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Summary 

Almost all software systems around us evolve constantly to accommodate new requirements, to adapt in 

changing environments and to fix known issues. Software evolution analysis can reveal important 

information concerning maintenance practices followed by development teams. The goal of this dissertation 

is to study the evolution of open source web applications by investigating the evolution of software quality 

and maintenance cost as captured by the metaphor of Technical Debt (TD). Technical Debt is a concept in 

programming which reflects the extra maintenance effort that arises when “sub-optimal” code, that is easy 

to implement in the short run, is used instead of applying best practices. 

This research work investigates the evolution of a large number of open source web applications. The 

applications were analyzed in the context of Lehman’s eight (8) laws of software evolution and particularly, 

it has been examined whether the laws are confirmed in practice for open source web applications. 

Lehman’s Laws are, Continuing Change (Law I), Increasing Complexity (Law II), Self-Regulation (Law 

III), Conservation of Organizational Stability (Law IV), Conservation of Familiarity (Law V), Continuing 

Growth (Law VI) Declining Quality (VII) and Feedback System (VIII). The results provide evidence that 

the evolution of web applications comply with most of the laws. 

The TD metaphor has received increasing attention from the research community in the last years. 

Particularly, a large portion of research studies have focused on the notion of TD Interest, which reflects 

the additional maintenance effort that is incurred due to the existence of sub-optimal software (i.e., due to 

the existence of Technical Debt). Adopting the state-of-research on TD Management, this dissertation has 

aimed at investigating the impact of TD on corrective maintenance and particularly, to what extent does the 

presence of TD in software modules slows down development pace by increase the time and effort required 

for fixing bugs. 

Although TD is usually assessed on either the entire system or on individual software modules and most 

studies focus on the identified inefficiencies, it is the actual craftsmanship of developers that causes the 

accumulation of TD. Driven by the fact that TD is introduced by the developers themselves, this dissertation 

attempts to explore the relation between developers’ characteristics and the tendency to introduce 

inefficiencies that lead to TD. 

Despite the fact that TD is an established and recognized concept in the software engineering community, 

it also remains a metaphor and like all metaphors it is inherently abstract. This means that the way it is 

defined and interpreted by software engineering stakeholders constitutes a subjective matter. Each software 

professional has developed his/her own perception around TD prioritization and management. Thus, many 

voices question the validity of the way it is detected and calculated by automated static analysis tools. To 

this end, in the context of this research a survey has been sent to a large number of developers that contribute 

to open source web applications in order to gain insights into the factors that lead developers to adopt or 

reject fixes as suggested by automated static code analysis. 

By acknowledging the lack of a ground truth regarding the assessment of TD among the existing TD tools, 

this dissertation attempts to extract a set of classes with high TD, as detected by three (3) major TD tools 

(CAST AIP, Squore and SonarQube). These classes can serve as benchmark of validated high-TD classes 

and this way a basis can be established that can be used either for prioritization of maintenance activities 

or for training more sophisticated TD identification techniques. To this end, the current research work 

proposes a methodology to extract a benchmark set of validated high-TD classes while at the same time, it 

reveals three types of class profiles that successfully capture the spectrum of TD measurements provided 

by the three TD tools. 



 

 

Finally, the overall contribution of this dissertation comprises five (5) points; (a) it provides valuable 

undiscovered information on how open source web applications evolve over time since web-based systems 

had received limited attention in contrast to desktop ones, (b) considering the lack of empirical evidence on 

the relation between TD amount and TD Interest, it investigates to what extent the presence of TD in 

software modules slows down development pace by increasing the time and effort required for fixing bugs, 

(c) by acknowledging that it is the actual craftsmanship of the developers that causes the accumulation of 

TD, this work outlines the  characteristics of the developers who tend to add TD in open source applications, 

(d) it sheds light into the reasons that drive developers to agree or disagree with automatically detected TD 

whose urgency is very often questionable by developers and (e) by acknowledging the lack of a basis 

regarding the detection and prioritization of TD among the existing TD tools, the current work proposes a 

methodology to extract a benchmark set of modules which are ranked as high-TD modules by three (3) TD 

tools altogether. 

 

Keywords: software evolution, Lehman’s laws, software quality, software maintenance, open-source 

applications, software repositories, technical debt, technical debt management, corrective maintenance, 

archetypal analysis, inter-rater agreement, ground truth, benchmark 
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Chapter I. INTRODUCTION 

1. Software Evolution and Technical Debt 

Software Evolution constitutes part of the broader area of Software Engineering. The main goal of 

software evolution research is to study and understand the way software systems evolve over time so 

as to predict and prevent future inefficiencies. This can ease software maintenance and consequently 

reduce maintenance effort and cost. 

The domain of software evolution exists since the 70’s when Μ. Lehman formulated the laws of 

software evolution (more details in Chapter III). Two of his laws refer to “increasing complexity” and 

“declining quality”. Specifically, it was suggested that the complexity of a system will increase and its 

quality will decline over time, hindering software maintenance, if no proactive measures are taken. The 

degradation of software quality that Lehman talked about in the 70’s is captured, nowadays, by the 

Technical Debt (TD) metaphor. 

Technical Debt is a concept in programming that highly affects software maintenance and, 

consequently, software evolution. It reflects the extra maintenance effort that arises when “non-optimal” 

code, that is easy to implement in the short run, is used instead of applying best practices. 

The distance between the optimal state of the software and the actual one can be considered as the 

principal of the software’s Technical Debt, in analogy to the principal of Financial Debt (more details 

in Chapter II). To eliminate (or repay) TD principal means that actions have to be taken (e.g. 

refactogings or even code rewrite) in order to eliminate the distance from the optimal state of the 

software. 

The aforementioned additional effort that has to be spent on software maintenance due to the existence 

of TD is considered as the interest of software’s TD, just like in Financial Debt (more details in Chapter 

II). As TD accumulates during software evolution, software maintenance becomes more and more 

complex and, consequently, more expensive in terms of time and cost. The excessive accumulation of 

TD can be a serious threat for any software system. For this reason, continuous quantification and 

monitoring of TD should be of high priority. 

To this end, the purpose of this dissertation is to study the evolution of open source applications by 

investigating evolution of software quality and technical debt. The objective of this dissertation can be 

decomposed into five more specific goals which are described in the next section. 

2. Dissertation Goals and Research Questions 

This section presents the five goals of this dissertation, in summary. The studies that have been 

conducted to achieve each goal are developed in a dedicated chapter. Before reading the following five 

goals, the reader can find the timeline of the research conducted during this dissertation in Table 1. The 

timeline contains the chronicle of dissertation’s goals along with the driving stimulus for each goal and 

the resulting publication. 
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Table 1. Timeline of the dissertation’s research (driving stimulus and publication output for each goal) 

Stimulus Goal Publication 

Lehman’s Laws 

 

Investigate whether Lehman's Laws of software evolution 

are confirmed in practice for open source web 

applications 

(Chapter III) 

(Amanatidis and 

Chatzigeorgiou, 2016)1 

 
Increasing Interest in Technical 

Debt since 2012 

Investigate the impact of a module’s TD on its corrective 

maintenance 

(i.e., bug fixing) 

(Chapter IV) 

(Amanatidis et al., 2017a)2 

 
Technical Debt comes from 

developers themselves 

Explore the relation between developers’ characteristics 

and the tendency to evoke violations that lead to TD 

(Chapter V) 

(Amanatidis et al., 2017b)3 

 
1Amanatidis, Theodoros & Chatzigeorgiou, Alexander. (2016). Studying the Evolution of PHP Web Applications. Information and Software Technology. 72. 48-67. 10.1016/j.infsof.2015.11.009. 
2Amanatidis, Theodoros & Chatzigeorgiou, Alexander & Ampatzoglou, Apostolos. (2017). The Relation between Technical Debt and Corrective Maintenance in PHP Web Applications. 

Information and Software Technology. 87. 10.1016/j.infsof.2017.05.004. 
3Amanatidis, Theodoros & Chatzigeorgiou, Alexander & Ampatzoglou, Apostolos & Stamelos, Ioannis. (2017). Who is Producing More Technical Debt? A Personalized Assessment of TD 

Principal. Proceedings of the 9th International Workshop on Managing Technical Debt (MTD’ 17), Cologne, Germany. 

Nov 2015 

Oct 2016 

May 2017 

Jun 2014 
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Stimulus Goal Publication 

Really urgent to resolve? 

    

Shed light into the factors that lead developers to adopt or 

reject fixes as suggested by automated static code analysis 

(Chapter VI) 

(Amanatidis et al., 2018)4 

Which TD tool to employ? 

 

Propose methodology to extract benchmark set of 

validated high-TD modules 

(Chapter VII) 

(Amanatidis et al., 2020)5 

*submitted for publication 

and revised 

 

 
4Amanatidis, Theodoros & Mittas, Nikolaos & Chatzigeorgiou, Alexander & Ampatzoglou, Apostolos & Angelis, Lefteris. (2018). The developer’s dilemma: Factors affecting the Decision to 

Repay Code Debt. Proceedings of the 2018 International Conference on Technical Debt (TechDEBT), Gothenburg, Sweden. 
5Amanatidis, T., Mittas, N., Moschou, A., Chatzigeorgiou, A., Ampatzoglou, A., Angelis, L. (2020). Evaluating the Agreement among Technical Debt Measurement Tools: Building an Empirical 

Benchmark of Technical Debt Liabilities. Submitted for publication (and revised) to the Empirical Software Engineering Journal (EMSE). 

May 2018 

Mar 2020 

May 2017 
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2.1. Evolution of Web Applications 

Software evolution analysis can reveal important information concerning maintenance practices. Most 

of the studies which analyze software evolution focus on desktop applications written in compiled 

languages, such as Java and C. However, a vast amount of the web content today is powered by web 

applications written in PHP and thus the evolution of software systems written in such a scripting 

language deserves a distinct analysis. 

To obtain an overview of the way open-source systems evolve over time, the goal of this part of 

dissertation is to analyze the evolution of open-source PHP projects in an attempt to investigate whether 

Lehman’s laws of software evolution are confirmed in practice for web applications. To achieve this 

goal, data (changes and metrics) have been collected for successive versions of thirty (30) PHP projects 

while statistical tests (primarily trend tests) have been employed to evaluate the validity of each law on 

the examined web applications. Based on the aforementioned first goal of the dissertation, the following 

research question has been formulated: 

RQ: Is the evolution of web applications written in PHP compliant with Lehman’s laws of evolution? 

The research question can be decomposed into eight research questions, one for each of Lehman’s laws. 

The detailed work on the Evolution of Open Source Web Applications is presented in Chapter III. 

2.2. Technical Debt and Corrective Maintenance 

After establishing whether open-source software systems comply with most of Lehman’s laws of 

evolution, the dissertation has focused on the impact of Technical Debt on software evolution. 

Considering that corrective maintenance consumes a significant part of developers’ activity over the 

evolution of any software project it becomes interesting to investigate whether the presence of 

inefficiencies slows down development pace by increase the time and effort required for fixing bugs. 

Software teams are often asked to deliver new features within strict deadlines leading developers to 

deliberately or inadvertently serve “not quite right code” compromising software quality and 

maintainability. This non-ideal state of software causes the accumulation of Technical Debt (TD) which 

adds additional maintenance effort (i.e. interest, as aforementioned in the previous section). The 

objective of this part of work is to quantify how TD affects software maintenance.  

Although the relation between debt amount and interest is well-defined in traditional economics (i.e., 

interest is proportional to the amount of debt), this relation has not yet been explored in the context of 

TD. To this end, one aim of this dissertation is to investigate the relation between the amount of TD 

and the interest that has to be paid during corrective maintenance.  

To explore this relation, a case study on ten (10) open source PHP projects has been performed. The 

obtained data have been analyzed to assess the relation between the amount of TD and two aspects of 

interest: (a) corrective maintenance (i.e., bug fixing) frequency, which translates to interest probability 

and (b) corrective maintenance effort which is related to interest amount (see Chapter IV for details). 

The goal of this part of dissertation is to examine whether the frequency and the effort spent on 

corrective maintenance activities of a specific module, is related to the amount of its TD. Based on this 

goal, the research questions can be formulated as follows: 

RQ1: Is the TD amount of a file related to the number of times that it underwent corrective maintenance? 

RQ2: Is the TD amount of a file related to the extent of modification that it underwent during corrective 

maintenance? 

The detailed work on the Relation Between Technical Debt and Corrective Maintenance is presented in 

Chapter IV. 
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2.3. Personalized Assessment of Technical Debt Principal 

Contemporary software development is assisted by a number of sophisticated tools, like Integrated 

Development Environments with auto-complete functionality, automation testing environments, 

advanced build tools that handle external dependencies, Continuous Integration pipelines that automate 

routine activities. Moreover, software professionals have access to enormous amounts of information 

in open knowledge communities (like StackOverflow) and the ability to reuse code from thousands of 

open-source projects, limiting the need for reinventing the wheel. Nevertheless, software programming 

remains to a large extent a human-centric activity and requires both experience and knowledge. Lack 

of expertise usually results in reduced productivity (i.e. longer development times for a given set of 

functionalities) or in lower software quality. 

Most studies in the literature assess TD on either the entire software system or on individual software 

artifacts, that is, by looking at the final product of software development. Considering that it is the actual 

craftsmanship of developers that causes the accumulation of TD and in the light of extremely high 

maintenance cost, efficient software project management cannot occur without recognizing the relation 

between developer characteristics and the tendency to evoke violations that lead to TD.  

To this end, this dissertation investigates three research questions related to the distribution of TD 

among the developers of a software project, the types of violations caused by each developer and the 

relation between developers’ maturity and the tendency to accumulate TD.  

RQ1: Is TD uniformly distributed among the developers of a software project? 

RQ2: Which TD violations are introduced by the developers of a software project? 

RQ3: What is the relation between TD and the maturity of developers in a software project? 

The study has been performed on four (4) widely employed PHP open-source projects. All developers’ 

personal characteristics have been anonymized. The detailed work on the Personalized Assessment of 

TD Principal is presented in Chapter V. 

2.4. Factors Affecting Decision to Repay Technical Debt 

Although TD is an established and recognized concept in the software engineering community, it also 

remains a metaphor and like all metaphors it is inherently abstract. This means that the way it is defined 

and interpreted by software engineering stakeholders constitutes a subjective matter. Software 

developers often disagree with an automatically generated list of improvement suggestions, which they 

consider not fitting or important for their own code. To shed light into the reasons that drive developers 

to adopt or reject refactoring suggestions (i.e. TD repayment), this dissertation investigates the potential 

factors that affect the developers’ decision to agree (or disagree) with the removal of a specific TD 

liability.  

Developers of four (4) well-known open-source applications have been asked to evaluate the urgency 

of automatically detected code violations in the source code that they contribute. To increase the 

response rate, a personalized assessment has first been sent to each developer, summarizing his/her own 

contribution to the TD of the corresponding project. Responds have been collected through a custom-

built web application that presented code fragments suffering from violations as identified by TD-

assessment tool along with information that could possibly affect their level of agreement to the 

importance of resolving an issue. 

Multivariate statistical analysis methods have been used to understand the importance and the 

underlying relationships among these factors and the results are expected to be useful for researchers 

and practitioners in TD Management. The detailed work on the Investigation of the factors that lead 

developers to repay TD is presented in Chapter VI. 
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2.5. Benchmark of Technical Debt Liabilities 

Although several tools are available for assessing TD with most notable examples SonarQube, Squore 

and CAST AIP, each tool essentially checks software against a particular ruleset. The use of different 

rulesets can often be beneficial as it leads to the identification of a wider set of problems; however, for 

the common usage scenario where developers or researchers rely on a single tool, the diverse estimates 

of TD and the identification of different mitigation actions limits the credibility and applicability of the 

findings.  

The goal of this part of dissertation is two-fold: First, to evaluate the degree of agreement between 

leading TD assessment tools. Second, to propose a methodology to capture the diversity of the examined 

tools with the aim of identifying a benchmark set of classes with respect to their level of TD (e.g., that 

of high TD levels in all employed tools). This way a basis can be established that can be used either for 

prioritization of maintenance activities or for training more sophisticated TD identification techniques. 

The proposed methodology is illustrated through a case study on fifty (50) open source systems 

employing three leading TD tools. 

Based on the last goal of this dissertation, the following research questions (RQ) have been formulated: 

RQ1: To what extent do the assessors (tools) agree in the ranking of classes in terms of TD 

measurement? 

RQ2: How many archetypes (reference assessments) are required to capture the diversity of the tools? 

RQ3: Which are the characteristics of the extracted archetypes? 

RQ4: Which classes should be selected to form an agreement-based benchmark of top-TD modules? 

The detailed work on the Proposed Methodology to Extract Benchmark Set of Validated high-TD 

Modules is presented in Chapter VII. 

3. Dissertation outline 

The rest of the dissertation is organized as follows:  

Chapter II provides background information on TD to familiarize the reader with the analysis on TD in 

the next chapters. Particularly, Chapter II focuses on key components of TD (TD Item, TD Principal, 

TD Interest), various TD Types, activities and strategies for managing TD and existing tools for TD 

assessment (TD tools).  

In Chapter III through Chapter VII the work to achieve the five goals of this dissertation is developed. 

Particularly:  

• Chapter III investigates whether Lehman's Laws of software evolution are confirmed in practice 

for open source web applications.  

• In Chapter IV the relation between TD and corrective maintenance (i.e., bug fixing) is 

investigated.  

• The research work presented in Chapter V explores the relation between developers’ 

characteristics and the tendency to evoke violations that lead to TD.  

• Chapter VI attempts to shed light into the factors that lead developers to adopt or reject fixes as 

suggested by automated static code analysis.  

• Chapter VII investigates the agreement among three (3) major TD tools and proposes a 

methodology to extract benchmark set of validated high-TD modules.  

Finally, in Chapter VIII conclusions and contribution are presented along with suggested future 

work.
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Chapter II. BACKGROUND ON TECHNICAL DEBT 

In this chapter, basic concepts of Technical Debt (TD) and Technical Debt Management (TDM) are 

introduced to familiarize the reader with the analysis on TD that follows in the next chapters. 

Particularly, this chapter briefly discusses key components of TD (TD Item, TD Principal, TD Interest), 

various definitions of TD, TD Types, activities and strategies for managing TD as well as existing TD 

assessing tools (TD tools). 

1. Foreword 

Technical Debt is a metaphor in programming that was originally coined by Ward Cunningham [1]. It 

reflects the extra maintenance effort that arises when “dirty” code, that is easy to implement in the short 

run, is used instead of applying best practices. 

According to Google Trends6 (see Figure 1), the topic of “Technical Debt” has gained increasing 

attention in web search since 2004 which adds extra value to the contribution of this dissertation. 

  
Figure 1. Trend of worldwide web search for topic “Technical Debt” (January 2004 – March 2020) 

Technical Debt undermines software’s maintainability and agility, rendering the addition of new 

functionality more and more difficult as software matures. Consequently, software evolution becomes 

more expensive for product owners as they are called to spend for money to address the increasing 

clients’ needs. Possibly, these are the clients that had been won by sacrificing software quality (i.e. 

tolerance on TD existence) to achieve timely placement in the market. 

2. Key Components of TD 

There are some key components that altogether form the concept of Technical Debt. These are “TD 

Item”, “TD Principal” and “TD Interest” and are widely discussed in the rest of the dissertation. 

TD Item: The term “TD Item” refers to a violation of coding rules [3] and is considered an instance of 

TD [2], [4]. Each TD Item might contain information, such as the location it was detected (i.e. class or 

file), the estimated effort (or time) to resolve, the responsible developer, etc. 

TD Principal: The term “TD Principal” refers to the estimated effort that is needed to resolve all the 

TD Items of the system [2], [4]. The existence of TD Items causes the software to diverge from its 

optimal state. The distance between the optimal state of the software and the actual one can also be 

considered as the principal of the software’s Technical Debt (TD Principal), in analogy to the principal 

of Financial Debt [4], [5]. To eliminate (or repay) TD principal means that mitigation actions have to 

 
6 https://trends.google.com/ 

https://trends.google.com/
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be taken (e.g. refactor or even rewrite part of code base) in order to minimize the distance from the 

optimal state of the software. 

TD Interest: The term “TD Interest” refers to the aforementioned extra effort that has to be put for the 

addition of new functionality due to the existence of TD [4], [5]. This extra effort can be considered as 

the interest of software’s TD (see Figure 2), just like in Financial Debt, where the borrower pays an 

amount of interest on top of every loan installment. 

 

Figure 2. Extra effort to add functionality (TD Interest) due to existence of TD [6] 

3. What TD really is 

Just like all metaphors, TD is inherently abstract and its definition depends on personal/subjective 

interpretation. Researchers and practitioners have developed various definitions for it, based on their 

own point of view. According to Li et al. [2], stakeholders define TD based on five (5) dimensions of 

TD. 

• TD as a metaphor to financial debt (TD Interest, TD Principal) 

• Properties of TD (type, severity, effort to remediate, etc.) 

• Causes of TD 

• Effect of TD 

• Uncertainty around TD (i.e. risk, but also opportunities that it can offer) 

Some practitioners focus on the consequences of TD in their attempt to define it. They view TD as a 

codebase that loses agility as project matures [7]. Others, focus on the interest that has to be paid in the 

long run as a form of a more expensive software maintenance in terms of effort and time [8]. An 

academic definition of TD embraces the aspect of consequences of TD, as well [9].  

 

“Technical debt describes the consequences of software development actions that intentionally or 

unintentionally prioritize client value and/or project constraints such as delivery deadlines, over more 

technical implementation and design considerations” 
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Another definition that was formulated during the Dagstuhl Seminar [10] considers TD as a collection 

of expedient design or implementation constructs that affect future changes: 

 

“In software-intensive systems, technical debt is a collection of design or implementation constructs 

that are expedient in the short term, but set up a technical context that can make future changes more 

costly or impossible. Technical debt presents an actual or contingent liability whose impact is limited 

to internal system qualities, primarily maintainability and evolvability.” 

 

On the other hand, some people treat TD as a tool. Through the lens of a startup company [11], TD can 

be used as a tool for getting ahead in the market. In the case of a startup company the opportunities that 

TD can offer might be more important than the risk that it carries. 

4. TD Types 

Technical Debt Types refer to specific categories of TD (e.g., architectural, design, code) or sub-

categories based on the cause of TD (e.g., architectural TD can be caused by architecture smells). There 

are ten (10) different TD types identified in the literature [2] and each TD type represent different kind 

of software inefficiencies that need to be remediated in order to approach software’s optimal state: 

• Requirements TD: refers to lack of proper requirements specification [12]. 

• Architectural TD: refers to several quality issues that arise due to incorrect architecture 

decisions. 

• Design TD: refers to technical compromises that are allowed in detailed software design. 

• Code TD: involves violation of coding rules and/or coding standards 

• Test TD: refers to shortcuts taken in code testing (i.e. lack of proper unit or end to end, 

testing) 

• Build TD: usually reflects overly complex build process. 

• Documentation TD: refers to incomplete or outdated documentation of software which can 

undermine software understandability. 

• Infrastructure TD: refers to non-ideal configuration of development environments which 

can negatively affect the ability of the development team to bring software in production 

mode. 

• Versioning TD: involves problems regarding source code versioning, such as misleading 

tagging of releases. 

• Defect TD: refers to defects/bugs found in the way software operates. 

In another study [13], the authors have identified five (5) more TD types in the literature on top of the 

aforementioned. These are: 

• People TD: refers to developer problems that can delay software development. For 

example, when specific expertise is concentrated among few people in the development 

team meaning that everything has to pass from their hands. 

• Test Automation TD: it is considered as a sub-category of test TD and it refers to the effort 

involved in automating tests to support continuous integration [14]. 

• Process TD: involves outdated processes, i.e. processes that no longer are needed for what 

they were designed in the first place [14]. 

• Service TD: refers to improper selection and implementation of web services that result in 

the divergence of the software’s features from the predefined requirements. 

• Usability TD: refers to inappropriate usability decisions that will have to be reconsidered 

later [15]. 
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5. Activities and Strategies for Managing TD 

As TD accumulates during software evolution, software maintenance becomes more and more complex 

and, consequently, more expensive in terms of time and cost. The excessive accumulation of TD can 

be a serious threat for a software. For this reason, activities for managing and conserving TD at viable 

level should be of high priority.  

TDM is composed of several activities [2] and strategies [13] that prevent accumulation of TD and keep 

existing TD within reasonable levels. 

The most notable examples of activities for managing TD are: 

• TD Identification: refers to the detection of TD caused by technical decisions in a software 

system. TD detection can be conducted through specific processes, such as static code 

analysis. 

• TD Measurement: involves the quantification of the detected TD in the system or the 

estimation of the overall TD of the system. 

• TD Prioritization: involves the ranking of the identified TD based on predefined rules to 

support decision making on which TD Items to remediate first. 

• TD Prevention: involves proactive measures that aim at preventing potential TD from being 

incurred. 

• TD Monitoring: refers to the tracking of the evolution of the cost of unresolved TD in the 

software system. 

• TD Repayment: involves mitigation actions (e.g. refactorings, reengineering, etc.) for the 

resolution of TD. 

• TD Representation/Documentation: comprises representation and reporting of TD in a 

uniform manner that efficiently addresses stakeholders’ concerns. 

• TD Communication: involves the notification of managerial stakeholders regarding the 

existence of TD in the software system. 

Strategies for managing TD involve combination of actions and techniques from the aforementioned 

TDM activities. The most notable examples of TDM strategies are: 

• Cost-Benefit Analysis [5], [16]: It involves decision on when it is imperative to repay TD 

Principal, i.e., when the level of TD Interest exceeds a predefined threshold. 

• Portfolio of TD Items [17]: The idea of this strategy is to list all detected TD Items and 

decide which are urgent to resolve immediately and which to postpone. 

• Options [16]: The Options strategy involves the investment in the option that will facilitate 

improvement of the source code in the future, rather than repaying TD Principal now. The 

profits of this strategy are not immediate. 

• Analytic Hierarchy Process [16]: This strategy involves the prioritization and ranking of 

TD Items based on their severity and the potential profits of their mitigation. 

• Calculation of TD Principal [18]: This strategy deals with the estimation of TD Principal 

(based on an defined process, e.g. the OMG Specification on Automated Technical Debt 

Measurement [3]) and the mapping of identified TD Items with quality attributes. 

• Marking of Dependencies and Code Issues [19]: This strategy involves the tagging of 

specific parts of code base with TD in a way that is easy to visualize and drive decision 

making regarding paying the TD of those code parts. 
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6. Tools assessing TD (TD tools) 

During the previous years, numerous TD assessment tools have emerged; these tools are able to measure 

TD either in terms of cost or effort/time to repay TD. In this dissertation a non-systematic literature 

search, including grey literature (such as websites), has been conducted to locate existing TD tools. 

Right below, a short description of the identified TD assessment tools is provided (in alphabetical 

order). 

AnaConDebt [20] is a tool that focuses on Architectural Debt. Since a change in the architecture of a 

project can be really expensive and time consuming it is important to decide if and when this change 

should be implemented. The tool uses a large list of internal and external factors to estimate more 

accurately the future principal and interest. It helps managers to decide when it is the right time to 

refactor the code of their software. 

CAST [18] contains several sub-tools in order to provide the entire quality profile for the project. Health 

dashboard, Engineering dashboard, Security dashboard, CAST Appmark which is a benchmarking base 

to use as a comparison standard and CAST Enlighten with Imaging system that offers a visualization 

of the project. This tool helps companies to perform "Shift Left" techniques to detect the issues of a 

project in early stages of its life cycle. This way the cost of fixing the issues is more tolerable. The tool 

implements the C-CPP, CISQ, CWE, NIST-SP-800-53R4, OMG-ASCQM, OWASP, PCI-DSS-V3.2.1 

and STIG-V4R8 standards. By performing static analysis, a list of issues is created. Only a part of the 

problems will be solved and this part de-fines the technical debt metric.  

CodeScene [21] serves as a mean to preserve the quality of the code of the automated tests. It combines 

repository mining with static code analysis and machine learning. Static analysis can detect the 

problems in the project, but since the source code is treated as of the same importance, repository mining 

is necessary to recognize behavioral data and social factors that can affect future decisions of 

refactoring. The results of the metrics may have different meaning depending on the characteristics of 

each project. Machine learning is used to identify patterns in order to prioritize these metrics and assign 

them the appropriate weight. The final result of the tool is a catalogue with the problematic files ranked 

by their total impact. 

DebtFlag [19] is a tool for capturing, tracking and resolving technical debt in Java systems. It consists 

of two parts; one plug in for Eclipse IDE which is responsible to collect the data from the source code, 

and one web application to visualize the results. These two applications connect via a database. The 

collected data is structured using the TDMF form, which was extended to cover the tool's needs. The 

tool offers the results in such a way that can be used to manage technical debt in two levels; project 

level and implementation level with micromanagement. 

Debtgrep [22] is an inhouse tool developed by Ericsson 4G 5G Baseband and its purpose is to pre-vent 

technical debt. It uses a file where all rules are declared using regex. The rules can contain forbidden 

words to restrict the usage of API and deprecated methods and also guidelines for design and 

architectural rules. The rules can be applied only to a specific part of code such as new code. This tool 

supports the communication between the developing team members and enhance the consistency and 

the uniformity of the project. 

DV8 [23] is a commercial extension of Titan [24]. DV8 functions with DRSpaces [25], which are 

groups of system’s files that are architecturally related. Within DRSpaces, DV8 computes three 

modularity metrics (Decoupling level, Propagation Cost and Independence Level) and detects six 

architecture anti-patterns (Clique, Package Cycle, Improper Inheritance, Unstable Interface, Crossing 

and Modularity Violation). DRSpaces (i.e. the subsets of architecturally related files) that are involved 

in a selected set of issues are called ‘architecture roots’. The tool calculates the added maintenance cost 

due to each instance of each anti-pattern, and the added maintenance cost of each architecture root. The 

source code analysis is performed by the Understand tool [26]. 
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Kiuwan [27] is a proprietary code analysis tool that supports numerous programming languages and is 

capable of integrating with several IDEs. It can be obtained under a commercial license and it can also 

be tested within a free trial period. 

NDepend [28] is a static analysis tool for .NET projects available in Visual Studio Market Place. It 

offers a variety of code quality metrics and a visualization of the dependencies in the project. The tool 

handles the source code as a form of database, and the user can define new evaluation rules using LINQ 

to perform queries on it. Other features of the tool include reporting service and the ability of 

comparison between the generations of the same project. 

SonarQube [29] is a widely known tool used to track the quality and maintainability of source code. 

The tool implements the MISRA, CWE, SANS and CERT rule standards to pro-vide measurements 

regarding complexity, duplications, code issues, maintainability, quality gates in combination with 

technical debt, reliability, security, project size and test coverage. In addition, there are many plugins 

to extend the available utilities, such as WebDriver for Selenium test analysis or AEM Rules set for 

Adobe. The measurement of technical debt is an important component of SonarQube. The tool 

calculates the debt by multiplying the number issues of each type with the average time the specific 

issue type needs to be fixed. Then the time is multiplied with the cost for each man-day. The average 

time and the cost can be configured by the user. It uses the SQALE method and provides a technical 

debt pyramid to help making decisions prioritizing tasks. 

Squore [30] consists of three smaller tools. The first one, the analyzer, is used to collect data from 

different sources (source code, tests and hardware component information) and build the project's 

hierarchy tree. Then a more detailed measurement takes place for each one of the nodes based on the 

ISO, HIS, SPICE and MISRA rule standards. Last but not least, the tool also offers a dashboard for the 

visualization of the results. The tool can be a part of Jenkins continuous integration and can also 

recognize which files are most important to have Unit Tests in order to improve the efficiency. 

TD-Tracker [31] is a web application, which provides a structured way to create a catalogue with the 

issues in a project. The protocol, which is implemented, consists of three stages. For the first stage there 

is a data collector where the problems are identified and a list is populated. The input data can come 

from either an external source where, with appropriate mapping, the data can be stored directly to the 

database of the application, or the integration with GitHub. After finishing the collection, the second 

stage begins where a semi-automated task takes place. A user has to review the previous list with the 

issues, and decide which of them are actual problems that need to be solved. Then there is the third 

stage with the longest duration of all three. In this stage a user assigns tasks related to technical debt 

and also monitors the progress of them. 

TEDMA [32] is an open tool, which analyzes different indices related to technical debt during the 

evolution of a project. It is open to integrate with third party tools to extend the analysis. It consists of 

three layers. The first is called Data Layer and holds the processes used to gather information about the 

project, which is examined. Currently, Git repositories are used as data input. The second is the Service 

Layer where there are three basic services. (i) Data loader service is responsible for offering the source 

code in a processable form to the tool. Then analyzers such as PMD and Findbugs detect code smells 

and problems. (ii) Statistics service uses R to perform statistical analysis of the data. The analysis is 

performed at file level but it can be extended to other levels of abstraction. (iii) Technical debt 

management model service uses models in Java and R to support decision-making. The last layer is the 

Presentation Layer which is responsible for documentation and visualization. 

VisminerTD [33] is an open source web tool which monitors and manages technical debt comparing 

the results between different project's versions. When an issue is detected it can be tracked to deter-

mine whether its TD was paid off or not. It uses the Repository Miner tool to collect data and metrics 

from code repositories. VisminerTD uses queries to the database of the Repository Miner to gather the 



A study on the evolution of software quality and technical debt in open source applications 

13 

 

preferred information and present them to the user via a friendly interface. A set of graphical views are 

available to setup the search settings and then manage the technical debt items. 

7. A comment on Technical Debt Management 

Technical Debt can be either intentional or unintentional [34]. Intentional debt can serve as leverage for 

future growth as it can speed up productivity and allow faster presence in the market. Nevertheless, it 

is an imperative need to always monitor and maintain it within viable levels. On the other hand, 

unintentional debt cannot be acknowledged in the first place. Thus, development teams are advised to 

employ specialized TD tools for identification and quantification of TD Principal. However, the “blind” 

resolution of the all suggested fixes is neither productive nor efficient and thus, not suggested. The 

development teams should consider one or some of the aforementioned strategies for managing TD and 

prioritize the issues that are more urgent to remediate. 
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Chapter III. EVOLUTION OF WEB APPLICATIONS 

 

The work of this chapter was published in the Information and Software Technology Journal (IST): 

Amanatidis, Theodoros & Chatzigeorgiou, Alexander. (2016). Studying the Evolution of PHP Web 

Applications. Information and Software Technology. 72. 48-67. 10.1016/j.infsof.2015.11.009. 

 

Chapter Summary 

Software evolution analysis can reveal important information concerning maintenance practices. Most 

of the studies which analyze software evolution focus on desktop applications written in compiled 

languages, such as Java and C. However, a vast amount of the web content today is powered by web 

applications written in PHP and thus the evolution of software systems written in such a scripting 

language deserves a distinct analysis. The aim of the study in this chapter is to analyze the evolution of 

open-source PHP projects in an attempt to investigate whether Lehman’s laws of software evolution 

are confirmed in practice for web applications. Data (changes and metrics) have been collected for 

successive versions of 30 PHP projects while statistical tests (primarily trend tests) have been employed 

to evaluate the validity of each law on the examined web applications. Results suggest that Laws: I 

(Continuing Change), III (Self-regulation), IV (Conservation of organizational stability), V 

(Conservation of familiarity) and VI (Continuing growth) are confirmed. However, only for laws I and 

VI the results are statistically significant. On the other hand, laws II (Increasing complexity), and VIII 

(Feedback system) do not hold in practice. Finally, for the law that claims that quality declines over 

time (Law VII) the results are inconclusive. The examined web applications indeed exhibit the property 

of constant growth as predicted by Lehman’s laws and projects are under continuous maintenance. 

However, no evidence has been found that quality deteriorates over time, a finding which, if confirmed 

by other studies, could trigger further research into the reasons for which PHP web applications do not 

suffer from software ageing. 

 

1. Introduction 

Scripting languages originated as easy-to-use, specialized, interpreted programming languages 

supporting loose data typing but quickly evolved to robust, generic and high-level languages boosting 

the development of the Web [1]. The popularity of scripting languages nowadays is clearly evident from 

the statistics in open-source repository hosting providers such as SourceForge7 and GitHub8. Languages 

such as PHP, Javascript, Python, Perl and Ruby are among the most popular choices for developing 

client and server-side applications, supported by huge communities and vast documentation. PHP in 

particular has been widely employed in servers around the world as part of the LAMP (Linux-Apache-

MySQL-PHP) platform. The top-ten programming languages and the accompanying project share are 

shown in Table 1 for two open source software repository hosting providers. 

The popularity of scripting languages can possibly be attributed to their ease of use, enabling rapid 

application development and shielding from low-level issues such as memory management [1]. 

According to Prechelt [2], who contrasted the implementation time for developing in scripting 

languages (Perl, Python, Rexx and Tcl) with the time for programming the same functionality in 

 
7 http://sourceforge.net 

8 http://github.com 

http://sourceforge.net/
http://github.com/
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C/C++/Java, development time for scripting languages is significantly smaller (about half of the time 

for compiled languages). Scripting languages are being viewed by various authors as more appropriate 

for real programming pragmatism since they unleash the programmer’s creativity and imagination [1]. 

Back in 1998, Ousterhout [3] claimed that new applications will be written entirely in scripting 

languages while the so-called system programming languages will be used primarily for developing 

components.9 

Table 1. Top-ten Languages of Public Open Source Projects Hosted By SourceForge & Github 

SourceForge Github 

Language # of projects percentage* Language # of repositories percentage* 

Java 53.575 23% JavaScript 1.666.302 22% 

C++ 43.189 19% Java 1.413.447 19% 

PHP 33.789 15% Ruby 888.679 12% 

C 31.837 14% Python 814.449 11% 

C# 17.053 7% PHP 697.898 9% 

Python 16.585 7% CSS 529.392 7% 

JavaScript 13.884 6% C++ 439.423 6% 

Perl 10.012 4% HTML 432.546 6% 

Unix Shell 4.775 2% C 386.232 5% 

VB .NET 4.050 2% C# 356.856 5% 

Total 228.749 100% Total 7.625.224 100% 

*Percentages refer to the ratio over the total number of projects developed in the top-ten languages 

**Data as of October/2015 has been retrieved from http://sourceforge.net and http://github.com 

 

In this chapter the evolution of PHP web applications is investigated, aiming at gaining insight into the 

way that the corresponding software systems are maintained. The motivations for this dissertation are 

the following three facts: a) There is a latent perception that scripting languages are not suitable for 

proper software engineering that can support the maintenance of large-scale software projects [1]. 

However, such claims can hardly be found in the scientific literature possibly because they are not 

backed up by real evidence. b) Academics are often skeptical about the suitability of scripting languages 

in the context of introductory computer science courses. Nevertheless, it should be noted that there is 

an increasing number of software engineering courses where concepts are illustrated on languages such 

as Ruby and Python [5]. c) Finally, to the best of the author’s knowledge, there is no empirical study 

investigating the evolution of software projects written in PHP (except for the work in [6]) while there 

is a large body of research on evolution of software in compiled languages, such as Java. 

Software evolution is often studied from the perspective of Lehman’s eight laws [7] which characterize 

trends in size, changes and quality of evolving software systems. Therefore, the main goal of this chapter 

is to investigate the validity of Lehman’s laws of evolution on PHP web applications. Since similar 

 
9 Nevertheless, the superiority of statically typed languages with respect to maintainability remains open. For example, recent 

empirical evidence [4] has shown that static types are beneficial to understanding undocumented code and fixing of type errors. 

http://sourceforge.net/
http://github.com/
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studies have been performed previously for other programming languages, this analysis can be 

considered as a replication study contrasting previous findings against those derived for PHP. 

The rest of the chapter is organized as follows: In Section 2 related work on software evolution and 

Lehman’s laws of software evolution, in particular, is discussed. The details of the case study design 

are presented in Section 3 along with information about the examined projects. The validity of 

Lehman’s laws of evolution is examined in Section 4. In Section 5 the results are summarized and 

compared against those of previous works. In Section 6, possible implications for software researchers 

and practitioners are presented. Threats to validity are discussed in Section 7 and finally, conclusions 

are drawn in Section 8. 

2. Related Work 

The analysis of software evolution is one of the most well studied aspects of software development and 

maintenance. This kind of empirical studies is greatly facilitated by the existence of multiple available 

data in software repositories allowing the investigation of research questions regarding all facets of a 

software project, including its source code, documentation, developers, bug reports etc. A 

comprehensive survey on more than 80 approaches on mining software repositories to investigate 

aspects of software evolution has been presented by Kagdi et al. [8]. The relation between software 

evolution and maintenance, highlighting the concept of essential change within an environment, is 

discussed in the overview paper by Godfrey and German [9]. 

Software evolution has been studied since the seventies. Lehman first formulated three basic principles 

of software evolution, based on the study of the OS/360 operating system, in 1974 [10]. Later, Lehman 

modified the existing principles and proposed two new ones [11]. In the early eighties, Lehman 

published a new version of Laws III, IV and V [12]. Finally, Lehman published a newer formulation of 

the laws including additional ones [7] and republished the most current formulations in 2006 [13]. Table 

2 lists the most updated formulation of the eight laws of software evolution: 

Table 2. Most Updated Formulation of Lehman’s Laws 

Law Context 

I) Continuing change A system must be continually adapted to its users’ needs, else it becomes 

progressively less satisfactory in use. 

II) Increasing 
complexity 

As a system evolves, its complexity increases and becomes more difficult to 

evolve unless work is done to maintain or reduce the complexity. 

III) Self regulation Global E-type system evolution is feedback regulated. 

IV) Conservation of 
organizational stability 

The work rate of an organization evolving a software system tends to be 

constant over time. 

V) Conservation of 
familiarity 

The newly introduced content of each new version of the system is 

constrained by the need to maintain familiarity. 

VI) Continuing growth The size of a system continuously grows over time. 

VII) Declining quality The quality of a system will appear to be declining over time, unless 

proactive measures are taken. 

VIII) Feedback system The evolution process of software resembles a feedback system. 

 

With the rise of open source software, several studies investigated the validity of the laws and in some 

cases it was found that some of the laws are not confirmed [14]. Godfrey and Tu, examined the evolution 

of the Linux Kernel [15] and in later work several other open source systems [16]. Their focus was the 
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growth of the kernel, using the LOC as size metric and it was found that Linux had been growing at a 

geometric rate.  

Robles et al. [17] examined a wider range of open source systems, including the Linux kernel, as well. 

In agreement with Godfrey & Tu, they found that smooth growth of systems is not that common and, 

in some cases, development of open-source software has not followed the laws as known.  

In 2008, Mens et al. [18] studied the evolution of Eclipse. They found that laws I and VI were confirmed 

in practice (i.e. systems are continually adapted at a constant work rate) while law II was not confirmed 

(i.e. the complexity does not exhibit an increasing trend).  

Later, Xie et al. [19] studied the validity of all eight laws of evolution on seven open source projects. 

They analyzed 653 official releases and cumulatively 69 years of evolution confirming 4 out of 8 laws 

(I, II, III, VI).  

Israeli & Feitelson [20] studied the validation of the laws also on the Linux Kernel in 2010. They found 

that the superlinear growth found by Godfrey & Tu [15], [16] and confirmed by Robles et al. [17] 

changed to linear from one point on. Ultimately, they confirmed the 3rd and 4th law unlike the 

aforementioned studies.  

In the same year, Businge et al. [21] also examined the validation of the laws on 21 third-party plug-ins 

of Eclipse. They reached the conclusion that laws I, III and VI are confirmed while V is not.  

Later, Neamtiu et al. [22], whose work was an expansion of the study by Xie at al. [19], studied nine 

open source C projects. The authors validated only the 1st and the 6th law, opposing their conclusions in 

their previous study [19]. In a recent work [23], Kaur et al. studied two C++ projects and found that 

laws I, II, III, V, VI and VII hold in practice while for IV and VIII they could not reach a safe conclusion. 

It is apparent that depending on the examined systems and the approach taken, different laws are 

confirmed by different studies. A comparative overview of the findings of several studies dealing with 

the validity of Lehman’s laws is provided in Section 5.2 along with the ones observed for PHP code in 

this chapter. 

3. Case Study Design 

The objective of the study in this chapter is to examine whether Lehman’s laws of software evolution 

are confirmed in practice for PHP web applications. To achieve this goal data from 30 PHP projects of 

various sizes and domains have been analyzed. In the following sub-sections, the four parts the design 

are described. i.e., Goal and Research question, Selection of cases, Employed process and tools and 

Data analysis. 

3.1. Goal and Research Question 

The goal of this chapter of dissertation, adopting the formalism of the Goal-Question-Metrics (GQM) 

approach [24] can be stated as: 

Analyze successive versions of web applications written in PHP for the purpose of evaluation with 

respect to their evolution from the perspective of researchers and software developers in the context 

of Lehman’s laws of software evolution. 

According to this goal the following research question can be formulated, that will guide this 

dissertation: 

RQ: Is the evolution of web applications written in PHP compliant with Lehman’s laws of evolution? 

The research question is then decomposed into eight research questions, one for each of Lehman’s laws. 



Chapter III. Evolution of Web Applications   

20 

 

3.2. Selection of Cases 

As already mentioned, the chapter focuses on web applications developed with the scripting language 

PHP. The motivation for selecting web applications was that PHP is primarily used in a Web context 

and particularly in the widely employed LAMP platform (Linux-Apache-MySQL-PHP). The criteria 

for selecting the projects are: 

• the source code should be publicly available (the code is publicly available if the project is 

distributed over a source code repository hosting provider, like Github) 

• projects should have varying sizes and lifespans to obtain a representative sample (e.g. an 

almost equal number of projects in three size clusters, 1-10 KLOC, 10-50 KLOC and >50 

KLOC has been selected).   

• projects should have at least 5 releases in their history to justify evolution analysis (this 

information is provided by the repositories) 

• projects should be object-oriented to allow analysis at the class and method level (this 

requirement has been checked by counting the number of identified classes using the employed 

tools)  

The projects’ source code has been retrieved from Github and Sourcefore because of their large 

collection of projects and widespread usage. The projects that have been selected for this dissertation 

are obviously a subset of all projects that satisfy the aforementioned criteria. The large projects in terms 

of size, namely projects Drupal, Wordpress, laravel, symfony, phpmyadmin and Zendframework, have 

been selected after discussions with PHP developers who pointed to their importance and indications 

of high quality. The rest of the projects have been selected by browsing all projects, sorted by relevance 

and filtering out the ones that did not match the aforementioned criteria. A number of 30 projects has 

been chosen to enable the manual investigation of the findings and the visual interpretation of the 

identified trends. 

The projects are listed in Table 3 along with an overview of their functionality, their lifespan, size in 

thousand lines of code and number of analyzed versions. It should be noted that some of the examined 

projects are relatively small (e.g. Nononsenseforum) while others are large projects with a vast 

community of developers and users (e.g. WordPress). 

Table 3. Overview of Examined Projects 

Project Functionality Time Frame 

LOC 

(last 

version) V
e
r
si

o
n

s 

boardsolution Discussion board  Jan09 - May13 88k 8 

breeze A micro-framework for PHP 5.3+ Apr13 - Jul13 9k 18 

cloudfiles API for the Cloud Files storage system Oct09 - May12 5k 13 

codesniffer 
Code Sniffer tokenizes PHP, JavaScript and 

CSS files and detects coding standard violations  
Nov11 - Sep13 45k 18 

conference_ci EllisLab's Open Source Framework Aug11 - Oct12 49k 6 

copypastedetector Copy/Paste Detector for PHP code Jan09 - Aug13 2k 19 

dotproject Web-based project management framework Aug03 - Nov09 118k 10 
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Project Functionality Time Frame 

LOC 

(last 

version) V
e
r
si

o
n

s 

drupal (core) Open source CMS Jan07 - Aug14 18k 61 

firesoftboard Bulletin board software Mar11 - Nov12 66k 5 

generatedata Random data generator in JS, PHP and MySQL Jan13 - Sep13 136k 11 

laravel PHP Framework Feb12 - Mar13 49k 29 

mustache Logic-less template engine Apr10 - Aug13 7k 33 

neevo Database abstraction layer for PHP 5.3+ Jun11 - Apr13 8k 13 

nononsenseforum Simple discussion forum Jun11 - Feb13 1k 25 

openclinic Medical records system  Aug04 - Sep13 16k 10 

phpagenda Agenda tool  Sep06 - Jun13 10k 29 

phpbeautifier 
Parses source code and formats it in preferred 

styles 
Apr05 - Jun10 7k 12 

phpdaemon 
Asynchronous server-side framework for Web -

network applications  
Oct10 - Jul13 31k 10 

phpfreeradius 
Web-based tool for managing a FreeRADIUS 

environment 
Apr10 - Mar12 31k 8 

phpmyadmin Database administration tool Mar10 - Oct14 252k 68 

phpmyfaq 
A multilingual, completely database-driven 

FAQ system 
Jan10 - Jul13 88k 49 

Phpqrcode QRCode generator library Mar10 - Oct10 9k 6 

simplephpblog Blog Nov05 - Jul12 20k 12 

symfony PHP Framework Jul11- Oct14 326k 52 

tangocms A modular content management system Dec09 - Feb12 49k 16 

thehostingtool 
Client management script geared towards free 

web hosting providers 
May10 - Apr13 27k 6 

usebb Forum system Feb05 - Jan13 9k 32 

web2project Business-oriented Project Management  Jun10 - Sep13 120k 5 

wordpress Blog tool, publishing platform and CMS Apr05 - May14 224k 77 

zendframework2 PHP Framework Sep12 - Sep14 284k 25 
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By definition web applications entail a multitude of technologies. At a first level, web applications 

contain source code at the server-side (written in PHP in the examined projects) as well as code that 

takes over the presentation of web pages to clients (written in HTML, CSS, JavaScript etc). Beyond 

code, a web application contains also other resources (e.g. images, fonts, media files, etc.) accessed by 

the codebase. It should be mentioned that object-orientation was introduced in version PHP4 and fully 

supported since version PHP5. However, the typical PHP web application contains both functions as 

well as classes (methods). To provide an overall picture of this distribution of content types, Figure 1 

presents the (a) file and (b) function and method breakdown for the latest release of the examined 

projects. Approximately half of the files are PHP files and almost 9 out of 10 functions are methods. 

   

Figure 1. (a) File and (b) function breakdown of examined projects based on their latest release 

 

3.3. Employed Process and Tools 

In order to perform the study, a PHP tool has been developed that is capable of parsing the directories 

of several project releases (uploaded as a single compressed file) and extracting changes between 

successive releases. Additions, deletions and moves at each level are identified based on the location of 

the corresponding entity (file, class, function or method), while for the identification of changes the tool 

examines the percentage of similarity between the body of the same entity in two successive releases 

(after removing blank lines and comments). The entire workflow is illustrated in Figure 2. 

 

Figure 2. Workflow for analyzing types and frequency of changes in PHP projects 
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Once information is extracted from the analyzed source code and directory structure (steps 1-4), raw 

data is stored in a MySQL database. The developed tool also performs the queries to the database 

considering two successive releases each time (step 5) and changes are stored in the database (step 6). 

Eventually the tool displays the results in HTML format (step 7). 

Moreover, in order to assess the validity of the laws in a quantitative manner, the PHP Depend10 tool 

was employed which performs static code analysis and computes several software metrics for PHP 

applications. 

3.4. Data Analysis 

As already made clear, the purpose the study in this chapter is to examine whether PHP web applications 

are evolving in agreement with the Lehman’s laws of software evolution. Lehman’s laws have been 

formulated at a rather abstract level, without direct reference (in most cases) to software metrics that 

can be used to assess them in a quantitative manner [25]. For the mapping of Lehman’s laws to 

measurable indicators the following have been taken into consideration: a) the original formulation or 

examples provided by Lehman, b) the indicators that have been proposed in previous works that 

investigated Lehman’s laws and c) the suitability of available metrics which can be computed by the 

employed tool (PHP Depend) for PHP projects. The association between the investigated laws, involved 

metrics (variables) and the corresponding statistical tests that will be performed to assess the validity 

of each law is presented in Table 4. Due to plethora of laws, the motivation for the selection of the 

particular metrics and the analysis conducted for each law will be separately discussed in the Results 

Section (Section 4). 

Table 4. Data Analysis 

Laws Variables Data analysis 

Law I  

(Continuing Change) 
[V1] Days Between Releases (DBR) 

 

- -Trend test 
- -Slope estimation 

Law II  

(Increasing 

Complexity) 

[V2] Complexity metric:  

Cyclomatic Complexity  Number / Lines Of Code  

(CCN/LOC) 

-Trend test 

-Slope estimation 

 

Law III 

(Self Regulation) 

[V3] Incremental growth of methods & functions -Trend test 

-Slope estimation 

Law IV 

(Conservation of 

organizational stability) 

[V4.1] Maintenance effort: 

Effort = total changes / DBR 

[V4.2] Number of commits 

-Trend test 

-Slope estimation 

Law V (Conservation of 

familiarity) 

[V5] Incremental changes (IC) in methods & 

functions 

-Trend test 

-Slope estimation 

Law VI  

(Continuing growth) 

[V6] Lines of Code (LOC) -Trend test 

-Slope estimation 

 
10 http://pdepend.org/ 

http://pdepend.org/
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Law VII 

(Declining quality) 

[V7.1] Afferent Coupling (CA)* 

[V7.2] Efferent Coupling (CE)* 

[V7.3] Depth of Inheritance Tree (DIT)* 

[V7.4] Comment Ratio (CR): 

Commented Lines Of Code / Lines Of Code  

[V7.5] Maintainability Index (MI) 

[V7.6] Number of bug-related commits 

-Trend test 

-Slope estimation 

 

Law VIII  

(Feedback system) 

[V8] Actual (
dt
dS

) and theoretical growth rate  

( 3
2

−
tc  )  

two sample 

Kolmogorov-

Smirnoff test 

* These metrics have been measured at class level and their average values (divided by the number of classes) have been 

considered. 

 

As mentioned above, the study mainly focused on the evolution of these metrics over time. Particularly, 

the goal was to examine if there is a trend in the evolution of each metric that concerns a specific law 

and if so, to quantify this trend in comparable numbers. The corresponding null hypothesis for each 

metric x can thus be expressed as: 

H0: Metric x exhibits no trend 

H1: Metric x exhibits a trend 

In order to determine if a trend is present in the evolution of a metric the linear regression and the Mann 

– Kendall trend test [26] were employed. Linear regression is considered a robust modeling tool. 

However, to consider the results of a trend test based on linear regression as valid, a number of 

preconditions have to be satisfied. These assumptions are: 

1. Variables should be measured at the continuous level (i.e. they should be either interval or ratio 

variables). Due to the nature of the examined time series of metric values, this condition is 

always met. 

2. The relationship between dependent and independent variables has to be linear. 

3. No significant outliers should exist. (The 2nd and 3rd assumption can be assessed visually by 

examining the scatterplot of the two variables i.e. release number and metric value) 

4. Observations should be independent. This can be checked using the Durbin – Watson test which 

assesses whether residuals of a linear regression model exhibit autocorrelation [27]. 

5. The data should be characterized by homoscedasticity. This can be checked using the Breusch 

– Pagan test for homoscedasticity [28]. 

6. The residuals (errors) of the regression line should be normally distributed. This can be checked 

by conducting the Shapiro – Wilk test of normality [29] on the residuals of the model yielded 

from the linear regression. 

In case the aforementioned assumptions do not hold, one should use a non-parametric test instead. A 

trend test which can provide reliable results when no distribution can be assumed is the Mann – Kendall 

trend test [26]. 

It should be noted that in the majority of projects one or more assumptions are violated and thus, the 

Mann – Kendall trend test was mainly used. This is not uncommon when working with real-world data 
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rather than artificially made examples. When according to the Mann – Kendall trend test a trend is 

clearly evident, i.e. the null hypothesis can be rejected, the Theil – Sen estimator [30] was used in order 

to calculate the slope of the fitted trendline. The slope obtained by the Theil – Sen estimator is 

essentially the median slope among all lines through all pairs of points in the dataset. 

To enable the comparison of the steepness of slopes among different projects, slopes should be scale 

independent. To this end, the trend test analysis (either linear regression or Mann – Kendall trend test) 

was performed on a normalized version of the original dataset. In particular, each value of an examined 

time series was divided by the maximum value in the time series yielding a normalized value in the 

range [0..1] exhibiting the same slope as the original dataset. Moreover, the slope was expressed as a 

percentage to allow easier interpretation of the results. 

Due to the nature of Lehman’s laws, many of the variables seem to be akin. Especially the variables 

related to the 3rd, 4th and 8th law seem to be quite similar. For this reason: a) the difference between 

variables V3, V4.1, and V8 was illustrated through a simplified example and b) correlation analysis 

among all pairs of selected variables for all 30 examined projects was performed.  

Figure 3 illustrates a hypothetical system that evolved from version i to version i+1 over a period of 

100 days. For simplicity, it was assumed that 7 new functions (methods and functions) have been added, 

while 3 existing functions have been modified (removals and moves were counted as changes). The 

actual values of variables V3, V4.1, and V8 would then be obtained as shown in the right-hand side of the 

Figure. As it can be observed these values are indeed closely related but capture different aspects of 

system evolution. 

 

 

Incremental Growth, V3 = 7 

 

 

Maintenance Effort, V4.1 = 
100

37+
 

 

 

Growth Rate, V8 = 100
7

 

Figure 3. Calculation of incremental growth, maintenance effort and growth rate (example) 

To provide further insight into possible correlation between the selected measures, the filled cells in 

Table 5 indicate cases where the corresponding row and column variables have a statistically significant 

correlation (with the same sign in the corresponding Pearson’s correlation coefficient) in 50% or more 

of the projects. For example, variable V2 (CCN/LOC) has a negative correlation to V6 (LOC) in 19 out 

of the 30 projects. The average correlation coefficient for these projects is -0.88. This is rather 

reasonable, since variable V6 (LOC) is the denominator of variable V2 (CCN/LOC). However, both 

variables were deliberately retained, since measuring the complexity of an evolving system would yield 

a monotonically increasing trend due to the constant addition of new code, as it will be explained in the 

next section. 

Variables V7.1 (afferent coupling) and V7.2 (efferent coupling) also appear to have a rather strong 

correlation. However, these variables quantify different aspects of coupling and it was preferred to keep 

them both in the investigation of the 7th law (nevertheless, it would be worth investigating why these 

aspects of coupling are correlated in PHP systems). 

version i

. . .

version i+1

. . .

7 functions added

3 functions modified

Elapsed time = 100 days
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A strong correlation has been found also between variables V7.2 (efferent coupling) and V7.4 (comment 

ratio). This rather unexpected correlation is unexpected, but comment ratio was included in the 

investigation of quality evolution as it quantifies a distinct property of both functions and methods. 

Finally, a strong correlation is observed between the variables discussed in the example of Figure 3, 

namely between incremental growth (V3) and growth rate (V8), and between maintenance effort (V4.1) 

and growth rate. As explained previously, it is reasonable that these variables are correlated as they 

depend on some common measures. However, because the formulation of the 8th law follows strictly a 

quantification approach proposed by Turski [31] this variable was not discarded. 

Other variables with evidence of a strong correlation to some of the selected ones, have been excluded 

from the analysis. 

Table 5. Correlation Between Variables 

 V1 V2 V3 V4.1 V4.2 V5 V6 V7.1 V7.2 V7.3 V7.4 V7.5 V7.6 V8 

V1              
 

V2       

19/30 

-0.88 
     

 

 

V3             
 22/30 

+0.769 

V4.1             
 18/30 

+0.829 

V4.2               

V5               

V6          

15/30 

+0.858 
  

 

 

V7.1         

18/30 

+0.906 
   

 

 

V7.2           

18/30 

+0.834 
 

 

 

V7.3     
 

     
  

 

 

V7.4     
 

     
  

 

 

V7.5     
 

     
  

 

 

V7.6     
 

     
  

 

 

V8     
 

     
  

 

 

*Statistical significance is assessed at the 0.05 level 

The entire dataset on which the study has been performed is publicly available11. 

 
11 http://se.uom.gr/index.php/projects/evolution-analysis-php-applications/ 

http://se.uom.gr/index.php/projects/evolution-analysis-php-applications/
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4. Results and Discussion 

In this section, the results concerning the research question of whether the evolution of web applications 

written in PHP is compliant with Lehman’s laws of evolution, are going to be presented. To facilitate 

understanding, a brief reminder of each law will be provided. The hypothesis, the analyzed variables as 

well as the corresponding type of analysis is also presented for each law. Finally, the rationale behind 

the selection of the corresponding metrics is explained as well as any concerns that someone could have 

with the applied approach. 

At this point the following clarification should be made: For the laws where the results allow to draw a 

conclusion that is supported by statistically significant trend test results, the corresponding law is noted 

as statistically validated or not. However, there are laws, where although the results do not allow the 

extraction of a statistically significant conclusion, the actual examination of the cases reveals the lack 

of any evident trend. In these cases, the corresponding law is noted as practically validated or not. 

4.1. Law I: Continuing Change 

The law states that a program continuously changes and adjusts to its users’ needs else it becomes 

progressively less satisfactory [7]. This is another way of stating that system maintenance is an 

inevitable process [32]. It is a general observation which is valid for all projects that deliver consecutive 

releases in a repository, otherwise there wouldn't be a need to release new versions. Law I, is confirmed 

by all studies on Lehman’s laws (see section 5.2 - Comparison with previous work), including this 

dissertation. The usual way to assess the validity of this law has been to investigate the cumulative 

number of modified modules [22]. The cumulative number of changed methods and functions in PHP 

code have also been employed and found a steady increasing trend in all projects, implying that changes 

are present throughout projects’ lifespan. However, a trend is by definition almost always present in a 

cumulative function, unless no modules are introduced at all during the course of a project, which is 

rather unlikely. Therefore, the goal was not only to assess the validity of the law per se, but also to 

quantify whether the validity of the law becomes weaker over time or not. 

To obtain an insight on whether the first law of Lehman weakens or strengthens over time, the Days 

Between Releases (DBR) have been measured, denoting the number of days that elapsed from the 

release of one version in the repository up to the release of the next one. In other words, DBR quantifies 

the frequency at which new releases are published. An increase of DBR over time means that the rate 

of publishing new releases decreases, which in turn can be interpreted as a weakening of the validity of 

the law for a particular project. Thus, the corresponding hypothesis can be expressed as: 

Hypothesis Variable Analysis 

H0: The evolution of the time interval between 

two successive releases exhibits no trend. 

H1: The evolution of the time interval between 

two successive releases exhibits a trend. 

[V1]: Days Between 

Releases (DBR) 

-Trend test 

-Slope estimation 

Rationale for selected variable: Previous research has used the cumulative number of modified 

functions/methods; however, a cumulative number would be monotonically increasing. Therefore, 

the law is considered valid and the Days Between Releases are selected to assess the frequency at 

which new releases are published (i.e. whether the law is strengthened over time). 

Concerns: The elapsed time between releases does not necessarily reflect the amount of changes 

that have been carried out, especially in open-source projects. 

 



Chapter III. Evolution of Web Applications   

28 

 

For example, Figure 4 illustrates the evolution of DBR for the successive versions of project usebb. It 

appears that the number of days required to release a new version increases over time (less than 50 days 

for the initial versions which climbs to more than 200 days for the final versions) implying that more 

effort is required to adapt the system to additional requirements. 

 

Figure 4. Trend of Days Between Releases metric for project usebb 

As already mentioned, to perform a systematic analysis regarding the presence of a trend in a time 

series, appropriate trend tests and slopes estimation will be used (as explained in section 3.4). Table 6 

lists the results of the conducted trend test for each project as well as the slopes for the cases where the 

trend is statistically significant. In the ‘Trend’ column an up-pointing/down-pointing arrow indicates 

the presence of a statistically significant trend while a blank cell indicates that there is no evidence for 

the existence or the absence of a trend. 

Table 6. Statistical Results on Law I (Continuing Change) 

 

Project 

DBR 

p-

value 
Trend 

Slope 

(%) 

1 boardsolution 0.287   

2 breeze 0.041  0.16 

3 cloudfiles 0.086   

4 codesniffer 0.366   

5 conference_ci 0.462   

6 copypastedetector 0.471   

7 dotproject 0.754   

8 drupal (core) 0.927   

9 firesoftboard 1.000   

10 generatedata 0.525   

11 laravel 0.003  0.83 

12 mustache 0.025  1.19 

13 neevo 0.783   

14 nononsenseforum 0.274   

15 openclinic 0.602   
 

 

Project 

DBR 

p-

value 
Trend 

Slope 

(%) 

16 phpagenda 0.001  0.07 

17 phpbeautifier 0.310   

18 phpdaemon 0.029  -2.78 

19 phpfreeradius 0.764   

20 phpmyadmin 0.001  -0.39 

21 phpmyfaq 0.557   

22 phpqrcode 0.086   

23 simplephpblog 0.087   

24 symfony* ~0.000  0.14 

25 tangocms 0.546   

26 thehostingtool 1.000   

27 usebb ~0.000  1.01 

28 web2project 1.000   

29 wordpress 0.805   

30 zendframework2 0.014  1.25 
 

*Linear regression has been used for these projects and the Mann-Kendall trend test for the rest to obtain p-values. 

As it can be observed, in 2 out of the 30 projects DBR decreases over time (i.e. a negative slope is 

observed) and in 7 out of 30 projects DBR increases. For 21 projects there is no statistical evidence for 

the existence or the absence of a clear trend. Therefore, one cannot argue about the validity of this law 

based on statistically significant results. However, to shed light on the evolution of DBR for the majority 

of the projects that do not exhibit a statistically significant trend, their graphical evolution is depicted 

in Figure 5. The x-axis corresponds to normalized version numbers, in the sense that all project lifespans 

are plotted as equal, for the sake of clarity. The y-axis does not contain units, as the curves have been 

adjusted to minimize their overlap. 
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Figure 5. Evolution of Days Between Releases metric for projects with p-value > 0.05 

As it can be observed, indeed most of the projects shown in Figure 5 do not exhibit a clear trend but 

rather have fluctuations in the variable of interest (DBR). One could argue, that DBR does not increase 

nor decrease steadily during the examined period and characterize this evolution as rather stable.  

 These observations imply that the first law of Lehman does not become stronger (changes are not 

becoming more frequent) or weaker over time. In other words, findings suggest that PHP systems 

continuously change but, in this dissertation, it cannot be determined whether these changes happen at 

a slower or a faster pace. 

4.2. Law II: Increasing Complexity 

According to this law the complexity of software increases over time unless proactive measures are 

taken to reduce or stabilize the complexity [7]. Although the complexity of a software project can be 

quantified in many ways, the widely acknowledged cyclomatic complexity measure [33] has been 

selected since it manages to assess the complexity of both functions and methods present in most PHP 

web applications nowadays. However, the CCN metric provided by the PHP Depend tool counts the 

total available decision paths in the entire program, and thus would be monotonically increasing as the 

system becomes larger in size over time. Therefore, its value was normalized over the lines of code, i.e. 

CCN/LOC. An increase of CCN/LOC over time implies that the overall complexity increases and that 

the law is valid. The corresponding hypothesis can be expressed as: 

Hypothesis Variable Analysis 

H0: The evolution of complexity exhibits no trend. 

H1: The evolution of complexity exhibits a trend. 

[V2]: 

CCN/LOC 

-Trend test 

-Slope estimation 

Rationale for selected variable: Cyclomatic complexity is a well-studied and widely 

acknowledged complexity measure which has also been employed in previous studies for the 

examination of the validity of the 2nd Law. 

Concerns: The normalization by dividing with the size might not capture changes in total 

complexity due to the addition of new code. 

 

The trend of CCN/LOC over all examined versions for each project is shown in Table 7. Figure 6 

illustrates the trendline fitted to the evolution of CCN/LOC, for those projects where a statistically 

significant trend has been found. The x-axis corresponds to normalized version numbers, in the sense 

that all project lifespans are plotted as equal, for the sake of clarity. 
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Table 7. Statistical Results on Law II (Increasing Complexity) 

 

Project 

CCN/LOC 

p-

value 

Trend Slope 

(%) 

1 Boardsolution 0.319   

2 Breeze 0.034  0.03 

3 Cloudfiles 0.853   

4 Codesniffer ~0.000  1.22 

5 conference_ci 0.181   

6 copypastedetector 0.003  -0.14 

7 Dotproject 0.371   

8 drupal (core) ~0.000  -0.86 

9 firesoftboard* 0.011  -0.02 

10 Generatedata 0.002  -0.17 

11 Laravel 0.763   

12 Mustache 0.026  -0.60 

13 Neevo 0.112   

14 nononsenseforum ~0.000  1.91 

15 Openclinic 0.149   
 

 

Project 

CCN/LOC 

p-

value 

Trend Slope 

(%) 

16 phpagenda ~0.000  -0.40 

17 phpbeautifier 0.019  -0.34 

18 phpdaemon 0.474   

19 phpfreeradius 0.711   

20 phpmyadmin ~0.000  -0.51 

21 phpmyfaq 0.016  -0.18 

22 phpqrcode 0.035  -0.79 

23 simplephpblog 0.099   

24 symfony ~0.000  -0.05 

25 tangocms ~0.000  0.19 

26 thehostingtool 0.024  2.01 

27 usebb 0.909   

28 web2project 0.086   

29 wordpress ~0.000  -0.20 

30 zendframework2 ~0.000  0.07 
 

*Linear regression has been used for these projects and the Mann-Kendall trend test for the rest to obtain p-values. 

 

 

Figure 6. Trendlines of CCN/LOC for projects with p-value < 0.05 

As it can be observed from Table 7, in 18 projects (more than half of the projects) there is either a 

positive or a negative trend in the evolution of the aforementioned complexity measure. Out of the 18 

projects in which the null hypothesis is rejected (meaning that a statistically significant trend is present), 

only in 6 projects there is a deterioration in the evolution of the aforementioned complexity measure, 

implying that the law is not valid for the examined PHP projects. For the majority of the projects, 

complexity decreases. This generally decreasing trend is also evident from the CCN/LOC trendlines in 

Figure 6. To be accurate, it should be reminded that Lehman acknowledged the possibility of a non-

increasing complexity if care is exercised by the maintenance team and this seems to be the case for the 

examined PHP projects. This observation is in agreement with a previous study [6] on the evolution of 

large-scale PHP web applications, which suggested that systems like phpMyAdmin, WordPress and 

Drupal exhibit signs of careful maintenance decisions resulting in non-increasing complexity. 

4.3. Law III: Self-Regulation 

Lehman [7] suggested  that “system evolution process is self-regulating”. In contrast to other rules, 

mapping this claim to the evolution of quantitative measures is non-trivial. According to Xie et al. [19] 

the regulation of size throughout the lifespan of a project, translates to observing negative and positive 

adjustments ("ripples") in the growth trend. The same interpretation of the third law has been adopted 

by Businge et al. [21] who observed ripples in the incremental growth of Eclipse plugins. To this end, 

the changes in the total number of functions and methods have been measured. For example, such 
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changes for project phpMyFAQ are graphically depicted in Figure 7. As it can be observed, ripples are 

present; positive adjustments are more frequent than negative, in agreement to what has been observed 

by the study of Xie et al. [19] and Businge et al. [18]. However, no global trend appears to be present. 

To have a common interpretation of whether the law is confirmed across all projects, whether there is 

a statistically significant trend in the data was investigated. The law should be considered as invalidated 

when there is a trend at the incremental growth of the methods and functions of the system. The 

corresponding hypothesis can be expressed as: 

Hypothesis Variable Analysis 

H0: The evolution of incremental growth exhibits no 

trend. 

H1: The evolution of incremental growth exhibits a 

trend. 

[V3]: 

incremental 

growth of 

methods & 

functions 

-Trend test 

-Slope estimation 

Rationale for selected variable: Methods and functions in PHP code cumulatively reflect the 

amount of delivered functionality. Incremental growth of system characteristics (e.g. functions, 

dependencies) has been used in other studies as well.  

Concerns: Evolution might occur at a lower level than methods and functions (i.e. at the code line 

level) without affecting the number of methods and classes.  

 

Figure 7. Ripples in the total number of functions/methods for phpMyFAQ 

Table 8. Statistical Results on Law III (Self-Regulation) 

 

Project 

INCREMENTAL 

GROWTH 

p-

value 

Trend Slope 

(%) 

1 boardsolution 1.000   

2 breeze 0.426   

3 cloudfiles 0.528   

4 codesniffer 1.000   

5 conference_ci 0.579   

6 copypastedetector 0.811   

7 dotproject 0.016  -0.24 

8 drupal (core) 0.079   

9 firesoftboard 0.734   

10 generatedata 0.653   

11 laravel 0.024  0.04 

12 mustache 0.960   

13 neevo* 0.077   

14 nononsenseforum 0.248   

15 openclinic 0.295   
 

 

Project 

INCREMENTAL 

GROWTH 

p-

value 

Trend Slope 

(%) 

16 phpagenda 0.533   

17 phpbeautifier 0.065   

18 phpdaemon 0.602   

19 phpfreeradius 0.095   

20 phpmyadmin 0.277   

21 phpmyfaq 0.285   

22 phpqrcode 0.267   

23 simplephpblog 0.436   

24 symfony 0.011  0.01 

25 tangocms* 0.118   

26 thehostingtool 1.000   

27 usebb 0.901   

28 web2project 0.734   

29 wordpress 0.811   

30 zendframework2 0.130   
 

*Linear regression has been used for these projects and the Mann-Kendall trend test for the rest to obtain p-values. 
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Figure 8. Evolution of Incremental Growth for projects with p-value > 0.05 

The results of the statistical analysis are summarized in Table 8. Only in 3 out of the 30 projects a trend 

in the incremental growth of methods and functions is present. In laravel and symfony there is an 

increasing trend, meaning that more and more functionality is added over time, while in dotproject the 

trend is decreasing. In the rest of the projects, the null hypothesis that the incremental growth of the 

system exhibits no trend cannot be rejected. However, with a closer look at Figure 8, which illustrates 

graphically the evolution of the incremental growth for all 27 projects where no statistically significant 

trend has been found, one can observe that indeed there is no evidence for a constant increase or 

decrease in the number of incremental methods and functions at every new version. This means that the 

examined systems do grow, but the growth rate remains relatively stable. To sum up, the results are not 

clear in terms of statistical power that the 3rd Law is valid, but the actual evidence points to the 

conclusion that the evolution of PHP projects is indeed regulated under a stable growth pace during 

system’s lifespan. Hence, the law is considered as practically validated. 

4.4. Law IV: Conservation of Organizational Stability 

The law stipulates that the activity/work rate between successive releases remains stable. Estimating 

effort in open-source projects can hardly be accurate and only indirect measures can be considered. In 

analogy to the study by Xie et al. [19] the work rate is measured as the number of changes (in the 

number of methods and functions) in a release i, over the elapsed time (in days) from the previous 

release i-1. As suggested by Lehman [34], [35] this dissertation counts as changes all handled elements 

accounting for removed, modified, added and moved functions and methods. Moreover, to provide an 

alternative measure for the estimation of work rate, the number of commits to the corresponding 

repository were analyzed, over time. Since a commit implies an ‘official’ submission of performed 

work, it can be considered as a reliable indicator of effort. Although this law is considered sub judice 

(under judgment) in the corresponding study by Lehman, the validity of the law is investigated by 

assessing the slope of the fitted trendline of maintenance effort, as reflected in the two variables. The 

statistical results for the trend test on variable V4.1 and V4.2 are shown in Table 9. 

Hypothesis Variable Analysis 

H0: The evolution of maintenance effort exhibits no 

trend. 

H1: The evolution of maintenance effort exhibits a 

trend. 

[V4.1]: maintenance effort 

= changes/DBR 

[V4.2]: number of 

commits 

-Trend test 

-Slope 

estimation 
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Rationale for selected variables: As suggested by Lehman, the changes in methods and functions 

throughout a project’s lifespan were counted. Moreover, a commit constitutes an actual and 

‘official’ submission of work by the developers. 

Concerns: The work that has been performed to release a new version is not reflected accurately 

when counting source code modifications only, since other types of activities (such as 

understanding and testing) might have been carried out. 

 

Table 9. Statistical Results on Law IV (Conservation of Organizational Stability) 

 
Project 

MAINTENANCE EFFORT NUMBER OF COMMITS 

p-value Trend Slope (%) p-value Trend Slope (%) 

1 boardsolution 0.368   0.251*   

2 breeze 0.091   N/A N/A N/A 

3 cloudfiles 0.732   0.069*   

4 codesniffer 0.711   0.038  0.93 

5 conference_ci 0.462   0.007  -1.8 

6 copypastedetector 0.622   0.746   

7 dotproject 0.175   0.001  -1.12 

8 drupal (core) 0.589   0.189   

9 firesoftboard 0.105*   0.450*   

10 generatedata 1.000   0.463   

11 laravel 0.402   0.002  -2.94 

12 mustache 0.023  -0.14 0.194   

13 neevo 0.033  -2.27 0.039  -5.32 

14 nononsenseforum 0.049  0.09 0.034  -5.69 

15 openclinic 0.754   0.656   

16 phpagenda 0.020  -0.11 N/A N/A N/A 

17 phpbeautifier 1.000   0.332   

18 phpdaemon 0.016  7.46 0.653   

19 phpfreeradius 0.133   0.033*  -21.16 

20 phpmyadmin 0.152   ~0.000  0.23 

21 phpmyfaq 0.709   0.241   

22 phpqrcode 0.221   N/A N/A N/A 

23 simplephpblog 0.119   N/A N/A N/A 

24 symfony 0.033  0.02 0.833   

25 tangocms 0.266   0.634*   

26 thehostingtool 0.807   0.432   

27 usebb ~0.000  -0.86 0.001  -0.83 

28 web2project 0.029*  -29.2 0.134   

29 wordpress 1.000   ~0.000  1.10 

30 zendframework2 0.001  -0.37 0.761   
*Linear regression has been used for these projects and the Mann-Kendall trend test for the rest to obtain p-values. 

 

As it can be observed only in 9 projects (for V4.1) and in 10 projects (for V4.2) there is a statistically 

significant trend in the maintenance effort. For the majority of projects, no safe conclusion regarding 

the evolution of maintenance effort can be reached. Once again, these non-statistically significant cases 

are depicted in Figure 9 for V4.1 and in Figure 10 for V4.2. 
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Figure 9. Evolution of Maintenance Effort (V4.1) for projects with p-value > 0.05 

 

Figure 10. Evolution of Number of Commits (V4.2) for projects with p-value > 0.05 

The visual interpretation of Figure 9 indicates that in general, the work rate does not increase or decrease 

drastically as the projects evolve. It should be noted that although some lines appear almost straight, 

the statistical power was low because of the small number of data points. The evolution of the number 

of commits in Figure 10 exhibits fluctuations for some of the projects, but again no conspicuous trend 

is present. Overall, PHP projects seem to evolve in agreement with the 4th Law. An increasing trend 

would imply that more and more features (or bug fixes) are added to the evolving project in the same 

period of time, or that the same amount of functionality is added in less and less time. However, it is 

reasonable to assume that increasing addition of functionality is rather rare for mature open-source 

projects and especially web applications which have to deliver their core functionality right from their 

first versions. On the other hand, a decreasing trend would imply that the system suffers from poor 

maintainability, in the sense that equal amounts of functionality required more time to be added. 

However, this phenomenon has not been observed meaning that the majority of the examined web 

applications do not suffer from this kind of maintainability issues. This law is tagged as practically 

validated. 

4.5. Law V: Conservation of Familiarity 

According to Lehman, "During the active life of a program the release content of the successive releases 

of an evolving program is statistically invariant" [7]. The law resulted by noticing the inherent tradeoff 

between the increased difficulty of understanding changes contained in a new release and the 

organizational pressure for delivering novel features along with the constant demand for corrections 
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and changes [13]. In order to assess the validity of the law in a quantitative manner, the Incremental 

Changes (IC) metric has been proposed [36]. IC is obtained by subtracting the total number of changes 

that occurred in methods and functions in one release from the total number of changes in methods and 

functions of the next release. An absence of trend for IC indicates the absolute validity of the law. A 

decreasing trend implies that the performed changes become less and less over time, which in turn can 

be attributed to the increased effort that developers need to understand and modify the program's source 

code [19]. 

Hypothesis Variable Analysis 

H0: The evolution of incremental changes exhibits no 

trend. 

H1: The evolution of incremental changes exhibits a 

trend. 

[V5]: Incremental 

changes (IC) in 

methods & functions 

-Trend test 

-Slope 

estimation 

Rationale for selected variable: The incremental changes in methods and functions were 

measured, as they capture the potential to provide more and more functionality in each new 

version. If this is not possible, the release content should be considered invariant. 

Concerns: The number of new/modified/deleted functions is only one way of capturing the 

provision of novel features in a new version. 

Table 10. Statistical Results on Law V (Conservation of Familiarity) 

 

Project 

INCREMENTAL 

CHANGES 

p-
value 

Trend Slope(%) 

1 boardsolution 1.000   

2 breeze 0.837   

3 cloudfiles 0.627   

4 codesniffer 0.509   

5 conference_ci 1.000   

6 copypastedetector* 0.592   

7 dotproject 0.917   

8 drupal (core) 0.753   

9 firesoftboard 0.308   

10 generatedata 0.032  0.30 

11 laravel 0.634   

12 mustache 0.770   

13 neevo* 0.668   

14 nononsenseforum 0.823   

15 openclinic 0.348   
 

 

Project 

INCREMENTAL 

CHANGES 

p-
value 

Trend Slope(%) 

16 phpagenda 0.872   

17 phpbeautifier 0.479   

18 phpdaemon 0.754   

19 phpfreeradius 1.000   

20 phpmyadmin 0.705   

21 phpmyfaq 0.986   

22 phpqrcode 0.807   

23 simplephpblog 0.533   

24 symfony 0.592   

25 tangocms 0.691   

26 thehostingtool 0.807   

27 usebb* 0.677   

28 web2project 0.734   

29 wordpress 0.993   

30 zendframework2 0.941   
 

*Linear regression has been used for these projects and the Mann-Kendall trend test for the rest to obtain p-values. 
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Figure 11. Evolution of Incremental Changes for projects with p-value > 0.05 

The results of Table 10 do not allow for reaching a statistically safe conclusion as only in one project a 

statistically significant trend of IC is evident. For the rest of the projects, trend tests yielded a p-value 

of more than 0.05 implying that one cannot reject the null hypothesis. For this reason, the actual 

evolution of these cases was plotted in order to visually check the existence of a trend. As it can be 

observed in Figure 11, in the majority of the projects, evolution of IC does not exhibit an increasing or 

a decreasing trend. In other words, the number of additional changes at the method and function level 

between successive versions might fluctuate temporarily, but is generally invariant over time. This 

translates to conservation of the release content of each new version in PHP applications which in turn 

suggests the validity of the 5th law. Thus, this law is tagged as practically validated. 

This law is quite similar to the previous one and the findings also match. However, the dimension of 

time is not taken into account for the 5th law in the sense that the number of incremental changes is not 

normalized over the elapsed time from the previous release. An increasing trend for the 5th law would 

imply that the amount of functionality added or modified in each new release is steadily increasing. 

Such a trend cannot be expected continuously and even if it is present in the initial versions of a new 

project, it would be unrealistic for mature projects. On the other hand, a decreasing trend would imply 

that fewer and fewer functions and methods are added or changed over time, signifying a slowly ‘dying’ 

project. None of the examined projects exhibits such a trend and it would be worth investigating which 

kind of actual projects are being gradually abandoned. 

4.6. Law VI: Continuing Growth 

The law stipulates that a program grows over time to address the new needs of its clients. Although 

several measures can be employed to assess this growth, most previous studies have used size metrics 

such as Lines of Code (LOC) [19] or the number of modules [7]. In this dissertation, the evolution of 

LOC was also measured to capture both additions of statements within functions as well as additions of 

new functions and classes (methods). An increasing trend for LOC validates the law. The results 

concerning the trend test are summarized in Table 11, while Figure 12 depicts the corresponding 

trendlines for the majority of the projects where a statistically significant trend has been found. 

Hypothesis Variable Analysis 

H0: The evolution of system’s size exhibits no trend. 

H1: The evolution of system’s size exhibits a trend. 

[V6]: LOC -Trend test 

-Slope estimation 

Rationale for selected variable: The evolution of the size of each project in terms of LOC was 

examined, as in most of the previous studies. 

Concerns: - 
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Table 11. Statistical Results on Law VI (Continuing Growth) 

 

Project 

LOC 

p-

value 

Trend Slope 

(%) 

1 boardsolution 0.002  0.19 

2 breeze* ~0.000  0.91 

3 cloudfiles 0.001  0.91 

4 codesniffer 0.256   

5 conference_ci 0.566   

6 copypastedetector ~0.000  2.21 

7 dotproject ~0.000  1.59 

8 drupal (core) ~0.000  1.63 

9 firesoftboard 0.807   

10 generatedata ~0.000  0.39 

11 laravel ~0.000  2.60 

12 mustache ~0.000  2.86 

13 neevo 0.005  1.19 

14 nononsenseforum ~0.000  2.99 

15 openclinic 0.003  1.76 
 

 

Project 

LOC 

p-

value 

Trend Slope 

(%) 

16 phpagenda ~0.000  0.56 

17 phpbeautifier ~0.000  0.57 

18 phpdaemon ~0.000  5.86 

19 phpfreeradius 0.001  1.98 

20 phpmyadmin ~0.000  0.85 

21 phpmyfaq ~0.000  0.85 

22 phpqrcode* 0.012  12.90 

23 simplephpblog 0.837   

24 symfony ~0.000  1.08 

25 tangocms 0.051   

26 thehostingtool 0.024  3.40 

27 usebb ~0.000  1.87 

28 web2project 0.807   

29 wordpress ~0.000  1.27 

30 zendframework2 0.293   
 

*Linear regression has been used for these projects and the Mann-Kendall trend test for the rest to obtain p-values. 

 

 

Figure 12. Trendlines of LOC for projects with p-value < 0.05 

From the results of Table 11 and the trendlines in Figure 12, it becomes apparent that in the majority of 

PHP projects (23/30), the size in terms of LOC increases steadily over time. Although deletions of code 

also occur, in the examined web applications it is evident that development teams keep adding new 

code to enhance the offered functionality. As a result, one can reach the conclusion that the 6th law of 

software evolution holds in practice. This law has been confirmed in all previous studies (see section 

5.2 - Comparison with previous work). 

4.7. Law VII: Declining Quality 

The law states that the quality of software deteriorates over time unless proactive measures are taken. 

Degradation of software quality over time is a widely investigated phenomenon known under different 

names, such as "software ageing" [37] or accumulation of technical debt [38]. A number of internal 

quality metrics and one external quality indicator have been examined to evaluate the validity of this 

law for PHP applications. Specifically, metrics which can be calculated at the level of individual classes 

were investigated and which can be associated to an aspect of design quality. Moreover, two metrics 

were also included. These metrics concern both functions and methods to assess the quality of non-

object-oriented code as well. Finally, the number of bug related commits was measured to assess 

whether the number of bugs increases or decreases over time. In order to avoid any misleading statistical 

interpretations, only a trend test on the evolution of each metric was performed without attempting to 
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extract an overall statistical measure considering all metrics. A brief discussion of the employed metrics 

follows next. 

Coupling is one of the classic internal metrics used to assess the quality of a design and for this reason 

the average Afferent Coupling (CA) and the average Efferent Coupling (CE) of each class were 

measured. Afferent coupling refers to the number of unique incoming dependencies for a software 

artifact (i.e. it is representative of a class’ fan-in). Therefore, it is an indicator of the extent by which a 

module is used by other modules, and under normal circumstances, it is suggested to keep the fan-in 

high [39]. Typical examples of modules/packages with high fan-in are core packages and components, 

like error and exception handling, or unit testing framework classes. 

Efferent coupling counts the number of software artifacts that a software entity depends on. A high 

efferent coupling (i.e. the module has a high fan-out) implies that the component depends on several 

other implementation details and this makes the component itself instable, because an incompatible 

change between two versions or a switch to a different library may break the dependent component. 

Moreover, the comprehensibility and reusability of a module with high efferent coupling is limited. 

Therefore it is considered a good practice to keep the efferent coupling for all artifacts at a minimum 

[39]. 

The quality of an object-oriented design has also been assessed from the perspective of inheritance 

qualities. Although specific thresholds for the optimum depth of an hierarchy are hard to extract by 

means of empirical studies, Harrison and Counsell [40] have found that deeper inheritance trees are 

harder to understand and maintain, a view shared also in the early discussions on inheritance heuristics 

by Riel [41]. In this dissertation, the evolution of the ‘Depth of Inheritance Tree’ metric (DIT) was 

tracked as PHP systems evolve. 

Several studies assess the understandability of code (which is a sub-characteristic of maintainability) 

by the comment ratio (CR) that is the ratio of commented lines of code over the total lines of code. The 

higher the ratio for a piece of code is, the more readable and thus maintainable the code can be 

considered to be [42]. This metric allows to assess the evolution of both function and methods and has 

been selected as the fourth internal quality indicator.  

Another widely used and discussed measure of quality is the Maintainability Index (MI) which has been 

originally introduced by Oman and Hagemeister in 1991[43]. MI is a composite metric that considers 

for an assessed module its Halstead’s volume, cyclomatic complexity and size in terms of lines of code. 

There have been numerous studies on the validity of MI, some of which have found that MI can 

successfully predict actual maintenance effort and others which have questioned its accuracy. 

Nevertheless, in this dissertation MI was used as an indicator of internal quality because it is not 

restricted to object-oriented code, and because that regardless of its accuracy as a maintainability 

predictor, an increasing trend of MI would imply efforts to improve three aspects of quality within 

functions or methods. 

Finally, since all the aforementioned metrics focus on internal quality, a measure that aims at addressing 

quality as perceived by users or developers was also included. An indisputable indicator of external 

quality would be the number of bugs/errors found during system evolution, as an increasing number of 

bugs implies quality degradation. However, although the examined applications are supported by an 

issue tracking system, for the examined PHP projects, it was found that it would be unreliable to count 

the number of issues (since in numerous cases the reported issues do not concern bugs). For this reason, 

the commits (i.e. actual code changes) for which it could be inferred that they are related to the fixing 

of a bug or issue were selected. As in other studies (e.g. [44]) bug related commits were identified by 

filtering those that contain error related keywords, such as ‘error’, ‘bug’, ‘fix’ and ‘issue’ in the 

corresponding commit message. 
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For measures CA, CR and MI an increasing trend implies that quality is improving from this 

perspective. On the other hand, for measures CE, DIT and number of bug related commits, quality is 

improving if their values get lower. In Table 12, the trend of the aforementioned quality measures over 

all examined versions for each project is reported. To facilitate the interpretation of the results, the cases 

in which the evolution of a metric suggests deterioration of the system’s quality were marked with 

shaded cells. 

Hypothesis Variable Analysis 

H0: The evolution of system’s quality 

exhibits no trend. 

H1: The evolution of system’s quality 

exhibits a trend. 

[V7.1]: CA 

[V7.2]: CE 

[V7.3]: DIT 

[V7.4] CR 

[V7.5] Maintainability 

Index (MI) 

[V7.6] Number of bug-

related commits 

-Trend test 

-Slope estimation 

Rationale for selected variables: The assessment of quality evolution is based on a mixture of 

internal quality metrics (for object-oriented and procedural code) and one external quality indicator 

related to the number of bugs. The selected metrics have been tested for correlation among them, as 

explained in Section 3.4 

Concerns: Internal quality metrics do not necessarily map to external quality. The number of bug-

related fixes is sensitive on the style of commit messages employed in a project. 

 

Table 12. Statistical Results on Law VII (Declining Quality) 

 Project 
CA CE DIT 

p-value Trend Slope(%) p-value Trend Slope(%) p-value Trend Slope(%) 

1 boardsolution 0.003  0.08 0.022  0.07 0.067   

2 breeze 0.128    0.969   ~0.000  0.35 

3 cloudfiles 0.260    0.260   0.014  0.05 

4 codesniffer 0.096    0.185   ~0.000  -6.29 

5 conference_ci 0.105    0.411   0.105   

6 copypastedetector 0.885    0.017  0.59 ~0.000  1.60 

7 dotproject 0.105    0.358   0.006  1.66 

8 drupal (core) 1.000    0.207   ~0.000  0.96 

9 firesoftboard 0.613    0.129   1.000   

10 generatedata 0.012  -0.12 0.024  -0.14 0.012  0.25 

11 laravel ~0.000  -0.67 0.008  -0.43 ~0.000  2.00 

12 mustache ~0.000  2.62 ~0.000  2.49 ~0.000  -1.02 

13 neevo 1.000    0.009  1.43 0.001  0.34 

14 nononsenseforum ~0.000  5.55 ~0.000  5.00 ~0.000  -3.94 

15 openclinic 0.021  2.98 0.001  7.14 0.165   

16 phpagenda ~0.000  -1.21 ~0.000  -1.08 ~0.000  -0.90 

17 phpbeautifier ~0.000  1.49 0.823   0.148   

18 phpdaemon 0.088    0.059   0.009  4.98 

19 phpfreeradius 0.421    0.789   0.421   

20 phpmyadmin 0.004  0.08 0.475   ~0.000  0.81 
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 Project 
CA CE DIT 

p-value Trend Slope(%) p-value Trend Slope(%) p-value Trend Slope(%) 

21 phpmyfaq 0.359    0.045  -0.13 0.005  -0.16 

22 phpqrcode 1.000    0.008  6.91 1.000   

23 simplephpblog 0.453    0.015  14.00 0.078   

24 symfony ~0.000  0.10 ~0.000  0.07 ~0.000  0.13 

25 tangocms 0.021  -0.05 0.006  0.04 0.498   

26 thehostingtool ~0.000  3.81 0.181   0.100   

27 Usebb 1.000    1.000   1.000   

28 web2project 0.267    0.267   0.149   

29 Wordpress ~0.000  0.68 ~0.000  0.52 ~0.000  1.27 

30 zendframework2 ~0.000  0.21 ~0.000  0.40 ~0.000  -0.18 

Table 12. (continued) Statistical Results on Law VII (Declining Quality) 

 Project 
CR MI BUG COMMITS 

p-value Trend Slope(%) p-value Trend Slope(%) p-value Trend Slope(%) 

1 boardsolution 0.018  0.01 ~0.000*  1.76 0.529   

2 breeze ~0.000  -0.08 ~0.000  -0.95 N/A N/A N/A 

3 cloudfiles 0.358   ~0.000  -0.15 0.064*   

4 codesniffer 0.019  -0.07 0.502   ~0.000  1.38 

5 conference_ci 0.848   ~0.000*  0.12 0.691   

6 copypastedetector 0.888   0.772   0.117   

7 Dotproject 0.032  -0.22 N/A N/A N/A 0.678   

8 drupal (core) ~0.000  1.17 0.186   ~0.000  0.38 

9 firesoftboard 0.807   ~0.000*  1.30 0.945   

10 generatedata 0.008  -0.28 0.024  1.06 0.002*  -11.8 

11 laravel ~0.000  -0.6 0.044  0.09 0.008  -3.34 

12 mustache 0.466   0.025  1.07 0.591   

13 neevo 0.005  -0.44 ~0.000*  1.9 0.212*   

14 nononsenseforum ~0.000  1.12 ~0.000  3.81 1.000   

15 openclinic 0.243   ~0.000*  -0.16 N/A N/A N/A 

16 phpagenda ~0.000  0.32 1.000   N/A N/A N/A 

17 phpbeautifier 0.002  -0.2 0.115   0.066   

18 phpdaemon 0.127   0.001  5.98 0.212   

19 phpfreeradius 0.004  -0.21 0.035  -3.48 N/A N/A N/A 

20 phpmyadmin 0.013  -0.06 0.026  0.03 ~0.000  0.86 

21 phpmyfaq ~0.000  -0.5 ~0.000  -0.15 0.446   

22 phpqrcode 0.085   0.011*  -18.9 N/A N/A N/A 

23 simplephpblog 0.002  2.44 ~0.000*  10.01 N/A N/A N/A 

24 symfony 0.003  0.02 ~0.000  0.12 ~0.000  4.18 

25 tangocms ~0.000  -0.08 ~0.000*  0.15 0.837*   

26 thehostingtool ~0.000*  1.53 ~0.000*  -6.38 0.065   

27 usebb 0.009  0.36 0.022  -0.23 0.003  -1.17 

28 web2project ~0.000*  1.66 0.051*   0.155   

29 wordpress ~0.000  0.84 ~0.000  1.54 ~0.000  0.83 

30 zendframework2 0.441   0.003  0.12 0.112   
*Linear regression has been used for these projects and the Mann-Kendall trend test for the rest to obtain p-values. 

 

As it can be observed from the number of projects in which a statistically significant trend has been 

found, the overall picture is rather mixed across the examined quality indicators. For afferent coupling 

quality is increasing in 10 out of the 14 projects and for the maintainability index quality is increasing 

in 15 out of the 23 projects with a statistically significant trend. Quality is decreasing in 12 out of 16 

projects for efferent coupling and in 12 out of 18 projects for the depth of inheritance. In terms of 

comment ratio in about half of the 21 projects quality is increasing and for the rest quality decreases. 

For bug related commits, a trend was found only in 8 out of the 20 projects. 
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The picture is mixed even if table is analyzed horizontally that is, by examining each project separately 

to identify how often the quality of a project deteriorates or improves over time. Thus, there is no 

supporting evidence neither for the confirmation nor for the confutation of the 7th law. In other words, 

it cannot be claimed in general that the quality of the examined PHP projects is declining or improving 

over time. 

4.8. Law VIII: Feedback System 

The corresponding claim was stated in 1980 but has been formalized as a law in 1996 [7]. According 

to Lehman [34], the evolution process of software resembles a feedback system. In other words, the 

size of a software system in a given release can be described in terms of the size in the previous release 

and the effort for developing the new release. Turski [31] formulated a model suggesting that the growth 

of a system, in terms of number of changed modules, is sub-linear, slowing down during the evolution 

of the project, exactly because the system becomes larger and more complex. The number of modules 

is preferred over low-level measures such as LOC since according to Turski system functionality 

changes are reflected in added, removed or otherwise handled modules, a view shared by Lehman in 

his early studies [13]. Turski proposed a difference equation according to which the size of version i 

can be estimated as: 

1 2
1

i i
i

E
S S

S
−

−

= +      (1) 

where (interpretation is fitted to the case of PHP applications): 

iS
 is the size of version i measured in number of methods and functions and, 

E  is the effort spent on the development of each software release, which is considered constant 

according to the fourth law of Lehman. 

The intuition behind this formulation is that the larger the size of a version, the greater the resistance to 

change it, in analogy to the effect of mass in a mechanical system or capacity in an electrical system.  

Later, Turski generalized the model to a differential form [45] and extracted a closed form for the 

growth equation as: 

btatS += 3
1

)(
    (2) 

where α and b are constants.  

By obtaining the derivative of the growth equation, the corresponding rate of growth is: 

2
3dS

c t
dt

−
= 

     (3) 

where: 

c is a constant, 

and t is the elapsed time (in days) from the initial release. 
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If the law holds in practice, the rate of growth should be proportional to 

2
3t

−

 , so it is relatively 

straightforward to check its validity. The actual evolution of tS  /  for all successive release pairs, can 

be compared to the theoretical evolution by employing the two-sample Kolmogorov-Smirnoff test [46]. 

As an example, let us consider the evolution of the growth rate for project mustache (Figure 13). The 

solid line represents the observed changes in the growth rate ( tS  / ), while the dashed line corresponds 

to the evolution predicted by Lehman's 8th law according to Turski's model. As it becomes evident the 

actual tS  /  trend line is well above the rate predicted by the law and the growth rate is not declining 

as predicted. For this case one can conclude (by visual examination) that the law is not confirmed for 

this particular project. 

 

Figure 13. Examination of the validity of the 8th law in project “mustache” 

Hypothesis Variable Analysis 

H0: The empirically observed rate of growth matches 

the theoretically expected one. 

H1: The empirically observed rate of growth does not 

match the theoretically expected one. 

[V8]: rate of 

growth  

two sample 

Kolmogorov-Smirnoff 

test 

 

Rationale for selected variable: The evolution of the rate of growth of each project was examined 

and compared against the theoretical one, as proposed by Turski and shared by Lehman. 

Concerns: The primary concern here is the interpretation of the notion of feedback system. In this 

dissertation the mathematical interpretation provided by Turski [31] is adopted. 

 

The results from the statistical investigation of the validity of the 8th law are presented in Table 13, 

listing the significance value of the Kolmogorov – Smirnoff test conducted for each project in order to 

examine whether the actual growth rate ( tS  / ) matches the theoretically expected rate. A significance 

value less than 0.05, means that the null hypothesis can be rejected, implying that the law is not 

confirmed (the corresponding cases are shaded in the Table). 

actual ΔS/Δt

Trendline of ΔS/Δt

t ^ (-2/3) 
(theoretically expected trend)



A study on the evolution of software quality and technical debt in open source applications 

43 

 

Table 13. Statistical Results on Law VIII (feedback system) 

 Project 
Kolmogorov – Smirnoff  

p-value 

1 boardsolution 0.541 

2 breeze 0.006 

3 cloudfiles 0.249 

4 codesniffer 0.000 

5 conference_ci 0.082 

6 copypastedetector 0.001 

7 dotproject 0.002 

8 drupal (core) 0.000 

9 firesoftboard 0.699 

10 generatedata 0.001 

11 laravel 0.007 

12 mustache 0.002 

13 neevo 0.100 

14 nononsenseforum 0.000 

15 openclinic 0.699 
 

 Project 
Kolmogorov – Smirnoff  

p-value 

16 phpagenda 0.000 

17 phpbeautifier 0.206 

18 phpdaemon 0.000 

19 phpfreeradius 0.203 

20 phpmyadmin 0.000 

21 phpmyfaq 0.000 

22 phpqrcode 0.329 

23 simplephpblog 0.023 

24 symfony 0.000 

25 tangocms 0.003 

26 thehostingtool 0.819 

27 usebb 0.000 

28 web2project 0.211 

29 wordpress 0.000 

30 zendframework2 0.000 
 

 

The growth rate does not match the theoretical expectation in 19 out of 30 projects as marked by the 

shaded rows in Table 13. Thus, one could argue that the law is not confirmed by the results for the 

examined PHP applications. In other words, the rate of increase in project size indeed attenuates over 

time, however, not at the fast rate predicted by Turski’s model. It should be noted that the outcome for 

this law is not in contrast to the findings for the 5th law and 6th law. The results for Law V suggested 

that one cannot claim that more and more (or less and less) code (incremental changes) is practically 

added in successive versions, without however considering the time elapsed between releases, whereas 

the results for Law VI confirmed that systems continuously grow. The findings for this law, which 

assumes that software processes operate as a feedback system where current size dictates the rate of 

increase in the next release, suggest that the growth rate is attenuating, i.e. that if time is taken into 

account, less code is added in a given amount of time. In other words, as the examined applications 

mature either there is less left to be added in terms of functionality or the system size prevents the 

development team from keeping the same pace of adding new code. Nevertheless, system development 

is slowing down at a rather low rate. 

5. Overview and Comparison to Previous Work 

5.1. Summary of Results 

To facilitate the interpretation of the findings regarding the eight laws of Lehman, the corresponding 

claims are summarized in Table 14 and compared against the results for the examined PHP applications. 

The laws are grouped in three categories based on the generic aspect/property that they address. As it 

can observed, from the two laws (II & VII) concerning the evolution of quality the 2nd has not been 

confirmed for the examined PHP applications while for the 7th law the results were inconclusive. With 

respect to the laws discussing changes in an evolving system (I, IV & V) the results suggest that all 

laws are confirmed (the 1st with statistical significance while the other two only at a practical level). In 

other words, systems continuously undergo changes but no trend has been observed for the work rate 

or the incremental changes. As a general observation one could claim that the examined PHP 

applications are maintained without reaching any maintenance stagnation. 

Finally, with respect to the laws that address the growth of an evolving system (III, VI & VIII), systems 

indeed continuously grow and exhibit positive and negative adjustments of incremental growth. 

However, it could not be confirmed that the growth rate decreases according to the theoretically 

prescribed rate. In other words, the examined PHP applications do get bigger, are maintained and there 
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are no clear signs of quality degradation or improvement. Further research into the reasons that drive 

this evolution patterns of PHP web applications would be extremely valuable. 

Table 14. Summary of findings about Lehman’s laws 

Property Law Lehman claims: Finding (PHP) 

Quality 
II Complexity increases Complexity does not increase 

VII Quality declines Inconclusive results 

Changes 

I System continuously change Indeed 

IV Work rate remains stable Indeed (no statistical significance) 

V Incremental changes remain invariant Indeed (no statistical significance) 

Growth 

III 
Incremental growth exhibits negative and positive 

adjustments (systems are self-regulated) 
Indeed (no statistical significance) 

VI Systems continuously grow Indeed  

VIII          

(Turski’s 

form) 

Growth rate decreases at a rate proportional to t-2/3 
Growth rate does not decrease that 

fast 

 

The present study has not been designed to identify the reasons for which certain laws are confirmed 

for some projects while others are violated. Nevertheless, it is reasonable to assume that the reason for 

which PHP web applications continuously change and grow is to provide novel services and features to 

clients in the shortest time possible. This is a necessity in order to withstand the competition caused by 

the perpetuous outspread of the Web. Such a competitive environment is normally driving the 

accumulation of the so-called ‘Technical Debt’ [47]. In other words, speeding-up development time 

normally compromises software quality, thereby hindering its sustainability. However, this 

accumulation of Technical Debt is not evident for PHP web applications which manage to evolve 

without increasing their complexity and without demanding increased effort. This phenomenon could 

be attributed to the productivity of the language, which allows developers to rapidly produce functional 

code, and to the widespread usage of reliable libraries and frameworks. 

5.2. Comparison to Previous Work 

An overview of the approach and the findings regarding the validity of the eight laws of Lehman in 

previous research is provided in Table 15 and Table 16, along with the results in this dissertation. To 

provide insight into the approach that has been employed by each research group for the quantification 

of the examined laws, Table 15 briefly outlines the corresponding measures used in 8 previous studies. 

(When a law is not investigated in the context of a work, the corresponding cell is left blank). Because 

of the way that the laws have been stated, as it can be observed from Table 15, the employed measures 

vary. However, there are laws which are quantified by most of the studies in the same or in a similar 

manner. For example, law VI is quantified by most of the studies using the LOC metric, and Law III is 

quantified mainly through the number of functions. On the other hand, law VII, which does not specify 

which aspect of quality has to be considered, is quantified through a variety of quality indicators. 
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Table 15. Primary Measures Employed for the Investigation of Laws in Previous Studies 

Ref. I II III IV V VI VII VIII 
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* CC: cyclomatic complexity 

* SLOC: source lines of code (uncommented lines of code) 

* CBO: coupling between objects 

* RFC: Response for class - #methods being invoked in response to the message received by an object of that class 

*WMC: weighted methods per class - the sum of the complexities of its methods 
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* DIT: depth of inheritance tree 

* LOCH: lack of cohesion 

* CA: coupling afferent (#unique incoming dependencies for a software artifact) 

* CE: coupling efferent (#unique outgoing dependencies for a software artifact) 

* CR: comment ratio 

* MI: Maintainability Index 

 

To allow a comparison with the conclusions derived in other studies about Lehman's laws (which 

however have not focused on PHP web applications), Table 16 lists the findings from the 

aforementioned 8 previous studies. A '✔' symbol indicates confirmation, a '×' symbol indicates that the 

law has not been validated, while the '~' symbol implies that the results have been inconclusive. When 

a law is not investigated in the context of a work, the corresponding cell is left blank. It should be noted 

that Table 16 lists the conclusions as derived by the authors of the corresponding papers (for the studies 

by Godfrey & Tu [15] and by Robles et al. [17] the validity of the 1st , 6th and 8th law is not directly 

investigated but can be easily deduced from the provided information). 

As it can be observed, the 1st law regarding continuing change and the related 6th law on continuing 

growth are, as expected, validated by all studies. In some studies system growth rate (in LOC) is found 

to be exponential [15] while in others linear [17].  In other words, all studies agree that systems 

continuously change and grow (a phenomenon called ‘perpetual development’ in the study by Israeli 

and Feitelson [20]). An agreement is also observed between previous studies and the current one for the 

2nd and the 8th law. Concerning increasing complexity, in 3 out of the 5 previous works that examined 

this law and reached conclusive results, it had not been confirmed, as in the case of PHP projects. 

Concerning the decline of growth rate at the pace predicted by the 8th law, four previous studies (out of 

the five that reached conclusive results for C/C++/Java projects) found that the actual growth rate 

attenuates at a slower pace, as it has also been found in this dissertation for PHP projects. 

Table 16. Validity of Lehman's Laws According to Various Studies 

Ref. Year Prog.Lang. #Projects I II III IV V VI VII VIII 

Godfrey & Tu* 2000 C 1 ✔   ×  ✔  × 

Robles et al. 2005 C,C++, 

Java 

19 
✔   ×  ✔  × 

Mens et al. 2008 Java 1 ✔ ×    ✔   

Xie et al. 2009 C 7 ✔ ✔ ✔ ~ × ✔ × × 

Israeli & 

Feitelson 

2010 C 1 
✔ × ✔ ✔ ~ ✔ × ✔ 

Businge et al. 2010 Java 21 ✔  ✔  × ✔ ~  

Neamtiu et al. 2013 C 9 ✔ × × × × ✔ × × 

Kaur et al. 2014 C++ 2 ✔ ✔ ✔ ~ ✔ ✔ ✔ ~ 

This 

dissertation 

2015 PHP 30 
✔ × ✔** ✔** ✔** ✔ ~ × 

*The results in a later work by Godrfrey & Tu [16] confirmed the validity of the same laws on 4 projects.  

**These laws have not been statistically validated. The conclusion in these cases is based on a visual interpretation of the 

evolution for the projects where the null hypothesis (absence of trend) could not be rejected. 

6. Implications for Researchers and Practitioners 

Although the research question that has been set, regarding the validity of Lehman’s laws of evolution 

for PHP web applications, entails a theoretical perspective and thus the results are not directly 

exploitable, the following implications can be identified. 
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With respect to software practitioners and managers: 

- In the context of the investigation of Lehman’s laws of evolution the employed measures can be 

used to assess the evolution of other products and examine whether any striking deviations from 
Lehman’s observations are valid for their projects. Since most laws are not directly quantifiable, 

software maintainers could employ the same methodology with respect to the applied trend tests 

and indicators that have been analyzed for each law.   
- Especially with respect to the evolution of quality vs. the increase of size contrasting the results for 

their own projects to those of the examined applications could highlight issues that warrant 

attention. For example, it should be regarded as a warning if their own PHP web projects do not 

success in allowing continuous changes combined with a non-increasing complexity, since this 
trend has been observed both for small and large open-source projects in this dissertation. If, for 

example, a development team observes that complexity is constantly increasing, whereas large and 

complicated PHP systems manage to keep complexity stable or even reduce it over time, then, 
quality assurance should focus on ways to address the increasing complexity. 

- The results suggesting that PHP web applications conform to a lifecycle model where continuous 

and steady development takes places (a finding confirmed by other studies as well), imply that 
development teams should opt for agile development practices, where constant change is embraced, 

rather than models assuming elaborate and preconceived specifications and planning [20]. 

- The results indicating that PHP web applications continuously change and grow, a finding shared 

by all other studies as well, imply that project managers should anticipate increased future needs 
for resources to maintain and sustain the existing systems. 

 

With respect to software engineering researchers: 

- Based on the findings indicating that PHP web applications do not suffer from software ageing, 
researchers can focus on the reasons that drive this improved behavior of PHP projects and 

investigate whether this is due to the language, the domain or the practices in web application 

development. 

- Researchers are encouraged to investigate whether the same trends are valid for the evolution of 
systems written in other scripting languages so as to investigate whether similar maintenance 

patterns can be attributed to the nature of the employed languages (i.e. scripting vs. compiled). 

- Finally, for the specific group of research efforts that investigate the validity of Lehman’s laws, 
empirical findings that suggest that: a) several laws are consistently not confirmed (e.g. Law VIII), 

or that b) some laws occasionally lead to inconclusive results (e.g. Laws IV and VII) or that c) some 

laws are quantified by divergent approaches (e.g. Law IV), imply that the rules might need to be 
examined in the context of contemporary software development and possibly be revisited. 

7. Threats to Validity 

The investigation of the validity of Lehman's laws is by definition threatened by the subjectivity in the 

interpretation of each law and the selection of appropriate metrics to quantify its evolution. The fact 

that the employed measures might not reflect accurately the phenomenon under investigation poses a 

threat to the relation between theory and observation, i.e. to construct validity [48]. In addition, for 

several laws there might be additional measures that can be used to quantify the corresponding 

evolutionary trend, which are either not available (such as the effort spent in an open-source project) or 

unreliable if collected automatically (such as the number of issues). For example, law VII on the 

evolution of quality, can be quantified by numerous internal and external quality indicators, as it 

becomes evident from the multitude of metrics employed by previous studies shown in Table 15. To 

mitigate this threat, for most of the laws this dissertation relied on measures that have been used in 

previous studies as well. Moreover, to emphasize this inherent limitation in the quantification approach 

the relevant concerns along with the approach for each law were explicitly stated. 

The conclusions derived from any empirical study that is based on a set of examined software systems 

are subject to external validity threats. In our case, this threat limits the possibility to generalize the 
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findings regarding the validity of Lehman’s laws in PHP applications beyond the 30 examined projects 

and to other programming languages. In other words, it is not granted that the selected projects are 

representative of the entire PHP web application landscape. As it is always the case, further replication 

studies would be extremely valuable. The emphasis on PHP was placed on purpose, since the goal of 

this chapter was to investigate patterns of evolution in web applications built upon a scripting language. 

To this regard, further studies could extend the analysis to other primarily scripting languages such as 

Python, Perl and Ruby. 

Finally, since the presented empirical study relies heavily on the interpretation of statistical test results 

(mainly trend tests) threats to statistical conclusion validity may arise. The conclusions about the 

identified trends are based on the number of projects that exhibited statistically significant trends. For 

example, in the 2nd law the normalized complexity was considered to exhibit a trend because a 

decreasing trend has been observed in 12 out of the 18 projects with a statistically significant result. 

Such a finding might imply low statistical power. In other words, although the trend test for each project 

is correctly applied by analyzing the relevant assumptions, one has to aggregate the findings for all 

projects to reason about the validity of the law. To facilitate the interpretation of the results all data 

which have led to the confirmation of confutation of each law have been provided. 

8. Conclusions 

The evolution of software projects relying on scripting languages such as PHP has received limited 

attention, despite the fact that PHP forms the basis upon which a huge number of web applications are 

developed. Driven by the widely spread but undocumented claims that scripting languages are not 

suitable for regularly maintained software projects, an empirical study on the evolution of 30 PHP web 

applications has been performed in this chapter. 

The main goal was to examine the validity of the eight laws of software evolution as stated by M. M. 

Lehman. These laws have been extensively studied in the context of software evolution for projects 

developed in compiled languages such as C and C++ and in a non-web related context. The results 

confirm the validity of continuing growth and changes for the evolution of the examined PHP 

applications. However, for the examined projects the 2nd law on increasing complexity and the 8th law 

on the rapid decrease of the growth rate have not been confirmed. Although the root causes for this 

trend require further investigation it is reasonable to assume that this phenomenon could be attributed 

either to the programming language or to the practices in web application development. 

One interesting line of further research would be to compare the evolution of web applications against 

that of "conventional" desktop systems, in order to investigate whether there are differences in the trends 

of quality, work rate, complexity and size. Such evidence would be helpful in determining whether 

development practices for web applications adhere to the principles of building large-scale, multi-

person, multi-version software systems or whether the benefits is the result of their architecture, which 

is often strictly dictated by the platforms being used. 
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Chapter IV. TECHNICAL DEBT AND CORRECTIVE MAINTENANCE 

 

The work of this chapter was published in the Information and Software Technology Journal (IST): 

Amanatidis, Theodoros & Chatzigeorgiou, Alexander & Ampatzoglou, Apostolos. (2017). The Relation 

between Technical Debt and Corrective Maintenance in PHP Web Applications. Information and 

Software Technology. 87. 10.1016/j.infsof.2017.05.004. 

 

Chapter Summary 

Technical Debt Management (TDM) refers to activities that are performed to prevent the accumulation 

of Technical Debt (TD) in software. The state-of-research on TDM lacks empirical evidence on the 

relationship between the amount of TD in a software module and the interest that it accumulates. 

Considering the fact that in the last years, a large portion of software applications are deployed in the 

web, the study of this chapter focuses on PHP applications. Although the relation between debt amount 

and interest is well-defined in traditional economics (i.e., interest is proportional to the amount of debt), 

this relation has not yet been explored in the context of TD. To this end, the aim of this chapter is to 

investigate the relation between the amount of TD and the interest that has to be paid during corrective 

maintenance. To explore this relation, a case study on 10 open source PHP projects was performed. The 

obtained data have been analyzed to assess the relation between the amount of TD and two aspects of 

interest: (a) corrective maintenance (i.e., bug fixing) frequency, which translates to interest probability 

and (b) corrective maintenance effort which is related to interest amount. Both interest probability and 

interest amount are positively related with the amount of TD accumulated in a specific module. 

Moreover, the amount of TD is able to discriminate modules that are in need of heavy corrective 

maintenance. The results of the study confirm the cornerstone of TD research, which suggests that 

modules with a higher level of incurred TD, are costlier in maintenance activities. In particular, such 

modules prove to be more defect-prone and consequently require more (corrective) maintenance effort.  

 

1. Introduction 

In recent years, Technical Debt Management (TDM) has become a popular research field in software 

engineering. The majority of TDM approaches are based on the two pillars of Technical Debt (TD) 

quantification, namely principal (i.e., the effort needed to refactor the system in order to address 

existing inefficiencies) and interest (i.e., the additional effort needed in performing maintenance, due 

to the existence of the principal). According to Alves et al. [1], interest can be perceived as a risk for 

software development, and therefore its quantification should be assessed based on two components: 

interest probability (i.e., how possible is that one module that holds TD will need maintenance) and 

interest amount (i.e., the amount of additional effort). According to Ampatzoglou et al. [2] interest is 

incurred while performing two types of maintenance activities: (a) bug-fixing (namely corrective 

maintenance), and (b) adding new features (namely perfective maintenance). 

In the literature, one can identify several studies that have investigated the relation between low levels 

of design-time qualities (e.g., coupling, bad smells, etc.) that constitute proxies of modules’ TD 

amount—i.e., principal plus interest—and the maintenance intensity on these modules [3]–[9]: 

• All studies agree that the more flaws a file is involved in, the higher the likelihood to undergo 

defect-related changes. 
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• MacCormack and Sturtevant have found evidence on 2 industrial projects that source files with 

higher levels of coupling are associated with more extensive corrective maintenance [3]. 

• Feng et al. [4] and Nord et al. [5] have found evidence that files participating in architectural 

flaws (especially in unstable interfaces) are highly correlated with bugs and changes. 

• In an earlier study in 2013 [6], Zazworka et al. suggested that dispersed coupling, god class 

symptoms, modularity violations and multithread correctness issues are located in classes with 

higher defect-proneness. 

• Another work by Li et al. [7] suggests that two modularity metrics are strongly correlated with 

commit density: IPCI (Index of Package Changing Impact) & IPGF (Index of Package Goal 

Focus). Strong correlation was also found between corrective maintenance and fan-out, file size 

and frequency of changes of file in a study by Schwanke et al. in 2013 [8]. 

• An interesting study has been carried out by Oliva et al. [9], who searched for symptoms of 

increased rigidity and fragility on a degraded software system (Apache Maven 1.x) which was 

completely rewritten to Maven 2.x. The authors found signs of increased fragility (i.e. tendency 

of a system to break when changes are performed), but no definite evidence of increased rigidity 

(i.e. difficulty in performing changes due to ripple effects). 

The results of these studies, despite the fact that some of them are only indirectly related to TD, have 

produced some evidence about the relation between maintenance effort and TD. However, the following 

limitations have been identified: 

• Almost all studies quantify TD by means of few metrics, whereas TD manifests itself through 

a number of parameters in a software project.  

• Most studies conducted research on a restricted sample of projects limiting the generalizability 

of the results (except for [4] and [7] that considered 10 and 13 projects, respectively). 

• There is no relevant study that focuses on PHP web applications, which form the majority of 

operating code in Web today. 

• There is no study that focuses on the interest that incurs when performing corrective 

maintenance. 

Based on the abovementioned limitations, the purpose of the study in this chapter is to provide insights 

into the relation between the accumulated amount of TD in a module and the maintenance effort spent 

on corrective activities. In particular, the relation between TD amount and: (a) frequency of corrective 

maintenance activities (interest probability), and (b) the effort spent in these activities (related to 

interest amount), is investigated. To overcome the limitations mentioned in the previous paragraph: (a) 

TD amount is calculated with SonarQube12 that assesses TD based on a seven axes of code quality (e.g., 

code duplications, metrics, styling conventions, etc.), (b) the case study is performed on 10 open source 

PHP web applications, and (c) both interest probability and interest amount are holistically investigated. 

2. Case Study Design 

In this section, the case study design is presented, which based on the guidelines reported by Runeson 

et al. [10]. 

2.1. Goal and Research Questions 

The goal of this chapter of dissertation is to examine whether the frequency and the effort spent on 

corrective maintenance activities of a specific module, is related to the amount of its TD. Based on this 

goal, the main research question of this chapter can be formulated as follows: “Is the amount of TD in 

a software module related to the frequency and extent of corrective maintenance activities performed 

 
12 Available at: http://www.sonarqube.org 

http://www.sonarqube.org/
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in it?” To ease the reporting of the case study, from this main question, two research questions were 

derived: 

RQ1: Is the TD amount of a file related to the number of times that it underwent corrective maintenance? 

RQ1 aims at investigating whether files with higher amount of TD are associated with more problems 

and therefore require more frequent corrective maintenance. The presence of such an association would 

imply that TD can serve as an indicator for prioritizing maintenance and testing activities. Moreover, 

such a finding would validate the importance of TD as a crucial parameter to be taken into account 

during software development. 

RQ2: Is the TD amount of a file related to the extent of modification that it underwent during corrective 

maintenance? 

Although the number of times a file undergoes corrective maintenance is a solid indicator of interest 

probability, to investigate whether modules with high TD produce more interest, in RQ2, the focus 

placed on the extent of maintenance effort, as captured by the number of modified lines. 

It should be clarified that the proposed case study design does not support the investigation of causal 

relationships between the TD incurred in one revision and the amount of corrective maintenance in 

subsequent revisions. Such an analysis is an interesting research topic but should be properly performed, 

since it would be extremely difficult to associate changes in a specific commit, to the TD as measured 

in one out of the many past revisions. 

2.2. Cases and Units of Analysis 

This dissertation focuses on web applications developed with PHP. The motivation for focusing on PHP 

is that it holds the lion’s share of operating Web applications today. The criteria for selecting the projects 

are: 

• the source code should be publicly available (data was retrieved via GitHub’s API) 

• projects should be actively maintained (until the date on which this paper is written) 

• projects should have at least 10 releases denoting jumps in functionality or the addition of 

significant fixes13 in their history to justify evolution analysis 

• projects should be popular (among the projects with most stars in GitHub) 

 

The list of the investigated projects (i.e., cases) is presented in Table 1. This part dissertation is an 

embedded multiple-case study, because it analyzes every project at the file level (unit of analysis), 

whereas the results are presented at the case (i.e., project) level. The rationale to use files as a unit of 

analysis was based on the fact that both object-oriented and non-object-oriented code is included. Thus, 

the use of any other type of module (e.g., class) would not be possible. An alternative to this dissertation 

design could be to perform a per-version analysis, i.e. by considering the TD amount of each file for 

every project version and the corrective maintenance between successive versions, as a unit of analysis. 

However, in such a case the TD of each version would be correlated to the TD of previous versions, 

thus rendering the data points not independent. 

  

 
13 The rationale for this choice is that any project with a history spanning more than 10 significant releases underwent 

substantial adaptive maintenance and is highly probable to have been the subject of corrective maintenance as well. 
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Table 1. Analyzed Projects 

Project #stars #releases 

CodeIgniter 12K 27 

Symfony 12K 209 

Composer 8K 24 

Yii2 8K 13 

Guzzle 7K 108 

Slim 7K 74 

Laravel (kernel) 6K 192 

Piwik 6K 429 

PHPunit 5K 402 

Twig 3K 86 

 

2.3. Data Collection 

For each unit of analysis (file), three variables were recorded. To facilitate the following description of 

variables related concepts are illustrated in Figure 1: 

 

Figure 1. Corrective maintenance at file level 

[V1] Average TD of each file: All projects were analyzed with SonarQube and TD of each file (in 

minutes) was retrieved via the SonarQube. SonarQube calculates a file’s TD by summing up 

the Technical Debt of every violation found on that file, which is the estimated time to fix that 

violation. The debt for each file represents various aspects of TD quantification, ranging from 

programing convention violations (e.g., lack of comments) to structural characteristics of the 

software (e.g., method complexity), which can affect the maintainability and comprehensibility 

of files. Since several revisions of each file have been analyzed, the TD for each file is obtained 

as the average of the TD corresponding to the file after each issue-related commit: 
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The average for a file’s TD offers the advantage of obtaining a relatively accurate estimate, 

compared to alternatives, as it characterizes the entire history of the file. On the contrary, 

assuming that TD remains relatively stable and considering only the TD of the initial or the last 

revision would not be accurate since by nature software systems are evolving and TD changes 

over time. 

[V2] Number of times each file is modified due to corrective maintenance: Variable V2 corresponds 

to the total number of issue-related commits (for the examined file) from the initial revision to 

the time of assessment. 

[V3] Number of modifications (modified LOC) each file undergoes during corrective maintenance: 

Variable V3 corresponds to the average number of modified LOC (for the examined file) from 

the initial to the last issue-related commit prior to the time of assessment. 
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To calculate [V2] and [V3] commit and issue data for each project was retrieved via the GitHub API. 

For each project’s issue the commit by which the issue was closed was tracked and eventually found 

the files that were modified and the number of modified lines in that file. GitHub identifies issue-related 

commits by recognizing in the commit message the keywords ‘fixes’, ‘resolves’ and ‘closes’ when 

accompanied by a hash-tagged issue id. The tool for analyzing GitHub data is available online14. 

2.4. Data Analysis 

To answer the research questions stated in Section 2.1, using the data described in Section 2.3, 

correlation analysis and hypothesis testing were performed. For both questions, the same analysis was 

performed, but on different variables. For RQ1 the testing variable is [V2], whereas for RQ2 the testing 

variable is [V3]. An over-view of the data analysis strategy is presented in Table 2. 

Table 2. Data Analysis 

RQ Analysis Strategy 

RQ1 
Spearman Correlation [V1] and [V2] 
Mann-Whitney U Test for [V2] grouped by [V1] 

RQ2 
Spearman Correlation [V1] and [V3] 
Mann-Whitney U Test for [V3] grouped by [V1] 

 

Additionally, the Mann-Whitney U Test (the independent sample t-test was not used, since variables do 

not follow the normal distribution) is able to investigate the discriminative power of the TD amount as 

an indicator of corrective maintenance frequency and effort (RQ1 and RQ2, respectively). In other 

words, this dissertation investigates if modules with high levels of TD amount present more frequent 

and more intense corrective maintenance activities, compared to modules with lower TD amounts. It 

should be noted that in order to answer RQ2, it was needed to transform [V3] from a continuous to a 

binary variable. As low (high) TD files are characterized the ones that have technical debt that falls 

below (higher than) the median TD amount across all files for that project. 

The aforementioned tests are fitting ways to assess the consistency/correlation and discriminative power 

of metrics, as described by 1061:1998 IEEE Standard for Software Quality Metrics15. 

3. Results 

Table 3 lists the results of the conducted Spearman’s correlation analysis for each project for both RQs. 

Concerning RQ1, in all ten projects there is a statistically significant positive correlation between TD 

amount of a file and the number of times that file underwent corrective maintenance (interest 

probability). Regarding RQ2, in 8 out of 10 projects there is a statistically significant positive correlation 

between the amount of TD of a file and the extent of modification that the file underwent during 

corrective maintenance (related to interest amount). 

  

 
14 https://github.com/theoAm/githubGrabber 

15 1061-1998 IEEE Standard for a Software Quality Metrics Methodology, IEEE Standards, IEEE Computer Society, 31 

December 1998 (re-affirmed 9 December 2009). 

https://github.com/theoAm/githubGrabber
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Table 3. Spearman's Correlation Results 

project 
RQ1 RQ2 

p r p r 

CodeIgniter 0.00 0.293 0.08 -0.124 

Symfony 0.00 0.301 0.00 0.280 

Composer 0.00 0.544 0.00 0.310 

Yii2 0.00 0.278 0.00 0.262 

Guzzle 0.00 0.366 0.01 0.178 

Slim 0.00 0.409 0.00 0.591 

Laravel (kernel) 0.00 0.481 0.17 0.148 

Piwik 0.00 0.363 0.00 0.204 

PHPunit 0.00 0.626 0.00 0.290 

Twig 0.00 0.366 0.00 0.433 

 

To allow a visual interpretation of the results, Figure 2 depicts the two indicators of the required effort 

(times that a file undergoes defect-related changes and the extent of changes in terms of lines of code) 

for each project, by differentiating between low and high TD files. As it becomes evident from the box 

plots, the required maintenance is always (except for one case in Figure 2(b)) larger for high TD 

modules. This finding is also supported by the results of the Mann-Whitney U test which suggest that 

[V2] and [V3] in high-TD files are statistically different from [V2] and [V3] in low-TD files ([V2]: p-

value = ~0.00, [V3]: p-value = ~0.00). On average, the number of times that a high TD file is modified 

is 1.9 times larger than the number of times a low TD file is changed. In terms of the extent of change, 

the corresponding ratio is 2.4 to 1. 

 

(a)       (b) 

Figure 2. Discriminative power of TD amount (left/right bars correspond to low/high TD files, respectively) 

4. Threats to Validity 

The results of the study are subject to external validity threats since the investigation has been performed 

on 10 PHP projects. Further studies on other projects or languages would be valuable in assessing the 

relation between TD amount and interest probability/amount in different contexts. Moreover, the 

assessment of interest amount through the extent of modification poses a threat to construct validity, 

since interest should be ideally quantified as the difference between the nominal effort for fixing an 

issue (i.e. in case no TD were present) and the actual effort spent. The former effort is unfortunately 

unknown. However, the findings observed when high TD modules are contrasted to low TD ones, imply 
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that increased frequency and extent of modification are often encountered in files with increased interest 

amount. 

A second threat to construct validity stems from the fact that not all reported issues point to errors, but 

some of them might contain a feature request or suggestion for performance improvement. As a result, 

any actions to handle this issue would constitute adaptive or perfective maintenance rather than 

corrective one. Another threat of the same category, is that bug-related commits, which indeed fix an 

issue, but do not employ the keywords sought by GitHub, will be missed. This threat implies that there 

might be other bug-related commits which have been neglected in the study. 

A final threat pertaining to the construct validity of the study stems from the fact that TD amount and 

the two employed indicators of corrective maintenance are aggregated over multiple revisions, possibly 

accounting for a significant period of time. As a result, especially in the case of variations of TD or 

corrective maintenance during that time, it cannot be safely assumed that the measured levels of 

corrective maintenance correspond to the measured TD. For example, an observed high level of 

corrective maintenance in a module with high level of TD, could in fact be due to a particular sub-

period in which the module had low TD. 

Finally, the present study does not investigate whether the two interest-related variables of the research 

questions (i.e., frequency of modifications and extent of modification due to corrective maintenance) 

might be affected by the propagation of errors. In particular, the study focuses on the relation between 

the two aforementioned variables and the TD principal of the files in which errors have been fixed, 

possibly neglecting the TD of the originating files (i.e., those from which errors might have propagated). 

This treatment poses a threat to construct validity and constitutes an interesting research direction for 

future work. 

5. Discussion and Conclusions 

The results of this chapter suggest that TD amount is indeed correlated with maintenance effort. In 

particular, developers appear to spend more time on fixing issues in files with high levels of accrued 

technical debt, compared to files that present less TD. Therefore, project managers should take quality-

oriented decisions to deter the appearance of software units with increased technical debt. 

With respect to practitioners, the results provide additional evidence that TD undermines software 

maintenance and that it should be taken under consideration before any design and implementation 

decision. Moreover, the domain of the study suggests that TD appears to be important in a web context 

as well. Software engineers can take advantage of such empirical evidence to convince management 

about the importance and need to manage TD.  

From a research perspective, since there is sufficient empirical evidence of the impact of TD amount 

on corrective maintenance, the need to devise a framework for assessing the associated risk and costs 

of managing TD becomes essential. 
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Chapter Summary 

Technical debt (TD) impedes software projects by reducing the velocity of development teams during 

software evolution. Although TD is usually assessed on either the entire system or on individual 

software artifacts, it is the actual craftsmanship of developers that causes the accumulation of TD. In 

the light of extremely high maintenance cost, efficient software project management cannot occur 

without recognizing the relation between developer characteristics and the tendency to evoke violations 

that lead to TD. This chapter investigates three research questions related to the distribution of TD 

among the developers of a software project, the types of violations caused by each developer and the 

relation between developers’ maturity and the tendency to accumulate TD. The study has been 

performed on four widely employed PHP open-source projects. All developers’ personal characteristics 

have been anonymized. 

1. Introduction 

Tom DeMarco in his novel about project management (“The Deadline”) [1] vividly claims that the most 

important part of any successful software project is team and people. According to Mr. Tompkins, the 

main character of the story, people do projects and therefore getting the right people is essential. 

Different developers have varying skills and capabilities in designing, developing and maintaining 

software in the right manner. Unavoidably, the members of a development team introduce design and 

code violations at unequal rates and intensities, contributing differently to the overall system Technical 

Debt [2]. 

Technical Debt principal (i.e., the effort needed to refactor a system in order to address existing 

inefficiencies) is usually assessed on design or code artifacts. However, since software development is 

a highly people-centric activity, Technical Debt Management (TDM) should also consider the 

individual members of a team. To name an example, technical debt items with high interest probability 

[3] (i.e. modules that hold TD and are very likely to undergo maintenance in the future) should be 

assigned to skilled and experienced developers to mitigate the involved risks. 

Acknowledging that efficient project management cannot take place unless people are carefully 

matched to tasks, this chapter presents the results of a case study assessing the distribution of TD among 

developers. Knowing whether some members of the development team are more likely to introduce TD 

or particular design/code violations can be of value to project managers to steer the allocation of issues 

and maintenance tasks more effectively. Moreover, it is also investigated whether the tendency to 

introduce TD is related to the developer’s age in the project. The relevant research questions have been 

investigated based on findings from four widely employed PHP open-source projects with a long 

development history. 
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Collecting and processing information at the level of individual developers involves a number of ethical 

issues and therefore should be performed with care. All gathered personal data, which are subject to 

statistical analysis, has been de-identified. In any case, assessing the contribution of the members of a 

development team to the system’s TD for research purposes, should not share any kind of personal data 

with third parties. On the other hand, performance appraisals within an organization are a great and 

commonly used tool to evaluate how employees have been performing. It should be noted however, 

that any type of performance analysis should respect ethics, ensuring for example that developers are 

aware of the relevant process and that any feedback will be accessible by the employees and will remain 

confidential. 

The rest of the chapter is organized as follows: Section 2 provides an overview of related work on the 

assessment of software quality at the developer level, regardless of whether TD is explicitly mentioned 

or not. The case study design is presented in Section 3 while the results for each of the investigated 

questions are presented and discussed in Section 4. Implications to project managers and developers are 

presented in Section 5, while threats to the validity of the study are discussed in Section 6. Finally, 

conclusions are drawn in Section 7. 

2. Related Work 

This section presents efforts that aimed at investigating how the characteristics and coding habits of 

individual developers relate to the introduction of code smells, violations and buggy code that 

eventually undermine software quality. 

Alves et al. investigated the influence of developers on the introduction of code smells in 5 open source 

software systems [4]. Developers have been classified in different groups based on two characteristics, 

namely: a) developer participation, calculated as the time interval between his first and last commit and 

b) developer authorship, representing the number of modified files and lines of code. The authors 

investigated how those two characteristics are related to the insertion and/or removal of five types of 

code smells: dead (unused) code, large classes, long methods, long parameter list (of methods) and 

unhandled exceptions. Results suggested that groups with fewer participation in code development 

tended to have a greater engagement in the introduction and removal of code smells. Authors supported 

that groups with higher participation level code more responsibly during maintenance whereas the other 

groups tend to focus on error correction actions. 

Tufano et al. analyzed developer-related factors, on 5 open source Java projects, that could influence 

the likelihood of a commit to induce a fix [5]. They found evidence that clean commits (i.e., commits 

that do not induce bugs or any kind of need to fix code) have higher coherence than fix-inducing 

commits. Commits with changes that are focused on a specific topic or subsystem are considered more 

coherent than those with more scattered changes. Furthermore, their results, surprisingly, suggested that 

developers with higher experience perform more fix-inducing commits that developers with lower 

experience. Authors claimed that this could be happening due to the fact that more experienced 

developers usually cope with more pretentious tasks. 

Eyolfson et al. [6] analyzed the impact of three social characteristics of commits on their bugginess: a) 

time of the day the commit is performed, b) day of the week, and c) developer’s experience (i.e. days 

of participation in the project) and commit frequency. The study was performed on two open source 

projects (the Linux kernel and PostgreSQL) and found evidence that late-night commits are 

significantly buggier emphasizing that developers that perform late-night commits should double-check 

their code. They also found that more experienced developers introduce fewer bugs. Furthermore, 

according to their results, the day on which the code is written plays no significant role on the 

‘bugginess’ of a commit something which contradicts what was observed in an earlier study by 

Sliwerski et al. back in 2005 [7]. That study claimed that programming on Friday is more likely to 

generate faults than on any other day. 
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Rahman and Devanbu [8] studied the impact of ownership and experience of the developers on the 

quality of code. As ownership, they considered the extent to which a developer modifies a file along 

with others or on his own. They also conceptualized two distinct types of experience that can affect the 

quality of a developer’s work: specialized experience in a file (i.e. developer’s contribution to a single 

file) and general experience in the entire project (i.e., developer’s contribution to the entire project). 

Their results highlighted that: a) code that is maintained by many developers is less bug-prone, 

validating the “many eyeballs → better code” theory, b) less specialized experience on a specific file is 

associated with fix-inducing code to that file and c) the lack of general experience on the overall project 

is not consistently associated with faulty code. 

This dissertation differs in that software quality is viewed from the perspective of TD rather than the 

introduction of faults or selected code smells. Although not all TD violations are considered as harmful 

by development teams, examining a broader range of design and code inefficiencies as well as the 

distribution of TD introduction among developers can provide a more holistic view on the competencies 

of a team. 

3. Case Study Design 

3.1. Research Objectives and Research Questions 

The aim of this chapter, expressed through a GQM formulation, is: to analyze individual contributions 

by the project developers for the purpose of evaluation with respect to the TD that they introduce, 

from the point of view of software managers in the context of software maintenance and evolution in 

open-source projects. 

Driven by this goal, three relevant research questions have been set:  

RQ1: Is TD uniformly distributed among the developers of a software project? 

The first research question aims to investigate whether TD is uniformly induced by all developers in a 

software project or is mostly associated to the commits of specific developers. Answering this research 

question and especially if common patterns among the examined projects are found, could shed light 

into the actual causes of design and code inefficiencies. 

RQ2: Which TD violations are introduced by the developers of a software project? 

The second research question concerns the particular TD violations caused by each developer during 

his commits and investigates whether there is any relation between violation types and developers. Any 

evidence on commonly occurring violations across all developers or individual members of the 

development team can be of help to efficient technical management. 

RQ3:  What is the relation between TD and the maturity of developers in a software project? 

The third research question analyzes the relation between the maturity of each developer in any project 

(obtained as the time since his initial commit to the project) and his tendency of inducing TD. It would 

be reasonable to assume that less experienced developers introduce more TD and thus allocation of 

work considering the maturity factor would enable effective TD management. 

3.2. Case and Units of Analysis 

This is an embedded multiple-case study, i.e. it studies multiple cases, whereas each case is comprised 

of many units of analysis. Specifically, the cases of the study are open source projects, and units of 

analysis are the developers of each project. The reporting of results is performed at the project/case 

level. 
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As subjects for the study, recent commits (i.e. those of the most recent year) of a selected branch during 

the development history of 4 open source projects written in PHP, were obtained. The projects have 

been selected so as to have a long development history and varying sizes. A short description of the 

goals of these projects is provided below, whereas some demographics are provided in Table 1. Laravel 

(core) consists of the core source code of one of the most popular PHP frameworks for building web 

applications, Laravel, with more than 20 million downloads. Composer is the most popular dependency 

manager for PHP with more than 2 million downloads. Yii2 and CakePHP are two actively maintained 

PHP frameworks with over 2.5 million and 1 million downloads respectively. 

All developers who submitted at least 10 commits on the examined branches of the selected projects 

have been used as cases for this dissertation (the lower limit of 10 commits has been set to avoid 

considering in the study developers with partial or circumstantial association to the project). 

Table 1. OSS PHP Project Demographics 

Project #Commits 

#Developers 

(considered) 

Size of last 

version (LOC) 

Laravel (core) 1136 11 149K 

Composer 807 7 8K 

Yii2 2097 19 406K 

Cakephp 1677 23 297K 

 

3.3. Variables and Data Collection 

3.3.1. Variables 

For each unit of analysis (i.e. developer in a project) and in order to answer the research questions that 

have been set, the following variables were recorded: 

[V1] DevID: unique developer identification id 

[V2] Total TD: induced TD by all commits of the particular developer during the examined time 

frame. Contributed TD for a particular transition from one commit to the next is obtained by 

SonarQube as the difference between the TD of the files that the developer modified during the 

transition. It can be positive or negative. 

[V3] Number of modified lines: To normalize the contributed TD over the amount of work 

performed by each developer the number of lines that have been modified during each commit 

was recorded (as the number of added and deleted lines of code). 

[V4] Normalized TD: Since the amount of TD that is introduced by a developer is heavily dependent 

on the amount of code that he contributes, to allow for a fair assessment the total TD (V[2]) is 

normalized by dividing it with the number of modified lines (V[3]). 

[V5] Types of TD violations: This variable consists in a map of TD violation types and occurrence 

frequencies. It essentially captures the types of TD violations caused by the commits of each 

developer. 

[V6] Developer Maturity: Time between the first commit that each developer performed in the 

project’s history to the last commit that he contributed. It captures the developer’s maturity in 

the project. 
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3.3.2. Data Collection 

In order to analyze developers’ recent activity and contribution to Technical Debt the most recent year’s 

commit data for every examined project was obtained, via the GitHub API. This data includes commit 

information, such as the author of the commit, the number of changed lines of code, the modified files, 

the commit date and of course the commit id (hash) in the repository. Next, the TD of every project 

snapshot, corresponding to each commit, has been calculated using SonarQube16. SonarQube is a widely 

employed tool for assessing technical debt that quantifies the principal based on several axes of code 

quality (e.g., code duplications, metrics, styling conventions, etc.). In particular, the source code 

corresponding to each commit was iterated and performed TD analysis with SonarQube for every 

project snapshot. The entire process has been fully automated by executing the required commands 

within a bash script. 

Once the analysis for each project snapshot has been completed, commits have been grouped by 

developers and placed in chronological order. For every developer’s commit, the files that he/she 

modified have been identified, and their TD amount has been compared against the TD of the same files 

in the previous commit17 that involved those files. The difference in TD amount that was detected 

between two successive commits (ignoring the commits affecting other files) was added to each 

developer’s stack and eventually calculated the total contribution of each developer to the project’s 

technical debt principal. The process of obtaining the personalized principal contribution (delta of TD) 

based on two successive commits is illustrated in Figure 1. 

 

Figure 1. Process of obtaining TD deltas for each developer 

3.4. Data Analysis 

To answer the research questions stated in Section 3.1, using the variables described in Section 3.3, 

descriptive statistics and hypothesis testing (for RQ3) were employed. 

For checking whether the distribution of TD among developers is uniform or not (RQ1), the distribution 

will be presented as a bar chart. To provide a more systematic view into the distribution of TD, the Gini 

 
16 Available at: http://www.sonarqube.org 

17 For the special case where a file was created in a particular commit and thus did not exist in the previous commit, zero TD principal has 

been assumed for the previous commit 
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coefficient was calculated for each project. The Gini coefficient is a measure of statistical dispersion 

originally used for quantifying the inequality of income distribution [9]. The value of the Gini 

coefficient varies between zero and one. A Gini coefficient (or index) equal to zero implies perfect 

equality in the distribution (i.e. the case where all developers introduced the same amount of TD). A 

Gini index equal to one, implies maximum inequality (i.e. the case where one developer introduces the 

entire TD of the system while all others introduce no TD at all). 

To investigate whether developers have a tendency to introduce particular TD violations (RQ2) a 

heatmap was used. Columns correspond to the individual developers in each project (denoted by their 

ID) while rows correspond to identified TD violations as obtained by SonarQube. Frequently occurring 

violations are denoted by darker colors. A completely black cell indicates that the corresponding 

developer introduces only violations of one type (that corresponding to the row). In case the violations 

by a developer are distributed among many types, shading changes according to the percentage of 

violations of each type. 

Finally, to test whether developer maturity plays a role in the number and severity of violations that 

they introduced, the findings are displayed as scatterplots (developer age vs. normalized TD) and the 

hypothesis whether normalized TD depends on age is tested with correlation analysis. Since correlation 

analysis on the limited data points of each project leads to statistically insignificant results, for this 

research question a combined dataset from all projects has been formed. However, to avoid any biasing, 

the combined dataset contains developer maturity and introduced normalized TD expressed as a 

percentage: For each project, the maturity of each developer (in days) is divided with the maturity of 

the most experienced developer. Similarly, for each project, the normalized TD (i.e. TD/LOC) for each 

developer, is divided by the maximum normalized TD in that project.  

To further investigate whether developer’s maturity is related to the amount of introduced TD principal, 

an independent study t-test has been performed, by differentiating between less and more experienced 

developers (the age in days corresponding to 50% of the longest experience was used as threshold). The 

analysis strategy per research question is summarized in Table 2. 

Table 2. Data Analysis 

RQ Analysis Strategy 

RQ1 
Bar-chart illustrating distribution of TD [V4] among developers [V1] – Gini index for 

each distribution 

RQ2 Heatmap illustrating frequency and types of violations [V5] per developer [V1] 

RQ3 Scatterplot & correlation analysis between normalized TD [V4] and developer age [V6] 

Independent sample t-test, grouping variable [V6] (threshold 50%) and testing variable [V4] 

 

4. Results and Discussion 

This section presents the results of the study organized per research question along with an interpretation 

of the findings. 

4.1. Distribution of TD among Developers 

Figure 2 illustrates the distribution of the contributed TD during the examined time frame among the 

developers who performed commits in each project. To avoid biasing the results by the amount of code 
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written by each developer and thus ‘falsely blaming’ a developer, the added TD is normalized over the 

number of changed lines of code. On each chart the value of the corresponding Gini index is also shown. 

 
(a) Laravel (core) 

 
(b) Composer 

 
(c) Yii2 

 
(d) CakePhP 

Figure 2. Distribution of TD among developers 

The pattern observed in each plot presents similarities across projects. A limited number of developers 

(e.g. Developer-2 for Laravel and Developer-5 and Developer-11 for CakePHP) contribute a significant 

portion of the system’s technical debt (in terms of TD per line of code), while the majority of developers 

contribute significantly less violations. In a few cases developers even have a negative TD contribution 

meaning that they remove violations instead of introducing new ones when adding code. 

The distribution in general is far from uniform as it is confirmed by the Gini index which is remarkably 

similar in all projects. To provide an intuitive interpretation of the meaning of the Gini index, it is noted 

that a Gini value of 0.66 implies that 80% of the developers introduce approximately 1/3 of the system’s 

TD. The rest 2/3 is introduced by only 20% of the developers. Therefore, there is a small group of 

developers that produce significant amount of principal, whereas another larger set of developers 

produces less technical debt confirming the Pareto principle. 

It could be claimed that TD principal is not equally distributed across developers since at least one of 

them stands up as a main source of producing violations (and therefore introducing principal). On the 

contrary, there are cases in which developers consistently remove violations (i.e., repay TD). However, 

this observation is not consistent across all investigated projects 

  

Gini index = 0.66 
Gini index = 0.66 

Gini index = 0.65 

Gini index = 0.61 
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4.2. TD Violations per Developer 

Figure 3 illustrates the most common violations in each of the examined projects against the developers 

who introduce them, in the form of a heatmap. The darker the color the more violations of the 

corresponding type are introduced by the indicated developer. A row that is relatively dark across all 

developers implies a commonly occurring violation. On the other hand, a column with many dark cells 

implies a developer that generates many different types of violations. 

 
(a) Laravel (core) 

 
(b) Composer 

 
(c) Yii2 

 
(d) CakePhP 

 

Figure 3. TD violation types per developer 

The findings vary among projects, similarly to the total number of different violation types encountered 

in each project (22 violation types in Laravel to 30 types in CakePhP). Rows with many shaded cells 

indicate common violation types introduced by many developers. Such a violation is violation 

‘php:S1192’ (of critical importance) in all projects. According to SonarQube this violation indicates the 

presence of String literals which are duplicated, rendering the process of updating all occurrences in 

case of a change, error-prone. Another relatively common violation among developers in all projects is 
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‘php: S2037’ (of minor importance). SonarQube identifies as violations cases where a reference to a 

static class member from another method in the same class is not employing the “static::” keyword. 

This might lead to undesired behavior in the case of subclasses, as the original definition of the member 

is referenced, rather than the overridden one. 

Differences are also clearly visible between developers. Some developers introduce violations of many 

different types, as indicated by shaded cells in the corresponding columns. This is for example the case 

for the first three developers of project Laravel. In such cases, training actions focusing on the merits 

of smell-free code can be planned as part of a project’s management for selected members of the 

development team.  On the other hand, some developers produce violations of a very limited number 

of types, even of a single type. This is for example the case for developers with a single black cell in 

their column (i.e. 100% of their violations belong to that specific type). Although the latter information 

might be of limited value to a project manager, it could be useful as a self-assessment tool for the 

developer. The analysis points to the particular violations that a developer is inclined to introduce, and 

if he acknowledges their importance, can eventually modify his programming habits to eliminate them. 

In principal a large variety of violations can be identified in different projects, introduced by different 

developers. However, this dissertation points out specific frequently recurring violations for: (a) the 

same project, (b) the same developer, and (c) across all projects. 

4.3. TD vs. Developer Maturity 

The third research question aims at investigating the relation between a developer’s ‘age’ in the project 

and the TD that he introduced per line of code. The corresponding scatterplot for variables [V4] and 

[V6] is shown in Figure 4. The trendline in the chart indicates a very moderate negative correlation 

between developer maturity and introduced TD (note that both variables are expressed as ratio over the 

highest developer maturity and the highest TD/LOC in each project, respectively). However, the p-

value for Spearman correlation indicates that the results are not statistically significant (p = 0.753). 

Thus, there is no evidence to support the rejection of the corresponding null hypothesis (i.e. that no 

monotonic correlation between the two variables exist). 

 

Figure 4. Introduced TD versus developer maturity 

To further investigate whether developer’s maturity plays any role in the amount of introduced TD 

principal an independent study t-test has been performed. However, the results of the test have not 

suggested the rejection of the null hypothesis (sig: 0.8). Therefore, one cannot claim that there is a 

difference in the mean TD incurred by experienced and inexperienced software developers. 

However, despite the lack of statistical evidence it can be observed that a larger number of immature 

developers is concentrated in the top-20% most TD-incurring developers (5 immatures against 1 
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experienced). This finding, in conjunction with the declining trendline in the scatterplot opens up an 

interesting research direction. In particular, the identification of additional factors (apart from 

experience) that characterize the developer need to be investigated so as to more accurately profile 

which types of developers incur the most TD principal. 

The collected data were not able to provide enough evidence on the relationship between developers’ 

age and the amount of TD that they introduce. However, a negative trendline has been identified and 

80% of the most TD-introducing developers have been active for less than 33% of the project’s age 

(i.e., have low project-related experience). 

5. Implications of the Study 

Any performance analysis at the level of individual people might be viewed with skepticism. However, 

the provided perspective on a system’s TD and its actual causes might prove beneficial to the managers 

of software development teams and to the developers themselves. 

With respect to software project managers, resource allocation can benefit by assigning artifacts with 

increased technical debt interest probability to software engineers that tend to introduce less technical 

debt principal or even remove technical debt. In a similar line of thought, and without any intent to 

punish developers, managers could identify developers who impair software quality by introducing 

source code violations and technical debt instances and try to upgrade their coding habits, either by 

placing them next to more experienced developers or by calling them to reflect on their common 

violations. Appropriate guidelines or tooling to avoid the accumulation of particular violations can also 

be developed, based on the findings from previous projects. 

With respect to software developers, the results on the personalized assessment of technical debt can be 

a valuable self-improvement tool. Developers can identify recurring problems that they consciously or 

unconsciously introduce as well as their locations in code. Moreover, critically analyzing their own 

performance with respect to TD against the rest members of their team can highlight opportunities for 

improvement. 

Finally, the results of the study provide some useful research implications as well. First, the outcomes 

of the study suggest that an individual / personalized assessment of TD can be a meaningful research 

direction that unveils interesting relations that can guide TDM. Therefore, the topic deserves further 

investigation. Some tentative future research direction are as follows: (a) a personalized assessment of 

TD interest, (b) a detailed analysis of specific violations, with respect to their criticality, and (c) an 

elaborate personality / developers’ characteristics model that will provide a more accurate profile of 

TD-prone developers. 

6. Threats to Validity 

This section presents and discusses threats to the validity of the empirical study emphasizing on 

construct, reliability, external and internal validity threats, according to the classification by Runeson 

et al. [10]. 

Construct validity reflects to what extent the phenomenon under study (i.e. introduction of technical 

debt principal by individual developers) really represents what is investigated according to the research 

questions. By selecting a particular tool for quantifying technical debt, whereas other types of non-

identified technical debt exist, threats to construct validity emerge. However, SonarQube is a widely 

employed tool for the assessment of technical debt identifying a variety of design and code 

inefficiencies. 
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The reliability of a case study is related to the extent by which the collected information and the 

performed analysis can be replicated with the same results. To mitigate reliability threats, the design of 

the case study and the statistical tests that have been performed are explicitly reported. 

Internal validity threats are related to the identification of confounding factors, that is, variables, other 

than the implied independent variables (developer’s competence and maturity) which might influence 

the value of the dependent variable (introduced technical debt and technical debt types). Such threats 

do apply in the presented study, since introduced technical debt might be affected by the tasks assigned 

to (or chosen by) each developer. For example, a highly skilled and experienced developer might be 

inclined to take over the most complex and demanding tasks limiting his ability to control the introduced 

technical debt. 

Finally, as in any other empirical study, the results are subject to external validity threats. External 

validity deals with the possibility to generalize the findings. To mitigate this threat, four widely known 

PHP projects have been selected, which have evolved over a number of years. Nevertheless, further 

studies are required to thoroughly analyze the parameters that drive developers to introduce TD. 

7. Conclusions 

Software development is a complex activity requiring experience, skills and significant mental effort. 

Artifacts produced by developers are systematically analyzed in terms of quality, which recently is 

successfully captured by the Technical Debt metaphor. In this chapter, the relation between introduced 

TD principal and developers has been investigated, through a case study on four open-source PHP 

projects. 

The findings confirm the belief that developers’ competencies vary, since the distribution of technical 

debt among developers is highly imbalanced. Moreover, different developers introduce different 

technical debt violations; however, some recurring violations can be identified across developers and 

projects. Finally, there is no statistically significant evidence that more experienced developers 

introduce less technical debt per line of code. Such findings but more importantly the ability to perform 

a personalized assessment of technical debt can be a valuable tool for effective project management and 

self-assessment and improvement. 
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Chapter VI. FACTORS AFFECTING DECISION TO REPAY 

TECHNICAL DEBT 

 

The work of this chapter was published in the Proceedings of the 2018 International Conference on 

Technical Debt, TechDebt 2018 (Pages 62-66): 

Amanatidis, Theodoros & Mittas, Nikolaos & Chatzigeorgiou, Alexander & Ampatzoglou, Apostolos 

& Angelis, Lefteris. (2018). The developer’s dilemma: Factors affecting the Decision to Repay Code 

Debt. 10.1145/3194164.3194174. 

 

Chapter Summary 

The set of concepts collectively known as Technical Debt (TD) assume that software liabilities set up a 

context that can make a future change more costly or impossible and therefore repaying the debt should 

be pursued. However, software developers often disagree with an automatically generated list of 

improvement suggestions, which they consider not fitting or important for their own code. To shed light 

into the reasons that drive developers to adopt or reject refactoring opportunities (i.e. TD repayment), 

in this chapter, an empirical study on the potential factors that affect the developers’ decision to agree 

with the removal of a specific TD liability, is performed. The study has been addressed to the developers 

of four well-known open-source applications. To increase the response rate, a personalized assessment 

has first been sent to each developer, summarizing his/her own contribution to the TD of the 

corresponding project. Responds have been collected through a custom-built web application that 

presented code fragments suffering from violations as identified by SonarQube along with information 

that could possibly affect their level of agreement to the importance of resolving an issue. These factors 

include data such as the frequency of past changes in the module under study, the number of bugs, the 

type and intensity of the violation, the level of involvement of the developer and whether he/she is a 

contributor in the corresponding project. Multivariate statistical analysis methods have been used to 

understand the importance and the underlying relationships among these factors and the results are 

expected to be useful for researchers and practitioners in TD Management. 

 

1. Introduction 

According to A. Hunt and D. Thomas many developers are reluctant to start ‘ripping up’ their code 

(a.k.a. refactor) just because it isn’t quite right [1]. As they vividly put it, going to a boss or client and 

saying that a working piece of code needs another week to refactor it, would probably cause a response 

that cannot be printed. However, deferring a refactoring might incur technical debt (TD) requiring 

greater time investment to fix the problem down the road. 

Previous studies have shown that developers perceive and handle TD in different ways [2] and have 

distinct motivations for applying refactorings [3]. To shed light into the factors that drive developers to 

accept or reject automated suggestions for TD removal, this dissertation targets at developers of open-

source PHP projects with the following two main characteristics: (a) to increase their motivation for 

participating in the study each participant was provided, prior to requesting his feedback, with a 

personalized report on the TD that he/she has incurred to the project, and (b) to facilitate the collection 

of data a web application has been implemented to present individual code fragments suffering from an 

identified TD issue along with information on the parameters that might affect the developers decision 

to repay the TD or not. 
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2. Related Work 

There is a limited number of studies providing insights on the developer’s perception regarding the 

urgency to resolve code violations, which in turn lead to the accumulation of TD. In a recent study [4], 

the authors sent surveys to explore whether issues involving architectural elements lie among the most 

significant sources of TD. A number of 536 respondents replied (leading to a response rate of 29%) and 

the results showed that architectural issues are the greatest source of TD. Such issues are difficult to 

cope with and they dragged on for many years. Another explored subject was the existence of effective 

tools for managing TD. Respondents claimed that existing tools do not capture the key areas of 

accumulated problems related to TD. 

In a 2014 study [5], the authors investigated which bad smells are considered by the developers as the 

most harmful. The developers were given code snippets from three systems with twelve kinds of bad 

smells and were asked to rank the severity of the smells. Both original developers from the systems and 

outsiders (industrial developers) were included in the survey (a response rate of 40% was achieved). 

The results suggested that smells related to complex code are considered an important threat by 

developers.  

In another exploratory study [6], comments of four large open-source systems were used to identify 

self-admitted TD. The authors found that more experienced developers introduce most of the self-

admitted TD while time pressure and code complexity do not relate to the amount of self-admitted debt. 

In another study [7], 20 developers were interviewed to investigate why static analysis tools are not 

used during development. Participants claimed that static analysis tools are beneficial, but false 

positives, poor output and low customizability deter their use. Spinola et al. [8] chose 14 statements 

regarding TD and asked 37 practitioners if they agree with them. The statement “Not all technical debt 

is bad” lies among those with the maximum consensus. In other words, developers believe that there is 

a healthy level of TD in every system. 

Kim et al. [9] conducted a survey to examine developers’ perception regarding code refactoring. 

Participants responded that refactoring hides substantial cost and risks and further support is needed 

beyond automated refactoring within IDEs. However, a case study on Windows 7 highlighted the 

benefits of refactoring. The results showed that “refactored modules experienced higher reduction in 

the number of inter-module dependencies and post-release defects than other changed modules”. 

In another study which debated developers’ position about code refactoring [10], 20 refactoring 

practitioners were interviewed. Participants recognized the added value of a refactoring (code 

reusability), however if too much effort is needed, they may be reluctant to make refactoring decisions. 

Mäntylä and Lassenius [11] studied the refactoring decisions made by 37 students on a small Java 

application. According to participants’ responses, ‘Long method’ was the top driver for refactoring 

decision and poor readability along with poor understanding of the code were also among the most 

important drivers. 

3. Study Design 

The purpose of the current dissertation is to shed light on the factors that drive developers to resolve 

TD Items (TDIs) identified in their own code. To achieve this, four PHP open source projects on GitHub 

were analyzed to obtain commit activity and code debt information. Specifically, Composer, CakePHP, 

Laravel18 and Yii2 were included. Composer (composer/composer) is a dependecy manager for PHP, 

CakePHP (cakephp/cakephp) is a framework to build PHP applications and Laravel 

 
18 Laravel core (laravel/framework) 
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(laravel/framework) and Yii2 (yiisoft/yii2) are also well-known PHP frameworks. The criteria for 

selecting the aforementioned projects are as follows: 

- Projects had to be open source and actively maintained up until the time of this dissertation 

- Projects had to be widely used by the PHP community: Composer has 5 millions downloads, 

CakePHP has 2 millions, Laravel has 6 millions and Yii2 has 1 million. 

- Projects had to be maintained by many contributors: Composer has 600+ contributors, 

CakePHP has 500, Laravel has 400 and Yii2 has 800. 

- Projects had to be widely recognized by the PHP community: Composer has 11k stars on 

GitHub, CakePHP has 7k, Laravel has 35k and Yii2 has 11k. 

The history of the commit activity was retrieved via the GitHub API and the code base was analyzed 

by SonarQube19 to measure TD at every commit snapshot. It should be noted that the commit history 

includes the last year’s commit data of the projects for two main reasons: The aim of the study is to 

track the most recent developers’ activity in order to ask currently active developers to evaluate the 

importance of the code violations that SonarQube detected. For example, it would not be reasonable to 

approach a developer that pushed some commits two or three years ago without any recent activity, 

since he may be currently inactive. The second reason is that the analysis process with SonarQube is 

costly in terms of time and resources, especially in cases when the TD is measured for every single 

commit of the project. 

As in any similar study, the major challenge was to retrieve sufficient responses as previous experience 

has shown that people outside the academic community are not always willing to spare time to 

contribute to academic studies. To increase the likelihood of obtaining a response, the developers have 

been approached in a way that could potentially attract their interest, as described next. 

3.1. Personalized report to participants 

Prior to the request for participating in the evaluation of TD items (even just a single one), developers 

have been provided with a personalized report of their current activity including their commit density, 

contribution to the overall TD of the project (relatively to the rest of the developers) and the top-five 

code violations they insert into the code. The report for a random developer (with anonymized 

information) for project Yii2 is shown in Figure 1. The obtained response rate in this dissertation was 

35%. 

 

Figure 1. Anonymized TD report of a developer in Yii2 

 
19 https://www.sonarqube.org/ 

https://www.sonarqube.org/
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3.2. Set-up of the Study 

At the end of the report each developer was asked to evaluate TD items detected in the project under 

study. In the evaluation screen the developer was presented with a code violation (assessed TD item) as 

detected by SonarQube along with some information regarding the violation itself and the file in which 

the violation was found, so as to provide a spherical view of the TD item before answering. In particular, 

the evaluator was given the following information regarding the violation (see Figure 2): 

- Short description of the TD item 

- Suggested solution of the TD item 

- Tag categorization (serving as keywords of the TD item) 

- Severity of the TD item 

- Estimated time to fix the TD item 

- The name of the file in which the TD was detected 

- The revision of the file 

- The code snippet where the TD item was detected 

- 20The change frequency of the file (as percentage) 

- 21The issue fixing frequency of the file (as percentage) 

- 22The total technical debt of the file (as percentage) 

 

Figure 2. Evaluation screen for a TD item in project Yii2 

At the bottom of the screen the developers were asked to evaluate the urgency of the TD item to be 

fixed in a Likert scale (from 1 to 5), with 1 meaning “no need to solve it” and 5 corresponding to “it is 

urgent to solve it”. The developers’ response to this question served as the dependent variable in the 

statistical analysis. 

  

 
20 This indicates how often the file gets modified, relatively to other files. A percentage of 100% means that the file is the most 

frequently modified file. 

21 This indicates how often the file gets modified for issue fixing, relatively to other files. A percentage of 100% means that 

the file produces the most issues. 

22 This indicates the technical debt of the file, relatively to other files. A percentage of 100% means that the file has the highest 

technical debt. 
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4. Results and Discussion 

4.1. Statistical Analysis 

This subsection presents the descriptive statistics on the involved variables and inferential statistics 

regarding the relationship between the factors that have been considered (explanatory variables) and 

the agreement of a developer on the resolution of a TDI (dependent variable). Table 1 summarizes the 

distributions for the categorical variables of the study, whereas Table 2 provides the univariate 

descriptive statistics of the continuous variables, in which results were expressed as mean (M), standard 

deviation (SD), median (Mdn), minimum (min) and maximum (max). (Developer Participation 

indicates whether the participant contributed to the project in which the TD item was found, or not). 

Table 1. Frequency distributions for categorical variables 

  N % 

Developer  

Evaluation 

(Dependent) 

Very low 74 27.2 

Low 38 14 

Moderate 60 22.1 

High 49 18 

Very high 51 18.8 

Severity Info 15 5.5 

Minor 58 21.3 

Major 189 69.5 

Critical 10 3.7 

Debt characterization Changeability 14 5.3 

Maintainability 157 59.2 

Reliability 70 26.4 

Security 5 1.9 

Testability 19 7.2 

Missing 7  

Developer Participation 
No 105 38.6 

Yes 167 61.5 

Table 2. Descriptive statistics for continuous variables 

 N M SD min max 

Time to fix (in min) 272 10.71 14.28 1 60 

TD file (in min) 272 274.63 441.30 2 2828 

File modifications ranking 272 84.97 17.47 6 100 

File corrections ranking 272 36.18 40.91 0 100 
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In order to examine the relationship between explanatory variables and outcome responses (Developer 

Evaluation), the Generalized Estimation Equations (GEE) approach is adopted. GEE introduced by 

Liand and Zeger [12] can be considered as the extension of the Generalized Linear Model, suitable for 

taking into account the dependence among observations. As in this survey eighteen developers provided 

their evaluations, each one for one up to eighty-three TD items, there is an imperative need to handle 

the inherent dependence (or "developer effect"), stemming from the evaluations of the same developers 

to TD items. 

Describing briefly, consider a random sample of observations from 𝑛 subjects (responses on TD items). 

Let 𝑶𝑖
𝑇 = (𝑂𝑖1, … , 𝑂𝑖𝑛𝑖

)
𝛵

 be the column vector of ordinal responses provided by subject 𝑖 = {1, . . . 𝑠} 

where 𝑂𝑖𝑟 takes values in {1, … , 𝐶}. Also let 𝑿𝑖 = (𝑿𝑖1, … , 𝑿𝑖𝑛𝑖
)𝑇  be a 𝑛𝑖 × 𝑝 dimensional matrix of 

repeated 𝑝 covariates for subject 𝑖. Then, the model describing the correlation between the set of 

covariates and the conditional probabilities of each ordinal response is given by: 

𝑙[𝑃(𝑂𝑖𝑟 ≤ 𝑐|𝑿𝑖𝑟 = 𝒙𝑖𝑟)] = 𝛽0𝑐 + 𝒙𝑖𝑟𝜷1
𝑇     (1) 

For 𝑐 = 1, … , 𝐶 − 1, 𝛽0𝑐 the threshold parameter for level 𝑐, 𝜷1 the row vector of regression 

coefficients corresponding to covariates and with 𝑙 a known link function is denoted (logit function in 

this case). The selection of the explanatory variables was based on a backward elimination. 

The backward elimination procedure indicated that the covariates File Modifications Ranking, χ2(1) = 

0.030, p = 0.863, Time to Fix (in minutes), χ2(1) = 0.512, p = 0.474 and TD Files (in minutes), χ2(1) = 

1.482, p = 0.223 do not present a statistically significant main effect on responses and for this reason 

they were dropped out from any further analyses. The final model, after omitting insignificant 

predictors, indicated that Severity, χ2(3) = 15.625, p = 0.001, Debt Characterization, χ2(4) = 12.669, p 

= 0.013, Developer Participation (Binary), χ2(1) = 6.625, p = 0.009 and File Corrections Ranking, χ2(1) 

= 3.418, p = 0.064 presented statistically significant main effects on the developer evaluation for TD 

items.  

The parameters of the final model are presented in Table 3, in which the reference categories for factors 

Severity, Debt Characterization and Developer Participation are "Critical", "Maintainability" and 

"Yes", respectively. Interpreting the parameter estimates of the model for the factor Severity, the 

coefficient for the level Info (b = -3.070, SE = 1.374) indicates that the ordered logit for Info TD items, 

being into a higher evaluation response is -3.070 (χ2(1) = 4.990, p = 0.025) less than the reference 

category (Critical TD items). In other words, the odds for a Critical TD item to be evaluated into a 

higher category are 21.5 (1 𝑒−3.070⁄ ) times higher compared to an Info TD item.  

In addition, the model reveals a statistically significant difference between the odds ratio (OR) of Minor 

and Critical Severity, χ2(1) = 7.407, p = 0.006. Regarding Debt Characterization, the findings suggest 

that Testability debt (b = 1.363, SE = 0.539) is 3.9 times more likely to be evaluated into higher 

categories compared to Maintainability debt, χ2(1) = 6.391, p = 0.011.  

In addition, the parameter of the binary predictor Developer Participation, (b = 1.120, SE = 0.430) 

indicates that TD items presented to developers that have not participated in the project under study at 

all are almost 3 times more likely to be evaluated to higher categories compared to TDIs presented to 

developers who contributed to the project. Finally, the coefficient for the covariate File Corrections 

Ranking, (b = 0.007, SE = 0.004) indicates a marginally significant positive correlation between File 

Corrections Ranking and Developer Evaluation, χ2(1)=3.418, p=0.06. 
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Table 3. Parameters of the final model 

Parameter b SE 

Hypothesis Test 

OR 

95% OR 

χ2 df p Lower Upper 

Threshold23 Very low  -2.103 1.154 3.318 1 0.069 0.122 0.013 1.173 

Low -1.323 1.126 1.381 1 0.240 0.266 0.029 2.419 

Moderate -0.223 1.044 0.046 1 0.831 0.800 0.103 6.191 

High 0.861 1.053 0.669 1 0.413 2.366 0.301 18.615 

Severity:Info -3.070 1.374 4.990 1 0.025 0.046 0.003 0.686 

Severity:Minor -2.984 1.096 7.407 1 0.006 0.051 0.006 0.434 

Severity:Major -1.409 0.963 2.144 1 0.143 0.244 0.037 1.612 

DebtCharacterization:Changeability 0.481 0.290 2.742 1 0.098 1.617 0.915 2.857 

DebtCharacterization:Testability 1.363 0.539 6.391 1 0.011 3.908 1.358 11.241 

DebtCharacterization:Security -0.653 1.047 0.389 1 0.533 0.520 0.067 4.049 

DebtCharacterization:Reliability 0.143 0.266 0.288 1 0.591 1.153 0.685 1.942 

Developer Participation:No 1.120 0.430 6.783 1 0.009 3.066 1.319 7.123 

File Corrections Ranking 0.007 0.004 3.418 1 0.064 1.007 1.000 1.014 

Notes: Reference categories Severity:Critical, Debt Characterization:Maintainability, Developer 

Participation:Yes 

 

4.2. Discussion of the Results 

The distribution of developer responses to the question on whether they agree with the need to resolve 

a particular TD item are rather uniform, as in 41% of the violations their level of agreement was ‘very 

low’ or ‘low’, in 22% of the cases their level of agreement was ‘moderate’, while in 37% of the cases 

they agreed on the need to apply a refactoring for resolving an issue (level of agreement was ‘high’ or 

‘very high’). 

According to results of the Generalized Estimation Equations approach developers appear to be largely 

influenced by the severity of a TD issue (i.e. Critical, Major, Minor and Info as no Blocking issues were 

identified). For example, it is 21.5 times more probable that a Critical issue will be classified as needing 

resolution compared to an Info issue. This finding is reasonable, as the categorization of severity by 

SonarQube already distinguishes between issues. In other words, it is reasonable that a Critical code 

issue like “String literals should not be duplicated” is perceived as more urgent to be resolved than an 

Info code issue like “Comments should not be located at the end of lines of code”. 

The broader characterization of the TD issue also seems to have an effect on the developer’s decision. 

For example, if an issue pertains to Testability (like “Expressions should not be too complex”) it is 3.9 

times more probable to be considered as needing resolution than an issue related to Maintainability (like 

“Sections of code should not be "commented out”). Considering that the scanner employed for 

 
23 In this type of models threshold parameters that define transition points between adjacent categories are estimated for C-1 

levels 
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identifying rule violations in PHP code relied on static analysis, it is reasonable that issues related to 

Testability, Changeability and Maintainability are considered as more ‘real’ compared to 

security/reliability issues which in order to be accurate require further validation by run-time analysis. 

Finally, developers do not tend to accept suggestions for revising their own code: it is 3 times more 

likely that a developer who has not participated in a project agrees with a suggestion to remove a TD 

issue, than a developer who is a contributor. This might be related to the particular practices within the 

community of a software project where certain violations are not considered as harmful because the 

evolution of the project might have been unaffected by their presence. 

On the other hand, developers’ decisions appear to be unaffected by factors such as the frequency of 

modifications to the file under study (reflected in the Files Modifications Ranking variable), the time 

required to fix an issue and the total TD in the examined file. The last two findings could be related to 

a latent belief that automated quality analysis tends to overestimate the magnitude of problems and thus 

these factors might be subconsciously overlooked. The frequency by which a file undergoes 

modification, under normal circumstances, should be driving factor; for example, for a file that has 

never been the subject of maintenance there is probably limited urgency to resolve its TD issues. 

However, it appears that developers tend to focus on the problem per se, rather than the surrounding 

context. Of course, a relevant threat is related to whether the respondents really understood the concept 

of the presented variables. These findings can be valuable to researchers and practitioners by guiding 

the design of more efficient tools that suggest refactorings with a higher probability of being adopted 

by the developers. 

5. Threats to Validity 

In this section major threats to the validity of the present study are listed. With regard to statistical 

conclusion validity it should be stressed that the small sample size unavoidably affects the conclusions 

regarding the extent of the observed relationships between the explanatory and output variables. Further 

investigation by collecting a larger set of responses is required to increase the confidence in the 

identified relationships. With regard to the construct validity of the study, it should be acknowledged 

that despite the effort to facilitate the response of the participants, by offering an easy-to-use web 

application, it is not certain that they have correctly interpreted the presented pieces of information 

around the examined code fragment and TD issues. Finally, the conclusions should be cautiously 

generalized to other projects, languages, development models and proprietary software as this kind of 

studies are subject to external validity threats. 

6. Conclusions 

Existing software quality tools can yield extremely long lists of refactoring suggestions, deterring 

developers from adopting them. Thus, there is a need to determine which refactoring opportunities make 

sense for the developers depending on their background, nature and importance of the problem, 

surrounding code context, etc. This chapter presents the results from an ongoing study on various factors 

that potentially drive open-source software developers to accept or reject a suggestion to resolve a TD 

item. 
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Chapter VII. BENCHMARK OF TECHNICAL DEBT LIABILITIES 

 

The work of this chapter was submitted for publication (and revised) to the Empirical Software 

Engineering Journal (EMSE) 

 

Chapter Summary 

Software teams are often asked to deliver new features within strict deadlines leading developers to 

deliberately or inadvertently serve “not quite right code” compromising software quality and 

maintainability. This non-ideal state of software is efficiently captured by the Technical Debt (TD) 

metaphor, which reflects the addition-al effort that has to be spent to maintain software. Although 

several tools are available for assessing TD, each tool essentially checks software against a particular 

ruleset. The use of different rulesets can often be beneficial as it leads to the identification of a wider 

set of problems; however, for the common usage scenario where developers or researchers rely on a 

single tool, diverse estimates of TD and the identification of different mitigation actions limits the 

credibility and applicability of the findings. The objective of this chapter is two-fold: First, to evaluate 

the degree of agreement among leading TD assessment tools. Second, to propose a framework to capture 

the diversity of the examined tools with the aim of identifying few “reference assessments” (or class/file 

profiles) representing characteristic cases of classes/files with respect to their level of TD. By extracting 

sets of classes/files exhibiting similarity to a selected profile (e.g., that of high TD levels in all employed 

tools), a basis can be established that can be used either for prioritization of maintenance activities or 

for training more sophisticated TD identification techniques. The proposed framework is illustrated 

through a case study on fifty (50) open source projects and two programming languages (Java and 

JavaScript) employing three leading TD tools. 

 

1. Introduction 

Throughout the software lifecycle, practitioners speed up the development process by compromising 

software quality and maintainability in favor of shorter time-to-market. This compromise has been 

effectively captured by the concept of Technical Debt (TD), as coined by Ward Cunningham [1], 

offering an analogy to the financial debt. In financial debt, one party borrows capital from another party 

and repays it back with some added interest. In the TD metaphor, the development team ‘borrows’ a 

certain amount of effort by delivering non-ideal code and repays it gradually in future iterations in the 

form of additional time and effort to perform maintenance on the non-ideal code. The increased 

maintenance effort, which is caused by the degradation of software maintainability, is considered as the 

“interest” that the development team has to pay in the long term. In contrast to financial debt, TD is 

hard or even impossible to measure accurately. The suggested practice, according to the OMG 

specification on Automated Technical Debt Measure (ATDM)24, is to consider as principal of TD (at 

the source code level) the total effort required to eliminate TD items, which are inefficiencies that have 

been identified in a software artifact under an established ruleset. However, even if developers are aware 

of parts of the code that “do not feel right” it is challenging to associate an exact numerical estimate 

with every rule violation. Software modules evolve over time and subtle or major changes in their TD 

might be incurred by the transition from one commit to the next, rendering the accurate monitoring of 

TD even more demanding. 

 
24 https://www.omg.org/spec/ATDM/About-ATDM  

https://www.omg.org/spec/ATDM/About-ATDM
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The limitations on accurately measuring TD lead to various shortcomings in both academia and 

industry, in the sense that one cannot control (or manage) what he/she cannot measure [2]. Despite the 

fact that several tools are available for measuring and monitoring TD (notable examples include CAST 

AIP25, Squore26, and SonarQube27), either commercial or open-source ones, the community has not 

concluded on a state-of-the-art solution that could be used as a basis for measuring TD (a full list with 

TD measurement tools that were found during current research is presented in Section 2). Some 

shortcomings whose roots lie in the lack of a well-established way for assessing (i.e., measuring and 

identifying) TD principal, are presented in Figure 1. 

 

Figure 1. Shortcomings from diverse TD measurements 

Shortcomings in Research: The lack of a ground truth, even a commercial one, leads to construct 

validity threats in almost any kind of quantitative empirical study in the field, in the sense that it is not 

certain that any metric that attempts to capture TD principal is accurately measuring the real-world 

phenomenon. This problem does not lie only on limitations of the tools per se, but also on the underlying 

methodologies. In particular, each tool follows its own approach for detecting and measuring TD based 

on its own ruleset, while another tool might be based on an entirely different ruleset yielding a different 

amount for the total TD, but also pointing to different parts of the code that need to be mitigated. 

Moreover, there are several research efforts trying to associate TD items (i.e., violations of coding 

practices in software artifacts, which according to the OMG Specification on ATDM – see footnote in 

first page, are considered instances of TD principal) with quality attributes of software. For example, 

studies have focused on the relation between TD principal and the presence of crosscutting concerns in 

software requirements [3], the existence of modularity violations, code smells and static analysis issues 

[4], code size, duplication and complexity [5] and architecture flaws [6]. However, every such approach 

is heavily dependent on the employed tool for suggesting the ground truth, that is, the modules that 

 
25 https://www.castsoftware.com/  
26 https://www.vector.com/int/en/products/products-a-z/software/squore/squore-software-analytics-for-project-monitoring/ 
27 https://www.sonarqube.org 
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actually have TD liabilities and need to be fixed. Obviously, if each tool identifies high-TD modules in 

a different way, the generalizability of these approaches is threatened to a large extent. 

Shortcomings in Practice. Despite the widespread adoption of the TD metaphor, it is far from clear 

which tool IT managers should trust for monitoring TD, or deciding the mitigation actions to be applied. 

One option would be to employ more than one TD tools for the evaluation of their software, but this is 

a costly one, since most of the existing tools are available only with a commercial license. Moreover, 

someone should also consider the effort to deploy the tools on their premises, configure them properly 

and eventually familiarize development tools with their usage. In addition to that, even with the use of 

multiple tools, the union of all possible fixes suggested by different tools would yield an unrealistic 

amount of suggestions which would end up (even if they were accurate enough) to be useless in practice.  

Acknowledging the widespread adoption of the TD metaphor and the inherent limitation of existing 

tools to capture TD principal in a globally accepted way that best fits developers’ needs [7], this part of 

dissertation aims at: (a) systematically investigating the degree of agreement among state-of-the-art 

TD measurement tools on identifying and prioritizing TD principal (i.e. the effort to remediate 

inefficiencies) at class/file level; and (b) proposing an agreement-based benchmark approach that 

contributes to: (i) the exploration of all feasible assessments of TD principal provided by a set of 

alternative TD tools, (ii) the identification and characterization of few divergent “reference 

assessments” (or archetypes); and (iii) the extraction of a subset of modules for which all employed 

tools agree on the presence of a high amount of TD principal, thus serving as an agreement-based 

benchmark of the “validated” top-rated classes/files28 in terms of TD principal assessment. 

To achieve the former goal, a well-known inter-rater agreement coefficient is employed, namely the 

Kendall’s W coefficient of concordance [8]. Regarding the second goal (benchmarking process), the 

Archetypal Analysis (AA) [9] is adopted, which is a multivariate statistical methodology that explores 

a multidimensional space of measurements with the aim of identifying a set of few reference points, 

namely the archetypes, located on the boundaries of the swarm of given points. The derived archetypes 

(or reference points) represent divergent profiles in the examined space, whereas the methodology 

encompasses a mechanism for the evaluation of resemblance coefficients contributing to the evaluation 

of similarity for each point to the derived archetypes.  

To this end, three well-known tools that measure TD have been employed to analyze 50 open source 

projects (25 Java and 25 JavaScript projects). The results of the proposed methodology are 

automatically reported through a web-based interactive toolbox to facilitate researchers and software 

practitioners to reproduce and explore the findings of the current work and easily retrieve a suitable 

benchmark for further experimentation (e.g., the training of other statistical or machine learning 

approaches to identify TD items). The TD Benchmarker toolbox is implemented using the Shiny 

framework29 taking advantage of the R statistical language30 in an easy-to-use frontend. The toolbox is 

a free and academic on-going research project developed by Statistics and Information Systems Group 

(STAINS)31 at Aristotle University of Thessaloniki, Greece and is accessible through the paper’s web 

page32, at the website of the Software Engineering Group of University of Macedonia33, Greece.  

Apart from the empirical results and the extension of the body of knowledge in the field of TD 

management, an actionable outcome of this dissertation is the provision of an agreement-based 

benchmark set of the most high-TD classes as indicated by the three tools altogether. The agreement-

 
28 The term ‘class’ refers to the unit of analysis for Java projects, while the term ‘file’ refers to the unit of analysis for JavaScript 
projects. Throughout the paper the term ‘class’ is primarily used for simplicity, but both units of analysis are considered, 
accordingly.  
29 https://shiny.rstudio.com  
30 https://www.r-project.org  
31 http://stains.csd.auth.gr  
32 https://se.uom.gr/index.php/projects/technical-debt-benchmarking 
33 https://se.uom.gr  

https://shiny.rstudio.com/
https://www.r-project.org/
http://stains.csd.auth.gr/
https://se.uom.gr/index.php/projects/technical-debt-benchmarking
https://se.uom.gr/
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based benchmark is expected to alleviate the aforementioned limitations either directly or indirectly: 

regarding researchers the benchmark can be exploited for methodologies aiming at identifying TD items 

(targeting either high recall, or high precision), whereas it is also expected to aid practitioners since it 

will contribute to the development of novel tools that will be able to predict these items. More details 

on the implications of the benchmark for researchers and practitioners are provided in Section 5. 

The rest of the chapter is organized as follows: Section 2 presents available TD assessment tools that 

have been located throughout the current research, while it is also explained why the three TD tools 

were ultimately used. In Section 3, the case study design is presented along with the objectives, the 

research questions, the data analysis and the methodology. Section 4 presents and discusses results and 

in Section 5 the implications to researchers and practitioners are highlighted. Section 6 unfolds possible 

threats to validity while in Section 7 related work of previous studies on comparison of TD tools and 

benchmarks in software maintenance is provided. Finally, conclusions are discussed in Section 8. 

2. TD Assessment Tools 

This section discusses TD assessment tools that either have been proposed in the context of research 

efforts (usually open-source or free) or are available as commercial software, by providing a brief 

description of their capabilities. Then more details on the three tools that have been selected for this 

dissertation are provided, explaining the rationale for their selection. 

During the previous years, numerous TD assessment tools have emerged; these tools are able to measure 

TD either in terms of cost or effort/time to repay TD. To identify as many tools as possible, a non-

systematic literature search has been conducted, including grey literature (such as websites): 

• Literature search: Regarding literature search, it relied on the IEEE Xplore34 and ACM Digital 

Library35 search engines. The search string was applied on the title and abstract fields and had 

the following form: “technical debt” AND (measurement OR assessment OR estimation) AND 

(tool OR platform). The studies that have been returned from the aforementioned search were 

gathered and those which neither introduce nor mention any TD tool in their title or abstract 

were filtered out. 

• Web search: Throughout web search, major search engines such as Google, Bing and Yahoo 

were used, using the same query. The results led to either the landing pages of the websites of 

the companies that own the tools or articles introducing most well-known tools for assessing 

TD. 

Right below follows a short description of the TD assessment tools that have been located throughout 

the current research. For each tool the study and the year are provided in which it was first introduced 

or presented. The actual versions of the employed tools at the time of this dissertation are provided in 

the end of this section. 

AnaConDebt [10] is a tool that focuses on Architectural Debt. Since a change in the architecture of a 

project can be really expensive and time consuming it is important to decide if and when this change 

should be implemented. The tool uses a large list of internal and external factors to estimate more 

accurately the future principal and interest. It helps managers to decide when it is the right time to 

refactor the code of their software. 

CAST AIP [11] contains several sub-tools in order to provide the entire quality profile for the project. 

Health dashboard, Engineering dashboard, Security dashboard, CAST Appmark which is a 

 
34 https://ieeexplore.ieee.org 

35 https://dl.acm.org/ 

https://ieeexplore.ieee.org/
https://dl.acm.org/
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benchmarking base to use as a comparison standard and CAST Enlighten with Imaging system that 

offers a visualization of the project. This tool helps companies to perform "Shift Left" techniques to 

detect the issues of a project in early stages of its life cycle. This way the cost of fixing the issues is 

more tolerable. The tool implements the C-CPP, CISQ, CWE, NIST-SP-800-53R4, OMG-ASCQM, 

OWASP, PCI-DSS-V3.2.1 and STIG-V4R8 standards. By performing static analysis, a list of issues is 

created. Only a part of the problems will be solved and this part defines the technical debt metric.  

CodeScene [12] serves as a mean to preserve the quality of the code of the automated tests. It combines 

repository mining with static code analysis and machine learning. Static analysis can detect the 

problems in the project, but since the source code is treated as of the same importance, repository mining 

is necessary to recognize behavioral data and social factors that can affect future decisions of 

refactoring. The results of the metrics may have different meaning depending on the characteristics of 

each project. Machine learning is used to identify patterns in order to prioritize these metrics and assign 

them the appropriate weight. The final result of the tool is a catalogue with the problematic files ranked 

by their total impact. 

DebtFlag [13] is a tool for capturing, tracking and resolving technical debt in Java systems. It consists 

of two parts; one plug in for Eclipse IDE which is responsible to collect the data from the source code, 

and one web application to visualize the results. These two applications connect via a database. The 

collected data is structured using the TDMF form, which was extended to cover the tool's needs. The 

tool offers the results in such a way that can be used to manage technical debt in two levels; project 

level and implementation level with micromanagement. 

Debtgrep [14] is an inhouse tool developed by Ericsson 4G 5G Baseband and its purpose is to prevent 

technical debt. It uses a file where all rules are declared using regex. The rules can contain forbidden 

words to restrict the usage of API and deprecated methods and also guidelines for design and 

architectural rules. The rules can be applied only to a specific part of code such as new code. This tool 

supports the communication between the developing team members and enhance the consistency and 

the uniformity of the project. 

DV8 [6] is a commercial extension of Titan [15]. DV8 functions with DRSpaces [16], which are groups 

of system’s files that are architecturally related. Within DRSpaces, DV8 computes three modularity 

metrics (Decoupling level, Propagation Cost and Independence Level) and detects six architecture anti-

patterns (Clique, Package Cycle, Improper Inheritance, Unstable Interface, Crossing and Modularity 

Violation). DRSpaces (i.e. the subsets of architecturally related files) that are involved in a selected set 

of issues are called ‘architecture roots’. The tool calculates the added maintenance cost due to each 

instance of each anti-pattern, and the added maintenance cost of each architecture root. The source code 

analysis is performed by the Understand tool36. 

Kiuwan37 is a proprietary code analysis tool that supports numerous programming languages and is 

capable of integrating with several IDEs. It can be obtained under a commercial license and it can also 

be tested within a free trial period. 

NDepend [17] is a static analysis tool for .NET projects available in Visual Studio Market Place. It 

offers a variety of code quality metrics and a visualization of the dependencies in the project. The tool 

handles the source code as a form of database, and the user can define new evaluation rules using LINQ 

to perform queries on it. Other features of the tool include reporting service and the ability of 

comparison between the generations of the same project. 

SonarQube [18] is a widely known tool used to track the quality and maintainability of source code. 

The tool implements the MISRA, CWE, SANS and CERT rule standards to provide measurements 

 
36 https://scitools.com/ 
37 https://www.kiuwan.com/  

https://scitools.com/
https://www.kiuwan.com/
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regarding complexity, duplications, code issues, maintainability, quality gates in combination with 

technical debt, reliability, security, project size and test coverage. In addition, there are many plugins 

to extend the available utilities, such as WebDriver for Selenium test analysis or AEM Rules set for 

Adobe. The measurement of technical debt is an important component of SonarQube. The tool 

calculates the debt by multiplying the number issues of each type with the average time the specific 

issue type needs to be fixed. Then the time is multiplied with the cost for each man-day. The average 

time and the cost can be configured by the user. It uses the SQALE method and provides a technical 

debt pyramid to help making decisions prioritizing tasks. 

Squore [19] consists of three smaller tools. The first one, the analyzer, is used to collect data from 

different sources (source code, tests and hardware component information) and build the project's 

hierarchy tree. Then a more detailed measurement takes place for each one of the nodes based on the 

ISO, HIS, SPICE and MISRA rule standards. Last but not least, the tool also offers a dashboard for the 

visualization of the results. The tool can be a part of Jenkins continuous integration and can also 

recognize which files are most important to have Unit Tests in order to improve the efficiency. 

TD-Tracker [20] is a web application, which provides a structured way to create a catalogue with the 

issues in a project. The protocol, which is implemented, consists of three stages. For the first stage there 

is a data collector where the problems are identified and a list is populated. The input data can come 

from either an external source where, with appropriate mapping, the data can be stored directly to the 

database of the application, or the integration with GitHub. After finishing the collection, the second 

stage begins where a semi-automated task takes place. A user has to review the previous list with the 

issues, and decide which of them are actual problems that need to be solved. Then there is the third 

stage with the longest duration of all three. In this stage a user assigns tasks related to technical debt 

and also monitors the progress of them. 

TEDMA [21] is an open tool, which analyzes different indices related to technical debt during the 

evolution of a project. It is open to integrate with third party tools to extend the analysis. It consists of 

three layers. The first is called Data Layer and holds the processes used to gather information about the 

project, which is examined. Currently, Git repositories are used as data input. The second is the Service 

Layer where there are three basic services. (i) Data loader service is responsible for offering the source 

code in a processable form to the tool. Then analyzers such as PMD and Findbugs detect code smells 

and problems. (ii) Statistics service uses R to perform statistical analysis of the data. The analysis is 

performed at file level but it can be extended to other levels of abstraction. (iii) Technical debt 

management model service uses models in Java and R to support decision-making. The last layer is the 

Presentation Layer which is responsible for documentation and visualization. 

VisminerTD [22] is an open source web tool which monitors and manages technical debt comparing 

the results between different project's versions. When an issue is detected it can be tracked to determine 

whether its TD was paid off or not. It uses the Repository Miner tool to collect data and metrics from 

code repositories. VisminerTD uses queries to the database of the Repository Miner to gather the 

preferred information and present them to the user via a friendly interface. A set of graphical views are 

available to setup the search settings and then manage the technical debt items. 

Table 1 lists the tools that have been identified along with information, such as the website with contact 

or download information, the corresponding study in which it was first introduced or presented, the type 

of license under which the tool is available (commercial/free), the programming languages that the tool 

supports for static code analysis and the type(s) of TD that it captures (as identified in previous studies 

[23], [24]). TD types refer to specific categories of TD (e.g., architectural, design, code) or sub-

categories based on the cause of TD (e.g., architectural TD can be caused by architecture smells) [24]. 
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Table 1. List of identified TD assessment tools 

TD Tool (Website) Study License 

Supported Programming 

Languages 

Captured TD 

Type(s) 

AnaConDebt 

(https://anacondebt.com/node/7) 

(Martini and 

Bosch, 2016) 

[5] 

commercial Java Architectural 

CAST AIP38 

(http://www.castsoftware.com/) 

(Curtis et al., 

2012)  

[6] 

commercial Java, ASP, C/C++,  

Android, IOS, .NET, PHP, 

Python, ABAP, SQL  

(and more, see full list at 

website) 

Architectural, Code, 

Defect 

CodeScene 

(https://codescene.io/) 

(Tornhill, 2018) 

[7] 

commercial C/C++, C#, Java, 

JavaScript, TypeScript, 

Python, Go, Visual Basic 

.Net, PHP, Ruby 

(and more, see full list at 

website) 

Code, Design 

DebtFlag (-) (Holvitie and 

Leppänen, 2013)  

[8] 

- Java Code 

Debtgrep (-) (Arvedahl, 2018) 

[9] 

Inhouse use 

only 

Language agnostic Architectural, Code, 

Design, People 

DV8 

(https://archdia.com/pages/dv8-

user-guide) 

 

Understand:  

third party tool for source code 

analysis  

(https://scitools.com/) 

(Nayebi et al.) 

[6] 

commercial Java, JavaScript,  C/C++, 

C#, Python , PHP  

and more 

(see full list here: 

https://scitools.com/feature

/supported-languages/) 

Architectural 

Kiuwan 

(https://www.kiuwan.com/) 

- commercial ASP.NET, C, C#, C++, 

Java, JavaScript, JSP, PHP, 

Python, VB.NET, SQL, 

Ruby  

(and more, see full list at 

website) 

Code 

NDepend 

(https://www.ndepend.com/) 

(Chopra and 

Sachdeva, 2015) 

[10] 

commercial .NET Architectural, Code, 

Design, Test 

SonarQube 

(https://www.sonarqube.org/) 

(Campbell and 

Papapetrou, 2013)  

[11] 

free  C/C++, C#, CSS, Go, 

Java, JavaScript, PHP, 

Python, Ruby, TypeScript, 

VB.NET  

(and more, see full list at 

website) 

Architectural, Code, 

Design, Defect, Test 

Squore 

(https://www.squoring.com/en/p

roduits/squore-software-

analytics/) 

(Baldassari, 2013)  

[12] 

commercial Ada, C, C++, C#, Java, 

Cobol, PL, SQL, ABAP, 

PHP, Python 

Code, Test 

 
38 We will refer to it as “CAST” from this point on 
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TD Tool (Website) Study License 

Supported Programming 

Languages 

Captured TD 

Type(s) 

TD-Tracker 

(http://www2.fct.unesp.br/grupo

s/lapesa/tdr/) 

(Foganholi et al., 

2015)  

[13] 

free 

 

Java, JavaScript, PLSQL, 

Apache Velocity, XML, 

XSL 

Code, Design, 

Defect, 

Documentation, 

Infrastructure, Test 

TEDMA (-) (Fernández-

Sánchez et al., 

2017) 

[14] 

- Java Architectural, Code 

VisminerTD 

(https://visminer.github.io/) 

(Mendes et al., 

2019) 

[15] 

free Java Architectural, Build, 

Code, Design, 

Defect, 

Documentation, 

Requirement, 

People, Test 

 

Employed TD Assessment tools. Despite the goal to include in the study as many tools as possible, it 

has not been possible to employ all of the above tools for the measurement of TD for the target systems. 

Each tool had to fulfill the following conditions in order to be included in the study. Table 2 presents 

which tools have been included in the study and which have been excluded (failing to satisfy all of the 

following conditions). 

• Condition 1: The tool had to be accessible somehow (download link, ftp server, etc.) with 

comprehensive and sufficient documentation. 

• Condition 2: The tool had to be able to analyze Java and JavaScript code (as the target systems of 

the study are open source Java and JavaScript projects). 

• Condition 3: It was necessary to be able to obtain academic or research license for commercial or 

proprietary tools. For non-proprietary tools the condition was considered fulfilled. 

• Condition 4: The tool had to provide an aggregate TD Principal index at class/file level, expressing 

effort in time or monetary terms, to remediate the identified inefficiencies (OMG Specification on 

ATDM39). Estimation of TD only at project level cannot be exploited to extract a benchmark set of 

most high-TD classes (for Java projects) and files (for JavaScript projects). This criterion is 

important for guaranteeing the uniformity of tools’ output, so that the results are comparable 

  

 
39 https://www.omg.org/spec/ATDM/About-ATDM 
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Table 2. List of TD tools with the conditions that they satisfied for their inclusion 

TD Tool Condition 1 Condition 2 Condition3 Condition 4 Tool used? 

AnaConDebt ✓ X X  no 

CAST ✓ ✓ ✓ ✓ yes 

CodeScene ✓ ✓ ✓ X no 

DebtFlag X X ✓  no 

Debtgrep X ✓ X  no 

DV8 ✓ ✓ ✓ X no 

Kiuwan ✓ ✓ X  no 

NDepend ✓ X ✓  no 

SonarQube ✓ ✓ ✓ ✓ yes 

Squore ✓ ✓ ✓ ✓ yes 

TD-Tracker ✓ ✓ ✓ could not deploy no40 

TEDMA X X ✓  no 

VisminerTD ✓ X ✓  no 

*In case a tool did not fulfill Conditions 1 - 3 or could not be successfully installed and deployed, Condition 4 could not be 

checked and thus the field was left blank. 

Ultimately, three tools were included in the study, namely CAST (version 8.3, year 2018), Squore 

(version 19.0, year 2019), and SonarQube (version 7.9, year 2019). All three tools are major TD tools, 

widely adopted by software industries and researchers and actively maintained, including 

comprehensive documentation. 

3. Case Study Design 

3.1. Goal and Research Questions 

The goal of this chapter described according to the Goal-Question-Metric (GQM) approach [25], is as 

follows: “analyze the TD of software projects for the purpose of assessing the level of agreement of 

state-of-the-practice TD assessors (tools) and forming agreement-based TD benchmarks of high-TD (or 

low-TD) classes with respect to the estimated level of principal, from the point of view of software 

researchers and practitioners in the context of Technical Debt Management (TDM)”. For the sake of 

generalization, the assessment of the level of agreement among tools was performed for two 

programming languages, namely Java and JavaScript. The analysis of the two populations enables a 

meta-analysis in which it can explored if the use of a different language has an effect on the level of 

agreement. The exploration of the programming language as a factor affecting the level of agreement 

between tools is performed for each one of the following research questions: 

RQ1: To what extent do the assessors (tools) agree in the ranking of classes in terms of TD 

measurement? 

RQ1 aims at investigating the degree to which widely employed TD tools agree upon the 

identification and assessment of TD at class level. The investigation of this RQ provides an insight 

to the diversity of the rules examined by each tool, in the sense that a low level of agreement 

essentially means that tools check for different rule violations. With a non-satisfying degree of 

agreement, it would be pointless to proceed with the benchmarking process and seek classes, which 

are identified as equally high-TD (or low-TD) by all assessors. Thus, RQ1 serves as a gate for the 

rest of the study.  

 
40 TD-Tracker was not included because it was not possible to install and deploy it successfully. 
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RQ2: How many archetypes (reference assessments) are required to capture the diversity of the tools?  

The TD of classes in any examined system, as measured by the employed tools, form a set of 

observations in a multidimensional space, in which each dimension represents TD evaluations 

provided by a specific tool. RQ2 aims at exploring this multidimensional space and determine the 

optimal number of archetypes, located on the boundaries of this space, so as to efficiently capture 

the diversity of all feasible assessments provided by the set of the examined TD tools. For example, 

this RQ can answer, whether few reference assessments are able to approximate the convex hull of 

the TD evaluations, which practically means low diversity among TD assessors or whether a higher 

number of archetypes would be required to accurately characterize the spectrum of TD 

measurements for a given system. 

RQ3: Which are the characteristics of the extracted archetypes? 

RQ3 aims at characterizing the extremal points that accurately encompass the space of TD 

measurements for all examined classes. The identified reference assessments essentially form a set 

of distinct archetypes, i.e., class profiles according to the measured level of TD. Two expected 

archetypes correspond to the profiles of classes having high or low TD based on the results of all 

employed tools. However, other archetypes may be identified based on the shape of the space of 

the obtained TD measurements.  

RQ4: Which classes should be selected to form an agreement-based benchmark of top-TD modules? 

To facilitate the work of developers or researchers who seek a golden set of classes that can be 

safely assumed to be high-TD or low-TD, this RQ aims at formally extracting sets of classes which 

are close to a selected class profile or archetype. Retrieving for example the classes, which are in 

the close vicinity of the archetype depicting high TD in all employed tools, a development team can 

be confident that these classes suffer significantly from rule violations. Similarly, a researcher can 

use such a benchmark for training effective machine learning techniques to identify TD based on 

different parameters of the code, people or processes involved in the development.  

3.2. Selection of Cases 

For this case study fifty (50) open source projects were analyzed (listed in Table 3). The selected 

projects, which are 25 Java and 25 JavaScript projects, have been analyzed considering their classes 

(for Java) and their files (for JavaScript) as units of analysis. The choice of classes/files as units of 

analysis allows us to trace the existence of TD at a low level of granularity, providing a common ground 

for comparison among the three tools. The criteria for selecting the 50 projects were the following: 

• All cases had to be Java and JavaScript projects stored on public repositories. 

• All selected cases had to be among the most popular repositories, with more than 3K stars in 

GitHub. 

• In order to obtain a representative dataset, the selected projects had to vary in terms of size, per 

language. 

• All cases had to be actively maintained till the time of this dissertation. This was not a strict 

criterion since projects with a release around the last year before the project selection process 

were not excluded from the study. 

3.3. Data Collection 

The source code (excluding test files) of each project was analyzed three times: one time for each of 

the employed TD tools. All three tools provide a metric of the total effort needed to eliminate technical 

debt in each class/file. This is the metric that was chosen for analysis since it provides a common ground 

for comparison. An issue that had to be addressed was that each tool has a different way to provide the 

results of its analysis. It was necessary to convert the result sets from each tool to the same form so as 

to proceed with further data processing. 
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• SonarQube has a WEB API available, so with the use of appropriate tools the results have been 

gathered in json format. The API allows the filtering of the results in order to exclude test and 

properties files. SonarQube provides the results grouped by file. Besides file name, the number 

of the issues for each severity level, blocker, critical, major, minor and info, was summed up to 

the total amount of issues of each class. All of them contribute to the SQALE index of the file, 

which is the metric depicting the effort to eliminate TD. 

• Squore provided the results in .csv files, which could be exported through platform’s user 

interface. In this case a parser was necessary to read the .csv files. Using the previous 

SonarQube exports as reference, the files were filtered to exclude test and property files as 

before. Blocker, critical, major and minor issues were summed up to get the total issues for 

each class. Technical debt metric is provided in man days and man hours and it had to be 

converted in minutes to form a canonical technical debt index with the same units as for the 

previous tool. 

• CAST provides metrics for the total project and not per file through its user interface. In this 

case, the results were retrieved directly from the database schema that the software uses during 

the code quality analysis. With appropriate SQL query, which was provided by the CAST team, 

csv files were extracted containing a list of total occurrences of each issue per class. With a 

new parser these issues were grouped, aggregating the TD in minutes and the total violations 

per class. Then again, the files of the classes were filtered with those of SonarQube as reference 

(test and property files were filtered out). 

To obtain a common and structured form of the results, the exports from the tools were transformed 

into XML files. As a result, an XML file per project for every tool was generated. The XML contains 

all the classes/files with some TD in the system, along with the total issues detected in the class and the 

amount of TD as calculated by the corresponding tool. With the results in the same form it was possible 

to merge them into a single dataset. This dataset was finally grouped by class for Java and by file for 

JavaScript projects, containing the path of the file and the TD of the class/file as calculated by each 

tool. The dataset for the 25 Java and the 25 JavaScript projects can be found in the paper’s web page41. 

 
41 https://se.uom.gr/index.php/projects/technical-debt-benchmarking 

https://se.uom.gr/index.php/projects/technical-debt-benchmarking
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Table 3. Characteristics of analyzed projects 

Java JavaScript 

Project Description LOC Version Project Description LOC Version 

arduino Physical computing platform 27K 1.8.10 ace Code editor 117K 1.4.8 

arthas Java Diagnostic tool to troubleshood production issues 28K 3.1.7 angular.js Web development framework 53K 1.7.9 

azkaban Workflow manager 79K 3.81.0 atom Text editor 138K 1.44.0 

cayenne Java object to relational mapping framework 348K 3.1.2 bluebird Promise library 20K 3.7.2 

deltaspike CDI management 146K 1.8.2 bower Front end package management 10K 1.8.8 

exoplayer Android media player 155K 2.11.1 brackets Code editor 129K 1.14.1 

fop Print formatter using XSL objects 292K 2.3 Chart.js Chart designer 10K 2.9.3 

gson Java library to convert Java Objects to JSON 25K 2.8.6 exceljs Excel Workbook Manager 23K 3.8.0 

javacv Wrappers of commonly used libraries 23K 1.5.2 fabric.js Framework for HTML5 canvas element 20K 4.0.0 

jclouds Toolkit for java cloud applications 482K 2.0.2 jquery Javascript library 20K 3.4.1 

joda-time Date and time handling 86K 2.10.5 karma Tool for test driven development 5K 4.4.1 

libgdx Game development framework 280K 1.9.10 Leaflet Mobile friendly interactive maps 24K 1.6.0 

maven Software project management and comprehension tool 106K 3.5.4 less.js Language extension for CSS 12K 3.11.1 

mina Network application framework 35K 2.0.19 moment Parsing validating manipulating and 

formatting dates 

183K 2.24.0 

nacos Cloud application and microservices build and 

management 

60K 1.1.4 mongoose Tool for MongoDB object modeling 22K 5.8.12 

opennlp Natural Language Processing toolkit 93K 1.8.4 mysql MySQL protocol implementation 8K 2.18.1 

openrefine Data management 69K 3.2 node Node.js JavaScript runtime 130K 13.9.0 

pdfbox Library of processing pdf documents 213K 2.0.9 pdf.js PDF viewer 69K 2.2.228 

redisson Java Redis client and Netty framework 133K 3.12.0 plotly.js Chart design library 92K 1.52.2 

RxJava Composing asynchronous and event-based programs 

with observable sequences 

310K 3.0.0 pm2 Production process manager 15K 4.2.3 

testng Testing framework 85K 7.1.1 prettier Code formatter 25K 1.19.1 

vassonic Performance framework for mobile websites 7K 3.1.1 sails Realtime MVC Framework for Node.js 10K 1.2.2 

wss4j Java implementation for security standards in web 

applications 

136K 2.2.2 sequelize Node.js ORM 17K 5.21.4 

xxl-job Distributed task scheduling framework 9K 2.1.2 webpack Bundler for js files for usage in a browser 36K 4.41.6 

zaproxy Security tool 187K 2.9.0 yarn Dependency management 24K 1.22.0 
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3.4. Data Analysis Methodology 

This section presents background information necessary for facilitating the understanding of the statistical 

methodologies used to address the research questions of the current part of dissertation. 

3.4.1. Inter-rater Agreement (RQ1) 

For the formal representation of the experimental setup, consider that the collection of TD assessments 

generated by all three tools, as described in Section 3.3, resulted in a 𝑛 × 𝑝 matrix (Table 4), in which, each 

row represents a class, whereas each of the 𝑝 column vectors provides the rankings of TD measurements 

evaluated by a specific tool for a given class. At this point, it should be clarified that in the proposed 

approach the rankings instead of the raw TD measurements have been utilized, since the intention was to 

keep the dataset immune to variations of TD measurements due to different scales among the three tools. 

Indeed, a tool might follow a stricter ruleset for the measurement of TD which might result in much higher 

TD of classes compared to the assessments of the rest of the tools. However, the ranking of the 

measurements among all tools remain unaffected by absolute values and thus is a more suitable approach 

for comparison. As far as the ranking mechanism concerns, the fractional ranking approach was adopted, 

in which the sample ranks of the values in a vector are computed, whereas in cases of ties the average of 

the ordinal rank (or fractional rank) is assigned to each tied observation.    

Table 4. Representation of the dataset from the TD assessment results from each employed tool42 

Class Tool 1 Tool 2 … Tool p 

𝐶1 𝑟11 𝑟12 … 𝑟1𝑝 

𝐶2 𝑟21 𝑟22 … 𝑟2𝑝 

… … … … … 

𝐶𝑛 𝑟𝑛1 𝑟𝑛2 … 𝑟𝑛𝑝 

 

For reasons of simplicity, the methodology of the proposed framework is presented on a demonstrative 

example (opennlp project) utilizing the TD assessments from two tools (CAST and Squore). In this case, 

the TD assessments can be visualized through a scatter plot (Figure 2), in which each point represents a 

specific class with coordinates the TD rankings evaluated by the CAST (𝑥-axis) and Squore (𝑦-axis) tools. 

The exploration of the pattern for the swarm of points provides certain information regarding the agreement 

of the employed tools. More precisely, it seems that there is a subset of classes lying to the upper right 

corner that are identified as the most high-TD (high rankings for TD measurements) by both tools. On the 

other hand, the inspection of the graph indicates also that Squore identifies a subset of classes that 

accumulate the lowest TD assessments but at the same time, these specific classes present an amount of TD 

ranging from the lowest up to the highest ranks according to the CAST tool. Finally, there is also a small 

number of classes assessed as high-TD by the Squore tool, but at the same time, the CAST tool tags them 

as classes accumulating a relatively small amount of TD. Hence, a critical question that deserves further 

investigation is the extent to which these tools agree upon the assessments of TD for a given set of classes.  

 

 
42 Although 3 tools have been used, the theoretical presentation of our approach is generalized for p tools 
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Figure 2. Scatter plot for rankings of TD measurements of opennlp project as evaluated by TD tools (CAST, 

Squore) 

To this regard, a statistical measure, namely the Kendall’s W coefficient of concordance [8] is employed, 

which belongs to the broader branch of methodologies known as inter-rater agreement analysis. In general, 

there is a plethora of measures for evaluating the agreement among assessors and the choice should be 

based on (i) the total number of assessors that assign to each subject a unique measurement (or rating), (ii) 

the scale of measurement (nominal with two or more categories, ordinal, continuous scale) that is assigned 

to each subject and (iii) the objectives of the analysis [26]. More specifically, the Scott’s 𝜋 [27] and Cohen’s 

𝜅 [28] are well-known measures for inter-rater agreement on a nominal dichotomous (No/Yes, 

Negative/Positive) scale that can be used in cases, where there are exactly two assessors. For the case of 

multiple assessors (more than 2) on nominal (either dichotomous or with multiple categories) or ordinal 

scales, the Fleiss’s 𝜅 [29], which is a generalization of Scott’s 𝜋 coefficient and the weighted Cohen’s 𝜅 

[30] are possible choices that take into account not only the agreement but also the disagreement among 

them. All the aforementioned coefficients share the same rationale that is to evaluate and statistically test 

whether the average agreement between two (or more assessors) is significantly different than chance. An 

additional problem to the ordinal ratings, besides the fact that agreement and disagreement are no longer 

distinct notions [26], is the fact that there is another kind of agreement that may be of interest. This can be 

defined “as the agreement among raters with respect to the ranking of subjects” [26], which, in our case, is 

related to the process of evaluating whether all assessors, agree on which classes are the highly-ranked, the 

second highly-ranked and so on. In this case, the selection of the most appropriate agreement coefficients 

should belong to the branch of measures of concordance [26], since in general the variation of kappa 

statistics evaluate the absolute agreement between ratings, while concordance coefficients measure the 

association between ratings. Finally, a well-known limitation of kappa statistics is their dependence on the 

number of categories of the response measurement, since they tend to be generally higher, when there are 

fewer categories [31]. 
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Summarizing, the choice of Kendall’s W concordance coefficient instead of other kappa measures of 

agreement was based on the facts that (i) it serves in a straightforward manner the investigation of RQ1, 

which is related to the evaluation of the degree of agreement among TD measurement tools and (ii) it 

handles in an appropriate way the characteristics of the experimental design, which involves three TD 

assessment tools (CAST, Squore, SonarQube) and the derived rankings ranging from 1 up to 𝑛 (the total 

number of the examined classes).  Due to the existence of a high number of tied ranks in each tool (Figure 

2), a modification of the original statistic that provides a correction for ties is employed. The Kendall’s W 

statistic [32]  is defined as 

𝑊 =
12 ∑ 𝑟𝑖

2𝑛
𝑖=1 3𝑝2𝑛(𝑛+1)2

𝑝2𝑛(𝑛2−1)−𝑝𝑇
     (1) 

where, 𝑛 is the total number of the examined classes, ∑ 𝑟𝑖
2𝑛

𝑖=1  is the sum of the squared sums of ranks for 

each of the 𝑛 classes and 𝑝 is the total number of the examined tools (three in our case). The term 𝑇 is a 

correction factor for tied ranks that is evaluated via the following formula  

𝑇 = ∑ (𝑡𝑘
3 − 𝑡𝑘)𝑔

𝑘=1       (2) 

in which, 𝑡𝑘 is the number of tied ranks in each of 𝑔 groups of ties, whereas the sum is evaluated over all 

groups of ties found in all 𝑝 tools of Table 4. Kendall’s W can take a range of values from 0 (indicating no 

agreement) to 1 (indicating a perfect agreement among assessors). In addition, Schmidt [33] provides 

specific guidance through rules of thumb on how researchers should interpret experimental results based 

on the evaluation of the Kendall’s W statistic. More specifically, a coefficient of 0.7 or higher can be 

interpreted as a strong agreement among the set of assessors. For example, the evaluation of the Kendall’s 

W concordance coefficient for the set of classes of our demonstrative example indicates a statistically 

significant strong agreement between the CAST and Squore tools regarding their TD assessments, 𝑊 =

0.874, 𝑝 < 0.001. 

3.4.2. Benchmarking through Archetypal Analysis (RQ2 – RQ4) 

From what was already mentioned, there are several available tools for assessing TD, whereas each tool is 

based on a different ruleset that may result to divergent TD assessments for a given project. Although, this 

fact could lead to the identification of alternative mitigation actions, the empirical evidence reveals that 

software practitioners and development teams usually base the measurement process of TD on a single tool. 

Having in mind that there is no ground truth for assessing TD, there is an imperative need for the empirical 

examination of the diversity produced by the utilization of a set of alternative TD tools. Indeed, the findings 

from the indicative example discussed in the previous section revealed that despite the fact that there is a 

strong agreement between the assessments provided by the two examined tools, the tools also disagree upon 

the measurement of TD of some classes. 

Towards this direction, an agreement-based benchmark approach is proposed, contributing to the empirical 

characterization of the assessments provided by a set of 𝑝 alternative tools with respect to the derived TD 

evaluations for a given set of 𝑛 examined classes. The benchmark framework is based on a statistical 

approach, namely Archetypal Analysis (AA) [9]. Describing the general principles of the methodology, AA 

is a data-driven multivariate method that explores a multidimensional space of points (or observations) with 

the aim of identifying certain observations, namely the archetypes, located on the boundaries of a swarm 

of given points (or convex hull). An interesting property of the methodology is the fact that the swarm of 

points can be represented as convex combinations of the archetypes. The latter provides a straightforward 
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mechanism supporting the identification of a subset of points that are closer to a specific archetype, which 

in turn, can be used for benchmarking purposes. 

In our context, the input for AA is the 𝑛 × 𝑝 matrix (Table 4) representing the rankings of TD assessments 

derived from the analysis conducted through the utilization of a set of 𝑝 tools for a given project with 𝑛 

classes. The algorithm of AA seeks for a matrix 𝑍 of 𝑘 × 𝑝, where 𝑘 and 𝑝 are the number of archetypes 

and dimensions, respectively through the computation of two coefficient matrices 𝑎 and 𝑏 minimizing the 

residual sum of squares (RSS) defined as 

RSS = ‖𝑋 − aZ𝑇‖
2
with 𝑍 = 𝑋𝑇𝑏     (3) 

where ‖ ‖2 denotes the Euclidean matrix norm, subject to the following constraints: 

∑ 𝑎ij
𝑘
𝑗=1 = 1 with 𝑎ij ≥ 0 and 𝑖 = 1,..., 𝑛     (4) 

∑ 𝑏ji
𝑛
𝑖=1 = 1 with 𝑏ji ≥ 0 and 𝑗 = 1,..., 𝑘     (5) 

These constraints frame the two general properties of AA which are: (i) the approximated data (swarm of 

points) are convex combinations of the archetypes, i.e. 𝑋 = aZ𝑇 , and (ii) the archetypes are convex 

combinations of the data points, i.e. 𝑍 = 𝑋𝑇𝑏. The term “convex combination” refers to the linear 

combination of points, when all coefficients are non-negative and their sum is equal to 1. Computationally, 

the algorithm reduces the RSS in Eq. (3) by iteratively calculating the archetypes along with the coefficient 

matrices 𝑎 and 𝑏. Summarizing, the archetypal solution provides an approximation of the convex hull 

defined by the swarm of points in the multidimensional space through the evaluation of a few, not 

necessarily observed points, lying on the boundaries of the observed points.  

Due to the intuitive rational and interesting properties of AA, the method has been widely used for 

benchmarking purposes in many scientific domains [34], e.g. such as marketing [35], astrophysics [36], 

sports analytics [37], biology [38], medicine [39], scientometrics and bibliometrics [40], multi-document 

summarization [41], neuroscience [42] etc. In Software Engineering, AA has been introduced in [43], [44], 

in which the objectives were the evaluation of the predictive capabilities of a set of Software Effort 

Estimation (SEE) models and the building of ensembles using a subset of inferior models, whereas in [45], 

the authors explored psychometric data in order to extract different software engineers profiles based on 

measurements from their personality and behavioral characteristics. 

Following a similar approach to [46], in this dissertation, AA constitutes the core methodology of a three-

step process that facilitates the examination of the diversity of TD assessments provided by a set of 

alternative tools with the aim of identifying a set of classes exhibiting similarity to a selected archetype that 

can be used, in turn, for benchmarking purposes. Such classes can, for example, be classes with increased 

levels of TD as measured by all three tools, or TD-clean classes, which present limited inefficiencies. The 

three basic steps of the proposed approach summarized into the following points constitute the basis of the 

methodology for providing answers to RQ2 - RQ4: 

1. Identification of archetypes representing the reference assessments through the exploration of the 

diversity of TD assessments derived from the set of employed tools (RQ2).   

2. Reification of archetypal solution into the context of TDM through the identification of their 

characteristics (RQ3).  

3. Identification and retrieval of a set of classes that are close to archetypes depicting either high TD 

or low TD assessments as suggested by all employed tools (RQ4).    
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The implications of the three previous steps are clearly demonstrated through the application of the 

approach on the indicative example described in previous section. In Figure 3, the boundary of the grey 

area defines the convex hull of all TD assessments derived from the CAST and Squore tools through the 

examination of classes from opennlp project. Based on the principles of AA, the archetypes representing 

the reference assessments will lie on this boundary, whereas the shape of the convex hull provides 

straightforward answers regarding the diversity of the examined set of TD tools.  

A critical decision that someone has to take is the selection of an appropriate number of the 𝑘 archetypes 

that approximates the convex hull in an efficient way. Certainly, the number of archetypes plays a 

significant role to the efficient representation of the swarm of the observed points, since the diversity of the 

convex hull may be better captured, as the number of archetypes increases. In contrast, one has to take into 

consideration that an unnecessary large number of archetypes might not contribute further to the 

approximation of the convex hull, whereas it would also affect the benchmarking process, since the 

objective is the extraction of few reference assessments representing useful profiles of practical importance 

to both researchers and practitioners in TDM.  

To this regard, the graphical inspection of the swarm of TD assessments (Figure 3) suggests that the efficient 

number of archetypes capturing the diversity of the two examined TD tools is 𝑘 = 4 archetypes. In the 

trivial case of 𝑘 = 1, the archetypal solution is the centroid of the two-dimensional space representing the 

TD assessments matrix (Table 4), whereas its coordinates are easily calculated by the univariate sample 

mean values of TD rankings from each tool (sample means of CAST and Squore TD columns in Table 5).  

 

 
Figure 3. Archetypal solutions (CAST, Squore) for opennnlp project 

Although the graphical inspection constitutes a straightforward manner for the identification of the 

appropriate number of archetypes in the special case of the two-dimensional space, i.e. the examination of 

assessment provided by two TD tools, this is not the case, when the number of the examined TD tools is 

higher than two (p>2). In order to provide certain guidelines about the decision upon the appropriate number 

of archetypes, Cutler and Breiman [9] suggest the utilization of the graphical inspection of the RSS 

reduction plot (or elbow plot). The RSS plot (Figure 4) constructed after consecutive executions of AA for 
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different values of 𝑘, (𝑘 = 1,2,3,4,5) confirms our intuitive beliefs derived from the graphical inspection 

of the two-dimensional example. More specifically, considering that the line displaying the RSS reduction 

looks like an arm, then an elbow appears at 𝑘 = 4, pointing out the optimal number of archetypes. The idea 

is that after this specific point (𝑘 > 4 ), the line flattens and hence, the extracted solution (𝑘 = 5) does not 

contribute to any further reduction of RSS. Summarizing, the practical implication of the first step (Step 1) 

of the proposed approach on the indicative example, is that four reference assessments (archetypes) can 

capture the diversity of TD rankings derived from the static code analysis (by two tools) for the set of the 

examined classes of opennlp project.   

 
Figure 4. RSS plot (CAST, Squore) for opennnlp project) 

In the second step (Step 2), the objective was to understand the characteristics of the derived archetypes 

with the aim of extracting information regarding their meaning from a practical point of view in TDM. The 

relative position of the four archetypal solutions (Figure 3) and the graphical examination of the profiles 

plot (Figure 5) provide a clear overview of what each archetype really represents. More specifically, the 

profiles plot shows the evaluated TD rankings (CAST and Squore coordinates, Figure 3) for each archetype 

of the final solution. In addition, it can also be observes that the examination of the characteristics provides 

also a semantic categorization of the derived archetypes into two distinct groups, which are (i) the Ruler 

and (ii) the Rebel archetypes43 [47]. The former group (The Ruler) reifies a reference assessment profile, in 

which the two tools agree upon either on low (The Min-Ruler archetype 𝑎1) or high (The Max-Ruler 

archetype 𝑎4) TD rankings assessments. The latter group (The Rebels) reifies a reference assessment 

profile, in which the two tools do not agree on their TD rankings assessments signifying a completely 

divergent behavior of the two assessors. Overall, the four archetypes represent the following distinct 

reference assessment profiles with the following characteristics: 

• The Max-Ruler (archetype 𝑎4 in Figure 3d) represents the reference assessment corresponding to the profile 

of classes accumulating high amount of TD based on the results of both tools (CAST and Squore).  

 
43  The idea of archetypes was developed by psychologist C. Jung in his studies about drivers of human behavior. Pearson suggested 

the use of 12 archetypes among which the ‘Ruler’ denotes personalities whose goal is to create a prosperous, successful family 
or community, while for a ‘Rebel’ (also known as Outlaw) the motto is that rules are made to be broken. In our context, the 
‘Ruler’ profile denotes a community of classes sharing the same assessment by all employed tools, while the ‘Rebel’ points to 

tools that in some sense break the rules and identify TD items in a different way than the rest.  
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• The Min-Ruler (archetype 𝑎1 in Figure 3d) represents the reference assessment corresponding to the profile 

of classes accumulating low amount of TD based on the results of both tools (CAST and Squore).      

• The Rebel 1 (archetype 𝑎2 in Figure 3d) represents the reference assessment corresponding to the profile of 

classes accumulating low amount of TD based on the results of the analysis from the CAST tool, but on the 

same time, high amount of TD based on the results of Squore tool.      

• The Rebel 2 (archetype 𝑎3 in Figure 3d) represents the reference assessment corresponding to the profile of 

classes accumulating high amount of TD based on the results of the analysis from the CAST tool, but on the 

same time, low amount of TD based on the results of Squore tool.  

 

 

Figure 5. Reference assessment profiles (archetypes) (opennnlp project) 

After the reification of the archetypes, the final step (Step 3) of the proposed approach involves the 

identification and retrieval of a set of classes that are close to a specific archetype gathering certain 

characteristics that can be used for TDM purposes. Α critical challenge in the TD community raises from 

the fact that although there are several available tools for measuring and monitoring TD, the community 

has not concluded on a state-of-the-art solution that could be used as a ground truth for measuring TD. 

Developers and researchers acknowledge that TD estimates provided by any single tool are inherently 

subjective, reflecting a particular strategy for the identification of TD items. The existence of a basis of 

classes that are assessed as high TD modules by various tools would point to classes that can objectively 

be classified as validated high-TD modules and would boost relevant research. Currently, the lack of a 

commonly agreed way of quantifying TD impedes the development of approaches that could built on top 

of TD measurements, as in the case of machine learning approaches seeking to identify code or design 

problems employing alternative parameters as inputs. The ability to derive a benchmark of classes being 

close to the Max-Ruler archetype can be directly leveraged for training supervised learning-based 

algorithms. Similarly, the classes which have been validated as high-TD by all tools can be analyzed by 

development teams to seek non ideal coding practices and patterns so as to avoid them in future releases. 

On the other hand, benchmarks of classes formed by those that are close to Rebel archetypes essentially 

designate design or code inefficiencies which are captured by only one of the available tools, possibly 
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pointing to unique features identified by a particular ruleset. As a result, the union of classes belong to these 

sets would ensure the widest possible coverage of TD liabilities.    

The evaluation of the adjacency of a certain TD assessment (representing a given class) to each archetype 

can be practically accomplished through the matrix of the 𝑎-coefficients (Eq. 4). More importantly, due to 

the first property of AA, i.e. the approximated points are convex combinations of the archetypes that are 

summed to unity, the computed 𝑎-coefficients for each TD assessment provide an easily interpretable 

mechanism for quantifying its resemblance to all archetypes. Table 5 displays the classes and their TD 

assessments that are close to the Max-Ruler archetype according to the threshold value of 𝑎 = 0.80 for 

characterizing the neighboring classes. By setting the threshold value of 𝑎 = 0.80, a set of 84 out of 701 

total classes (almost 12% of the examined classes) can be considered as adjacent to the Max-Ruler 

archetype. This practically means that a practitioner has access to a set of classes that have been validated 

as high-TD classes by all tools. Due to space limitations, only the first and last five classes from the 84 are 

presented, which are close to the Max-Ruler archetype. Interpreting the vector of α-coefficients for a 

randomly selected class, e.g. 𝐶42 with (αMin-Ruler, αRebel 1, αRebel 2, αΜax-Ruler) = (0.091, 0.000, 0.001, 0.908) 

(last four columns of Table 5), it can inferred that 𝐶42 is 9.1%, 0.0%, 1.0% and 90.8% similar to the Min-

Ruler, Rebel 1, Rebel 2 and Max-Ruler archetypes, respectively, and for this reason it is considered as a 

neighboring class to the Max-Ruler archetype.  

Finally, Figure 6 visualizes the neighbourhood of the Max-Ruler archetype (corresponding to the TD 

measurements of the abovementioned 84 classes) with a black-scaled colour indicating the degree of 

resemblance for each TD assessment to this specific reference assessment profile. Moreover, points denoted 

by empty red circles represent classes that are not similar to the Max-Ruler archetype (𝑎 < 0.80) in terms 

of their TD assessments.     

 

 

Figure 6. Scatter plot for neighboring classes to the Max-Ruler archetype (CAST, Squore) (opennnlp project) 
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Table 5. Indicative set of classes that are close to the Max-Ruler archetype (CAST, Squore) (opennnlp project) 

Class Ranking 𝑎-coefficient 

ID Name Squore CAST The Min-Ruler The Rebel 1 The Rebel 2 The Max-Ruler 

𝐶1 /main/java/opennlp/tools/stemmer/snowball/turkishStemmer.java 701 699 0.000 0.000 0.000 1.000 

𝐶2 /main/java/opennlp/tools/stemmer/snowball/englishStemmer.java 699 696 0.001 0.004 0.000 0.995 

𝐶3 /main/java/opennlp/tools/stemmer/snowball/frenchStemmer.java 700 694 0.000 0.008 0.000 0.992 

𝐶4 /main/java/opennlp/tools/stemmer/snowball/portugueseStemmer.java 695 692 0.008 0.002 0.000 0.989 

𝐶5 /main/java/opennlp/tools/stemmer/snowball/hungarianStemmer.java 693 697 0.003 0.000 0.010 0.988 

 … … … … … … … … 

𝐶42 /main/java/opennlp/tools/formats/Conll03NameSampleStream.java 648 636 0.091 0.000 0.001 0.908 

… … … … … … … … 

𝐶80 /main/java/opennlp/tools/formats/ontonotes/OntoNotesNameSampleStream.java 650 581 0.072 0.117 0.000 0.812 

𝐶81 /main/java/opennlp/tools/ml/BeamSearch.java 616 573.5 0.142 0.047 0.000 0.811 

𝐶82 /main/java/opennlp/tools/util/ObjectStreamUtils.java 591 573.5 0.182 0.000 0.012 0.807 

𝐶83 /main/java/opennlp/tools/cmdline/namefind/TokenNameFinderTrainerTool.java 591 620 0.111 0.000 0.082 0.807 

𝐶84 /main/java/opennlp/tools/lemmatizer/LemmatizerME.java 591 610 0.126 0.000 0.067 0.807 
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The final step of the benchmarking process is supported by a web application (TD Benchmarker) that 

has been developed which enables the extraction of benchmarks, consisting of classes being close to a 

selected archetype, for varying threshold values. Interested researchers can download the agreement-

based benchmark of choice and retrieve the identified classes for further experimentation. Moreover, 

the application provides graphical illustrations of the RSS plots and the reference assessment profiles. 

TD Benchmarker is available online44. 

 

RQ1: For RQ1, where the level of agreement of the used tools is examined with respect to the measured 

TD of classes, the Kendall’s W coefficient of concordance was employed which belongs to the broader 

branch of methodologies known as inter-rater agreement analysis. 

For RQ2 – RQ4 an agreement-based benchmark process is proposed, which is based on a statistical 

approach, namely Archetypal Analysis (AA).  

RQ2: In the first step of the benchmarking process, the aim is to calculate the required number of 

archetypes to effectively capture the diversity of the tools. In this regard, the appropriate number of 

archetypes was determined, via the graphical inspection of the RSS reduction plot (or elbow plot). 

RQ3: In the second step of the benchmarking process the objective was to understand the characteristics 

of the derived archetypes in an attempt to interpret them from the Technical Debt Management (TDM) 

point of view. Through the graphical examination of the Archetypal Solutions figure two main 

categories of the archetypes were distinguished; the Ruler and the Rebel archetypes. 

RQ4: The final step of the benchmarking process involves the identification and extraction of a set of 

classes that are close to a specific archetype with specific characteristics that can be interpreted in terms 

of TDM. The extraction of the aforementioned set of classes was accomplished through the matrix of 

𝛼-coefficients (Eq. 4). 

 
44 https://se.uom.gr/index.php/projects/technical-debt-benchmarking 

https://se.uom.gr/index.php/projects/technical-debt-benchmarking
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4. Results and Discussion 

In this section the results for each research question are presented and discussed in the corresponding sub 

section. 

4.1. RQ1: To what extent do the assessors (tools) agree in the ranking of classes in terms of TD 

measurement? 

Based on the proposed methodology (see Section 3.4), the objective is to investigate the degree of 

agreement among the applied TD tools (RQ1). Table 6 summarizes the results concerning the evaluation 

of the Kendall’s W concordance coefficient for the set of the examined 50 projects. The results suggest that, 

in general, the three TD tools converge on the identification and measurement of TD at class/file level. 

Overall, the coefficient values range from 0.520 (for atom JavaScript project) to 0.853 (for javacv Java 

project). To this regard, it is meaningful to continue with the benchmarking process and extract the subset 

of classes which have been indicated as high-TD (or low-TD) classes by all tools. On the other hand, the 

graphical inspection of the aggregated results (Figure 7 (dot plots)) and the distributions of the coefficients 

for Java and JavaScript projects (Figure 8(a), (boxplots)) shows that the type of language seems to present 

an effect on the estimated agreement of TD tools. Indeed, an independent-samples t-test indicated a 

statistically significant difference between the mean values of Kendall’s W concordance coefficient for 

Java (𝑀 =  0.777, 𝑆𝐷 =  0.045) and JavaScript (𝑀 =  0.647, 𝑆𝐷 =  0.075) projects, 𝑡 = 7.403, 𝑝 <

0.001 (Figure 8(b), (error bars)). Levene’s test indicated unequal variances, 𝐹 = 7.628, 𝑝 = 0.008, so the 

t-test under the unequal variances assumption was used, whereas the Kolmogorov-Smirnov test for 

normality assumption showed that the estimated coefficients satisfied the normality assumption, K-S 𝑍 =

0.893, 𝑝 = 0.403. 

 

 

Figure 7. Dot plots with the aggregated results of Kendall’s W concordance coefficient 
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(a)     (b) 

Figure 8. Box plots (a) and error bars (b) of the distributions of Kendall’s W concordance coefficient 

The general conclusion from the evaluation of the Kendall’s W concordance coefficients and the rule of 

thumb proposed by Schmidt (1997) (see Section 3.4.1) is that in the case of Java projects, there is noted a 

statistically significant (𝑝 < 0.001) and strong agreement among the three tools regarding the TD 

assessments for the set of the conducted experiments with a mean value of 0.777 accompanied by a 95% 

CI ranging into the interval [0.758, 0.795]. In contrast, despite the fact that a statistically significant 

agreement among TD assessments is also indicated for the set of JavaScript projects, the strength of the 

agreement is characterized as moderate, since it presents a mean value of 0.647 with a 95% CI of 

[0.616, 0.678]. A possible interpretation for this finding is that tools for analyzing the quality of Java code 

(e.g. through static analysis) are more mature, compared to those for analyzing JavaScript, which are 

substantially younger. Therefore, it seems that along with their evolution Java analyzers have also 

converged on how the analysis is performed and what is deemed as an important problem for a codebase. 

On the other hand, it seems that JavaScript analyzers are in a more experimental stage, and therefore lower 

consensus is reached. 
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Table 6. Kendall’s W Concordance Coefficient among all three TD tools for each analyzed system 

Project W 

(p-value) 

W 

(p-value) 

W 

(p-value) 

W 

(p-value) 

W 

(p-value) 

W 

(p-value) 

W 

(p-value) 

W 

(p-value) 

W 

(p-value) 

Java 

arduino 

0.820 

(𝑝 <0.001) exoplayer 

0.776 

(𝑝 <0.001) joda-time 

0.770 

(𝑝 <0.001) opennlp 

0.790 

(𝑝 <0.001) testng 

0.811 

(𝑝 <0.001) 

arthas 

0.803 

(𝑝 <0.001) fop 

0.740 

(𝑝 <0.001) libgdx 

0.804 

(𝑝 <0.001) openrefine 

0.781 

(𝑝 <0.001) vassonic 

0.800 

(𝑝 <0.001) 

azkaban 

0.793 

(𝑝 <0.001) gson 

0.820 

(𝑝 <0.001) maven 

0.692 

(𝑝 <0.001) pdfbox 

0.736 

(𝑝 <0.001) wss4j 

0.774 

(𝑝 <0.001) 

cayenne 

0.766 

(𝑝 <0.001) javacv 

0.853 

(𝑝 <0.001) mina 

0.681 

(𝑝 <0.001) redisson 

0.797 

(𝑝 <0.001) xxl-job 

0.795 

(𝑝 <0.001) 

deltaspike 

0.716 

(𝑝 <0.001) jclouds 

0.688 

(𝑝 <0.001) nacos 

0.788 

(𝑝 <0.001) RxJava 

0.828 

(𝑝 <0.001) zaproxy 

0.800 

(𝑝 <0.001) 

JavaScript 

ace 

0.694 

(𝑝 <0.001) brackets 

0.712 

(𝑝 <0.001) karma 

0.645 

(𝑝 <0.001) mysql 

0.653 

(𝑝 <0.001) prettier 

0.637 

(𝑝 <0.001) 

angular.js 

0.739 

(𝑝 <0.001) Chart.js 

0.667 

(𝑝 <0.001) Leaflet 

0.553 

(𝑝 <0.001) node 

0.684 

(𝑝 <0.001) sails 

0.693 

(𝑝 <0.001) 

atom 

0.520 

(𝑝 <0.001) exceljs 

0.553 

(𝑝 <0.001)  less.js 

0.572 

(𝑝 <0.001) pdf.js 

0.724 

(𝑝 <0.001) sequelize 

0.547 

(𝑝 =0.002) 

bluebird 

0.611 

(𝑝 <0.001) fabric.js 

0.643 

(𝑝 <0.001) moment 

0.537 

(𝑝 <0.001) plotly.js 

0.692 

(𝑝 <0.001) webpack 

0.643 

(𝑝 <0.001) 

bower 

0.684 

(𝑝 <0.001) jquery 

0.768 

(𝑝 <0.001) mongoose 

0.754 

(𝑝 <0.001) pm2 

0.722 

(𝑝 <0.001) yarn 

0.533 

(𝑝 <0.001) 
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4.2. RQ2: How many archetypes (reference assessments) are required to capture the diversity of 

the tools? 

After the verification of a statistically significant agreement among the three TD tools for the set of Java 

and JavaScript projects, the next challenge involves the benchmarking process with the aim to extract a set 

of classes identified as the most high-TD ones from all applied tools. Due to the extensive numerical and 

graphical results, the findings derived from the analysis (Step 1 - Step 3, see Section 3.4.2) are indicatively 

presented on opennlp project. Through this manner, it can be also highlighted to both researchers and 

practitioners how the proposed methodology can be easily generalized to any experimental setup without 

constraints regarding the number of applied TD tools. Finally, it should be reminded that the set of the 

experimental results along with the raw dataset of TD estimates for the 25 Java and 25 JavaScript projects 

can be easily accessed via the paper’s web page45. 

Generalizing the methodology presented above (Section 3.4.2), the relative positions of the TD assessments 

via the three tools can be represented by a scatter plot in a three-dimensional space (Step 1). Figure 9 

displays the TD assessments, in which each point represents again, a specific class with coordinates the TD 

rankings evaluated by the SonarQube (x-axis), CAST (y-axis) and Squore (z-axis) tools. Despite the fact 

that drawing conclusions from the inspection of a three-dimensional plot is not a straightforward task, the 

shape of the swarm of points reveals an intrinsic pattern. More precisely, there is a subset of classes that 

are concentrated on the upper left corner of the plot, corresponding to classes that accumulate a high amount 

of TD as it is assessed by the whole set of the applied tools. On the other hand, it is also obvious that there 

are also other regions on the graph indicating divergent behaviour of the applied tools in terms of their TD 

assessments. The practical implication of this phenomenon is that the three TD tools signify different 

mitigation actions, which is the consequence of the utilization of different rulesets in the evaluation process 

of TD. 

 

Figure 9. Scatter plot (3D) for the rankings of the TD assessments (all three tools) (opennlp project) 

 
45 https://se.uom.gr/index.php/projects/technical-debt-benchmarking 

https://se.uom.gr/index.php/projects/technical-debt-benchmarking
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Indeed, the examination of the RSS (Figure 10) after the consecutive executions of the AA algorithm for 

different values of archetypes shows that the convex hull of the swarm of points can be adequately 

approximated by 𝑘 = 8 archetypes. Generally, the examination of the RSS plots for the remaining datasets 

led us to conclude that this specific number of archetypes 𝑘 = 8 is a rational generalization for the whole 

set of our experiments.     

 

Figure 10. RSS plot (SonarQube, CAST, Squore) (opennnlp project) 

4.3. RQ3: Which are the characteristics of the extracted archetypes? 

Having defined the appropriate number of archetypes (𝑘 = 8), the next step (Step 2) of the proposed 

approach concerns the reification of the extracted reference assessment profiles through the examination of 

their characteristics. Figure 11 summarizes the profile plots for each archetype of the derived solution. The 

examination of the characteristics of the eight profiles reveals, again, that there are two distinct groups 

(Ruler and Rebel) that have also been identified in the case of the TD assessments on the two-dimensional 

space (CAST and Squore) (see Section 3.4.2). Besides this fact, the analysis brings to the surface a new 

type of profile with specific characteristics regarding the assessments of the three tools. More specifically, 

the Partner46 archetype represents a reference assessment profile, in which two of the applied tools indicate 

a high amount of TD, whereas on the same time, the third tool is not able to identify it indicating a low 

amount of TD. 

 

 
46  The Partner archetype refers to personalities whose goal is being in a relationship with people and surroundings. In analogy,  

the Partner profile in our case denotes cases where two of the three tools exhibit high agreement.  
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Figure 11. Reference assessment profiles (archetypes) from the assessments by all three tools (opennnlp project) 

The characteristics of the 𝑘 = 8 reference assessments (Figure 11) are fully described below: 

• The Max-Ruler is the type of the reference assessment indicating a high amount of TD based on 

the results of all applied tools (SonarQube, CAST, Squore).  

• The Min-Ruler is the type of the reference assessment indicating a low amount of TD based on 

the results of all applied tools (SonarQube, CAST, Squore).  

• The Partner 1 is the type of the reference assessment indicating a high amount of TD based on the 

results from SonarQube and Squore tools and simultaneously, a low amount of TD based on the 

results of CAST tool. 

• The Partner 2 is the type of the reference assessment indicating a high amount of TD based on the 

results from SonarQube and CAST tools and simultaneously, a low amount of TD based on the 

results of Squore tool.      

• The Partner 3 is the type of the reference assessment indicating a high amount of TD based on the 

results from Squore and CAST and tools and simultaneously, a low amount of TD based on the 

results of Sonar tool.      

• The Rebel 1 is the type of the reference assessment indicating a high amount of TD based on the 

results from SonarQube tool and simultaneously, a low amount of TD based on the results of Squore 

and CAST tools.      

• The Rebel 2 is the type of the reference assessment indicating a high amount of TD based on the 

results from CAST tool and simultaneously, a low amount of TD based on the results of SonarQube 

and Squore tools. 

• The Rebel 3 is the type of the reference assessment indicating a high amount of TD based on the 

results from Squore tool and simultaneously, a low amount of TD based on the results of SonarQube 

and CAST tools. 

An interesting conclusion of the analysis on the remaining forty-nine datasets is that the abovementioned 

types of archetypes are applicable for the entire spectrum of projects and classes. It is reasonable to assume 

that the identified types of archetypes would be valid for any number of employed tools. For example, there 

will always be some classes identified as having high TD (or low TD) by all assessors (conforming to the 
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Max-Ruler or the Min-Ruler archetype). Nevertheless, the number of commonly identified high-TD (or 

low-TD) classes is expected to decrease with the number of tools. Similarly, it is also highly probable that 

one of the employed tools will tag some classes as high-TD while all other tools will not, according to the 

Rebel archetype, or that some subsets of tools might agree to a larger extent (Partners). This inherent trade-

off should be considered by development teams when opting for particular quality assurance tools. The 

‘intersection’ of commonly agreed artefacts with TD principal is expected to become lower as the number 

of tools increases and the benefit of obtaining wider coverage should be weighed against the diversity of 

the findings and the difficulties in incorporating multiple tools in the workflow. Practitioners and 

researchers should be assisted in focusing on the modules that are most likely to suffer from TD and to this 

end the next RQ aims at selecting the right set of classes for further analysis.  

4.4. RQ4: Which classes should be selected to form an agreement-based benchmark of top-TD 

modules? 

In the last step of the methodology (Step 3), the focus is now on the identification of classes that are close 

to the archetype signifying top-TD classes as assessed by all tools. Practically, the target is classes settled 

in the neighborhood of the Max-Ruler archetype, which in turn can be specified through the definition of a 

threshold value for 𝑎 coefficient. For example, in project opennlp, with 𝑎 = 0.80 as a threshold value to 

capture a strong similarity (or adjacency) to the Max-Ruler archetype (in analogy to the 2-tool 

representative) example presented in Section 3.4.2), for three tools we would obtain 54 top-rated TD classes 

(7.70% of the total), while for two tools we obtained 84 top-rated TD classes (11.98%). The decrease in the 

number of commonly identified high-TD classes confirms the observation that the higher the number of 

assessors, the smaller the number of top-rated classes pointed out by all tools.   

To examine the effect of the defined threshold value 𝑎 on the percentage of top-rated classes extracted by 

the proposed approach, based on the source code analysis via the set of selected TD tools, sensitivity 

analysis was conducted. More precisely, the percentage of top-rated classes was evaluated for a set of 

threshold values of 𝑎-coefficients ranging from 0.60 to 0.90 increasing by a step of 0.05. In addition, there 

is an imperative need to investigate whether the type of language presents an effect on the percentages of 

top-rated classes for the above set of threshold values, since the inter-rater agreement analysis presented in 

Section 4.1 revealed a statistically significant effect of the type of language on the estimated concordance 

coefficients. Thus, an interesting issue that deserves further investigation is whether the type of language 

also affects the percentages of the top-rated classes.    

Figure 12 summarizes the results from which, it can be generally inferred that the percentage of top-rated 

classes decreases as the threshold value increases for both language types. Practically, the selection of a 

higher threshold value imposes a stricter policy for the identification of high-TD classes by all employed 

tools. Another interesting finding is the fact that the percentages of top-rated classes/files seems to be 

generally higher for Java projects in comparison to JavaScript projects.    
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Figure 12. Percentage of top-rated classes assessed by all three tools for increasing levels of threshold values 𝑎 

(sensitivity analysis) 

So, the next issue is to investigate, whether the observed phenomena can be generalized to the population 

of OSS projects with similar characteristics. For this reason, the Linear Mixed Effects (LME) models [48] 

are employed, which are able to model simultaneously two types of effects that are (i) the fixed effects, a 

term that is used to represent factors that may affect the mean value of interest, and (ii) the random effects 

that may have an impact only the variance of the response variable.  

In this experimental setup, the experimental unit, for which we wish to draw conclusions regarding the 

response variable Percentage (i.e. the percentage of top-rated classes) is the project, which in fact, 

represents a unit drawn at random from an infinite unknown population of projects. For this reason, one 

should take into account and incorporate into the analysis, the random effect of the factor Project, in order 

to model the inherent variability caused by this random selection from the set of all possible OSS projects. 

Regarding the fixed effects that can been thought as the effect of specific factors of interest on the response 

Percentage, two factors need to be examined, which are (i) the threshold value (Threshold) of 𝑎 denoting 

the closeness to the Max-Ruler archetype and (ii) the type of language (Language). Besides the 

abovementioned two main effects (Threshold, Language), there is also a need to examine the interaction 

effect of Threshold and Language (Threshold× Language), since the effect of the threshold value of 𝑎 on 

the percentage of top-rated classes may not be the same at the two levels of language types 

(Java/JavaScript).      

Regarding the fixed component structure, which describes the main and interaction terms that will be 

included in the inferential process, the optimal structure was defined through the protocol proposed by Zuur 

et al. [49]. Described briefly, a model (defined as the beyond model) examining all factors of interest and 

their possible interactions is fitted and tested against a second model after omitting the higher order 

interaction term through the Likelihood Ratio (LR) test. In case of an insignificant finding, the selection is 

based on the principle of parsimony, which practically means that simpler models with similar explanatory 

power are preferred over more complex models with more parameters but slightly better fit. To this end, 
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the Akaike Information Criterion (AIC) is used for the comparison process, while the model with the lowest 

AIC value should be preferred over the competitive ones.     

The comparison of the beyond model (mentioned above) incorporating the main effects of Threshold and 

Language and their interaction term Threshold× Language against the model without the interaction term 

Threshold× Language did not reveal a statistically significant difference 𝜒2 = 6.055, 𝑝 = 0.417. The 

practical implication of this result is that the effect of the threshold value of 𝑎 on the percentage of top-

rated classes is the same for both language types (Java/JavaScript). The fitting of the final LME model 

containing only the main effects revealed statistically significant main effects for both Threshold (𝐹 =

299.634, 𝑝 < 0.001) and type of Language (𝐹 = 29.493, 𝑝 < 0.001) on the mean percentage values of 

top-rated classes. Is should also be noted that all models were fitted on the logarithmic transformations of 

the raw percentages, due to the violation of homoscedasticity assumption of model’s residuals.     

Moreover, the post-hoc analysis through Tukey’s HSD test [48] for the factor Threshold  indicates 

statistically significant differences (𝑝 < 0.05) between the pairs of consecutive levels of threshold values 

(as shown in Figure 13, the error bar does not cross the vertical dashed line of zero). Finally, Table 7 reports 

the expected mean percentage (accompanied by 95% CI) of top-rated classes for both language types in the 

population of OSS projects with similar characteristics in order to provide an indication of how many 

classes will be assessed as top-rated by all applied tools.   

 

Figure 13. Post-hoc analysis for LME model (sensitivity analysis) 

Table 7. Estimated mean percentage with 95% CI for each threshold value 𝑎 (sensitivity analysis) 

 Java JavaScript 

Threshold Estimation 95 % CI Estimation 95 % CI 

0.60 15.24 [13.17, 17.64] 9.11 [7.87, 10.55] 

0.65 13.06 [11.28, 15.12] 7.81 [6.75, 9.04] 

0.70 11.13 [9.62, 12.89] 6.65 [5.75, 7.70] 

0.75 8.92 [7.71, 10.32] 5.33 [4.61, 6.17] 

0.80 6.81 [5.88, 7.88] 4.07 [3.52, 4.71] 

0.85 4.87 [4.21, 5.64] 2.91 [2.52, 3.37] 

0.90 3.28 [2.84, 3.80] 1.96 [1.70, 2.27] 
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As it can be observed from Table 7, out of the total population of classes in each project and depending on 

the threshold value, only a small portion lying into the intervals [3.28%, 15.24%] and [1.96%, 9.11%] for 

Java and JavaScript projects, respectively, is characterized as having high-TD based on the findings of all 

three tools. Generally speaking, and without taking into consideration the type of language, this relatively 

low number of classes, in the neighborhood of the Max-Ruler archetype can be acknowledged as a basis 

concerning the high-TD classes. The resulting agreement-based benchmark can drive further research by 

denoting the few modules carrying “real-TD”, rather than dealing with all candidates extracted by a single 

tool, which are not confirmed by other tools. Any future approach, leveraging also the power of machine 

learning, could be trained to accurately identify the top-rated classes capturing TD in a more realistic 

manner. It should be noted that a similar methodology could be applied for extracting a benchmark of low-

TD classes. Such a set of classes might be valuable for studying the principles and practices resulting in 

cleaner code. Nevertheless, given the current priorities of development teams and researchers the focus was 

placed on benchmarks of high-TD classes. Besides the abovementioned findings, the analysis also indicates 

that irrespective to the applied threshold value 𝑎 for characterizing similar classes to the Max-Ruler 

archetype, the percentages of the high-TD classes are expected to be higher for Java projects compared to 

the corresponding percentages derived from the analysis on JavaScript projects.    

5. Implications to Practitioners and Researchers 

In this section, the main outcomes are revisited, from the perspectives of practitioners and researchers. 

However, it should be borne in mind that any identified implications are subject to the limitations of the 

context in which the study has been performed. In particular, only the types of TD identified by the selected 

tools (namely design and code debt) and two programming languages (namely Java and JavaScript) have 

been considered. Moreover, the findings are based on a single measure of TD (i.e. principal) excluding 

other indices such as the severity or the type of the identified inefficiencies.  

Overcome construct validity threats in research (researchers) 

As mentioned in the introductory section, the research community within the TD field lacks an ultimate 

process to accurately capture TD principal and thus, any empirical study or technique based on TD estimates 

runs the risk of not accurately measuring the real-world phenomenon under study. Each tool follows its 

own approach for detecting and measuring TD, based on a distinct ruleset, yielding a different amount for 

the total TD, but also pointing to different parts of the code that need to be mitigated, compared to other 

tools. There are several studies trying to identify high-TD modules and studies investigating the association 

of accrued TD with other factors. However, such approaches are heavily dependent on the employed tool 

for suggesting the ground truth, that is, the modules that actually have TD liabilities and need to be fixed. 

Apparently, because each tool evaluates TD in a different way, the generalizability of these approaches is 

threatened to a large extent.  

The two aspects of the proposed methodology, that is, the estimation of inter-rater agreement among TD 

tools and the use of archetypal analysis for identifying classes having a desired profile (e.g. high-TD levels 

by all tools) can be applied by researchers to form a more reliable basis for their experiments. More 

conveniently, researchers can also employ the already available benchmarks of high-TD classes (but also 

classes having a different profile if needed) from the online TD Benchmarker web application. 

Consequently, leveraging the power of multiple TD tools using the proposed approach can assist in the 

mitigation of construct validity threats that is currently present in the field of TD. 
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Highlight critical modules with validated highest TD (practitioners) 

Despite the widespread adoption of the TD metaphor, it is far from clear which tool IT managers should 

integrate in the development and maintenance process. Employing more than one TD tool for the evaluation 

of their software might be a costly option, since most of the existing tools are available only with a 

commercial license. Moreover, each tool requires significant effort to deploy, properly configure and 

familiarize with. However, even if a development team employs more than one tool, the union of all 

findings, would result in an unrealistic amount of suggestions, rendering the process intractable. Based on 

the proposed methodology, practitioners can highlight the classes that have been identified as high-TD 

classes by all employed tools leading to a manageable number of target classes. Development teams can 

take advantage of such agreement-based benchmark sets and focus only on the modules of their system that 

are validated as high-TD modules. With respect to the benefit of the already derived benchmarks from the 

analyzed systems, developers can focus on the classes close to the Max-Ruler archetype and gain insight 

into the root causes of the accumulation of TD in these classes and potentially avoid non-ideal coding 

practices in the future. Moreover, the non-unanimous archetypes (Rebel and Partner archetypes) can be 

valuable, as well. The existence of these archetypes is the key factor that differentiates one tool from the 

others. If only unanimous archetypes existed, this would mean that all tools generate the same results 

pointing to the same classes/files with accrued TD principal. Through the exploration of classes/files in the 

vicinity of non-unanimous archetypes development teams can gain insight into how TD tools differ on the 

measurement and prioritization of TD principal. With such knowledge, developers can more confidently 

invest in the TD tool that best fits their perception of when a class/file is tagged as high-TD (or low-TD). 

Collection of available TD tools (researchers and practitioners) 

Last but not least, another contribution of the current work is the localization and collection of available 

TD assessment tools, as presented in Section 2. The list is by no means an exhaustive one, as numerous 

other tools offer functionality related to the identification of code smells, anti-patterns, rule violations, 

excessive metric values, etc. all of which are indicators of the existence of TD in software. Nevertheless, 

the presented tools can serve as starting point both for practitioners who are searching for a TD tool to 

integrate into their development process as well as researchers who are seeking an appropriate assessor of 

TD principal. In both cases, the proposed methodology can assist in the critical appraisal of the agreement 

or the diversity among tool findings. 

6. Threats to Validity 

This section presents and discusses potential threats to the validity of this case study, focusing on construct, 

reliability, and external validity [50], [51]. Internal validity is not considered, since causal relations have 

not been studied. 

Construct Validity. Concerning construct validity, it can be argued that the basis of TD cannot be formed 

solely on the findings of TD assessment tools and as a result the study might inaccurately capture the actual 

phenomenon. The employed tools perform static source code analysis and thus the identified liabilities are 

primarily related to code TD, and in certain cases might also point to design or architectural problems. But 

according to the literature [23], [24] several other types of TD have been identified and might be present 

throughout all phases of the software development lifecycle, including Test, Documentation, Build, 

Infrastructure TD, etc. Consequently, the extracted TD measurements and the resulting benchmark 

represent only a portion of the system TD. However, code TD has been one of the mostly studied type of 

TD [24] and the target of most available tools, including the ones that have not been used in this dissertation. 

Furthermore, the steps of the proposed methodology are equally applicable to the findings regarding any 
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type of TD and thus benchmarks can be derived for other types of problems, provided that suitable 

measurement tools are available.  

Another important threat to construct validity pertains to the exclusion from the study of other TD-related 

information, such as the specific type of the identified inefficiencies or their severity. Indeed, it might be 

the case that the level of agreement among tools varies depending on type/severity of issues and this 

warrants a further study. Although TD principal is an aggregate measure encompassing all kinds of 

identified problems, development teams would be more assured in case different tools agree on the more 

severe problems or the type of problems which they consider relevant to their software. Nevertheless, both 

aspects of the proposed approach for the quantification of the level of agreement among the tools and the 

extraction of representative archetypes can be applied to any subset of the identified TD issues.  

Reliability. The described methodology outlines all steps followed to carry out the inter-rater agreement 

and archetypal analysis along with the provided web application that allows the extraction of benchmarks 

(sets of classes close to the Max-Ruler archetype) mitigates reliability threats. One potential threat to the 

ability of replicating this dissertation and reaching the same results is related to the optimal number of 

archetypes defined in Step 1 of the proposed approach (Section 3.4.2). The selection of the appropriate 

number of archetypes that is able to capture the diversity of the examined TD tools based on the inspection 

of the multidimensional space is, to some extent, a subjective process, especially in the case of a three-

dimensional plot. In addition, the above visualization practice is not applicable in case the number of tools 

is higher than three. In these cases, the practitioner should base his/her choice on the examination of the 

profile plots and most importantly, on the inspection of the RSS plot to conclude on the appropriate number 

of archetypes. In this experimental setup, the investigation of these graphical manners led us to the 

definition of the optimal number of eight archetypes, which is a rational and common-sense finding, since 

the derived archetypes represent expected behaviors, in cases where three TD tools with partially different 

rulesets are used for benchmarking purposes.  

External Validity. Regarding the external validity of the proposed approach, a potential threat to the 

generalization of the results is related to the identification and retrieval of the set of classes that are close to 

the Max-Ruler archetype (Step 3, Section 3.4.2), since the extracted set is certainly affected by the 

subjectivity and strictness of the practitioner. To this regard, a sensitivity analysis was conducted in order 

to examine how the choice of the threshold value for 𝑎-coefficient defining the neighbour classes affects 

the percentage of classes that belongs to the extracted benchmark set. Moreover, this work investigates the 

research questions in the context of 50 open source projects. Due to the limited number and types of the 

analyzed systems the conclusions regarding the observed level of agreement among the tools and the 

number of archetypes which are sufficient to capture the swarm of the observed points, probably cannot be 

generalized across other domains, programming languages or to proprietary software. A similar threat to 

external validity stems from the selection of TD assessment tools in the sense that this analysis was based 

on the identified violations, which in turn reflect the particular ruleset of each tool. Therefore, the findings 

on the agreement of TD assessment tools cannot be generalized beyond the employed tools. 

7. Related Work 

Since the first goal was to study the level of agreement among TD tools, this section presents previous 

studies that compare the techniques and results of tools that explicitly or implicitly measure TD. The second 

goal was to extract an agreement-based benchmark set of validated high-TD classes; therefore, other 

approaches to build such benchmarks or extract thresholds in the broader area of software maintenance are 

discussed, as well. 
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7.1. Comparison of Tools measuring Technical Debt 

In a previous case study [52], the authors aimed at locating the architecture debts of a proprietary web portal 

system owned by a software outsourcing company using their own tool, Titan. The results of the Titan tool 

(TitanDebts) were compared to the results of the SonarQube tool (SonarDebts) that the company was 

already using. By examining the overlap between TitanDebts and SonarDebts, the authors found that ¼ of 

the total files (25 files) were found in the intersection of the most problematic files that Titan and SonarQube 

have identified. To this regard, the authors concluded that the Titan tool (which identifies architecture debts 

more effectively) and the SonarQube tool detect substantially different and complementary sets of files. 

A case study in 2014 [53] compared four different techniques of TD evaluation (with the associated tool to 

run the analysis) including code smells (tool: codevizard), automatic static analysis issues (tool: FindBugs), 

grime build up and modularity violations (tool CLIO). The authors investigated whether the set of selected 

techniques/tools report the same set of modules as problematic and which was the overlap among them. 

The classes of 13 Hadoop releases were measured and 30 metrics were compared. The results of the study 

showed that the four techniques/tools had very little overlap, pointing to different problems in different 

modules. 

In an experimental study [54], the authors investigated the correspondence between several technical debt 

estimation approaches and external software quality models. Specifically, they evaluated (a) SonarQubes’s, 

(b) CAST’s and (c) Marinescu’s method [55] of technical debt estimation against the QMOOD quality 

model, which encompasses the quality attributes; reusability, flexibility, understandability, functionality, 

extendibility and effectiveness. They did not find evidence for strong relationship between the TD estimates 

and the quality attributes of the QMOOD model, except for one estimation method regarding only the 

flexibility and effectiveness quality attributes. The authors concluded that “it is important that industry 

practitioners, ensure that the technical debt estimate they employ accurately depicts the effects of technical 

debt as viewed from their quality model”. 

In a recent study [56], the authors, being motivated by the perception that design problems are more 

significant than coding errors for long-term software maintenance, aimed at investigating how three major 

TD tools (CAST, NDepend, SonarQube) capture design debt. Particularly, the authors distinguished the 

rules that capture design debt from a total of 466 examined rules from all three tools. Their results showed 

that all three tools mainly focus on non-design debt (only 19% of the rules captured design issues). 

Particularly, NDepend focuses the most on design rules (26% of its total rules are design-related), then 

follows CAST with 17% and SonarQube with 13%. 

Fontana et al. (2016) examined the impact of the elimination of architectural problems in four Java projects 

on the quality indices of four tools (SonarQube, inFusion, Structural Analysis of Java (SA4J) and 

Structure101). The results showed that the architectural refactorings in the four examined systems did not 

have any impact on the SQALE index of SonarQube and as far as SA4J is concerned, its stability index was 

affected only in one system. Consequently, the authors concluded that the SQALE index of SonarQube and 

the stability index of SA4J are not capable of effectively capturing the notion of architectural debt. 

In another study [58], the authors compared the techniques of five tools (CAST, inFusion, Sonargraph, 

SonarQube and Structure101) that provide some kind of Technical Debt Index (TDI). The comparison of 

the tools showed that all tools except for SonarQube exploit architectural information to form their TDIs. 

Moreover, two of the tools (inFusion and Structure101) do not calculate the cost for TD remediation (TD 

principal) whilst they only calculate the cost of keeping the software as it is (TD interest). On the other 

hand, CAST and SonarQube calculate only TD Principal and not TD interest. As far as the output 
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measurement, CAST and Sonargraph output cost in terms of US dollars, SonarQube in terms of time to 

remedy issues, while the rest produce either abstract values or values that are not expressed in money or 

time. 

According to the abovementioned studies that compared different TD measurement tools, the results of 

each tool diverged from the results of the others. This phenomenon emphasizes our motivation to compare 

the TD estimates of several TD tools and extract the high-TD modules as identified by the tools altogether. 

It should be also noted that the aforementioned studies employed tools that measure TD either explicitly 

(generating a direct Technical Debt Index) or implicitly (generating a general quality index). Nevertheless, 

it should be reminded that, only tools that explicitly output a Technical Debt Index were employed to allow 

for more focused and direct comparison of the results on TD measurement. 

7.2. Benchmarks in Software Maintenance 

Several studies attempt to establish benchmark datasets so that software quality assessment approaches can 

be compared against them. Quite often the related research effort aims at building benchmarks to extract 

representative thresholds for source code metrics or quality indices, which can then serve as baseline for 

comparison with actual values of the systems under evaluation. A notable example of such benchmarks is 

the benchmark repository of Software Improvement Group (SIG) against which any selected system can be 

compared in terms of code quality and maintainability [59]. Below follows an overview of studies, in which 

the authors developed benchmarks and aimed at deriving thresholds for the evaluation of software quality 

(in descending chronological order). 

In a recent study [60], the authors defended the idea that the extraction of metric thresholds should be 

tailored to each software domain. They collected a large set of 3107 Java systems across 15 domains from 

GitHub47 and measured a set of 8 source code metrics with the CK Tool48. The aforementioned metrics 

reflected size, complexity and inheritance aspects of software. Then, the authors derived metric thresholds 

using the method supported by TDTool [61]. In particular, thresholds have been selected so as to represent 

various groups (i.e. high-90% and very high-95%) of the sorted metric values. The authors found evidence 

that "metric thresholds vary across domains and most domain-specific thresholds differ from generic 

thresholds". 

Döhmen et al. (2016) built a benchmark for maintainability evolution with data from approximately 1750 

industrial software systems. The data was collected from the Software Analysis Warehouse (SAW), a 

property of the Software Improvement Group (SIG). SAW contains the results of the software quality 

analyses that SIG conducts. The study focused on the production source code of the projects excluding 

testing and auto-generated code. The authors created a prototype of a benchmark for maintainability 

evolution. The benchmark was based on a group of systems, which were close to a selected open source 

system, Crawljax, in terms of maintainability and volume. The authors, first, selected the systems which 

had the 5% closest maintainability transitions to Crawljax and then, with the use of Empirical Cumulative 

Distribution Function (ECDF) found the systems that developed equal or worse than the compared system. 

Comparison against existing systems has also been used as a method for assessing the software quality of 

a commercial system, property of an international company in the logistics domain [63]. The system was 

analyzed in terms of size, complexity, modularity, redundancy and technical debt with the utilization of 

SonarQube and NDepend. To evaluate the quality of the system, the author compared it with the quality of 

a set of 1892 open source projects from GitHub of similar age and programming language. The author 

 
47 https://github.com/ 
48 https://github.com/mauricioaniche/ck 
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calculated the metrics of each project with SonarQube and then extracted the percentile thresholds of the 

metrics with RTTool [64]. The system's metric was considered "normal" if its value was near the middle 

percentiles and vice versa. The aforementioned benchmark was applied at file and at system level with 

aggregated values. 

The notion of balance between real and ideal software design was used in a study in 2014 [65], in which 

the authors described a method for deriving relative thresholds for source code metrics. The method was 

based on evidence that source code metrics follow fat-tailed distributions, meaning that there is no typical 

value for them [66]. Therefore, the authors suggested that it is acceptable for some metrics not to follow 

absolute thresholds. To this regard, they proposed the concept of relative thresholds for evaluating source 

code metrics, where a percentage of source code entities should have values lower than an upper limit, 

whilst another percentage of entities is accepted to exceed upper limit due to specific requirements. The 

method was evaluated by applying it on the classes of 106 Java systems and extracting thresholds for seven 

metrics.  

A benchmark-oriented calculation of TD was proposed by Mayr et al. (2014). Their benchmark-based 

model for calculation of Remediation Costs of software combined features from three existing TD 

calculation approaches; CAST model, SQALE model and the SIG model. Measures obtained with these 

models were normalized in terms of lines of code before used in the proposed model. For each metric, the 

authors calculated a quartile-based distribution dividing the normalized values of the metric in four areas. 

Metrics with values that laid below the lower or above the upper areas were considered non-conforming to 

the benchmark dataset. Ultimately, the authors tested their model by applying it on two open source 

projects, the quality of which had been previously evaluated and compared against the benchmark database. 

The experiment showed that the model was able to calculate remediation costs that reflected the relative (to 

the benchmark database) quality of the projects. 

In another study [68], a method for extracting metric thresholds from benchmark data was designed. The 

method was applied on a benchmark of 100 C# and Java systems proprietary and open-source from a broad 

range of domains. The metrics were extracted for every entity of the system (method and file level) and 

were normalized with the weight of the entity. As weight of the entity, its size in terms of LOC was 

considered. Then the normalized metrics were placed in percentiles, from which the thresholds derived. 

Their contribution to the industry was to successfully use the thresholds derived with their methodology 

instead of the thresholds based on experts’ opinion. 

8. Conclusions and Future Work 

The Technical Debt metaphor successfully captures, in monetary terms, the penalty that has to be paid 

because of shortcuts during software development. These shortcuts are known to introduce architectural, 

design and code inefficiencies in software systems and various TD tools aim at identifying them by testing 

the source code against specific rulesets. However, TD tools provide different estimates of TD principal 

pointing to different mitigation actions. These discrepancies make a lot of people in academia and practice 

skeptical about the validity of existing TD tools and hinder the further development of TD research as no 

ground truth for accurate TD instances can be established. 

To address these limitations in the TD community an empirical study was performed whose goal was 

twofold: (a) to determine the level of agreement among three well-known TD tools and (b) build agreement-

based benchmarks of high-TD classes/files from a dataset resulting from 50 open-source projects. Inter-

rater agreement has been assessed, using Kendall’s W coefficient of concordance. To capture the diversity 

of the examined tools with the aim of identifying representative class profiles archetypal analysis (AA) was 
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conducted. Once the derived reference assessments are characterized, it is straightforward to extract sets of 

classes exhibiting similarity to a selected profile (e.g. that of high TD levels in all employed tools) and in 

this way establish a basis. 

The findings of the inter-rater agreement analysis suggest that there is a statistically significant and strong 

agreement among the three TD tools on the measurement of TD at class level. However, a substantial degree 

of disagreement has also been observed for the measured TD level for numerous classes. The application 

of the archetypal analysis revealed that three types of reference assessments can successfully capture the 

spectrum of TD measurements provided by three tools: One set of archetypes represents classes identified 

as high-TD modules by only one of the tools, the second profile encompasses classes for which two of the 

tools agree on the measured TD level, while the final type of archetype signifies a high amount (or low 

amount) of TD based on the results of all applied tools. Selecting the classes in the vicinity of the latter 

archetype yields an agreement-based benchmark of classes tagged as high-TD by all tools. Such 

benchmarks, beyond their value as fields of study for poor development practices that led to low quality 

classes, can potentially form the basis for training more sophisticated TD identification and measurement 

approaches. 

The goal was to shed light into the level of agreement among TD tools and to establish a process for deriving 

an agreement-based benchmark set of high/low TD artifacts. Any interpretation of the results considering 

different perspectives, such as development context, role of developers (tester, designer, analyzer, etc.) was 

beyond the scope of this dissertation. Nevertheless, this forms a really interesting area of future work. 

Another interesting line of research would be to investigate to which degree TD tools are compliant with 

the guidelines of the OMG Specification on Automated Technical Debt Measure49. 

Finally, the nature of the examined rules by each tool might be a decisive factor for the TD principal 

estimates per class/file. Drilling down to the level of individual rule violations which are detected by each 

tool, can shed light into the cause of their agreement or discrepancy. One interesting line of further research 

would be to conduct such a study to investigate the similarity among the examined rules by mapping the 

rules adopted by each tool to the rules employed by the other tools. 
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Chapter VIII. CONCLUSIONS AND FUTURE WORK 

1. Conclusions and Contribution 

The overall contribution of this dissertation comprises five (5) points; (a) it provides valuable undiscovered 

information on how open source web applications evolve over time since web-based systems had received 

limited attention in contrast to desktop ones, (b) considering the lack of empirical evidence on the relation 

between TD amount and TD Interest, it investigates to what extent the presence of TD in software modules 

slows down development pace by increasing the time and effort required for fixing bugs, (c) by 

acknowledging that it is the actual craftsmanship of the developers that causes the accumulation of TD, this 

work outlines the  characteristics of the developers who tend to add TD in open source applications, (d) it 

sheds light into the reasons that drive developers to agree or disagree with automatically detected TD whose 

urgency is very often questionable by developers and (e) by acknowledging the lack of a basis regarding 

the detection and prioritization of TD among the existing TD tools, the current work proposes a 

methodology to extract a benchmark set of modules which are ranked as high-TD modules by three (3) TD 

tools altogether. 

The following sub-sections develop the conclusions and the contribution of the conducted research in the 

context of the five goals of this dissertation. The goals were described, in summary, in the introductory 

Chapter I. 

1.1. Evolution of Web Applications 

The evolution of web applications relying on scripting languages such as PHP has received limited 

attention, despite the fact that PHP forms the basis upon which a huge number of web applications are 

developed. Driven by the wide adoption of PHP in web technologies, this dissertation investigates the 

evolution of 30 PHP web applications. 

The main goal was to examine the validity of the eight laws of software evolution as stated by M. M. 

Lehman. These laws have been extensively studied in the context of software evolution for projects 

developed in compiled languages such as C and C++ and in a non-web related context.  

The results confirm the validity of continuing growth and changes for the evolution of the examined PHP 

applications. However, for the examined projects the 2nd law on increasing complexity and the 8th law on 

the rapid decrease of the growth rate have not been confirmed. Although the root causes for this trend 

require further investigation it is reasonable to assume that this phenomenon could be attributed either to 

the programming language or to the practices in web application development. 

The following implications of this part of dissertation can be identified. 

 

With respect to software practitioners and managers: 

- In the context of the investigation of Lehman’s laws of evolution the employed measures can be 

used to assess the evolution of other products and examine whether any striking deviations from 

Lehman’s observations are valid for their projects. Since most laws are not directly quantifiable, 

software maintainers could employ the same methodology with respect to the applied trend tests 

and indicators that have been analyzed for each law.   
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- Especially with respect to the evolution of quality vs. the increase of size contrasting the results for 

their own projects to those of the examined applications could highlight issues that warrant 

attention. For example, it should be regarded as a warning if their own PHP web projects do not 

success in allowing continuous changes combined with a non-increasing complexity, since this 

trend has been observed both for small and large open-source projects in this work. If, for example, 

a development team observes that complexity is constantly increasing, whereas large and 

complicated PHP systems manage to keep complexity stable or even reduce it over time, then, 

quality assurance should focus on ways to address the increasing complexity. 

- The results suggesting that PHP web applications conform to a lifecycle model where continuous 

and steady development takes places (a finding confirmed by other studies as well), imply that 

development teams should opt for agile development practices, where constant change is embraced, 

rather than models assuming elaborate and preconceived specifications and planning.   

- The results indicating that PHP web applications continuously change and grow, a finding shared 

by all other studies as well, imply that project managers should anticipate increased future needs 

for resources to maintain and sustain the existing systems.  

 

With respect to software engineering researchers: 

- Based on the findings indicating that PHP web applications do not suffer from software ageing, 

researchers can focus on the reasons that drive this improved behavior of PHP projects and 

investigate whether this is due to the language, the domain or the practices in web application 

development. 

- Researchers are encouraged to investigate whether the same trends are valid for the evolution of 

systems written in other scripting languages so as to investigate whether similar maintenance 

patterns can be attributed to the nature of the employed languages (i.e. scripting vs. compiled). 

Finally, for the specific group of research efforts that investigate the validity of Lehman’s laws, empirical 

findings that suggest that: a) several laws are consistently not confirmed (e.g. Law VIII), or that b) some 

laws occasionally lead to inconclusive results (e.g. Laws IV and VII) or that c) some laws are quantified by 

divergent approaches (e.g. Law IV), imply that the rules might need to be examined in the context of 

contemporary software development and possibly be revisited. 

1.2. Technical Debt and Corrective Maintenance 

The results of this work suggest that TD amount is indeed correlated with maintenance effort. In particular, 

developers appear to spend more time on fixing issues in files with high levels of accrued Technical Debt, 

compared to files that present less TD. Therefore, project managers should take quality-oriented decisions 

to deter the appearance of software units with increased technical debt. 

With respect to practitioners, the results provide additional evidence that TD undermines software 

maintenance and that it should be taken under consideration before any design and implementation decision. 

Moreover, the domain of the study suggests that TD appears to be important in a web context as well. 

Software engineers can take advantage of such empirical evidence to convince management about the 

importance and need to manage TD.  

From a research perspective, since there is sufficient empirical evidence of the impact of TD amount on 

corrective maintenance, the need to devise a framework for assessing the associated risk and costs of 

managing TD becomes essential. 
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1.3. Personalized Assessment of Technical Debt Principal 

Software development is a complex activity requiring experience, skills and significant mental effort. 

Artifacts produced by developers are systematically analyzed in terms of quality, which recently is 

successfully captured by the Technical Debt metaphor. This dissertation investigated, through a case study 

on four open-source PHP projects, the relation between introduced TD principal and developers.  

The findings confirm the belief that developers’ competencies vary, since the distribution of technical debt 

among developers is highly imbalanced. Moreover, different developers introduce different technical debt 

violations; however, some recurring violations can be identified across developers and projects.  

Finally, there is no statistically significant evidence that more experienced developers introduce less 

technical debt per line of code. Such findings but more importantly the ability to perform a personalized 

assessment of technical debt can be a valuable tool for effective project management and self-assessment 

and improvement. 

With respect to software project managers, resource allocation can benefit by assigning artifacts with 

increased technical debt interest probability to software engineers that tend to introduce less technical debt 

principal or even remove technical debt. In a similar line of thought, and without any intent to punish 

developers, managers could identify developers who impair software quality by introducing source code 

violations and technical debt instances and try to upgrade their coding habits, either by placing them next 

to more experienced developers or by calling them to reflect on their common violations. Appropriate 

guidelines or tooling to avoid the accumulation of particular violations can also be developed, based on the 

findings from previous projects.  

With respect to software developers, the results on the personalized assessment of technical debt can be a 

valuable self-improvement tool. Developers can identify recurring problems that they consciously or 

unconsciously introduce as well as their locations in code. Moreover, critically analyzing their own 

performance with respect to TD against the rest members of their team can highlight opportunities for 

improvement. 

1.4. Factors Affecting Decision to Repay Technical Debt 

Existing software quality tools can yield extremely long lists of refactoring suggestions, deterring 

developers from adopting them. Thus, there is a need to determine which refactoring opportunities make 

sense for the developers depending on their background, nature and importance of the problem, surrounding 

code context, etc. This dissertation investigated various factors that potentially drive open-source software 

developers to accept or reject a suggestion to resolve a TD item. 

According to results, developers appear to be largely influenced by the severity of a TD issue (i.e. Critical, 

Major, Minor and Info as no Blocking issues were identified). For example, it is 21.5 times more probable 

that a Critical issue will be classified as needing resolution compared to an Info issue. This finding is 

reasonable, as a Critical code issue like “String literals should not be duplicated” is perceived as more 

urgent to be resolved than an Info code issue like “Comments should not be located at the end of lines of 

code”. 

The broader characterization of the TD issue also seems to have an effect on the developer’s decision. For 

example, if an issue pertains to Testability (like “Expressions should not be too complex”) it is 3.9 times 

more probable to be considered as needing resolution than an issue related to Maintainability (like “Sections 

of code should not be "commented out”).  
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Finally, developers do not tend to accept suggestions for revising their own code: it is 3 times more likely 

that a developer who has not participated in a project agrees with a suggestion to remove a TD issue, than 

a developer who is a contributor. This might be related to the particular practices within the community of 

a software project where certain violations are not considered as harmful because the evolution of the 

project might have been unaffected by their presence. 

On the other hand, developers’ decisions appear to be unaffected by factors such as the frequency of 

modifications to the file under study (reflected in the Files Modifications Ranking variable), the time 

required to fix an issue and the total TD in the examined file.  

These findings can be valuable to researchers and practitioners by guiding the design of more efficient tools 

that suggest refactorings with a higher probability of being adopted by the developers. 

1.5. Benchmark of Technical Debt Liabilities 

The Technical Debt metaphor successfully captures, in monetary terms, the penalty that has to be paid 

because of shortcuts during software development. These shortcuts are known to introduce architectural, 

design and code inefficiencies in software systems and various TD tools aim at identifying them by testing 

the source code against specific rulesets. However, TD tools provide different estimates of TD principal 

pointing to different mitigation actions. These discrepancies make a lot of people in academia and practice 

skeptical about the validity of existing TD tools and hinder the further development of TD research as no 

ground truth for accurate TD instances can be established. 

To address these limitations in the TD community an empirical study was performed whose goal was 

twofold: (a) to determine the level of agreement among three well-known TD tools and (b) build agreement-

based benchmarks of high-TD classes/files from a dataset resulting from fifty (50) open-source projects. 

Inter-rater agreement has been assessed, using Kendall’s W coefficient of concordance. To capture the 

diversity of the examined tools with the aim of identifying representative class profiles, archetypal analysis 

was conducted. Once the derived reference assessments are characterized, it is straightforward to extract 

sets of classes exhibiting similarity to a selected profile (e.g. that of high TD levels in all employed tools) 

and in this way establish a basis. 

The findings of the inter-rater agreement analysis suggest that there is a statistically significant and strong 

agreement among the three TD tools on the measurement of TD at class level. However, a substantial degree 

of disagreement has also been observed for the measured TD level for numerous classes. The application 

of the archetypal analysis revealed that three types of reference assessments can successfully capture the 

spectrum of TD measurements provided by three tools: One set of archetypes represents classes identified 

as high-TD modules by only one of the tools, the second profile encompasses classes for which two of the 

tools agree on the measured TD level, while the final type of archetype signifies a high amount (or low 

amount) of TD based on the results of all applied tools. Selecting the classes in the vicinity of the latter 

archetype yields an agreement-based benchmark of classes tagged as high-TD by all tools. Such 

benchmarks, beyond their value as fields of study for poor development practices that led to low quality 

classes, can potentially form the basis for training more sophisticated TD identification and measurement 

approaches. 

Below, the main outcomes of this part of dissertation are discussed, from the perspectives of practitioners 

and researchers.  
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Overcome construct validity threats in research (researchers) 

As mentioned in the introductory section, the research community within the TD field lacks an ultimate 

process to accurately capture TD principal and thus, any empirical study or technique based on TD estimates 

runs the risk of not accurately measuring the real-world phenomenon under study. Each tool follows its 

own approach for detecting and measuring TD, based on a distinct ruleset, yielding a different amount for 

the total TD, but also pointing to different parts of the code that need to be mitigated, compared to other 

tools. There are several studies trying to identify high-TD modules and studies investigating the association 

of accrued TD with other factors. However, such approaches are heavily dependent on the employed tool 

for suggesting the ground truth, that is, the modules that actually have TD liabilities and need to be fixed. 

Apparently, because each tool evaluates TD in a different way, the generalizability of these approaches is 

threatened to a large extent.  

The two aspects of the proposed methodology, that is, the estimation of inter-rater agreement among TD 

tools and the use of archetypal analysis for identifying classes having a desired profile (e.g. high-TD levels 

by all tools) can be applied by researchers to form a more reliable basis for their experiments. More 

conveniently, researchers can also employ the already available benchmarks of high-TD classes (but also 

classes having a different profile if needed) from the online TD Benchmarker web application. 

Consequently, leveraging the power of multiple TD tools using the proposed approach can assist in the 

mitigation of construct validity threats that is currently present in the field of TD. 

Highlight critical modules with validated highest TD (practitioners) 

Despite the widespread adoption of the TD metaphor, it is far from clear which tool IT managers should 

integrate in the development and maintenance process. Employing more than one TD tool for the evaluation 

of their software might be a costly option, since most of the existing tools are available only with a 

commercial license. Moreover, each tool requires significant effort to deploy, properly configure and 

familiarize with. However, even if a development team employs more than one tool, the union of all 

findings, would result in an unrealistic amount of suggestions, rendering the process intractable. Based on 

the proposed methodology, practitioners can highlight the classes that have been identified as high-TD 

classes by all employed tools leading to a manageable number of target classes. Development teams can 

take advantage of such agreement-based benchmark sets and focus only on the modules of their system that 

are validated as high-TD modules. With respect to the benefit of the already derived benchmarks from the 

analyzed systems, developers can focus on the classes close to the Max-Ruler archetype and gain insight 

into the root causes of the accumulation of TD in these classes and potentially avoid non-ideal coding 

practices in the future. Moreover, the non-unanimous archetypes (Rebel and Partner archetypes) can be 

valuable, as well. The existence of these archetypes is the key factor that differentiates one tool from the 

others. If only unanimous archetypes existed, this would mean that all tools generate the same results 

pointing to the same classes/files with accrued TD principal. Through the exploration of classes/files in the 

vicinity of non-unanimous archetypes development teams can gain insight into how TD tools differ on the 

measurement and prioritization of TD principal. With such knowledge, developers can more confidently 

invest in the TD tool that best fits their perception of when a class/file is tagged as high-TD (or low-TD). 

Collection of available TD tools (researchers and practitioners) 

Last but not least, another contribution of the current work is the localization and collection of available 

TD assessment tools, as presented in Section 2. The list is by no means an exhaustive one, as numerous 

other tools offer functionality related to the identification of code smells, anti-patterns, rule violations, 

excessive metric values, etc. all of which are indicators of the existence of TD in software. Nevertheless, 

the presented tools can serve as starting point both for practitioners who are searching for a TD tool to 
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integrate into their development process as well as researchers who are seeking an appropriate assessor of 

TD principal. In both cases, the proposed methodology can assist in the critical appraisal of the agreement 

or the diversity among tool findings. 

2. Future Work 

Existing TD tools generate large lists of detected TD violations which can be overwhelmingly long for large 

projects. Many of the detected violations are considered as non-important by the developers or they are 

even ignored. In an attempt to bring to the surface only violations that are indeed urgent to fix, in this 

dissertation a benchmark set of high-TD classes was extracted, derived from the results of three major TD 

tools. An extension of this work would be to enforce the credibility of the benchmark set with the inclusion 

of more TD tools and more analyzed projects. This way, developer teams can be more confident on the 

prioritization TD management. Moreover, the interpretation of the results considering different 

perspectives, such as development context, role of developers (tester, designer, analyzer, etc.) was beyond 

the scope of the current research. Nevertheless, this forms a really interesting area of future work. Another 

interesting line of research would be to investigate to which degree TD tools are compliant with the 

guidelines of the OMG Specification on Automated Technical Debt Measure. Furthermore, the nature of 

the examined rules by each tool might be a decisive factor for the TD principal estimates per class/file. 

Drilling down to the level of individual rule violations which are detected by each tool, can shed light into 

the cause of their agreement or discrepancy. Another valuable line of future work would be to investigate 

the similarity among the examined rules by mapping the rules adopted by each tool to the rules employed 

by the other tools. 

It is a common ground that web technology has boomed over the last five years with the advance in cloud 

computing and containerization. As a result, more languages and technologies have gained a respected 

share in the global pie of web content. Modern web applications adopt the microservices design where each 

microservice can be written in any language. To this end, a valuable future work would be to expand the 

study on the evolution of software quality and technical debt to web applications that combine different 

languages and technologies. Another interesting line of further research would be to compare the evolution 

of such multi-paradigm web applications against that of "conventional" desktop systems, in order to 

investigate whether there are differences in the trends of quality and TD. Such evidence would be helpful 

in determining whether development practices for web applications adhere to the principles of building 

large-scale, multi-person, multi-version software systems or whether the benefits is the result of their 

architecture, which is often strictly dictated by the platforms being used. 

The results of the current research regarding the Lehman's Laws of software evolution do not provide clear 

evidence that open source web applications suffer from the so-called phenomenon of software ageing. The 

deeper investigation on the factors that prevent the accumulation of TD in some systems can be a valuable 

research area. For example, which is the best practice to manage TD? Perform mitigation actions (i.e., 

refactor, rewrite code) or take proactive measures to prevent the introduction of TD in the first place (e.g. 

by integrating tools with IDEs and develop code step by step)? Taking also into account the cost of each 

TD management approach could lead to an exploration of the tradeoffs between software quality 

improvement and the required effort. Many of the existing approaches, simply assume that achieving a non-

optimal software quality (i.e. not repaying the principal of TD) will result in increased maintenance effort 

(as captured by TD interest). However, one should also consider that any savings from not addressing TD 

principal, and especially in large corporation, might have been directed to other sorts of investments, like 

the development of additional features or produces, or even to conventional financial investments. 
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Finally, acknowledging that it is the actual craftsmanship of the developers that cause the accumulation of 

TD, the current dissertation investigated the relation between developers’ characteristics and their tendency 

to introduce code inefficiencies. The outcomes suggest that a personalized assessment of TD can be a 

meaningful research direction that unveils interesting relations that can guide Technical Debt Management. 

Therefore, the topic deserves further investigation. Some tentative future research direction would be a 

personalized assessment of TD interest, a detailed analysis of specific violations with respect to their 

criticality, and an elaborate personality characteristics model that will provide a more accurate profile of 

TD-prone developers.
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