒩(0,𝑄𝑄)

𝑁𝑁
�1 − ∑ 𝒩𝒩�𝑒𝑒𝑧𝑧,𝑘𝑘

𝑖𝑖, 2𝑅𝑅�𝑁𝑁
𝑖𝑖=1  �                        (10) 

 
Equation (10) implies that by applying brute force sampling i.e. 𝑁𝑁 → ∞  the term : 
 

1
𝑁𝑁
�𝑒𝑒𝑘𝑘

𝑃𝑃,𝜄𝜄 
𝑁𝑁

𝑖𝑖=1

 

 
Represents the covariance of the particle filter as the samples will participate equally to 

the state estimate at epoch k. Then if the covariance of the filter equals the process noise 
standard deviation then the SIR particle filter does not depend on the measurement but 
rather at the errors of the particles 𝑒𝑒𝑘𝑘

𝑃𝑃,𝜄𝜄 , the observation errors of the particles  𝑒𝑒𝑧𝑧,𝑘𝑘
𝑖𝑖 and 

their covariance. 
 
There is no linear relation between the particles at each epoch 𝑘𝑘 because of the initial 

non-linear model and the particle generation process and as a result both the particles and 
the errors between the particles are uncorrelated. Furthermore, the errors generated for 
particles 𝑖𝑖 and 𝑗𝑗 at epoch 𝑘𝑘 and 𝑛𝑛 respectively are uncorrelated, i.e. the covariance is zero. 

 
The posterior density is computed via the particle algorithm SIR  in evaluation (Figure 

13.2). 
In this paper the evaluation of the proposed filter was performed on target tracking and 

the covariance and second order covariance of the particles which have been generated at 
each epoch was computed as appears below: 

 
𝑃𝑃𝑘𝑘|𝑘𝑘−1 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥𝑘𝑘) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘𝑃𝑃 
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= �𝑤𝑤𝑘𝑘|𝑘𝑘−1
𝑖𝑖

𝑁𝑁𝑠𝑠

𝑖𝑖=1

�𝑥𝑥𝑘𝑘𝑖𝑖 − 𝑥𝑥�𝑃𝑃,𝑘𝑘|𝑘𝑘−1��𝑥𝑥𝑘𝑘𝑖𝑖 − 𝑥𝑥�𝑃𝑃,𝑘𝑘|𝑘𝑘−1�
𝑇𝑇
 

𝑥𝑥�𝑘𝑘|𝑘𝑘−1 = 𝑥𝑥𝑃𝑃,𝑘𝑘 = ∑ 𝑤𝑤𝑘𝑘|𝑘𝑘−1
𝑖𝑖 𝑥𝑥𝑘𝑘𝑖𝑖

𝑁𝑁𝑠𝑠
𝑖𝑖=1     (11) 

 
The second order covariance at each epoch is computed as the expected value of: 
 

� 1

�𝑁𝑁𝑠𝑠2 �
∑ �1

2
�𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗�

2
− 𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘𝑃𝑃�{𝑖𝑖,𝑗𝑗} �

2

(12) 

Τhe above estimation yields three types of outer products terms which eventually lead to 
the equation below: 

 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑆𝑆2) = 𝑐𝑐𝑐𝑐𝑐𝑐2𝑘𝑘𝑃𝑃 = 𝜇𝜇4
𝛮𝛮𝑠𝑠
− 𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘

𝑃𝑃(𝛮𝛮𝑠𝑠−3)
𝑁𝑁𝑠𝑠(𝑁𝑁𝑠𝑠−1)   (13) 

 
And where μ4 is the fourth central moment of x estimated as 
 

 𝜇𝜇4 = ∑
�𝑥𝑥−𝑥𝑥𝑘𝑘

𝑖𝑖 �
4

𝑁𝑁𝑠𝑠
𝑁𝑁𝑠𝑠
𝑖𝑖=1 .   (14) 

 
The covariance and second order covariance of the particle process for each sample will 

be the noise parameters of the Kalman-like filter. The covariance is a metric of how well 
the particle filtering achieved the required diversity of particles which should follow 
normal distribution and any difficiencies to meet this goal of particle filtering will be 
hidden in the tails that appear and covariance will not be sufficient so the second order 
covariance is a metric for this and overcoming the error of the posterior density estimate 
of the particle filtering implies to encounter the second order covariance of particle 
generation.  

 
B. The  Kalman-like Filter 

The general Kalman filter provides optimal solutions for linear models as it minimizes 
the Mean Square Error (MSE) of the Kalman filter process error. Kalman Filter is an 
optimal solution for extracting noise.  

The Proposed Kalman-like filter considers the model: 
 
𝑋𝑋𝑘𝑘+1 = 𝛷𝛷𝑋𝑋𝑘𝑘 + 𝑊𝑊𝑘𝑘   (15) 
𝑍𝑍𝑝𝑝,𝑘𝑘 = 𝐻𝐻𝑋𝑋𝑘𝑘 + 𝑉𝑉𝑘𝑘  (16) 
 
Where Φ=Ι and H=I  and 
 
 𝑤𝑤𝑘𝑘 = 𝑒𝑒𝑘𝑘𝑃𝑃 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘𝑃𝑃,         𝑣𝑣𝑘𝑘 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘𝑃𝑃 (17) 
 
     And the covariances of 𝑤𝑤𝑘𝑘   and 𝑣𝑣𝑘𝑘   are not stationary but estimated for each epoch 

k: 
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𝑊𝑊𝑘𝑘 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘𝑃𝑃 + 𝑐𝑐𝑐𝑐𝑐𝑐2𝑘𝑘𝑃𝑃   and 𝑉𝑉𝑘𝑘 = 𝑐𝑐𝑐𝑐𝑐𝑐2𝑘𝑘𝑃𝑃    (18) 
 
The  𝑤𝑤𝑘𝑘 reflects all the uncertainty regarding the external system state estimation which 

was performed during particle filtering [184].  The  𝑤𝑤𝑘𝑘 is a centered Gaussian random 
signal and it is defined entirely by its covariance. The covariance of the process noise is 
not stationary. The  {𝑤𝑤𝑘𝑘}  and   {𝑣𝑣𝑘𝑘}  are white in the strict sense so the linear scalar system 
is a Gauss-Markov model which should correct the estimation of the Bayesian posterior 
density of the particle filtering based on the estimated particle generation failure metric 
which are the covariance and second order covariance. The 𝑥𝑥𝑘𝑘 , 𝐻𝐻𝑥𝑥𝑘𝑘  is the state and 
measurement matrices. The error of the filter process i.e. the difference of the state estimate 
and the real state,   if 𝑥𝑥�𝑘𝑘 is the estimated state and 𝑥𝑥𝑘𝑘 itself is then: 

 
𝑓𝑓(𝑒𝑒𝑘𝑘) = 𝑓𝑓(𝑥𝑥𝑘𝑘 − 𝑥𝑥�𝑘𝑘)  (19) 
 
A good choice of an error function should be positive and increase monotonically [176]. 

The square error function satisfies those prerequisite  and given that we consider a period 
of time, the MSE function is a good metric: 

 
𝑒𝑒𝑘𝑘 = 𝔼𝔼[𝑒𝑒𝑘𝑘2] (20) 
 
The filter process error covariance: 
 
𝑃𝑃𝑘𝑘𝐾𝐾 = 𝔼𝔼[𝑒𝑒𝑘𝑘𝑒𝑒𝑘𝑘𝑇𝑇] = 𝔼𝔼[𝑒𝑒𝑘𝑘2] = 𝔼𝔼[(𝑥𝑥𝑘𝑘 − 𝑥𝑥�𝑘𝑘)(𝑥𝑥𝑘𝑘 − 𝑥𝑥�𝑘𝑘)𝑇𝑇] (21) 
 
If the prior estimate of the  𝑥𝑥�𝑘𝑘 gained by the system is the 𝑥𝑥�𝑘𝑘

′ then we have: 
 
𝑥𝑥�𝑘𝑘 = 𝑥𝑥�𝑘𝑘

′ + 𝐾𝐾𝑘𝑘(𝑧𝑧𝑘𝑘 − 𝐻𝐻𝑥𝑥�𝑘𝑘
′) = 𝑥𝑥�𝑘𝑘

′ +  𝐾𝐾𝑘𝑘(𝐻𝐻𝑥𝑥�𝑘𝑘 + 𝑣𝑣𝑘𝑘 − 𝐻𝐻𝑥𝑥�𝑘𝑘
′)(22) 

 
Where 𝐾𝐾𝑘𝑘 is the filter’s gain at epoch k. 
 
The uncertainty of the state estimate as computed through the particle filtering is passed 

as the error in both the state estimate and measurement of the Kalman-like filter. However 
the state estimate uncertainty is increased with both the covariance and second order 
covariance of the error whilst the second order covariance of the error constitute the noise 
considered for the measurement. The second order covariance provides information which 
is hidden in tails that is why it is encountered in the proposed filter. The covariance and 
second order covariance of the particle filter are chi-square variables and according to 
central limit theorem for the large number of particles they follow the normal distribution. 

The probability of likelihood 𝑝𝑝(𝑧𝑧𝑘𝑘|𝑥𝑥�𝑘𝑘) has to be maximized and as the noise remain 
Gaussian, the maximum likelihood for the filter is given by: 

  

𝑝𝑝(𝑧𝑧𝑘𝑘|𝑥𝑥�𝑘𝑘) = 𝐾𝐾𝑘𝑘𝑒𝑒𝑥𝑥𝑥𝑥 �−
(𝑧𝑧𝑘𝑘 − 𝑥𝑥�𝑘𝑘)2

𝑐𝑐𝑐𝑐𝑐𝑐2𝑘𝑘𝑃𝑃
� 
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= 𝐾𝐾𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒�−
�𝑥𝑥𝑝𝑝,𝑘𝑘 − 𝑥𝑥�𝑘𝑘�

2

𝑐𝑐𝑐𝑐𝑐𝑐2𝑘𝑘𝑃𝑃
� ⟹ 𝑝𝑝�𝑥𝑥𝑝𝑝,𝑘𝑘�𝑥𝑥�� 

= �𝐾𝐾𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒�−
�𝑥𝑥𝑝𝑝,𝑘𝑘 − 𝑥𝑥�𝑘𝑘�

2

𝑐𝑐𝑐𝑐𝑐𝑐2𝑘𝑘𝑃𝑃
� ⟹ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑥𝑥𝑝𝑝,𝑘𝑘�𝑥𝑥�� =

1
2

𝑘𝑘

��
�𝑥𝑥𝑝𝑝,𝑘𝑘 − 𝑥𝑥�𝑘𝑘�

2

𝑐𝑐𝑐𝑐𝑐𝑐2𝑘𝑘𝑃𝑃
�

𝑘𝑘

+ 𝐶𝐶 (23) 

 The (23) implies that a state estimation  𝑥𝑥�𝑘𝑘 is computed based on the 𝑥𝑥𝑝𝑝,𝑘𝑘 and the fact 
that the estimated  error covariance and second order covariance of the error 
𝑐𝑐𝑐𝑐𝑐𝑐2𝑘𝑘𝑃𝑃   affected the initial 𝑥𝑥𝑝𝑝,𝑘𝑘 estimation.The driving function of  (23)  is the Mean Square 
Error and can be applied if 𝑥𝑥𝑝𝑝,𝑘𝑘 is a Gaussian signal- which holds as the particle filtering 
generates Gaussian signals -and then the MSE provides the 𝑥𝑥� that maximizes the 𝑝𝑝�𝑥𝑥𝑝𝑝,𝑘𝑘�𝑥𝑥��. 
The 𝑥𝑥� will be the state estimate approximation of the initial non-linear dynamic model (1) 
(2) with the error inhered by the particle filtering and extracted by the proposed Kalman-
like filter. If the scalar model extracts the second order covariance implications i.e. the 
metric that shows the inability of the particle filtering implementation to achieve the normal 
distribution in particle generation. 

The conditions for Kalman-like filter process to be unbiased provided that the noise is 
centered, are shown below : 

 
𝑒𝑒𝑘̇𝑘 = 𝛷𝛷𝑥𝑥𝑘𝑘 + 𝑤𝑤𝑘𝑘 − 𝛷𝛷𝑓𝑓𝑥𝑥�𝑘𝑘 − 𝐾𝐾𝑘𝑘(𝐻𝐻𝑥𝑥𝑘𝑘 + 𝑣𝑣𝑘𝑘) 
= (𝛷𝛷 − 𝐾𝐾𝑘𝑘𝛨𝛨)𝑥𝑥𝑘𝑘 + 𝑤𝑤𝑘𝑘 − 𝛷𝛷𝑓𝑓𝑥𝑥�𝑘𝑘 − 𝐾𝐾𝑘𝑘𝑣𝑣𝑘𝑘 
= (𝛷𝛷 − 𝐾𝐾𝑘𝑘𝛨𝛨)𝑒𝑒𝑘𝑘 − �𝛷𝛷 − 𝐾𝐾𝑘𝑘𝛨𝛨 − 𝛷𝛷𝑓𝑓�𝑥𝑥�𝑘𝑘 + 𝑤𝑤𝑘𝑘 − 𝐾𝐾𝑘𝑘𝑣𝑣𝑘𝑘 ⟹ 
𝔼𝔼[𝑒𝑒𝑘̇𝑘] = (𝛷𝛷 − 𝐾𝐾𝑘𝑘𝛨𝛨)𝔼𝔼[𝑒𝑒𝑘𝑘]− �𝛷𝛷 − 𝐾𝐾𝑘𝑘𝛨𝛨 − 𝛷𝛷𝑓𝑓�𝔼𝔼[𝑥𝑥�𝑘𝑘] + 𝔼𝔼[𝑤𝑤𝑘𝑘]− 𝐾𝐾𝑘𝑘𝔼𝔼[𝑣𝑣𝑘𝑘]                                                       

(24) 
 
Then the   lim

𝑡𝑡→∞
𝔼𝔼[𝑒𝑒𝑘̇𝑘] = 0  for  ∀𝔼𝔼[𝑥𝑥�𝑘𝑘]  if and only 

 
   𝛷𝛷 − 𝐾𝐾𝑘𝑘𝛨𝛨 = 𝐼𝐼 − 𝐾𝐾𝑘𝑘 = 𝛷𝛷𝑓𝑓 and 𝛷𝛷 − 𝐾𝐾𝑘𝑘𝛨𝛨 = 𝐼𝐼 − 𝐾𝐾𝑘𝑘 should be stable   (25) 
 
Then the following equations hold: 
 

(19)& (20) ⟹ 𝑒𝑒𝑘̇𝑘 = (𝐼𝐼 − 𝐾𝐾𝑘𝑘)𝑒𝑒𝑘𝑘 + [𝐼𝐼  − 𝐾𝐾𝑘𝑘] �
𝑤𝑤𝑘𝑘
𝑣𝑣𝑘𝑘 � (26) 

 

Then 𝔼𝔼 ��
𝑤𝑤𝑘𝑘
𝑣𝑣𝑘𝑘 �

[𝑤𝑤𝑘𝑘+𝑙𝑙
𝑇𝑇 𝑣𝑣𝑘𝑘+𝑙𝑙𝑇𝑇]� = �𝑊𝑊 0

0 𝑉𝑉� 𝛿𝛿𝑙𝑙  with  𝛿𝛿𝑙𝑙 =1 if 𝑙𝑙 =0 and 0 elsewhere (27) 

 
The covariance matrix in (27) has this form because the error during particles generation 

for epoch 𝑘𝑘 is independent to the error generated at epoch 𝑙𝑙 since the error of particles is 
uncorrelated: 

 
𝔼𝔼[𝑤𝑤𝑘𝑘 𝑣𝑣𝑘𝑘+𝑙𝑙] = 0      (28) 

 
Moreover the covariance matrices W and V are positive semidefinite and diagonal. And 

the Kalman-like filter process error covariance evolves as: 
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𝑃𝑃𝑘𝑘𝐾𝐾 = 𝔼𝔼[𝑒𝑒𝑘𝑘𝑒𝑒𝑘𝑘𝑇𝑇] = 𝔼𝔼[𝑒𝑒𝑘𝑘2] = 𝔼𝔼[(𝑥𝑥𝑘𝑘 − 𝑥𝑥�𝑘𝑘)(𝑥𝑥𝑘𝑘 − 𝑥𝑥�𝑘𝑘)𝑇𝑇]    (29) 

 
 (26)&(29) ⟶ 𝑃𝑃𝑘𝑘𝐾̇𝐾 = (𝐼𝐼 − 𝐾𝐾𝑘𝑘)𝑃𝑃𝑘𝑘𝐾𝐾 + 𝑃𝑃𝑘𝑘𝐾𝐾(𝐼𝐼 − 𝐾𝐾𝑘𝑘)𝑇𝑇 + 𝑊𝑊 + 𝐾𝐾𝑘𝑘𝑉𝑉𝐾𝐾𝑘𝑘𝑇𝑇       (30) 
 
 
If (𝐼𝐼 − 𝐾𝐾𝑘𝑘) stable then then process error covariance matrix 𝑃𝑃𝑘𝑘𝐾𝐾 is positive definite and 

𝑊𝑊 + 𝐾𝐾𝑘𝑘𝑉𝑉𝐾𝐾𝑘𝑘𝑇𝑇 is positive semidefinite. (30) is Lyapunov equation [185] [186] and if 
(𝐼𝐼 − 𝐾𝐾𝑘𝑘) stable then 𝑃𝑃𝑘𝑘𝐾̇𝐾 = 0 for each epoch 𝑘𝑘. So, the system is stable at each epoch. The 
general unique solution to the general Lyapunov equation is (30): 

 
𝐴𝐴𝐴𝐴 + 𝑃𝑃𝐴𝐴𝑇𝑇 + 𝑄𝑄 = 0        (31) 
 
 𝑃𝑃 = ∫ 𝑒𝑒𝐴𝐴𝐴𝐴𝑄𝑄𝑒𝑒𝐴𝐴𝑇𝑇𝑡𝑡𝑑𝑑𝑑𝑑∞

0     (32) 
 
So, the solution to (30) iff (𝐼𝐼 − 𝐾𝐾𝑘𝑘) is Voltera-Lyapunov stable  (i.e. strongly stable and 

D-stable)  for each epock  𝑘𝑘 is given by: 
 
𝑃𝑃𝑘𝑘𝐾̇𝐾 = ∫ 𝑒𝑒(𝐼𝐼−𝐾𝐾𝑘𝑘)̇ 𝑡𝑡�𝑊𝑊 + 𝐾𝐾𝑘𝑘𝑉𝑉𝐾𝐾𝑘𝑘𝑇𝑇 �𝑒𝑒(𝐼𝐼−𝐾𝐾𝑘𝑘)𝑇𝑇𝑡𝑡𝑑𝑑𝑑𝑑∞

0   (33) 
 
If a matrix A is Voltera-Lyapunov stable then for  P symmetric positive, each matrix (A-

αΙ)  for every α >0 is a Voltera-Lyapunov stable as: 
 

𝐴𝐴𝐴𝐴 + 𝑃𝑃𝐴𝐴𝑇𝑇 = 𝑄𝑄1(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖𝑣𝑣𝑣𝑣 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) 𝑎𝑎𝑎𝑎𝑎𝑎 𝐴𝐴 𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
⟶ (A − αΙ)𝑃𝑃 + 𝑃𝑃(A − αΙ)𝑇𝑇 

= 𝐴𝐴𝐴𝐴 − 𝛼𝛼𝛼𝛼𝑃𝑃 + 𝑃𝑃𝑃𝑃 − 𝛼𝛼𝑃𝑃 = 𝐴𝐴𝐴𝐴 + 𝑃𝑃𝑃𝑃 − 2𝛼𝛼𝛼𝛼 = 𝑄𝑄1 − 2𝛼𝛼𝛼𝛼
< 0  𝑎𝑎𝑎𝑎𝑎𝑎 (A − αΙ) 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ⟶ 

(𝛼𝛼𝛼𝛼 − 𝛢𝛢)𝑃𝑃 + 𝑃𝑃 (𝛼𝛼𝛼𝛼 − 𝛢𝛢)𝑇𝑇 = −𝐴𝐴𝐴𝐴 − 𝑃𝑃𝑃𝑃 + 2𝛼𝛼𝛼𝛼 = −𝑄𝑄1 + 2𝛼𝛼𝛼𝛼(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)
⟶  (34) 

 
Then (𝛼𝛼𝛼𝛼 − 𝛢𝛢) 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 [14]  
 
So, 𝐾𝐾𝑘𝑘 positive semidefinite should follow within the unit cycle ( 35) 
To minimize the trace of  𝑃𝑃𝑘𝑘𝐾̇𝐾 which represents the Mean Square Error, we differentiate 

w.r.t. 𝐾𝐾𝑘𝑘 and get the trace : 
 
𝜕𝜕�𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑃𝑃𝑘𝑘

𝐾̇𝐾 �

𝜕𝜕𝐾𝐾𝑘𝑘
= −2𝑃𝑃𝑘𝑘𝐾𝐾 + 2𝐾𝐾𝑘𝑘𝑉𝑉 = 0 ⟹𝐾𝐾𝑘𝑘 = 𝑃𝑃𝑘𝑘𝐾𝐾𝑉𝑉−1  (36) 

 
(36) provides the relations between the filter’s gain and the process error covariance. 
From (36) as 𝑃𝑃𝑘𝑘𝐾𝐾 is a covariance matrix is symmetric positive semidefinite and 𝑉𝑉 

symmetric positive semidefinite, 𝑉𝑉−1 exists and is positive semidefinite [187] [188], 
Theorem 2.2.], too.  Then 𝐾𝐾𝑘𝑘 positive semidefinite and the matrix (𝐼𝐼 − 𝐾𝐾𝑘𝑘) is negative 
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definite as for ∀ non zero vector of real numbers  : 𝑧𝑧𝑇𝑇𝐾𝐾𝑘𝑘𝑧𝑧 ≥ 0. Then (𝐼𝐼 − 𝐾𝐾𝑘𝑘) is negative 
definite i.e.  

 
 ∀ non zero vector of real numbers 𝑧𝑧 : 
 
 𝑧𝑧𝑇𝑇(𝐼𝐼 − 𝐾𝐾𝑘𝑘)𝑧𝑧 < 0 ⟶ 𝑧𝑧𝑇𝑇𝑧𝑧 − 𝑧𝑧𝑇𝑇𝐾𝐾𝑘𝑘𝑧𝑧 < 0 ⟶ 𝑧𝑧𝑇𝑇𝑧𝑧 − 𝑧𝑧𝑇𝑇𝑧𝑧 − 𝑧𝑧𝑇𝑇𝐾𝐾𝑘𝑘𝑧𝑧 < 0 − 𝑧𝑧𝑇𝑇𝑧𝑧 < 0 ⟶

−𝑧𝑧𝑇𝑇𝐾𝐾𝑘𝑘𝑧𝑧 < 0 ⟶ 𝑧𝑧𝑇𝑇𝐾𝐾𝑘𝑘𝑧𝑧 > 0,𝑤𝑤ℎ𝑖𝑖𝑖𝑖ℎ ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ⟶ 
(𝐼𝐼 − 𝐾𝐾𝑘𝑘) 

 
is negative define and has negative eigenvalues,so Lyapunov equation (30)holds 
If we want to express the process error covariance w.r.t to the prior estimate of the filter  

𝑃𝑃𝑘𝑘𝐾𝐾
′for the 𝑃𝑃𝑘𝑘𝐾𝐾 we have to substitute 𝑥𝑥�𝑘𝑘 in (16) with the prior estimate 𝑥𝑥�𝑘𝑘′: 

 

𝑃𝑃𝑘𝑘𝐾̇𝐾 = 𝔼𝔼[(𝑥𝑥𝑘𝑘 − 𝑥𝑥�𝑘𝑘)(𝑥𝑥𝑘𝑘 − 𝑥𝑥�𝑘𝑘)𝑇𝑇] = 

= 𝔼𝔼[[(𝐼𝐼 − 𝐾𝐾𝑘𝑘𝐻𝐻)(𝑥𝑥𝑘𝑘 − 𝑥𝑥�𝑘𝑘
′) −𝐾𝐾𝑘𝑘𝑣𝑣𝑘𝑘)][(𝐼𝐼 − 𝐾𝐾𝑘𝑘𝐻𝐻)(𝑥𝑥𝑘𝑘 − 𝑥𝑥�𝑘𝑘

′) −

𝐾𝐾𝑘𝑘𝑣𝑣𝑘𝑘)]𝑇𝑇]                       (37) 

 

 𝑥𝑥𝑘𝑘 − 𝑥𝑥�𝑘𝑘
′ is the error of the prior estimate. As the state variable is scalar for the proposed 

Kalman-like filter, we have for the prior error that the state 𝑥𝑥𝑘𝑘 of the primary non-linear 
dynamic system will be corrected/extracted by the  innovation ( i.e. 𝑦𝑦 − 𝑦𝑦� where 𝑦𝑦� =
𝐻𝐻𝑥𝑥�𝑘𝑘) of the proposed Kalman-like filter. 

 

(37) ⟶ 𝑃𝑃𝑘𝑘𝐾̇𝐾 = (𝐼𝐼 − 𝐾𝐾𝑘𝑘𝐻𝐻)𝔼𝔼[(𝑥𝑥𝑘𝑘 − 𝑥𝑥�𝑘𝑘
′)(𝑥𝑥𝑘𝑘 − 𝑥𝑥�𝑘𝑘

′)𝑇𝑇](𝐼𝐼 − 𝐾𝐾𝑘𝑘𝐻𝐻)𝑇𝑇 

+𝐾𝐾𝑘𝑘𝔼𝔼[𝑣𝑣𝑘𝑘𝑣𝑣𝑘𝑘𝑇𝑇]𝐾𝐾𝑘𝑘𝑇𝑇 − (𝐼𝐼 − 𝐾𝐾𝑘𝑘𝐻𝐻)𝔼𝔼[(𝑥𝑥𝑘𝑘 − 𝑥𝑥�𝑘𝑘
′)𝑣𝑣𝑘𝑘]𝐾𝐾𝑘𝑘𝑇𝑇 

−𝐾𝐾𝑘𝑘𝔼𝔼[𝑣𝑣𝑘𝑘(𝑥𝑥𝑘𝑘 − 𝑥𝑥�𝑘𝑘
′)](𝐼𝐼 − 𝐾𝐾𝑘𝑘𝐻𝐻)𝑇𝑇

(23)
�⎯� 

𝑃𝑃𝑘𝑘𝐾̇𝐾 = (𝐼𝐼 − 𝐾𝐾𝑘𝑘𝐻𝐻)𝔼𝔼[(𝑥𝑥𝑘𝑘 − 𝑥𝑥�𝑘𝑘
′)(𝑥𝑥𝑘𝑘 − 𝑥𝑥�𝑘𝑘

′)𝑇𝑇](𝐼𝐼 − 𝐾𝐾𝑘𝑘𝐻𝐻)𝑇𝑇 

+𝐾𝐾𝑘𝑘𝔼𝔼[𝑣𝑣𝑘𝑘𝑣𝑣𝑘𝑘𝑇𝑇]𝐾𝐾𝑘𝑘𝑇𝑇=𝑃𝑃𝑘𝑘𝐾𝐾
′ − 𝑃𝑃𝑘𝑘𝐾𝐾

′𝐾𝐾𝑘𝑘𝑇𝑇 − 𝐾𝐾𝑘𝑘𝑃𝑃𝑘𝑘𝐾𝐾
′ + 𝐾𝐾𝑘𝑘�𝑃𝑃𝑘𝑘𝐾𝐾

′ + 𝑉𝑉�𝐾𝐾𝑘𝑘𝑇𝑇  (38)    

 

As we want to minimize the trace  𝑃𝑃𝑘𝑘𝐾̇𝐾 we differientate w.r.t. to 𝐾𝐾𝑘𝑘 again and we get the 
equation of filter’s gain: 

 
𝜕𝜕�𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑃𝑃𝑘𝑘

𝐾̇𝐾 �

𝜕𝜕𝐾𝐾𝑘𝑘
= −2𝑃𝑃𝑘𝑘𝐾𝐾′ + 2𝐾𝐾𝑘𝑘𝑃𝑃𝑘𝑘𝐾𝐾′ + 2𝐾𝐾𝑘𝑘𝑉𝑉 = 0 ⟹𝐾𝐾𝑘𝑘 = 𝑃𝑃𝑘𝑘𝐾𝐾′�𝑃𝑃𝑘𝑘𝐾𝐾

′ + 𝑉𝑉�
−1

  (39) 
 
As long as V is a positive semidefinite matrix the  𝐾𝐾𝑘𝑘 remains within the unit circle, so 

it is stable. Substituting (39) to (38) provides the estimate of the process error covariance 
w.r.t. to prior error covariance: 
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𝑃𝑃𝑘𝑘𝐾̇𝐾 = (𝐼𝐼 − 𝐾𝐾𝑘𝑘)𝑃𝑃𝑘𝑘𝐾𝐾
′ (40) 

 
So, (40) estimates the proposed filter’s error covariance at each epoch 𝑘𝑘 which is the 

estimated noise to the initial state of the non-linear dynamic system, i.e. with higher 
accuracy than particle filtering taking into account the information that is hidden in the tails 
and it is not represented by covariance. The proposed filter then discards all the    𝑐𝑐𝑐𝑐𝑐𝑐2𝑘𝑘𝑃𝑃 
second order covariance effects. The control for the stability of the system is assured at 
each epoch 𝑘𝑘.  

Although the proposed filter reduces variance, it must be assured that there is an 
acceptable lower bound to average Mean Square Error and such a metric is the Cramer Rao 
Lower Bound (CRLB).  The CRLB depends on the model and not on the implementation 
and as soon as it is reachable an optimal algorithm attaines CRLB and the error variance 
of its estimates coincides with CRLB and the estimates are provided by maximum 
likelihood approach. The performance of particle filter is bounded by CRLB theoretically 
[184] but achieving optimal MSE requires a very large number of particles which is 
impractical. A recusrsive computation of CRLB is given by Riccati equation [184] for 
covariance of the error of the nonlinear particle filtering of the initial non-linear system for 
an unbiased estimator: 

 
𝑃𝑃𝑘𝑘𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑃𝑃′𝑘𝑘−1𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 − 𝑃𝑃′𝑘𝑘−1

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐻𝐻0𝑇𝑇(𝑥𝑥𝑘𝑘0) �𝐻𝐻0(𝑥𝑥𝑘𝑘0)𝑃𝑃′𝑘𝑘−1
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐻𝐻0𝑇𝑇(𝑥𝑥𝑘𝑘0) +

𝑅𝑅𝑘𝑘�
−1
𝐻𝐻0(𝑥𝑥𝑘𝑘0)𝑃𝑃′𝑘𝑘−1

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶                            (41)    
 

𝑃𝑃′𝑘𝑘+1𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐹𝐹(𝑥𝑥𝑘𝑘0)𝑃𝑃𝑘𝑘𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐹𝐹𝑇𝑇(𝑥𝑥𝑘𝑘0) + 𝐺𝐺(𝑥𝑥𝑘𝑘0)𝑄𝑄𝑘𝑘𝐺𝐺𝑇𝑇(𝑥𝑥𝑘𝑘0)  (42) 
 
Given the initial non-linear system (1) and (2) : 
 
𝐹𝐹(𝑥𝑥𝑘𝑘0) = 𝜕𝜕𝑓𝑓0(𝑥𝑥𝑘𝑘,𝑣𝑣𝑘𝑘

0)
𝜕𝜕𝑥𝑥𝑘𝑘

�
𝑥𝑥𝑘𝑘=𝑥𝑥𝑘𝑘

0,𝑣𝑣𝑘𝑘
0=0

(43) 

𝐺𝐺(𝑥𝑥𝑘𝑘0) = 𝜕𝜕𝑓𝑓0(𝑥𝑥𝑘𝑘,𝑣𝑣𝑘𝑘
0)

𝜕𝜕𝑣𝑣𝑘𝑘
�
𝑥𝑥𝑘𝑘=𝑥𝑥𝑘𝑘

0,𝑣𝑣𝑘𝑘
0=0

(44) 

𝐻𝐻0(𝑥𝑥𝑘𝑘0) = 𝜕𝜕ℎ0(𝑥𝑥𝑘𝑘)
𝜕𝜕𝑥𝑥𝑘𝑘

�
𝑥𝑥𝑘𝑘=𝑥𝑥𝑘𝑘

0
(45) 

 
𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑘𝑘

0) = 𝑅𝑅𝑘𝑘, 𝐶𝐶𝐶𝐶𝐶𝐶(𝑣𝑣𝑘𝑘0) = 𝑄𝑄𝑘𝑘, 𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥10) = 𝑃𝑃0𝐶𝐶𝐶𝐶𝐿𝐿𝐵𝐵, (46) 
 
For the scalar system (7) (8) of the Kalman-like filter which considers Gaussian signals 

and as long as the signals remain Gaussian, the following equations hold: 
 

𝑝𝑝(𝑥𝑥𝑘𝑘+1|𝑥𝑥𝑘𝑘 ,𝑊𝑊𝑘𝑘) = 𝒩𝒩(𝑥𝑥𝑘𝑘,𝑊𝑊𝑘𝑘)  (47) 

𝑝𝑝(𝑧𝑧𝑘𝑘|𝑥𝑥𝑘𝑘 ,𝑉𝑉𝑘𝑘) = 𝒩𝒩(𝑥𝑥𝑘𝑘,𝑉𝑉𝑘𝑘)  (48) 

 
The following equation provides the logarithm of Gaussian function: 
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ln𝒩𝒩(𝜇𝜇,𝑃𝑃) = −
1
2

ln 2𝜋𝜋 −
1
2

ln𝑃𝑃 −
1

2𝑃𝑃
(𝑥𝑥 − 𝜇𝜇)2 (49) 

 
Then the Fisher Information Matrix (FIM)  𝐽𝐽𝑘𝑘−1 [19] [20] of the Kalman-like filter is 

given by: 
 

𝑱𝑱𝒌𝒌=𝐾𝐾𝑘𝑘+1𝑘𝑘+1 − 𝐾𝐾𝑘𝑘+1
𝑘𝑘+1,𝑘𝑘�𝐽𝐽𝑘𝑘 + 𝐾𝐾𝑘𝑘+1𝑘𝑘 + 𝐿𝐿𝑘𝑘𝑘𝑘�

−1
𝐾𝐾𝑘𝑘+1
𝑘𝑘,𝑘𝑘+1      (50) 

 
 
Where 𝐾𝐾𝑘𝑘+1𝑘𝑘+1, 𝐾𝐾𝑘𝑘+1

𝑘𝑘+1,𝑘𝑘, 𝐾𝐾𝑘𝑘+1𝑘𝑘  , (𝐾𝐾𝑘𝑘+1
𝑘𝑘,𝑘𝑘+1𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜 𝐾𝐾𝑘𝑘+1

𝑘𝑘+1,𝑘𝑘) ,  𝐿𝐿𝑘𝑘𝑘𝑘  are estimated as 
[18]: 

 
𝐾𝐾𝑘𝑘+1𝑘𝑘 = 𝔼𝔼𝑥𝑥𝑘𝑘+1 �−∇𝑥𝑥𝑘𝑘�∇𝑥𝑥𝑘𝑘 ln𝑝𝑝(𝑥𝑥𝑘𝑘+1|𝑥𝑥𝑘𝑘)�

𝑇𝑇
|𝑥𝑥𝑘𝑘� = 𝑊𝑊𝑘𝑘

−1       (51) 

𝐾𝐾𝑘𝑘+1
𝑘𝑘,𝑘𝑘+1 = 𝔼𝔼𝑥𝑥𝑘𝑘+1 �−∇𝑥𝑥𝑘𝑘+1�∇𝑥𝑥𝑘𝑘 ln𝑝𝑝(𝑥𝑥𝑘𝑘+1|𝑥𝑥𝑘𝑘)�

𝑇𝑇
|𝑥𝑥𝑘𝑘� = −𝑊𝑊𝑘𝑘

−1           (52) 

𝐾𝐾𝑘𝑘+1𝑘𝑘+1 = 𝔼𝔼𝑥𝑥𝑘𝑘+1 �−∇𝑥𝑥𝑘𝑘+1�∇𝑥𝑥𝑘𝑘+1 ln𝑝𝑝(𝑥𝑥𝑘𝑘+1|𝑥𝑥𝑘𝑘)�
𝑇𝑇

|𝑥𝑥𝑘𝑘� = 𝑊𝑊𝑘𝑘
−1          (53) 

 𝐿𝐿𝑘𝑘𝑘𝑘 = 𝔼𝔼𝑧𝑧𝑘𝑘 �−∇𝑥𝑥𝑘𝑘�∇𝑥𝑥𝑘𝑘 ln𝑝𝑝(𝑧𝑧𝑘𝑘|𝑥𝑥𝑘𝑘)�
𝑇𝑇

|𝑥𝑥𝑘𝑘�  = 𝑉𝑉𝑘𝑘−1      (54) 
 
By substituting (45), (46), (47), (48) in (44), the inverse of the FIM is given by: 
 

𝑱𝑱𝒌𝒌+𝟏𝟏 = 𝑊𝑊𝒌𝒌  −𝑊𝑊𝑘𝑘
−1 (𝐽𝐽𝑘𝑘 + 𝑊𝑊𝑘𝑘

−1  + 𝑉𝑉𝑘𝑘−1 )−1𝑊𝑊𝑘𝑘
−1      (55) 

 
The Riccati equation for 𝑃𝑃𝑘𝑘𝐾𝐾  [190]coincides with equation (49) where 𝐽𝐽𝑘𝑘 = 𝑃𝑃𝑘𝑘𝐾𝐾

−1  which 
implies that the Kalman-like filter is optimal i.e. achieves Cramer Rao bound but as the 
inputs of the Kalman-like filter  is the state estimation of particle filtering the bound reached 
then depends on how well the particle algorithm describes the initial non-linear system. 

Finally, the update equations of the optimal proposed discrete Kalman-like filter evolve 
as follows: 

 
 

Description Equation 
Enhanced Kalman 

Gain 𝐾𝐾𝑘𝑘 =
𝑃𝑃𝑘𝑘𝐾𝐾

′

𝑃𝑃𝑘𝑘𝐾𝐾
′ + 𝑐𝑐𝑐𝑐𝑐𝑐2𝑘𝑘𝑃𝑃

 

Update State Estimate 𝑥𝑥�𝑘𝑘 = 𝑥𝑥�𝑘𝑘
′ +  𝐾𝐾𝑘𝑘(𝑧𝑧𝑘𝑘 − 𝐻𝐻𝑥𝑥�𝑘𝑘

′) 
Update Process 

Covariance 
𝑃𝑃𝑘𝑘𝐾𝐾 = 𝑃𝑃𝑘𝑘𝐾𝐾

′(𝐼𝐼 − 𝐾𝐾𝑘𝑘𝐻𝐻) 

Project into k+1 𝑥𝑥�𝑘𝑘+1
′ = 𝛷𝛷𝑥𝑥�𝑘𝑘 = 𝑥𝑥�𝑘𝑘 

𝑃𝑃𝑘𝑘+1𝐾𝐾 ′ = 𝑃𝑃𝑘𝑘𝐾𝐾 + (𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘𝑃𝑃 + 𝑐𝑐𝑐𝑐𝑐𝑐2𝑘𝑘𝑃𝑃) 
 
 
 
Table 13.2: The Proposed Kalman-like Filter recursive equations for state estimation 
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As the proposed Kalman-like filter minimizes the MSE of the output of Particle filter 

where the noise is considered as the error of the Particle filter estimation i.e. it is optimal. 
Besides, the 𝑒𝑒𝑘𝑘𝑃𝑃, 𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘𝑃𝑃 for each sample are estimated from the particle filtering algorithm 
so the additional computations per sample are the (14)  and (13) increasing the 
computational load by 𝒪𝒪(𝑛𝑛) per sample.  

 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

13.4. EVALUATION 
 

The evaluation of the proposed optimal filter was implemented in Javascript and was 
performed with the most common Particle filter i.e. SIR Particle Algorithm for the non-
linear system equation and the position tracking problem [173] : 

 
𝑓𝑓(𝑥𝑥𝑘𝑘−1,𝑘𝑘) = 𝑥𝑥𝑘𝑘−1

2
+ 25𝑥𝑥𝑘𝑘−1

𝑥𝑥𝑘𝑘−12+1
+ 8cos (1.2𝑘𝑘) (56) 

 
And 𝑥𝑥𝑘𝑘 = 𝑓𝑓(𝑥𝑥𝑘𝑘−1,𝑘𝑘) + 𝑣𝑣𝑘𝑘−1.  
 
The trajectories were passed to the particle filter and then the particle filter estimations 

passed through as new trajectories to  the Kalman-like filter. The measurements were 
considered Gaussian noise measurements with covariance Q=10 and R=1 which means that 
the noise is high for the particular system. The proposed filter was compared to a) the 

Proposed Filter: 
Input: measurements  𝑧𝑧𝑝𝑝,𝑖𝑖  𝑖𝑖 = 1 ∶ 𝑁𝑁𝑠𝑠 
FOR 𝑖𝑖 = 1 ∶ 𝑁𝑁𝑠𝑠 
{ (𝑥𝑥𝑝𝑝,𝑖𝑖, 𝑒𝑒𝑖𝑖𝑃𝑃 , 𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑃𝑃) =Particle(𝑧𝑧𝑝𝑝,𝑖𝑖)} 
FOR 𝑖𝑖 = 1 ∶ 𝑁𝑁𝑠𝑠 
{ Calculate 𝑐𝑐𝑐𝑐𝑐𝑐2𝑖𝑖𝑃𝑃} 
𝑧𝑧𝑘𝑘 = 𝑥𝑥𝑝𝑝 
FOR 𝑘𝑘 = 1 ∶ 𝑁𝑁 
{ 
𝑥𝑥�𝑘𝑘

′ = 𝛷𝛷𝑥𝑥�𝑘𝑘−1 = 𝑥𝑥�𝑘𝑘−1 
𝑃𝑃𝑘𝑘𝐾𝐾

′ = 𝑃𝑃𝑘𝑘−1𝐾𝐾 + (𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘−1𝑃𝑃 + 𝑐𝑐𝑐𝑐𝑐𝑐2𝑘𝑘−1𝑃𝑃 ) 
 

𝐾𝐾𝑘𝑘 =
𝑃𝑃𝑘𝑘𝐾𝐾

′

𝑃𝑃𝑘𝑘𝐾𝐾
′ + 𝑐𝑐𝑐𝑐𝑐𝑐2𝑘𝑘𝑃𝑃

 

 
𝑥𝑥�𝑘𝑘 = 𝑥𝑥�𝑘𝑘

′ +  𝐾𝐾𝑘𝑘(𝑧𝑧𝑘𝑘 − 𝐻𝐻𝑥𝑥�𝑘𝑘
′) 

} 
  

       
 

Figure 13.3: The Algorithm for the Proposed Filter 
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Particle filter b) the Kalman-like filter c) a combined filter where the Kalman-like filter 
was applied to the particles of each sample 𝑥𝑥𝑘𝑘 and a mean filter in terms of Euclidean 
distance. The normality of both the 𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘𝑃𝑃 and 𝑐𝑐𝑐𝑐𝑐𝑐2𝑘𝑘𝑃𝑃 was evaluated as they are the noise 
inputs for the Kalman-like filter. The normality of covariance 𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘𝑃𝑃 was verified for 200 
samples and 500 particles per sample (Fig. 3) and 200 samples and 1500 particles per 
sample (Figure 13.4) and the Euclidean distances are presented.  

 
As it can be seen when the number of particles is not large the covariance of the SIR 

filter as implemented –which does not describe system (56) well- for the input system 
model preserves the bell curve but when the number of particles is large i.e. 1500 particles 
per sample the covariance curve becomes more skewed i.e. approaches more a Chi-variable 
and with sharper peak due the increased number of particles.  As a result, the performance 
of the whole proposed filter degrades. As it can be seen from Figure 13.3, the curve is wide 
which implies that there is more information hidden in tails and covariance is not sufficient 
to describe the noise. In Figure 13.4 the curve becomes more skewed because with the 
increasing number of particles the diversity does not increase. That is to say, the covariance 
does not provide accurate estimates as there is information hidden in tails so the second 
order covariance has to be encountered. 

 

 

 
 

Figure 13.3: The covariance curve and the Euclidean distances for 500 samples and 500 
particles per sample 
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Figure 13.4: The covariance curve and the Euclidean distances for 500 samples and 

1500 particles per sample 
 
 
The covariance depends on the SIR Particle filter performance which is sensitive to 

outliers and the importance density does not perform well in high noise.  
The performance of all the filters for 200 samples and 500 particles per sample are shown 

in Figure 13.5, Figure 13.6, Figure 13.7, Figure 13.8, Figure 13.9.  
 
 

 
Figure 13.5: The measurement of non-linear dynamic model 

 
Figure 13.6: The Particle Filtering for 200 samples/500 particles 

 
Figure 13.7: The Kalman Filtering for 200 samples 
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Figure 13.8: The Kalman Filter applied to the particles of each sample (200 sample/500 

particles) 
 
 

 
Figure 13.9: The Proposed Filtering for 200 samples and 500 particles. 

 
Figure 13.10: All the filters for 200 samples and 500 particles 

 
The Euclidean distance was computed for all the filters and four cases a) 200 samples 

and 500 particles (Figure 13.11) b) 200 samples and 1000 particles (Figure 13.12), c)500 
samples and 500 particles (Figure 13.13  d) 500 samples and 1000 particles (Figure 13.14).  
From Figure 13.11, Figure 13.12, Figure 13.13, Figure 13.14 it can be seen that an increase 
in the number of particles degrades the performance of the proposed filter because as it was 
implemented with the particular adjuvant SIR algorithm which does not provide the 
necessary particle diversity for the specific non-linear dynamic system (56) of the 
evaluation. However, the proposed filter adsorbs this dificiency and provides more accurate 
estimates. An increase in the number of samples does not increase significantly the 
performance and the covariance of the noise of the Kalman-like filter is estimated per 
sample, i.e the proposed filter operates equally for a larger and smaller number of samples. 
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Figure 13.11: The Euclidean distances for 200 samples and 500 particles 

 
Figure 13.12: The Euclidean distances for 200 samples and 1000 particles 
 

 
Figure 13.13: The Euclidean distances for 500 samples and 500 particles 

 
Figure 13.14: The Euclidean distances for 500 samples and 1000 particles 
 
 
 
The Cramer Rao Lower Bound (CRLB) is a performance bound which is computed on 

true trajectory and  depends on the model and not on the particle filtering implementation. 
The CRLB was estimated with (41) and (42) and the results for the Average  MSE of all 
the filters for the simulation and a) 200  samples and 500 particles (Figure 13.15), 200 
samples and 1000 particles (Figure 13.16), c) 500 samples and 500 particles (Figure 13.17), 
d) 500 samples and 1000 particles (Figure 13.18) are shown below. The CRLB can be 
computed on true trajectory so can be estimated in simulations or when the ground truth is 
available from a reference system [177]. 
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Figure 13.15: The CRLB and Average MSEs for all the filters and 200 samples and 500 

particles 

 
Figure 13.16: CRLB and Average MSEs for all filters and 200 samples and 1000 particles 

 
Figure 13.17: CRLB and Average MSEs for all filters and 500 samples and 500 particles 

 
Figure 13.18: CRLB and Average MSEs for all filters and 500 samples and 1000 particles 
 
The evaluation of the proposed filter encountered a common and simple to implement 

particle algorithm as it is not in scope of this paper to exploit the optimal performance of 
particle filtering but the opposite i.e. to overcome its deficiencies such as the large number 
of particles which increase tremendously the computational load or the difficulties of 
implementing more complex particle algorithms. The SIR algorithm as implemented was 
not meeting the demands of the noisy system which was examined, so a performance 
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divergence of the optimal theoretical particle filtering performance was expected. The 
proposed Kalman-like filter with limited computations can overcome any particle filtering 
performance degradation e.g. in Fig.15 the particle filtering achieves Average MSE around 
7.5 and the Kalman-like filter improves it to 5 when the estimated CRLB is 1. Not only 
that but the Kalman-like Filter achieves optimal performance, i.e. minimizes the MSE, with 
even with fewer samples and particles which decreases the computational load whilst 
remains optimal performance. 

 

13.5. CONCLUSION 
 

An optimal filter for state estimation is introduced which combines a proposed optimal 
Kalman-like filter stage part with a Particle filter part stage for a non-linear dynamic system 
model with Gaussian noises. The proposed filter refines the Particle Filtering results based 
on the estimated error and error covariance of particles per sample and requires a small 
number of particles whilst overcomes deficiencies in particle algorithm, thus achieves 
higher performance with fewer particles and less complex algorithms.  The proposed filter 
achieves higher accuracy and outperformed Kalman and Particle Filters during evaluation 
with a noisy and well-studied model example applied to tracking problem even with a 
simple particle algorithm and fewer number of particles. 
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Chapter 14 
 

 

 

 

MASSIVE MIMO TECHNOLOGY FOR 
COGNITIVE RADIO NETWORK 

 
MASSIVE MIMO FOR CRN WITH IMPERFECT 

CSI AND NON-RECIPROCAL CHANNELS 
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The performance of linearly precoded time division duplex  Multi User-

Multiple Input Multiple Output (MIMO) OFDM Cognitive Radio Network under 

imperfect CSI and non-reciprocal channels (NRC) covering transceiver frequency 

response non-reciprocity and antenna mutual coupling mismatches at the Secondary 

Network Base Station (BS), Secondary User Equipment (UE) and between the 

secondary network and the Primary Users is studied in this research work [192].   Zero-

Forcing and MMSE precoding are considered for the downlink and detailed signal and 

system models are derived.  Channel non-reciprocity is analyzed for the downlink 

transmission and closed-form analytical expressions are derived for performance 

degradation regarding the effective signal to interference plus noise ratios and 

corresponding channel capacity.  Those expressions are further used for channel 

estimation period optimization so to increase network’s performance. 

 

 

14.1 INTRODUCTION 

 

Massive MultipleInputMultipleOutput (MIMO) systems and Cognitive Radio 

Network are key technologies for the future 5G Network realization [11] [193]. In 

Massive MIMO the Base Station (BS) employs an array of large number of antennas N 

that can serve simultaneously K user equipments (UEs) on the same time-frequency 

resource with N>>K. The need for intense and accurate sensing made Multiple Input 

Multiple Output (MIMO) technology appropriate for Cognitive Radio. Cognitive radio 

answers the spectrum scarcity problem arising with the growth of usage of wireless 

networks and mobile services by exploiting the underutilized licensed spectrum. 

Time Division Duplexing (TDD) systems provide the advantage of acquiring 

CSI at transmitter without the need for dedicated feedback signaling as in Frequency 

Division Duplexing (FDD) [193]. The downlink (DL) channel estimation is based on 

uplink pilots relying on the reciprocity of DL and UL channels and thus the resources 

required are proportional to the UE i.e. K and not N.  

However, DL and UL channels are not reciprocal in practice due to differences 

between the frequency responses  (FR) of transmitter and receiver chains of individual 

transceiver and mutual coupling effects between the antenna elements [194] [195].  
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Channel non-reciprocity in massive MIMO systems is studied at [194] [195] [196] 

[197] [198]. 

Furthermore, for CSI estimation in TDD systems the reporting period has to be 

divided into two phases: the first phase devoted to channel estimation and the second is 

the transmission phase. There is a trade-off   between the length of the training sequence 

and transmission period as the time of channel learning will affect the efficiency of the 

system. An optimization of the training period as well the optimal number of K UEs is 

proposed for mimimun mean square error (MMSE) and zero-forcing (ZF) linear 

precoding. MMSE precoding aims at each transmitted antenna is constrained and ZF 

precoding is a technique which aims at the canceling out interuser interference at each 

user. 

Although MIMO systems as well as imperfect CSI and channel non-reciprocity 

have been studied so far, current literature on Massive MIMO systems in CRN is not 

extensive. The authors in [199] propose precoding adaptation for imperfect CSI. In 

[200] the minimum mean square error is studied for imperfect CSI in full-duplex MIMO 

systems in Cognitive Radio Networks (CRNs). The minimization problem of transmit 

power for MIMO CRN under imperfect CSI is studied [201] and imperfect CSI for both 

SU and PU is under consideration in [202] so they propose an opportunistic 

beamforming to minimize feedback. The authors in [203] consider and MIMO OFDM 

CRN with non-interfering channels and they propose a game for rate optimization. The 

exact outage probability expressions and expression of outage probability for high 

SINR are derived in [204]. Optimal beamforming for energy optimization, imperfect 

CSI and perfect and imperfect PU’s precoding is proposed in [205]. [206] optimize 

precoding. All the previous works may consider imperfect CSI, they do not encounter 

non-reciprocity CRN channels due to transceiver FR and antenna mutual coupling 

mismatches, their impact on the signal and system characteristics is not analyzed along 

with precoding, channel learning period and number of UEs optimization. In this paper, 

detailed signal and system models are derived.  Not only that but a comparative study 

of MMSE and ZF precoding in terms of achievable rate and SINR as well as 

performance degradation due to channel non-reciprocity are also presented. 

The rest of the paper is organized as follows: the section I is a presentation of 

the system under consideration, section II introduces imperfect CSI and non-channel 

reciprocity in massive MIMO CRN for MMSE and ZF precoding, section III optimizes 

the systems performance in terms of channel learning period and number of UEs. 
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Section IV is a comparative study of the two precoding schemes in terms of capacity 

and SINR. Finally, section V discusses the performance degradation due to channel 

non-reciprocity. In the notation used throughout the paper includes (.)T which denotes 

the transpose operation and (.)H denotes the Hermitian transpose. 

 

14.2 SYSTEM MODEL 

 

We consider Multi User -MIMO CRN with K users each one equipped with Nυ 

antennas . The Secondary Base Station (SBS) is equipped with an antenna array of N 

elements.  The Primary Network operates with a Primary Base Station (PBS) equipped 

with an antenna array of Np elements. For both networks non-reciprocal channels are 

considered and the acquired Channel State Information is imperfect. The effective 

physical channels linking the devices include also all the transceivers and antennas used 

in the transmitting and receiving devices. There are mismatches between the frequency 

responses (FRs) of transmitter (TX) and receiver (RX) chains of any individual 

transceiver, as well as further mutual coupling effects between the antenna elements in 

multi-antenna devices.  TDD multi-user (MU) MIMO-OFDM downlink transmissions 

are considered. During DL transmission, OFDM waveforms are constructed using N –

point IFFT preceded by proper sub-carrier level precoding and stream multiplexing. In 

this paper, we analyze and characterize the joint impacts of channel non-reciprocity due 

to transceiver FR and antenna mutual coupling mismatches on precoded TDD multiuser 

(MU) MIMO-OFDM downlink transmission. 

 Both MMSE and ZF precoding are considered for the downlink. The BS can 

use linear detection schemes to reduce the decoding complexity. However, these 

schemes have lower detection reliability compared with ML detection. There is always 

a tradeoff between complexity and system performance which vanishes as the number 

of BS antennas grow large and then linear detectors are nearly-optimal [207], [208]. 

We assume MMSE precoding which is the optimal precoding for MU- MIMO and aims 

to a constrained the transmitted power by each antenna.  In ZF precoding, the multiuser 

interference is completely nulled out by projecting each stream onto the orthogonal 

space of the interuser interference. 

Where H denotes the frequency domain channel matrix KXN of representing 

the transfer functions of the K users to the BS and Hp denotes the channel matrix 

between the SBS and PUs. The BS will use the channel matrix estimate and in particular 

218 
 



Ioanna Kakalou Algorithms for Cognitive Radio Networks and Cloud 2020 

the transpose HT to   process the signals before transmitting them to the 𝐾𝐾 users. 

Physical propagation channel matrices are denoted with H while the corresponding 

effective channel matrices are denoted with 𝐇𝐇�  which incorporates transmit chains’ 

frequency responses, transmitter and receiver antenna coupling effects, and receiver 

chains’ frequency responses. The estimated channel matrix is denoted by 𝐇𝐇.  �  N is the 

additive white Gaussian noise. We assume that the BS uses linear precoding and the 

precoding matrix is W, the data symbol vector be x and   such that 𝔼𝔼{|𝑥𝑥𝑘𝑘|2} = 1. 

The channel estimation phase optimizes the beamforming transmission and the 

longer that be the better estimation of the channel matrix we would have. On the other 

hand, the longer the channel estimation phase would decrease the global system 

bandwidth. A good estimate of CSI reporting duration would then increase the system 

performance. We assume that the secondary and primary network agree on non-

overlapping CSI reporting periods. We assume imperfect CSI for the SU-PU channels, 

too. 

 

14.3 CSI ESTIMATION AND CHANNEL NON-RECIPROCITY 

 

 The SBS starts by transmitting a training sequence of length 𝑀𝑀 = 𝑎𝑎𝑎𝑎
𝑇𝑇𝑠𝑠

 data units, 

where T is the TDD frame period, α is the proportion devoted to training phase and  𝑇𝑇𝑠𝑠    

is the  training symbol time. The SBS transmits a predefined training sequence Ci which 

are orthogonal with  𝐂𝐂𝐇𝐇𝐂𝐂 = M 𝐈𝐈𝐈𝐈 . The K users then report the training sequence to the 

base station and 𝐇𝐇 is the 𝑁𝑁𝑁𝑁𝑁𝑁 channel matrix between the the 𝐾𝐾 users and the base 

station. The elements of H are i.i.d. variables with zero mean and unit variance. If the 

K users transmit power is Pu then the received pilot matrix at the base station is Y, then 

the estimated channel matrix at the BS is: 

 

𝐘𝐘 = √𝑃𝑃𝑃𝑃𝐇𝐇𝐂𝐂𝐓𝐓 + 𝐍𝐍  (1) 

 

 

 

Where N is additive Gaussian noise with zero mean and unit variance. The 

channel matrix can be estimated at the SBS by YH: 
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𝐘𝐘𝐇𝐇� = √𝑃𝑃𝑃𝑃
𝑀𝑀
𝐇𝐇𝐂𝐂𝐓𝐓𝐂𝐂∗ + 1

𝑀𝑀
𝐍𝐍𝐂𝐂∗ = √𝑃𝑃𝑃𝑃

𝑀𝑀
𝐇𝐇 + 1

𝑀𝑀
𝐍𝐍𝐂𝐂∗ = √𝑃𝑃𝑃𝑃

𝑀𝑀
𝐇𝐇 + 𝐍𝐍𝐍𝐍    (2) 

 

The elements of NC* matrix are i.i.d. Gaussian with zero mean and unit 

variance. Let us consider the k column of the above equation which are independent 

with each other: 

 

𝐡𝐡𝐤𝐤� = √𝑃𝑃𝑃𝑃
𝑀𝑀
𝐡𝐡𝐤𝐤 +  𝒏𝒏𝒌𝒌     (3) 

 

For MMSE channel estimation we want to find the channel matrix that 

minimizes the mean square error: 

 

𝐡𝐡𝐤𝐤� = arg𝑚𝑚𝑚𝑚𝑚𝑚𝔼𝔼 ��𝐡𝐡𝐤𝐤� − 𝐡𝐡𝐤𝐤�
2
� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ��√𝑃𝑃𝑃𝑃−𝑀𝑀�

2

𝑃𝑃𝑃𝑃
‖𝒉𝒉𝒌𝒌‖𝟐𝟐 + 1

Pu
‖𝐧𝐧𝐤𝐤‖2 −

2�√𝑃𝑃𝑃𝑃 −𝑀𝑀�𝐡𝐡𝐤𝐤
𝑇𝑇𝐧𝐧𝐤𝐤� ⟹ 𝐲𝐲𝐤𝐤 = �√𝑃𝑃𝑃𝑃−𝑀𝑀�

2

𝑃𝑃𝑃𝑃
𝐡𝐡𝐤𝐤 + 1

𝑃𝑃𝑃𝑃
𝐧𝐧𝐤𝐤                      (4) 

 

According to Lindeberg-Levy central limit theorem as  𝐡𝐡𝐤𝐤𝐓𝐓,𝐧𝐧𝐤𝐤 are i.i.d. variables 

with zero mean and variances 𝝈𝝈𝒉𝒉𝒌𝒌
𝟐𝟐 𝝈𝝈𝒏𝒏𝒌𝒌

𝟐𝟐    𝟏𝟏
𝒏𝒏
𝐡𝐡𝐤𝐤𝐓𝐓𝐧𝐧𝐤𝐤 → 𝓒𝓒𝓒𝓒�𝟎𝟎,𝝈𝝈𝒉𝒉𝒌𝒌

𝟐𝟐 𝝈𝝈𝒏𝒏𝒌𝒌
𝟐𝟐 �,𝒏𝒏⟶ ∞ 

 

 

The transmitted vector channels would be  𝐬𝐬 = 𝐇𝐇𝐓𝐓𝐖𝐖𝐖𝐖   where  𝐇𝐇𝐓𝐓  the effective 

downlink channel matrix and the average transmission power of the transmission vector 

would be: 

 

𝔼𝔼{‖𝐬𝐬‖2} = tr(𝐖𝐖𝐓𝐓𝐖𝐖) = 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡                                (5)

The received signal then at the K users in the secondary network would be: 

 

𝐲𝐲 = 𝐇𝐇𝐓𝐓𝐖𝐖𝐖𝐖 + 𝐍𝐍  (6) 

 

The Mean Square Error then would be: 

 

𝜀𝜀 = 𝔼𝔼{‖𝛽𝛽𝐲𝐲 − 𝐱𝐱‖2} = 𝔼𝔼{‖𝛽𝛽𝐇𝐇𝐓𝐓𝐖𝐖𝐖𝐖 + β𝐍𝐍 − 𝐱𝐱‖2}                   (7) 
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Where β is the Wiener filter. Then, we form in the optimization problem below: 

 

[𝐖𝐖, β] = arg min 𝜀𝜀   (8) 

 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡: ‖𝐬𝐬‖2 ≤ 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚  (9) 

 

Where 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 is the maximum power allowed to the secondary network so that 

the interference caused to the primary massive MIMO network by the secondary 

massive MIMO network is accepted. We apply the Lagrangian method in the 

optimization problem and we get: 

 

ℒ(𝑊𝑊,𝛽𝛽, 𝜆𝜆) = 𝔼𝔼{‖𝛽𝛽𝛽𝛽 − 𝑥𝑥‖2} − 𝜆𝜆(𝑠𝑠𝐻𝐻𝑠𝑠 − 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚) →
𝜕𝜕ℒ(𝑊𝑊,𝛽𝛽, 𝜆𝜆)

𝜕𝜕𝜕𝜕
= 

=
𝜕𝜕 �𝛽𝛽2

�√𝑃𝑃𝑃𝑃 −𝑀𝑀�
4

𝑃𝑃𝑃𝑃2 𝛨𝛨∗𝛨𝛨𝛵𝛵𝑊𝑊𝐻𝐻𝑊𝑊𝑇𝑇𝑥𝑥𝐻𝐻𝑥𝑥𝑇𝑇 − 𝜆𝜆𝑥𝑥𝐻𝐻𝑊𝑊𝐻𝐻𝑊𝑊𝑇𝑇𝑥𝑥𝑇𝑇 − 𝛽𝛽
�√𝑃𝑃𝑃𝑃 −𝑀𝑀�

2

𝑃𝑃𝑃𝑃 𝐻𝐻∗𝑊𝑊𝐻𝐻𝑥𝑥𝐻𝐻𝑥𝑥𝑇𝑇 − 𝜆𝜆𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚�

𝜕𝜕𝜕𝜕
= 0 → 

 

WMMSE = 1
β
�√Pu−M�

2

Pu
H∗ ��√Pu−M�

4

Pu2
HTH∗ + λ

β2
IK�

−1

(10) 

 

From the power constraint (9) we have got: 

 

WHWT = Pmax ⟹
1
β2
�√Pu − M�

4

Pu2
HTH∗ �

�√Pu − M�
4

Pu2
HTH∗ +

λ
β2

IK�

−2

= 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 

⟹ β = �√Pu−M�
2

Pu

�tr�HTH∗��√Pu−M�
4

Pu2
HTH∗+ λ

β2
IK�

−2

�

Pmax
 (11) 

 

 

For 𝜇𝜇 = 𝜆𝜆
𝛽𝛽2

  we want to minimize ε�W(μ),β(μ)� ⟶ μ = trIK
Pmax

= K
Pmax

  (12) 
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Then W and β are given by the equations below: 

 

WMMSE =
1
β
�√Pu − M�

2

Pu
H∗ �

�√Pu − M�
4

Pu2
HTH∗ +

K
Pmax

IK�

−1

= 

�𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚

�tr�HTH∗��√Pu−M�
4

Pu2
HTH∗+ K

Pmax
IK�

−2

�

H∗ ��√Pu−M�
4

Pu2
HTH∗ + K

Pmax
IK�

−1

(13) 

 

 

β = �√Pu−M�
2

Pu

�tr�HTH∗��√Pu−M�
4

Pu2
HTH∗+ K

Pmax
IK�

−2

�

Pmax
  (14) 

 

The matrix Λ = ��√Pu−M�
4

Pu2
HTH∗ + K

Pmax
IK�

−1

 is diagonal. 

 

However, in practice, the effective physical channels linking the devices include 

also all the transceivers and antennas used in the transmitting and receiving devices and 

mismatches between the FRs of TX and RX chains of any individual transceiver exist, 

as well as further mutual coupling effects between the antenna elements in multiantenna 

devices. The resulting effective downlink (DL) and uplink (UL) channels are thus not 

reciprocal anymore and performance degradation is expected in any system that is 

building on the reciprocity assumption [Yaning]. However, as depicted in Figure 14.1 

and Figure 14.2, the effective DL and UL channels are generally cascades of 

transceivers and antenna mutual coupling at TX side, physical propagation channels, 

and antenna mutual coupling and transceivers at RX side: 

 

𝐇𝐇𝐃𝐃𝐃𝐃����� = 𝐀𝐀𝐔𝐔𝐔𝐔𝐂𝐂𝐂𝐂𝐑𝐑𝐇𝐇𝐃𝐃𝐃𝐃� 𝐂𝐂𝐁𝐁𝐁𝐁𝐀𝐀𝐁𝐁𝐁𝐁   

(15) 

𝐇𝐇𝐔𝐔𝐔𝐔����� = 𝐀𝐀𝐁𝐁𝐁𝐁𝐂𝐂𝐁𝐁𝐁𝐁𝐇𝐇𝐃𝐃𝐃𝐃� 𝐂𝐂𝐔𝐔𝐔𝐔𝐀𝐀𝐔𝐔𝐔𝐔 

(16) 

𝐀𝐀𝐁𝐁𝐁𝐁,𝐓𝐓 = 𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝{𝐚𝐚𝐁𝐁𝐁𝐁,𝐓𝐓,𝟏𝟏,𝐚𝐚𝐁𝐁𝐁𝐁,𝐓𝐓,𝟐𝟐, … , 𝐚𝐚𝐁𝐁𝐁𝐁,𝐓𝐓,𝐊𝐊} 

(17) 
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𝐀𝐀𝐁𝐁𝐁𝐁,𝐑𝐑 = 𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝{𝐚𝐚𝐁𝐁𝐁𝐁,𝐑𝐑,𝟏𝟏,𝐚𝐚𝐁𝐁𝐁𝐁,𝐑𝐑,𝟐𝟐, … ,𝐚𝐚𝐁𝐁𝐁𝐁,𝐑𝐑,𝐊𝐊} 

(18) 

𝐀𝐀𝐔𝐔,𝐓𝐓 = 𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝{𝐀𝐀𝐔𝐔,𝐓𝐓,𝟏𝟏,𝐀𝐀𝐔𝐔,𝐓𝐓,𝟐𝟐, … ,𝐀𝐀𝐔𝐔,𝐓𝐓,𝐊𝐊} 

(19) 

𝐀𝐀𝐔𝐔,𝐑𝐑 = 𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝{𝐀𝐀𝐔𝐔,𝐑𝐑,𝟏𝟏,𝐀𝐀𝐔𝐔,𝐑𝐑,𝟐𝟐, … ,𝐀𝐀𝐔𝐔,𝐑𝐑,𝐊𝐊} 

(20) 

𝐀𝐀𝐔𝐔,𝐓𝐓,𝐋𝐋 = 𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝{𝐚𝐚𝐔𝐔,𝐓𝐓,𝟏𝟏,𝐚𝐚𝐔𝐔,𝐓𝐓,𝟐𝟐, … ,𝐚𝐚𝐔𝐔,𝐓𝐓,𝐊𝐊} 

(21) 

𝐀𝐀𝐔𝐔,𝐑𝐑,𝐥𝐥 = 𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝{𝐚𝐚𝐔𝐔,𝐑𝐑,𝟏𝟏,𝐚𝐚𝐔𝐔,𝐑𝐑,𝟐𝟐, … ,𝐚𝐚𝐔𝐔,𝐑𝐑,𝐊𝐊} 

(22) 

Where αi   is the frequency response of   TX, RX at the k transceiver at the BS 

or at the UE and  𝐶𝐶𝑖𝑖(𝑘𝑘) are the mutual coupling matrices at the UE and the BS 

respectively. 

 

 

The effective UL channels can now be written, in terms of effective DL channels, 

as: 

 

𝐇𝐇�𝐔𝐔𝐔𝐔 = 𝐀𝐀𝐁𝐁𝐂𝐂𝐁𝐁𝐇𝐇�𝐃𝐃𝐃𝐃
𝐓𝐓𝐂𝐂𝐔𝐔𝐀𝐀𝐔𝐔 

(23) 

𝐇𝐇�𝐔𝐔𝐔𝐔,𝐥𝐥 = 𝐀𝐀𝐁𝐁𝐂𝐂𝐁𝐁𝐇𝐇�𝐃𝐃𝐃𝐃,𝐥𝐥
𝐓𝐓𝐂𝐂𝐥𝐥𝐀𝐀𝐥𝐥 

(24) 

Where  𝐴𝐴𝐵𝐵 = 𝐴𝐴𝐵𝐵,𝑇𝑇
−1 𝐴𝐴𝐵𝐵,𝑅𝑅 , 𝐴𝐴𝑈𝑈 = 𝐴𝐴𝑈𝑈,𝑇𝑇

−1 𝐴𝐴𝑈𝑈,𝑅𝑅, 𝐶𝐶𝐵𝐵 = 𝐶𝐶𝐵𝐵,𝑇𝑇𝐶𝐶𝐵𝐵,𝑅𝑅
−1  , 𝐴𝐴𝑙𝑙 = 𝐴𝐴𝑙𝑙,𝑇𝑇−1𝐴𝐴𝑙𝑙,𝑅𝑅, 𝐶𝐶𝑙𝑙 =

𝐶𝐶𝑙𝑙,𝑇𝑇𝐶𝐶𝑙𝑙,𝑅𝑅−1. In [18], as a practical example, a fairly simple and widely-used coupling model 

is established where the circuit-level coupling matrix is of the form   𝐶𝐶 = (𝑍𝑍𝐴𝐴 +

𝑍𝑍𝑇𝑇)(𝒁𝒁+ 𝑍𝑍𝑇𝑇𝐼𝐼𝑁𝑁)−1 where the parameters ZA and ZT and the elements of the matrix Z 

depend on the impedances of the antenna elements and the associated transceiver 

circuits [19]. In this paper, to simplify the notations and the presentation, the diagonal 

elements of mutual coupling matrices are assumed to be normalized to 1. Then the 

estimated downlink channel matrix would be: 

 

𝐇𝐇��𝐃𝐃𝐃𝐃 = 𝐇𝐇�𝐔𝐔𝐔𝐔𝐓𝐓 = 𝐀𝐀𝐔𝐔
𝐓𝐓𝐂𝐂𝐔𝐔𝐓𝐓𝐇𝐇�𝐃𝐃𝐃𝐃𝐂𝐂𝐁𝐁𝐓𝐓𝐀𝐀𝐁𝐁

𝐓𝐓 = 𝐆𝐆𝐔𝐔𝐇𝐇�𝐃𝐃𝐃𝐃𝐆𝐆𝐁𝐁 = 
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(𝐆𝐆′𝐔𝐔 + 𝐈𝐈)−𝟏𝟏𝐇𝐇�𝐃𝐃𝐃𝐃(𝐆𝐆′𝐁𝐁 + 𝐈𝐈)−𝟏𝟏 

(25) 

Where 𝐆𝐆′𝐔𝐔 = 𝐆𝐆𝐔𝐔−𝟏𝟏 − 𝐈𝐈,𝐆𝐆′𝐁𝐁 = 𝐆𝐆𝐁𝐁−𝟏𝟏 − 𝐈𝐈. 

 

 

 

We assume that the primary network is MU-MIMO network of L users 

communicating with the primary BS.        𝐇𝐇𝐏𝐏
𝐓𝐓,𝐖𝐖𝐏𝐏, 𝐱𝐱𝐏𝐏 are the transpose fading 

coefficients  matrix of the primary network, the precoding matrix of the primary 

network and the data symbol vector of the primary network respectively, 𝐂𝐂𝐩𝐩,𝐁𝐁
𝐓𝐓 𝐀𝐀𝐩𝐩,𝐁𝐁

𝐓𝐓  are 

the mutual coupling matrices of the primary BS  and the frequency-responses of TX 

transceiver at the BS side : 

 

𝐇𝐇��𝐩𝐩,𝐃𝐃𝐃𝐃 = 𝐇𝐇��𝐩𝐩 = 𝐀𝐀𝐔𝐔
𝐓𝐓𝐂𝐂𝐔𝐔𝐓𝐓𝐇𝐇�𝐩𝐩,𝐃𝐃𝐃𝐃𝐂𝐂𝐩𝐩,𝐁𝐁

𝐓𝐓 𝐀𝐀𝐩𝐩,𝐁𝐁
𝐓𝐓 = 

= 𝐆𝐆𝐔𝐔𝐇𝐇�𝐃𝐃𝐃𝐃𝐆𝐆𝐩𝐩,𝐁𝐁 = (𝐆𝐆′𝐔𝐔 + 𝐈𝐈)−𝟏𝟏𝐇𝐇�𝐃𝐃𝐃𝐃(𝐆𝐆′𝐩𝐩,𝐁𝐁 + 𝐈𝐈)−𝟏𝟏 

(26) 

 

We assume the primary network uses the same precoding and the primary and 

secondary network agree on non-overlapping CSI estimating periods. 

 

14.3.1 IMPERFECT CSI  AND MMSE PRECODING 

 

For imperfect CSI  and MMSE precoding we have: 

 

W�MMSE,DL =
1
β
�√Pu − M�

2

Pu
𝐻𝐻𝐷𝐷𝐷𝐷������ ∗

�
�√Pu− M�

4

Pu2
H𝐷𝐷𝐷𝐷������ T

H𝐷𝐷𝐷𝐷������ ∗
+

K
Pmax

IK�

−1

= 

=
�𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚

�tr�H𝐷𝐷𝐷𝐷������ T
H𝐷𝐷𝐷𝐷������ ∗

�
�√Pu − M�

4

Pu2 𝐻𝐻𝐷𝐷𝐷𝐷������ T
𝐻𝐻𝐷𝐷𝐷𝐷������ ∗

+ K
Pmax

IK�
−2

�

𝐻𝐻𝐷𝐷𝐷𝐷������ ∗
�
�√Pu − M�

4

Pu2
𝐻𝐻𝐷𝐷𝐷𝐷������ T

𝐻𝐻𝐷𝐷𝐷𝐷������ ∗

+
K

Pmax
IK�

−1
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(27) 

 

 

β ==
�√Pu − M�

2

Pu

�tr�𝐻𝐻𝐷𝐷𝐷𝐷������ T
𝐻𝐻𝐷𝐷𝐷𝐷������ ∗

�
�√Pu − M�

4

Pu2 𝐻𝐻𝐷𝐷𝐷𝐷������ T
𝐻𝐻𝐷𝐷𝐷𝐷������ ∗

+ K
Pmax

IK�
−2

�

Pmax
 

(28) 

 

The received signal from user K users after considering the interference 

coefficients and the interference coefficients of the L-users primary MU-MIMO 

network plus the noise which is i.i.d with zero mean and unit variance is given by the 

equation below for imperfect CSI: 

 

 

𝒀𝒀 = 𝐖𝐖𝐑𝐑
𝐇𝐇𝐇𝐇�𝐃𝐃𝐃𝐃𝐖𝐖�𝐃𝐃𝐃𝐃𝐱𝐱 + 𝐖𝐖𝐑𝐑

𝐇𝐇 � 𝐇𝐇�𝐃𝐃𝐃𝐃𝐖𝐖�𝐃𝐃𝐃𝐃𝐱𝐱
𝑲𝑲

𝒍𝒍=𝟏𝟏,𝒊𝒊≠𝒌𝒌

+ 𝐖𝐖𝐑𝐑
𝐇𝐇𝐖𝐖𝐑𝐑

𝐇𝐇�𝐇𝐇�𝐩𝐩𝐖𝐖�𝐃𝐃𝐃𝐃𝐱𝐱
𝑳𝑳

𝒍𝒍=𝟏𝟏

+ 𝐖𝐖𝐑𝐑
𝐇𝐇𝐍𝐍 = 𝐖𝐖𝐑𝐑

𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐃𝐃𝐃𝐃𝐆𝐆𝐁𝐁−𝟏𝟏𝐖𝐖�𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌,𝐃𝐃𝐃𝐃𝐱𝐱 + 𝐖𝐖𝐑𝐑
𝐇𝐇 � 𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐃𝐃𝐃𝐃𝐆𝐆𝐁𝐁−𝟏𝟏𝐖𝐖�𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌,𝐩𝐩𝐱𝐱𝒑𝒑

𝑲𝑲

𝒍𝒍=𝟏𝟏,𝒊𝒊≠𝒌𝒌

+ 𝐖𝐖𝐑𝐑
𝐇𝐇�𝐆𝐆𝐩𝐩,𝐔𝐔

−𝟏𝟏𝐇𝐇��𝐩𝐩𝐆𝐆𝐩𝐩,𝐁𝐁
−𝟏𝟏𝐖𝐖�𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌,𝐩𝐩𝐱𝐱𝒑𝒑

𝑳𝑳

𝒍𝒍=𝟏𝟏

 +𝐖𝐖𝐑𝐑
𝐇𝐇𝐍𝐍 

 

(29) 

We can obtain that the first term provides the signal free of Inter User 

Interference (IUI) and that we have to consider only ISI at the UE. The second implies 

that BS calibration would suffice despite FR and mutual coupling mismatches at the 

UE. The fourth term shows that calibration at the SBS would eliminate IUI from other 

UEs. The third term shows that we have to encounter ISI at the other UEs. At the same 

time, PBS calibration would suffice for the secondary UE to receive a signal without 

IUI from the PU and then with a filter at the receiver cancellation would be feasible. In 

general ISI cancelation at the UE would be applied with the receiver’s filter. 
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= 𝐖𝐖𝐑𝐑
𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐃𝐃𝐃𝐃𝐆𝐆𝐁𝐁−𝟏𝟏

�Pmax

�tr�𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐓𝐓
𝐇𝐇𝐃𝐃𝐃𝐃������ ∗

�
�√Pu − M�

4

Pu2 𝐇𝐇𝐃𝐃𝐋𝐋������ 𝐓𝐓
𝐇𝐇𝐃𝐃𝐃𝐃������ ∗

+ K
Pmax

IK�
−2

�

𝐇𝐇𝐃𝐃𝐃𝐃������ ∗
�
�√Pu − M�

4

Pu2
𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐓𝐓

𝐇𝐇𝐃𝐃𝐃𝐃������ ∗

+
K

Pmax
IK�

−1

𝐱𝐱

+ � 𝐖𝐖𝐑𝐑
𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐃𝐃𝐃𝐃𝐆𝐆𝐁𝐁−𝟏𝟏

�Pmax

�tr�𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐓𝐓
𝐇𝐇𝐃𝐃𝐃𝐃������ ∗

�
�√Pu − M�

4

Pu2 𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐓𝐓
𝐇𝐇𝐃𝐃𝐃𝐃������ ∗

+ K
Pmax

IK�
−2

�

𝐇𝐇𝐃𝐃𝐃𝐃������ ∗
�
�√Pu − M�

4

Pu2
𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐓𝐓

𝐇𝐇𝐃𝐃𝐃𝐃������ ∗
𝑲𝑲

𝒊𝒊=𝟏𝟏,𝒊𝒊≠𝒌𝒌

+
K

Pmax
IK�

−1

𝐱𝐱

+ 𝐖𝐖𝐑𝐑
𝐇𝐇�𝐆𝐆𝐩𝐩,𝐔𝐔

−𝟏𝟏𝐇𝐇��𝐩𝐩𝐆𝐆𝐩𝐩,𝐁𝐁
−𝟏𝟏 �Pmax

�tr�𝐇𝐇𝐩𝐩�����
𝐓𝐓
𝐇𝐇𝐩𝐩�����

∗
�
�√Pu − M�

4

Pu2 𝐇𝐇𝐩𝐩�����
𝐓𝐓
𝐇𝐇𝐩𝐩�����

∗
+ K

Pmax
IK�

−2

�

𝐇𝐇𝐩𝐩�����
∗∗
�
��Ppu − M�

4

Pu2
𝐇𝐇𝐩𝐩�����

𝐓𝐓
𝐇𝐇𝐩𝐩�����

∗
𝑳𝑳

𝒍𝒍=𝟏𝟏

+
K

Ppmax
IK�

−1

𝐱𝐱𝒑𝒑  +𝐖𝐖𝐑𝐑
𝐇𝐇𝐍𝐍

= 𝛽𝛽𝑈𝑈𝐖𝐖𝐑𝐑
𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏𝜦𝜦𝒙𝒙 + 𝛽𝛽𝑈𝑈𝐖𝐖𝐑𝐑

𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐃𝐃𝐃𝐃(𝑮𝑮′𝑩𝑩)𝐇𝐇𝐃𝐃𝐃𝐃������ ∗
𝜦𝜦𝒙𝒙 + �𝛽𝛽𝑈𝑈𝐖𝐖𝐑𝐑

𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏𝜦𝜦𝒙𝒙
𝑲𝑲

𝒊𝒊≠𝒌𝒌

+ �𝛽𝛽𝑈𝑈𝐖𝐖𝐑𝐑
𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐃𝐃𝐃𝐃(𝑮𝑮′𝑩𝑩)𝐇𝐇𝐃𝐃𝐃𝐃������ ∗

𝜦𝜦𝒙𝒙
𝑲𝑲

𝒊𝒊≠𝒌𝒌

+ 𝛽𝛽𝑝𝑝𝐖𝐖𝐑𝐑
𝐇𝐇�𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐩𝐩

𝑳𝑳

𝒍𝒍=𝟏𝟏

𝜦𝜦𝒙𝒙

+ 𝛽𝛽𝑝𝑝𝐖𝐖𝐑𝐑
𝐇𝐇�𝐆𝐆𝐔𝐔−𝟏𝟏

𝑳𝑳

𝒍𝒍=𝟏𝟏

𝐇𝐇��𝐩𝐩�𝑮𝑮′𝒑𝒑,𝑩𝑩�𝐇𝐇𝐩𝐩�����
∗
𝜦𝜦𝒑𝒑𝒙𝒙𝒑𝒑+𝐖𝐖𝐑𝐑

𝐇𝐇𝐍𝐍 

 

(30) 

 

 

 

 

 

 

14.4. THE LMMSE FILTER FOR MMSE PRECODING 
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We consider LMMSE filter for the receiver to cancel interference  from both 

the secondary and primary network, so we have: 

 

𝐖𝐖𝐑𝐑
𝐇𝐇 = ��𝐇𝐇�𝐃𝐃𝐃𝐃𝐖𝐖�𝐃𝐃𝐃𝐃��𝐇𝐇�𝐃𝐃𝐃𝐃𝐖𝐖�𝐃𝐃𝐃𝐃�

𝐻𝐻
+ 𝜮𝜮𝒂𝒂�

−1
𝐇𝐇�𝐃𝐃𝐃𝐃𝐖𝐖�𝐃𝐃𝐃𝐃

= ��𝐇𝐇�𝐃𝐃𝐃𝐃𝐖𝐖�𝐃𝐃𝐃𝐃𝐖𝐖�𝐃𝐃𝐃𝐃
𝜢𝜢𝐇𝐇�𝐃𝐃𝐃𝐃

𝜢𝜢� + 𝜮𝜮𝒂𝒂�
−𝟏𝟏
𝐇𝐇�𝐃𝐃𝐃𝐃𝐖𝐖�𝐃𝐃𝐃𝐃

= ��𝛽𝛽𝑈𝑈𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐃𝐃𝐃𝐃𝐆𝐆𝐁𝐁−𝟏𝟏𝐇𝐇𝐃𝐃𝐃𝐃������ ∗
𝜦𝜦 �𝛽𝛽𝑈𝑈𝐖𝐖�𝐃𝐃𝐃𝐃𝐇𝐇𝐃𝐃𝐃𝐃������ ∗

𝜦𝜦�
𝜢𝜢
�𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐃𝐃𝐃𝐃𝐆𝐆𝐁𝐁−𝟏𝟏�

𝜢𝜢
�

+ 𝜮𝜮𝒂𝒂�
−𝟏𝟏

𝛽𝛽𝑈𝑈𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐃𝐃𝐃𝐃𝐆𝐆𝐁𝐁−𝟏𝟏𝐇𝐇𝐃𝐃𝐃𝐃������ ∗
𝜦𝜦

= �𝛽𝛽𝑈𝑈𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐃𝐃𝐃𝐃(𝐆𝐆𝐁𝐁′ + 𝑰𝑰)𝐇𝐇𝐃𝐃𝐃𝐃������ ∗
𝜦𝜦 �𝛽𝛽𝑈𝑈𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐃𝐃𝐃𝐃(𝐆𝐆𝐁𝐁′ + 𝑰𝑰)𝐇𝐇𝐃𝐃𝐃𝐃������ ∗

𝜦𝜦�
𝑯𝑯

+ 𝜮𝜮𝒂𝒂�
−𝟏𝟏
𝛽𝛽𝑈𝑈𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐃𝐃𝐃𝐃(𝐆𝐆𝐁𝐁′ + 𝑰𝑰)𝐇𝐇𝐃𝐃𝐃𝐃������ ∗

𝜦𝜦

= �𝐆𝐆𝐔𝐔−𝟏𝟏𝜦𝜦 �𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐃𝐃𝐃𝐃(𝐆𝐆𝐁𝐁′ )𝐇𝐇𝐃𝐃𝐃𝐃������ ∗
𝜦𝜦�

𝑯𝑯
+ 𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐃𝐃𝐃𝐃(𝐆𝐆𝐁𝐁′ )𝐇𝐇𝐃𝐃𝐃𝐃������ ∗

𝜦𝜦�𝐆𝐆𝐔𝐔−𝟏𝟏𝜦𝜦�
𝑯𝑯

+ 𝛽𝛽𝑈𝑈𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐃𝐃𝐃𝐃(𝐆𝐆𝐁𝐁′ )𝐇𝐇𝐃𝐃𝐃𝐃������ ∗
𝜦𝜦 �𝛽𝛽𝑈𝑈𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐃𝐃𝐃𝐃(𝐆𝐆𝐁𝐁′ )𝐇𝐇𝐃𝐃𝐃𝐃������ ∗

𝜦𝜦�
𝑯𝑯

+ 𝜮𝜮𝒂𝒂�
−𝟏𝟏
𝛽𝛽𝑈𝑈𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐃𝐃𝐃𝐃𝐆𝐆𝐁𝐁−𝟏𝟏𝐇𝐇𝐃𝐃𝐃𝐃������ ∗

𝜦𝜦 

(31) 

For ki<<1 and βi<<1 we have : 

 

𝜮𝜮𝒂𝒂 = √𝑃𝑃𝑃𝑃 𝑘𝑘1 𝐇𝐇�𝐃𝐃𝐃𝐃𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅�𝐖𝐖�𝐃𝐃𝐃𝐃𝐖𝐖�𝐃𝐃𝐃𝐃
𝜢𝜢�𝐇𝐇�𝐃𝐃𝐃𝐃

𝜢𝜢 + 𝛽𝛽1√𝑃𝑃𝑃𝑃 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅�𝐇𝐇�𝐃𝐃𝐃𝐃𝐖𝐖�𝐃𝐃𝐃𝐃𝐖𝐖�𝐃𝐃𝐃𝐃
𝜢𝜢𝐇𝐇�𝐃𝐃𝐃𝐃

𝜢𝜢�

+   𝜂𝜂1��𝐇𝐇�𝐩𝐩 �𝐖𝐖�𝐩𝐩𝐖𝐖�𝐩𝐩
𝜢𝜢 + 𝑘𝑘1𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 �𝐖𝐖�𝐩𝐩𝐖𝐖�𝐩𝐩

𝜢𝜢��𝐇𝐇�𝐩𝐩
𝜢𝜢�

𝑳𝑳

𝒍𝒍≠𝒊𝒊

+ 𝛽𝛽1𝜂𝜂1��𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅�𝐇𝐇�𝐩𝐩𝐖𝐖�𝐩𝐩𝐖𝐖�𝐩𝐩
𝜢𝜢𝐇𝐇�𝐩𝐩

𝜢𝜢��
𝑳𝑳

𝒍𝒍≠𝒊𝒊

+   𝜂𝜂2��𝐇𝐇�𝐃𝐃𝐃𝐃 �𝐖𝐖�𝐃𝐃𝐃𝐃𝐖𝐖�𝐃𝐃𝐃𝐃
𝜢𝜢 + 𝑘𝑘2𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 �𝐖𝐖�𝐃𝐃𝐃𝐃𝐖𝐖�𝐃𝐃𝐃𝐃

𝜢𝜢��𝐇𝐇�𝐃𝐃𝐃𝐃
𝜢𝜢�

𝑲𝑲

𝒌𝒌≠𝒊𝒊

+ 𝛽𝛽2𝜂𝜂2��𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 �𝐇𝐇�𝐃𝐃𝐃𝐃𝐖𝐖�𝐃𝐃𝐃𝐃𝐖𝐖�𝐃𝐃𝐃𝐃
𝜢𝜢𝐇𝐇�𝐃𝐃𝐃𝐃

𝜢𝜢�� +
𝑲𝑲

𝒌𝒌≠𝒊𝒊

𝜤𝜤 
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(32) 

 

 

 

14.3.2 IMPERFECT CSI  AND ZF PRECODING 

 

 

For imperfect CSI  and ZF precoding we have: 

 

𝐖𝐖�𝐙𝐙𝐙𝐙,𝐃𝐃𝐃𝐃 = 𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇
�𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇

�
−𝟏𝟏

                                                           (33) 

 

The received signal from K users after considering the interference and the 

interference of the L-users primary MU-MIMO network plus the noise which is i.i.d 

with zero mean and unit variance is given by the equation below for imperfect CSI: 

 

 

 

 

𝒀𝒀 = 𝐖𝐖𝐑𝐑
𝐇𝐇𝐇𝐇�𝐃𝐃𝐃𝐃𝐖𝐖�𝐃𝐃𝐃𝐃𝐱𝐱 + �𝐖𝐖𝐑𝐑

𝐇𝐇𝐇𝐇�𝐃𝐃𝐃𝐃𝐖𝐖�𝐃𝐃𝐃𝐃𝐱𝐱
𝑲𝑲

𝒊𝒊≠𝒌𝒌

+ 𝐖𝐖𝐑𝐑
𝐇𝐇�𝐇𝐇�𝐩𝐩𝐖𝐖�𝐩𝐩𝐱𝐱𝐩𝐩

𝑳𝑳

𝒍𝒍=𝟏𝟏

+ 𝐖𝐖𝐑𝐑
𝐇𝐇𝐍𝐍

= 𝐖𝐖𝐑𝐑
𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐃𝐃𝐃𝐃𝐆𝐆𝐁𝐁−𝟏𝟏𝐖𝐖�𝐙𝐙𝐙𝐙,𝐃𝐃𝐃𝐃𝐱𝐱 + �𝐖𝐖𝐑𝐑

𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐃𝐃𝐃𝐃𝐆𝐆𝐁𝐁−𝟏𝟏𝐖𝐖�𝐙𝐙𝐙𝐙,𝐃𝐃𝐋𝐋𝐱𝐱
𝑲𝑲

𝒊𝒊≠𝒌𝒌

+ 𝐖𝐖𝐑𝐑
𝐇𝐇�𝐆𝐆𝐩𝐩,𝐔𝐔

−𝟏𝟏𝐇𝐇��𝐩𝐩𝐆𝐆𝐩𝐩,𝐁𝐁
−𝟏𝟏𝐖𝐖�𝐩𝐩,𝐙𝐙𝐙𝐙𝐱𝐱𝒑𝒑

𝑳𝑳

𝒍𝒍=𝟏𝟏

 +𝐖𝐖𝐑𝐑
𝐇𝐇𝐍𝐍

= 𝐖𝐖𝐑𝐑
𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐃𝐃𝐃𝐃𝐆𝐆𝐁𝐁−𝟏𝟏𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇

�𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇
�
−𝟏𝟏
𝐱𝐱

+ �𝐖𝐖𝐑𝐑
𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐃𝐃𝐃𝐃𝐆𝐆𝐁𝐁−𝟏𝟏𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇

�𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇
�
−𝟏𝟏
𝐱𝐱

𝑲𝑲

𝒊𝒊≠𝒌𝒌

+ 𝐖𝐖𝐑𝐑
𝐇𝐇�𝐆𝐆,𝐔𝐔

−𝟏𝟏𝐇𝐇��𝐩𝐩𝐆𝐆𝐩𝐩,𝐁𝐁
−𝟏𝟏𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇

�𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇
�
−𝟏𝟏
𝐱𝐱𝒑𝒑

𝑳𝑳

𝒍𝒍=𝟏𝟏

 +𝐖𝐖𝐑𝐑
𝐇𝐇𝐍𝐍 = 

228 
 



Ioanna Kakalou Algorithms for Cognitive Radio Networks and Cloud 2020 

= 𝐖𝐖𝐑𝐑
𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐃𝐃𝐃𝐃𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇

�𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇
�
−𝟏𝟏
𝐱𝐱 + 𝐖𝐖𝐑𝐑

𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐃𝐃𝐃𝐃𝑮𝑮′𝑩𝑩𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇
�𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇

�
−𝟏𝟏
𝐱𝐱

+ �𝐖𝐖𝐑𝐑
𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐃𝐃𝐃𝐃𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇

�𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇
�
−𝟏𝟏
𝐱𝐱

𝑲𝑲

𝒊𝒊≠𝒌𝒌

+ �𝐖𝐖𝐑𝐑
𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐃𝐃𝐃𝐃𝑮𝑮′𝑩𝑩𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇

�𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇
�
−𝟏𝟏
𝐱𝐱

𝑲𝑲

𝒊𝒊≠𝒌𝒌

+ 𝐖𝐖𝐑𝐑
𝐇𝐇�𝐆𝐆,𝐔𝐔

−𝟏𝟏𝐇𝐇��𝐩𝐩𝐇𝐇𝐩𝐩�����
𝐇𝐇
�𝐇𝐇𝐩𝐩����� 𝐇𝐇𝐩𝐩�����

𝐇𝐇
�
−𝟏𝟏
𝐱𝐱𝒑𝒑

𝑳𝑳

𝒍𝒍=𝟏𝟏

 +

+ 𝐖𝐖𝐑𝐑
𝐇𝐇�𝐆𝐆,𝐔𝐔

−𝟏𝟏𝐇𝐇��𝐩𝐩𝐆𝐆′𝒑𝒑𝐇𝐇𝐩𝐩�����
𝐇𝐇
��𝐇𝐇𝐩𝐩����� 𝐇𝐇𝐩𝐩�����

𝐇𝐇
��

−𝟏𝟏

𝐱𝐱𝒑𝒑

𝑳𝑳

𝒍𝒍=𝟏𝟏

+ 𝐖𝐖𝐑𝐑
𝐇𝐇𝐍𝐍 

(34) 

 

If both the secondary and primary networks adapt ZF precoding, we come to 

the same conclusions for non-reciprocity as in MMSE precoding. 

 

 

 

 

 

 

14.3.2.1 THE LMMSE FILTER FOR ZF PRECODING 

 

We consider LMMSE filter for the receiver to cancel interference from both the 

secondary and primary network too, so we have: 

 

229 
 



Ioanna Kakalou Algorithms for Cognitive Radio Networks and Cloud 2020 

𝐖𝐖𝐑𝐑
𝐇𝐇 = ��𝐇𝐇�𝐃𝐃𝐃𝐃𝐖𝐖�𝐃𝐃𝐃𝐃��𝐇𝐇�𝐃𝐃𝐃𝐃𝐖𝐖�𝐃𝐃𝐃𝐃�

𝐻𝐻
+ 𝜮𝜮𝒂𝒂�

−1
𝐇𝐇�𝐃𝐃𝐃𝐃𝐖𝐖�𝐃𝐃𝐃𝐃

= ��𝐇𝐇�𝐃𝐃𝐃𝐃𝐖𝐖�𝐃𝐃𝐃𝐃𝐖𝐖�𝐃𝐃𝐃𝐃
𝜢𝜢𝐇𝐇�𝐃𝐃𝐃𝐃

𝜢𝜢� + 𝜮𝜮𝒂𝒂�
−𝟏𝟏
𝐇𝐇�𝐃𝐃𝐃𝐃𝐖𝐖�𝐃𝐃𝐃𝐃

= ��𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐃𝐃𝐃𝐃𝑮𝑮′𝑩𝑩𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇
�𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇

�
−𝟏𝟏
�𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐃𝐃𝐃𝐃𝑮𝑮′𝑩𝑩𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇

�𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇
�
−𝟏𝟏
�
𝜢𝜢

�

+ 𝜮𝜮𝒂𝒂�

−𝟏𝟏

𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐃𝐃𝐃𝐃𝑮𝑮′𝑩𝑩𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇
�𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇

�
−𝟏𝟏

 

(35) 

For ki<<1 and βi<<1 we have : 

 

𝜮𝜮𝒂𝒂 = √𝑃𝑃𝑃𝑃 𝑘𝑘1 𝐇𝐇�𝐃𝐃𝐃𝐃𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅�𝐖𝐖�𝐃𝐃𝐃𝐃𝐖𝐖�𝐃𝐃𝐃𝐃
𝜢𝜢�𝐇𝐇�𝐃𝐃𝐃𝐃

𝜢𝜢 + 𝛽𝛽1√𝑃𝑃𝑃𝑃 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅�𝐇𝐇�𝐃𝐃𝐃𝐃𝐖𝐖�𝐃𝐃𝐃𝐃𝐖𝐖�𝐃𝐃𝐃𝐃
𝜢𝜢𝐇𝐇�𝐃𝐃𝐃𝐃

𝜢𝜢�

+   𝜂𝜂1��𝐇𝐇�𝐩𝐩 �𝐖𝐖�𝐩𝐩𝐖𝐖�𝐩𝐩
𝜢𝜢 + 𝑘𝑘1𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 �𝐖𝐖�𝐩𝐩𝐖𝐖�𝐩𝐩

𝜢𝜢��𝐇𝐇�𝐩𝐩
𝜢𝜢�

𝑳𝑳

𝒌𝒌≠𝒊𝒊

+ 𝛽𝛽1𝜂𝜂1��𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅�𝐇𝐇�𝐩𝐩𝐖𝐖�𝐩𝐩𝐖𝐖�𝐩𝐩
𝜢𝜢𝐇𝐇�𝐩𝐩

𝜢𝜢��
𝑳𝑳

𝒌𝒌≠𝒊𝒊

+  𝜂𝜂2��𝐇𝐇�𝐃𝐃𝐃𝐃 �𝐖𝐖�𝐃𝐃𝐃𝐃𝐖𝐖�𝐃𝐃𝐃𝐃
𝜢𝜢 + 𝑘𝑘2𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 �𝐖𝐖�𝐃𝐃𝐃𝐃𝐖𝐖�𝐃𝐃𝐃𝐃

𝜢𝜢��𝐇𝐇�𝐃𝐃𝐃𝐃
𝜢𝜢�

𝑲𝑲

𝒌𝒌≠𝒊𝒊

+ 𝛽𝛽2𝜂𝜂2��𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 �𝐇𝐇�𝐃𝐃𝐃𝐃𝐖𝐖�𝐃𝐃𝐃𝐃𝐖𝐖�𝐃𝐃𝐃𝐃
𝜢𝜢𝐇𝐇�𝐃𝐃𝐃𝐃

𝜢𝜢�� +
𝑲𝑲

𝒌𝒌≠𝒊𝒊

𝜤𝜤 

(36) 

We next quantify the relative achievable rate performance under MMSE and ZF 

precoding schemes. The asymptotic behavior of this relative achievable rate 

performance for large number of antennas, a non-asymptotic comparison of the 

achievable SINRs at the m-th antenna in the UE side between MMSE and ZF precoding 

schemes under NRC and in order to quantify the SINR degradation under nonreciprocal 

channels with respect to ideal reciprocal channel reference case, we define a metric. 

 

In above, the second term of primary and secondary signals consist of the 

desired streams while the first term is mostly inter-user-interference. 
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We want to maximize the achievable bit rate for each user kth so from 

Shannon’s theorem we have: 
 

𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝔼𝔼{log2(1 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝛭𝛭𝛭𝛭𝛭𝛭𝛭𝛭)} = (36)

 

Equation (36) appears in APPENDIX 3 of Chapter 14. 

We can solve the convex optimization below select the proper training period 

with α. 

 

 

 

 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝛼𝛼,𝐾𝐾 𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  

 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡: 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆−𝑇𝑇𝑇𝑇−𝑃𝑃𝑃𝑃

= 𝑡𝑡𝑡𝑡 ���𝐆𝐆,𝐔𝐔
−𝟏𝟏𝐇𝐇��𝐩𝐩𝐆𝐆′𝒑𝒑��𝐆𝐆,𝐔𝐔

−𝟏𝟏𝐇𝐇��𝐩𝐩𝐆𝐆′𝒑𝒑�
𝐩𝐩

𝑯𝑯
�𝛽𝛽𝑈𝑈𝐇𝐇𝐃𝐃𝐃𝐃������ ∗

𝜦𝜦�

< 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 

(37) 

 

For imperfect CSI  and ZF precoding we have: 

 

𝐖𝐖�𝐙𝐙𝐙𝐙,𝐃𝐃𝐃𝐃 = 𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇
�𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇

�
−𝟏𝟏

 

(38) 

 

The received signal from user k after considering the interference coefficients 

of the other (K-1) users and the interference coefficients of the L-users primary MU-

MIMO network plus the noise which is i.i.d with zero mean and unit variance is given 

by the equation below for imperfect CSI: 
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𝒀𝒀 = 𝐖𝐖𝐑𝐑
𝐇𝐇𝐇𝐇�𝐃𝐃𝐃𝐃𝐖𝐖�𝐃𝐃𝐃𝐃𝐱𝐱 + �𝐖𝐖𝐑𝐑

𝐇𝐇𝐇𝐇�𝐃𝐃𝐃𝐃𝐖𝐖�𝐃𝐃𝐃𝐃𝐱𝐱
𝑲𝑲

𝒊𝒊≠𝒌𝒌

+ 𝐖𝐖𝐑𝐑
𝐇𝐇�𝐇𝐇�𝐩𝐩𝐖𝐖�𝐩𝐩𝐱𝐱𝐩𝐩

𝑳𝑳

𝒍𝒍=𝟏𝟏

+ 𝐖𝐖𝐑𝐑
𝐇𝐇𝐍𝐍

= 𝐖𝐖𝐑𝐑
𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐃𝐃𝐃𝐃𝐆𝐆𝐁𝐁−𝟏𝟏𝐖𝐖�𝐙𝐙𝐙𝐙,𝐃𝐃𝐃𝐃𝐱𝐱 + �𝐖𝐖𝐑𝐑

𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐃𝐃𝐃𝐃𝐆𝐆𝐁𝐁−𝟏𝟏𝐖𝐖�𝐙𝐙𝐙𝐙,𝐃𝐃𝐃𝐃𝐱𝐱
𝒌𝒌

𝒊𝒊≠𝒌𝒌

+ 𝐖𝐖𝐑𝐑
𝐇𝐇�𝐆𝐆𝐩𝐩,𝐔𝐔

−𝟏𝟏𝐇𝐇��𝐩𝐩𝐆𝐆𝐩𝐩,𝐁𝐁
−𝟏𝟏𝐖𝐖�𝐩𝐩,𝐙𝐙𝐙𝐙𝐱𝐱𝒑𝒑

𝑳𝑳

𝒍𝒍=𝟏𝟏

 +𝐖𝐖𝐑𝐑
𝐇𝐇𝐍𝐍

= 𝐖𝐖𝐑𝐑
𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐃𝐃𝐃𝐃𝐆𝐆𝐁𝐁−𝟏𝟏𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇

�𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇
�
−𝟏𝟏
𝐱𝐱

+ �𝐖𝐖𝐑𝐑
𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐃𝐃𝐃𝐃𝐆𝐆𝐁𝐁−𝟏𝟏𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇

�𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇
�
−𝟏𝟏
𝐱𝐱

𝑲𝑲

𝒊𝒊≠𝒌𝒌

+ 𝐖𝐖𝐑𝐑
𝐇𝐇�𝐆𝐆,𝐔𝐔

−𝟏𝟏𝐇𝐇��𝐩𝐩𝐆𝐆𝐩𝐩,𝐁𝐁
−𝟏𝟏𝐇𝐇𝐩𝐩�����

𝐇𝐇
�𝐇𝐇𝐩𝐩����� 𝐇𝐇𝒑𝒑�����

𝐇𝐇
�
−𝟏𝟏
𝐱𝐱𝒑𝒑

𝑳𝑳

𝒍𝒍=𝟏𝟏

 +𝐖𝐖𝐑𝐑
𝐇𝐇𝐍𝐍 = 

= 𝐖𝐖𝐑𝐑
𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐃𝐃𝐃𝐃𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇

�𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇
�
−𝟏𝟏
𝐱𝐱 + 𝐖𝐖𝐑𝐑

𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐃𝐃𝐃𝐃𝐆𝐆𝐁𝐁′ 𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇
�𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇

�
−𝟏𝟏
𝐱𝐱

+ �𝐖𝐖𝐑𝐑
𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐃𝐃𝐃𝐃𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇

�𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇
�
−𝟏𝟏
𝐱𝐱

𝑲𝑲

𝒊𝒊≠𝒌𝒌

+ �𝐖𝐖𝐑𝐑
𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐃𝐃𝐃𝐃𝐆𝐆𝐁𝐁′ 𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇

�𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇
�
−𝟏𝟏
𝐱𝐱

𝑲𝑲

𝒊𝒊≠𝒌𝒌

+ 𝐖𝐖𝐑𝐑
𝐇𝐇�𝐆𝐆,𝐔𝐔

−𝟏𝟏𝐇𝐇��𝐩𝐩𝐇𝐇𝐩𝐩�����
𝐇𝐇
�𝐇𝐇𝐩𝐩����� 𝐇𝐇𝐩𝐩�����

𝐇𝐇
�
−𝟏𝟏
𝐱𝐱𝒑𝒑

𝑳𝑳

𝒍𝒍=𝟏𝟏

 +𝐖𝐖𝐑𝐑
𝐇𝐇�𝐆𝐆,𝐔𝐔

−𝟏𝟏𝐇𝐇��𝐩𝐩𝐆𝐆′𝒑𝒑𝐇𝐇𝐩𝐩�����
𝐇𝐇
�𝐇𝐇𝐩𝐩����� 𝐇𝐇𝐩𝐩�����

𝐇𝐇
�
−𝟏𝟏
𝐱𝐱𝒑𝒑

𝑳𝑳

𝒍𝒍=𝟏𝟏

+ 𝐖𝐖𝐑𝐑
𝐇𝐇𝐍𝐍 

 

(39) 

 

We want to maximize the achievable bit rate for each user kth so from 

Shannon’s theorem we have: 

 

𝑅𝑅𝑍𝑍𝑍𝑍 = 𝔼𝔼{log2(1 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑍𝑍𝑍𝑍)} = (40) 

 

(40) 

Equation (40) appears in APPENDIX 5 of Chapter 14. 
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We can solve the convex optimization below select the proper training period 

with α. 

 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝛼𝛼,𝐾𝐾 𝑅𝑅𝑍𝑍𝑍𝑍 

 

 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡: 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆−𝑇𝑇𝑇𝑇−𝑃𝑃𝑃𝑃

= 𝑡𝑡𝑡𝑡 ���𝐆𝐆,𝐔𝐔
−𝟏𝟏𝐇𝐇��𝐩𝐩𝐆𝐆′𝒑𝒑��𝐆𝐆,𝐔𝐔

−𝟏𝟏𝐇𝐇��𝐩𝐩𝐆𝐆′𝒑𝒑�
𝐩𝐩

𝑯𝑯
�𝛽𝛽𝑈𝑈𝐇𝐇𝐃𝐃𝐃𝐃������ ∗

𝜦𝜦�

< 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 

 

(41) 

 

This a convex optimization problem that the MU-MIMO Cognitive Radio 

Network can solve with the cloud assistance. 

 

 

We next quantify the relative achievable rate performance under MMSE and ZF 

precoding schemes. The asymptotic  behavior of this relative achievable rate 

performance for large number of antennas, a non-asymptotic comparison of the 

achievable SINRs at the m-th antenna in the UE side between MMSE and ZF precoding 

schemes under NRC and in order to quantify the SINR degradation under nonreciprocal 

channels with respect to ideal reciprocal channel reference case, we define a metric.  

 

For large scale MIMO the channel vectors are nearly orthogonal and 𝐇𝐇𝐇𝐇𝐓𝐓 =

𝐇𝐇𝐓𝐓𝐇𝐇 = 𝜉𝜉
𝑟𝑟
𝐈𝐈,     𝜉𝜉 = ∑ 𝜆𝜆𝑖𝑖𝑟𝑟

𝑖𝑖=1  where λi the eigenvalues of H, HT : The diagonal Λ matrix 

and β would be computed as shown below: 
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β𝜐𝜐 ==
�√Pu− M�

2

Pu

�tr�𝐻𝐻𝐷𝐷𝐷𝐷������ T
𝐻𝐻𝐷𝐷𝐷𝐷������ ∗

�
�√Pu− M�

4

Pu2 𝐻𝐻𝐷𝐷𝐷𝐷������ T
𝐻𝐻𝐷𝐷𝐷𝐷������ ∗

+ K
Pmax

IK�
−2

�

Pmax
= 

=
�√Pu − M�

2

Pu ⎷
⃓⃓
⃓⃓
⃓⃓
⃓⃓
�⃓

tr���
�√Pu − M�

4

Pu2 + K
Pmax

� IK�

−2

�

Pmax
 

 

 

(42) 

Λ = �
�√Pu − M�

4

Pu2
HTH∗ +

K
Pmax

IK� = ��
𝜉𝜉
𝑟𝑟
�√Pu − M�

4

Pu2
+

K
PmaxK

� 𝐈𝐈�

−1−1

 

 

(43) 

So, the performance of each precoding for Massive MIMO can be estimated by 

the following equation: 

 

lim
𝑁𝑁→∞

𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑅𝑅𝑍𝑍𝑍𝑍

=
(1 − 𝛼𝛼) log2(1 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀)
(= (1 − 𝛼𝛼) log2(1 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑍𝑍𝑍𝑍) 

 

(44) 

So we have   : 

 

lim
𝑁𝑁→∞

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = (45) = 

 

(45) 

Where 𝑉𝑉1 = 𝜉𝜉
𝑟𝑟
�√Pu−M�

2

Pu � K
Pmax

,   𝑉𝑉2 = 𝜉𝜉
𝑟𝑟
�√Pu−M�

4

Pu2
+ K

PmaxK
,𝑉𝑉3 = �√Pu−M�

4

Pu2
+

K
Pmax

 ,   𝑉𝑉 = 𝑉𝑉1
𝑉𝑉2𝑉𝑉3

 

 

(46) 
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lim
𝑁𝑁→∞

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑍𝑍𝑍𝑍 = (47) 

 

(47) 
lim
𝑁𝑁→∞

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
lim
𝑁𝑁→∞

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑍𝑍𝑍𝑍
= (48) 

 

(48) 

Equations (44), (45), (46), (47), (48) appear in APPENDIX 7 of Chapter 14. 

 

The performance of the MMSE system comparing to ZF system depends on the 

value of variables V, 𝝃𝝃
𝒓𝒓𝑉𝑉2

. The selection of those system parameters would make 

MMSE to outperform ZF precoding in terms of SINR and capacity. 

 

 

14.4 SYSTEM DEGRADATION DUE TO NON-RECIPROCITY 

 

 

The system performance degradation due to channel non-reciprocity for both 

precodings can be retrieved by the factor d below: 

 

𝑑𝑑𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀−𝑅𝑅𝑅𝑅𝑅𝑅−𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀−𝑁𝑁𝑁𝑁𝑁𝑁−𝑅𝑅𝑅𝑅𝑅𝑅
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀−𝑅𝑅𝑅𝑅𝑅𝑅

                (49) 
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lim
𝑁𝑁→∞

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀−𝑅𝑅𝑅𝑅𝑅𝑅

=
�𝛽𝛽𝑈𝑈𝐖𝐖𝐑𝐑

𝐇𝐇𝐇𝐇��𝐃𝐃𝐃𝐃𝐇𝐇𝐃𝐃𝐃𝐃������ ∗
𝜦𝜦�

2

𝐖𝐖𝐑𝐑
𝐇𝐇𝐖𝐖𝐑𝐑 + ∑ ��𝛽𝛽𝑈𝑈𝐖𝐖𝐑𝐑

𝐇𝐇𝐇𝐇��𝐃𝐃𝐃𝐃𝐇𝐇𝐃𝐃𝐃𝐃������ ∗
𝜦𝜦� �𝛽𝛽𝑈𝑈𝐖𝐖𝐑𝐑

𝐇𝐇𝐇𝐇��𝐃𝐃𝐃𝐃𝐇𝐇𝐃𝐃𝐃𝐃������ ∗
𝜦𝜦�

𝑯𝑯
� + ∑ ��𝛽𝛽𝑈𝑈𝐖𝐖𝐑𝐑

𝐇𝐇𝐇𝐇��𝐩𝐩𝐇𝐇𝐩𝐩�����
∗
𝜦𝜦𝒑𝒑� �𝛽𝛽𝑈𝑈𝐖𝐖𝐑𝐑

𝐇𝐇𝐇𝐇��𝐩𝐩𝐇𝐇𝐩𝐩�����
∗
𝜦𝜦𝒑𝒑�

𝑯𝑯
�𝑳𝑳

𝒍𝒍=𝟏𝟏
𝑲𝑲
𝒌𝒌≠𝒊𝒊

=
𝑉𝑉�𝐖𝐖𝐑𝐑

𝐇𝐇�2

𝐖𝐖𝐑𝐑
𝐇𝐇𝐖𝐖𝐑𝐑 + 𝑽𝑽∑ �𝐖𝐖𝐑𝐑

𝐇𝐇𝐇𝐇��𝐃𝐃𝐃𝐃𝐇𝐇𝐃𝐃𝐃𝐃������ ∗
�𝐾𝐾

𝑖𝑖≠𝑘𝑘

2
+ ∑ ��𝛽𝛽𝑝𝑝𝐖𝐖𝐑𝐑

𝐇𝐇𝐇𝐇��𝐩𝐩𝐇𝐇𝐩𝐩�����
∗
𝜦𝜦𝒑𝒑� �𝛽𝛽𝑝𝑝𝐖𝐖𝐑𝐑

𝐇𝐇𝐇𝐇��𝐩𝐩𝐇𝐇𝐩𝐩�����
∗
𝜦𝜦𝒑𝒑�

𝑯𝑯
�𝑳𝑳

𝒍𝒍=𝟏𝟏

=
𝑉𝑉�𝐖𝐖𝐑𝐑

𝐇𝐇�2

𝐖𝐖𝐑𝐑
𝐇𝐇𝐖𝐖𝐑𝐑 + 𝑽𝑽∑ �𝐖𝐖𝐑𝐑

𝐇𝐇𝐇𝐇��𝐃𝐃𝐃𝐃𝐇𝐇𝐃𝐃𝐃𝐃������ ∗
�
2

𝐾𝐾
𝑘𝑘≠𝑖𝑖 + 𝑉𝑉𝑃𝑃𝐿𝐿 �𝐖𝐖𝐑𝐑

𝐇𝐇𝐇𝐇��𝐩𝐩𝐇𝐇𝐩𝐩�����
∗
�
𝟐𝟐 = 

 

(50) 

 

lim
𝑁𝑁→∞

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀−𝑁𝑁𝑁𝑁𝑁𝑁−𝑅𝑅𝑅𝑅𝑅𝑅 = (51) 

 

(51) 

The eqations (50), (51)  for MMSE degradation appear in APPENDIX 5 of 

Chapter 14. 

For ZF precoding system performance degradation is given below: 

 

 

𝑑𝑑𝑍𝑍𝑍𝑍 =
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑍𝑍𝑍𝑍−𝑅𝑅𝑅𝑅𝑅𝑅 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑍𝑍𝑍𝑍−𝑁𝑁𝑁𝑁𝑁𝑁−𝑅𝑅𝑅𝑅𝑅𝑅

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑍𝑍𝑍𝑍−𝑅𝑅𝑅𝑅𝑅𝑅
 

 

 

lim
𝑁𝑁→∞

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑍𝑍𝑍𝑍−𝑅𝑅𝑅𝑅𝑅𝑅 =
�𝐖𝐖𝐑𝐑

𝐇𝐇�2

𝐖𝐖𝐑𝐑
𝐇𝐇𝐖𝐖𝐑𝐑 + ∑ �𝐖𝐖𝐑𝐑

𝐇𝐇�2𝐾𝐾
𝑘𝑘≠𝑖𝑖 + 𝝃𝝃

𝒓𝒓∑ ��𝐖𝐖𝐑𝐑
𝐇𝐇𝐇𝐇��𝐩𝐩𝐇𝐇𝐩𝐩�����

𝐇𝐇
� �𝐖𝐖𝐑𝐑

𝐇𝐇𝐇𝐇��𝐩𝐩𝐇𝐇𝐩𝐩�����
𝐇𝐇
�
𝑯𝑯
�𝑳𝑳

𝒍𝒍=𝟏𝟏

 

 

(52) 

 

lim
𝑁𝑁→∞

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑍𝑍𝑍𝑍−𝑁𝑁𝑁𝑁𝑁𝑁−𝑅𝑅𝑅𝑅𝑅𝑅=(53)
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(53) 

The equations (52), (53) for ZF degradation appear in APPENDIX 6 of Chapter 

14. 

 

 

14.4. CONCLUSION 

 

This research work studied the performance of linearly precoded time division 

duplex Multi User-Multiple Input Multiple Output (MIMO) OFDM Cognitive Radio 

Network under imperfect CSI and non-reciprocal channels (NRC) covering transceiver 

frequency response non-reciprocity and antenna mutual coupling mismatches at the 

Secondary Network Base Station (BS), Secondary User Equipment (UE) and between 

the secondary network and the Primary Users is studied in this research work [1].   ZF 

and MMSE precoding are considered.  Since perfect CSI is difficult to achieve [210], 

and although the study of Massive MIMO in CRN for non-reciprocal channels currently  

starts to attract the interest of research community e.g. machine learning and generic 

models [211], this research work studied and introduced closed-form expressions for 

performance degradation regarding the effective signal to interference plus noise ratios 

and corresponding channel capacity is essential  for channel estimation period 

optimization so to increase network’s performance. 
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RADIO ENVIRONMENT MAPS FOR 5G 
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Radio Environment Maps (REMs) have been introduced as a powerful tool in 

Cognitive Radio Networks to manage inter-transmitter interference. In the evolution 

of 5G heterogeneous ecosystem REMs are forced to be transformed to a more 

powerful tool hosting the diverse needs of an immense network.  This research work 

[223] reviews REMs and proposes an enhanced REM architecture for integration in 

the 5G network. 

 

15.1  INTRODUCTION 
 

Cognitive Radio technology was introduced to answer the spectrum scarcity 

problem by utilizing the unoccupied spectrum in time, frequency and space [11].  In 

Cognitive Radio Networks the unlicensed users also called and secondary users may 

occupy the spectrum if the licensed users also called primary users are not transmitting 

and if the interference they cause to the primary network is below a certain threshold. 

Secondary users can sense the spectrum for transmitting opportunities non-

cooperatively or cooperatively. Many protocols have been introduced for CRNs for 

both scenarios with the cooperative schemes to achieve higher accuracy in most cases.  

Radio Environment Maps concept was introduced to cooperatively collect, store 

and share information amongst the network users regarding the transmitter locations, 

spectrum usage maps, spectrum usage statistics in time and space, probabilistic models 

[224] and manage interference [225] [226]. Moreover REMs were introduced as more 

powerful tools to support CRN in its Cognitive Cycle of Radio Environment 

Awareness [227].  

The immense 5G network would integrate a vast number of heterogeneous 

networks supporting an increasingly diverse set of services, applications and users 

from mobile users to IoT.  In the meantime, on the quest for offloading the 5G users 

from spectrum management and thus reducing computation and energy consumption, 

REM arise as a collaborative tool residing in the network which efficient design would 
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overcome the overhead required for its update and increase overall network’s 

performance. 

 

15.2 THE REM CONCEPT 

 

REM was first introduced by [228] as an integrated database (Figure 15.1) that 

would store information locally or globally regarding spectrum usage, primary and 

secondary users transmission patterns, available channels, interference levels. 

 

Figure 15.1: The Basic REM Structure 

 

The basic REM architecture consists of the REM storage and Acquisition module 

which is responsible of collecting the reports of the measurement capable devices 

(MCDs) which can reconfigure and store the raw measurement data as well the output 

of the REM processes. The REM storage is a knowledge-based repository with 

spectrum occupancy information, the REM Manager is responsible for all the 

processing and REM generation and maintenance whilst the control application utilizes 

the REM information. 

REM supports various CR applications such as i) hierarchical spectrum access, ii) 

spectrum sharing iii) intra-operator radio resource management iv) dedicated spectrum 
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monitoring which is essential e.g. for intelligent transport systems, self-organizing 

networks [229] v) interference management.  On the other hand the information stored 

in the the REM storage and acquisition module can be classified as long term 

information which is updated slowly or short information which is updated more 

frequently [229].  

The REM construction consists of exploiting the reports received by the 

Measurement Capable Devices and the estimations of the signal levels in the areas 

where there no MCDs. The accuracy of the REM depends on the i) resolution ii) the 

quality of data iii) the construction method iv) the REM data update period. If the 

information stored in the REM is out-dated then the whole network’s performance 

degrades. 

The REM construction methods fall in three classes namely i) the direct methods 

(interpolation based) (Figure 15.2), ii) indirect (localization and propagation based) 

(Figure 15.3)  iii) hydrid methods. In direct methods spatial interpolation is applied to 

the spatial RF- maps of the measured signals on a neighborhood basis. The most well-

known direct methods are Inverse Distance Weighted (IDW), Nearest Neighbors (NN), 

splines, Natural Neighbors (NNI), modified Spepard’s,  Kriging, Gradient plus Inverse 

Distance Squared (GIDS). A survey on REM construction methods can be found in 

[229].  

 

Figure 15.2: Direct RF-REM construction 
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Figure 15.3: Indirect RF-REM construction 

 

 In indirect methods interpolation is applied to estimate the transmitter location and 

then the transmitter parameters and propagation models provided, the RF coverage at 

each pixel is estimated using the propagation model.  There are two basic indirect 

methods i) LiVE and ii) SNR-aided method [8]. In LiVE method the received RF 

signal of the available MCDs are collected and then a propagation model is used to 

estimate the transmitter power and location in a least square optimization problem. The 

propagation model that would be selected is essential for this method. The SNR-aided 

method based on the angle of arrival (AoA), SNR data fusion and a propagation model 

constructs the REM around the transmitter [230].  In [231] an indirect self-tuning 

method was proposed. In [232] a hybrid approach combining transmitter localization 

and interpolation applied for urban Line of Site (LoS) and Non Line of Site (NLoS) 

environments. Transmitter localization methods have higher accuracy than 

interpolation methods in general. The authors in [233] propose a distributed Kalman 

filter to estimate position, velocity and power of transmitter. In [234] the Kriging 

interpolation method is improved and the model was evaluated in urban areas. 
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15.3 REM IN 5G  

 

REM construction is a complex process integrating the transmitters’ 

information, propagation models selection, interpolation methods selection, exploiting 

the available MCDs capabilities, mobility, the RF coverage maps, the cognitive radio 

spectrum management and in the same time perceiving  the past experience into the 

Cognitive Radio Cycle of  observing the environment, orienting, planning, designing, 

acting. Not only that but other issues have to be considered such as spectrum sharing 

policies, national and cross-border  regulations, operator and cross-operator policies 

which govern the spectrum management process. 

In the necessity of a layered REM model was exploited at [235] and at [231]  in 

a heterogeneous LTE architecture of macrocells and femtocells based on the coverage 

maps. In [234] a study of application of REM in urban areas is presented addressing 

the issues that affect the RF-coverage in urban areas such as location, interference, 

fading, time.  

In the vast heterogeneous 5G network the REM deployment should keep up-to-

date the long and short term information in order to efficiently support the network and 

maintain the data rates, latency, QoE required levels of performance. 

 

 Thus, the following aspects arise: 

 

• REM deployment close to network nodes to handle fast changing information, 

receive the MCDs reports, react to the local RF environment situations exploiting 

local powerful nodes or the RAN. 

• REM deployment not close to network nodes to handle slowly changing 

information which can reside in the core network and the cloud. 

• REM deployment to handle mobility  

• REM deployment to handle cooperation between heterogeneous networks 

• REM deployment to handle inter-operator functionality 

 

The issues which will arise each time e.g. the intensive interpolation processing, the 

transmitter localization, a change in the number of available MCDs, a change in the 
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propagation model would be pass to the REM in the core network or the cloud or be 

handled locally on a periodic basis, on demand or as emergencies. 

In [11] the authors propose a REM architecture aligned with the RAN virtualization 

concept which considers Network Function Virtualization and an SDN- 5G network. 

Network Function Virtualization allows the network resources to be seen as pool of 

virtual resources that can be managed by physical or virtual operators. The SDN 

controller forces the decisions to the network. The proposed architecture mainly 

consists of the abstraction models such as interference maps which are used for short-

term spectrum management, the REM and repository of regulations. The Spectrum 

Manager Application (SMA) will receive the information of the abstraction models 

which eventually will pass to REM and will be used on demand. The SMA will rely on 

different databases and the REM. 

 
 

Figure 15.4: The Cognitive Access Server for the REM  

Deployment 

 

Network Function Virtualization and SDN networks can be supportive in REM 

deployment. In [11] the cognitive radio functionality is offloaded at the Radio Access 
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Network (RAN) or at the local powerful nodes in the form of access services 

provision for the Cognitive Radio Network by virtualizing the lower layer’s 

functionality and resources and leveraging the connection to the core network and the 

Cloud connection. Lower layer Cognitive Radio Services and applications on the 

Edge Computing would increase capabilities not only within the RAN but within 

local mobile network on a peer-to-peer basis for access and backhauling. In the latter 

case, ad-hoc networks or vehicles would leverage powerful local nodes allowing them 

to be self-organized [11].  REM as a chained-service would benefit of the proposed 

architecture deployment as the MCDs would pass their reports to more powerful 

nodes and the REM deployment will be served by the proposed architecture in [11] 

(Figure 15.4 and Figure 15.5). However, as REM management encompasses national, 

regional and inter-operator policies and regulations, the necessity for new services 

arise for cross-operator, cross-border operability, QoE provision. For this reason an 

enhancement of the architecture [11] is proposed.  

 

15.4 ENHANCED REM DEPLOYMENT 

 

In order the REM deployment to respond to 5G challenges the provision of 

enhanced and abstract services on the top of the NFV chained services [11] arise. So, 

the NFV chained-services abstraction layer would be the basis for new abstract 

services composition.  On the top of service orchestration layer would provide entries 

to the new services taking also into account the policies, regulations, required level of 

performance and security issues. The abstract layers would allow operability between 

the heterogeneous networks, mobile nodes, cross-operators, QoS and QoE assurance as 

will make feasible the sharing and processing of virtual resources across the immense 

5G network (Figure 15.6).  
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Figure 15.5: Cognitive Access Server deployment for the REM 

 

 

Figure 15.6: The Enhanced Cognitive Access Server for the REM deployment 
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Abstract service scenarios would exploit the radio elements, radio scene, 

environment and trigger the chaining of NFV services applicable for each operator, 

heterogeneous network etc. Concerning the Abstract Radio Environment Maps 

services, they would specify amongst others different REM construction method for 

each network or operator, araise mobility support, define REM update frequency, 

REM image processing for information extraction, QoE, data mining for cloud storage, 

define the number of MCDs, and consider policies and regulations. The Abstarct REM 

Services Composition would ensure transparency for heterogeneous networks, cross-

operator, cross-border etc. The architecture would be enabled within the SDN context. 

 

15.5 CONCLUSION 

 

The research work discusses the various issues of Radio Environment Maps 

construction and application and proposes the architecture [11] based on NFV and 

SDN network and an enhanced architecture of [11] for REM deployment in the 5G 

heterogeneous network, cross-operator, cross-border. The proposed architecture takes 

into consideration the creation of new abstract services for cross-operator, cross-

network operability and high level of QoE required in the immense and diverse 5G 

ecosystem. 
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The necessity of lower layers services and applications conceptualization and 

abstraction up to the seven layer OSI stack within the Cognitive Radio Cycle  is the main 

issue that this dissertation manifests whilst providing algorithms for  responding to diverse 

issues within the Cognitive Radio Network and Cognitive Radio Network Cloud.  

Demanding tasks could be off-loaded to powerful nodes locally allowing the 

local network to be self-organized. Self-organizing Cognitive Radio Networks in an 

immense heterogeneous wireless network along with Dynamic Spectrum Access, 

Management and Control Mitigation on demand or not on demand to respond to 

network needs in real time and on the fly can be realized with high level abstraction 

and conceptualization of Cognitive Medium Access Control and SDR Services and 

Abstract Cognitive Medium Access Control and SDR Services integration and deployment 

on all the OSI layers, cross-platform and cross-network, cross-operator. Central 

coordination would be applicable for triggering  local nomad network to be self-organized, 

as well for hand-off  or for meeting QoE, radio network performance, institutional  metrics. 

Most of the research work presented in this dissertation has been published and the 

rest is considered for submission.  

A new mathematic method of mathematic game unfolding is introduced i.e. a new 

mathematic method for generating games without coordination and a corresponding 

mathematic game model as an application of the proposed mathematic method to for the 

Cognitive Radio Network and Cognitive Radio Cloud Security was introduced. Other 

mathematic game reaching Nash Equilibriums also were introduced.  Deterministic 

automata and Machine Learning were also introduced as well as other mathematic formulas 

applicable to the corresponding network protocols, mathematic models for steady-state- 

Lyapunov filtering algorithm for enhanced CRN-SDR signal processing and mathematic 

formulas for Non-Reciprocal Channels in Massive MIMO CRN were also introduced in 

this dissertation.  

This dissertation contributes to the Cognitive Radio research field by introducing a 

novel concept and a reference architecture for Cognitive Radio Medium Access Control 

and SDR as a Service and Application conseptualisation and abstraction utilizing the 

Cognitive Radio Network Cloud and allowing self-organized clusters to operate in a 
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dynamic manner allowing nomadic lower layers Services and Application clustering and 

providing the CRN and CRNC with the desired transparency which is considered as the 

basis for the 5G, 6G , Space-Air-Ground-Sea integrated communication and wireless tactile 

network evolution . Mathematic methods and mathematic formulas have been introduced 

for a number of diverse CRNC problems, too.  

 

257 
 



APPENDIX 1              IOANNA KAKALOU    Algorithms for Cognitive Radio Network and Cloud 2020 
 
 

(27) →
1
𝑐𝑐1,𝑛𝑛

≥ 1 + 

�𝑎𝑎𝑗𝑗.1.𝑛𝑛
𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑐𝑐𝑛𝑛 − 2𝑎𝑎𝑗𝑗.1.𝑛𝑛

𝑔𝑔𝑔𝑔𝑔𝑔 𝑐𝑐𝑛𝑛 − 𝑎𝑎𝑗𝑗.1.𝑛𝑛
𝑔𝑔𝑔𝑔𝑔𝑔 𝑎𝑎𝑖𝑖.1.𝑛𝑛

𝑙𝑙𝑙𝑙 − 𝑎𝑎𝑗𝑗.1.𝑛𝑛
𝑔𝑔𝑔𝑔𝑔𝑔 𝑎𝑎𝑖𝑖.2.𝑛𝑛

𝑙𝑙𝑙𝑙 �𝜌𝜌1.𝑛𝑛
𝑙𝑙𝑙𝑙 + �2𝑎𝑎𝑗𝑗.2.𝑛𝑛

𝑔𝑔𝑔𝑔𝑔𝑔 𝑎𝑎𝑖𝑖.1.𝑛𝑛
𝑙𝑙𝑙𝑙 − 𝑎𝑎𝑗𝑗.1.𝑛𝑛

𝑔𝑔𝑔𝑔𝑔𝑔 𝑎𝑎𝑖𝑖.1.𝑛𝑛
𝑙𝑙𝑙𝑙 − 𝑎𝑎𝑗𝑗.1.𝑛𝑛

𝑔𝑔𝑔𝑔𝑔𝑔 𝑎𝑎𝑖𝑖.2.𝑛𝑛
𝑙𝑙𝑙𝑙 + 𝑎𝑎𝑗𝑗.1.𝑛𝑛

𝑔𝑔𝑔𝑔𝑔𝑔 𝑎𝑎𝑖𝑖.2.𝑛𝑛
𝑙𝑙𝑙𝑙 − 1 − 𝑐𝑐𝑛𝑛�𝜌𝜌2.𝑛𝑛

𝑙𝑙𝑙𝑙

�2𝛼𝛼𝑗𝑗,1,𝑛𝑛
𝑔𝑔𝑔𝑔𝑔𝑔 𝑎𝑎𝑖𝑖.1.𝑛𝑛

𝑙𝑙𝑙𝑙 − 𝑎𝑎𝑖𝑖.1.𝑛𝑛
𝑙𝑙𝑙𝑙 − 𝑐𝑐𝑛𝑛� 𝜌𝜌1.𝑛𝑛

𝑔𝑔𝑔𝑔𝑔𝑔 + �1 + 2𝛼𝛼𝑗𝑗.1.𝑛𝑛
𝑔𝑔𝑔𝑔𝑔𝑔 + 𝛼𝛼𝑖𝑖.2.𝑛𝑛

𝑙𝑙𝑙𝑙 + 𝛼𝛼𝑗𝑗.2.𝑛𝑛
𝑔𝑔𝑔𝑔𝑔𝑔 − 2𝛼𝛼𝑗𝑗.1.𝑛𝑛

𝑔𝑔𝑔𝑔𝑔𝑔 � 𝜌𝜌2.𝑛𝑛
𝑔𝑔𝑔𝑔𝑔𝑔

 

 

(28) →
1
𝑐𝑐1,𝑛𝑛

≥ 1 + 

�2𝛼𝛼𝑗𝑗.1.𝑡𝑡
𝑔𝑔;𝑜𝑜 𝛼𝛼𝑖𝑖.1.𝑡𝑡

𝑙𝑙𝑙𝑙 + 2𝛼𝛼𝑗𝑗.1.𝑡𝑡
𝑔𝑔𝑔𝑔𝑔𝑔 𝑐𝑐𝑡𝑡 + 𝛼𝛼𝑖𝑖.2.𝑡𝑡

𝑙𝑙𝑙𝑙 − 𝛼𝛼𝑗𝑗.1.𝑡𝑡
𝑔𝑔𝑔𝑔𝑔𝑔 − 𝛼𝛼𝜄𝜄.1.𝑡𝑡

𝑙𝑙𝑙𝑙 − 𝑐𝑐𝑡𝑡�𝜌𝜌1.𝑡𝑡
𝑙𝑙𝑙𝑙 + �1 + 𝛼𝛼𝑗𝑗.1.𝑡𝑡

𝑔𝑔𝑔𝑔𝑔𝑔𝛼𝛼𝑖𝑖.1.𝑡𝑡
𝑙𝑙𝑙𝑙 + 𝛼𝛼𝑗𝑗.1.𝑡𝑡

𝑔𝑔𝑔𝑔𝑔𝑔𝛼𝛼𝑖𝑖.2.𝑡𝑡
𝑙𝑙𝑙𝑙 + 𝑐𝑐𝑡𝑡 − 2𝛼𝛼𝑗𝑗.1.𝑡𝑡

𝑔𝑔𝑔𝑔𝑔𝑔 𝑐𝑐𝑡𝑡 − 𝛼𝛼𝑖𝑖.2.𝑡𝑡
𝑙𝑙𝑙𝑙 − 𝛼𝛼𝑗𝑗.1.𝑡𝑡

𝑔𝑔𝑔𝑔𝑔𝑔 − 𝑎𝑎𝑗𝑗.2.𝑡𝑡
𝑔𝑔𝑔𝑔𝑔𝑔 �𝜌𝜌2.𝑡𝑡

𝑙𝑙𝑙𝑙

�1 + 𝑐𝑐𝑡𝑡 − 2𝛼𝛼𝑗𝑗.1.𝑡𝑡
𝑔𝑔𝑔𝑔𝑔𝑔𝛼𝛼𝜄𝜄.1.𝜏𝜏

𝑙𝑙𝑙𝑙 − 2𝛼𝛼𝑗𝑗.2.𝑡𝑡
𝑔𝑔𝑔𝑔𝑔𝑔 𝑐𝑐𝑡𝑡 − 𝛼𝛼𝑗𝑗.2.𝑡𝑡

𝑔𝑔𝑔𝑔𝑔𝑔 � 𝜌𝜌1.𝑡𝑡
𝑔𝑔𝑔𝑔𝑔𝑔 + �3𝛼𝛼𝑖𝑖.2.𝑡𝑡

𝑙𝑙𝑙𝑙 + 2𝛼𝛼𝑗𝑗.2.𝑡𝑡
𝑔𝑔𝑔𝑔𝑔𝑔 𝑐𝑐𝑡𝑡 − 2 − 2𝛼𝛼𝑗𝑗.1.𝑡𝑡

𝑔𝑔𝑔𝑔𝑔𝑔 𝑐𝑐𝑡𝑡 − 𝛼𝛼𝑗𝑗.1.𝑡𝑡
𝑔𝑔𝑔𝑔𝑔𝑔 − 𝛼𝛼𝑗𝑗.1.𝑡𝑡

𝑔𝑔𝑔𝑔𝑔𝑔𝛼𝛼𝑖𝑖.2.𝑡𝑡
𝑙𝑙𝑙𝑙 � 𝜌𝜌2.𝑡𝑡

𝑔𝑔𝑔𝑔𝑔𝑔
 

 

(29) →
1
𝑐𝑐1,𝑛𝑛

≥ 1

+
�1 + 𝛼𝛼𝑗𝑗.1.𝑡𝑡

𝑔𝑔𝑔𝑔𝑔𝑔𝛼𝛼𝑖𝑖.1.𝑡𝑡
𝑙𝑙𝑙𝑙 + 2𝛼𝛼𝑗𝑗.1.𝑡𝑡

𝑔𝑔𝑔𝑔𝑔𝑔𝛼𝛼𝑖𝑖.2.𝑡𝑡
𝑙𝑙𝑙𝑙 + 𝛼𝛼𝑗𝑗.1.𝑡𝑡

𝑔𝑔𝑔𝑔𝑔𝑔 𝑐𝑐𝑡𝑡 + 𝛼𝛼𝑗𝑗.2.𝑡𝑡
𝑔𝑔𝑔𝑔𝑔𝑔𝛼𝛼𝑖𝑖.2.𝑡𝑡

𝑙𝑙𝑙𝑙 − 2𝛼𝛼𝑗𝑗.1.𝑡𝑡
𝑔𝑔𝑔𝑔𝑔𝑔 − 2𝛼𝛼𝑖𝑖.2.𝑡𝑡

𝑙𝑙𝑙𝑙 − 𝛼𝛼𝑗𝑗.2.𝑡𝑡
𝑔𝑔𝑔𝑔𝑔𝑔𝑐𝑐𝑡𝑡�𝜌𝜌1.𝑡𝑡

𝑙𝑙𝑙𝑙 + �1 + 3𝛼𝛼𝑗𝑗.1.𝑡𝑡
𝑔𝑔𝑔𝑔𝑔𝑔𝛼𝛼𝑖𝑖.2.𝑡𝑡

𝑙𝑙𝑙𝑙 + 𝛼𝛼𝑗𝑗.1.𝑡𝑡
𝑔𝑔𝑔𝑔𝑔𝑔𝛼𝛼𝜄𝜄.1.𝜏𝜏

𝜆𝜆𝜆𝜆 − 2𝑎𝑎𝑗𝑗.1.𝑡𝑡
𝑔𝑔𝑔𝑔𝑔𝑔 − 2𝛼𝛼𝑖𝑖.2.𝑡𝑡

𝑙𝑙𝑙𝑙 �𝜌𝜌2.𝑡𝑡
𝑙𝑙𝑙𝑙

�2𝛼𝛼𝑗𝑗.1.𝑡𝑡
𝑔𝑔𝑔𝑔𝑔𝑔 − 2𝛼𝛼𝑗𝑗.1.𝑡𝑡

𝑔𝑔𝑔𝑔𝑔𝑔𝛼𝛼𝑖𝑖.2.𝑡𝑡
𝑙𝑙𝑙𝑙 − 2𝛼𝛼𝑗𝑗.1.𝑡𝑡

𝑔𝑔𝑙𝑙𝑙𝑙𝛼𝛼𝑖𝑖.1.𝑡𝑡
𝑙𝑙𝑙𝑙 − 𝛼𝛼𝑗𝑗.1.𝑡𝑡

𝑔𝑔𝑔𝑔𝑔𝑔 𝑐𝑐𝑡𝑡� 𝜌𝜌1.𝑡𝑡
𝑔𝑔𝑔𝑔𝑔𝑔 + �4𝛼𝛼𝑖𝑖.2.𝑡𝑡

𝑙𝑙𝑙𝑙 + 𝑐𝑐𝑡𝑡 + 𝛼𝛼𝑗𝑗.1.𝑡𝑡
𝑔𝑔𝑔𝑔𝑔𝑔 − 3𝛼𝛼𝑗𝑗.1.𝑡𝑡

𝑔𝑔𝑔𝑔𝑔𝑔𝛼𝛼𝑖𝑖.2.𝑡𝑡
𝑙𝑙𝑙𝑙 − 𝛼𝛼𝑗𝑗.2.𝑡𝑡

𝑔𝑔𝑔𝑔𝑔𝑔𝛼𝛼𝑖𝑖.2.𝑡𝑡
𝑙𝑙𝑙𝑙 − 𝛼𝛼𝑗𝑗.1.𝑡𝑡

𝑔𝑔𝑔𝑔𝑔𝑔 𝑐𝑐𝑡𝑡 − 2� 𝜌𝜌2.𝑡𝑡
𝑔𝑔𝑔𝑔𝑔𝑔

 

Table 1:  The conditions derived for the proposed scheme 

248 
 



IOANNA KAKALOU    Algorithms for Cognitive Radio Network and Cloud 2020 
 

APPENDIX 2 
 
The code in Matlab for the simulated generated  signal in Rayleigh fading conditions. 
 
Ts=1/Fs; 
S1o=1; 
So=16; 
fd=100; 
tstart=0; 
tend=2; 
%t=[tstart:Ts:tend]; 
wm=2*pi*fd;                             %Maximum shift 
fm=wm/(2*pi);                           %Doppler shift 
S=2*(2*So+1); 
X1co=(1.414*cos(wm*t)); 
X1so=0; 
 
 
wm=2*pi*fd;                             %Maximum shift 
fm=wm/(2*pi);                           %Doppler shift 
S=2*(2*So+1); 
Xco=(1.414*cos(wm*t)); 
Xso=0; 
 
 
for n=1:1:So 
A(n)=(2*pi*n)/S;                 %Azimuthal angles 
wn(n)=wm*cos(A(n)); 
O(n)=(pi*n)/(So+1); 
sum3=sum3+(cos(O(n)).*cos(wn(n)*t)); 
sum4=sum4+(cos(wn(n)*t).*sin(O(n))); 
end 
Xc=2*sum3+Xco; 
Xs=2*sum4+Xso; 
sig2=(1/sqrt(2*So+1))*(Xc+j*Xs); 
 
 
 
The code in Matlab for the simulated generated signals in Nakagami fading conditions. 
 
M1=3; 
m1=3; 
M=3; 
m=3; 
gpsk=(sin(pi/M))^2;  
gamasr_dB=[1:0.1:50]; 
gpsk1=(sin(pi/M1))^2;  
u=1; 
 
m=randi([3 7],1,1); 
 
gamasr(h)=10.^(gamasr_dB(h)/10); 
alfa(h)=sqrt((gpsk.*gamasr(h)/m)/(1+(gpsk.*gamasr(h)/m)))*cot(pi/M); 
K(h)=(1/pi)*sqrt((gpsk.*gamasr(h)/m)/(1+gpsk.*gamasr(h)/m)); 
  
suma1=0; 
for k=0:(m-1) 
 suma1=suma1 +(factorial(2*k)/(factorial(k)^2))*1/(4*(1+(gpsk.*gamasr(h)/m))^k); 
 end; 
  
suma2=0; 
for k=1:(m-1) 
for i=1:k 
T(i)=(factorial(2*k)/(factorial(k)^2))/(factorial(2*(k-i))/(((factorial(k-i))^2)*(4^i)*(2*(k-
i)+1))); 
BR(i)=T(i)*(cos(atan(alfa(h))))^(2*(k-i)+1); 
end; 
suma2=suma2+BR(i)/(1+gpsk.*gamasr(h)/m)^k; 
end; 
 Ps(h)=((M-1)/M)-K(h)*((pi/2+atan(alfa(h)))*suma1+sin(atan(alfa(h))*suma2)); 
Pb(h)=Ps(h)/log2(M); 
   
sig2=Pb(h); 
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APPENDIX 3 

 

𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝔼𝔼{log2(1 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝛭𝛭𝛭𝛭𝛭𝛭𝛭𝛭)} = (36)

= 𝔼𝔼

⎩
⎪
⎨

⎪
⎧ (1 − 𝛼𝛼)

log2 �1 +
�𝛽𝛽𝑈𝑈𝐖𝐖𝐑𝐑

𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏𝜦𝜦�
2

𝐖𝐖𝐑𝐑
𝐇𝐇𝐖𝐖𝐑𝐑 + �𝛽𝛽𝑈𝑈𝐖𝐖𝐑𝐑

𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐃𝐃𝐃𝐃(𝑮𝑮′𝑩𝑩)𝐇𝐇𝐃𝐃𝐃𝐃������ ∗
𝜦𝜦�

2
+ ∑ �𝛽𝛽𝑈𝑈𝐖𝐖𝐑𝐑

𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏𝜦𝜦�
2𝐾𝐾

𝑖𝑖≠𝑘𝑘 + ∑ �𝛽𝛽𝑈𝑈𝐖𝐖𝐑𝐑
𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐃𝐃𝐃𝐃(𝑮𝑮′𝑩𝑩)𝐇𝐇𝐃𝐃𝐃𝐃������ ∗

𝜦𝜦�
2

𝐾𝐾
𝑖𝑖≠𝑘𝑘 + ∑ �𝛽𝛽𝜐𝜐𝐖𝐖𝐑𝐑

𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐩𝐩𝐇𝐇𝐩𝐩�����
∗
𝜦𝜦𝒑𝒑�

2
𝐿𝐿
𝑙𝑙=1 + ∑ �𝛽𝛽𝜐𝜐𝐖𝐖𝐑𝐑

𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐩𝐩�𝑮𝑮′𝒑𝒑,𝑩𝑩�𝐇𝐇𝐩𝐩�����
∗
𝜦𝜦𝒑𝒑�

2
𝐿𝐿
𝑙𝑙=1

�

⎭
⎪
⎬

⎪
⎫

= 𝔼𝔼

⎩
⎪
⎨

⎪
⎧ (1 − 𝛼𝛼)

log2 �1 +
�𝛽𝛽𝑈𝑈𝐖𝐖𝐑𝐑

𝐇𝐇𝜦𝜦�2

𝐖𝐖𝐑𝐑
𝐇𝐇𝐖𝐖𝐑𝐑 + �𝛽𝛽𝑈𝑈𝐖𝐖𝐑𝐑

𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐃𝐃𝐃𝐃(𝑮𝑮′𝑩𝑩)𝐇𝐇𝐃𝐃𝐃𝐃������ ∗
𝜦𝜦�

2
+ ∑ �𝛽𝛽𝑈𝑈𝐖𝐖𝐑𝐑

𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏𝜦𝜦�
2𝐾𝐾

𝑖𝑖≠𝑘𝑘 + ∑ �𝛽𝛽𝑈𝑈𝐖𝐖𝐑𝐑
𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐃𝐃𝐃𝐃(𝑮𝑮′𝑩𝑩)𝐇𝐇𝐃𝐃𝐃𝐃������ ∗

𝜦𝜦�
2

𝐾𝐾
𝑖𝑖≠𝑘𝑘 + +∑ �𝛽𝛽𝜐𝜐𝐖𝐖𝐑𝐑

𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐩𝐩𝐇𝐇𝐩𝐩�����
∗
𝜦𝜦𝒑𝒑 �

2
𝐿𝐿
𝑙𝑙=1 + ∑ �𝛽𝛽𝜐𝜐𝐖𝐖𝐑𝐑

𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐩𝐩�𝑮𝑮′𝒑𝒑,𝑩𝑩�𝐇𝐇𝐩𝐩�����
∗
𝜦𝜦𝒑𝒑�

2
𝐿𝐿
𝑙𝑙=1

�

⎭
⎪
⎬

⎪
⎫

 

 

 

𝑅𝑅𝑍𝑍𝑍𝑍 = 𝔼𝔼{log2(1 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑍𝑍𝑍𝑍)} = (40) = 

= 𝔼𝔼�(1− 𝛼𝛼) log2 �1 +
�𝐖𝐖𝐑𝐑

𝐇𝐇𝐆𝐆𝐔𝐔
−𝟏𝟏𝐇𝐇��𝐃𝐃𝐃𝐃𝐇𝐇𝐃𝐃𝐃𝐃�������𝐇𝐇

�𝐇𝐇𝐃𝐃𝐃𝐃������� 𝐇𝐇𝐃𝐃𝐃𝐃�������𝐇𝐇
�
−𝟏𝟏
�
2

𝐖𝐖𝐑𝐑
𝐇𝐇𝐖𝐖𝐑𝐑+�𝐖𝐖𝐑𝐑

𝐇𝐇𝐆𝐆𝐔𝐔
−𝟏𝟏𝐇𝐇��𝐃𝐃𝐃𝐃𝑮𝑮′𝑩𝑩𝐇𝐇𝐃𝐃𝐃𝐃�������𝐇𝐇

�𝐇𝐇𝐃𝐃𝐃𝐃������� 𝐇𝐇𝐃𝐃𝐃𝐃�������𝐇𝐇
�
−𝟏𝟏
�
2

+𝐖𝐖𝐑𝐑
𝐇𝐇∑ �𝐆𝐆𝐔𝐔

−𝟏𝟏𝐇𝐇��𝐃𝐃𝐃𝐃𝐇𝐇𝐃𝐃𝐃𝐃�������𝐇𝐇
�𝐇𝐇𝐃𝐃𝐃𝐃������� 𝐇𝐇𝐃𝐃𝐃𝐃�������𝐇𝐇

�
−𝟏𝟏
�
2

𝐾𝐾
𝐼𝐼≠𝑘𝑘 +∑ �𝐖𝐖𝐑𝐑

𝐇𝐇𝐆𝐆𝐔𝐔
−𝟏𝟏𝐇𝐇��𝐃𝐃𝐃𝐃𝑮𝑮′𝑩𝑩𝐇𝐇𝐃𝐃𝐃𝐃�������𝐇𝐇

�𝐇𝐇𝐃𝐃𝐃𝐃������� 𝐇𝐇𝐃𝐃𝐃𝐃�������𝐇𝐇
�
−𝟏𝟏
�
2

𝐾𝐾
𝑖𝑖≠𝑘𝑘 +∑ �𝐖𝐖𝐑𝐑

𝐇𝐇𝐆𝐆,𝐔𝐔
−𝟏𝟏𝐇𝐇��𝐩𝐩𝐇𝐇𝐩𝐩�����

𝐇𝐇
�𝐇𝐇𝐩𝐩����� 𝐇𝐇𝐩𝐩�����

𝐇𝐇
�
−𝟏𝟏
�
2

𝐿𝐿
𝑙𝑙=1 +∑ �𝐖𝐖𝐑𝐑

𝐇𝐇𝐆𝐆,𝐔𝐔
−𝟏𝟏𝐆𝐆,𝐔𝐔

−𝟏𝟏𝐇𝐇��𝐩𝐩𝐆𝐆′𝒑𝒑𝐇𝐇𝐩𝐩�����
𝐇𝐇
�𝐇𝐇𝐩𝐩����� 𝐇𝐇𝐩𝐩�����

𝐇𝐇
�
−𝟏𝟏
𝐱𝐱𝒑𝒑�

2
𝐿𝐿
𝑙𝑙=1

��  
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lim
𝑁𝑁→∞

𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑅𝑅𝑍𝑍𝑍𝑍

=
(1− 𝛼𝛼) log2(1 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀)

(1− 𝛼𝛼) log2(1 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑍𝑍𝑍𝑍) = 

=

(1 − 𝛼𝛼) log2 �1 +
�𝐖𝐖𝐑𝐑

𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏𝑉𝑉�
2

𝐖𝐖𝐑𝐑
𝐇𝐇𝐖𝐖𝐑𝐑 + 𝑉𝑉 �𝐖𝐖𝐑𝐑

𝐇𝐇 𝜉𝜉
𝑟𝑟 𝐆𝐆𝐔𝐔

−𝟏𝟏𝐇𝐇��𝐃𝐃𝐃𝐃(𝑮𝑮′𝑩𝑩)𝐇𝐇𝐃𝐃𝐃𝐃������ ∗
𝜦𝜦�

2
+ ∑ �𝐖𝐖𝐑𝐑

𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏𝑉𝑉�
2𝐾𝐾

𝑖𝑖≠𝑘𝑘 + ∑ 𝑉𝑉 �𝐖𝐖𝐑𝐑
𝐇𝐇 𝜉𝜉
𝑟𝑟 𝐆𝐆𝐔𝐔

−𝟏𝟏𝐇𝐇��𝐃𝐃𝐃𝐃(𝑮𝑮′𝑩𝑩)𝐇𝐇𝐃𝐃𝐃𝐃������ ∗
𝜦𝜦�

2
𝐾𝐾
𝑖𝑖≠𝑘𝑘 + ∑ �𝛽𝛽𝑝𝑝𝐖𝐖𝐑𝐑

𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐩𝐩𝐇𝐇𝐩𝐩�����
∗
𝜦𝜦𝒑𝒑�

2
𝐿𝐿
𝑙𝑙=1 + 𝛽𝛽𝑝𝑝 ∑ �𝝃𝝃𝝅𝝅𝒓𝒓𝝅𝝅

𝐖𝐖𝐑𝐑
𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐩𝐩�𝑮𝑮′𝒑𝒑�𝐇𝐇𝐩𝐩����𝜦𝜦𝒑𝒑�

2
𝐿𝐿
𝑙𝑙=1

�

(1 − 𝛼𝛼) log2

⎝

⎜
⎛

1 +
�𝐖𝐖𝐑𝐑

𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐃𝐃𝐃𝐃𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇
�𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇

�
−𝟏𝟏
�
2

𝐖𝐖𝐑𝐑
𝐇𝐇𝐖𝐖𝐑𝐑 + �𝐖𝐖𝐑𝐑

𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐃𝐃𝐃𝐃𝑮𝑮′𝑩𝑩𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇
�𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇

�
−𝟏𝟏
�
2

+ 𝐖𝐖𝐑𝐑
𝐇𝐇 ∑ �𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐃𝐃𝐃𝐃𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇

�𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇
�
−𝟏𝟏
�
2

𝐾𝐾
𝐼𝐼≠𝑘𝑘 + ∑ �𝐖𝐖𝐑𝐑

𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐃𝐃𝐃𝐃𝑮𝑮′𝑩𝑩𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇
�𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇

�
−𝟏𝟏
�
2

𝐾𝐾
𝑖𝑖≠𝑘𝑘 + ∑ �𝐖𝐖𝐑𝐑

𝐇𝐇𝐆𝐆,𝐔𝐔
−𝟏𝟏𝐇𝐇��𝐩𝐩𝐇𝐇𝐩𝐩�����

𝐇𝐇
�𝐇𝐇𝐩𝐩����� 𝐇𝐇𝐩𝐩�����

𝐇𝐇
�
−𝟏𝟏
�
2

𝐿𝐿
𝑙𝑙=1 + ∑ �𝐖𝐖𝐑𝐑

𝐇𝐇𝐆𝐆,𝐔𝐔
−𝟏𝟏𝐇𝐇��𝐩𝐩𝐆𝐆′𝒑𝒑𝐇𝐇𝐩𝐩�����

𝐇𝐇
�𝐇𝐇𝐩𝐩����� 𝐇𝐇𝐩𝐩�����

𝐇𝐇
�
−𝟏𝟏
�
2

𝐿𝐿
𝑙𝑙=1 ⎠

⎟
⎞

 

 

(44) 

 

lim
𝑁𝑁→∞

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
𝑉𝑉�𝐖𝐖𝐑𝐑

𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏�
𝟐𝟐

𝐖𝐖𝐑𝐑
𝐇𝐇𝐖𝐖𝐑𝐑 + 𝑉𝑉 �𝐖𝐖𝐑𝐑

𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐃𝐃𝐃𝐃(𝑮𝑮′𝑩𝑩)𝐇𝐇𝐃𝐃𝐃𝐃������ ∗
�
2

+ ∑ �𝐖𝐖𝐑𝐑
𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏𝑉𝑉�

2𝐾𝐾
𝑖𝑖≠𝑘𝑘 + ∑ 𝑉𝑉 �𝐖𝐖𝐑𝐑

𝐇𝐇 𝜉𝜉
𝑟𝑟 𝐆𝐆𝐔𝐔

−𝟏𝟏𝐇𝐇��𝐃𝐃𝐃𝐃(𝑮𝑮′𝑩𝑩)𝐇𝐇𝐃𝐃𝐃𝐃������ ∗
𝜦𝜦�

2
𝐾𝐾
𝑖𝑖≠𝑘𝑘 + +𝑉𝑉𝑃𝑃𝐿𝐿 �𝐖𝐖𝐑𝐑

𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐩𝐩𝐇𝐇𝐩𝐩�����
∗
�
𝟐𝟐

+
𝝃𝝃𝒑𝒑

𝒓𝒓𝒑𝒑𝑉𝑉𝑝𝑝2
∑ �𝐖𝐖𝐑𝐑

𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏  𝐇𝐇��𝐩𝐩�𝑮𝑮′𝒑𝒑�𝐇𝐇𝐩𝐩�����
∗
�
2

𝐿𝐿
𝑙𝑙=1

 

 

(45) 

 

Where 𝑉𝑉1 = 𝜉𝜉
𝑟𝑟
�√Pu−M�

2

Pu � K
Pmax

,   𝑉𝑉2 = 𝜉𝜉
𝑟𝑟
�√Pu−M�

4

Pu2
+ K

PmaxK
,𝑉𝑉3 = �√Pu−M�

4

Pu2
+ K

Pmax
 ,   𝑉𝑉 = 𝑉𝑉1

𝑉𝑉2𝑉𝑉3
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lim
𝑁𝑁→∞

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑍𝑍𝑍𝑍

=
�𝐖𝐖𝐑𝐑

𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏�
2

𝐖𝐖𝐑𝐑
𝐇𝐇𝐖𝐖𝐑𝐑 + �𝐖𝐖𝐑𝐑

𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐃𝐃𝐃𝐃𝑮𝑮′𝑩𝑩𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇
�𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇

�
−𝟏𝟏
�
2

+ 𝐖𝐖𝐑𝐑
𝐇𝐇∑ �𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐃𝐃𝐃𝐃𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇

�𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇
�
−𝟏𝟏
�
2

𝐾𝐾
𝐼𝐼≠𝑘𝑘 + ∑ �𝐖𝐖𝐑𝐑

𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐃𝐃𝐃𝐃𝑮𝑮′𝑩𝑩𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇
�𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇

�
−𝟏𝟏
�
2

𝐾𝐾
𝑖𝑖≠𝑘𝑘 +∑ �𝐖𝐖𝐑𝐑

𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏 𝐇𝐇��𝐩𝐩𝐇𝐇𝐩𝐩�����
𝐇𝐇
�𝐇𝐇𝐩𝐩����� 𝐇𝐇𝐩𝐩�����

𝐇𝐇
�
−𝟏𝟏
�
2

𝐿𝐿
𝑙𝑙=1 +∑ �𝐖𝐖𝐑𝐑

𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏 𝐇𝐇��𝐩𝐩𝐆𝐆′
𝒑𝒑𝐇𝐇𝐩𝐩�����

𝐇𝐇
�𝐇𝐇𝐩𝐩����� 𝐇𝐇𝐩𝐩�����

𝐇𝐇
�
−𝟏𝟏
�
2

𝐿𝐿
𝑙𝑙=1

=
�𝐖𝐖𝐑𝐑

𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏�
2

𝐖𝐖𝐑𝐑
𝐇𝐇𝐖𝐖𝐑𝐑 + �𝐖𝐖𝐑𝐑

𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐃𝐃𝐃𝐃𝑮𝑮′𝑩𝑩𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇
𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇−𝟏𝟏

𝐇𝐇𝐃𝐃𝐃𝐃������ −𝟏𝟏
�
2

+ 𝐖𝐖𝐑𝐑
𝐇𝐇∑ �𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐃𝐃𝐃𝐃𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇

�𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇
�
−𝟏𝟏
�
2

𝐾𝐾
𝐼𝐼≠𝑘𝑘 + ∑ �𝐖𝐖𝐑𝐑

𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐃𝐃𝐃𝐃𝑮𝑮′𝑩𝑩𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇
�𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇

�
−𝟏𝟏
�
2

𝐾𝐾
𝑖𝑖≠𝑘𝑘 ∑ �𝐖𝐖𝐑𝐑

𝐇𝐇 𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐩𝐩𝐇𝐇𝐩𝐩�����
𝐇𝐇
�𝐇𝐇𝐩𝐩����� 𝐇𝐇𝐩𝐩�����

𝐇𝐇
�
−𝟏𝟏
�
2

𝐿𝐿
𝑙𝑙=1 +∑ �𝐖𝐖𝐑𝐑

𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐩𝐩𝐆𝐆′𝒑𝒑𝐇𝐇𝐩𝐩�����
𝐇𝐇
�𝐇𝐇𝐩𝐩����� 𝐇𝐇𝐩𝐩�����

𝐇𝐇
�
−𝟏𝟏
�
2

𝐿𝐿
𝑙𝑙=1

=
�𝐖𝐖𝐑𝐑

𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏�
2

𝐖𝐖𝐑𝐑
𝐇𝐇𝐖𝐖𝐑𝐑 + �𝐖𝐖𝐑𝐑

𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏 𝐇𝐇��𝐃𝐃𝐃𝐃𝑮𝑮′𝑩𝑩𝐇𝐇𝐃𝐃𝐃𝐃������ −𝟏𝟏
�
2

+𝐖𝐖𝐑𝐑
𝐇𝐇 ∑ �𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐃𝐃𝐃𝐃𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇

�𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇
�
−𝟏𝟏
�
2

𝐾𝐾
𝐼𝐼≠𝑘𝑘 +∑ �𝐖𝐖𝐑𝐑

𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐃𝐃𝐃𝐃𝑮𝑮′𝑩𝑩𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇
�𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇

�
−𝟏𝟏
�
2

𝐾𝐾
𝑖𝑖≠𝑘𝑘 + 𝐿𝐿

𝝃𝝃𝒑𝒑
𝒓𝒓𝒑𝒑
�𝐖𝐖𝐑𝐑

𝐇𝐇 𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐩𝐩𝐇𝐇𝐩𝐩�����
𝐇𝐇
�
𝟐𝟐

+
𝝃𝝃𝒑𝒑
𝒓𝒓𝒑𝒑
∑ �𝐖𝐖𝐑𝐑

𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏 𝐇𝐇��𝐩𝐩𝐆𝐆′𝒑𝒑𝐇𝐇𝐩𝐩�����
−𝟏𝟏
�
2

𝐿𝐿
𝑙𝑙=1

 

 

(47) 
 

lim
𝑁𝑁→∞

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
lim
𝑁𝑁→∞

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑍𝑍𝑍𝑍
=

𝑉𝑉𝐖𝐖𝐑𝐑
𝐇𝐇𝐖𝐖𝐑𝐑 + 𝑉𝑉 �𝐖𝐖𝐑𝐑

𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏 𝐇𝐇��𝐃𝐃𝐃𝐃𝑮𝑮′𝑩𝑩𝐇𝐇𝐃𝐃𝐃𝐃������ −𝟏𝟏
�
2

+ ∑ 𝑉𝑉 �𝐖𝐖𝐑𝐑
𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐃𝐃𝐃𝐃𝐇𝐇𝐃𝐃𝐃𝐃������ ∗

�
2

𝐾𝐾
𝑘𝑘≠𝑖𝑖 + ∑ 𝑉𝑉 �𝐖𝐖𝐑𝐑

𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐃𝐃𝐃𝐃(𝑮𝑮′𝑩𝑩)𝐇𝐇𝐃𝐃𝐃𝐃������ ∗
�
2

𝐾𝐾
𝑘𝑘≠𝑖𝑖 + 𝑉𝑉𝑉𝑉

𝝃𝝃𝒑𝒑
𝒓𝒓𝒑𝒑
�𝐖𝐖𝐑𝐑

𝐇𝐇 𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐩𝐩𝐇𝐇𝐩𝐩�����
∗
�
𝟐𝟐

+ 𝑉𝑉
𝝃𝝃𝒑𝒑
𝒓𝒓𝒑𝒑
∑ �𝐖𝐖𝐑𝐑

𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏  𝐇𝐇��𝐩𝐩�𝑮𝑮′𝒑𝒑�𝐇𝐇𝐩𝐩�����
∗
�
2

𝐿𝐿
𝑙𝑙=1

𝐖𝐖𝐑𝐑
𝐇𝐇𝐖𝐖𝐑𝐑 + 𝑉𝑉 �𝐖𝐖𝐑𝐑

𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐃𝐃𝐃𝐃(𝑮𝑮′𝑩𝑩)𝐇𝐇𝐃𝐃𝐃𝐃������ ∗
�
2

+∑ 𝑉𝑉 �𝐖𝐖𝐑𝐑
𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐃𝐃𝐃𝐃𝐇𝐇𝐃𝐃𝐃𝐃������ ∗

�
2

𝐾𝐾
𝑘𝑘≠𝑖𝑖 +∑ 𝑉𝑉 �𝐖𝐖𝐑𝐑

𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐃𝐃𝐃𝐃(𝑮𝑮′𝑩𝑩)𝐇𝐇𝐃𝐃𝐃𝐃������ ∗
�
2

𝐾𝐾
𝑘𝑘≠𝑖𝑖 + 𝑉𝑉𝑝𝑝𝐿𝐿

𝝃𝝃𝒑𝒑
𝒓𝒓𝒑𝒑
�𝐖𝐖𝐑𝐑

𝐇𝐇 𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐩𝐩𝐇𝐇𝐩𝐩�����
∗
�
𝟐𝟐

+ 𝟏𝟏
𝑉𝑉𝑝𝑝2

𝝃𝝃𝒑𝒑
𝒓𝒓𝒑𝒑
∑ �𝐖𝐖𝐑𝐑

𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏  𝐇𝐇��𝐩𝐩�𝑮𝑮′𝒑𝒑�𝐇𝐇𝐩𝐩�����
∗
�
2

𝐿𝐿
𝑙𝑙=1

 

 

(48) 
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APPENDIX 5 

 

lim
𝑁𝑁→∞

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀−𝑅𝑅𝑅𝑅𝑅𝑅 =
�𝛽𝛽𝑈𝑈𝐖𝐖𝐑𝐑

𝐇𝐇𝐇𝐇��𝐃𝐃𝐃𝐃𝐇𝐇𝐃𝐃𝐃𝐃������ ∗
𝜦𝜦�

2

𝐖𝐖𝐑𝐑
𝐇𝐇𝐖𝐖𝐑𝐑 + ∑ ��𝛽𝛽𝑈𝑈𝐖𝐖𝐑𝐑

𝐇𝐇𝐇𝐇��𝐃𝐃𝐃𝐃𝐇𝐇𝐃𝐃𝐃𝐃������ ∗
𝜦𝜦� �𝛽𝛽𝑈𝑈𝐖𝐖𝐑𝐑

𝐇𝐇𝐇𝐇��𝐃𝐃𝐃𝐃𝐇𝐇𝐃𝐃𝐃𝐃������ ∗
𝜦𝜦�

𝑯𝑯
� + ∑ ��𝛽𝛽𝑈𝑈𝐖𝐖𝐑𝐑

𝐇𝐇𝐇𝐇��𝐩𝐩𝐇𝐇𝐩𝐩�����
∗
𝜦𝜦𝒑𝒑� �𝛽𝛽𝑈𝑈𝐖𝐖𝐑𝐑

𝐇𝐇𝐇𝐇��𝐩𝐩𝐇𝐇𝐩𝐩�����
∗
𝜦𝜦𝒑𝒑�

𝑯𝑯
�𝑳𝑳

𝒍𝒍=𝟏𝟏
𝑲𝑲
𝒌𝒌≠𝒊𝒊

=
𝑉𝑉�𝐖𝐖𝐑𝐑

𝐇𝐇�2

𝐖𝐖𝐑𝐑
𝐇𝐇𝐖𝐖𝐑𝐑 + 𝑽𝑽∑ �𝐖𝐖𝐑𝐑

𝐇𝐇𝐇𝐇��𝐃𝐃𝐃𝐃𝐇𝐇𝐃𝐃𝐃𝐃������ ∗
�𝐾𝐾

𝑖𝑖≠𝑘𝑘

2
+ ∑ ��𝛽𝛽𝑝𝑝𝐖𝐖𝐑𝐑

𝐇𝐇𝐇𝐇��𝐩𝐩𝐇𝐇𝐩𝐩�����
∗
𝜦𝜦𝒑𝒑� �𝛽𝛽𝑝𝑝𝐖𝐖𝐑𝐑

𝐇𝐇𝐇𝐇��𝐩𝐩𝐇𝐇𝐩𝐩�����
∗
𝜦𝜦𝒑𝒑�

𝑯𝑯
�𝑳𝑳

𝒍𝒍=𝟏𝟏

=
𝑉𝑉�𝐖𝐖𝐑𝐑

𝐇𝐇�2

𝐖𝐖𝐑𝐑
𝐇𝐇𝐖𝐖𝐑𝐑 + 𝑽𝑽∑ �𝐖𝐖𝐑𝐑

𝐇𝐇𝐇𝐇��𝐃𝐃𝐃𝐃𝐇𝐇𝐃𝐃𝐃𝐃������ ∗
�
2

𝐾𝐾
𝑘𝑘≠𝑖𝑖 + 𝑉𝑉𝑃𝑃𝐿𝐿 �𝐖𝐖𝐑𝐑

𝐇𝐇𝐇𝐇��𝐩𝐩𝐇𝐇𝐩𝐩�����
∗
�
𝟐𝟐 = 

 

(50) 

 

 
lim
𝑁𝑁→∞

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀−𝑁𝑁𝑁𝑁𝑁𝑁−𝑅𝑅𝑅𝑅𝑅𝑅

=
𝑉𝑉�𝐖𝐖𝐑𝐑

𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏�
𝟐𝟐

𝐖𝐖𝐑𝐑
𝐇𝐇𝐖𝐖𝐑𝐑 + 𝑉𝑉 �𝐖𝐖𝐑𝐑

𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐃𝐃𝐃𝐃(𝑮𝑮′𝑩𝑩)𝐇𝐇𝐃𝐃𝐃𝐃������ ∗
�
2

+ +∑ �𝐖𝐖𝐑𝐑
𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏𝑉𝑉�

2𝐾𝐾
𝑖𝑖≠𝑘𝑘 + ∑ 𝑉𝑉 �𝐖𝐖𝐑𝐑

𝐇𝐇 𝜉𝜉
𝑟𝑟 𝐆𝐆𝐔𝐔

−𝟏𝟏𝐇𝐇��𝐃𝐃𝐃𝐃(𝑮𝑮′𝑩𝑩)𝐇𝐇𝐃𝐃𝐃𝐃������ ∗
𝜦𝜦�

2
𝐾𝐾
𝑖𝑖≠𝑘𝑘 + ∑ �𝛽𝛽𝑝𝑝𝐖𝐖𝐑𝐑

𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐩𝐩𝐇𝐇𝐩𝐩�����
∗
𝜦𝜦𝒑𝒑�

2
𝐿𝐿
𝑙𝑙=1 𝑉𝑉𝑃𝑃𝐿𝐿 �𝐖𝐖𝐑𝐑

𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐩𝐩𝐇𝐇𝐩𝐩�����
∗
�
𝟐𝟐

+
𝝃𝝃𝒑𝒑

𝒓𝒓𝒑𝒑𝑉𝑉𝑝𝑝2
∑ �𝐖𝐖𝐑𝐑

𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏  𝐇𝐇��𝐩𝐩�𝑮𝑮′𝒑𝒑�𝐇𝐇𝐃𝐃𝐃𝐃������ ∗
�
2

𝐿𝐿
𝑙𝑙=1
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APPENDIX 6 
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𝑁𝑁→∞

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑍𝑍𝑍𝑍−𝑅𝑅𝑅𝑅𝑅𝑅

=
�𝐖𝐖𝐑𝐑

𝐇𝐇𝐇𝐇��𝐃𝐃𝐃𝐃𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇
�𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇

�
−𝟏𝟏
�
2

𝐖𝐖𝐑𝐑
𝐇𝐇𝐖𝐖𝐑𝐑 + ∑ ��𝐖𝐖𝐑𝐑

𝐇𝐇𝐇𝐇��𝐃𝐃𝐃𝐃𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇
�𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇

�
−𝟏𝟏
��𝐖𝐖𝐑𝐑

𝐇𝐇𝐇𝐇��𝐃𝐃𝐃𝐃𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇
�𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇

�
−𝟏𝟏
�
𝑯𝑯

�+ ∑ ��𝐖𝐖𝐑𝐑
𝐇𝐇𝐇𝐇��𝐩𝐩𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇

�𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇
�
−𝟏𝟏
��𝐖𝐖𝐑𝐑

𝐇𝐇𝐇𝐇��𝐩𝐩𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇
�𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇

�
−𝟏𝟏
�
𝑯𝑯

�𝑳𝑳
𝒍𝒍=𝟏𝟏

𝑲𝑲
𝒌𝒌≠𝒊𝒊

=
�𝐖𝐖𝐑𝐑

𝐇𝐇�
2

𝐖𝐖𝐑𝐑
𝐇𝐇𝐖𝐖𝐑𝐑 + ∑ |𝐖𝐖𝐑𝐑

𝐇𝐇|2𝐾𝐾
𝑘𝑘≠𝑖𝑖 + 𝝃𝝃

𝒓𝒓∑ ��𝐖𝐖𝐑𝐑
𝐇𝐇𝐇𝐇��𝐩𝐩𝐇𝐇𝐩𝐩�����

𝐇𝐇
��𝐖𝐖𝐑𝐑

𝐇𝐇𝐇𝐇��𝐩𝐩𝐇𝐇𝐩𝐩�����
𝐇𝐇
�
𝑯𝑯
�𝑳𝑳
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𝑁𝑁→∞

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑍𝑍𝑍𝑍−𝑁𝑁𝑁𝑁𝑁𝑁−𝑅𝑅𝑅𝑅𝑅𝑅=

=
�𝐖𝐖𝐑𝐑

𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏�
2

𝐖𝐖𝐑𝐑
𝐇𝐇𝐖𝐖𝐑𝐑 + �𝐖𝐖𝐑𝐑

𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏 𝐇𝐇��𝐃𝐃𝐃𝐃𝑮𝑮′𝑩𝑩𝐇𝐇𝐃𝐃𝐃𝐃������ ∗
�
2

+ 𝐖𝐖𝐑𝐑
𝐇𝐇 ∑ �𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐃𝐃𝐃𝐃𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇

�𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇
�
−𝟏𝟏
�
2

𝐾𝐾
𝐼𝐼≠𝑘𝑘 + ∑ �𝐖𝐖𝐑𝐑

𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏 𝐇𝐇��𝐃𝐃𝐃𝐃𝑮𝑮′𝑩𝑩𝐇𝐇𝐃𝐃𝐃𝐃������ ∗
�
2

𝐾𝐾
𝑖𝑖≠𝑘𝑘 + 𝐿𝐿 �𝐖𝐖𝐑𝐑

𝐇𝐇 𝐆𝐆𝐔𝐔−𝟏𝟏𝐇𝐇��𝐩𝐩𝐇𝐇𝐃𝐃𝐃𝐃������ 𝐇𝐇
�
𝟐𝟐

+ ∑ �𝐖𝐖𝐑𝐑
𝐇𝐇𝐆𝐆𝐔𝐔−𝟏𝟏 𝐇𝐇��𝐩𝐩𝐆𝐆′𝒑𝒑𝐇𝐇𝐃𝐃𝐃𝐃������ −𝟏𝟏

�
2

𝐿𝐿
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ABBREVIATIONS 

 

 
Angle of Arrival (AoA) 

Best Linear Ubiased Estimator (BLUE) 

Channel State Information (CSI) 

Cluster Heads (CH) 

Cognitive Radio Edge Computing (CREC) 

Cognitive Radio Medium Access Control (CRMAC) 

Cognitive Radio Network (CRN) 

Cognitive Radio Network Cloud (CRNC) 

Cognitive Radio Sensor Networks (CRSNs) 

Common Control Channel (CCC) 

Compressive Sensing (CS) 

Cramer Rao Lower Bound (CRLB) 

Denial of Service (DoS) 

Dynamic Spectrum Access (DSA) 

Fast Fourier transform (FFT) 

Faster-Than-Nyquist (FTN) 

First Come First Served (FCFS) 

Fisher Information Matrix (FIM) 

Gateway nodes (GTW) 

Gradient plus Inverse Distance Squared (GIDS) 

Heterogeneous Cognitive Networks (HCN) 

Inter User Interference (IUI) 
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Inverse Distance Weighted (IDW) 

Kalman Filter (KF) 

Line of Site (LoS) 

Massive Multiple-Input/Multiple-Output (Massive MIMO) 

Maximal Ratio Combining (MRC) 

Mean Square Error (MSE) 

Measurement Capable Devices (MCDs) 

Minimum Mean Square Error (MMSE) 

Mobile-edge Computing (MEC) 

Multi-Radio Access Technologies (RAT) 

Natural Neighbors (NNI) 

Nearest Neighbors (NN) 

Network Base Station (BS) 

Network Functions Virtualization (NFV) 

Non Line of Site (NLoS) 

Non-Orthogonal-Multiple Access (NOMA) 

Non-Reciprocal Channels (NRC) 

Open Systems Interconnection (OSI) 

Particle Filter (PF) 

Primary Base Station (PBS) 

Primary User Emulation (PUE) 

Primary User Emulation Attack (PUEA) 

Primary Users (PUs) 

Quality of Experience (QoE) 

Quality of Service (QoS) 

Radio Access Network (RAN) 
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Radio Environment Maps (REMs) 

Receiver (RX) 

Secondary Base Station (SBS) 

Secondary Users (SUs) 

Signal to Interference Noise Ratio (SINR) 

Signal-to-Noise Ratio (SNR) 

Software Defined Radio (SDR) 

Software Defined Radio (SDR) 

Software Defined Systems (SDS) 

Software Defined Systems (SDS) 

Software Defined Wireless Sensor Network (CSDWSN) 

Spectrum Manager Application (SMA) 

Transmission Time Interval (TTI) 

Transmitter (TX) 

User Equipment (UE) 

Virtual Machines (VMs) 

Wavelet Packet Transform (WPT) 

Zero-Forcing (ZF) 
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