

UNIVERSITY OF MACEDONIA

SCHOOL OF INFORMATION SCIENCES

DEPARTMENT OF APPLIED INFORMATICS

A study on the

evolution of software quality and technical debt

in open source applications

Theodoros Amanatidis

PhD Dissertation

Supervisor: Prof. Alexander Chatzigeorgiou

Advisors: Prof. Maria Satratzemi, Prof. Ioannis Stamelos

Thessaloniki, 05/2020

“A study on the evolution of software quality and technical debt

in open source applications”

Theodoros Amanatidis

BSc Financial Accounting 2011, MSc Applied Informatics 2014

PhD Dissertation

A dissertation submitted in fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Macedonia

Thessaloniki, Greece

2020

This dissertation was submitted during the massive pandemic of the

corona virus COVID-19

with over 4M cases and 280K deaths all over the world

at the time of this submission

Summary

Almost all software systems around us evolve constantly to accommodate new requirements, to adapt in

changing environments and to fix known issues. Software evolution analysis can reveal important

information concerning maintenance practices followed by development teams. The goal of this dissertation

is to study the evolution of open source web applications by investigating the evolution of software quality

and maintenance cost as captured by the metaphor of Technical Debt (TD). Technical Debt is a concept in

programming which reflects the extra maintenance effort that arises when “sub-optimal” code, that is easy

to implement in the short run, is used instead of applying best practices.

This research work investigates the evolution of a large number of open source web applications. The

applications were analyzed in the context of Lehman’s eight (8) laws of software evolution and particularly,

it has been examined whether the laws are confirmed in practice for open source web applications.

Lehman’s Laws are, Continuing Change (Law I), Increasing Complexity (Law II), Self-Regulation (Law

III), Conservation of Organizational Stability (Law IV), Conservation of Familiarity (Law V), Continuing

Growth (Law VI) Declining Quality (VII) and Feedback System (VIII). The results provide evidence that

the evolution of web applications comply with most of the laws.

The TD metaphor has received increasing attention from the research community in the last years.

Particularly, a large portion of research studies have focused on the notion of TD Interest, which reflects

the additional maintenance effort that is incurred due to the existence of sub-optimal software (i.e., due to

the existence of Technical Debt). Adopting the state-of-research on TD Management, this dissertation has

aimed at investigating the impact of TD on corrective maintenance and particularly, to what extent does the

presence of TD in software modules slows down development pace by increase the time and effort required

for fixing bugs.

Although TD is usually assessed on either the entire system or on individual software modules and most

studies focus on the identified inefficiencies, it is the actual craftsmanship of developers that causes the

accumulation of TD. Driven by the fact that TD is introduced by the developers themselves, this dissertation

attempts to explore the relation between developers’ characteristics and the tendency to introduce

inefficiencies that lead to TD.

Despite the fact that TD is an established and recognized concept in the software engineering community,

it also remains a metaphor and like all metaphors it is inherently abstract. This means that the way it is

defined and interpreted by software engineering stakeholders constitutes a subjective matter. Each software

professional has developed his/her own perception around TD prioritization and management. Thus, many

voices question the validity of the way it is detected and calculated by automated static analysis tools. To

this end, in the context of this research a survey has been sent to a large number of developers that contribute

to open source web applications in order to gain insights into the factors that lead developers to adopt or

reject fixes as suggested by automated static code analysis.

By acknowledging the lack of a ground truth regarding the assessment of TD among the existing TD tools,

this dissertation attempts to extract a set of classes with high TD, as detected by three (3) major TD tools

(CAST AIP, Squore and SonarQube). These classes can serve as benchmark of validated high-TD classes

and this way a basis can be established that can be used either for prioritization of maintenance activities

or for training more sophisticated TD identification techniques. To this end, the current research work

proposes a methodology to extract a benchmark set of validated high-TD classes while at the same time, it

reveals three types of class profiles that successfully capture the spectrum of TD measurements provided

by the three TD tools.

Finally, the overall contribution of this dissertation comprises five (5) points; (a) it provides valuable

undiscovered information on how open source web applications evolve over time since web-based systems

had received limited attention in contrast to desktop ones, (b) considering the lack of empirical evidence on

the relation between TD amount and TD Interest, it investigates to what extent the presence of TD in

software modules slows down development pace by increasing the time and effort required for fixing bugs,

(c) by acknowledging that it is the actual craftsmanship of the developers that causes the accumulation of

TD, this work outlines the characteristics of the developers who tend to add TD in open source applications,

(d) it sheds light into the reasons that drive developers to agree or disagree with automatically detected TD

whose urgency is very often questionable by developers and (e) by acknowledging the lack of a basis

regarding the detection and prioritization of TD among the existing TD tools, the current work proposes a

methodology to extract a benchmark set of modules which are ranked as high-TD modules by three (3) TD

tools altogether.

Keywords: software evolution, Lehman’s laws, software quality, software maintenance, open-source

applications, software repositories, technical debt, technical debt management, corrective maintenance,

archetypal analysis, inter-rater agreement, ground truth, benchmark

Contents

Chapter I. INTRODUCTION... 1

1. Software Evolution and Technical Debt ... 1

2. Dissertation Goals and Research Questions ... 1

2.1. Evolution of Web Applications .. 4

2.2. Technical Debt and Corrective Maintenance ... 4

2.3. Personalized Assessment of Technical Debt Principal .. 5

2.4. Factors Affecting Decision to Repay Technical Debt .. 5

2.5. Benchmark of Technical Debt Liabilities .. 6

3. Dissertation outline .. 6

Chapter II. BACKGROUND ON TECHNICAL DEBT .. 7

1. Foreword .. 7

2. Key Components of TD .. 7

3. What TD really is ... 8

4. TD Types ... 9

5. Activities and Strategies for Managing TD ... 10

6. Tools assessing TD (TD tools)... 11

7. A comment on Technical Debt Management ... 13

Chapter III. EVOLUTION OF WEB APPLICATIONS .. 16

1. Introduction .. 16

2. Related Work .. 18

3. Case Study Design ... 19

3.1. Goal and Research Question ... 19

3.2. Selection of Cases ... 20

3.3. Employed Process and Tools ... 22

3.4. Data Analysis .. 23

4. Results and Discussion .. 27

4.1. Law I: Continuing Change.. 27

4.2. Law II: Increasing Complexity .. 29

4.3. Law III: Self-Regulation ... 30

4.4. Law IV: Conservation of Organizational Stability ... 32

4.5. Law V: Conservation of Familiarity .. 34

4.6. Law VI: Continuing Growth ... 36

4.7. Law VII: Declining Quality ... 37

4.8. Law VIII: Feedback System .. 41

5. Overview and Comparison to Previous Work .. 43

5.1. Summary of Results .. 43

5.2. Comparison to Previous Work .. 44

6. Implications for Researchers and Practitioners .. 46

7. Threats to Validity ... 47

8. Conclusions ... 48

Chapter IV. TECHNICAL DEBT AND CORRECTIVE MAINTENANCE 51

1. Introduction .. 51

2. Case Study Design ... 52

2.1. Goal and Research Questions ... 52

2.2. Cases and Units of Analysis ... 53

2.3. Data Collection ... 54

2.4. Data Analysis .. 55

3. Results .. 55

4. Threats to Validity ... 56

5. Discussion and Conclusions ... 57

Chapter V. PERSONALIZED ASSESSMENT OF TECHNICAL DEBT PRINCIPAL................ 59

1. Introduction .. 59

2. Related Work .. 60

3. Case Study Design ... 61

3.1. Research Objectives and Research Questions ... 61

3.2. Case and Units of Analysis .. 61

3.3. Variables and Data Collection ... 62

3.3.1. Variables .. 62

3.3.2. Data Collection ... 63

3.4. Data Analysis .. 63

4. Results and Discussion .. 64

4.1. Distribution of TD among Developers ... 64

4.2. TD Violations per Developer ... 66

4.3. TD vs. Developer Maturity .. 67

5. Implications of the Study .. 68

6. Threats to Validity ... 68

7. Conclusions ... 69

Chapter VI. FACTORS AFFECTING DECISION TO REPAY TECHNICAL DEBT 71

1. Introduction .. 71

2. Related Work .. 72

3. Study Design ... 72

3.1. Personalized report to participants ... 73

3.2. Set-up of the Study ... 74

4. Results and Discussion .. 75

4.1. Statistical Analysis .. 75

4.2. Discussion of the Results .. 77

5. Threats to Validity ... 78

6. Conclusions ... 78

Chapter VII. BENCHMARK OF TECHNICAL DEBT LIABILITIES ... 80

1. Introduction .. 80

2. TD Assessment Tools... 83

3. Case Study Design ... 88

3.1. Goal and Research Questions ... 88

3.2. Selection of Cases ... 89

3.3. Data Collection ... 89

3.4. Data Analysis Methodology .. 92

3.4.1. Inter-rater Agreement (RQ1) ... 92

3.4.2. Benchmarking through Archetypal Analysis (RQ2 – RQ4) ... 94

4. Results and Discussion .. 102

4.1. RQ1: To what extent do the assessors (tools) agree in the ranking of classes in terms of TD

measurement? ... 102

4.2. RQ2: How many archetypes (reference assessments) are required to capture the diversity of

the tools? ... 105

4.3. RQ3: Which are the characteristics of the extracted archetypes? 106

4.4. RQ4: Which classes should be selected to form an agreement-based benchmark of top-TD

modules? .. 108

5. Implications to Practitioners and Researchers ... 111

6. Threats to Validity ... 112

7. Related Work .. 113

7.1. Comparison of Tools measuring Technical Debt .. 114

7.2. Benchmarks in Software Maintenance .. 115

8. Conclusions and Future Work ... 116

Chapter VIII. CONCLUSIONS AND FUTURE WORK ... 122

1. Conclusions and Contribution ... 122

1.1. Evolution of Web Applications .. 122

1.2. Technical Debt and Corrective Maintenance ... 123

1.3. Personalized Assessment of Technical Debt Principal .. 124

1.4. Factors Affecting Decision to Repay Technical Debt .. 124

1.5. Benchmark of Technical Debt Liabilities .. 125

2. Future Work ... 127

Publications ... 129

1. Journals .. 129

2. Conferences .. 129

References ... 130

List of Figures

Chapter II. BACKGROUND ON TECHNICAL DEBT .. 7

Figure 1. Trend of worldwide web search for topic “Technical Debt” (January 2004 – March 2020) 7

Figure 2. Extra effort to add functionality (TD Interest) due to existence of TD [6] 8

Chapter III. EVOLUTION OF WEB APPLICATIONS .. 16

Figure 1. (a) File and (b) function breakdown of examined projects based on their latest release . 22

Figure 2. Workflow for analyzing types and frequency of changes in PHP projects 22

Figure 3. Calculation of incremental growth, maintenance effort and growth rate (example) 25

Figure 4. Trend of Days Between Releases metric for project usebb ... 28

Figure 5. Evolution of Days Between Releases metric for projects with p-value > 0.05 29

Figure 6. Trendlines of CCN/LOC for projects with p-value < 0.05 ... 30

Figure 7. Ripples in the total number of functions/methods for phpMyFAQ 31

Figure 8. Evolution of Incremental Growth for projects with p-value > 0.05 32

Figure 9. Evolution of Maintenance Effort (V4.1) for projects with p-value > 0.05 34

Figure 10. Evolution of Number of Commits (V4.2) for projects with p-value > 0.05 34

Figure 11. Evolution of Incremental Changes for projects with p-value > 0.05................................. 36

Figure 12. Trendlines of LOC for projects with p-value < 0.05 ... 37

Figure 13. Examination of the validity of the 8th law in project “mustache” 42

Chapter IV. TECHNICAL DEBT AND CORRECTIVE MAINTENANCE 51

Figure 1. Corrective maintenance at file level ... 54

Figure 2. Discriminative power of TD amount (left/right bars correspond to low/high TD files,

respectively) .. 56

Chapter V. PERSONALIZED ASSESSMENT OF TECHNICAL DEBT PRINCIPAL................ 59

Figure 1. Process of obtaining TD deltas for each developer ... 63

Figure 2. Distribution of TD among developers ... 65

Figure 3. TD violation types per developer .. 66

Figure 4. Introduced TD versus developer maturity .. 67

Chapter VI. FACTORS AFFECTING DECISION TO REPAY TECHNICAL DEBT 71

Figure 1. Anonymized TD report of a developer in Yii2 .. 73

Figure 2. Evaluation screen for a TD item in project Yii2.. 74

Chapter VII. BENCHMARK OF TECHNICAL DEBT LIABILITIES ... 80

Figure 1. Shortcomings from diverse TD measurements ... 81

Figure 2. Scatter plot for rankings of TD measurements of opennlp project as evaluated by TD tools

(CAST, Squore) ... 93

Figure 3. Archetypal solutions (CAST, Squore) for opennnlp project.. 96

Figure 4. RSS plot (CAST, Squore) for opennnlp project) ... 97

Figure 5. Reference assessment profiles (archetypes) (opennnlp project) 98

Figure 6. Scatter plot for neighboring classes to the Max-Ruler archetype (CAST, Squore) (opennnlp

project) .. 99

Figure 7. Dot plots with the aggregated results of Kendall’s W concordance coefficient 102

Figure 8. Box plots (a) and error bars (b) of the distributions of Kendall’s W concordance

coefficient .. 103

Figure 9. Scatter plot (3D) for the rankings of the TD assessments (all three tools) (opennlp project)

 .. 105

Figure 10. RSS plot (SonarQube, CAST, Squore) (opennnlp project) .. 106

Figure 11. Reference assessment profiles (archetypes) from the assessments by all three tools

(opennnlp project) ... 107

Figure 12. Percentage of top-rated classes assessed by all three tools for increasing levels of

threshold values 𝑎 (sensitivity analysis) .. 109

Figure 13. Post-hoc analysis for LME model (sensitivity analysis) .. 110

List of Tables

Chapter I. INTRODUCTION... 1

Table 1. Timeline of the dissertation’s research (driving stimulus and publication output for each

goal) .. 2

Chapter III. EVOLUTION OF WEB APPLICATIONS .. 16

Table 1. Top-ten Languages of Public Open Source Projects Hosted By SourceForge & Github 17

Table 2. Most Updated Formulation of Lehman’s Laws.. 18

Table 3. Overview of Examined Projects .. 20

Table 4. Data Analysis ... 23

Table 5. Correlation Between Variables ... 26

Table 6. Statistical Results on Law I (Continuing Change) ... 28

Table 7. Statistical Results on Law II (Increasing Complexity) ... 30

Table 8. Statistical Results on Law III (Self-Regulation) ... 31

Table 9. Statistical Results on Law IV (Conservation of Organizational Stability) 33

Table 10. Statistical Results on Law V (Conservation of Familiarity) ... 35

Table 11. Statistical Results on Law VI (Continuing Growth)... 37

Table 12. Statistical Results on Law VII (Declining Quality) ... 39

Table 12. (continued) Statistical Results on Law VII (Declining Quality) .. 40

Table 13. Statistical Results on Law VIII (feedback system) .. 43

Table 14. Summary of findings about Lehman’s laws ... 44

Table 15. Primary Measures Employed for the Investigation of Laws in Previous Studies 45

Table 16. Validity of Lehman's Laws According to Various Studies ... 46

Chapter IV. TECHNICAL DEBT AND CORRECTIVE MAINTENANCE 51

Table 1. Analyzed Projects ... 54

Table 2. Data Analysis ... 55

Table 3. Spearman's Correlation Results .. 56

Chapter V. PERSONALIZED ASSESSMENT OF TECHNICAL DEBT PRINCIPAL................ 59

Table 1. OSS PHP Project Demographics .. 62

Table 2. Data Analysis ... 64

Chapter VI. FACTORS AFFECTING DECISION TO REPAY TECHNICAL DEBT 71

Table 1. Frequency distributions for categorical variables.. 75

Table 2. Descriptive statistics for continuous variables .. 75

Table 3. Parameters of the final model .. 77

Chapter VII. BENCHMARK OF TECHNICAL DEBT LIABILITIES ... 80

Table 1. List of identified TD assessment tools ... 86

Table 2. List of TD tools with the conditions that they satisfied for their inclusion 88

Table 3. Characteristics of analyzed projects ... 91

Table 4. Representation of the dataset from the TD assessment results from each employed tool

 .. 92

Table 5. Indicative set of classes that are close to the Max-Ruler archetype (CAST, Squore)

(opennnlp project) ... 100

Table 6. Kendall’s W Concordance Coefficient among all three TD tools for each analyzed system

 .. 104

Table 7. Estimated mean percentage with 95% CI for each threshold value 𝑎 (sensitivity analysis)

 .. 110

A study on the evolution of software quality and technical debt in open source applications

1

Chapter I. INTRODUCTION

1. Software Evolution and Technical Debt

Software Evolution constitutes part of the broader area of Software Engineering. The main goal of

software evolution research is to study and understand the way software systems evolve over time so

as to predict and prevent future inefficiencies. This can ease software maintenance and consequently

reduce maintenance effort and cost.

The domain of software evolution exists since the 70’s when Μ. Lehman formulated the laws of

software evolution (more details in Chapter III). Two of his laws refer to “increasing complexity” and

“declining quality”. Specifically, it was suggested that the complexity of a system will increase and its

quality will decline over time, hindering software maintenance, if no proactive measures are taken. The

degradation of software quality that Lehman talked about in the 70’s is captured, nowadays, by the

Technical Debt (TD) metaphor.

Technical Debt is a concept in programming that highly affects software maintenance and,

consequently, software evolution. It reflects the extra maintenance effort that arises when “non-optimal”

code, that is easy to implement in the short run, is used instead of applying best practices.

The distance between the optimal state of the software and the actual one can be considered as the

principal of the software’s Technical Debt, in analogy to the principal of Financial Debt (more details

in Chapter II). To eliminate (or repay) TD principal means that actions have to be taken (e.g.

refactogings or even code rewrite) in order to eliminate the distance from the optimal state of the

software.

The aforementioned additional effort that has to be spent on software maintenance due to the existence

of TD is considered as the interest of software’s TD, just like in Financial Debt (more details in Chapter

II). As TD accumulates during software evolution, software maintenance becomes more and more

complex and, consequently, more expensive in terms of time and cost. The excessive accumulation of

TD can be a serious threat for any software system. For this reason, continuous quantification and

monitoring of TD should be of high priority.

To this end, the purpose of this dissertation is to study the evolution of open source applications by

investigating evolution of software quality and technical debt. The objective of this dissertation can be

decomposed into five more specific goals which are described in the next section.

2. Dissertation Goals and Research Questions

This section presents the five goals of this dissertation, in summary. The studies that have been

conducted to achieve each goal are developed in a dedicated chapter. Before reading the following five

goals, the reader can find the timeline of the research conducted during this dissertation in Table 1. The

timeline contains the chronicle of dissertation’s goals along with the driving stimulus for each goal and

the resulting publication.

Chapter I. Introduction

2

Table 1. Timeline of the dissertation’s research (driving stimulus and publication output for each goal)

Stimulus Goal Publication

Lehman’s Laws

Investigate whether Lehman's Laws of software evolution

are confirmed in practice for open source web

applications

(Chapter III)

(Amanatidis and

Chatzigeorgiou, 2016)1

Increasing Interest in Technical

Debt since 2012

Investigate the impact of a module’s TD on its corrective

maintenance

(i.e., bug fixing)

(Chapter IV)

(Amanatidis et al., 2017a)2

Technical Debt comes from

developers themselves

Explore the relation between developers’ characteristics

and the tendency to evoke violations that lead to TD

(Chapter V)

(Amanatidis et al., 2017b)3

1Amanatidis, Theodoros & Chatzigeorgiou, Alexander. (2016). Studying the Evolution of PHP Web Applications. Information and Software Technology. 72. 48-67. 10.1016/j.infsof.2015.11.009.
2Amanatidis, Theodoros & Chatzigeorgiou, Alexander & Ampatzoglou, Apostolos. (2017). The Relation between Technical Debt and Corrective Maintenance in PHP Web Applications.

Information and Software Technology. 87. 10.1016/j.infsof.2017.05.004.
3Amanatidis, Theodoros & Chatzigeorgiou, Alexander & Ampatzoglou, Apostolos & Stamelos, Ioannis. (2017). Who is Producing More Technical Debt? A Personalized Assessment of TD

Principal. Proceedings of the 9th International Workshop on Managing Technical Debt (MTD’ 17), Cologne, Germany.

Nov 2015

Oct 2016

May 2017

Jun 2014

A study on the evolution of software quality and technical debt in open source applications

3

Stimulus Goal Publication

Really urgent to resolve?

Shed light into the factors that lead developers to adopt or

reject fixes as suggested by automated static code analysis

(Chapter VI)

(Amanatidis et al., 2018)4

Which TD tool to employ?

Propose methodology to extract benchmark set of

validated high-TD modules

(Chapter VII)

(Amanatidis et al., 2020)5

*submitted for publication

and revised

4Amanatidis, Theodoros & Mittas, Nikolaos & Chatzigeorgiou, Alexander & Ampatzoglou, Apostolos & Angelis, Lefteris. (2018). The developer’s dilemma: Factors affecting the Decision to

Repay Code Debt. Proceedings of the 2018 International Conference on Technical Debt (TechDEBT), Gothenburg, Sweden.
5Amanatidis, T., Mittas, N., Moschou, A., Chatzigeorgiou, A., Ampatzoglou, A., Angelis, L. (2020). Evaluating the Agreement among Technical Debt Measurement Tools: Building an Empirical

Benchmark of Technical Debt Liabilities. Submitted for publication (and revised) to the Empirical Software Engineering Journal (EMSE).

May 2018

Mar 2020

May 2017

Chapter I. Introduction

4

2.1. Evolution of Web Applications

Software evolution analysis can reveal important information concerning maintenance practices. Most

of the studies which analyze software evolution focus on desktop applications written in compiled

languages, such as Java and C. However, a vast amount of the web content today is powered by web

applications written in PHP and thus the evolution of software systems written in such a scripting

language deserves a distinct analysis.

To obtain an overview of the way open-source systems evolve over time, the goal of this part of

dissertation is to analyze the evolution of open-source PHP projects in an attempt to investigate whether

Lehman’s laws of software evolution are confirmed in practice for web applications. To achieve this

goal, data (changes and metrics) have been collected for successive versions of thirty (30) PHP projects

while statistical tests (primarily trend tests) have been employed to evaluate the validity of each law on

the examined web applications. Based on the aforementioned first goal of the dissertation, the following

research question has been formulated:

RQ: Is the evolution of web applications written in PHP compliant with Lehman’s laws of evolution?

The research question can be decomposed into eight research questions, one for each of Lehman’s laws.

The detailed work on the Evolution of Open Source Web Applications is presented in Chapter III.

2.2. Technical Debt and Corrective Maintenance

After establishing whether open-source software systems comply with most of Lehman’s laws of

evolution, the dissertation has focused on the impact of Technical Debt on software evolution.

Considering that corrective maintenance consumes a significant part of developers’ activity over the

evolution of any software project it becomes interesting to investigate whether the presence of

inefficiencies slows down development pace by increase the time and effort required for fixing bugs.

Software teams are often asked to deliver new features within strict deadlines leading developers to

deliberately or inadvertently serve “not quite right code” compromising software quality and

maintainability. This non-ideal state of software causes the accumulation of Technical Debt (TD) which

adds additional maintenance effort (i.e. interest, as aforementioned in the previous section). The

objective of this part of work is to quantify how TD affects software maintenance.

Although the relation between debt amount and interest is well-defined in traditional economics (i.e.,

interest is proportional to the amount of debt), this relation has not yet been explored in the context of

TD. To this end, one aim of this dissertation is to investigate the relation between the amount of TD

and the interest that has to be paid during corrective maintenance.

To explore this relation, a case study on ten (10) open source PHP projects has been performed. The

obtained data have been analyzed to assess the relation between the amount of TD and two aspects of

interest: (a) corrective maintenance (i.e., bug fixing) frequency, which translates to interest probability

and (b) corrective maintenance effort which is related to interest amount (see Chapter IV for details).

The goal of this part of dissertation is to examine whether the frequency and the effort spent on

corrective maintenance activities of a specific module, is related to the amount of its TD. Based on this

goal, the research questions can be formulated as follows:

RQ1: Is the TD amount of a file related to the number of times that it underwent corrective maintenance?

RQ2: Is the TD amount of a file related to the extent of modification that it underwent during corrective

maintenance?

The detailed work on the Relation Between Technical Debt and Corrective Maintenance is presented in

Chapter IV.

A study on the evolution of software quality and technical debt in open source applications

5

2.3. Personalized Assessment of Technical Debt Principal

Contemporary software development is assisted by a number of sophisticated tools, like Integrated

Development Environments with auto-complete functionality, automation testing environments,

advanced build tools that handle external dependencies, Continuous Integration pipelines that automate

routine activities. Moreover, software professionals have access to enormous amounts of information

in open knowledge communities (like StackOverflow) and the ability to reuse code from thousands of

open-source projects, limiting the need for reinventing the wheel. Nevertheless, software programming

remains to a large extent a human-centric activity and requires both experience and knowledge. Lack

of expertise usually results in reduced productivity (i.e. longer development times for a given set of

functionalities) or in lower software quality.

Most studies in the literature assess TD on either the entire software system or on individual software

artifacts, that is, by looking at the final product of software development. Considering that it is the actual

craftsmanship of developers that causes the accumulation of TD and in the light of extremely high

maintenance cost, efficient software project management cannot occur without recognizing the relation

between developer characteristics and the tendency to evoke violations that lead to TD.

To this end, this dissertation investigates three research questions related to the distribution of TD

among the developers of a software project, the types of violations caused by each developer and the

relation between developers’ maturity and the tendency to accumulate TD.

RQ1: Is TD uniformly distributed among the developers of a software project?

RQ2: Which TD violations are introduced by the developers of a software project?

RQ3: What is the relation between TD and the maturity of developers in a software project?

The study has been performed on four (4) widely employed PHP open-source projects. All developers’

personal characteristics have been anonymized. The detailed work on the Personalized Assessment of

TD Principal is presented in Chapter V.

2.4. Factors Affecting Decision to Repay Technical Debt

Although TD is an established and recognized concept in the software engineering community, it also

remains a metaphor and like all metaphors it is inherently abstract. This means that the way it is defined

and interpreted by software engineering stakeholders constitutes a subjective matter. Software

developers often disagree with an automatically generated list of improvement suggestions, which they

consider not fitting or important for their own code. To shed light into the reasons that drive developers

to adopt or reject refactoring suggestions (i.e. TD repayment), this dissertation investigates the potential

factors that affect the developers’ decision to agree (or disagree) with the removal of a specific TD

liability.

Developers of four (4) well-known open-source applications have been asked to evaluate the urgency

of automatically detected code violations in the source code that they contribute. To increase the

response rate, a personalized assessment has first been sent to each developer, summarizing his/her own

contribution to the TD of the corresponding project. Responds have been collected through a custom-

built web application that presented code fragments suffering from violations as identified by TD-

assessment tool along with information that could possibly affect their level of agreement to the

importance of resolving an issue.

Multivariate statistical analysis methods have been used to understand the importance and the

underlying relationships among these factors and the results are expected to be useful for researchers

and practitioners in TD Management. The detailed work on the Investigation of the factors that lead

developers to repay TD is presented in Chapter VI.

Chapter I. Introduction

6

2.5. Benchmark of Technical Debt Liabilities

Although several tools are available for assessing TD with most notable examples SonarQube, Squore

and CAST AIP, each tool essentially checks software against a particular ruleset. The use of different

rulesets can often be beneficial as it leads to the identification of a wider set of problems; however, for

the common usage scenario where developers or researchers rely on a single tool, the diverse estimates

of TD and the identification of different mitigation actions limits the credibility and applicability of the

findings.

The goal of this part of dissertation is two-fold: First, to evaluate the degree of agreement between

leading TD assessment tools. Second, to propose a methodology to capture the diversity of the examined

tools with the aim of identifying a benchmark set of classes with respect to their level of TD (e.g., that

of high TD levels in all employed tools). This way a basis can be established that can be used either for

prioritization of maintenance activities or for training more sophisticated TD identification techniques.

The proposed methodology is illustrated through a case study on fifty (50) open source systems

employing three leading TD tools.

Based on the last goal of this dissertation, the following research questions (RQ) have been formulated:

RQ1: To what extent do the assessors (tools) agree in the ranking of classes in terms of TD

measurement?

RQ2: How many archetypes (reference assessments) are required to capture the diversity of the tools?

RQ3: Which are the characteristics of the extracted archetypes?

RQ4: Which classes should be selected to form an agreement-based benchmark of top-TD modules?

The detailed work on the Proposed Methodology to Extract Benchmark Set of Validated high-TD

Modules is presented in Chapter VII.

3. Dissertation outline

The rest of the dissertation is organized as follows:

Chapter II provides background information on TD to familiarize the reader with the analysis on TD in

the next chapters. Particularly, Chapter II focuses on key components of TD (TD Item, TD Principal,

TD Interest), various TD Types, activities and strategies for managing TD and existing tools for TD

assessment (TD tools).

In Chapter III through Chapter VII the work to achieve the five goals of this dissertation is developed.

Particularly:

• Chapter III investigates whether Lehman's Laws of software evolution are confirmed in practice

for open source web applications.

• In Chapter IV the relation between TD and corrective maintenance (i.e., bug fixing) is

investigated.

• The research work presented in Chapter V explores the relation between developers’

characteristics and the tendency to evoke violations that lead to TD.

• Chapter VI attempts to shed light into the factors that lead developers to adopt or reject fixes as

suggested by automated static code analysis.

• Chapter VII investigates the agreement among three (3) major TD tools and proposes a

methodology to extract benchmark set of validated high-TD modules.

Finally, in Chapter VIII conclusions and contribution are presented along with suggested future

work.

A study on the evolution of software quality and technical debt in open source applications

7

Chapter II. BACKGROUND ON TECHNICAL DEBT

In this chapter, basic concepts of Technical Debt (TD) and Technical Debt Management (TDM) are

introduced to familiarize the reader with the analysis on TD that follows in the next chapters.

Particularly, this chapter briefly discusses key components of TD (TD Item, TD Principal, TD Interest),

various definitions of TD, TD Types, activities and strategies for managing TD as well as existing TD

assessing tools (TD tools).

1. Foreword

Technical Debt is a metaphor in programming that was originally coined by Ward Cunningham [1]. It

reflects the extra maintenance effort that arises when “dirty” code, that is easy to implement in the short

run, is used instead of applying best practices.

According to Google Trends6 (see Figure 1), the topic of “Technical Debt” has gained increasing

attention in web search since 2004 which adds extra value to the contribution of this dissertation.

Figure 1. Trend of worldwide web search for topic “Technical Debt” (January 2004 – March 2020)

Technical Debt undermines software’s maintainability and agility, rendering the addition of new

functionality more and more difficult as software matures. Consequently, software evolution becomes

more expensive for product owners as they are called to spend for money to address the increasing

clients’ needs. Possibly, these are the clients that had been won by sacrificing software quality (i.e.

tolerance on TD existence) to achieve timely placement in the market.

2. Key Components of TD

There are some key components that altogether form the concept of Technical Debt. These are “TD

Item”, “TD Principal” and “TD Interest” and are widely discussed in the rest of the dissertation.

TD Item: The term “TD Item” refers to a violation of coding rules [3] and is considered an instance of

TD [2], [4]. Each TD Item might contain information, such as the location it was detected (i.e. class or

file), the estimated effort (or time) to resolve, the responsible developer, etc.

TD Principal: The term “TD Principal” refers to the estimated effort that is needed to resolve all the

TD Items of the system [2], [4]. The existence of TD Items causes the software to diverge from its

optimal state. The distance between the optimal state of the software and the actual one can also be

considered as the principal of the software’s Technical Debt (TD Principal), in analogy to the principal

of Financial Debt [4], [5]. To eliminate (or repay) TD principal means that mitigation actions have to

6 https://trends.google.com/

https://trends.google.com/

Chapter II. Background on Technical Debt

8

be taken (e.g. refactor or even rewrite part of code base) in order to minimize the distance from the

optimal state of the software.

TD Interest: The term “TD Interest” refers to the aforementioned extra effort that has to be put for the

addition of new functionality due to the existence of TD [4], [5]. This extra effort can be considered as

the interest of software’s TD (see Figure 2), just like in Financial Debt, where the borrower pays an

amount of interest on top of every loan installment.

Figure 2. Extra effort to add functionality (TD Interest) due to existence of TD [6]

3. What TD really is

Just like all metaphors, TD is inherently abstract and its definition depends on personal/subjective

interpretation. Researchers and practitioners have developed various definitions for it, based on their

own point of view. According to Li et al. [2], stakeholders define TD based on five (5) dimensions of

TD.

• TD as a metaphor to financial debt (TD Interest, TD Principal)

• Properties of TD (type, severity, effort to remediate, etc.)

• Causes of TD

• Effect of TD

• Uncertainty around TD (i.e. risk, but also opportunities that it can offer)

Some practitioners focus on the consequences of TD in their attempt to define it. They view TD as a

codebase that loses agility as project matures [7]. Others, focus on the interest that has to be paid in the

long run as a form of a more expensive software maintenance in terms of effort and time [8]. An

academic definition of TD embraces the aspect of consequences of TD, as well [9].

“Technical debt describes the consequences of software development actions that intentionally or

unintentionally prioritize client value and/or project constraints such as delivery deadlines, over more

technical implementation and design considerations”

A study on the evolution of software quality and technical debt in open source applications

9

Another definition that was formulated during the Dagstuhl Seminar [10] considers TD as a collection

of expedient design or implementation constructs that affect future changes:

“In software-intensive systems, technical debt is a collection of design or implementation constructs

that are expedient in the short term, but set up a technical context that can make future changes more

costly or impossible. Technical debt presents an actual or contingent liability whose impact is limited

to internal system qualities, primarily maintainability and evolvability.”

On the other hand, some people treat TD as a tool. Through the lens of a startup company [11], TD can

be used as a tool for getting ahead in the market. In the case of a startup company the opportunities that

TD can offer might be more important than the risk that it carries.

4. TD Types

Technical Debt Types refer to specific categories of TD (e.g., architectural, design, code) or sub-

categories based on the cause of TD (e.g., architectural TD can be caused by architecture smells). There

are ten (10) different TD types identified in the literature [2] and each TD type represent different kind

of software inefficiencies that need to be remediated in order to approach software’s optimal state:

• Requirements TD: refers to lack of proper requirements specification [12].

• Architectural TD: refers to several quality issues that arise due to incorrect architecture

decisions.

• Design TD: refers to technical compromises that are allowed in detailed software design.

• Code TD: involves violation of coding rules and/or coding standards

• Test TD: refers to shortcuts taken in code testing (i.e. lack of proper unit or end to end,

testing)

• Build TD: usually reflects overly complex build process.

• Documentation TD: refers to incomplete or outdated documentation of software which can

undermine software understandability.

• Infrastructure TD: refers to non-ideal configuration of development environments which

can negatively affect the ability of the development team to bring software in production

mode.

• Versioning TD: involves problems regarding source code versioning, such as misleading

tagging of releases.

• Defect TD: refers to defects/bugs found in the way software operates.

In another study [13], the authors have identified five (5) more TD types in the literature on top of the

aforementioned. These are:

• People TD: refers to developer problems that can delay software development. For

example, when specific expertise is concentrated among few people in the development

team meaning that everything has to pass from their hands.

• Test Automation TD: it is considered as a sub-category of test TD and it refers to the effort

involved in automating tests to support continuous integration [14].

• Process TD: involves outdated processes, i.e. processes that no longer are needed for what

they were designed in the first place [14].

• Service TD: refers to improper selection and implementation of web services that result in

the divergence of the software’s features from the predefined requirements.

• Usability TD: refers to inappropriate usability decisions that will have to be reconsidered

later [15].

Chapter II. Background on Technical Debt

10

5. Activities and Strategies for Managing TD

As TD accumulates during software evolution, software maintenance becomes more and more complex

and, consequently, more expensive in terms of time and cost. The excessive accumulation of TD can

be a serious threat for a software. For this reason, activities for managing and conserving TD at viable

level should be of high priority.

TDM is composed of several activities [2] and strategies [13] that prevent accumulation of TD and keep

existing TD within reasonable levels.

The most notable examples of activities for managing TD are:

• TD Identification: refers to the detection of TD caused by technical decisions in a software

system. TD detection can be conducted through specific processes, such as static code

analysis.

• TD Measurement: involves the quantification of the detected TD in the system or the

estimation of the overall TD of the system.

• TD Prioritization: involves the ranking of the identified TD based on predefined rules to

support decision making on which TD Items to remediate first.

• TD Prevention: involves proactive measures that aim at preventing potential TD from being

incurred.

• TD Monitoring: refers to the tracking of the evolution of the cost of unresolved TD in the

software system.

• TD Repayment: involves mitigation actions (e.g. refactorings, reengineering, etc.) for the

resolution of TD.

• TD Representation/Documentation: comprises representation and reporting of TD in a

uniform manner that efficiently addresses stakeholders’ concerns.

• TD Communication: involves the notification of managerial stakeholders regarding the

existence of TD in the software system.

Strategies for managing TD involve combination of actions and techniques from the aforementioned

TDM activities. The most notable examples of TDM strategies are:

• Cost-Benefit Analysis [5], [16]: It involves decision on when it is imperative to repay TD

Principal, i.e., when the level of TD Interest exceeds a predefined threshold.

• Portfolio of TD Items [17]: The idea of this strategy is to list all detected TD Items and

decide which are urgent to resolve immediately and which to postpone.

• Options [16]: The Options strategy involves the investment in the option that will facilitate

improvement of the source code in the future, rather than repaying TD Principal now. The

profits of this strategy are not immediate.

• Analytic Hierarchy Process [16]: This strategy involves the prioritization and ranking of

TD Items based on their severity and the potential profits of their mitigation.

• Calculation of TD Principal [18]: This strategy deals with the estimation of TD Principal

(based on an defined process, e.g. the OMG Specification on Automated Technical Debt

Measurement [3]) and the mapping of identified TD Items with quality attributes.

• Marking of Dependencies and Code Issues [19]: This strategy involves the tagging of

specific parts of code base with TD in a way that is easy to visualize and drive decision

making regarding paying the TD of those code parts.

A study on the evolution of software quality and technical debt in open source applications

11

6. Tools assessing TD (TD tools)

During the previous years, numerous TD assessment tools have emerged; these tools are able to measure

TD either in terms of cost or effort/time to repay TD. In this dissertation a non-systematic literature

search, including grey literature (such as websites), has been conducted to locate existing TD tools.

Right below, a short description of the identified TD assessment tools is provided (in alphabetical

order).

AnaConDebt [20] is a tool that focuses on Architectural Debt. Since a change in the architecture of a

project can be really expensive and time consuming it is important to decide if and when this change

should be implemented. The tool uses a large list of internal and external factors to estimate more

accurately the future principal and interest. It helps managers to decide when it is the right time to

refactor the code of their software.

CAST [18] contains several sub-tools in order to provide the entire quality profile for the project. Health

dashboard, Engineering dashboard, Security dashboard, CAST Appmark which is a benchmarking base

to use as a comparison standard and CAST Enlighten with Imaging system that offers a visualization

of the project. This tool helps companies to perform "Shift Left" techniques to detect the issues of a

project in early stages of its life cycle. This way the cost of fixing the issues is more tolerable. The tool

implements the C-CPP, CISQ, CWE, NIST-SP-800-53R4, OMG-ASCQM, OWASP, PCI-DSS-V3.2.1

and STIG-V4R8 standards. By performing static analysis, a list of issues is created. Only a part of the

problems will be solved and this part de-fines the technical debt metric.

CodeScene [21] serves as a mean to preserve the quality of the code of the automated tests. It combines

repository mining with static code analysis and machine learning. Static analysis can detect the

problems in the project, but since the source code is treated as of the same importance, repository mining

is necessary to recognize behavioral data and social factors that can affect future decisions of

refactoring. The results of the metrics may have different meaning depending on the characteristics of

each project. Machine learning is used to identify patterns in order to prioritize these metrics and assign

them the appropriate weight. The final result of the tool is a catalogue with the problematic files ranked

by their total impact.

DebtFlag [19] is a tool for capturing, tracking and resolving technical debt in Java systems. It consists

of two parts; one plug in for Eclipse IDE which is responsible to collect the data from the source code,

and one web application to visualize the results. These two applications connect via a database. The

collected data is structured using the TDMF form, which was extended to cover the tool's needs. The

tool offers the results in such a way that can be used to manage technical debt in two levels; project

level and implementation level with micromanagement.

Debtgrep [22] is an inhouse tool developed by Ericsson 4G 5G Baseband and its purpose is to pre-vent

technical debt. It uses a file where all rules are declared using regex. The rules can contain forbidden

words to restrict the usage of API and deprecated methods and also guidelines for design and

architectural rules. The rules can be applied only to a specific part of code such as new code. This tool

supports the communication between the developing team members and enhance the consistency and

the uniformity of the project.

DV8 [23] is a commercial extension of Titan [24]. DV8 functions with DRSpaces [25], which are

groups of system’s files that are architecturally related. Within DRSpaces, DV8 computes three

modularity metrics (Decoupling level, Propagation Cost and Independence Level) and detects six

architecture anti-patterns (Clique, Package Cycle, Improper Inheritance, Unstable Interface, Crossing

and Modularity Violation). DRSpaces (i.e. the subsets of architecturally related files) that are involved

in a selected set of issues are called ‘architecture roots’. The tool calculates the added maintenance cost

due to each instance of each anti-pattern, and the added maintenance cost of each architecture root. The

source code analysis is performed by the Understand tool [26].

Chapter II. Background on Technical Debt

12

Kiuwan [27] is a proprietary code analysis tool that supports numerous programming languages and is

capable of integrating with several IDEs. It can be obtained under a commercial license and it can also

be tested within a free trial period.

NDepend [28] is a static analysis tool for .NET projects available in Visual Studio Market Place. It

offers a variety of code quality metrics and a visualization of the dependencies in the project. The tool

handles the source code as a form of database, and the user can define new evaluation rules using LINQ

to perform queries on it. Other features of the tool include reporting service and the ability of

comparison between the generations of the same project.

SonarQube [29] is a widely known tool used to track the quality and maintainability of source code.

The tool implements the MISRA, CWE, SANS and CERT rule standards to pro-vide measurements

regarding complexity, duplications, code issues, maintainability, quality gates in combination with

technical debt, reliability, security, project size and test coverage. In addition, there are many plugins

to extend the available utilities, such as WebDriver for Selenium test analysis or AEM Rules set for

Adobe. The measurement of technical debt is an important component of SonarQube. The tool

calculates the debt by multiplying the number issues of each type with the average time the specific

issue type needs to be fixed. Then the time is multiplied with the cost for each man-day. The average

time and the cost can be configured by the user. It uses the SQALE method and provides a technical

debt pyramid to help making decisions prioritizing tasks.

Squore [30] consists of three smaller tools. The first one, the analyzer, is used to collect data from

different sources (source code, tests and hardware component information) and build the project's

hierarchy tree. Then a more detailed measurement takes place for each one of the nodes based on the

ISO, HIS, SPICE and MISRA rule standards. Last but not least, the tool also offers a dashboard for the

visualization of the results. The tool can be a part of Jenkins continuous integration and can also

recognize which files are most important to have Unit Tests in order to improve the efficiency.

TD-Tracker [31] is a web application, which provides a structured way to create a catalogue with the

issues in a project. The protocol, which is implemented, consists of three stages. For the first stage there

is a data collector where the problems are identified and a list is populated. The input data can come

from either an external source where, with appropriate mapping, the data can be stored directly to the

database of the application, or the integration with GitHub. After finishing the collection, the second

stage begins where a semi-automated task takes place. A user has to review the previous list with the

issues, and decide which of them are actual problems that need to be solved. Then there is the third

stage with the longest duration of all three. In this stage a user assigns tasks related to technical debt

and also monitors the progress of them.

TEDMA [32] is an open tool, which analyzes different indices related to technical debt during the

evolution of a project. It is open to integrate with third party tools to extend the analysis. It consists of

three layers. The first is called Data Layer and holds the processes used to gather information about the

project, which is examined. Currently, Git repositories are used as data input. The second is the Service

Layer where there are three basic services. (i) Data loader service is responsible for offering the source

code in a processable form to the tool. Then analyzers such as PMD and Findbugs detect code smells

and problems. (ii) Statistics service uses R to perform statistical analysis of the data. The analysis is

performed at file level but it can be extended to other levels of abstraction. (iii) Technical debt

management model service uses models in Java and R to support decision-making. The last layer is the

Presentation Layer which is responsible for documentation and visualization.

VisminerTD [33] is an open source web tool which monitors and manages technical debt comparing

the results between different project's versions. When an issue is detected it can be tracked to deter-

mine whether its TD was paid off or not. It uses the Repository Miner tool to collect data and metrics

from code repositories. VisminerTD uses queries to the database of the Repository Miner to gather the

A study on the evolution of software quality and technical debt in open source applications

13

preferred information and present them to the user via a friendly interface. A set of graphical views are

available to setup the search settings and then manage the technical debt items.

7. A comment on Technical Debt Management

Technical Debt can be either intentional or unintentional [34]. Intentional debt can serve as leverage for

future growth as it can speed up productivity and allow faster presence in the market. Nevertheless, it

is an imperative need to always monitor and maintain it within viable levels. On the other hand,

unintentional debt cannot be acknowledged in the first place. Thus, development teams are advised to

employ specialized TD tools for identification and quantification of TD Principal. However, the “blind”

resolution of the all suggested fixes is neither productive nor efficient and thus, not suggested. The

development teams should consider one or some of the aforementioned strategies for managing TD and

prioritize the issues that are more urgent to remediate.

References

[1] W. Cunningham, “The WyCash Portfolio Management System,” in Addendum to the

Proceedings on Object-oriented Programming Systems, Languages, and Applications

(Addendum), New York, NY, USA, 1992, pp. 29–30, doi: 10.1145/157709.157715.

[2] Z. Li, P. Avgeriou, and P. Liang, “A systematic mapping study on technical debt and its

management,” J. Syst. Softw., vol. 101, pp. 193–220, Mar. 2015, doi: 10.1016/j.jss.2014.12.027.

[3] “About the Automated Technical Debt Measure Specification Version 1.0.”

https://www.omg.org/spec/ATDM/About-ATDM (accessed Mar. 13, 2020).

[4] A. Ampatzoglou, A. Ampatzoglou, A. Chatzigeorgiou, and P. Avgeriou, “The financial aspect of

managing technical debt: A systematic literature review,” Inf. Softw. Technol., vol. 64, pp. 52–

73, Aug. 2015, doi: 10.1016/j.infsof.2015.04.001.

[5] A. Chatzigeorgiou, A. Ampatzoglou, A. Ampatzoglou, and T. Amanatidis, “Estimating the

breaking point for technical debt,” in 2015 IEEE 7th International Workshop on Managing

Technical Debt (MTD), Oct. 2015, pp. 53–56, doi: 10.1109/MTD.2015.7332625.

[6] “techDebt1.png (402×397).” http://commadot.com/wp-content/uploads/2011/02/techDebt1.png

(accessed Mar. 31, 2020).

[7] “Why the way we look at technical debt is wrong,” Think Big, Feb. 27, 2017.

https://www.bigeng.io/why-the-way-we-look-at-technical-debt-is-wrong/ (accessed Mar. 31,

2020).

[8] “The Fallacy of Technical Debt | Hacker Noon.” https://hackernoon.com/the-fallacy-of-technical-

debt-202f7406337e (accessed Mar. 31, 2020).

[9] J. Holvitie et al., “Technical debt and agile software development practices and processes: An

industry practitioner survey,” Inf. Softw. Technol., vol. 96, pp. 141–160, Apr. 2018, doi:

10.1016/j.infsof.2017.11.015.

[10] “Schloss Dagstuhl : Seminar Homepage.”

https://www.dagstuhl.de/en/program/calendar/semhp/?semnr=16162 (accessed Mar. 31, 2020).

[11] “What is technical debt? And why does almost every startup have it?,” freeCodeCamp.org, Oct.

16, 2017. https://www.freecodecamp.org/news/what-is-technical-debt-and-why-do-most-

startups-have-it-9a54458daabf/ (accessed Mar. 31, 2020).

[12] N. A. Ernst, “On the role of requirements in understanding and managing technical debt,” in 2012

Third International Workshop on Managing Technical Debt (MTD), Jun. 2012, pp. 61–64, doi:

10.1109/MTD.2012.6226002.

[13] N. S. R. Alves, T. S. Mendes, M. G. de Mendonça, R. O. Spínola, F. Shull, and C. Seaman,

“Identification and management of technical debt: A systematic mapping study,” Inf. Softw.

Technol., vol. 70, pp. 100–121, Feb. 2016, doi: 10.1016/j.infsof.2015.10.008.

Chapter II. Background on Technical Debt

14

[14] Z. Codabux and B. Williams, “Managing technical debt: An industrial case study,” in 2013 4th

International Workshop on Managing Technical Debt (MTD), May 2013, pp. 8–15, doi:

10.1109/MTD.2013.6608672.

[15] N. Zazworka, R. O. Spínola, A. Vetro’, F. Shull, and C. Seaman, “A case study on effectively

identifying technical debt,” in Proceedings of the 17th International Conference on Evaluation

and Assessment in Software Engineering, Porto de Galinhas, Brazil, Apr. 2013, pp. 42–47, doi:

10.1145/2460999.2461005.

[16] C. Seaman et al., “Using technical debt data in decision making: Potential decision approaches,”

in 2012 Third International Workshop on Managing Technical Debt (MTD), Jun. 2012, pp. 45–

48, doi: 10.1109/MTD.2012.6225999.

[17] Y. Guo and C. Seaman, “A portfolio approach to technical debt management,” in Proceedings of

the 2nd Workshop on Managing Technical Debt, Waikiki, Honolulu, HI, USA, May 2011, pp.

31–34, doi: 10.1145/1985362.1985370.

[18] B. Curtis, J. Sappidi, and A. Szynkarski, “Estimating the Principal of an Application’s Technical

Debt,” IEEE Softw., vol. 29, no. 6, pp. 34–42, Nov. 2012, doi: 10.1109/MS.2012.156.

[19] J. Holvitie and V. Leppänen, “DebtFlag: Technical Debt Management with a Development

Environment Integrated Tool,” in Proceedings of the 4th International Workshop on Managing

Technical Debt, Piscataway, NJ, USA, 2013, pp. 20–27, Accessed: May 29, 2019. [Online].

Available: http://dl.acm.org/citation.cfm?id=2663297.2663301.

[20] A. Martini and J. Bosch, “An Empirically Developed Method to Aid Decisions on Architectural

Technical Debt Refactoring: AnaConDebt,” in 2016 IEEE/ACM 38th International Conference

on Software Engineering Companion (ICSE-C), May 2016, pp. 31–40.

[21] A. Tornhill, “Assessing Technical Debt in Automated Tests with CodeScene,” in 2018 IEEE

International Conference on Software Testing, Verification and Validation Workshops (ICSTW),

Apr. 2018, pp. 122–125, doi: 10.1109/ICSTW.2018.00039.

[22] S. Arvedahl, “Introducing Debtgrep, a Tool for Fighting Technical Debt in Base Station

Software,” in Proceedings of the 2018 International Conference on Technical Debt, New York,

NY, USA, 2018, pp. 51–52, doi: 10.1145/3194164.3194183.

[23] M. Nayebi et al., “A Longitudinal Study of Identifying and Paying Down Architecture Debt,” in

2019 IEEE/ACM 41st International Conference on Software Engineering: Software Engineering

in Practice (ICSE-SEIP), May 2019, pp. 171–180, doi: 10.1109/ICSE-SEIP.2019.00026.

[24] L. Xiao, Y. Cai, and R. Kazman, “Titan: a toolset that connects software architecture with quality

analysis,” in Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations

of Software Engineering, Hong Kong, China, Nov. 2014, pp. 763–766, doi:

10.1145/2635868.2661677.

[25] L. Xiao, Y. Cai, and R. Kazman, “Design rule spaces: a new form of architecture insight,” in

Proceedings of the 36th International Conference on Software Engineering, Hyderabad, India,

May 2014, pp. 967–977, doi: 10.1145/2568225.2568241.

[26] “SciTools.com.” https://scitools.com/ (accessed Mar. 31, 2020).

[27] “Kiuwan - End-to-end application security,” Kiuwan. https://www.kiuwan.com/ (accessed Mar.

31, 2020).

[28] K. Chopra and M. Sachdeva, “EVALUATION OF SOFTWARE METRICS FOR SOFTWARE

PROJECTS,” Int. J. Comput. Technol., vol. 14, no. 6, pp. 5845–5853, Apr. 2015, doi:

10.24297/ijct.v14i6.1915.

[29] G. A. Campbell and P. P. Papapetrou, SonarQube in Action, 1st ed. Greenwich, CT, USA:

Manning Publications Co., 2013.

[30] B. Baldassari, “SQuORE: a new approach to software project assessment,” Aug. 2013.

[31] L. B. Foganholi, R. E. Garcia, D. M. Eler, R. C. M. Correia, and C. O. Junior, “Supporting

Technical Debt Cataloging with TD-Tracker Tool,” Adv Soft Eng, vol. 2015, pp. 4:4–4:4, Jan.

2015, doi: 10.1155/2015/898514.

A study on the evolution of software quality and technical debt in open source applications

15

[32] C. Fernández-Sánchez, H. Humanes, J. Garbajosa, and J. Díaz, “An Open Tool for Assisting in

Technical Debt Management,” in 2017 43rd Euromicro Conference on Software Engineering and

Advanced Applications (SEAA), Aug. 2017, pp. 400–403, doi: 10.1109/SEAA.2017.60.

[33] T. S. Mendes, F. G. S. Gomes, D. P. Gonçalves, M. G. Mendonça, R. L. Novais, and R. O.

Spínola, “VisminerTD: a tool for automatic identification and interactive monitoring of the

evolution of technical debt items,” J. Braz. Comput. Soc., vol. 25, no. 1, p. 2, Jan. 2019, doi:

10.1186/s13173-018-0083-1.

[34] “Managing Technical Debt,” Construx, Feb. 24, 2017.

https://www.construx.com/resources/whitepaper-managing-technical-debt/ (accessed Mar. 30,

2020).

Chapter III. Evolution of Web Applications

16

Chapter III. EVOLUTION OF WEB APPLICATIONS

The work of this chapter was published in the Information and Software Technology Journal (IST):

Amanatidis, Theodoros & Chatzigeorgiou, Alexander. (2016). Studying the Evolution of PHP Web

Applications. Information and Software Technology. 72. 48-67. 10.1016/j.infsof.2015.11.009.

Chapter Summary

Software evolution analysis can reveal important information concerning maintenance practices. Most

of the studies which analyze software evolution focus on desktop applications written in compiled

languages, such as Java and C. However, a vast amount of the web content today is powered by web

applications written in PHP and thus the evolution of software systems written in such a scripting

language deserves a distinct analysis. The aim of the study in this chapter is to analyze the evolution of

open-source PHP projects in an attempt to investigate whether Lehman’s laws of software evolution

are confirmed in practice for web applications. Data (changes and metrics) have been collected for

successive versions of 30 PHP projects while statistical tests (primarily trend tests) have been employed

to evaluate the validity of each law on the examined web applications. Results suggest that Laws: I

(Continuing Change), III (Self-regulation), IV (Conservation of organizational stability), V

(Conservation of familiarity) and VI (Continuing growth) are confirmed. However, only for laws I and

VI the results are statistically significant. On the other hand, laws II (Increasing complexity), and VIII

(Feedback system) do not hold in practice. Finally, for the law that claims that quality declines over

time (Law VII) the results are inconclusive. The examined web applications indeed exhibit the property

of constant growth as predicted by Lehman’s laws and projects are under continuous maintenance.

However, no evidence has been found that quality deteriorates over time, a finding which, if confirmed

by other studies, could trigger further research into the reasons for which PHP web applications do not

suffer from software ageing.

1. Introduction

Scripting languages originated as easy-to-use, specialized, interpreted programming languages

supporting loose data typing but quickly evolved to robust, generic and high-level languages boosting

the development of the Web [1]. The popularity of scripting languages nowadays is clearly evident from

the statistics in open-source repository hosting providers such as SourceForge7 and GitHub8. Languages

such as PHP, Javascript, Python, Perl and Ruby are among the most popular choices for developing

client and server-side applications, supported by huge communities and vast documentation. PHP in

particular has been widely employed in servers around the world as part of the LAMP (Linux-Apache-

MySQL-PHP) platform. The top-ten programming languages and the accompanying project share are

shown in Table 1 for two open source software repository hosting providers.

The popularity of scripting languages can possibly be attributed to their ease of use, enabling rapid

application development and shielding from low-level issues such as memory management [1].

According to Prechelt [2], who contrasted the implementation time for developing in scripting

languages (Perl, Python, Rexx and Tcl) with the time for programming the same functionality in

7 http://sourceforge.net

8 http://github.com

http://sourceforge.net/
http://github.com/

A study on the evolution of software quality and technical debt in open source applications

17

C/C++/Java, development time for scripting languages is significantly smaller (about half of the time

for compiled languages). Scripting languages are being viewed by various authors as more appropriate

for real programming pragmatism since they unleash the programmer’s creativity and imagination [1].

Back in 1998, Ousterhout [3] claimed that new applications will be written entirely in scripting

languages while the so-called system programming languages will be used primarily for developing

components.9

Table 1. Top-ten Languages of Public Open Source Projects Hosted By SourceForge & Github

SourceForge Github

Language # of projects percentage* Language # of repositories percentage*

Java 53.575 23% JavaScript 1.666.302 22%

C++ 43.189 19% Java 1.413.447 19%

PHP 33.789 15% Ruby 888.679 12%

C 31.837 14% Python 814.449 11%

C# 17.053 7% PHP 697.898 9%

Python 16.585 7% CSS 529.392 7%

JavaScript 13.884 6% C++ 439.423 6%

Perl 10.012 4% HTML 432.546 6%

Unix Shell 4.775 2% C 386.232 5%

VB .NET 4.050 2% C# 356.856 5%

Total 228.749 100% Total 7.625.224 100%

*Percentages refer to the ratio over the total number of projects developed in the top-ten languages

**Data as of October/2015 has been retrieved from http://sourceforge.net and http://github.com

In this chapter the evolution of PHP web applications is investigated, aiming at gaining insight into the

way that the corresponding software systems are maintained. The motivations for this dissertation are

the following three facts: a) There is a latent perception that scripting languages are not suitable for

proper software engineering that can support the maintenance of large-scale software projects [1].

However, such claims can hardly be found in the scientific literature possibly because they are not

backed up by real evidence. b) Academics are often skeptical about the suitability of scripting languages

in the context of introductory computer science courses. Nevertheless, it should be noted that there is

an increasing number of software engineering courses where concepts are illustrated on languages such

as Ruby and Python [5]. c) Finally, to the best of the author’s knowledge, there is no empirical study

investigating the evolution of software projects written in PHP (except for the work in [6]) while there

is a large body of research on evolution of software in compiled languages, such as Java.

Software evolution is often studied from the perspective of Lehman’s eight laws [7] which characterize

trends in size, changes and quality of evolving software systems. Therefore, the main goal of this chapter

is to investigate the validity of Lehman’s laws of evolution on PHP web applications. Since similar

9 Nevertheless, the superiority of statically typed languages with respect to maintainability remains open. For example, recent

empirical evidence [4] has shown that static types are beneficial to understanding undocumented code and fixing of type errors.

http://sourceforge.net/
http://github.com/

Chapter III. Evolution of Web Applications

18

studies have been performed previously for other programming languages, this analysis can be

considered as a replication study contrasting previous findings against those derived for PHP.

The rest of the chapter is organized as follows: In Section 2 related work on software evolution and

Lehman’s laws of software evolution, in particular, is discussed. The details of the case study design

are presented in Section 3 along with information about the examined projects. The validity of

Lehman’s laws of evolution is examined in Section 4. In Section 5 the results are summarized and

compared against those of previous works. In Section 6, possible implications for software researchers

and practitioners are presented. Threats to validity are discussed in Section 7 and finally, conclusions

are drawn in Section 8.

2. Related Work

The analysis of software evolution is one of the most well studied aspects of software development and

maintenance. This kind of empirical studies is greatly facilitated by the existence of multiple available

data in software repositories allowing the investigation of research questions regarding all facets of a

software project, including its source code, documentation, developers, bug reports etc. A

comprehensive survey on more than 80 approaches on mining software repositories to investigate

aspects of software evolution has been presented by Kagdi et al. [8]. The relation between software

evolution and maintenance, highlighting the concept of essential change within an environment, is

discussed in the overview paper by Godfrey and German [9].

Software evolution has been studied since the seventies. Lehman first formulated three basic principles

of software evolution, based on the study of the OS/360 operating system, in 1974 [10]. Later, Lehman

modified the existing principles and proposed two new ones [11]. In the early eighties, Lehman

published a new version of Laws III, IV and V [12]. Finally, Lehman published a newer formulation of

the laws including additional ones [7] and republished the most current formulations in 2006 [13]. Table

2 lists the most updated formulation of the eight laws of software evolution:

Table 2. Most Updated Formulation of Lehman’s Laws

Law Context

I) Continuing change A system must be continually adapted to its users’ needs, else it becomes

progressively less satisfactory in use.

II) Increasing
complexity

As a system evolves, its complexity increases and becomes more difficult to

evolve unless work is done to maintain or reduce the complexity.

III) Self regulation Global E-type system evolution is feedback regulated.

IV) Conservation of
organizational stability

The work rate of an organization evolving a software system tends to be

constant over time.

V) Conservation of
familiarity

The newly introduced content of each new version of the system is

constrained by the need to maintain familiarity.

VI) Continuing growth The size of a system continuously grows over time.

VII) Declining quality The quality of a system will appear to be declining over time, unless

proactive measures are taken.

VIII) Feedback system The evolution process of software resembles a feedback system.

With the rise of open source software, several studies investigated the validity of the laws and in some

cases it was found that some of the laws are not confirmed [14]. Godfrey and Tu, examined the evolution

of the Linux Kernel [15] and in later work several other open source systems [16]. Their focus was the

A study on the evolution of software quality and technical debt in open source applications

19

growth of the kernel, using the LOC as size metric and it was found that Linux had been growing at a

geometric rate.

Robles et al. [17] examined a wider range of open source systems, including the Linux kernel, as well.

In agreement with Godfrey & Tu, they found that smooth growth of systems is not that common and,

in some cases, development of open-source software has not followed the laws as known.

In 2008, Mens et al. [18] studied the evolution of Eclipse. They found that laws I and VI were confirmed

in practice (i.e. systems are continually adapted at a constant work rate) while law II was not confirmed

(i.e. the complexity does not exhibit an increasing trend).

Later, Xie et al. [19] studied the validity of all eight laws of evolution on seven open source projects.

They analyzed 653 official releases and cumulatively 69 years of evolution confirming 4 out of 8 laws

(I, II, III, VI).

Israeli & Feitelson [20] studied the validation of the laws also on the Linux Kernel in 2010. They found

that the superlinear growth found by Godfrey & Tu [15], [16] and confirmed by Robles et al. [17]

changed to linear from one point on. Ultimately, they confirmed the 3rd and 4th law unlike the

aforementioned studies.

In the same year, Businge et al. [21] also examined the validation of the laws on 21 third-party plug-ins

of Eclipse. They reached the conclusion that laws I, III and VI are confirmed while V is not.

Later, Neamtiu et al. [22], whose work was an expansion of the study by Xie at al. [19], studied nine

open source C projects. The authors validated only the 1st and the 6th law, opposing their conclusions in

their previous study [19]. In a recent work [23], Kaur et al. studied two C++ projects and found that

laws I, II, III, V, VI and VII hold in practice while for IV and VIII they could not reach a safe conclusion.

It is apparent that depending on the examined systems and the approach taken, different laws are

confirmed by different studies. A comparative overview of the findings of several studies dealing with

the validity of Lehman’s laws is provided in Section 5.2 along with the ones observed for PHP code in

this chapter.

3. Case Study Design

The objective of the study in this chapter is to examine whether Lehman’s laws of software evolution

are confirmed in practice for PHP web applications. To achieve this goal data from 30 PHP projects of

various sizes and domains have been analyzed. In the following sub-sections, the four parts the design

are described. i.e., Goal and Research question, Selection of cases, Employed process and tools and

Data analysis.

3.1. Goal and Research Question

The goal of this chapter of dissertation, adopting the formalism of the Goal-Question-Metrics (GQM)

approach [24] can be stated as:

Analyze successive versions of web applications written in PHP for the purpose of evaluation with

respect to their evolution from the perspective of researchers and software developers in the context

of Lehman’s laws of software evolution.

According to this goal the following research question can be formulated, that will guide this

dissertation:

RQ: Is the evolution of web applications written in PHP compliant with Lehman’s laws of evolution?

The research question is then decomposed into eight research questions, one for each of Lehman’s laws.

Chapter III. Evolution of Web Applications

20

3.2. Selection of Cases

As already mentioned, the chapter focuses on web applications developed with the scripting language

PHP. The motivation for selecting web applications was that PHP is primarily used in a Web context

and particularly in the widely employed LAMP platform (Linux-Apache-MySQL-PHP). The criteria

for selecting the projects are:

• the source code should be publicly available (the code is publicly available if the project is

distributed over a source code repository hosting provider, like Github)

• projects should have varying sizes and lifespans to obtain a representative sample (e.g. an

almost equal number of projects in three size clusters, 1-10 KLOC, 10-50 KLOC and >50

KLOC has been selected).

• projects should have at least 5 releases in their history to justify evolution analysis (this

information is provided by the repositories)

• projects should be object-oriented to allow analysis at the class and method level (this

requirement has been checked by counting the number of identified classes using the employed

tools)

The projects’ source code has been retrieved from Github and Sourcefore because of their large

collection of projects and widespread usage. The projects that have been selected for this dissertation

are obviously a subset of all projects that satisfy the aforementioned criteria. The large projects in terms

of size, namely projects Drupal, Wordpress, laravel, symfony, phpmyadmin and Zendframework, have

been selected after discussions with PHP developers who pointed to their importance and indications

of high quality. The rest of the projects have been selected by browsing all projects, sorted by relevance

and filtering out the ones that did not match the aforementioned criteria. A number of 30 projects has

been chosen to enable the manual investigation of the findings and the visual interpretation of the

identified trends.

The projects are listed in Table 3 along with an overview of their functionality, their lifespan, size in

thousand lines of code and number of analyzed versions. It should be noted that some of the examined

projects are relatively small (e.g. Nononsenseforum) while others are large projects with a vast

community of developers and users (e.g. WordPress).

Table 3. Overview of Examined Projects

Project Functionality Time Frame

LOC

(last

version) V
e
r
si

o
n

s

boardsolution Discussion board Jan09 - May13 88k 8

breeze A micro-framework for PHP 5.3+ Apr13 - Jul13 9k 18

cloudfiles API for the Cloud Files storage system Oct09 - May12 5k 13

codesniffer
Code Sniffer tokenizes PHP, JavaScript and

CSS files and detects coding standard violations
Nov11 - Sep13 45k 18

conference_ci EllisLab's Open Source Framework Aug11 - Oct12 49k 6

copypastedetector Copy/Paste Detector for PHP code Jan09 - Aug13 2k 19

dotproject Web-based project management framework Aug03 - Nov09 118k 10

A study on the evolution of software quality and technical debt in open source applications

21

Project Functionality Time Frame

LOC

(last

version) V
e
r
si

o
n

s

drupal (core) Open source CMS Jan07 - Aug14 18k 61

firesoftboard Bulletin board software Mar11 - Nov12 66k 5

generatedata Random data generator in JS, PHP and MySQL Jan13 - Sep13 136k 11

laravel PHP Framework Feb12 - Mar13 49k 29

mustache Logic-less template engine Apr10 - Aug13 7k 33

neevo Database abstraction layer for PHP 5.3+ Jun11 - Apr13 8k 13

nononsenseforum Simple discussion forum Jun11 - Feb13 1k 25

openclinic Medical records system Aug04 - Sep13 16k 10

phpagenda Agenda tool Sep06 - Jun13 10k 29

phpbeautifier
Parses source code and formats it in preferred

styles
Apr05 - Jun10 7k 12

phpdaemon
Asynchronous server-side framework for Web -

network applications
Oct10 - Jul13 31k 10

phpfreeradius
Web-based tool for managing a FreeRADIUS

environment
Apr10 - Mar12 31k 8

phpmyadmin Database administration tool Mar10 - Oct14 252k 68

phpmyfaq
A multilingual, completely database-driven

FAQ system
Jan10 - Jul13 88k 49

Phpqrcode QRCode generator library Mar10 - Oct10 9k 6

simplephpblog Blog Nov05 - Jul12 20k 12

symfony PHP Framework Jul11- Oct14 326k 52

tangocms A modular content management system Dec09 - Feb12 49k 16

thehostingtool
Client management script geared towards free

web hosting providers
May10 - Apr13 27k 6

usebb Forum system Feb05 - Jan13 9k 32

web2project Business-oriented Project Management Jun10 - Sep13 120k 5

wordpress Blog tool, publishing platform and CMS Apr05 - May14 224k 77

zendframework2 PHP Framework Sep12 - Sep14 284k 25

Chapter III. Evolution of Web Applications

22

By definition web applications entail a multitude of technologies. At a first level, web applications

contain source code at the server-side (written in PHP in the examined projects) as well as code that

takes over the presentation of web pages to clients (written in HTML, CSS, JavaScript etc). Beyond

code, a web application contains also other resources (e.g. images, fonts, media files, etc.) accessed by

the codebase. It should be mentioned that object-orientation was introduced in version PHP4 and fully

supported since version PHP5. However, the typical PHP web application contains both functions as

well as classes (methods). To provide an overall picture of this distribution of content types, Figure 1

presents the (a) file and (b) function and method breakdown for the latest release of the examined

projects. Approximately half of the files are PHP files and almost 9 out of 10 functions are methods.

Figure 1. (a) File and (b) function breakdown of examined projects based on their latest release

3.3. Employed Process and Tools

In order to perform the study, a PHP tool has been developed that is capable of parsing the directories

of several project releases (uploaded as a single compressed file) and extracting changes between

successive releases. Additions, deletions and moves at each level are identified based on the location of

the corresponding entity (file, class, function or method), while for the identification of changes the tool

examines the percentage of similarity between the body of the same entity in two successive releases

(after removing blank lines and comments). The entire workflow is illustrated in Figure 2.

Figure 2. Workflow for analyzing types and frequency of changes in PHP projects

upload

extract

all files
html files
js files
php files

parse

store

parse
classes
methods
functions

store

Results in html
table

1

2

3

4

5

6

7

Release i Release i+1

php files

classes

methods

functions

php files

classes

methods

functions

php files moved
php files added
php files removed
php files modified
classes moved
classes added
classes removed
classes modified
methods/functions moved
functions transferred in classes
methods transferred out of
classes
methods/functions added
methods/functions deleted
methods/functions modified

store

db query

A study on the evolution of software quality and technical debt in open source applications

23

Once information is extracted from the analyzed source code and directory structure (steps 1-4), raw

data is stored in a MySQL database. The developed tool also performs the queries to the database

considering two successive releases each time (step 5) and changes are stored in the database (step 6).

Eventually the tool displays the results in HTML format (step 7).

Moreover, in order to assess the validity of the laws in a quantitative manner, the PHP Depend10 tool

was employed which performs static code analysis and computes several software metrics for PHP

applications.

3.4. Data Analysis

As already made clear, the purpose the study in this chapter is to examine whether PHP web applications

are evolving in agreement with the Lehman’s laws of software evolution. Lehman’s laws have been

formulated at a rather abstract level, without direct reference (in most cases) to software metrics that

can be used to assess them in a quantitative manner [25]. For the mapping of Lehman’s laws to

measurable indicators the following have been taken into consideration: a) the original formulation or

examples provided by Lehman, b) the indicators that have been proposed in previous works that

investigated Lehman’s laws and c) the suitability of available metrics which can be computed by the

employed tool (PHP Depend) for PHP projects. The association between the investigated laws, involved

metrics (variables) and the corresponding statistical tests that will be performed to assess the validity

of each law is presented in Table 4. Due to plethora of laws, the motivation for the selection of the

particular metrics and the analysis conducted for each law will be separately discussed in the Results

Section (Section 4).

Table 4. Data Analysis

Laws Variables Data analysis

Law I

(Continuing Change)
[V1] Days Between Releases (DBR)

- -Trend test
- -Slope estimation

Law II

(Increasing

Complexity)

[V2] Complexity metric:

Cyclomatic Complexity Number / Lines Of Code

(CCN/LOC)

-Trend test

-Slope estimation

Law III

(Self Regulation)

[V3] Incremental growth of methods & functions -Trend test

-Slope estimation

Law IV

(Conservation of

organizational stability)

[V4.1] Maintenance effort:

Effort = total changes / DBR

[V4.2] Number of commits

-Trend test

-Slope estimation

Law V (Conservation of

familiarity)

[V5] Incremental changes (IC) in methods &

functions

-Trend test

-Slope estimation

Law VI

(Continuing growth)

[V6] Lines of Code (LOC) -Trend test

-Slope estimation

10 http://pdepend.org/

http://pdepend.org/

Chapter III. Evolution of Web Applications

24

Law VII

(Declining quality)

[V7.1] Afferent Coupling (CA)*

[V7.2] Efferent Coupling (CE)*

[V7.3] Depth of Inheritance Tree (DIT)*

[V7.4] Comment Ratio (CR):

Commented Lines Of Code / Lines Of Code

[V7.5] Maintainability Index (MI)

[V7.6] Number of bug-related commits

-Trend test

-Slope estimation

Law VIII

(Feedback system)

[V8] Actual (
dt
dS

) and theoretical growth rate

(3
2

−
tc)

two sample

Kolmogorov-

Smirnoff test

* These metrics have been measured at class level and their average values (divided by the number of classes) have been

considered.

As mentioned above, the study mainly focused on the evolution of these metrics over time. Particularly,

the goal was to examine if there is a trend in the evolution of each metric that concerns a specific law

and if so, to quantify this trend in comparable numbers. The corresponding null hypothesis for each

metric x can thus be expressed as:

H0: Metric x exhibits no trend

H1: Metric x exhibits a trend

In order to determine if a trend is present in the evolution of a metric the linear regression and the Mann

– Kendall trend test [26] were employed. Linear regression is considered a robust modeling tool.

However, to consider the results of a trend test based on linear regression as valid, a number of

preconditions have to be satisfied. These assumptions are:

1. Variables should be measured at the continuous level (i.e. they should be either interval or ratio

variables). Due to the nature of the examined time series of metric values, this condition is

always met.

2. The relationship between dependent and independent variables has to be linear.

3. No significant outliers should exist. (The 2nd and 3rd assumption can be assessed visually by

examining the scatterplot of the two variables i.e. release number and metric value)

4. Observations should be independent. This can be checked using the Durbin – Watson test which

assesses whether residuals of a linear regression model exhibit autocorrelation [27].

5. The data should be characterized by homoscedasticity. This can be checked using the Breusch

– Pagan test for homoscedasticity [28].

6. The residuals (errors) of the regression line should be normally distributed. This can be checked

by conducting the Shapiro – Wilk test of normality [29] on the residuals of the model yielded

from the linear regression.

In case the aforementioned assumptions do not hold, one should use a non-parametric test instead. A

trend test which can provide reliable results when no distribution can be assumed is the Mann – Kendall

trend test [26].

It should be noted that in the majority of projects one or more assumptions are violated and thus, the

Mann – Kendall trend test was mainly used. This is not uncommon when working with real-world data

A study on the evolution of software quality and technical debt in open source applications

25

rather than artificially made examples. When according to the Mann – Kendall trend test a trend is

clearly evident, i.e. the null hypothesis can be rejected, the Theil – Sen estimator [30] was used in order

to calculate the slope of the fitted trendline. The slope obtained by the Theil – Sen estimator is

essentially the median slope among all lines through all pairs of points in the dataset.

To enable the comparison of the steepness of slopes among different projects, slopes should be scale

independent. To this end, the trend test analysis (either linear regression or Mann – Kendall trend test)

was performed on a normalized version of the original dataset. In particular, each value of an examined

time series was divided by the maximum value in the time series yielding a normalized value in the

range [0..1] exhibiting the same slope as the original dataset. Moreover, the slope was expressed as a

percentage to allow easier interpretation of the results.

Due to the nature of Lehman’s laws, many of the variables seem to be akin. Especially the variables

related to the 3rd, 4th and 8th law seem to be quite similar. For this reason: a) the difference between

variables V3, V4.1, and V8 was illustrated through a simplified example and b) correlation analysis

among all pairs of selected variables for all 30 examined projects was performed.

Figure 3 illustrates a hypothetical system that evolved from version i to version i+1 over a period of

100 days. For simplicity, it was assumed that 7 new functions (methods and functions) have been added,

while 3 existing functions have been modified (removals and moves were counted as changes). The

actual values of variables V3, V4.1, and V8 would then be obtained as shown in the right-hand side of the

Figure. As it can be observed these values are indeed closely related but capture different aspects of

system evolution.

Incremental Growth, V3 = 7

Maintenance Effort, V4.1 =
100

37+

Growth Rate, V8 = 100
7

Figure 3. Calculation of incremental growth, maintenance effort and growth rate (example)

To provide further insight into possible correlation between the selected measures, the filled cells in

Table 5 indicate cases where the corresponding row and column variables have a statistically significant

correlation (with the same sign in the corresponding Pearson’s correlation coefficient) in 50% or more

of the projects. For example, variable V2 (CCN/LOC) has a negative correlation to V6 (LOC) in 19 out

of the 30 projects. The average correlation coefficient for these projects is -0.88. This is rather

reasonable, since variable V6 (LOC) is the denominator of variable V2 (CCN/LOC). However, both

variables were deliberately retained, since measuring the complexity of an evolving system would yield

a monotonically increasing trend due to the constant addition of new code, as it will be explained in the

next section.

Variables V7.1 (afferent coupling) and V7.2 (efferent coupling) also appear to have a rather strong

correlation. However, these variables quantify different aspects of coupling and it was preferred to keep

them both in the investigation of the 7th law (nevertheless, it would be worth investigating why these

aspects of coupling are correlated in PHP systems).

version i

. . .

version i+1

. . .

7 functions added

3 functions modified

Elapsed time = 100 days

Chapter III. Evolution of Web Applications

26

A strong correlation has been found also between variables V7.2 (efferent coupling) and V7.4 (comment

ratio). This rather unexpected correlation is unexpected, but comment ratio was included in the

investigation of quality evolution as it quantifies a distinct property of both functions and methods.

Finally, a strong correlation is observed between the variables discussed in the example of Figure 3,

namely between incremental growth (V3) and growth rate (V8), and between maintenance effort (V4.1)

and growth rate. As explained previously, it is reasonable that these variables are correlated as they

depend on some common measures. However, because the formulation of the 8th law follows strictly a

quantification approach proposed by Turski [31] this variable was not discarded.

Other variables with evidence of a strong correlation to some of the selected ones, have been excluded

from the analysis.

Table 5. Correlation Between Variables

 V1 V2 V3 V4.1 V4.2 V5 V6 V7.1 V7.2 V7.3 V7.4 V7.5 V7.6 V8

V1

V2

19/30

-0.88

V3
 22/30

+0.769

V4.1
 18/30

+0.829

V4.2

V5

V6

15/30

+0.858

V7.1

18/30

+0.906

V7.2

18/30

+0.834

V7.3

V7.4

V7.5

V7.6

V8

*Statistical significance is assessed at the 0.05 level

The entire dataset on which the study has been performed is publicly available11.

11 http://se.uom.gr/index.php/projects/evolution-analysis-php-applications/

http://se.uom.gr/index.php/projects/evolution-analysis-php-applications/

A study on the evolution of software quality and technical debt in open source applications

27

4. Results and Discussion

In this section, the results concerning the research question of whether the evolution of web applications

written in PHP is compliant with Lehman’s laws of evolution, are going to be presented. To facilitate

understanding, a brief reminder of each law will be provided. The hypothesis, the analyzed variables as

well as the corresponding type of analysis is also presented for each law. Finally, the rationale behind

the selection of the corresponding metrics is explained as well as any concerns that someone could have

with the applied approach.

At this point the following clarification should be made: For the laws where the results allow to draw a

conclusion that is supported by statistically significant trend test results, the corresponding law is noted

as statistically validated or not. However, there are laws, where although the results do not allow the

extraction of a statistically significant conclusion, the actual examination of the cases reveals the lack

of any evident trend. In these cases, the corresponding law is noted as practically validated or not.

4.1. Law I: Continuing Change

The law states that a program continuously changes and adjusts to its users’ needs else it becomes

progressively less satisfactory [7]. This is another way of stating that system maintenance is an

inevitable process [32]. It is a general observation which is valid for all projects that deliver consecutive

releases in a repository, otherwise there wouldn't be a need to release new versions. Law I, is confirmed

by all studies on Lehman’s laws (see section 5.2 - Comparison with previous work), including this

dissertation. The usual way to assess the validity of this law has been to investigate the cumulative

number of modified modules [22]. The cumulative number of changed methods and functions in PHP

code have also been employed and found a steady increasing trend in all projects, implying that changes

are present throughout projects’ lifespan. However, a trend is by definition almost always present in a

cumulative function, unless no modules are introduced at all during the course of a project, which is

rather unlikely. Therefore, the goal was not only to assess the validity of the law per se, but also to

quantify whether the validity of the law becomes weaker over time or not.

To obtain an insight on whether the first law of Lehman weakens or strengthens over time, the Days

Between Releases (DBR) have been measured, denoting the number of days that elapsed from the

release of one version in the repository up to the release of the next one. In other words, DBR quantifies

the frequency at which new releases are published. An increase of DBR over time means that the rate

of publishing new releases decreases, which in turn can be interpreted as a weakening of the validity of

the law for a particular project. Thus, the corresponding hypothesis can be expressed as:

Hypothesis Variable Analysis

H0: The evolution of the time interval between

two successive releases exhibits no trend.

H1: The evolution of the time interval between

two successive releases exhibits a trend.

[V1]: Days Between

Releases (DBR)

-Trend test

-Slope estimation

Rationale for selected variable: Previous research has used the cumulative number of modified

functions/methods; however, a cumulative number would be monotonically increasing. Therefore,

the law is considered valid and the Days Between Releases are selected to assess the frequency at

which new releases are published (i.e. whether the law is strengthened over time).

Concerns: The elapsed time between releases does not necessarily reflect the amount of changes

that have been carried out, especially in open-source projects.

Chapter III. Evolution of Web Applications

28

For example, Figure 4 illustrates the evolution of DBR for the successive versions of project usebb. It

appears that the number of days required to release a new version increases over time (less than 50 days

for the initial versions which climbs to more than 200 days for the final versions) implying that more

effort is required to adapt the system to additional requirements.

Figure 4. Trend of Days Between Releases metric for project usebb

As already mentioned, to perform a systematic analysis regarding the presence of a trend in a time

series, appropriate trend tests and slopes estimation will be used (as explained in section 3.4). Table 6

lists the results of the conducted trend test for each project as well as the slopes for the cases where the

trend is statistically significant. In the ‘Trend’ column an up-pointing/down-pointing arrow indicates

the presence of a statistically significant trend while a blank cell indicates that there is no evidence for

the existence or the absence of a trend.

Table 6. Statistical Results on Law I (Continuing Change)

Project

DBR

p-

value
Trend

Slope

(%)

1 boardsolution 0.287

2 breeze 0.041  0.16

3 cloudfiles 0.086

4 codesniffer 0.366

5 conference_ci 0.462

6 copypastedetector 0.471

7 dotproject 0.754

8 drupal (core) 0.927

9 firesoftboard 1.000

10 generatedata 0.525

11 laravel 0.003  0.83

12 mustache 0.025  1.19

13 neevo 0.783

14 nononsenseforum 0.274

15 openclinic 0.602

Project

DBR

p-

value
Trend

Slope

(%)

16 phpagenda 0.001  0.07

17 phpbeautifier 0.310

18 phpdaemon 0.029  -2.78

19 phpfreeradius 0.764

20 phpmyadmin 0.001  -0.39

21 phpmyfaq 0.557

22 phpqrcode 0.086

23 simplephpblog 0.087

24 symfony* ~0.000  0.14

25 tangocms 0.546

26 thehostingtool 1.000

27 usebb ~0.000  1.01

28 web2project 1.000

29 wordpress 0.805

30 zendframework2 0.014  1.25

*Linear regression has been used for these projects and the Mann-Kendall trend test for the rest to obtain p-values.

As it can be observed, in 2 out of the 30 projects DBR decreases over time (i.e. a negative slope is

observed) and in 7 out of 30 projects DBR increases. For 21 projects there is no statistical evidence for

the existence or the absence of a clear trend. Therefore, one cannot argue about the validity of this law

based on statistically significant results. However, to shed light on the evolution of DBR for the majority

of the projects that do not exhibit a statistically significant trend, their graphical evolution is depicted

in Figure 5. The x-axis corresponds to normalized version numbers, in the sense that all project lifespans

are plotted as equal, for the sake of clarity. The y-axis does not contain units, as the curves have been

adjusted to minimize their overlap.

0

100

200

300

400

500

600

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

D
B

R

Releases

A study on the evolution of software quality and technical debt in open source applications

29

Figure 5. Evolution of Days Between Releases metric for projects with p-value > 0.05

As it can be observed, indeed most of the projects shown in Figure 5 do not exhibit a clear trend but

rather have fluctuations in the variable of interest (DBR). One could argue, that DBR does not increase

nor decrease steadily during the examined period and characterize this evolution as rather stable.

 These observations imply that the first law of Lehman does not become stronger (changes are not

becoming more frequent) or weaker over time. In other words, findings suggest that PHP systems

continuously change but, in this dissertation, it cannot be determined whether these changes happen at

a slower or a faster pace.

4.2. Law II: Increasing Complexity

According to this law the complexity of software increases over time unless proactive measures are

taken to reduce or stabilize the complexity [7]. Although the complexity of a software project can be

quantified in many ways, the widely acknowledged cyclomatic complexity measure [33] has been

selected since it manages to assess the complexity of both functions and methods present in most PHP

web applications nowadays. However, the CCN metric provided by the PHP Depend tool counts the

total available decision paths in the entire program, and thus would be monotonically increasing as the

system becomes larger in size over time. Therefore, its value was normalized over the lines of code, i.e.

CCN/LOC. An increase of CCN/LOC over time implies that the overall complexity increases and that

the law is valid. The corresponding hypothesis can be expressed as:

Hypothesis Variable Analysis

H0: The evolution of complexity exhibits no trend.

H1: The evolution of complexity exhibits a trend.

[V2]:

CCN/LOC

-Trend test

-Slope estimation

Rationale for selected variable: Cyclomatic complexity is a well-studied and widely

acknowledged complexity measure which has also been employed in previous studies for the

examination of the validity of the 2nd Law.

Concerns: The normalization by dividing with the size might not capture changes in total

complexity due to the addition of new code.

The trend of CCN/LOC over all examined versions for each project is shown in Table 7. Figure 6

illustrates the trendline fitted to the evolution of CCN/LOC, for those projects where a statistically

significant trend has been found. The x-axis corresponds to normalized version numbers, in the sense

that all project lifespans are plotted as equal, for the sake of clarity.

0,00 10,00 20,00 30,00 40,00 50,00 60,00 70,00 80,00

D
B

R

Normalized Version

Chapter III. Evolution of Web Applications

30

Table 7. Statistical Results on Law II (Increasing Complexity)

Project

CCN/LOC

p-

value

Trend Slope

(%)

1 Boardsolution 0.319

2 Breeze 0.034  0.03

3 Cloudfiles 0.853

4 Codesniffer ~0.000  1.22

5 conference_ci 0.181

6 copypastedetector 0.003  -0.14

7 Dotproject 0.371

8 drupal (core) ~0.000  -0.86

9 firesoftboard* 0.011  -0.02

10 Generatedata 0.002  -0.17

11 Laravel 0.763

12 Mustache 0.026  -0.60

13 Neevo 0.112

14 nononsenseforum ~0.000  1.91

15 Openclinic 0.149

Project

CCN/LOC

p-

value

Trend Slope

(%)

16 phpagenda ~0.000  -0.40

17 phpbeautifier 0.019  -0.34

18 phpdaemon 0.474

19 phpfreeradius 0.711

20 phpmyadmin ~0.000  -0.51

21 phpmyfaq 0.016  -0.18

22 phpqrcode 0.035  -0.79

23 simplephpblog 0.099

24 symfony ~0.000  -0.05

25 tangocms ~0.000  0.19

26 thehostingtool 0.024  2.01

27 usebb 0.909

28 web2project 0.086

29 wordpress ~0.000  -0.20

30 zendframework2 ~0.000  0.07

*Linear regression has been used for these projects and the Mann-Kendall trend test for the rest to obtain p-values.

Figure 6. Trendlines of CCN/LOC for projects with p-value < 0.05

As it can be observed from Table 7, in 18 projects (more than half of the projects) there is either a

positive or a negative trend in the evolution of the aforementioned complexity measure. Out of the 18

projects in which the null hypothesis is rejected (meaning that a statistically significant trend is present),

only in 6 projects there is a deterioration in the evolution of the aforementioned complexity measure,

implying that the law is not valid for the examined PHP projects. For the majority of the projects,

complexity decreases. This generally decreasing trend is also evident from the CCN/LOC trendlines in

Figure 6. To be accurate, it should be reminded that Lehman acknowledged the possibility of a non-

increasing complexity if care is exercised by the maintenance team and this seems to be the case for the

examined PHP projects. This observation is in agreement with a previous study [6] on the evolution of

large-scale PHP web applications, which suggested that systems like phpMyAdmin, WordPress and

Drupal exhibit signs of careful maintenance decisions resulting in non-increasing complexity.

4.3. Law III: Self-Regulation

Lehman [7] suggested that “system evolution process is self-regulating”. In contrast to other rules,

mapping this claim to the evolution of quantitative measures is non-trivial. According to Xie et al. [19]

the regulation of size throughout the lifespan of a project, translates to observing negative and positive

adjustments ("ripples") in the growth trend. The same interpretation of the third law has been adopted

by Businge et al. [21] who observed ripples in the incremental growth of Eclipse plugins. To this end,

the changes in the total number of functions and methods have been measured. For example, such

0.05

0.07

0.09

0.11

0.13

0.15

0.17

0.19

0 10 20 30 40 50 60 70 80

C
C

N
/L

O
C

Normalized Version

A study on the evolution of software quality and technical debt in open source applications

31

changes for project phpMyFAQ are graphically depicted in Figure 7. As it can be observed, ripples are

present; positive adjustments are more frequent than negative, in agreement to what has been observed

by the study of Xie et al. [19] and Businge et al. [18]. However, no global trend appears to be present.

To have a common interpretation of whether the law is confirmed across all projects, whether there is

a statistically significant trend in the data was investigated. The law should be considered as invalidated

when there is a trend at the incremental growth of the methods and functions of the system. The

corresponding hypothesis can be expressed as:

Hypothesis Variable Analysis

H0: The evolution of incremental growth exhibits no

trend.

H1: The evolution of incremental growth exhibits a

trend.

[V3]:

incremental

growth of

methods &

functions

-Trend test

-Slope estimation

Rationale for selected variable: Methods and functions in PHP code cumulatively reflect the

amount of delivered functionality. Incremental growth of system characteristics (e.g. functions,

dependencies) has been used in other studies as well.

Concerns: Evolution might occur at a lower level than methods and functions (i.e. at the code line

level) without affecting the number of methods and classes.

Figure 7. Ripples in the total number of functions/methods for phpMyFAQ

Table 8. Statistical Results on Law III (Self-Regulation)

Project

INCREMENTAL

GROWTH

p-

value

Trend Slope

(%)

1 boardsolution 1.000

2 breeze 0.426

3 cloudfiles 0.528

4 codesniffer 1.000

5 conference_ci 0.579

6 copypastedetector 0.811

7 dotproject 0.016  -0.24

8 drupal (core) 0.079

9 firesoftboard 0.734

10 generatedata 0.653

11 laravel 0.024  0.04

12 mustache 0.960

13 neevo* 0.077

14 nononsenseforum 0.248

15 openclinic 0.295

Project

INCREMENTAL

GROWTH

p-

value

Trend Slope

(%)

16 phpagenda 0.533

17 phpbeautifier 0.065

18 phpdaemon 0.602

19 phpfreeradius 0.095

20 phpmyadmin 0.277

21 phpmyfaq 0.285

22 phpqrcode 0.267

23 simplephpblog 0.436

24 symfony 0.011  0.01

25 tangocms* 0.118

26 thehostingtool 1.000

27 usebb 0.901

28 web2project 0.734

29 wordpress 0.811

30 zendframework2 0.130

*Linear regression has been used for these projects and the Mann-Kendall trend test for the rest to obtain p-values.

-110

-10

90

190

290

0 5 10 15 20 25 30 35 40 45 50Fu
nc

ti
on

 a
nd

 m
et

ho
d

in
cr

em
en

t

Releases

Chapter III. Evolution of Web Applications

32

Figure 8. Evolution of Incremental Growth for projects with p-value > 0.05

The results of the statistical analysis are summarized in Table 8. Only in 3 out of the 30 projects a trend

in the incremental growth of methods and functions is present. In laravel and symfony there is an

increasing trend, meaning that more and more functionality is added over time, while in dotproject the

trend is decreasing. In the rest of the projects, the null hypothesis that the incremental growth of the

system exhibits no trend cannot be rejected. However, with a closer look at Figure 8, which illustrates

graphically the evolution of the incremental growth for all 27 projects where no statistically significant

trend has been found, one can observe that indeed there is no evidence for a constant increase or

decrease in the number of incremental methods and functions at every new version. This means that the

examined systems do grow, but the growth rate remains relatively stable. To sum up, the results are not

clear in terms of statistical power that the 3rd Law is valid, but the actual evidence points to the

conclusion that the evolution of PHP projects is indeed regulated under a stable growth pace during

system’s lifespan. Hence, the law is considered as practically validated.

4.4. Law IV: Conservation of Organizational Stability

The law stipulates that the activity/work rate between successive releases remains stable. Estimating

effort in open-source projects can hardly be accurate and only indirect measures can be considered. In

analogy to the study by Xie et al. [19] the work rate is measured as the number of changes (in the

number of methods and functions) in a release i, over the elapsed time (in days) from the previous

release i-1. As suggested by Lehman [34], [35] this dissertation counts as changes all handled elements

accounting for removed, modified, added and moved functions and methods. Moreover, to provide an

alternative measure for the estimation of work rate, the number of commits to the corresponding

repository were analyzed, over time. Since a commit implies an ‘official’ submission of performed

work, it can be considered as a reliable indicator of effort. Although this law is considered sub judice

(under judgment) in the corresponding study by Lehman, the validity of the law is investigated by

assessing the slope of the fitted trendline of maintenance effort, as reflected in the two variables. The

statistical results for the trend test on variable V4.1 and V4.2 are shown in Table 9.

Hypothesis Variable Analysis

H0: The evolution of maintenance effort exhibits no

trend.

H1: The evolution of maintenance effort exhibits a

trend.

[V4.1]: maintenance effort

= changes/DBR

[V4.2]: number of

commits

-Trend test

-Slope

estimation

0 10 20 30 40 50 60 70 80

IN
C

R
EM

EN
TA

L
G

R
O

W
TH

Normalized Version

A study on the evolution of software quality and technical debt in open source applications

33

Rationale for selected variables: As suggested by Lehman, the changes in methods and functions

throughout a project’s lifespan were counted. Moreover, a commit constitutes an actual and

‘official’ submission of work by the developers.

Concerns: The work that has been performed to release a new version is not reflected accurately

when counting source code modifications only, since other types of activities (such as

understanding and testing) might have been carried out.

Table 9. Statistical Results on Law IV (Conservation of Organizational Stability)

Project

MAINTENANCE EFFORT NUMBER OF COMMITS

p-value Trend Slope (%) p-value Trend Slope (%)

1 boardsolution 0.368 0.251*

2 breeze 0.091 N/A N/A N/A

3 cloudfiles 0.732 0.069*

4 codesniffer 0.711 0.038  0.93

5 conference_ci 0.462 0.007  -1.8

6 copypastedetector 0.622 0.746

7 dotproject 0.175 0.001  -1.12

8 drupal (core) 0.589 0.189

9 firesoftboard 0.105* 0.450*

10 generatedata 1.000 0.463

11 laravel 0.402 0.002  -2.94

12 mustache 0.023  -0.14 0.194

13 neevo 0.033  -2.27 0.039  -5.32

14 nononsenseforum 0.049  0.09 0.034  -5.69

15 openclinic 0.754 0.656

16 phpagenda 0.020  -0.11 N/A N/A N/A

17 phpbeautifier 1.000 0.332

18 phpdaemon 0.016  7.46 0.653

19 phpfreeradius 0.133 0.033*  -21.16

20 phpmyadmin 0.152 ~0.000  0.23

21 phpmyfaq 0.709 0.241

22 phpqrcode 0.221 N/A N/A N/A

23 simplephpblog 0.119 N/A N/A N/A

24 symfony 0.033  0.02 0.833

25 tangocms 0.266 0.634*

26 thehostingtool 0.807 0.432

27 usebb ~0.000  -0.86 0.001  -0.83

28 web2project 0.029*  -29.2 0.134

29 wordpress 1.000 ~0.000  1.10

30 zendframework2 0.001  -0.37 0.761
*Linear regression has been used for these projects and the Mann-Kendall trend test for the rest to obtain p-values.

As it can be observed only in 9 projects (for V4.1) and in 10 projects (for V4.2) there is a statistically

significant trend in the maintenance effort. For the majority of projects, no safe conclusion regarding

the evolution of maintenance effort can be reached. Once again, these non-statistically significant cases

are depicted in Figure 9 for V4.1 and in Figure 10 for V4.2.

Chapter III. Evolution of Web Applications

34

Figure 9. Evolution of Maintenance Effort (V4.1) for projects with p-value > 0.05

Figure 10. Evolution of Number of Commits (V4.2) for projects with p-value > 0.05

The visual interpretation of Figure 9 indicates that in general, the work rate does not increase or decrease

drastically as the projects evolve. It should be noted that although some lines appear almost straight,

the statistical power was low because of the small number of data points. The evolution of the number

of commits in Figure 10 exhibits fluctuations for some of the projects, but again no conspicuous trend

is present. Overall, PHP projects seem to evolve in agreement with the 4th Law. An increasing trend

would imply that more and more features (or bug fixes) are added to the evolving project in the same

period of time, or that the same amount of functionality is added in less and less time. However, it is

reasonable to assume that increasing addition of functionality is rather rare for mature open-source

projects and especially web applications which have to deliver their core functionality right from their

first versions. On the other hand, a decreasing trend would imply that the system suffers from poor

maintainability, in the sense that equal amounts of functionality required more time to be added.

However, this phenomenon has not been observed meaning that the majority of the examined web

applications do not suffer from this kind of maintainability issues. This law is tagged as practically

validated.

4.5. Law V: Conservation of Familiarity

According to Lehman, "During the active life of a program the release content of the successive releases

of an evolving program is statistically invariant" [7]. The law resulted by noticing the inherent tradeoff

between the increased difficulty of understanding changes contained in a new release and the

organizational pressure for delivering novel features along with the constant demand for corrections

0 10 20 30 40 50 60 70 80

M
A

IN
T

E
N

A
N

C
E

 E
FF

O
R

T

Normalized Version

0 10 20 30 40 50 60 70 80

N
U

M
B

E
R

S
 O

F
 C

O
M

M
IT

S

Normalized Version

A study on the evolution of software quality and technical debt in open source applications

35

and changes [13]. In order to assess the validity of the law in a quantitative manner, the Incremental

Changes (IC) metric has been proposed [36]. IC is obtained by subtracting the total number of changes

that occurred in methods and functions in one release from the total number of changes in methods and

functions of the next release. An absence of trend for IC indicates the absolute validity of the law. A

decreasing trend implies that the performed changes become less and less over time, which in turn can

be attributed to the increased effort that developers need to understand and modify the program's source

code [19].

Hypothesis Variable Analysis

H0: The evolution of incremental changes exhibits no

trend.

H1: The evolution of incremental changes exhibits a

trend.

[V5]: Incremental

changes (IC) in

methods & functions

-Trend test

-Slope

estimation

Rationale for selected variable: The incremental changes in methods and functions were

measured, as they capture the potential to provide more and more functionality in each new

version. If this is not possible, the release content should be considered invariant.

Concerns: The number of new/modified/deleted functions is only one way of capturing the

provision of novel features in a new version.

Table 10. Statistical Results on Law V (Conservation of Familiarity)

Project

INCREMENTAL

CHANGES

p-
value

Trend Slope(%)

1 boardsolution 1.000

2 breeze 0.837

3 cloudfiles 0.627

4 codesniffer 0.509

5 conference_ci 1.000

6 copypastedetector* 0.592

7 dotproject 0.917

8 drupal (core) 0.753

9 firesoftboard 0.308

10 generatedata 0.032  0.30

11 laravel 0.634

12 mustache 0.770

13 neevo* 0.668

14 nononsenseforum 0.823

15 openclinic 0.348

Project

INCREMENTAL

CHANGES

p-
value

Trend Slope(%)

16 phpagenda 0.872

17 phpbeautifier 0.479

18 phpdaemon 0.754

19 phpfreeradius 1.000

20 phpmyadmin 0.705

21 phpmyfaq 0.986

22 phpqrcode 0.807

23 simplephpblog 0.533

24 symfony 0.592

25 tangocms 0.691

26 thehostingtool 0.807

27 usebb* 0.677

28 web2project 0.734

29 wordpress 0.993

30 zendframework2 0.941

*Linear regression has been used for these projects and the Mann-Kendall trend test for the rest to obtain p-values.

Chapter III. Evolution of Web Applications

36

Figure 11. Evolution of Incremental Changes for projects with p-value > 0.05

The results of Table 10 do not allow for reaching a statistically safe conclusion as only in one project a

statistically significant trend of IC is evident. For the rest of the projects, trend tests yielded a p-value

of more than 0.05 implying that one cannot reject the null hypothesis. For this reason, the actual

evolution of these cases was plotted in order to visually check the existence of a trend. As it can be

observed in Figure 11, in the majority of the projects, evolution of IC does not exhibit an increasing or

a decreasing trend. In other words, the number of additional changes at the method and function level

between successive versions might fluctuate temporarily, but is generally invariant over time. This

translates to conservation of the release content of each new version in PHP applications which in turn

suggests the validity of the 5th law. Thus, this law is tagged as practically validated.

This law is quite similar to the previous one and the findings also match. However, the dimension of

time is not taken into account for the 5th law in the sense that the number of incremental changes is not

normalized over the elapsed time from the previous release. An increasing trend for the 5th law would

imply that the amount of functionality added or modified in each new release is steadily increasing.

Such a trend cannot be expected continuously and even if it is present in the initial versions of a new

project, it would be unrealistic for mature projects. On the other hand, a decreasing trend would imply

that fewer and fewer functions and methods are added or changed over time, signifying a slowly ‘dying’

project. None of the examined projects exhibits such a trend and it would be worth investigating which

kind of actual projects are being gradually abandoned.

4.6. Law VI: Continuing Growth

The law stipulates that a program grows over time to address the new needs of its clients. Although

several measures can be employed to assess this growth, most previous studies have used size metrics

such as Lines of Code (LOC) [19] or the number of modules [7]. In this dissertation, the evolution of

LOC was also measured to capture both additions of statements within functions as well as additions of

new functions and classes (methods). An increasing trend for LOC validates the law. The results

concerning the trend test are summarized in Table 11, while Figure 12 depicts the corresponding

trendlines for the majority of the projects where a statistically significant trend has been found.

Hypothesis Variable Analysis

H0: The evolution of system’s size exhibits no trend.

H1: The evolution of system’s size exhibits a trend.

[V6]: LOC -Trend test

-Slope estimation

Rationale for selected variable: The evolution of the size of each project in terms of LOC was

examined, as in most of the previous studies.

Concerns: -

0 10 20 30 40 50 60 70 80

IN
C

R
EM

EN
TA

L
C

H
A

N
G

ES

Normalized Version

A study on the evolution of software quality and technical debt in open source applications

37

Table 11. Statistical Results on Law VI (Continuing Growth)

Project

LOC

p-

value

Trend Slope

(%)

1 boardsolution 0.002  0.19

2 breeze* ~0.000  0.91

3 cloudfiles 0.001  0.91

4 codesniffer 0.256

5 conference_ci 0.566

6 copypastedetector ~0.000  2.21

7 dotproject ~0.000  1.59

8 drupal (core) ~0.000  1.63

9 firesoftboard 0.807

10 generatedata ~0.000  0.39

11 laravel ~0.000  2.60

12 mustache ~0.000  2.86

13 neevo 0.005  1.19

14 nononsenseforum ~0.000  2.99

15 openclinic 0.003  1.76

Project

LOC

p-

value

Trend Slope

(%)

16 phpagenda ~0.000  0.56

17 phpbeautifier ~0.000  0.57

18 phpdaemon ~0.000  5.86

19 phpfreeradius 0.001  1.98

20 phpmyadmin ~0.000  0.85

21 phpmyfaq ~0.000  0.85

22 phpqrcode* 0.012  12.90

23 simplephpblog 0.837

24 symfony ~0.000  1.08

25 tangocms 0.051

26 thehostingtool 0.024  3.40

27 usebb ~0.000  1.87

28 web2project 0.807

29 wordpress ~0.000  1.27

30 zendframework2 0.293

*Linear regression has been used for these projects and the Mann-Kendall trend test for the rest to obtain p-values.

Figure 12. Trendlines of LOC for projects with p-value < 0.05

From the results of Table 11 and the trendlines in Figure 12, it becomes apparent that in the majority of

PHP projects (23/30), the size in terms of LOC increases steadily over time. Although deletions of code

also occur, in the examined web applications it is evident that development teams keep adding new

code to enhance the offered functionality. As a result, one can reach the conclusion that the 6th law of

software evolution holds in practice. This law has been confirmed in all previous studies (see section

5.2 - Comparison with previous work).

4.7. Law VII: Declining Quality

The law states that the quality of software deteriorates over time unless proactive measures are taken.

Degradation of software quality over time is a widely investigated phenomenon known under different

names, such as "software ageing" [37] or accumulation of technical debt [38]. A number of internal

quality metrics and one external quality indicator have been examined to evaluate the validity of this

law for PHP applications. Specifically, metrics which can be calculated at the level of individual classes

were investigated and which can be associated to an aspect of design quality. Moreover, two metrics

were also included. These metrics concern both functions and methods to assess the quality of non-

object-oriented code as well. Finally, the number of bug related commits was measured to assess

whether the number of bugs increases or decreases over time. In order to avoid any misleading statistical

interpretations, only a trend test on the evolution of each metric was performed without attempting to

0 10 20 30 40 50 60 70 80

LO
C

Normalized Version

Chapter III. Evolution of Web Applications

38

extract an overall statistical measure considering all metrics. A brief discussion of the employed metrics

follows next.

Coupling is one of the classic internal metrics used to assess the quality of a design and for this reason

the average Afferent Coupling (CA) and the average Efferent Coupling (CE) of each class were

measured. Afferent coupling refers to the number of unique incoming dependencies for a software

artifact (i.e. it is representative of a class’ fan-in). Therefore, it is an indicator of the extent by which a

module is used by other modules, and under normal circumstances, it is suggested to keep the fan-in

high [39]. Typical examples of modules/packages with high fan-in are core packages and components,

like error and exception handling, or unit testing framework classes.

Efferent coupling counts the number of software artifacts that a software entity depends on. A high

efferent coupling (i.e. the module has a high fan-out) implies that the component depends on several

other implementation details and this makes the component itself instable, because an incompatible

change between two versions or a switch to a different library may break the dependent component.

Moreover, the comprehensibility and reusability of a module with high efferent coupling is limited.

Therefore it is considered a good practice to keep the efferent coupling for all artifacts at a minimum

[39].

The quality of an object-oriented design has also been assessed from the perspective of inheritance

qualities. Although specific thresholds for the optimum depth of an hierarchy are hard to extract by

means of empirical studies, Harrison and Counsell [40] have found that deeper inheritance trees are

harder to understand and maintain, a view shared also in the early discussions on inheritance heuristics

by Riel [41]. In this dissertation, the evolution of the ‘Depth of Inheritance Tree’ metric (DIT) was

tracked as PHP systems evolve.

Several studies assess the understandability of code (which is a sub-characteristic of maintainability)

by the comment ratio (CR) that is the ratio of commented lines of code over the total lines of code. The

higher the ratio for a piece of code is, the more readable and thus maintainable the code can be

considered to be [42]. This metric allows to assess the evolution of both function and methods and has

been selected as the fourth internal quality indicator.

Another widely used and discussed measure of quality is the Maintainability Index (MI) which has been

originally introduced by Oman and Hagemeister in 1991[43]. MI is a composite metric that considers

for an assessed module its Halstead’s volume, cyclomatic complexity and size in terms of lines of code.

There have been numerous studies on the validity of MI, some of which have found that MI can

successfully predict actual maintenance effort and others which have questioned its accuracy.

Nevertheless, in this dissertation MI was used as an indicator of internal quality because it is not

restricted to object-oriented code, and because that regardless of its accuracy as a maintainability

predictor, an increasing trend of MI would imply efforts to improve three aspects of quality within

functions or methods.

Finally, since all the aforementioned metrics focus on internal quality, a measure that aims at addressing

quality as perceived by users or developers was also included. An indisputable indicator of external

quality would be the number of bugs/errors found during system evolution, as an increasing number of

bugs implies quality degradation. However, although the examined applications are supported by an

issue tracking system, for the examined PHP projects, it was found that it would be unreliable to count

the number of issues (since in numerous cases the reported issues do not concern bugs). For this reason,

the commits (i.e. actual code changes) for which it could be inferred that they are related to the fixing

of a bug or issue were selected. As in other studies (e.g. [44]) bug related commits were identified by

filtering those that contain error related keywords, such as ‘error’, ‘bug’, ‘fix’ and ‘issue’ in the

corresponding commit message.

A study on the evolution of software quality and technical debt in open source applications

39

For measures CA, CR and MI an increasing trend implies that quality is improving from this

perspective. On the other hand, for measures CE, DIT and number of bug related commits, quality is

improving if their values get lower. In Table 12, the trend of the aforementioned quality measures over

all examined versions for each project is reported. To facilitate the interpretation of the results, the cases

in which the evolution of a metric suggests deterioration of the system’s quality were marked with

shaded cells.

Hypothesis Variable Analysis

H0: The evolution of system’s quality

exhibits no trend.

H1: The evolution of system’s quality

exhibits a trend.

[V7.1]: CA

[V7.2]: CE

[V7.3]: DIT

[V7.4] CR

[V7.5] Maintainability

Index (MI)

[V7.6] Number of bug-

related commits

-Trend test

-Slope estimation

Rationale for selected variables: The assessment of quality evolution is based on a mixture of

internal quality metrics (for object-oriented and procedural code) and one external quality indicator

related to the number of bugs. The selected metrics have been tested for correlation among them, as

explained in Section 3.4

Concerns: Internal quality metrics do not necessarily map to external quality. The number of bug-

related fixes is sensitive on the style of commit messages employed in a project.

Table 12. Statistical Results on Law VII (Declining Quality)

 Project
CA CE DIT

p-value Trend Slope(%) p-value Trend Slope(%) p-value Trend Slope(%)

1 boardsolution 0.003  0.08 0.022  0.07 0.067

2 breeze 0.128 0.969 ~0.000  0.35

3 cloudfiles 0.260 0.260 0.014  0.05

4 codesniffer 0.096 0.185 ~0.000  -6.29

5 conference_ci 0.105 0.411 0.105

6 copypastedetector 0.885 0.017  0.59 ~0.000  1.60

7 dotproject 0.105 0.358 0.006  1.66

8 drupal (core) 1.000 0.207 ~0.000  0.96

9 firesoftboard 0.613 0.129 1.000

10 generatedata 0.012  -0.12 0.024  -0.14 0.012  0.25

11 laravel ~0.000  -0.67 0.008  -0.43 ~0.000  2.00

12 mustache ~0.000  2.62 ~0.000  2.49 ~0.000  -1.02

13 neevo 1.000 0.009  1.43 0.001  0.34

14 nononsenseforum ~0.000  5.55 ~0.000  5.00 ~0.000  -3.94

15 openclinic 0.021  2.98 0.001  7.14 0.165

16 phpagenda ~0.000  -1.21 ~0.000  -1.08 ~0.000  -0.90

17 phpbeautifier ~0.000  1.49 0.823 0.148

18 phpdaemon 0.088 0.059 0.009  4.98

19 phpfreeradius 0.421 0.789 0.421

20 phpmyadmin 0.004  0.08 0.475 ~0.000  0.81

Chapter III. Evolution of Web Applications

40

 Project
CA CE DIT

p-value Trend Slope(%) p-value Trend Slope(%) p-value Trend Slope(%)

21 phpmyfaq 0.359 0.045  -0.13 0.005  -0.16

22 phpqrcode 1.000 0.008  6.91 1.000

23 simplephpblog 0.453 0.015  14.00 0.078

24 symfony ~0.000  0.10 ~0.000  0.07 ~0.000  0.13

25 tangocms 0.021  -0.05 0.006  0.04 0.498

26 thehostingtool ~0.000  3.81 0.181 0.100

27 Usebb 1.000 1.000 1.000

28 web2project 0.267 0.267 0.149

29 Wordpress ~0.000  0.68 ~0.000  0.52 ~0.000  1.27

30 zendframework2 ~0.000  0.21 ~0.000  0.40 ~0.000  -0.18

Table 12. (continued) Statistical Results on Law VII (Declining Quality)

 Project
CR MI BUG COMMITS

p-value Trend Slope(%) p-value Trend Slope(%) p-value Trend Slope(%)

1 boardsolution 0.018  0.01 ~0.000*  1.76 0.529

2 breeze ~0.000  -0.08 ~0.000  -0.95 N/A N/A N/A

3 cloudfiles 0.358 ~0.000  -0.15 0.064*

4 codesniffer 0.019  -0.07 0.502 ~0.000  1.38

5 conference_ci 0.848 ~0.000*  0.12 0.691

6 copypastedetector 0.888 0.772 0.117

7 Dotproject 0.032  -0.22 N/A N/A N/A 0.678

8 drupal (core) ~0.000  1.17 0.186 ~0.000  0.38

9 firesoftboard 0.807 ~0.000*  1.30 0.945

10 generatedata 0.008  -0.28 0.024  1.06 0.002*  -11.8

11 laravel ~0.000  -0.6 0.044  0.09 0.008  -3.34

12 mustache 0.466 0.025  1.07 0.591

13 neevo 0.005  -0.44 ~0.000*  1.9 0.212*

14 nononsenseforum ~0.000  1.12 ~0.000  3.81 1.000

15 openclinic 0.243 ~0.000*  -0.16 N/A N/A N/A

16 phpagenda ~0.000  0.32 1.000 N/A N/A N/A

17 phpbeautifier 0.002  -0.2 0.115 0.066

18 phpdaemon 0.127 0.001  5.98 0.212

19 phpfreeradius 0.004  -0.21 0.035  -3.48 N/A N/A N/A

20 phpmyadmin 0.013  -0.06 0.026  0.03 ~0.000  0.86

21 phpmyfaq ~0.000  -0.5 ~0.000  -0.15 0.446

22 phpqrcode 0.085 0.011*  -18.9 N/A N/A N/A

23 simplephpblog 0.002  2.44 ~0.000*  10.01 N/A N/A N/A

24 symfony 0.003  0.02 ~0.000  0.12 ~0.000  4.18

25 tangocms ~0.000  -0.08 ~0.000*  0.15 0.837*

26 thehostingtool ~0.000*  1.53 ~0.000*  -6.38 0.065

27 usebb 0.009  0.36 0.022  -0.23 0.003  -1.17

28 web2project ~0.000*  1.66 0.051* 0.155

29 wordpress ~0.000  0.84 ~0.000  1.54 ~0.000  0.83

30 zendframework2 0.441 0.003  0.12 0.112
*Linear regression has been used for these projects and the Mann-Kendall trend test for the rest to obtain p-values.

As it can be observed from the number of projects in which a statistically significant trend has been

found, the overall picture is rather mixed across the examined quality indicators. For afferent coupling

quality is increasing in 10 out of the 14 projects and for the maintainability index quality is increasing

in 15 out of the 23 projects with a statistically significant trend. Quality is decreasing in 12 out of 16

projects for efferent coupling and in 12 out of 18 projects for the depth of inheritance. In terms of

comment ratio in about half of the 21 projects quality is increasing and for the rest quality decreases.

For bug related commits, a trend was found only in 8 out of the 20 projects.

A study on the evolution of software quality and technical debt in open source applications

41

The picture is mixed even if table is analyzed horizontally that is, by examining each project separately

to identify how often the quality of a project deteriorates or improves over time. Thus, there is no

supporting evidence neither for the confirmation nor for the confutation of the 7th law. In other words,

it cannot be claimed in general that the quality of the examined PHP projects is declining or improving

over time.

4.8. Law VIII: Feedback System

The corresponding claim was stated in 1980 but has been formalized as a law in 1996 [7]. According

to Lehman [34], the evolution process of software resembles a feedback system. In other words, the

size of a software system in a given release can be described in terms of the size in the previous release

and the effort for developing the new release. Turski [31] formulated a model suggesting that the growth

of a system, in terms of number of changed modules, is sub-linear, slowing down during the evolution

of the project, exactly because the system becomes larger and more complex. The number of modules

is preferred over low-level measures such as LOC since according to Turski system functionality

changes are reflected in added, removed or otherwise handled modules, a view shared by Lehman in

his early studies [13]. Turski proposed a difference equation according to which the size of version i

can be estimated as:

1 2
1

i i
i

E
S S

S
−

−

= + (1)

where (interpretation is fitted to the case of PHP applications):

iS
 is the size of version i measured in number of methods and functions and,

E is the effort spent on the development of each software release, which is considered constant

according to the fourth law of Lehman.

The intuition behind this formulation is that the larger the size of a version, the greater the resistance to

change it, in analogy to the effect of mass in a mechanical system or capacity in an electrical system.

Later, Turski generalized the model to a differential form [45] and extracted a closed form for the

growth equation as:

btatS += 3
1

)(
 (2)

where α and b are constants.

By obtaining the derivative of the growth equation, the corresponding rate of growth is:

2
3dS

c t
dt

−
= 

 (3)

where:

c is a constant,

and t is the elapsed time (in days) from the initial release.

Chapter III. Evolution of Web Applications

42

If the law holds in practice, the rate of growth should be proportional to

2
3t

−

 , so it is relatively

straightforward to check its validity. The actual evolution of tS  / for all successive release pairs, can

be compared to the theoretical evolution by employing the two-sample Kolmogorov-Smirnoff test [46].

As an example, let us consider the evolution of the growth rate for project mustache (Figure 13). The

solid line represents the observed changes in the growth rate (tS  /), while the dashed line corresponds

to the evolution predicted by Lehman's 8th law according to Turski's model. As it becomes evident the

actual tS  / trend line is well above the rate predicted by the law and the growth rate is not declining

as predicted. For this case one can conclude (by visual examination) that the law is not confirmed for

this particular project.

Figure 13. Examination of the validity of the 8th law in project “mustache”

Hypothesis Variable Analysis

H0: The empirically observed rate of growth matches

the theoretically expected one.

H1: The empirically observed rate of growth does not

match the theoretically expected one.

[V8]: rate of

growth

two sample

Kolmogorov-Smirnoff

test

Rationale for selected variable: The evolution of the rate of growth of each project was examined

and compared against the theoretical one, as proposed by Turski and shared by Lehman.

Concerns: The primary concern here is the interpretation of the notion of feedback system. In this

dissertation the mathematical interpretation provided by Turski [31] is adopted.

The results from the statistical investigation of the validity of the 8th law are presented in Table 13,

listing the significance value of the Kolmogorov – Smirnoff test conducted for each project in order to

examine whether the actual growth rate (tS  /) matches the theoretically expected rate. A significance

value less than 0.05, means that the null hypothesis can be rejected, implying that the law is not

confirmed (the corresponding cases are shaded in the Table).

actual ΔS/Δt

Trendline of ΔS/Δt

t ^ (-2/3)
(theoretically expected trend)

A study on the evolution of software quality and technical debt in open source applications

43

Table 13. Statistical Results on Law VIII (feedback system)

 Project
Kolmogorov – Smirnoff

p-value

1 boardsolution 0.541

2 breeze 0.006

3 cloudfiles 0.249

4 codesniffer 0.000

5 conference_ci 0.082

6 copypastedetector 0.001

7 dotproject 0.002

8 drupal (core) 0.000

9 firesoftboard 0.699

10 generatedata 0.001

11 laravel 0.007

12 mustache 0.002

13 neevo 0.100

14 nononsenseforum 0.000

15 openclinic 0.699

 Project
Kolmogorov – Smirnoff

p-value

16 phpagenda 0.000

17 phpbeautifier 0.206

18 phpdaemon 0.000

19 phpfreeradius 0.203

20 phpmyadmin 0.000

21 phpmyfaq 0.000

22 phpqrcode 0.329

23 simplephpblog 0.023

24 symfony 0.000

25 tangocms 0.003

26 thehostingtool 0.819

27 usebb 0.000

28 web2project 0.211

29 wordpress 0.000

30 zendframework2 0.000

The growth rate does not match the theoretical expectation in 19 out of 30 projects as marked by the

shaded rows in Table 13. Thus, one could argue that the law is not confirmed by the results for the

examined PHP applications. In other words, the rate of increase in project size indeed attenuates over

time, however, not at the fast rate predicted by Turski’s model. It should be noted that the outcome for

this law is not in contrast to the findings for the 5th law and 6th law. The results for Law V suggested

that one cannot claim that more and more (or less and less) code (incremental changes) is practically

added in successive versions, without however considering the time elapsed between releases, whereas

the results for Law VI confirmed that systems continuously grow. The findings for this law, which

assumes that software processes operate as a feedback system where current size dictates the rate of

increase in the next release, suggest that the growth rate is attenuating, i.e. that if time is taken into

account, less code is added in a given amount of time. In other words, as the examined applications

mature either there is less left to be added in terms of functionality or the system size prevents the

development team from keeping the same pace of adding new code. Nevertheless, system development

is slowing down at a rather low rate.

5. Overview and Comparison to Previous Work

5.1. Summary of Results

To facilitate the interpretation of the findings regarding the eight laws of Lehman, the corresponding

claims are summarized in Table 14 and compared against the results for the examined PHP applications.

The laws are grouped in three categories based on the generic aspect/property that they address. As it

can observed, from the two laws (II & VII) concerning the evolution of quality the 2nd has not been

confirmed for the examined PHP applications while for the 7th law the results were inconclusive. With

respect to the laws discussing changes in an evolving system (I, IV & V) the results suggest that all

laws are confirmed (the 1st with statistical significance while the other two only at a practical level). In

other words, systems continuously undergo changes but no trend has been observed for the work rate

or the incremental changes. As a general observation one could claim that the examined PHP

applications are maintained without reaching any maintenance stagnation.

Finally, with respect to the laws that address the growth of an evolving system (III, VI & VIII), systems

indeed continuously grow and exhibit positive and negative adjustments of incremental growth.

However, it could not be confirmed that the growth rate decreases according to the theoretically

prescribed rate. In other words, the examined PHP applications do get bigger, are maintained and there

Chapter III. Evolution of Web Applications

44

are no clear signs of quality degradation or improvement. Further research into the reasons that drive

this evolution patterns of PHP web applications would be extremely valuable.

Table 14. Summary of findings about Lehman’s laws

Property Law Lehman claims: Finding (PHP)

Quality
II Complexity increases Complexity does not increase

VII Quality declines Inconclusive results

Changes

I System continuously change Indeed

IV Work rate remains stable Indeed (no statistical significance)

V Incremental changes remain invariant Indeed (no statistical significance)

Growth

III
Incremental growth exhibits negative and positive

adjustments (systems are self-regulated)
Indeed (no statistical significance)

VI Systems continuously grow Indeed

VIII

(Turski’s

form)

Growth rate decreases at a rate proportional to t-2/3
Growth rate does not decrease that

fast

The present study has not been designed to identify the reasons for which certain laws are confirmed

for some projects while others are violated. Nevertheless, it is reasonable to assume that the reason for

which PHP web applications continuously change and grow is to provide novel services and features to

clients in the shortest time possible. This is a necessity in order to withstand the competition caused by

the perpetuous outspread of the Web. Such a competitive environment is normally driving the

accumulation of the so-called ‘Technical Debt’ [47]. In other words, speeding-up development time

normally compromises software quality, thereby hindering its sustainability. However, this

accumulation of Technical Debt is not evident for PHP web applications which manage to evolve

without increasing their complexity and without demanding increased effort. This phenomenon could

be attributed to the productivity of the language, which allows developers to rapidly produce functional

code, and to the widespread usage of reliable libraries and frameworks.

5.2. Comparison to Previous Work

An overview of the approach and the findings regarding the validity of the eight laws of Lehman in

previous research is provided in Table 15 and Table 16, along with the results in this dissertation. To

provide insight into the approach that has been employed by each research group for the quantification

of the examined laws, Table 15 briefly outlines the corresponding measures used in 8 previous studies.

(When a law is not investigated in the context of a work, the corresponding cell is left blank). Because

of the way that the laws have been stated, as it can be observed from Table 15, the employed measures

vary. However, there are laws which are quantified by most of the studies in the same or in a similar

manner. For example, law VI is quantified by most of the studies using the LOC metric, and Law III is

quantified mainly through the number of functions. On the other hand, law VII, which does not specify

which aspect of quality has to be considered, is quantified through a variety of quality indicators.

A study on the evolution of software quality and technical debt in open source applications

45

Table 15. Primary Measures Employed for the Investigation of Laws in Previous Studies

Ref. I II III IV V VI VII VIII

Godfrey &

Tu* S
L

O
C

 S
L

O
C

 S
L

O
C

 S
L

O
C

Robles et al.

S
L

O
C

 S
L

O
C

 S
L

O
C

 S
L

O
C

Mens et al.

F
il

e
C

h
an

g
es

L
O

C
,
ad

d
it

io
n
s/

m
o
d
if

ic
at

io
n
s,

#
d
ef

ec
ts

,
C

C

 S
ev

er
al

 s
iz

e

m
ea

su
re

s

in
cl

u
d
in

g
 L

O
C

Xie et al.

C
u
m

u
la

ti
v
e

#
ch

an
g
es

,

ty
p
e

o
f

ch
an

g
es

C
C

,
fu

n
ct

io
n

ca
ll

s,

C
o
u
p
li

n
g

#
 f

u
n
ct

io
n
s

ch
an

g
es

 p
er

 d
ay

,

h
an

d
le

d

fu
n
ct

io
n
s/

to
ta

l

fu
n
ct

io
n
s

#
m

o
d
u
le

s,
 n

ew

fu
n
ct

io
n
s

L
O

C
,

#
fu

n
ct

io
n
s,

#
d
ef

in
it

io
n
s

#
d
ef

ec
ts

,

d
ef

ec
t

d
en

si
ty

,

co
m

p
le

x
it

y

m
ea

su
re

s

#
fu

n
ct

io
n
s

Israeli &

Feitelson

#
so

u
rc

e
fi

le
s

C
C

#
fi

le
s

p
er

ce
n

ta
g
e

o
f

h
an

d
le

d
 f

il
es

R
el

ea
se

s
p
er

m
o

n
th

,
in

te
rv

al
s

b
et

w
ee

n
 r

el
ea

se
s

#
sy

st
em

 c
al

ls
,

#
co

n
fi

g
u

ra
ti

o
n

o
p

ti
o
n

s

M
ai

n
ta

in
ab

il
it

y

In
d

ex

N
o

 q
u
an

ti
ta

ti
v
e

ap
p

ro
ac

h

Businge et

al.

C
u

m
u
la

ti
v
e

n
u

m
b
er

 o
f

ad
d

ed
/d

el
et

ed

d
ep

en
d

en
ci

es

 #
d

ep
en

d
en

ci
es

 P
er

ce
n

ta
g

e
o

f

h
an

d
le

d
 f

il
es

,

p
er

ce
n

ta
g
e

o
f

ad
d

ed

d
ep

en
d

en
ci

es

u
n

iq
u
e

d
ep

en
d

en
ci

es

In
d

ic
at

o
r

o
f

b
al

an
ce

b
et

w
ee

n

ab
st

ra
ct

n
es

s

an
d

 s
ta

b
il

it
y

Neamtiu et

al.

cu
m

u
la

ti
v
e

ch
an

g
es

ca
ll

s
p
er

 f
u

n
ct

io
n

C
C

co
u

p
li

n
g

#
m

o
d

u
le

s

#
fu

n
ct

io
n

s

ch
an

g
es

 p
er

 d
ay

ch
an

g
e

ra
te

g
ro

w
th

 r
at

e

n
et

 m
o
d

u
le

g
ro

w
th

#
n

ew
 f

u
n

ct
io

n
s

#
ch

an
g

es

L
O

C

#
m

o
d

u
le

s

#
d

ef
in

it
io

n
s

#
d

ef
ec

ts

d
ef

ec
t

d
en

si
ty

ca
ll

s
p
er

 f
u

n
ct

io
n

C
C

co
u

p
li

n
g

#
m

o
d

u
le

s

L
O

C

#
fu

n
ct

io
n

s

Kaur et al.

#
fu

n
ct

io
n
s

an
d
 #

cl
as

se
s

C
B

O
,
R

F
C

,

W
M

C
,
D

IT
,

L
O

C
H

#
fu

n
ct

io
n
s

an
d
 #

cl
as

se
s

N
o

q
u
an

ti
ta

ti
v
e

ap
p
ro

ac
h

#
fu

n
ct

io
n
s

an
d
 #

cl
as

se
s

L
O

C
,

#
fu

n
ct

io
n
s

an
d
 #

cl
as

se
s

C
C

N
o

q
u
an

ti
ta

ti
v
e

ap
p
ro

ac
h

This

dissertation

D
ay

s

b
et

w
ee

n

re
le

as
es

C
C

#
fu

n
ct

io
n
s

M
ai

n
te

n
an

ce

ef
fo

rt
 a

n
d

#
co

m
m

it
s

#
fu

n
ct

io
n
s

L
O

C

C
A

,
C

E
,

D
IT

,
C

R
,

M
I,

b
u
g

-r
el

at
ed

co
m

m
it

s

#
fu

n
ct

io
n
s

* CC: cyclomatic complexity

* SLOC: source lines of code (uncommented lines of code)

* CBO: coupling between objects

* RFC: Response for class - #methods being invoked in response to the message received by an object of that class

*WMC: weighted methods per class - the sum of the complexities of its methods

Chapter III. Evolution of Web Applications

46

* DIT: depth of inheritance tree

* LOCH: lack of cohesion

* CA: coupling afferent (#unique incoming dependencies for a software artifact)

* CE: coupling efferent (#unique outgoing dependencies for a software artifact)

* CR: comment ratio

* MI: Maintainability Index

To allow a comparison with the conclusions derived in other studies about Lehman's laws (which

however have not focused on PHP web applications), Table 16 lists the findings from the

aforementioned 8 previous studies. A '✔' symbol indicates confirmation, a '×' symbol indicates that the

law has not been validated, while the '~' symbol implies that the results have been inconclusive. When

a law is not investigated in the context of a work, the corresponding cell is left blank. It should be noted

that Table 16 lists the conclusions as derived by the authors of the corresponding papers (for the studies

by Godfrey & Tu [15] and by Robles et al. [17] the validity of the 1st , 6th and 8th law is not directly

investigated but can be easily deduced from the provided information).

As it can be observed, the 1st law regarding continuing change and the related 6th law on continuing

growth are, as expected, validated by all studies. In some studies system growth rate (in LOC) is found

to be exponential [15] while in others linear [17]. In other words, all studies agree that systems

continuously change and grow (a phenomenon called ‘perpetual development’ in the study by Israeli

and Feitelson [20]). An agreement is also observed between previous studies and the current one for the

2nd and the 8th law. Concerning increasing complexity, in 3 out of the 5 previous works that examined

this law and reached conclusive results, it had not been confirmed, as in the case of PHP projects.

Concerning the decline of growth rate at the pace predicted by the 8th law, four previous studies (out of

the five that reached conclusive results for C/C++/Java projects) found that the actual growth rate

attenuates at a slower pace, as it has also been found in this dissertation for PHP projects.

Table 16. Validity of Lehman's Laws According to Various Studies

Ref. Year Prog.Lang. #Projects I II III IV V VI VII VIII

Godfrey & Tu* 2000 C 1 ✔ × ✔ ×

Robles et al. 2005 C,C++,

Java

19
✔ × ✔ ×

Mens et al. 2008 Java 1 ✔ × ✔

Xie et al. 2009 C 7 ✔ ✔ ✔ ~ × ✔ × ×

Israeli &

Feitelson

2010 C 1
✔ × ✔ ✔ ~ ✔ × ✔

Businge et al. 2010 Java 21 ✔ ✔ × ✔ ~

Neamtiu et al. 2013 C 9 ✔ × × × × ✔ × ×

Kaur et al. 2014 C++ 2 ✔ ✔ ✔ ~ ✔ ✔ ✔ ~

This

dissertation

2015 PHP 30
✔ × ✔** ✔** ✔** ✔ ~ ×

*The results in a later work by Godrfrey & Tu [16] confirmed the validity of the same laws on 4 projects.

**These laws have not been statistically validated. The conclusion in these cases is based on a visual interpretation of the

evolution for the projects where the null hypothesis (absence of trend) could not be rejected.

6. Implications for Researchers and Practitioners

Although the research question that has been set, regarding the validity of Lehman’s laws of evolution

for PHP web applications, entails a theoretical perspective and thus the results are not directly

exploitable, the following implications can be identified.

A study on the evolution of software quality and technical debt in open source applications

47

With respect to software practitioners and managers:

- In the context of the investigation of Lehman’s laws of evolution the employed measures can be

used to assess the evolution of other products and examine whether any striking deviations from
Lehman’s observations are valid for their projects. Since most laws are not directly quantifiable,

software maintainers could employ the same methodology with respect to the applied trend tests

and indicators that have been analyzed for each law.
- Especially with respect to the evolution of quality vs. the increase of size contrasting the results for

their own projects to those of the examined applications could highlight issues that warrant

attention. For example, it should be regarded as a warning if their own PHP web projects do not

success in allowing continuous changes combined with a non-increasing complexity, since this
trend has been observed both for small and large open-source projects in this dissertation. If, for

example, a development team observes that complexity is constantly increasing, whereas large and

complicated PHP systems manage to keep complexity stable or even reduce it over time, then,
quality assurance should focus on ways to address the increasing complexity.

- The results suggesting that PHP web applications conform to a lifecycle model where continuous

and steady development takes places (a finding confirmed by other studies as well), imply that
development teams should opt for agile development practices, where constant change is embraced,

rather than models assuming elaborate and preconceived specifications and planning [20].

- The results indicating that PHP web applications continuously change and grow, a finding shared

by all other studies as well, imply that project managers should anticipate increased future needs
for resources to maintain and sustain the existing systems.

With respect to software engineering researchers:

- Based on the findings indicating that PHP web applications do not suffer from software ageing,
researchers can focus on the reasons that drive this improved behavior of PHP projects and

investigate whether this is due to the language, the domain or the practices in web application

development.

- Researchers are encouraged to investigate whether the same trends are valid for the evolution of
systems written in other scripting languages so as to investigate whether similar maintenance

patterns can be attributed to the nature of the employed languages (i.e. scripting vs. compiled).

- Finally, for the specific group of research efforts that investigate the validity of Lehman’s laws,
empirical findings that suggest that: a) several laws are consistently not confirmed (e.g. Law VIII),

or that b) some laws occasionally lead to inconclusive results (e.g. Laws IV and VII) or that c) some

laws are quantified by divergent approaches (e.g. Law IV), imply that the rules might need to be
examined in the context of contemporary software development and possibly be revisited.

7. Threats to Validity

The investigation of the validity of Lehman's laws is by definition threatened by the subjectivity in the

interpretation of each law and the selection of appropriate metrics to quantify its evolution. The fact

that the employed measures might not reflect accurately the phenomenon under investigation poses a

threat to the relation between theory and observation, i.e. to construct validity [48]. In addition, for

several laws there might be additional measures that can be used to quantify the corresponding

evolutionary trend, which are either not available (such as the effort spent in an open-source project) or

unreliable if collected automatically (such as the number of issues). For example, law VII on the

evolution of quality, can be quantified by numerous internal and external quality indicators, as it

becomes evident from the multitude of metrics employed by previous studies shown in Table 15. To

mitigate this threat, for most of the laws this dissertation relied on measures that have been used in

previous studies as well. Moreover, to emphasize this inherent limitation in the quantification approach

the relevant concerns along with the approach for each law were explicitly stated.

The conclusions derived from any empirical study that is based on a set of examined software systems

are subject to external validity threats. In our case, this threat limits the possibility to generalize the

Chapter III. Evolution of Web Applications

48

findings regarding the validity of Lehman’s laws in PHP applications beyond the 30 examined projects

and to other programming languages. In other words, it is not granted that the selected projects are

representative of the entire PHP web application landscape. As it is always the case, further replication

studies would be extremely valuable. The emphasis on PHP was placed on purpose, since the goal of

this chapter was to investigate patterns of evolution in web applications built upon a scripting language.

To this regard, further studies could extend the analysis to other primarily scripting languages such as

Python, Perl and Ruby.

Finally, since the presented empirical study relies heavily on the interpretation of statistical test results

(mainly trend tests) threats to statistical conclusion validity may arise. The conclusions about the

identified trends are based on the number of projects that exhibited statistically significant trends. For

example, in the 2nd law the normalized complexity was considered to exhibit a trend because a

decreasing trend has been observed in 12 out of the 18 projects with a statistically significant result.

Such a finding might imply low statistical power. In other words, although the trend test for each project

is correctly applied by analyzing the relevant assumptions, one has to aggregate the findings for all

projects to reason about the validity of the law. To facilitate the interpretation of the results all data

which have led to the confirmation of confutation of each law have been provided.

8. Conclusions

The evolution of software projects relying on scripting languages such as PHP has received limited

attention, despite the fact that PHP forms the basis upon which a huge number of web applications are

developed. Driven by the widely spread but undocumented claims that scripting languages are not

suitable for regularly maintained software projects, an empirical study on the evolution of 30 PHP web

applications has been performed in this chapter.

The main goal was to examine the validity of the eight laws of software evolution as stated by M. M.

Lehman. These laws have been extensively studied in the context of software evolution for projects

developed in compiled languages such as C and C++ and in a non-web related context. The results

confirm the validity of continuing growth and changes for the evolution of the examined PHP

applications. However, for the examined projects the 2nd law on increasing complexity and the 8th law

on the rapid decrease of the growth rate have not been confirmed. Although the root causes for this

trend require further investigation it is reasonable to assume that this phenomenon could be attributed

either to the programming language or to the practices in web application development.

One interesting line of further research would be to compare the evolution of web applications against

that of "conventional" desktop systems, in order to investigate whether there are differences in the trends

of quality, work rate, complexity and size. Such evidence would be helpful in determining whether

development practices for web applications adhere to the principles of building large-scale, multi-

person, multi-version software systems or whether the benefits is the result of their architecture, which

is often strictly dictated by the platforms being used.

References

[1] R. P. Loui, “In Praise of Scripting: Real Programming Pragmatism,” Computer, vol. 41, no. 7, pp.

22–26, Jul. 2008.

[2] L. Prechelt, “Are Scripting Languages Any Good? A Validation of Perl, Python, Rexx, and Tcl
against C, C++, and Java,” in Advances in Computers, vol. Volume 57, Elsevier, 2003, pp. 205–

270.

[3] J. K. Ousterhout, “Scripting: higher level programming for the 21st Century,” Computer, vol. 31,
no. 3, pp. 23–30, Mar. 1998.

A study on the evolution of software quality and technical debt in open source applications

49

[4] S. Hanenberg, S. Kleinschmager, R. Robbes, É. Tanter, and A. Stefik, “An empirical study on the
impact of static typing on software maintainability,” Empir. Softw. Eng., vol. 19, no. 5, pp. 1335–

1382, Dec. 2013.

[5] “Python is Now the Most Popular Introductory Teaching Language at Top U.S. Universities.”

[Online]. Available: http://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-
popular-introductory-teaching-language-at-top-us-universities/fulltext. [Accessed: 09-May-

2015].

[6] P. Kyriakakis and A. Chatzigeorgiou, “Maintenance Patterns of Large-Scale PHP Web
Applications,” in 2014 IEEE International Conference on Software Maintenance and Evolution

(ICSME), 2014, pp. 381–390.

[7] M. M. Lehman, “Laws of software evolution revisited,” in Software Process Technology, C.
Montangero, Ed. Springer Berlin Heidelberg, 1996, pp. 108–124.

[8] H. Kagdi, M. L. Collard, and J. I. Maletic, “A survey and taxonomy of approaches for mining

software repositories in the context of software evolution,” J. Softw. Maint. Evol. Res. Pract., vol.

19, no. 2, pp. 77–131, Mar. 2007.
[9] M. W. Godfrey and D. M. German, “The past, present, and future of software evolution,” in

Frontiers of Software Maintenance, 2008. FoSM 2008., 2008, pp. 129–138.

[10] M. M. Lehman, Programs, cities, students: Limits to growth? Imperial College of Science and
Technology, University of London, 1974.

[11] M. Lehman, “Laws of Program Evolution-Rules and Tools for Programming Management,” in

Proceedings Infotech State of the Art Conference, Why Software Projects Fail?, 1978, pp. 11/1–
11/25.

[12] M. M. Lehman, “Programs, life cycles, and laws of software evolution,” Proc. IEEE, vol. 68, no.

9, pp. 1060–1076, Sep. 1980.

[13] N. H. Madhavji, J. Fernandez-Ramil, and D. Perry, Software Evolution and Feedback: Theory
and Practice. John Wiley & Sons, 2006.

[14] I. Herraiz, D. Rodriguez, G. Robles, and J. M. Gonzalez-Barahona, “The Evolution of the Laws

of Software Evolution: A Discussion Based on a Systematic Literature Review,” ACM Comput
Surv, vol. 46, no. 2, pp. 28:1–28:28, Dec. 2013.

[15] M. W. Godfrey and Q. Tu, “Evolution in Open Source Software: A Case Study,” in Proceedings

of the International Conference on Software Maintenance (ICSM’00), Washington, DC, USA,

2000, p. 131–.
[16] M. Godfrey and Q. Tu, “Growth, Evolution, and Structural Change in Open Source Software,” in

Proceedings of the 4th International Workshop on Principles of Software Evolution, New York,

NY, USA, 2001, pp. 103–106.
[17] G. Robles, J. J. Amor, J. M. Gonzalez-Barahona, and I. Herraiz, “Evolution and growth in large

libre software projects,” in Eighth International Workshop on Principles of Software Evolution,

2005, pp. 165–174.
[18] T. Mens, J. Fernandez-Ramil, and S. Degrandsart, “The evolution of Eclipse,” in IEEE

International Conference on Software Maintenance, 2008. ICSM 2008, 2008, pp. 386–395.

[19] G. Xie, J. Chen, and I. Neamtiu, “Towards a better understanding of software evolution: An

empirical study on open source software,” in IEEE International Conference on Software
Maintenance, 2009. ICSM 2009, 2009, pp. 51–60.

[20] A. Israeli and D. G. Feitelson, “The Linux kernel as a case study in software evolution,” J. Syst.

Softw., vol. 83, no. 3, pp. 485–501, Mar. 2010.
[21] J. Businge, A. Serebrenik, and M. van den Brand, “An Empirical Study of the Evolution of Eclipse

Third-party Plug-ins,” in Proceedings of the Joint ERCIM Workshop on Software Evolution

(EVOL) and International Workshop on Principles of Software Evolution (IWPSE), New York,
NY, USA, 2010, pp. 63–72.

[22] I. Neamtiu, G. Xie, and J. Chen, “Towards a better understanding of software evolution: an

empirical study on open-source software,” J. Softw. Evol. Process, vol. 25, no. 3, pp. 193–218,

Mar. 2013.
[23] T. Kaur, N. Ratti, and P. Kaur, “Applicability of Lehman Laws on Open Source Evolution: A

Case study,” Int. J. Comput. Appl., vol. 93, no. 18, pp. 40–46, May 2014.

Chapter III. Evolution of Web Applications

50

[24] V. R. Basili, “Software Modeling and Measurement: The Goal/Question/Metric Paradigm,”
University of Maryland at College Park, College Park, MD, USA, 1992.

[25] J. Fernandez-Ramil, A. Lozano, M. Wermelinger, and A. Capiluppi, “Empirical Studies of Open

Source Evolution,” in Software Evolution, Springer Berlin Heidelberg, 2008, pp. 263–288.

[26] H. B. Mann, “Nonparametric Tests Against Trend,” Econometrica, vol. 13, no. 3, pp. 245–259,
Jul. 1945.

[27] J. Durbin and G. S. Watson, “Testing for Serial Correlation in Least Squares Regression: I,”

Biometrika, vol. 37, no. 3/4, pp. 409–428, Dec. 1950.
[28] T. S. Breusch and A. R. Pagan, “A Simple Test for Heteroscedasticity and Random Coefficient

Variation,” Econometrica, vol. 47, no. 5, pp. 1287–1294, Sep. 1979.

[29] S. S. Shapiro and M. B. Wilk, “An Analysis of Variance Test for Normality (Complete Samples),”
Biometrika, vol. 52, no. 3/4, pp. 591–611, Dec. 1965.

[30] H. Theil, “A Rank-Invariant Method of Linear and Polynomial Regression Analysis,” in Henri

Theil’s Contributions to Economics and Econometrics, B. Raj and J. Koerts, Eds. Springer

Netherlands, 1992, pp. 345–381.
[31] W. M. Turski, “Reference Model for Smooth Growth of Software Systems,” IEEE Trans Softw

Eng, vol. 22, no. 8, pp. 599–600, Aug. 1996.

[32] I. Sommerville, Software Engineering, 9 edition. Boston: Addison-Wesley, 2010.
[33] T. J. McCabe, “A Complexity Measure,” IEEE Trans. Softw. Eng., vol. SE-2, no. 4, pp. 308–320,

Dec. 1976.

[34] M. M. Lehman, “Software’s future: managing evolution,” IEEE Softw., vol. 15, no. 1, pp. 40–44,
Jan. 1998.

[35] M. M. Lehman, D. E. Perry, and J. F. Ramil, “On evidence supporting the FEAST hypothesis and

the laws of software evolution,” in Software Metrics Symposium, 1998. Metrics 1998.

Proceedings. Fifth International, 1998, pp. 84–88.
[36] S. Ali and O. Maqbool, “Monitoring software evolution using multiple types of changes,” in

International Conference on Emerging Technologies, 2009. ICET 2009, 2009, pp. 410–415.

[37] D. L. Parnas, “Software Aging,” in Proceedings of the 16th International Conference on Software
Engineering, Los Alamitos, CA, USA, 1994, pp. 279–287.

[38] Z. Li, P. Avgeriou, and P. Liang, “A systematic mapping study on technical debt and its

management,” J. Syst. Softw., vol. 101, pp. 193–220, Mar. 2015.

[39] C. Ghezzi, M. Jazayeri, and D. Mandrioli, Fundamentals of Software Engineering, 2 edition.
Upper Saddle River, N.J: Prentice Hall, 2002.

[40] R. Harrison, S. Counsell, and R. Nithi, “Experimental assessment of the effect of inheritance on

the maintainability of object-oriented systems,” J. Syst. Softw., vol. 52, no. 2–3, pp. 173–179, Jun.
2000.

[41] A. J. Riel, Object-Oriented Design Heuristics, 1 edition. Reading, Mass: Addison-Wesley

Professional, 1996.
[42] K. K. Aggarwal, Y. Singh, and J. K. Chhabra, “An integrated measure of software

maintainability,” in Reliability and Maintainability Symposium, 2002. Proceedings. Annual,

2002, pp. 235–241.

[43] P. Oman and J. Hagemeister, “Metrics for assessing a software system’s maintainability,” in ,
Conference on Software Maintenance, 1992. Proceerdings, 1992, pp. 337–344.

[44] B. Ray, D. Posnett, V. Filkov, and P. Devanbu, “A Large Scale Study of Programming Languages

and Code Quality in Github,” in Proceedings of the 22Nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, New York, NY, USA, 2014, pp. 155–165.

[45] W. M. Turski, “The Reference Model for Smooth Growth of Software Systems Revisited,” IEEE

Trans Softw Eng, vol. 28, no. 8, pp. 814–815, Aug. 2002.
[46] D. J. Sheskin and D. Sheskin, Handbook of Parametric and Nonparametric Statistical

Procedures, Second Edition, 2 edition. Boca Raton: Chapman and Hall/CRC, 2000.

[47] P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical Debt: From Metaphor to Theory and Practice,”

IEEE Softw., vol. 29, no. 6, pp. 18–21, Nov. 2012.
[48] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén, Experimentation

in Software Engineering. Springer Science & Business Media, 2012.

A study on the evolution of software quality and technical debt in open source applications

51

Chapter IV. TECHNICAL DEBT AND CORRECTIVE MAINTENANCE

The work of this chapter was published in the Information and Software Technology Journal (IST):

Amanatidis, Theodoros & Chatzigeorgiou, Alexander & Ampatzoglou, Apostolos. (2017). The Relation

between Technical Debt and Corrective Maintenance in PHP Web Applications. Information and

Software Technology. 87. 10.1016/j.infsof.2017.05.004.

Chapter Summary

Technical Debt Management (TDM) refers to activities that are performed to prevent the accumulation

of Technical Debt (TD) in software. The state-of-research on TDM lacks empirical evidence on the

relationship between the amount of TD in a software module and the interest that it accumulates.

Considering the fact that in the last years, a large portion of software applications are deployed in the

web, the study of this chapter focuses on PHP applications. Although the relation between debt amount

and interest is well-defined in traditional economics (i.e., interest is proportional to the amount of debt),

this relation has not yet been explored in the context of TD. To this end, the aim of this chapter is to

investigate the relation between the amount of TD and the interest that has to be paid during corrective

maintenance. To explore this relation, a case study on 10 open source PHP projects was performed. The

obtained data have been analyzed to assess the relation between the amount of TD and two aspects of

interest: (a) corrective maintenance (i.e., bug fixing) frequency, which translates to interest probability

and (b) corrective maintenance effort which is related to interest amount. Both interest probability and

interest amount are positively related with the amount of TD accumulated in a specific module.

Moreover, the amount of TD is able to discriminate modules that are in need of heavy corrective

maintenance. The results of the study confirm the cornerstone of TD research, which suggests that

modules with a higher level of incurred TD, are costlier in maintenance activities. In particular, such

modules prove to be more defect-prone and consequently require more (corrective) maintenance effort.

1. Introduction

In recent years, Technical Debt Management (TDM) has become a popular research field in software

engineering. The majority of TDM approaches are based on the two pillars of Technical Debt (TD)

quantification, namely principal (i.e., the effort needed to refactor the system in order to address

existing inefficiencies) and interest (i.e., the additional effort needed in performing maintenance, due

to the existence of the principal). According to Alves et al. [1], interest can be perceived as a risk for

software development, and therefore its quantification should be assessed based on two components:

interest probability (i.e., how possible is that one module that holds TD will need maintenance) and

interest amount (i.e., the amount of additional effort). According to Ampatzoglou et al. [2] interest is

incurred while performing two types of maintenance activities: (a) bug-fixing (namely corrective

maintenance), and (b) adding new features (namely perfective maintenance).

In the literature, one can identify several studies that have investigated the relation between low levels

of design-time qualities (e.g., coupling, bad smells, etc.) that constitute proxies of modules’ TD

amount—i.e., principal plus interest—and the maintenance intensity on these modules [3]–[9]:

• All studies agree that the more flaws a file is involved in, the higher the likelihood to undergo

defect-related changes.

Chapter IV. Technical Debt and Corrective Maintenance

52

• MacCormack and Sturtevant have found evidence on 2 industrial projects that source files with

higher levels of coupling are associated with more extensive corrective maintenance [3].

• Feng et al. [4] and Nord et al. [5] have found evidence that files participating in architectural

flaws (especially in unstable interfaces) are highly correlated with bugs and changes.

• In an earlier study in 2013 [6], Zazworka et al. suggested that dispersed coupling, god class

symptoms, modularity violations and multithread correctness issues are located in classes with

higher defect-proneness.

• Another work by Li et al. [7] suggests that two modularity metrics are strongly correlated with

commit density: IPCI (Index of Package Changing Impact) & IPGF (Index of Package Goal

Focus). Strong correlation was also found between corrective maintenance and fan-out, file size

and frequency of changes of file in a study by Schwanke et al. in 2013 [8].

• An interesting study has been carried out by Oliva et al. [9], who searched for symptoms of

increased rigidity and fragility on a degraded software system (Apache Maven 1.x) which was

completely rewritten to Maven 2.x. The authors found signs of increased fragility (i.e. tendency

of a system to break when changes are performed), but no definite evidence of increased rigidity

(i.e. difficulty in performing changes due to ripple effects).

The results of these studies, despite the fact that some of them are only indirectly related to TD, have

produced some evidence about the relation between maintenance effort and TD. However, the following

limitations have been identified:

• Almost all studies quantify TD by means of few metrics, whereas TD manifests itself through

a number of parameters in a software project.

• Most studies conducted research on a restricted sample of projects limiting the generalizability

of the results (except for [4] and [7] that considered 10 and 13 projects, respectively).

• There is no relevant study that focuses on PHP web applications, which form the majority of

operating code in Web today.

• There is no study that focuses on the interest that incurs when performing corrective

maintenance.

Based on the abovementioned limitations, the purpose of the study in this chapter is to provide insights

into the relation between the accumulated amount of TD in a module and the maintenance effort spent

on corrective activities. In particular, the relation between TD amount and: (a) frequency of corrective

maintenance activities (interest probability), and (b) the effort spent in these activities (related to

interest amount), is investigated. To overcome the limitations mentioned in the previous paragraph: (a)

TD amount is calculated with SonarQube12 that assesses TD based on a seven axes of code quality (e.g.,

code duplications, metrics, styling conventions, etc.), (b) the case study is performed on 10 open source

PHP web applications, and (c) both interest probability and interest amount are holistically investigated.

2. Case Study Design

In this section, the case study design is presented, which based on the guidelines reported by Runeson

et al. [10].

2.1. Goal and Research Questions

The goal of this chapter of dissertation is to examine whether the frequency and the effort spent on

corrective maintenance activities of a specific module, is related to the amount of its TD. Based on this

goal, the main research question of this chapter can be formulated as follows: “Is the amount of TD in

a software module related to the frequency and extent of corrective maintenance activities performed

12 Available at: http://www.sonarqube.org

http://www.sonarqube.org/

A study on the evolution of software quality and technical debt in open source applications

53

in it?” To ease the reporting of the case study, from this main question, two research questions were

derived:

RQ1: Is the TD amount of a file related to the number of times that it underwent corrective maintenance?

RQ1 aims at investigating whether files with higher amount of TD are associated with more problems

and therefore require more frequent corrective maintenance. The presence of such an association would

imply that TD can serve as an indicator for prioritizing maintenance and testing activities. Moreover,

such a finding would validate the importance of TD as a crucial parameter to be taken into account

during software development.

RQ2: Is the TD amount of a file related to the extent of modification that it underwent during corrective

maintenance?

Although the number of times a file undergoes corrective maintenance is a solid indicator of interest

probability, to investigate whether modules with high TD produce more interest, in RQ2, the focus

placed on the extent of maintenance effort, as captured by the number of modified lines.

It should be clarified that the proposed case study design does not support the investigation of causal

relationships between the TD incurred in one revision and the amount of corrective maintenance in

subsequent revisions. Such an analysis is an interesting research topic but should be properly performed,

since it would be extremely difficult to associate changes in a specific commit, to the TD as measured

in one out of the many past revisions.

2.2. Cases and Units of Analysis

This dissertation focuses on web applications developed with PHP. The motivation for focusing on PHP

is that it holds the lion’s share of operating Web applications today. The criteria for selecting the projects

are:

• the source code should be publicly available (data was retrieved via GitHub’s API)

• projects should be actively maintained (until the date on which this paper is written)

• projects should have at least 10 releases denoting jumps in functionality or the addition of

significant fixes13 in their history to justify evolution analysis

• projects should be popular (among the projects with most stars in GitHub)

The list of the investigated projects (i.e., cases) is presented in Table 1. This part dissertation is an

embedded multiple-case study, because it analyzes every project at the file level (unit of analysis),

whereas the results are presented at the case (i.e., project) level. The rationale to use files as a unit of

analysis was based on the fact that both object-oriented and non-object-oriented code is included. Thus,

the use of any other type of module (e.g., class) would not be possible. An alternative to this dissertation

design could be to perform a per-version analysis, i.e. by considering the TD amount of each file for

every project version and the corrective maintenance between successive versions, as a unit of analysis.

However, in such a case the TD of each version would be correlated to the TD of previous versions,

thus rendering the data points not independent.

13 The rationale for this choice is that any project with a history spanning more than 10 significant releases underwent

substantial adaptive maintenance and is highly probable to have been the subject of corrective maintenance as well.

Chapter IV. Technical Debt and Corrective Maintenance

54

Table 1. Analyzed Projects

Project #stars #releases

CodeIgniter 12K 27

Symfony 12K 209

Composer 8K 24

Yii2 8K 13

Guzzle 7K 108

Slim 7K 74

Laravel (kernel) 6K 192

Piwik 6K 429

PHPunit 5K 402

Twig 3K 86

2.3. Data Collection

For each unit of analysis (file), three variables were recorded. To facilitate the following description of

variables related concepts are illustrated in Figure 1:

Figure 1. Corrective maintenance at file level

[V1] Average TD of each file: All projects were analyzed with SonarQube and TD of each file (in

minutes) was retrieved via the SonarQube. SonarQube calculates a file’s TD by summing up

the Technical Debt of every violation found on that file, which is the estimated time to fix that

violation. The debt for each file represents various aspects of TD quantification, ranging from

programing convention violations (e.g., lack of comments) to structural characteristics of the

software (e.g., method complexity), which can affect the maintainability and comprehensibility

of files. Since several revisions of each file have been analyzed, the TD for each file is obtained

as the average of the TD corresponding to the file after each issue-related commit:

()
=

=
n

i
iFileX rTD

n
TD

1

1
 (1)

The average for a file’s TD offers the advantage of obtaining a relatively accurate estimate,

compared to alternatives, as it characterizes the entire history of the file. On the contrary,

assuming that TD remains relatively stable and considering only the TD of the initial or the last

revision would not be accurate since by nature software systems are evolving and TD changes

over time.

[V2] Number of times each file is modified due to corrective maintenance: Variable V2 corresponds

to the total number of issue-related commits (for the examined file) from the initial revision to

the time of assessment.

[V3] Number of modifications (modified LOC) each file undergoes during corrective maintenance:

Variable V3 corresponds to the average number of modified LOC (for the examined file) from

the initial to the last issue-related commit prior to the time of assessment.

commit1

FileX

Time of
assessment

File revisions

commit2 commitn

issue-related commits

r1 r2 r3 r4 rn

modified
LOC

A study on the evolution of software quality and technical debt in open source applications

55

To calculate [V2] and [V3] commit and issue data for each project was retrieved via the GitHub API.

For each project’s issue the commit by which the issue was closed was tracked and eventually found

the files that were modified and the number of modified lines in that file. GitHub identifies issue-related

commits by recognizing in the commit message the keywords ‘fixes’, ‘resolves’ and ‘closes’ when

accompanied by a hash-tagged issue id. The tool for analyzing GitHub data is available online14.

2.4. Data Analysis

To answer the research questions stated in Section 2.1, using the data described in Section 2.3,

correlation analysis and hypothesis testing were performed. For both questions, the same analysis was

performed, but on different variables. For RQ1 the testing variable is [V2], whereas for RQ2 the testing

variable is [V3]. An over-view of the data analysis strategy is presented in Table 2.

Table 2. Data Analysis

RQ Analysis Strategy

RQ1
Spearman Correlation [V1] and [V2]
Mann-Whitney U Test for [V2] grouped by [V1]

RQ2
Spearman Correlation [V1] and [V3]
Mann-Whitney U Test for [V3] grouped by [V1]

Additionally, the Mann-Whitney U Test (the independent sample t-test was not used, since variables do

not follow the normal distribution) is able to investigate the discriminative power of the TD amount as

an indicator of corrective maintenance frequency and effort (RQ1 and RQ2, respectively). In other

words, this dissertation investigates if modules with high levels of TD amount present more frequent

and more intense corrective maintenance activities, compared to modules with lower TD amounts. It

should be noted that in order to answer RQ2, it was needed to transform [V3] from a continuous to a

binary variable. As low (high) TD files are characterized the ones that have technical debt that falls

below (higher than) the median TD amount across all files for that project.

The aforementioned tests are fitting ways to assess the consistency/correlation and discriminative power

of metrics, as described by 1061:1998 IEEE Standard for Software Quality Metrics15.

3. Results

Table 3 lists the results of the conducted Spearman’s correlation analysis for each project for both RQs.

Concerning RQ1, in all ten projects there is a statistically significant positive correlation between TD

amount of a file and the number of times that file underwent corrective maintenance (interest

probability). Regarding RQ2, in 8 out of 10 projects there is a statistically significant positive correlation

between the amount of TD of a file and the extent of modification that the file underwent during

corrective maintenance (related to interest amount).

14 https://github.com/theoAm/githubGrabber

15 1061-1998 IEEE Standard for a Software Quality Metrics Methodology, IEEE Standards, IEEE Computer Society, 31

December 1998 (re-affirmed 9 December 2009).

https://github.com/theoAm/githubGrabber

Chapter IV. Technical Debt and Corrective Maintenance

56

Table 3. Spearman's Correlation Results

project
RQ1 RQ2

p r p r

CodeIgniter 0.00 0.293 0.08 -0.124

Symfony 0.00 0.301 0.00 0.280

Composer 0.00 0.544 0.00 0.310

Yii2 0.00 0.278 0.00 0.262

Guzzle 0.00 0.366 0.01 0.178

Slim 0.00 0.409 0.00 0.591

Laravel (kernel) 0.00 0.481 0.17 0.148

Piwik 0.00 0.363 0.00 0.204

PHPunit 0.00 0.626 0.00 0.290

Twig 0.00 0.366 0.00 0.433

To allow a visual interpretation of the results, Figure 2 depicts the two indicators of the required effort

(times that a file undergoes defect-related changes and the extent of changes in terms of lines of code)

for each project, by differentiating between low and high TD files. As it becomes evident from the box

plots, the required maintenance is always (except for one case in Figure 2(b)) larger for high TD

modules. This finding is also supported by the results of the Mann-Whitney U test which suggest that

[V2] and [V3] in high-TD files are statistically different from [V2] and [V3] in low-TD files ([V2]: p-

value = ~0.00, [V3]: p-value = ~0.00). On average, the number of times that a high TD file is modified

is 1.9 times larger than the number of times a low TD file is changed. In terms of the extent of change,

the corresponding ratio is 2.4 to 1.

(a) (b)

Figure 2. Discriminative power of TD amount (left/right bars correspond to low/high TD files, respectively)

4. Threats to Validity

The results of the study are subject to external validity threats since the investigation has been performed

on 10 PHP projects. Further studies on other projects or languages would be valuable in assessing the

relation between TD amount and interest probability/amount in different contexts. Moreover, the

assessment of interest amount through the extent of modification poses a threat to construct validity,

since interest should be ideally quantified as the difference between the nominal effort for fixing an

issue (i.e. in case no TD were present) and the actual effort spent. The former effort is unfortunately

unknown. However, the findings observed when high TD modules are contrasted to low TD ones, imply

A study on the evolution of software quality and technical debt in open source applications

57

that increased frequency and extent of modification are often encountered in files with increased interest

amount.

A second threat to construct validity stems from the fact that not all reported issues point to errors, but

some of them might contain a feature request or suggestion for performance improvement. As a result,

any actions to handle this issue would constitute adaptive or perfective maintenance rather than

corrective one. Another threat of the same category, is that bug-related commits, which indeed fix an

issue, but do not employ the keywords sought by GitHub, will be missed. This threat implies that there

might be other bug-related commits which have been neglected in the study.

A final threat pertaining to the construct validity of the study stems from the fact that TD amount and

the two employed indicators of corrective maintenance are aggregated over multiple revisions, possibly

accounting for a significant period of time. As a result, especially in the case of variations of TD or

corrective maintenance during that time, it cannot be safely assumed that the measured levels of

corrective maintenance correspond to the measured TD. For example, an observed high level of

corrective maintenance in a module with high level of TD, could in fact be due to a particular sub-

period in which the module had low TD.

Finally, the present study does not investigate whether the two interest-related variables of the research

questions (i.e., frequency of modifications and extent of modification due to corrective maintenance)

might be affected by the propagation of errors. In particular, the study focuses on the relation between

the two aforementioned variables and the TD principal of the files in which errors have been fixed,

possibly neglecting the TD of the originating files (i.e., those from which errors might have propagated).

This treatment poses a threat to construct validity and constitutes an interesting research direction for

future work.

5. Discussion and Conclusions

The results of this chapter suggest that TD amount is indeed correlated with maintenance effort. In

particular, developers appear to spend more time on fixing issues in files with high levels of accrued

technical debt, compared to files that present less TD. Therefore, project managers should take quality-

oriented decisions to deter the appearance of software units with increased technical debt.

With respect to practitioners, the results provide additional evidence that TD undermines software

maintenance and that it should be taken under consideration before any design and implementation

decision. Moreover, the domain of the study suggests that TD appears to be important in a web context

as well. Software engineers can take advantage of such empirical evidence to convince management

about the importance and need to manage TD.

From a research perspective, since there is sufficient empirical evidence of the impact of TD amount

on corrective maintenance, the need to devise a framework for assessing the associated risk and costs

of managing TD becomes essential.

References

[1] N. S. R. Alves, T. S. Mendes, M. G. de Mendonça, R. O. Spínola, F. Shull, and C. Seaman,

“Identification and management of technical debt: A systematic mapping study,” Inf. Softw.
Technol., vol. 70, pp. 100–121, Feb. 2016.

[2] A. Ampatzoglou, A. Ampatzoglou, P. Avgeriou, and A. Chatzigeorgiou, “A Financial Approach

for Managing Interest in Technical Debt,” in Business Modeling and Software Design, B.
Shishkov, Ed. Springer International Publishing, 2015, pp. 117–133.

[3] A. MacCormack and D. J. Sturtevant, “Technical debt and system architecture: The impact of

coupling on defect-related activity,” J. Syst. Softw., vol. 120, pp. 170–182, Oct. 2016.

Chapter IV. Technical Debt and Corrective Maintenance

58

[4] Q. Feng, R. Kazman, Y. Cai, R. Mo, and L. Xiao, “Towards an Architecture-Centric Approach to
Security Analysis,” in 2016 13th Working IEEE/IFIP Conference on Software Architecture

(WICSA), 2016, pp. 221–230.

[5] R. L. Nord, I. Ozkaya, E. J. Schwartz, F. Shull, and R. Kazman, “Can Knowledge of Technical

Debt Help Identify Software Vulnerabilities?,” presented at the 9th Workshop on Cyber Security
Experimentation and Test (CSET 16), 2016.

[6] N. Zazworka, A. Vetrò, C. Izurieta, S. Wong, Y. Cai, C. Seaman, and F. Shull, “Comparing four

approaches for technical debt identification,” Softw. Qual. J., vol. 22, no. 3, pp. 403–426, Apr.
2013.

[7] Z. Li, P. Liang, P. Avgeriou, N. Guelfi, and A. Ampatzoglou, “An Empirical Investigation of

Modularity Metrics for Indicating Architectural Technical Debt,” in Proceedings of the 10th
International ACM Sigsoft Conference on Quality of Software Architectures, New York, NY,

USA, 2014, pp. 119–128.

[8] R. Schwanke, L. Xiao, and Y. Cai, “Measuring Architecture Quality by Structure Plus History

Analysis,” in Proceedings of the 2013 International Conference on Software Engineering,
Piscataway, USA, 2013, pp. 891–900.

[9] G. A. Oliva, I. Steinmacher, I. Wiese, and M. A. Gerosa, “What Can Commit Metadata Tell Us

About Design Degradation?,” in Proceedings of the 2013 International Workshop on Principles
of Software Evolution, New York, NY, USA, 2013, pp. 18–27.

[10] P. Runeson, M. Host, A. Rainer, and B. Regnell, Case Study Research in Software Engineering:

Guidelines and Examples. John Wiley & Sons, 2012.

A study on the evolution of software quality and technical debt in open source applications

59

Chapter V. PERSONALIZED ASSESSMENT OF TECHNICAL DEBT

PRINCIPAL

The work of this chapter was published in the Proceedings of the XP2017 Scientific Workshops,

MTD2017:

Amanatidis, Theodoros & Chatzigeorgiou, Alexander & Ampatzoglou, Apostolos & Stamelos, Ioannis.

(2017). Who is Producing More Technical Debt? A Personalized Assessment of TD Principal.

10.1145/3120459.3120464.

Chapter Summary

Technical debt (TD) impedes software projects by reducing the velocity of development teams during

software evolution. Although TD is usually assessed on either the entire system or on individual

software artifacts, it is the actual craftsmanship of developers that causes the accumulation of TD. In

the light of extremely high maintenance cost, efficient software project management cannot occur

without recognizing the relation between developer characteristics and the tendency to evoke violations

that lead to TD. This chapter investigates three research questions related to the distribution of TD

among the developers of a software project, the types of violations caused by each developer and the

relation between developers’ maturity and the tendency to accumulate TD. The study has been

performed on four widely employed PHP open-source projects. All developers’ personal characteristics

have been anonymized.

1. Introduction

Tom DeMarco in his novel about project management (“The Deadline”) [1] vividly claims that the most

important part of any successful software project is team and people. According to Mr. Tompkins, the

main character of the story, people do projects and therefore getting the right people is essential.

Different developers have varying skills and capabilities in designing, developing and maintaining

software in the right manner. Unavoidably, the members of a development team introduce design and

code violations at unequal rates and intensities, contributing differently to the overall system Technical

Debt [2].

Technical Debt principal (i.e., the effort needed to refactor a system in order to address existing

inefficiencies) is usually assessed on design or code artifacts. However, since software development is

a highly people-centric activity, Technical Debt Management (TDM) should also consider the

individual members of a team. To name an example, technical debt items with high interest probability

[3] (i.e. modules that hold TD and are very likely to undergo maintenance in the future) should be

assigned to skilled and experienced developers to mitigate the involved risks.

Acknowledging that efficient project management cannot take place unless people are carefully

matched to tasks, this chapter presents the results of a case study assessing the distribution of TD among

developers. Knowing whether some members of the development team are more likely to introduce TD

or particular design/code violations can be of value to project managers to steer the allocation of issues

and maintenance tasks more effectively. Moreover, it is also investigated whether the tendency to

introduce TD is related to the developer’s age in the project. The relevant research questions have been

investigated based on findings from four widely employed PHP open-source projects with a long

development history.

Chapter V. Personalized Assessment of Technical Debt Principal

60

Collecting and processing information at the level of individual developers involves a number of ethical

issues and therefore should be performed with care. All gathered personal data, which are subject to

statistical analysis, has been de-identified. In any case, assessing the contribution of the members of a

development team to the system’s TD for research purposes, should not share any kind of personal data

with third parties. On the other hand, performance appraisals within an organization are a great and

commonly used tool to evaluate how employees have been performing. It should be noted however,

that any type of performance analysis should respect ethics, ensuring for example that developers are

aware of the relevant process and that any feedback will be accessible by the employees and will remain

confidential.

The rest of the chapter is organized as follows: Section 2 provides an overview of related work on the

assessment of software quality at the developer level, regardless of whether TD is explicitly mentioned

or not. The case study design is presented in Section 3 while the results for each of the investigated

questions are presented and discussed in Section 4. Implications to project managers and developers are

presented in Section 5, while threats to the validity of the study are discussed in Section 6. Finally,

conclusions are drawn in Section 7.

2. Related Work

This section presents efforts that aimed at investigating how the characteristics and coding habits of

individual developers relate to the introduction of code smells, violations and buggy code that

eventually undermine software quality.

Alves et al. investigated the influence of developers on the introduction of code smells in 5 open source

software systems [4]. Developers have been classified in different groups based on two characteristics,

namely: a) developer participation, calculated as the time interval between his first and last commit and

b) developer authorship, representing the number of modified files and lines of code. The authors

investigated how those two characteristics are related to the insertion and/or removal of five types of

code smells: dead (unused) code, large classes, long methods, long parameter list (of methods) and

unhandled exceptions. Results suggested that groups with fewer participation in code development

tended to have a greater engagement in the introduction and removal of code smells. Authors supported

that groups with higher participation level code more responsibly during maintenance whereas the other

groups tend to focus on error correction actions.

Tufano et al. analyzed developer-related factors, on 5 open source Java projects, that could influence

the likelihood of a commit to induce a fix [5]. They found evidence that clean commits (i.e., commits

that do not induce bugs or any kind of need to fix code) have higher coherence than fix-inducing

commits. Commits with changes that are focused on a specific topic or subsystem are considered more

coherent than those with more scattered changes. Furthermore, their results, surprisingly, suggested that

developers with higher experience perform more fix-inducing commits that developers with lower

experience. Authors claimed that this could be happening due to the fact that more experienced

developers usually cope with more pretentious tasks.

Eyolfson et al. [6] analyzed the impact of three social characteristics of commits on their bugginess: a)

time of the day the commit is performed, b) day of the week, and c) developer’s experience (i.e. days

of participation in the project) and commit frequency. The study was performed on two open source

projects (the Linux kernel and PostgreSQL) and found evidence that late-night commits are

significantly buggier emphasizing that developers that perform late-night commits should double-check

their code. They also found that more experienced developers introduce fewer bugs. Furthermore,

according to their results, the day on which the code is written plays no significant role on the

‘bugginess’ of a commit something which contradicts what was observed in an earlier study by

Sliwerski et al. back in 2005 [7]. That study claimed that programming on Friday is more likely to

generate faults than on any other day.

A study on the evolution of software quality and technical debt in open source applications

61

Rahman and Devanbu [8] studied the impact of ownership and experience of the developers on the

quality of code. As ownership, they considered the extent to which a developer modifies a file along

with others or on his own. They also conceptualized two distinct types of experience that can affect the

quality of a developer’s work: specialized experience in a file (i.e. developer’s contribution to a single

file) and general experience in the entire project (i.e., developer’s contribution to the entire project).

Their results highlighted that: a) code that is maintained by many developers is less bug-prone,

validating the “many eyeballs → better code” theory, b) less specialized experience on a specific file is

associated with fix-inducing code to that file and c) the lack of general experience on the overall project

is not consistently associated with faulty code.

This dissertation differs in that software quality is viewed from the perspective of TD rather than the

introduction of faults or selected code smells. Although not all TD violations are considered as harmful

by development teams, examining a broader range of design and code inefficiencies as well as the

distribution of TD introduction among developers can provide a more holistic view on the competencies

of a team.

3. Case Study Design

3.1. Research Objectives and Research Questions

The aim of this chapter, expressed through a GQM formulation, is: to analyze individual contributions

by the project developers for the purpose of evaluation with respect to the TD that they introduce,

from the point of view of software managers in the context of software maintenance and evolution in

open-source projects.

Driven by this goal, three relevant research questions have been set:

RQ1: Is TD uniformly distributed among the developers of a software project?

The first research question aims to investigate whether TD is uniformly induced by all developers in a

software project or is mostly associated to the commits of specific developers. Answering this research

question and especially if common patterns among the examined projects are found, could shed light

into the actual causes of design and code inefficiencies.

RQ2: Which TD violations are introduced by the developers of a software project?

The second research question concerns the particular TD violations caused by each developer during

his commits and investigates whether there is any relation between violation types and developers. Any

evidence on commonly occurring violations across all developers or individual members of the

development team can be of help to efficient technical management.

RQ3: What is the relation between TD and the maturity of developers in a software project?

The third research question analyzes the relation between the maturity of each developer in any project

(obtained as the time since his initial commit to the project) and his tendency of inducing TD. It would

be reasonable to assume that less experienced developers introduce more TD and thus allocation of

work considering the maturity factor would enable effective TD management.

3.2. Case and Units of Analysis

This is an embedded multiple-case study, i.e. it studies multiple cases, whereas each case is comprised

of many units of analysis. Specifically, the cases of the study are open source projects, and units of

analysis are the developers of each project. The reporting of results is performed at the project/case

level.

Chapter V. Personalized Assessment of Technical Debt Principal

62

As subjects for the study, recent commits (i.e. those of the most recent year) of a selected branch during

the development history of 4 open source projects written in PHP, were obtained. The projects have

been selected so as to have a long development history and varying sizes. A short description of the

goals of these projects is provided below, whereas some demographics are provided in Table 1. Laravel

(core) consists of the core source code of one of the most popular PHP frameworks for building web

applications, Laravel, with more than 20 million downloads. Composer is the most popular dependency

manager for PHP with more than 2 million downloads. Yii2 and CakePHP are two actively maintained

PHP frameworks with over 2.5 million and 1 million downloads respectively.

All developers who submitted at least 10 commits on the examined branches of the selected projects

have been used as cases for this dissertation (the lower limit of 10 commits has been set to avoid

considering in the study developers with partial or circumstantial association to the project).

Table 1. OSS PHP Project Demographics

Project #Commits

#Developers

(considered)

Size of last

version (LOC)

Laravel (core) 1136 11 149K

Composer 807 7 8K

Yii2 2097 19 406K

Cakephp 1677 23 297K

3.3. Variables and Data Collection

3.3.1. Variables

For each unit of analysis (i.e. developer in a project) and in order to answer the research questions that

have been set, the following variables were recorded:

[V1] DevID: unique developer identification id

[V2] Total TD: induced TD by all commits of the particular developer during the examined time

frame. Contributed TD for a particular transition from one commit to the next is obtained by

SonarQube as the difference between the TD of the files that the developer modified during the

transition. It can be positive or negative.

[V3] Number of modified lines: To normalize the contributed TD over the amount of work

performed by each developer the number of lines that have been modified during each commit

was recorded (as the number of added and deleted lines of code).

[V4] Normalized TD: Since the amount of TD that is introduced by a developer is heavily dependent

on the amount of code that he contributes, to allow for a fair assessment the total TD (V[2]) is

normalized by dividing it with the number of modified lines (V[3]).

[V5] Types of TD violations: This variable consists in a map of TD violation types and occurrence

frequencies. It essentially captures the types of TD violations caused by the commits of each

developer.

[V6] Developer Maturity: Time between the first commit that each developer performed in the

project’s history to the last commit that he contributed. It captures the developer’s maturity in

the project.

A study on the evolution of software quality and technical debt in open source applications

63

3.3.2. Data Collection

In order to analyze developers’ recent activity and contribution to Technical Debt the most recent year’s

commit data for every examined project was obtained, via the GitHub API. This data includes commit

information, such as the author of the commit, the number of changed lines of code, the modified files,

the commit date and of course the commit id (hash) in the repository. Next, the TD of every project

snapshot, corresponding to each commit, has been calculated using SonarQube16. SonarQube is a widely

employed tool for assessing technical debt that quantifies the principal based on several axes of code

quality (e.g., code duplications, metrics, styling conventions, etc.). In particular, the source code

corresponding to each commit was iterated and performed TD analysis with SonarQube for every

project snapshot. The entire process has been fully automated by executing the required commands

within a bash script.

Once the analysis for each project snapshot has been completed, commits have been grouped by

developers and placed in chronological order. For every developer’s commit, the files that he/she

modified have been identified, and their TD amount has been compared against the TD of the same files

in the previous commit17 that involved those files. The difference in TD amount that was detected

between two successive commits (ignoring the commits affecting other files) was added to each

developer’s stack and eventually calculated the total contribution of each developer to the project’s

technical debt principal. The process of obtaining the personalized principal contribution (delta of TD)

based on two successive commits is illustrated in Figure 1.

Figure 1. Process of obtaining TD deltas for each developer

3.4. Data Analysis

To answer the research questions stated in Section 3.1, using the variables described in Section 3.3,

descriptive statistics and hypothesis testing (for RQ3) were employed.

For checking whether the distribution of TD among developers is uniform or not (RQ1), the distribution

will be presented as a bar chart. To provide a more systematic view into the distribution of TD, the Gini

16 Available at: http://www.sonarqube.org

17 For the special case where a file was created in a particular commit and thus did not exist in the previous commit, zero TD principal has

been assumed for the previous commit

Commit History

commit
of developer A
affecting file X

developer A

File X

public class
Group {

protected
String name;
private String
description;
protected
ArrayList<User
> members;

commit
of developer B
affecting file Y

developer B

File Y

public class
Group {

protected
String name;
private String
description;
protected
ArrayList<User
> members;

commit
of developer B
affecting file X

developer B

File X

public class
Group {

protected
String name;
private String
description;
protected
ArrayList<User
> members;

Δ TDFileX

developer s B
TD contribution

http://www.sonarqube.org/

Chapter V. Personalized Assessment of Technical Debt Principal

64

coefficient was calculated for each project. The Gini coefficient is a measure of statistical dispersion

originally used for quantifying the inequality of income distribution [9]. The value of the Gini

coefficient varies between zero and one. A Gini coefficient (or index) equal to zero implies perfect

equality in the distribution (i.e. the case where all developers introduced the same amount of TD). A

Gini index equal to one, implies maximum inequality (i.e. the case where one developer introduces the

entire TD of the system while all others introduce no TD at all).

To investigate whether developers have a tendency to introduce particular TD violations (RQ2) a

heatmap was used. Columns correspond to the individual developers in each project (denoted by their

ID) while rows correspond to identified TD violations as obtained by SonarQube. Frequently occurring

violations are denoted by darker colors. A completely black cell indicates that the corresponding

developer introduces only violations of one type (that corresponding to the row). In case the violations

by a developer are distributed among many types, shading changes according to the percentage of

violations of each type.

Finally, to test whether developer maturity plays a role in the number and severity of violations that

they introduced, the findings are displayed as scatterplots (developer age vs. normalized TD) and the

hypothesis whether normalized TD depends on age is tested with correlation analysis. Since correlation

analysis on the limited data points of each project leads to statistically insignificant results, for this

research question a combined dataset from all projects has been formed. However, to avoid any biasing,

the combined dataset contains developer maturity and introduced normalized TD expressed as a

percentage: For each project, the maturity of each developer (in days) is divided with the maturity of

the most experienced developer. Similarly, for each project, the normalized TD (i.e. TD/LOC) for each

developer, is divided by the maximum normalized TD in that project.

To further investigate whether developer’s maturity is related to the amount of introduced TD principal,

an independent study t-test has been performed, by differentiating between less and more experienced

developers (the age in days corresponding to 50% of the longest experience was used as threshold). The

analysis strategy per research question is summarized in Table 2.

Table 2. Data Analysis

RQ Analysis Strategy

RQ1
Bar-chart illustrating distribution of TD [V4] among developers [V1] – Gini index for

each distribution

RQ2 Heatmap illustrating frequency and types of violations [V5] per developer [V1]

RQ3 Scatterplot & correlation analysis between normalized TD [V4] and developer age [V6]

Independent sample t-test, grouping variable [V6] (threshold 50%) and testing variable [V4]

4. Results and Discussion

This section presents the results of the study organized per research question along with an interpretation

of the findings.

4.1. Distribution of TD among Developers

Figure 2 illustrates the distribution of the contributed TD during the examined time frame among the

developers who performed commits in each project. To avoid biasing the results by the amount of code

A study on the evolution of software quality and technical debt in open source applications

65

written by each developer and thus ‘falsely blaming’ a developer, the added TD is normalized over the

number of changed lines of code. On each chart the value of the corresponding Gini index is also shown.

(a) Laravel (core)

(b) Composer

(c) Yii2

(d) CakePhP

Figure 2. Distribution of TD among developers

The pattern observed in each plot presents similarities across projects. A limited number of developers

(e.g. Developer-2 for Laravel and Developer-5 and Developer-11 for CakePHP) contribute a significant

portion of the system’s technical debt (in terms of TD per line of code), while the majority of developers

contribute significantly less violations. In a few cases developers even have a negative TD contribution

meaning that they remove violations instead of introducing new ones when adding code.

The distribution in general is far from uniform as it is confirmed by the Gini index which is remarkably

similar in all projects. To provide an intuitive interpretation of the meaning of the Gini index, it is noted

that a Gini value of 0.66 implies that 80% of the developers introduce approximately 1/3 of the system’s

TD. The rest 2/3 is introduced by only 20% of the developers. Therefore, there is a small group of

developers that produce significant amount of principal, whereas another larger set of developers

produces less technical debt confirming the Pareto principle.

It could be claimed that TD principal is not equally distributed across developers since at least one of

them stands up as a main source of producing violations (and therefore introducing principal). On the

contrary, there are cases in which developers consistently remove violations (i.e., repay TD). However,

this observation is not consistent across all investigated projects

Gini index = 0.66
Gini index = 0.66

Gini index = 0.65

Gini index = 0.61

Chapter V. Personalized Assessment of Technical Debt Principal

66

4.2. TD Violations per Developer

Figure 3 illustrates the most common violations in each of the examined projects against the developers

who introduce them, in the form of a heatmap. The darker the color the more violations of the

corresponding type are introduced by the indicated developer. A row that is relatively dark across all

developers implies a commonly occurring violation. On the other hand, a column with many dark cells

implies a developer that generates many different types of violations.

(a) Laravel (core)

(b) Composer

(c) Yii2

(d) CakePhP

Figure 3. TD violation types per developer

The findings vary among projects, similarly to the total number of different violation types encountered

in each project (22 violation types in Laravel to 30 types in CakePhP). Rows with many shaded cells

indicate common violation types introduced by many developers. Such a violation is violation

‘php:S1192’ (of critical importance) in all projects. According to SonarQube this violation indicates the

presence of String literals which are duplicated, rendering the process of updating all occurrences in

case of a change, error-prone. Another relatively common violation among developers in all projects is

A study on the evolution of software quality and technical debt in open source applications

67

‘php: S2037’ (of minor importance). SonarQube identifies as violations cases where a reference to a

static class member from another method in the same class is not employing the “static::” keyword.

This might lead to undesired behavior in the case of subclasses, as the original definition of the member

is referenced, rather than the overridden one.

Differences are also clearly visible between developers. Some developers introduce violations of many

different types, as indicated by shaded cells in the corresponding columns. This is for example the case

for the first three developers of project Laravel. In such cases, training actions focusing on the merits

of smell-free code can be planned as part of a project’s management for selected members of the

development team. On the other hand, some developers produce violations of a very limited number

of types, even of a single type. This is for example the case for developers with a single black cell in

their column (i.e. 100% of their violations belong to that specific type). Although the latter information

might be of limited value to a project manager, it could be useful as a self-assessment tool for the

developer. The analysis points to the particular violations that a developer is inclined to introduce, and

if he acknowledges their importance, can eventually modify his programming habits to eliminate them.

In principal a large variety of violations can be identified in different projects, introduced by different

developers. However, this dissertation points out specific frequently recurring violations for: (a) the

same project, (b) the same developer, and (c) across all projects.

4.3. TD vs. Developer Maturity

The third research question aims at investigating the relation between a developer’s ‘age’ in the project

and the TD that he introduced per line of code. The corresponding scatterplot for variables [V4] and

[V6] is shown in Figure 4. The trendline in the chart indicates a very moderate negative correlation

between developer maturity and introduced TD (note that both variables are expressed as ratio over the

highest developer maturity and the highest TD/LOC in each project, respectively). However, the p-

value for Spearman correlation indicates that the results are not statistically significant (p = 0.753).

Thus, there is no evidence to support the rejection of the corresponding null hypothesis (i.e. that no

monotonic correlation between the two variables exist).

Figure 4. Introduced TD versus developer maturity

To further investigate whether developer’s maturity plays any role in the amount of introduced TD

principal an independent study t-test has been performed. However, the results of the test have not

suggested the rejection of the null hypothesis (sig: 0.8). Therefore, one cannot claim that there is a

difference in the mean TD incurred by experienced and inexperienced software developers.

However, despite the lack of statistical evidence it can be observed that a larger number of immature

developers is concentrated in the top-20% most TD-incurring developers (5 immatures against 1

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1TD
/L

O
C

 (
n

o
rm

al
iz

ed
)

developer maturity (normalized)

Chapter V. Personalized Assessment of Technical Debt Principal

68

experienced). This finding, in conjunction with the declining trendline in the scatterplot opens up an

interesting research direction. In particular, the identification of additional factors (apart from

experience) that characterize the developer need to be investigated so as to more accurately profile

which types of developers incur the most TD principal.

The collected data were not able to provide enough evidence on the relationship between developers’

age and the amount of TD that they introduce. However, a negative trendline has been identified and

80% of the most TD-introducing developers have been active for less than 33% of the project’s age

(i.e., have low project-related experience).

5. Implications of the Study

Any performance analysis at the level of individual people might be viewed with skepticism. However,

the provided perspective on a system’s TD and its actual causes might prove beneficial to the managers

of software development teams and to the developers themselves.

With respect to software project managers, resource allocation can benefit by assigning artifacts with

increased technical debt interest probability to software engineers that tend to introduce less technical

debt principal or even remove technical debt. In a similar line of thought, and without any intent to

punish developers, managers could identify developers who impair software quality by introducing

source code violations and technical debt instances and try to upgrade their coding habits, either by

placing them next to more experienced developers or by calling them to reflect on their common

violations. Appropriate guidelines or tooling to avoid the accumulation of particular violations can also

be developed, based on the findings from previous projects.

With respect to software developers, the results on the personalized assessment of technical debt can be

a valuable self-improvement tool. Developers can identify recurring problems that they consciously or

unconsciously introduce as well as their locations in code. Moreover, critically analyzing their own

performance with respect to TD against the rest members of their team can highlight opportunities for

improvement.

Finally, the results of the study provide some useful research implications as well. First, the outcomes

of the study suggest that an individual / personalized assessment of TD can be a meaningful research

direction that unveils interesting relations that can guide TDM. Therefore, the topic deserves further

investigation. Some tentative future research direction are as follows: (a) a personalized assessment of

TD interest, (b) a detailed analysis of specific violations, with respect to their criticality, and (c) an

elaborate personality / developers’ characteristics model that will provide a more accurate profile of

TD-prone developers.

6. Threats to Validity

This section presents and discusses threats to the validity of the empirical study emphasizing on

construct, reliability, external and internal validity threats, according to the classification by Runeson

et al. [10].

Construct validity reflects to what extent the phenomenon under study (i.e. introduction of technical

debt principal by individual developers) really represents what is investigated according to the research

questions. By selecting a particular tool for quantifying technical debt, whereas other types of non-

identified technical debt exist, threats to construct validity emerge. However, SonarQube is a widely

employed tool for the assessment of technical debt identifying a variety of design and code

inefficiencies.

A study on the evolution of software quality and technical debt in open source applications

69

The reliability of a case study is related to the extent by which the collected information and the

performed analysis can be replicated with the same results. To mitigate reliability threats, the design of

the case study and the statistical tests that have been performed are explicitly reported.

Internal validity threats are related to the identification of confounding factors, that is, variables, other

than the implied independent variables (developer’s competence and maturity) which might influence

the value of the dependent variable (introduced technical debt and technical debt types). Such threats

do apply in the presented study, since introduced technical debt might be affected by the tasks assigned

to (or chosen by) each developer. For example, a highly skilled and experienced developer might be

inclined to take over the most complex and demanding tasks limiting his ability to control the introduced

technical debt.

Finally, as in any other empirical study, the results are subject to external validity threats. External

validity deals with the possibility to generalize the findings. To mitigate this threat, four widely known

PHP projects have been selected, which have evolved over a number of years. Nevertheless, further

studies are required to thoroughly analyze the parameters that drive developers to introduce TD.

7. Conclusions

Software development is a complex activity requiring experience, skills and significant mental effort.

Artifacts produced by developers are systematically analyzed in terms of quality, which recently is

successfully captured by the Technical Debt metaphor. In this chapter, the relation between introduced

TD principal and developers has been investigated, through a case study on four open-source PHP

projects.

The findings confirm the belief that developers’ competencies vary, since the distribution of technical

debt among developers is highly imbalanced. Moreover, different developers introduce different

technical debt violations; however, some recurring violations can be identified across developers and

projects. Finally, there is no statistically significant evidence that more experienced developers

introduce less technical debt per line of code. Such findings but more importantly the ability to perform

a personalized assessment of technical debt can be a valuable tool for effective project management and

self-assessment and improvement.

References

[1] T. DeMarco, The Deadline: A Novel About Project Management. New York: Computer

Bookshops, 1997.

[2] P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical Debt: From Metaphor to Theory and

Practice,” IEEE Softw., vol. 29, no. 6, pp. 18–21, Nov. 2012.

[3] N. S. R. Alves, T. S. Mendes, M. G. de Mendonça, R. O. Spínola, F. Shull, and C. Seaman,

“Identification and management of technical debt: A systematic mapping study,” Inf. Softw.

Technol., vol. 70, pp. 100–121, Feb. 2016.

[4] L. Alves, R. Choren, and E. Alves, “An Exploratory Study on the Influence of Developers in

Code Smell Introduction,” in Proceedings of the 10th International Conference on Software

Engineering Advances (ICSEA 2015), Barcelona, Spain, 2015.

[5] M. Tufano, G. Bavota, D. Poshyvanyk, M. Di Penta, R. Oliveto, and A. De Lucia, “An empirical

study on developer‐related factors characterizing fix‐inducing commits,” J. Softw. Evol. Process,

vol. 29, no. 1, Jan. 2017.

[6] J. Eyolfson, L. Tan, and P. Lam, “Do Time of Day and Developer Experience Affect Commit

Bugginess?,” in Proceedings of the 8th Working Conference on Mining Software Repositories,

New York, NY, USA, 2011, pp. 153–162.

Chapter V. Personalized Assessment of Technical Debt Principal

70

[7] J. Sliwerski, T. Zimmermann, and A. Zeller, “Don’t Program on Fridays! How to Locate Fix-

Inducing Changes,” in Proceedings of the 7th Workshop on Software Reengineering, Bad

Honnef, Germany, 2005.

[8] F. Rahman and P. Devanbu, “Ownership, experience and defects: a fine-grained study of

authorship,” n Proceedings of the 33rd International Conference on Software Engineering,

Waikiki, Honolulu, USA, 2011, p. 491.

[9] C. Gini, “Measurement of Inequality of Incomes,” Econ. J., vol. 31, no. 121, pp. 124–126, 1921.

[10] P. Runeson, M. Host, A. Rainer, and B. Regnell, Case Study Research in Software Engineering:

Guidelines and Examples, 1st ed. Wiley Publishing, 2012.

A study on the evolution of software quality and technical debt in open source applications

71

Chapter VI. FACTORS AFFECTING DECISION TO REPAY

TECHNICAL DEBT

The work of this chapter was published in the Proceedings of the 2018 International Conference on

Technical Debt, TechDebt 2018 (Pages 62-66):

Amanatidis, Theodoros & Mittas, Nikolaos & Chatzigeorgiou, Alexander & Ampatzoglou, Apostolos

& Angelis, Lefteris. (2018). The developer’s dilemma: Factors affecting the Decision to Repay Code

Debt. 10.1145/3194164.3194174.

Chapter Summary

The set of concepts collectively known as Technical Debt (TD) assume that software liabilities set up a

context that can make a future change more costly or impossible and therefore repaying the debt should

be pursued. However, software developers often disagree with an automatically generated list of

improvement suggestions, which they consider not fitting or important for their own code. To shed light

into the reasons that drive developers to adopt or reject refactoring opportunities (i.e. TD repayment),

in this chapter, an empirical study on the potential factors that affect the developers’ decision to agree

with the removal of a specific TD liability, is performed. The study has been addressed to the developers

of four well-known open-source applications. To increase the response rate, a personalized assessment

has first been sent to each developer, summarizing his/her own contribution to the TD of the

corresponding project. Responds have been collected through a custom-built web application that

presented code fragments suffering from violations as identified by SonarQube along with information

that could possibly affect their level of agreement to the importance of resolving an issue. These factors

include data such as the frequency of past changes in the module under study, the number of bugs, the

type and intensity of the violation, the level of involvement of the developer and whether he/she is a

contributor in the corresponding project. Multivariate statistical analysis methods have been used to

understand the importance and the underlying relationships among these factors and the results are

expected to be useful for researchers and practitioners in TD Management.

1. Introduction

According to A. Hunt and D. Thomas many developers are reluctant to start ‘ripping up’ their code

(a.k.a. refactor) just because it isn’t quite right [1]. As they vividly put it, going to a boss or client and

saying that a working piece of code needs another week to refactor it, would probably cause a response

that cannot be printed. However, deferring a refactoring might incur technical debt (TD) requiring

greater time investment to fix the problem down the road.

Previous studies have shown that developers perceive and handle TD in different ways [2] and have

distinct motivations for applying refactorings [3]. To shed light into the factors that drive developers to

accept or reject automated suggestions for TD removal, this dissertation targets at developers of open-

source PHP projects with the following two main characteristics: (a) to increase their motivation for

participating in the study each participant was provided, prior to requesting his feedback, with a

personalized report on the TD that he/she has incurred to the project, and (b) to facilitate the collection

of data a web application has been implemented to present individual code fragments suffering from an

identified TD issue along with information on the parameters that might affect the developers decision

to repay the TD or not.

Chapter VI. Factors Affecting Decision to Repay Technical Debt

72

2. Related Work

There is a limited number of studies providing insights on the developer’s perception regarding the

urgency to resolve code violations, which in turn lead to the accumulation of TD. In a recent study [4],

the authors sent surveys to explore whether issues involving architectural elements lie among the most

significant sources of TD. A number of 536 respondents replied (leading to a response rate of 29%) and

the results showed that architectural issues are the greatest source of TD. Such issues are difficult to

cope with and they dragged on for many years. Another explored subject was the existence of effective

tools for managing TD. Respondents claimed that existing tools do not capture the key areas of

accumulated problems related to TD.

In a 2014 study [5], the authors investigated which bad smells are considered by the developers as the

most harmful. The developers were given code snippets from three systems with twelve kinds of bad

smells and were asked to rank the severity of the smells. Both original developers from the systems and

outsiders (industrial developers) were included in the survey (a response rate of 40% was achieved).

The results suggested that smells related to complex code are considered an important threat by

developers.

In another exploratory study [6], comments of four large open-source systems were used to identify

self-admitted TD. The authors found that more experienced developers introduce most of the self-

admitted TD while time pressure and code complexity do not relate to the amount of self-admitted debt.

In another study [7], 20 developers were interviewed to investigate why static analysis tools are not

used during development. Participants claimed that static analysis tools are beneficial, but false

positives, poor output and low customizability deter their use. Spinola et al. [8] chose 14 statements

regarding TD and asked 37 practitioners if they agree with them. The statement “Not all technical debt

is bad” lies among those with the maximum consensus. In other words, developers believe that there is

a healthy level of TD in every system.

Kim et al. [9] conducted a survey to examine developers’ perception regarding code refactoring.

Participants responded that refactoring hides substantial cost and risks and further support is needed

beyond automated refactoring within IDEs. However, a case study on Windows 7 highlighted the

benefits of refactoring. The results showed that “refactored modules experienced higher reduction in

the number of inter-module dependencies and post-release defects than other changed modules”.

In another study which debated developers’ position about code refactoring [10], 20 refactoring

practitioners were interviewed. Participants recognized the added value of a refactoring (code

reusability), however if too much effort is needed, they may be reluctant to make refactoring decisions.

Mäntylä and Lassenius [11] studied the refactoring decisions made by 37 students on a small Java

application. According to participants’ responses, ‘Long method’ was the top driver for refactoring

decision and poor readability along with poor understanding of the code were also among the most

important drivers.

3. Study Design

The purpose of the current dissertation is to shed light on the factors that drive developers to resolve

TD Items (TDIs) identified in their own code. To achieve this, four PHP open source projects on GitHub

were analyzed to obtain commit activity and code debt information. Specifically, Composer, CakePHP,

Laravel18 and Yii2 were included. Composer (composer/composer) is a dependecy manager for PHP,

CakePHP (cakephp/cakephp) is a framework to build PHP applications and Laravel

18 Laravel core (laravel/framework)

A study on the evolution of software quality and technical debt in open source applications

73

(laravel/framework) and Yii2 (yiisoft/yii2) are also well-known PHP frameworks. The criteria for

selecting the aforementioned projects are as follows:

- Projects had to be open source and actively maintained up until the time of this dissertation

- Projects had to be widely used by the PHP community: Composer has 5 millions downloads,

CakePHP has 2 millions, Laravel has 6 millions and Yii2 has 1 million.

- Projects had to be maintained by many contributors: Composer has 600+ contributors,

CakePHP has 500, Laravel has 400 and Yii2 has 800.

- Projects had to be widely recognized by the PHP community: Composer has 11k stars on

GitHub, CakePHP has 7k, Laravel has 35k and Yii2 has 11k.

The history of the commit activity was retrieved via the GitHub API and the code base was analyzed

by SonarQube19 to measure TD at every commit snapshot. It should be noted that the commit history

includes the last year’s commit data of the projects for two main reasons: The aim of the study is to

track the most recent developers’ activity in order to ask currently active developers to evaluate the

importance of the code violations that SonarQube detected. For example, it would not be reasonable to

approach a developer that pushed some commits two or three years ago without any recent activity,

since he may be currently inactive. The second reason is that the analysis process with SonarQube is

costly in terms of time and resources, especially in cases when the TD is measured for every single

commit of the project.

As in any similar study, the major challenge was to retrieve sufficient responses as previous experience

has shown that people outside the academic community are not always willing to spare time to

contribute to academic studies. To increase the likelihood of obtaining a response, the developers have

been approached in a way that could potentially attract their interest, as described next.

3.1. Personalized report to participants

Prior to the request for participating in the evaluation of TD items (even just a single one), developers

have been provided with a personalized report of their current activity including their commit density,

contribution to the overall TD of the project (relatively to the rest of the developers) and the top-five

code violations they insert into the code. The report for a random developer (with anonymized

information) for project Yii2 is shown in Figure 1. The obtained response rate in this dissertation was

35%.

Figure 1. Anonymized TD report of a developer in Yii2

19 https://www.sonarqube.org/

https://www.sonarqube.org/

Chapter VI. Factors Affecting Decision to Repay Technical Debt

74

3.2. Set-up of the Study

At the end of the report each developer was asked to evaluate TD items detected in the project under

study. In the evaluation screen the developer was presented with a code violation (assessed TD item) as

detected by SonarQube along with some information regarding the violation itself and the file in which

the violation was found, so as to provide a spherical view of the TD item before answering. In particular,

the evaluator was given the following information regarding the violation (see Figure 2):

- Short description of the TD item

- Suggested solution of the TD item

- Tag categorization (serving as keywords of the TD item)

- Severity of the TD item

- Estimated time to fix the TD item

- The name of the file in which the TD was detected

- The revision of the file

- The code snippet where the TD item was detected

- 20The change frequency of the file (as percentage)

- 21The issue fixing frequency of the file (as percentage)

- 22The total technical debt of the file (as percentage)

Figure 2. Evaluation screen for a TD item in project Yii2

At the bottom of the screen the developers were asked to evaluate the urgency of the TD item to be

fixed in a Likert scale (from 1 to 5), with 1 meaning “no need to solve it” and 5 corresponding to “it is

urgent to solve it”. The developers’ response to this question served as the dependent variable in the

statistical analysis.

20 This indicates how often the file gets modified, relatively to other files. A percentage of 100% means that the file is the most

frequently modified file.

21 This indicates how often the file gets modified for issue fixing, relatively to other files. A percentage of 100% means that

the file produces the most issues.

22 This indicates the technical debt of the file, relatively to other files. A percentage of 100% means that the file has the highest

technical debt.

A study on the evolution of software quality and technical debt in open source applications

75

4. Results and Discussion

4.1. Statistical Analysis

This subsection presents the descriptive statistics on the involved variables and inferential statistics

regarding the relationship between the factors that have been considered (explanatory variables) and

the agreement of a developer on the resolution of a TDI (dependent variable). Table 1 summarizes the

distributions for the categorical variables of the study, whereas Table 2 provides the univariate

descriptive statistics of the continuous variables, in which results were expressed as mean (M), standard

deviation (SD), median (Mdn), minimum (min) and maximum (max). (Developer Participation

indicates whether the participant contributed to the project in which the TD item was found, or not).

Table 1. Frequency distributions for categorical variables

 N %

Developer

Evaluation

(Dependent)

Very low 74 27.2

Low 38 14

Moderate 60 22.1

High 49 18

Very high 51 18.8

Severity Info 15 5.5

Minor 58 21.3

Major 189 69.5

Critical 10 3.7

Debt characterization Changeability 14 5.3

Maintainability 157 59.2

Reliability 70 26.4

Security 5 1.9

Testability 19 7.2

Missing 7

Developer Participation
No 105 38.6

Yes 167 61.5

Table 2. Descriptive statistics for continuous variables

 N M SD min max

Time to fix (in min) 272 10.71 14.28 1 60

TD file (in min) 272 274.63 441.30 2 2828

File modifications ranking 272 84.97 17.47 6 100

File corrections ranking 272 36.18 40.91 0 100

Chapter VI. Factors Affecting Decision to Repay Technical Debt

76

In order to examine the relationship between explanatory variables and outcome responses (Developer

Evaluation), the Generalized Estimation Equations (GEE) approach is adopted. GEE introduced by

Liand and Zeger [12] can be considered as the extension of the Generalized Linear Model, suitable for

taking into account the dependence among observations. As in this survey eighteen developers provided

their evaluations, each one for one up to eighty-three TD items, there is an imperative need to handle

the inherent dependence (or "developer effect"), stemming from the evaluations of the same developers

to TD items.

Describing briefly, consider a random sample of observations from 𝑛 subjects (responses on TD items).

Let 𝑶𝑖
𝑇 = (𝑂𝑖1, … , 𝑂𝑖𝑛𝑖

)
𝛵

 be the column vector of ordinal responses provided by subject 𝑖 = {1, . . . 𝑠}

where 𝑂𝑖𝑟 takes values in {1, … , 𝐶}. Also let 𝑿𝑖 = (𝑿𝑖1, … , 𝑿𝑖𝑛𝑖
)𝑇 be a 𝑛𝑖 × 𝑝 dimensional matrix of

repeated 𝑝 covariates for subject 𝑖. Then, the model describing the correlation between the set of

covariates and the conditional probabilities of each ordinal response is given by:

𝑙[𝑃(𝑂𝑖𝑟 ≤ 𝑐|𝑿𝑖𝑟 = 𝒙𝑖𝑟)] = 𝛽0𝑐 + 𝒙𝑖𝑟𝜷1
𝑇 (1)

For 𝑐 = 1, … , 𝐶 − 1, 𝛽0𝑐 the threshold parameter for level 𝑐, 𝜷1 the row vector of regression

coefficients corresponding to covariates and with 𝑙 a known link function is denoted (logit function in

this case). The selection of the explanatory variables was based on a backward elimination.

The backward elimination procedure indicated that the covariates File Modifications Ranking, χ2(1) =

0.030, p = 0.863, Time to Fix (in minutes), χ2(1) = 0.512, p = 0.474 and TD Files (in minutes), χ2(1) =

1.482, p = 0.223 do not present a statistically significant main effect on responses and for this reason

they were dropped out from any further analyses. The final model, after omitting insignificant

predictors, indicated that Severity, χ2(3) = 15.625, p = 0.001, Debt Characterization, χ2(4) = 12.669, p

= 0.013, Developer Participation (Binary), χ2(1) = 6.625, p = 0.009 and File Corrections Ranking, χ2(1)

= 3.418, p = 0.064 presented statistically significant main effects on the developer evaluation for TD

items.

The parameters of the final model are presented in Table 3, in which the reference categories for factors

Severity, Debt Characterization and Developer Participation are "Critical", "Maintainability" and

"Yes", respectively. Interpreting the parameter estimates of the model for the factor Severity, the

coefficient for the level Info (b = -3.070, SE = 1.374) indicates that the ordered logit for Info TD items,

being into a higher evaluation response is -3.070 (χ2(1) = 4.990, p = 0.025) less than the reference

category (Critical TD items). In other words, the odds for a Critical TD item to be evaluated into a

higher category are 21.5 (1 𝑒−3.070⁄) times higher compared to an Info TD item.

In addition, the model reveals a statistically significant difference between the odds ratio (OR) of Minor

and Critical Severity, χ2(1) = 7.407, p = 0.006. Regarding Debt Characterization, the findings suggest

that Testability debt (b = 1.363, SE = 0.539) is 3.9 times more likely to be evaluated into higher

categories compared to Maintainability debt, χ2(1) = 6.391, p = 0.011.

In addition, the parameter of the binary predictor Developer Participation, (b = 1.120, SE = 0.430)

indicates that TD items presented to developers that have not participated in the project under study at

all are almost 3 times more likely to be evaluated to higher categories compared to TDIs presented to

developers who contributed to the project. Finally, the coefficient for the covariate File Corrections

Ranking, (b = 0.007, SE = 0.004) indicates a marginally significant positive correlation between File

Corrections Ranking and Developer Evaluation, χ2(1)=3.418, p=0.06.

A study on the evolution of software quality and technical debt in open source applications

77

Table 3. Parameters of the final model

Parameter b SE

Hypothesis Test

OR

95% OR

χ2 df p Lower Upper

Threshold23 Very low -2.103 1.154 3.318 1 0.069 0.122 0.013 1.173

Low -1.323 1.126 1.381 1 0.240 0.266 0.029 2.419

Moderate -0.223 1.044 0.046 1 0.831 0.800 0.103 6.191

High 0.861 1.053 0.669 1 0.413 2.366 0.301 18.615

Severity:Info -3.070 1.374 4.990 1 0.025 0.046 0.003 0.686

Severity:Minor -2.984 1.096 7.407 1 0.006 0.051 0.006 0.434

Severity:Major -1.409 0.963 2.144 1 0.143 0.244 0.037 1.612

DebtCharacterization:Changeability 0.481 0.290 2.742 1 0.098 1.617 0.915 2.857

DebtCharacterization:Testability 1.363 0.539 6.391 1 0.011 3.908 1.358 11.241

DebtCharacterization:Security -0.653 1.047 0.389 1 0.533 0.520 0.067 4.049

DebtCharacterization:Reliability 0.143 0.266 0.288 1 0.591 1.153 0.685 1.942

Developer Participation:No 1.120 0.430 6.783 1 0.009 3.066 1.319 7.123

File Corrections Ranking 0.007 0.004 3.418 1 0.064 1.007 1.000 1.014

Notes: Reference categories Severity:Critical, Debt Characterization:Maintainability, Developer

Participation:Yes

4.2. Discussion of the Results

The distribution of developer responses to the question on whether they agree with the need to resolve

a particular TD item are rather uniform, as in 41% of the violations their level of agreement was ‘very

low’ or ‘low’, in 22% of the cases their level of agreement was ‘moderate’, while in 37% of the cases

they agreed on the need to apply a refactoring for resolving an issue (level of agreement was ‘high’ or

‘very high’).

According to results of the Generalized Estimation Equations approach developers appear to be largely

influenced by the severity of a TD issue (i.e. Critical, Major, Minor and Info as no Blocking issues were

identified). For example, it is 21.5 times more probable that a Critical issue will be classified as needing

resolution compared to an Info issue. This finding is reasonable, as the categorization of severity by

SonarQube already distinguishes between issues. In other words, it is reasonable that a Critical code

issue like “String literals should not be duplicated” is perceived as more urgent to be resolved than an

Info code issue like “Comments should not be located at the end of lines of code”.

The broader characterization of the TD issue also seems to have an effect on the developer’s decision.

For example, if an issue pertains to Testability (like “Expressions should not be too complex”) it is 3.9

times more probable to be considered as needing resolution than an issue related to Maintainability (like

“Sections of code should not be "commented out”). Considering that the scanner employed for

23 In this type of models threshold parameters that define transition points between adjacent categories are estimated for C-1

levels

Chapter VI. Factors Affecting Decision to Repay Technical Debt

78

identifying rule violations in PHP code relied on static analysis, it is reasonable that issues related to

Testability, Changeability and Maintainability are considered as more ‘real’ compared to

security/reliability issues which in order to be accurate require further validation by run-time analysis.

Finally, developers do not tend to accept suggestions for revising their own code: it is 3 times more

likely that a developer who has not participated in a project agrees with a suggestion to remove a TD

issue, than a developer who is a contributor. This might be related to the particular practices within the

community of a software project where certain violations are not considered as harmful because the

evolution of the project might have been unaffected by their presence.

On the other hand, developers’ decisions appear to be unaffected by factors such as the frequency of

modifications to the file under study (reflected in the Files Modifications Ranking variable), the time

required to fix an issue and the total TD in the examined file. The last two findings could be related to

a latent belief that automated quality analysis tends to overestimate the magnitude of problems and thus

these factors might be subconsciously overlooked. The frequency by which a file undergoes

modification, under normal circumstances, should be driving factor; for example, for a file that has

never been the subject of maintenance there is probably limited urgency to resolve its TD issues.

However, it appears that developers tend to focus on the problem per se, rather than the surrounding

context. Of course, a relevant threat is related to whether the respondents really understood the concept

of the presented variables. These findings can be valuable to researchers and practitioners by guiding

the design of more efficient tools that suggest refactorings with a higher probability of being adopted

by the developers.

5. Threats to Validity

In this section major threats to the validity of the present study are listed. With regard to statistical

conclusion validity it should be stressed that the small sample size unavoidably affects the conclusions

regarding the extent of the observed relationships between the explanatory and output variables. Further

investigation by collecting a larger set of responses is required to increase the confidence in the

identified relationships. With regard to the construct validity of the study, it should be acknowledged

that despite the effort to facilitate the response of the participants, by offering an easy-to-use web

application, it is not certain that they have correctly interpreted the presented pieces of information

around the examined code fragment and TD issues. Finally, the conclusions should be cautiously

generalized to other projects, languages, development models and proprietary software as this kind of

studies are subject to external validity threats.

6. Conclusions

Existing software quality tools can yield extremely long lists of refactoring suggestions, deterring

developers from adopting them. Thus, there is a need to determine which refactoring opportunities make

sense for the developers depending on their background, nature and importance of the problem,

surrounding code context, etc. This chapter presents the results from an ongoing study on various factors

that potentially drive open-source software developers to accept or reject a suggestion to resolve a TD

item.

References

[1] A. Hunt and D. Thomas, The Pragmatic Programmer: From Journeyman to Master. Addison-

Wesley Professional, 1999.

[2] T. Amanatidis, A. Chatzigeorgiou, A. Ampatzoglou, and I. Stamelos, “Who is Producing More

Technical Debt?: A Personalized Assessment of TD Principal,” Proceedings of the XP2017

Scientific Workshops, USA, 2017, p. 4:1–4:8.

A study on the evolution of software quality and technical debt in open source applications

79

[3] D. Silva, N. Tsantalis, and M. T. Valente, “Why We Refactor? Confessions of GitHub

Contributors,” in Proceedings of the 2016 24th ACM SIGSOFT International Symposium on

Foundations of Software Engineering, New York, NY, USA, 2016, pp. 858–870.

[4] N. A. Ernst, S. Bellomo, I. Ozkaya, R. L. Nord, and I. Gorton, “Measure It? Manage It? Ignore

It? Software Practitioners and Technical Debt,” in Proceedings of the 2015 10th Joint Meeting

on Foundations of Software Engineering, USA, 2015, pp. 50–60.

[5] F. Palomba, G. Bavota, M. D. Penta, R. Oliveto, and A. D. Lucia, “Do They Really Smell Bad?

A Study on Developers’ Perception of Bad Code Smells,” in 2014 IEEE International Conference

on Software Maintenance and Evolution, 2014, pp. 101–110.

[6] A. Potdar and E. Shihab, “An Exploratory Study on Self-Admitted Technical Debt,” in 2014

IEEE International Conference on Software Maintenance and Evolution, 2014, pp. 91–100.

[7] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why don’t software developers use

static analysis tools to find bugs?,” in 35th International Conference on Software Engineering

(ICSE), 2013, pp. 672–681.

[8] R. O. Spínola, A. Vetrò, N. Zazworka, C. Seaman, and F. Shull, “Investigating technical debt

folklore: Shedding some light on technical debt opinion,” in 4th International Workshop on

Managing Technical Debt (MTD), 2013, pp. 1–7.

[9] M. Kim, T. Zimmermann, and N. Nagappan, “A Field Study of Refactoring Challenges and

Benefits,” in Proceedings of the ACM SIGSOFT 20th International Symposium on the

Foundations of Software Engineering, New York, NY, USA, 2012, p. 50:1–50:11.

[10] Y. Wang, “What motivate software engineers to refactor source code? evidences from

professional developers,” IEEE International Conference on Software Maintenance, 2009, pp.

413–416.

[11] M. V. Mäntylä and C. Lassenius, “Drivers for Software Refactoring Decisions,” in Proceedings

of the 2006 ACM/IEEE International Symposium on Empirical Software Engineering, New York,

NY, USA, 2006, pp. 297–306.

[12] K.-Y. Liang and S. L. Zeger, “Longitudinal data analysis using generalized linear models,”

Biometrika, vol. 73, no. 1, pp. 13–22, Apr. 1986.

Chapter VII. Benchmark of Technical Debt Liabilities

80

Chapter VII. BENCHMARK OF TECHNICAL DEBT LIABILITIES

The work of this chapter was submitted for publication (and revised) to the Empirical Software

Engineering Journal (EMSE)

Chapter Summary

Software teams are often asked to deliver new features within strict deadlines leading developers to

deliberately or inadvertently serve “not quite right code” compromising software quality and

maintainability. This non-ideal state of software is efficiently captured by the Technical Debt (TD)

metaphor, which reflects the addition-al effort that has to be spent to maintain software. Although

several tools are available for assessing TD, each tool essentially checks software against a particular

ruleset. The use of different rulesets can often be beneficial as it leads to the identification of a wider

set of problems; however, for the common usage scenario where developers or researchers rely on a

single tool, diverse estimates of TD and the identification of different mitigation actions limits the

credibility and applicability of the findings. The objective of this chapter is two-fold: First, to evaluate

the degree of agreement among leading TD assessment tools. Second, to propose a framework to capture

the diversity of the examined tools with the aim of identifying few “reference assessments” (or class/file

profiles) representing characteristic cases of classes/files with respect to their level of TD. By extracting

sets of classes/files exhibiting similarity to a selected profile (e.g., that of high TD levels in all employed

tools), a basis can be established that can be used either for prioritization of maintenance activities or

for training more sophisticated TD identification techniques. The proposed framework is illustrated

through a case study on fifty (50) open source projects and two programming languages (Java and

JavaScript) employing three leading TD tools.

1. Introduction

Throughout the software lifecycle, practitioners speed up the development process by compromising

software quality and maintainability in favor of shorter time-to-market. This compromise has been

effectively captured by the concept of Technical Debt (TD), as coined by Ward Cunningham [1],

offering an analogy to the financial debt. In financial debt, one party borrows capital from another party

and repays it back with some added interest. In the TD metaphor, the development team ‘borrows’ a

certain amount of effort by delivering non-ideal code and repays it gradually in future iterations in the

form of additional time and effort to perform maintenance on the non-ideal code. The increased

maintenance effort, which is caused by the degradation of software maintainability, is considered as the

“interest” that the development team has to pay in the long term. In contrast to financial debt, TD is

hard or even impossible to measure accurately. The suggested practice, according to the OMG

specification on Automated Technical Debt Measure (ATDM)24, is to consider as principal of TD (at

the source code level) the total effort required to eliminate TD items, which are inefficiencies that have

been identified in a software artifact under an established ruleset. However, even if developers are aware

of parts of the code that “do not feel right” it is challenging to associate an exact numerical estimate

with every rule violation. Software modules evolve over time and subtle or major changes in their TD

might be incurred by the transition from one commit to the next, rendering the accurate monitoring of

TD even more demanding.

24 https://www.omg.org/spec/ATDM/About-ATDM

https://www.omg.org/spec/ATDM/About-ATDM

A study on the evolution of software quality and technical debt in open source applications

81

The limitations on accurately measuring TD lead to various shortcomings in both academia and

industry, in the sense that one cannot control (or manage) what he/she cannot measure [2]. Despite the

fact that several tools are available for measuring and monitoring TD (notable examples include CAST

AIP25, Squore26, and SonarQube27), either commercial or open-source ones, the community has not

concluded on a state-of-the-art solution that could be used as a basis for measuring TD (a full list with

TD measurement tools that were found during current research is presented in Section 2). Some

shortcomings whose roots lie in the lack of a well-established way for assessing (i.e., measuring and

identifying) TD principal, are presented in Figure 1.

Figure 1. Shortcomings from diverse TD measurements

Shortcomings in Research: The lack of a ground truth, even a commercial one, leads to construct

validity threats in almost any kind of quantitative empirical study in the field, in the sense that it is not

certain that any metric that attempts to capture TD principal is accurately measuring the real-world

phenomenon. This problem does not lie only on limitations of the tools per se, but also on the underlying

methodologies. In particular, each tool follows its own approach for detecting and measuring TD based

on its own ruleset, while another tool might be based on an entirely different ruleset yielding a different

amount for the total TD, but also pointing to different parts of the code that need to be mitigated.

Moreover, there are several research efforts trying to associate TD items (i.e., violations of coding

practices in software artifacts, which according to the OMG Specification on ATDM – see footnote in

first page, are considered instances of TD principal) with quality attributes of software. For example,

studies have focused on the relation between TD principal and the presence of crosscutting concerns in

software requirements [3], the existence of modularity violations, code smells and static analysis issues

[4], code size, duplication and complexity [5] and architecture flaws [6]. However, every such approach

is heavily dependent on the employed tool for suggesting the ground truth, that is, the modules that

25 https://www.castsoftware.com/
26 https://www.vector.com/int/en/products/products-a-z/software/squore/squore-software-analytics-for-project-monitoring/
27 https://www.sonarqube.org

TD Researcher

Software QA Expert

Propose Novel
Methods for TD

Assessment

…but there is not ground
truth to compare my approach to

Monitor the
Levels of TD in

my System

Select the
Artifacts with
Highest TD to

Refactor

…but tools do not agree in the amount
of TD that I have in my system. I cannot
get them all

…I cannot use all tool suggestions, I need the
ones with the highest certainty

Empirically
Study TD

…I am uncertain that the tool that I
have used captures the phenomenon

https://www.castsoftware.com/
https://www.vector.com/int/en/products/products-a-z/software/squore/squore-software-analytics-for-project-monitoring/
https://www.sonarqube.org/

Chapter VII. Benchmark of Technical Debt Liabilities

82

actually have TD liabilities and need to be fixed. Obviously, if each tool identifies high-TD modules in

a different way, the generalizability of these approaches is threatened to a large extent.

Shortcomings in Practice. Despite the widespread adoption of the TD metaphor, it is far from clear

which tool IT managers should trust for monitoring TD, or deciding the mitigation actions to be applied.

One option would be to employ more than one TD tools for the evaluation of their software, but this is

a costly one, since most of the existing tools are available only with a commercial license. Moreover,

someone should also consider the effort to deploy the tools on their premises, configure them properly

and eventually familiarize development tools with their usage. In addition to that, even with the use of

multiple tools, the union of all possible fixes suggested by different tools would yield an unrealistic

amount of suggestions which would end up (even if they were accurate enough) to be useless in practice.

Acknowledging the widespread adoption of the TD metaphor and the inherent limitation of existing

tools to capture TD principal in a globally accepted way that best fits developers’ needs [7], this part of

dissertation aims at: (a) systematically investigating the degree of agreement among state-of-the-art

TD measurement tools on identifying and prioritizing TD principal (i.e. the effort to remediate

inefficiencies) at class/file level; and (b) proposing an agreement-based benchmark approach that

contributes to: (i) the exploration of all feasible assessments of TD principal provided by a set of

alternative TD tools, (ii) the identification and characterization of few divergent “reference

assessments” (or archetypes); and (iii) the extraction of a subset of modules for which all employed

tools agree on the presence of a high amount of TD principal, thus serving as an agreement-based

benchmark of the “validated” top-rated classes/files28 in terms of TD principal assessment.

To achieve the former goal, a well-known inter-rater agreement coefficient is employed, namely the

Kendall’s W coefficient of concordance [8]. Regarding the second goal (benchmarking process), the

Archetypal Analysis (AA) [9] is adopted, which is a multivariate statistical methodology that explores

a multidimensional space of measurements with the aim of identifying a set of few reference points,

namely the archetypes, located on the boundaries of the swarm of given points. The derived archetypes

(or reference points) represent divergent profiles in the examined space, whereas the methodology

encompasses a mechanism for the evaluation of resemblance coefficients contributing to the evaluation

of similarity for each point to the derived archetypes.

To this end, three well-known tools that measure TD have been employed to analyze 50 open source

projects (25 Java and 25 JavaScript projects). The results of the proposed methodology are

automatically reported through a web-based interactive toolbox to facilitate researchers and software

practitioners to reproduce and explore the findings of the current work and easily retrieve a suitable

benchmark for further experimentation (e.g., the training of other statistical or machine learning

approaches to identify TD items). The TD Benchmarker toolbox is implemented using the Shiny

framework29 taking advantage of the R statistical language30 in an easy-to-use frontend. The toolbox is

a free and academic on-going research project developed by Statistics and Information Systems Group

(STAINS)31 at Aristotle University of Thessaloniki, Greece and is accessible through the paper’s web

page32, at the website of the Software Engineering Group of University of Macedonia33, Greece.

Apart from the empirical results and the extension of the body of knowledge in the field of TD

management, an actionable outcome of this dissertation is the provision of an agreement-based

benchmark set of the most high-TD classes as indicated by the three tools altogether. The agreement-

28 The term ‘class’ refers to the unit of analysis for Java projects, while the term ‘file’ refers to the unit of analysis for JavaScript
projects. Throughout the paper the term ‘class’ is primarily used for simplicity, but both units of analysis are considered,
accordingly.
29 https://shiny.rstudio.com
30 https://www.r-project.org
31 http://stains.csd.auth.gr
32 https://se.uom.gr/index.php/projects/technical-debt-benchmarking
33 https://se.uom.gr

https://shiny.rstudio.com/
https://www.r-project.org/
http://stains.csd.auth.gr/
https://se.uom.gr/index.php/projects/technical-debt-benchmarking
https://se.uom.gr/

A study on the evolution of software quality and technical debt in open source applications

83

based benchmark is expected to alleviate the aforementioned limitations either directly or indirectly:

regarding researchers the benchmark can be exploited for methodologies aiming at identifying TD items

(targeting either high recall, or high precision), whereas it is also expected to aid practitioners since it

will contribute to the development of novel tools that will be able to predict these items. More details

on the implications of the benchmark for researchers and practitioners are provided in Section 5.

The rest of the chapter is organized as follows: Section 2 presents available TD assessment tools that

have been located throughout the current research, while it is also explained why the three TD tools

were ultimately used. In Section 3, the case study design is presented along with the objectives, the

research questions, the data analysis and the methodology. Section 4 presents and discusses results and

in Section 5 the implications to researchers and practitioners are highlighted. Section 6 unfolds possible

threats to validity while in Section 7 related work of previous studies on comparison of TD tools and

benchmarks in software maintenance is provided. Finally, conclusions are discussed in Section 8.

2. TD Assessment Tools

This section discusses TD assessment tools that either have been proposed in the context of research

efforts (usually open-source or free) or are available as commercial software, by providing a brief

description of their capabilities. Then more details on the three tools that have been selected for this

dissertation are provided, explaining the rationale for their selection.

During the previous years, numerous TD assessment tools have emerged; these tools are able to measure

TD either in terms of cost or effort/time to repay TD. To identify as many tools as possible, a non-

systematic literature search has been conducted, including grey literature (such as websites):

• Literature search: Regarding literature search, it relied on the IEEE Xplore34 and ACM Digital

Library35 search engines. The search string was applied on the title and abstract fields and had

the following form: “technical debt” AND (measurement OR assessment OR estimation) AND

(tool OR platform). The studies that have been returned from the aforementioned search were

gathered and those which neither introduce nor mention any TD tool in their title or abstract

were filtered out.

• Web search: Throughout web search, major search engines such as Google, Bing and Yahoo

were used, using the same query. The results led to either the landing pages of the websites of

the companies that own the tools or articles introducing most well-known tools for assessing

TD.

Right below follows a short description of the TD assessment tools that have been located throughout

the current research. For each tool the study and the year are provided in which it was first introduced

or presented. The actual versions of the employed tools at the time of this dissertation are provided in

the end of this section.

AnaConDebt [10] is a tool that focuses on Architectural Debt. Since a change in the architecture of a

project can be really expensive and time consuming it is important to decide if and when this change

should be implemented. The tool uses a large list of internal and external factors to estimate more

accurately the future principal and interest. It helps managers to decide when it is the right time to

refactor the code of their software.

CAST AIP [11] contains several sub-tools in order to provide the entire quality profile for the project.

Health dashboard, Engineering dashboard, Security dashboard, CAST Appmark which is a

34 https://ieeexplore.ieee.org

35 https://dl.acm.org/

https://ieeexplore.ieee.org/
https://dl.acm.org/

Chapter VII. Benchmark of Technical Debt Liabilities

84

benchmarking base to use as a comparison standard and CAST Enlighten with Imaging system that

offers a visualization of the project. This tool helps companies to perform "Shift Left" techniques to

detect the issues of a project in early stages of its life cycle. This way the cost of fixing the issues is

more tolerable. The tool implements the C-CPP, CISQ, CWE, NIST-SP-800-53R4, OMG-ASCQM,

OWASP, PCI-DSS-V3.2.1 and STIG-V4R8 standards. By performing static analysis, a list of issues is

created. Only a part of the problems will be solved and this part defines the technical debt metric.

CodeScene [12] serves as a mean to preserve the quality of the code of the automated tests. It combines

repository mining with static code analysis and machine learning. Static analysis can detect the

problems in the project, but since the source code is treated as of the same importance, repository mining

is necessary to recognize behavioral data and social factors that can affect future decisions of

refactoring. The results of the metrics may have different meaning depending on the characteristics of

each project. Machine learning is used to identify patterns in order to prioritize these metrics and assign

them the appropriate weight. The final result of the tool is a catalogue with the problematic files ranked

by their total impact.

DebtFlag [13] is a tool for capturing, tracking and resolving technical debt in Java systems. It consists

of two parts; one plug in for Eclipse IDE which is responsible to collect the data from the source code,

and one web application to visualize the results. These two applications connect via a database. The

collected data is structured using the TDMF form, which was extended to cover the tool's needs. The

tool offers the results in such a way that can be used to manage technical debt in two levels; project

level and implementation level with micromanagement.

Debtgrep [14] is an inhouse tool developed by Ericsson 4G 5G Baseband and its purpose is to prevent

technical debt. It uses a file where all rules are declared using regex. The rules can contain forbidden

words to restrict the usage of API and deprecated methods and also guidelines for design and

architectural rules. The rules can be applied only to a specific part of code such as new code. This tool

supports the communication between the developing team members and enhance the consistency and

the uniformity of the project.

DV8 [6] is a commercial extension of Titan [15]. DV8 functions with DRSpaces [16], which are groups

of system’s files that are architecturally related. Within DRSpaces, DV8 computes three modularity

metrics (Decoupling level, Propagation Cost and Independence Level) and detects six architecture anti-

patterns (Clique, Package Cycle, Improper Inheritance, Unstable Interface, Crossing and Modularity

Violation). DRSpaces (i.e. the subsets of architecturally related files) that are involved in a selected set

of issues are called ‘architecture roots’. The tool calculates the added maintenance cost due to each

instance of each anti-pattern, and the added maintenance cost of each architecture root. The source code

analysis is performed by the Understand tool36.

Kiuwan37 is a proprietary code analysis tool that supports numerous programming languages and is

capable of integrating with several IDEs. It can be obtained under a commercial license and it can also

be tested within a free trial period.

NDepend [17] is a static analysis tool for .NET projects available in Visual Studio Market Place. It

offers a variety of code quality metrics and a visualization of the dependencies in the project. The tool

handles the source code as a form of database, and the user can define new evaluation rules using LINQ

to perform queries on it. Other features of the tool include reporting service and the ability of

comparison between the generations of the same project.

SonarQube [18] is a widely known tool used to track the quality and maintainability of source code.

The tool implements the MISRA, CWE, SANS and CERT rule standards to provide measurements

36 https://scitools.com/
37 https://www.kiuwan.com/

https://scitools.com/
https://www.kiuwan.com/

A study on the evolution of software quality and technical debt in open source applications

85

regarding complexity, duplications, code issues, maintainability, quality gates in combination with

technical debt, reliability, security, project size and test coverage. In addition, there are many plugins

to extend the available utilities, such as WebDriver for Selenium test analysis or AEM Rules set for

Adobe. The measurement of technical debt is an important component of SonarQube. The tool

calculates the debt by multiplying the number issues of each type with the average time the specific

issue type needs to be fixed. Then the time is multiplied with the cost for each man-day. The average

time and the cost can be configured by the user. It uses the SQALE method and provides a technical

debt pyramid to help making decisions prioritizing tasks.

Squore [19] consists of three smaller tools. The first one, the analyzer, is used to collect data from

different sources (source code, tests and hardware component information) and build the project's

hierarchy tree. Then a more detailed measurement takes place for each one of the nodes based on the

ISO, HIS, SPICE and MISRA rule standards. Last but not least, the tool also offers a dashboard for the

visualization of the results. The tool can be a part of Jenkins continuous integration and can also

recognize which files are most important to have Unit Tests in order to improve the efficiency.

TD-Tracker [20] is a web application, which provides a structured way to create a catalogue with the

issues in a project. The protocol, which is implemented, consists of three stages. For the first stage there

is a data collector where the problems are identified and a list is populated. The input data can come

from either an external source where, with appropriate mapping, the data can be stored directly to the

database of the application, or the integration with GitHub. After finishing the collection, the second

stage begins where a semi-automated task takes place. A user has to review the previous list with the

issues, and decide which of them are actual problems that need to be solved. Then there is the third

stage with the longest duration of all three. In this stage a user assigns tasks related to technical debt

and also monitors the progress of them.

TEDMA [21] is an open tool, which analyzes different indices related to technical debt during the

evolution of a project. It is open to integrate with third party tools to extend the analysis. It consists of

three layers. The first is called Data Layer and holds the processes used to gather information about the

project, which is examined. Currently, Git repositories are used as data input. The second is the Service

Layer where there are three basic services. (i) Data loader service is responsible for offering the source

code in a processable form to the tool. Then analyzers such as PMD and Findbugs detect code smells

and problems. (ii) Statistics service uses R to perform statistical analysis of the data. The analysis is

performed at file level but it can be extended to other levels of abstraction. (iii) Technical debt

management model service uses models in Java and R to support decision-making. The last layer is the

Presentation Layer which is responsible for documentation and visualization.

VisminerTD [22] is an open source web tool which monitors and manages technical debt comparing

the results between different project's versions. When an issue is detected it can be tracked to determine

whether its TD was paid off or not. It uses the Repository Miner tool to collect data and metrics from

code repositories. VisminerTD uses queries to the database of the Repository Miner to gather the

preferred information and present them to the user via a friendly interface. A set of graphical views are

available to setup the search settings and then manage the technical debt items.

Table 1 lists the tools that have been identified along with information, such as the website with contact

or download information, the corresponding study in which it was first introduced or presented, the type

of license under which the tool is available (commercial/free), the programming languages that the tool

supports for static code analysis and the type(s) of TD that it captures (as identified in previous studies

[23], [24]). TD types refer to specific categories of TD (e.g., architectural, design, code) or sub-

categories based on the cause of TD (e.g., architectural TD can be caused by architecture smells) [24].

Chapter VII. Benchmark of Technical Debt Liabilities

86

Table 1. List of identified TD assessment tools

TD Tool (Website) Study License

Supported Programming

Languages

Captured TD

Type(s)

AnaConDebt

(https://anacondebt.com/node/7)

(Martini and

Bosch, 2016)

[5]

commercial Java Architectural

CAST AIP38

(http://www.castsoftware.com/)

(Curtis et al.,

2012)

[6]

commercial Java, ASP, C/C++,

Android, IOS, .NET, PHP,

Python, ABAP, SQL

(and more, see full list at

website)

Architectural, Code,

Defect

CodeScene

(https://codescene.io/)

(Tornhill, 2018)

[7]

commercial C/C++, C#, Java,

JavaScript, TypeScript,

Python, Go, Visual Basic

.Net, PHP, Ruby

(and more, see full list at

website)

Code, Design

DebtFlag (-) (Holvitie and

Leppänen, 2013)

[8]

- Java Code

Debtgrep (-) (Arvedahl, 2018)

[9]

Inhouse use

only

Language agnostic Architectural, Code,

Design, People

DV8

(https://archdia.com/pages/dv8-

user-guide)

Understand:

third party tool for source code

analysis

(https://scitools.com/)

(Nayebi et al.)

[6]

commercial Java, JavaScript, C/C++,

C#, Python , PHP

and more

(see full list here:

https://scitools.com/feature

/supported-languages/)

Architectural

Kiuwan

(https://www.kiuwan.com/)

- commercial ASP.NET, C, C#, C++,

Java, JavaScript, JSP, PHP,

Python, VB.NET, SQL,

Ruby

(and more, see full list at

website)

Code

NDepend

(https://www.ndepend.com/)

(Chopra and

Sachdeva, 2015)

[10]

commercial .NET Architectural, Code,

Design, Test

SonarQube

(https://www.sonarqube.org/)

(Campbell and

Papapetrou, 2013)

[11]

free C/C++, C#, CSS, Go,

Java, JavaScript, PHP,

Python, Ruby, TypeScript,

VB.NET

(and more, see full list at

website)

Architectural, Code,

Design, Defect, Test

Squore

(https://www.squoring.com/en/p

roduits/squore-software-

analytics/)

(Baldassari, 2013)

[12]

commercial Ada, C, C++, C#, Java,

Cobol, PL, SQL, ABAP,

PHP, Python

Code, Test

38 We will refer to it as “CAST” from this point on

https://anacondebt.com/node/7
http://www.castsoftware.com/
https://codescene.io/
https://archdia.com/pages/dv8-user-guide
https://archdia.com/pages/dv8-user-guide
https://scitools.com/
https://scitools.com/feature/supported-languages/
https://scitools.com/feature/supported-languages/
https://www.kiuwan.com/
https://www.ndepend.com/
https://www.sonarqube.org/
https://www.squoring.com/en/produits/squore-software-analytics/
https://www.squoring.com/en/produits/squore-software-analytics/
https://www.squoring.com/en/produits/squore-software-analytics/
https://www.squoring.com/en/produits/squore-software-analytics/
https://www.squoring.com/en/produits/squore-software-analytics/
https://www.squoring.com/en/produits/squore-software-analytics/
https://www.squoring.com/en/produits/squore-software-analytics/
https://www.squoring.com/en/produits/squore-software-analytics/
https://www.squoring.com/en/produits/squore-software-analytics/
https://www.squoring.com/en/produits/squore-software-analytics/
https://www.squoring.com/en/produits/squore-software-analytics/
https://www.squoring.com/en/produits/squore-software-analytics/
https://www.squoring.com/en/produits/squore-software-analytics/
https://www.squoring.com/en/produits/squore-software-analytics/
https://www.squoring.com/en/produits/squore-software-analytics/
https://www.squoring.com/en/produits/squore-software-analytics/
https://www.squoring.com/en/produits/squore-software-analytics/
https://www.squoring.com/en/produits/squore-software-analytics/
https://www.squoring.com/en/produits/squore-software-analytics/
https://www.squoring.com/en/produits/squore-software-analytics/

A study on the evolution of software quality and technical debt in open source applications

87

TD Tool (Website) Study License

Supported Programming

Languages

Captured TD

Type(s)

TD-Tracker

(http://www2.fct.unesp.br/grupo

s/lapesa/tdr/)

(Foganholi et al.,

2015)

[13]

free

Java, JavaScript, PLSQL,

Apache Velocity, XML,

XSL

Code, Design,

Defect,

Documentation,

Infrastructure, Test

TEDMA (-) (Fernández-

Sánchez et al.,

2017)

[14]

- Java Architectural, Code

VisminerTD

(https://visminer.github.io/)

(Mendes et al.,

2019)

[15]

free Java Architectural, Build,

Code, Design,

Defect,

Documentation,

Requirement,

People, Test

Employed TD Assessment tools. Despite the goal to include in the study as many tools as possible, it

has not been possible to employ all of the above tools for the measurement of TD for the target systems.

Each tool had to fulfill the following conditions in order to be included in the study. Table 2 presents

which tools have been included in the study and which have been excluded (failing to satisfy all of the

following conditions).

• Condition 1: The tool had to be accessible somehow (download link, ftp server, etc.) with

comprehensive and sufficient documentation.

• Condition 2: The tool had to be able to analyze Java and JavaScript code (as the target systems of

the study are open source Java and JavaScript projects).

• Condition 3: It was necessary to be able to obtain academic or research license for commercial or

proprietary tools. For non-proprietary tools the condition was considered fulfilled.

• Condition 4: The tool had to provide an aggregate TD Principal index at class/file level, expressing

effort in time or monetary terms, to remediate the identified inefficiencies (OMG Specification on

ATDM39). Estimation of TD only at project level cannot be exploited to extract a benchmark set of

most high-TD classes (for Java projects) and files (for JavaScript projects). This criterion is

important for guaranteeing the uniformity of tools’ output, so that the results are comparable

39 https://www.omg.org/spec/ATDM/About-ATDM

http://www2.fct.unesp.br/grupos/lapesa/tdr/
http://www2.fct.unesp.br/grupos/lapesa/tdr/
http://www2.fct.unesp.br/grupos/lapesa/tdr/
http://www2.fct.unesp.br/grupos/lapesa/tdr/
http://www2.fct.unesp.br/grupos/lapesa/tdr/
http://www2.fct.unesp.br/grupos/lapesa/tdr/
http://www2.fct.unesp.br/grupos/lapesa/tdr/
http://www2.fct.unesp.br/grupos/lapesa/tdr/
http://www2.fct.unesp.br/grupos/lapesa/tdr/
http://www2.fct.unesp.br/grupos/lapesa/tdr/
http://www2.fct.unesp.br/grupos/lapesa/tdr/
http://www2.fct.unesp.br/grupos/lapesa/tdr/
http://www2.fct.unesp.br/grupos/lapesa/tdr/
http://www2.fct.unesp.br/grupos/lapesa/tdr/
http://www2.fct.unesp.br/grupos/lapesa/tdr/
http://www2.fct.unesp.br/grupos/lapesa/tdr/
http://www2.fct.unesp.br/grupos/lapesa/tdr/
https://visminer.github.io/
https://www.omg.org/spec/ATDM/About-ATDM

Chapter VII. Benchmark of Technical Debt Liabilities

88

Table 2. List of TD tools with the conditions that they satisfied for their inclusion

TD Tool Condition 1 Condition 2 Condition3 Condition 4 Tool used?

AnaConDebt ✓ X X no

CAST ✓ ✓ ✓ ✓ yes

CodeScene ✓ ✓ ✓ X no

DebtFlag X X ✓ no

Debtgrep X ✓ X no

DV8 ✓ ✓ ✓ X no

Kiuwan ✓ ✓ X no

NDepend ✓ X ✓ no

SonarQube ✓ ✓ ✓ ✓ yes

Squore ✓ ✓ ✓ ✓ yes

TD-Tracker ✓ ✓ ✓ could not deploy no40

TEDMA X X ✓ no

VisminerTD ✓ X ✓ no

*In case a tool did not fulfill Conditions 1 - 3 or could not be successfully installed and deployed, Condition 4 could not be

checked and thus the field was left blank.

Ultimately, three tools were included in the study, namely CAST (version 8.3, year 2018), Squore

(version 19.0, year 2019), and SonarQube (version 7.9, year 2019). All three tools are major TD tools,

widely adopted by software industries and researchers and actively maintained, including

comprehensive documentation.

3. Case Study Design

3.1. Goal and Research Questions

The goal of this chapter described according to the Goal-Question-Metric (GQM) approach [25], is as

follows: “analyze the TD of software projects for the purpose of assessing the level of agreement of

state-of-the-practice TD assessors (tools) and forming agreement-based TD benchmarks of high-TD (or

low-TD) classes with respect to the estimated level of principal, from the point of view of software

researchers and practitioners in the context of Technical Debt Management (TDM)”. For the sake of

generalization, the assessment of the level of agreement among tools was performed for two

programming languages, namely Java and JavaScript. The analysis of the two populations enables a

meta-analysis in which it can explored if the use of a different language has an effect on the level of

agreement. The exploration of the programming language as a factor affecting the level of agreement

between tools is performed for each one of the following research questions:

RQ1: To what extent do the assessors (tools) agree in the ranking of classes in terms of TD

measurement?

RQ1 aims at investigating the degree to which widely employed TD tools agree upon the

identification and assessment of TD at class level. The investigation of this RQ provides an insight

to the diversity of the rules examined by each tool, in the sense that a low level of agreement

essentially means that tools check for different rule violations. With a non-satisfying degree of

agreement, it would be pointless to proceed with the benchmarking process and seek classes, which

are identified as equally high-TD (or low-TD) by all assessors. Thus, RQ1 serves as a gate for the

rest of the study.

40 TD-Tracker was not included because it was not possible to install and deploy it successfully.

A study on the evolution of software quality and technical debt in open source applications

89

RQ2: How many archetypes (reference assessments) are required to capture the diversity of the tools?

The TD of classes in any examined system, as measured by the employed tools, form a set of

observations in a multidimensional space, in which each dimension represents TD evaluations

provided by a specific tool. RQ2 aims at exploring this multidimensional space and determine the

optimal number of archetypes, located on the boundaries of this space, so as to efficiently capture

the diversity of all feasible assessments provided by the set of the examined TD tools. For example,

this RQ can answer, whether few reference assessments are able to approximate the convex hull of

the TD evaluations, which practically means low diversity among TD assessors or whether a higher

number of archetypes would be required to accurately characterize the spectrum of TD

measurements for a given system.

RQ3: Which are the characteristics of the extracted archetypes?

RQ3 aims at characterizing the extremal points that accurately encompass the space of TD

measurements for all examined classes. The identified reference assessments essentially form a set

of distinct archetypes, i.e., class profiles according to the measured level of TD. Two expected

archetypes correspond to the profiles of classes having high or low TD based on the results of all

employed tools. However, other archetypes may be identified based on the shape of the space of

the obtained TD measurements.

RQ4: Which classes should be selected to form an agreement-based benchmark of top-TD modules?

To facilitate the work of developers or researchers who seek a golden set of classes that can be

safely assumed to be high-TD or low-TD, this RQ aims at formally extracting sets of classes which

are close to a selected class profile or archetype. Retrieving for example the classes, which are in

the close vicinity of the archetype depicting high TD in all employed tools, a development team can

be confident that these classes suffer significantly from rule violations. Similarly, a researcher can

use such a benchmark for training effective machine learning techniques to identify TD based on

different parameters of the code, people or processes involved in the development.

3.2. Selection of Cases

For this case study fifty (50) open source projects were analyzed (listed in Table 3). The selected

projects, which are 25 Java and 25 JavaScript projects, have been analyzed considering their classes

(for Java) and their files (for JavaScript) as units of analysis. The choice of classes/files as units of

analysis allows us to trace the existence of TD at a low level of granularity, providing a common ground

for comparison among the three tools. The criteria for selecting the 50 projects were the following:

• All cases had to be Java and JavaScript projects stored on public repositories.

• All selected cases had to be among the most popular repositories, with more than 3K stars in

GitHub.

• In order to obtain a representative dataset, the selected projects had to vary in terms of size, per

language.

• All cases had to be actively maintained till the time of this dissertation. This was not a strict

criterion since projects with a release around the last year before the project selection process

were not excluded from the study.

3.3. Data Collection

The source code (excluding test files) of each project was analyzed three times: one time for each of

the employed TD tools. All three tools provide a metric of the total effort needed to eliminate technical

debt in each class/file. This is the metric that was chosen for analysis since it provides a common ground

for comparison. An issue that had to be addressed was that each tool has a different way to provide the

results of its analysis. It was necessary to convert the result sets from each tool to the same form so as

to proceed with further data processing.

Chapter VII. Benchmark of Technical Debt Liabilities

90

• SonarQube has a WEB API available, so with the use of appropriate tools the results have been

gathered in json format. The API allows the filtering of the results in order to exclude test and

properties files. SonarQube provides the results grouped by file. Besides file name, the number

of the issues for each severity level, blocker, critical, major, minor and info, was summed up to

the total amount of issues of each class. All of them contribute to the SQALE index of the file,

which is the metric depicting the effort to eliminate TD.

• Squore provided the results in .csv files, which could be exported through platform’s user

interface. In this case a parser was necessary to read the .csv files. Using the previous

SonarQube exports as reference, the files were filtered to exclude test and property files as

before. Blocker, critical, major and minor issues were summed up to get the total issues for

each class. Technical debt metric is provided in man days and man hours and it had to be

converted in minutes to form a canonical technical debt index with the same units as for the

previous tool.

• CAST provides metrics for the total project and not per file through its user interface. In this

case, the results were retrieved directly from the database schema that the software uses during

the code quality analysis. With appropriate SQL query, which was provided by the CAST team,

csv files were extracted containing a list of total occurrences of each issue per class. With a

new parser these issues were grouped, aggregating the TD in minutes and the total violations

per class. Then again, the files of the classes were filtered with those of SonarQube as reference

(test and property files were filtered out).

To obtain a common and structured form of the results, the exports from the tools were transformed

into XML files. As a result, an XML file per project for every tool was generated. The XML contains

all the classes/files with some TD in the system, along with the total issues detected in the class and the

amount of TD as calculated by the corresponding tool. With the results in the same form it was possible

to merge them into a single dataset. This dataset was finally grouped by class for Java and by file for

JavaScript projects, containing the path of the file and the TD of the class/file as calculated by each

tool. The dataset for the 25 Java and the 25 JavaScript projects can be found in the paper’s web page41.

41 https://se.uom.gr/index.php/projects/technical-debt-benchmarking

https://se.uom.gr/index.php/projects/technical-debt-benchmarking

A study on the evolution of software quality and technical debt in open source applications

91

Table 3. Characteristics of analyzed projects

Java JavaScript

Project Description LOC Version Project Description LOC Version

arduino Physical computing platform 27K 1.8.10 ace Code editor 117K 1.4.8

arthas Java Diagnostic tool to troubleshood production issues 28K 3.1.7 angular.js Web development framework 53K 1.7.9

azkaban Workflow manager 79K 3.81.0 atom Text editor 138K 1.44.0

cayenne Java object to relational mapping framework 348K 3.1.2 bluebird Promise library 20K 3.7.2

deltaspike CDI management 146K 1.8.2 bower Front end package management 10K 1.8.8

exoplayer Android media player 155K 2.11.1 brackets Code editor 129K 1.14.1

fop Print formatter using XSL objects 292K 2.3 Chart.js Chart designer 10K 2.9.3

gson Java library to convert Java Objects to JSON 25K 2.8.6 exceljs Excel Workbook Manager 23K 3.8.0

javacv Wrappers of commonly used libraries 23K 1.5.2 fabric.js Framework for HTML5 canvas element 20K 4.0.0

jclouds Toolkit for java cloud applications 482K 2.0.2 jquery Javascript library 20K 3.4.1

joda-time Date and time handling 86K 2.10.5 karma Tool for test driven development 5K 4.4.1

libgdx Game development framework 280K 1.9.10 Leaflet Mobile friendly interactive maps 24K 1.6.0

maven Software project management and comprehension tool 106K 3.5.4 less.js Language extension for CSS 12K 3.11.1

mina Network application framework 35K 2.0.19 moment Parsing validating manipulating and

formatting dates

183K 2.24.0

nacos Cloud application and microservices build and

management

60K 1.1.4 mongoose Tool for MongoDB object modeling 22K 5.8.12

opennlp Natural Language Processing toolkit 93K 1.8.4 mysql MySQL protocol implementation 8K 2.18.1

openrefine Data management 69K 3.2 node Node.js JavaScript runtime 130K 13.9.0

pdfbox Library of processing pdf documents 213K 2.0.9 pdf.js PDF viewer 69K 2.2.228

redisson Java Redis client and Netty framework 133K 3.12.0 plotly.js Chart design library 92K 1.52.2

RxJava Composing asynchronous and event-based programs

with observable sequences

310K 3.0.0 pm2 Production process manager 15K 4.2.3

testng Testing framework 85K 7.1.1 prettier Code formatter 25K 1.19.1

vassonic Performance framework for mobile websites 7K 3.1.1 sails Realtime MVC Framework for Node.js 10K 1.2.2

wss4j Java implementation for security standards in web

applications

136K 2.2.2 sequelize Node.js ORM 17K 5.21.4

xxl-job Distributed task scheduling framework 9K 2.1.2 webpack Bundler for js files for usage in a browser 36K 4.41.6

zaproxy Security tool 187K 2.9.0 yarn Dependency management 24K 1.22.0

Chapter VII. Benchmark of Technical Debt Liabilities

92

3.4. Data Analysis Methodology

This section presents background information necessary for facilitating the understanding of the statistical

methodologies used to address the research questions of the current part of dissertation.

3.4.1. Inter-rater Agreement (RQ1)

For the formal representation of the experimental setup, consider that the collection of TD assessments

generated by all three tools, as described in Section 3.3, resulted in a 𝑛 × 𝑝 matrix (Table 4), in which, each

row represents a class, whereas each of the 𝑝 column vectors provides the rankings of TD measurements

evaluated by a specific tool for a given class. At this point, it should be clarified that in the proposed

approach the rankings instead of the raw TD measurements have been utilized, since the intention was to

keep the dataset immune to variations of TD measurements due to different scales among the three tools.

Indeed, a tool might follow a stricter ruleset for the measurement of TD which might result in much higher

TD of classes compared to the assessments of the rest of the tools. However, the ranking of the

measurements among all tools remain unaffected by absolute values and thus is a more suitable approach

for comparison. As far as the ranking mechanism concerns, the fractional ranking approach was adopted,

in which the sample ranks of the values in a vector are computed, whereas in cases of ties the average of

the ordinal rank (or fractional rank) is assigned to each tied observation.

Table 4. Representation of the dataset from the TD assessment results from each employed tool42

Class Tool 1 Tool 2 … Tool p

𝐶1 𝑟11 𝑟12 … 𝑟1𝑝

𝐶2 𝑟21 𝑟22 … 𝑟2𝑝

… … … … …

𝐶𝑛 𝑟𝑛1 𝑟𝑛2 … 𝑟𝑛𝑝

For reasons of simplicity, the methodology of the proposed framework is presented on a demonstrative

example (opennlp project) utilizing the TD assessments from two tools (CAST and Squore). In this case,

the TD assessments can be visualized through a scatter plot (Figure 2), in which each point represents a

specific class with coordinates the TD rankings evaluated by the CAST (𝑥-axis) and Squore (𝑦-axis) tools.

The exploration of the pattern for the swarm of points provides certain information regarding the agreement

of the employed tools. More precisely, it seems that there is a subset of classes lying to the upper right

corner that are identified as the most high-TD (high rankings for TD measurements) by both tools. On the

other hand, the inspection of the graph indicates also that Squore identifies a subset of classes that

accumulate the lowest TD assessments but at the same time, these specific classes present an amount of TD

ranging from the lowest up to the highest ranks according to the CAST tool. Finally, there is also a small

number of classes assessed as high-TD by the Squore tool, but at the same time, the CAST tool tags them

as classes accumulating a relatively small amount of TD. Hence, a critical question that deserves further

investigation is the extent to which these tools agree upon the assessments of TD for a given set of classes.

42 Although 3 tools have been used, the theoretical presentation of our approach is generalized for p tools

A study on the evolution of software quality and technical debt in open source applications

93

Figure 2. Scatter plot for rankings of TD measurements of opennlp project as evaluated by TD tools (CAST,

Squore)

To this regard, a statistical measure, namely the Kendall’s W coefficient of concordance [8] is employed,

which belongs to the broader branch of methodologies known as inter-rater agreement analysis. In general,

there is a plethora of measures for evaluating the agreement among assessors and the choice should be

based on (i) the total number of assessors that assign to each subject a unique measurement (or rating), (ii)

the scale of measurement (nominal with two or more categories, ordinal, continuous scale) that is assigned

to each subject and (iii) the objectives of the analysis [26]. More specifically, the Scott’s 𝜋 [27] and Cohen’s

𝜅 [28] are well-known measures for inter-rater agreement on a nominal dichotomous (No/Yes,

Negative/Positive) scale that can be used in cases, where there are exactly two assessors. For the case of

multiple assessors (more than 2) on nominal (either dichotomous or with multiple categories) or ordinal

scales, the Fleiss’s 𝜅 [29], which is a generalization of Scott’s 𝜋 coefficient and the weighted Cohen’s 𝜅

[30] are possible choices that take into account not only the agreement but also the disagreement among

them. All the aforementioned coefficients share the same rationale that is to evaluate and statistically test

whether the average agreement between two (or more assessors) is significantly different than chance. An

additional problem to the ordinal ratings, besides the fact that agreement and disagreement are no longer

distinct notions [26], is the fact that there is another kind of agreement that may be of interest. This can be

defined “as the agreement among raters with respect to the ranking of subjects” [26], which, in our case, is

related to the process of evaluating whether all assessors, agree on which classes are the highly-ranked, the

second highly-ranked and so on. In this case, the selection of the most appropriate agreement coefficients

should belong to the branch of measures of concordance [26], since in general the variation of kappa

statistics evaluate the absolute agreement between ratings, while concordance coefficients measure the

association between ratings. Finally, a well-known limitation of kappa statistics is their dependence on the

number of categories of the response measurement, since they tend to be generally higher, when there are

fewer categories [31].

Chapter VII. Benchmark of Technical Debt Liabilities

94

Summarizing, the choice of Kendall’s W concordance coefficient instead of other kappa measures of

agreement was based on the facts that (i) it serves in a straightforward manner the investigation of RQ1,

which is related to the evaluation of the degree of agreement among TD measurement tools and (ii) it

handles in an appropriate way the characteristics of the experimental design, which involves three TD

assessment tools (CAST, Squore, SonarQube) and the derived rankings ranging from 1 up to 𝑛 (the total

number of the examined classes). Due to the existence of a high number of tied ranks in each tool (Figure

2), a modification of the original statistic that provides a correction for ties is employed. The Kendall’s W

statistic [32] is defined as

𝑊 =
12 ∑ 𝑟𝑖

2𝑛
𝑖=1 3𝑝2𝑛(𝑛+1)2

𝑝2𝑛(𝑛2−1)−𝑝𝑇
 (1)

where, 𝑛 is the total number of the examined classes, ∑ 𝑟𝑖
2𝑛

𝑖=1 is the sum of the squared sums of ranks for

each of the 𝑛 classes and 𝑝 is the total number of the examined tools (three in our case). The term 𝑇 is a

correction factor for tied ranks that is evaluated via the following formula

𝑇 = ∑ (𝑡𝑘
3 − 𝑡𝑘)𝑔

𝑘=1 (2)

in which, 𝑡𝑘 is the number of tied ranks in each of 𝑔 groups of ties, whereas the sum is evaluated over all

groups of ties found in all 𝑝 tools of Table 4. Kendall’s W can take a range of values from 0 (indicating no

agreement) to 1 (indicating a perfect agreement among assessors). In addition, Schmidt [33] provides

specific guidance through rules of thumb on how researchers should interpret experimental results based

on the evaluation of the Kendall’s W statistic. More specifically, a coefficient of 0.7 or higher can be

interpreted as a strong agreement among the set of assessors. For example, the evaluation of the Kendall’s

W concordance coefficient for the set of classes of our demonstrative example indicates a statistically

significant strong agreement between the CAST and Squore tools regarding their TD assessments, 𝑊 =

0.874, 𝑝 < 0.001.

3.4.2. Benchmarking through Archetypal Analysis (RQ2 – RQ4)

From what was already mentioned, there are several available tools for assessing TD, whereas each tool is

based on a different ruleset that may result to divergent TD assessments for a given project. Although, this

fact could lead to the identification of alternative mitigation actions, the empirical evidence reveals that

software practitioners and development teams usually base the measurement process of TD on a single tool.

Having in mind that there is no ground truth for assessing TD, there is an imperative need for the empirical

examination of the diversity produced by the utilization of a set of alternative TD tools. Indeed, the findings

from the indicative example discussed in the previous section revealed that despite the fact that there is a

strong agreement between the assessments provided by the two examined tools, the tools also disagree upon

the measurement of TD of some classes.

Towards this direction, an agreement-based benchmark approach is proposed, contributing to the empirical

characterization of the assessments provided by a set of 𝑝 alternative tools with respect to the derived TD

evaluations for a given set of 𝑛 examined classes. The benchmark framework is based on a statistical

approach, namely Archetypal Analysis (AA) [9]. Describing the general principles of the methodology, AA

is a data-driven multivariate method that explores a multidimensional space of points (or observations) with

the aim of identifying certain observations, namely the archetypes, located on the boundaries of a swarm

of given points (or convex hull). An interesting property of the methodology is the fact that the swarm of

points can be represented as convex combinations of the archetypes. The latter provides a straightforward

A study on the evolution of software quality and technical debt in open source applications

95

mechanism supporting the identification of a subset of points that are closer to a specific archetype, which

in turn, can be used for benchmarking purposes.

In our context, the input for AA is the 𝑛 × 𝑝 matrix (Table 4) representing the rankings of TD assessments

derived from the analysis conducted through the utilization of a set of 𝑝 tools for a given project with 𝑛

classes. The algorithm of AA seeks for a matrix 𝑍 of 𝑘 × 𝑝, where 𝑘 and 𝑝 are the number of archetypes

and dimensions, respectively through the computation of two coefficient matrices 𝑎 and 𝑏 minimizing the

residual sum of squares (RSS) defined as

RSS = ‖𝑋 − aZ𝑇‖
2
with 𝑍 = 𝑋𝑇𝑏 (3)

where ‖ ‖2 denotes the Euclidean matrix norm, subject to the following constraints:

∑ 𝑎ij
𝑘
𝑗=1 = 1 with 𝑎ij ≥ 0 and 𝑖 = 1,..., 𝑛 (4)

∑ 𝑏ji
𝑛
𝑖=1 = 1 with 𝑏ji ≥ 0 and 𝑗 = 1,..., 𝑘 (5)

These constraints frame the two general properties of AA which are: (i) the approximated data (swarm of

points) are convex combinations of the archetypes, i.e. 𝑋 = aZ𝑇 , and (ii) the archetypes are convex

combinations of the data points, i.e. 𝑍 = 𝑋𝑇𝑏. The term “convex combination” refers to the linear

combination of points, when all coefficients are non-negative and their sum is equal to 1. Computationally,

the algorithm reduces the RSS in Eq. (3) by iteratively calculating the archetypes along with the coefficient

matrices 𝑎 and 𝑏. Summarizing, the archetypal solution provides an approximation of the convex hull

defined by the swarm of points in the multidimensional space through the evaluation of a few, not

necessarily observed points, lying on the boundaries of the observed points.

Due to the intuitive rational and interesting properties of AA, the method has been widely used for

benchmarking purposes in many scientific domains [34], e.g. such as marketing [35], astrophysics [36],

sports analytics [37], biology [38], medicine [39], scientometrics and bibliometrics [40], multi-document

summarization [41], neuroscience [42] etc. In Software Engineering, AA has been introduced in [43], [44],

in which the objectives were the evaluation of the predictive capabilities of a set of Software Effort

Estimation (SEE) models and the building of ensembles using a subset of inferior models, whereas in [45],

the authors explored psychometric data in order to extract different software engineers profiles based on

measurements from their personality and behavioral characteristics.

Following a similar approach to [46], in this dissertation, AA constitutes the core methodology of a three-

step process that facilitates the examination of the diversity of TD assessments provided by a set of

alternative tools with the aim of identifying a set of classes exhibiting similarity to a selected archetype that

can be used, in turn, for benchmarking purposes. Such classes can, for example, be classes with increased

levels of TD as measured by all three tools, or TD-clean classes, which present limited inefficiencies. The

three basic steps of the proposed approach summarized into the following points constitute the basis of the

methodology for providing answers to RQ2 - RQ4:

1. Identification of archetypes representing the reference assessments through the exploration of the

diversity of TD assessments derived from the set of employed tools (RQ2).

2. Reification of archetypal solution into the context of TDM through the identification of their

characteristics (RQ3).

3. Identification and retrieval of a set of classes that are close to archetypes depicting either high TD

or low TD assessments as suggested by all employed tools (RQ4).

Chapter VII. Benchmark of Technical Debt Liabilities

96

The implications of the three previous steps are clearly demonstrated through the application of the

approach on the indicative example described in previous section. In Figure 3, the boundary of the grey

area defines the convex hull of all TD assessments derived from the CAST and Squore tools through the

examination of classes from opennlp project. Based on the principles of AA, the archetypes representing

the reference assessments will lie on this boundary, whereas the shape of the convex hull provides

straightforward answers regarding the diversity of the examined set of TD tools.

A critical decision that someone has to take is the selection of an appropriate number of the 𝑘 archetypes

that approximates the convex hull in an efficient way. Certainly, the number of archetypes plays a

significant role to the efficient representation of the swarm of the observed points, since the diversity of the

convex hull may be better captured, as the number of archetypes increases. In contrast, one has to take into

consideration that an unnecessary large number of archetypes might not contribute further to the

approximation of the convex hull, whereas it would also affect the benchmarking process, since the

objective is the extraction of few reference assessments representing useful profiles of practical importance

to both researchers and practitioners in TDM.

To this regard, the graphical inspection of the swarm of TD assessments (Figure 3) suggests that the efficient

number of archetypes capturing the diversity of the two examined TD tools is 𝑘 = 4 archetypes. In the

trivial case of 𝑘 = 1, the archetypal solution is the centroid of the two-dimensional space representing the

TD assessments matrix (Table 4), whereas its coordinates are easily calculated by the univariate sample

mean values of TD rankings from each tool (sample means of CAST and Squore TD columns in Table 5).

Figure 3. Archetypal solutions (CAST, Squore) for opennnlp project

Although the graphical inspection constitutes a straightforward manner for the identification of the

appropriate number of archetypes in the special case of the two-dimensional space, i.e. the examination of

assessment provided by two TD tools, this is not the case, when the number of the examined TD tools is

higher than two (p>2). In order to provide certain guidelines about the decision upon the appropriate number

of archetypes, Cutler and Breiman [9] suggest the utilization of the graphical inspection of the RSS

reduction plot (or elbow plot). The RSS plot (Figure 4) constructed after consecutive executions of AA for

A study on the evolution of software quality and technical debt in open source applications

97

different values of 𝑘, (𝑘 = 1,2,3,4,5) confirms our intuitive beliefs derived from the graphical inspection

of the two-dimensional example. More specifically, considering that the line displaying the RSS reduction

looks like an arm, then an elbow appears at 𝑘 = 4, pointing out the optimal number of archetypes. The idea

is that after this specific point (𝑘 > 4), the line flattens and hence, the extracted solution (𝑘 = 5) does not

contribute to any further reduction of RSS. Summarizing, the practical implication of the first step (Step 1)

of the proposed approach on the indicative example, is that four reference assessments (archetypes) can

capture the diversity of TD rankings derived from the static code analysis (by two tools) for the set of the

examined classes of opennlp project.

Figure 4. RSS plot (CAST, Squore) for opennnlp project)

In the second step (Step 2), the objective was to understand the characteristics of the derived archetypes

with the aim of extracting information regarding their meaning from a practical point of view in TDM. The

relative position of the four archetypal solutions (Figure 3) and the graphical examination of the profiles

plot (Figure 5) provide a clear overview of what each archetype really represents. More specifically, the

profiles plot shows the evaluated TD rankings (CAST and Squore coordinates, Figure 3) for each archetype

of the final solution. In addition, it can also be observes that the examination of the characteristics provides

also a semantic categorization of the derived archetypes into two distinct groups, which are (i) the Ruler

and (ii) the Rebel archetypes43 [47]. The former group (The Ruler) reifies a reference assessment profile, in

which the two tools agree upon either on low (The Min-Ruler archetype 𝑎1) or high (The Max-Ruler

archetype 𝑎4) TD rankings assessments. The latter group (The Rebels) reifies a reference assessment

profile, in which the two tools do not agree on their TD rankings assessments signifying a completely

divergent behavior of the two assessors. Overall, the four archetypes represent the following distinct

reference assessment profiles with the following characteristics:

• The Max-Ruler (archetype 𝑎4 in Figure 3d) represents the reference assessment corresponding to the profile

of classes accumulating high amount of TD based on the results of both tools (CAST and Squore).

43 The idea of archetypes was developed by psychologist C. Jung in his studies about drivers of human behavior. Pearson suggested

the use of 12 archetypes among which the ‘Ruler’ denotes personalities whose goal is to create a prosperous, successful family
or community, while for a ‘Rebel’ (also known as Outlaw) the motto is that rules are made to be broken. In our context, the
‘Ruler’ profile denotes a community of classes sharing the same assessment by all employed tools, while the ‘Rebel’ points to

tools that in some sense break the rules and identify TD items in a different way than the rest.

Chapter VII. Benchmark of Technical Debt Liabilities

98

• The Min-Ruler (archetype 𝑎1 in Figure 3d) represents the reference assessment corresponding to the profile

of classes accumulating low amount of TD based on the results of both tools (CAST and Squore).

• The Rebel 1 (archetype 𝑎2 in Figure 3d) represents the reference assessment corresponding to the profile of

classes accumulating low amount of TD based on the results of the analysis from the CAST tool, but on the

same time, high amount of TD based on the results of Squore tool.

• The Rebel 2 (archetype 𝑎3 in Figure 3d) represents the reference assessment corresponding to the profile of

classes accumulating high amount of TD based on the results of the analysis from the CAST tool, but on the

same time, low amount of TD based on the results of Squore tool.

Figure 5. Reference assessment profiles (archetypes) (opennnlp project)

After the reification of the archetypes, the final step (Step 3) of the proposed approach involves the

identification and retrieval of a set of classes that are close to a specific archetype gathering certain

characteristics that can be used for TDM purposes. Α critical challenge in the TD community raises from

the fact that although there are several available tools for measuring and monitoring TD, the community

has not concluded on a state-of-the-art solution that could be used as a ground truth for measuring TD.

Developers and researchers acknowledge that TD estimates provided by any single tool are inherently

subjective, reflecting a particular strategy for the identification of TD items. The existence of a basis of

classes that are assessed as high TD modules by various tools would point to classes that can objectively

be classified as validated high-TD modules and would boost relevant research. Currently, the lack of a

commonly agreed way of quantifying TD impedes the development of approaches that could built on top

of TD measurements, as in the case of machine learning approaches seeking to identify code or design

problems employing alternative parameters as inputs. The ability to derive a benchmark of classes being

close to the Max-Ruler archetype can be directly leveraged for training supervised learning-based

algorithms. Similarly, the classes which have been validated as high-TD by all tools can be analyzed by

development teams to seek non ideal coding practices and patterns so as to avoid them in future releases.

On the other hand, benchmarks of classes formed by those that are close to Rebel archetypes essentially

designate design or code inefficiencies which are captured by only one of the available tools, possibly

A study on the evolution of software quality and technical debt in open source applications

99

pointing to unique features identified by a particular ruleset. As a result, the union of classes belong to these

sets would ensure the widest possible coverage of TD liabilities.

The evaluation of the adjacency of a certain TD assessment (representing a given class) to each archetype

can be practically accomplished through the matrix of the 𝑎-coefficients (Eq. 4). More importantly, due to

the first property of AA, i.e. the approximated points are convex combinations of the archetypes that are

summed to unity, the computed 𝑎-coefficients for each TD assessment provide an easily interpretable

mechanism for quantifying its resemblance to all archetypes. Table 5 displays the classes and their TD

assessments that are close to the Max-Ruler archetype according to the threshold value of 𝑎 = 0.80 for

characterizing the neighboring classes. By setting the threshold value of 𝑎 = 0.80, a set of 84 out of 701

total classes (almost 12% of the examined classes) can be considered as adjacent to the Max-Ruler

archetype. This practically means that a practitioner has access to a set of classes that have been validated

as high-TD classes by all tools. Due to space limitations, only the first and last five classes from the 84 are

presented, which are close to the Max-Ruler archetype. Interpreting the vector of α-coefficients for a

randomly selected class, e.g. 𝐶42 with (αMin-Ruler, αRebel 1, αRebel 2, αΜax-Ruler) = (0.091, 0.000, 0.001, 0.908)

(last four columns of Table 5), it can inferred that 𝐶42 is 9.1%, 0.0%, 1.0% and 90.8% similar to the Min-

Ruler, Rebel 1, Rebel 2 and Max-Ruler archetypes, respectively, and for this reason it is considered as a

neighboring class to the Max-Ruler archetype.

Finally, Figure 6 visualizes the neighbourhood of the Max-Ruler archetype (corresponding to the TD

measurements of the abovementioned 84 classes) with a black-scaled colour indicating the degree of

resemblance for each TD assessment to this specific reference assessment profile. Moreover, points denoted

by empty red circles represent classes that are not similar to the Max-Ruler archetype (𝑎 < 0.80) in terms

of their TD assessments.

Figure 6. Scatter plot for neighboring classes to the Max-Ruler archetype (CAST, Squore) (opennnlp project)

Chapter VII. Benchmark of Technical Debt Liabilities

100

Table 5. Indicative set of classes that are close to the Max-Ruler archetype (CAST, Squore) (opennnlp project)

Class Ranking 𝑎-coefficient

ID Name Squore CAST The Min-Ruler The Rebel 1 The Rebel 2 The Max-Ruler

𝐶1 /main/java/opennlp/tools/stemmer/snowball/turkishStemmer.java 701 699 0.000 0.000 0.000 1.000

𝐶2 /main/java/opennlp/tools/stemmer/snowball/englishStemmer.java 699 696 0.001 0.004 0.000 0.995

𝐶3 /main/java/opennlp/tools/stemmer/snowball/frenchStemmer.java 700 694 0.000 0.008 0.000 0.992

𝐶4 /main/java/opennlp/tools/stemmer/snowball/portugueseStemmer.java 695 692 0.008 0.002 0.000 0.989

𝐶5 /main/java/opennlp/tools/stemmer/snowball/hungarianStemmer.java 693 697 0.003 0.000 0.010 0.988

 … … … … … … … …

𝐶42 /main/java/opennlp/tools/formats/Conll03NameSampleStream.java 648 636 0.091 0.000 0.001 0.908

… … … … … … … …

𝐶80 /main/java/opennlp/tools/formats/ontonotes/OntoNotesNameSampleStream.java 650 581 0.072 0.117 0.000 0.812

𝐶81 /main/java/opennlp/tools/ml/BeamSearch.java 616 573.5 0.142 0.047 0.000 0.811

𝐶82 /main/java/opennlp/tools/util/ObjectStreamUtils.java 591 573.5 0.182 0.000 0.012 0.807

𝐶83 /main/java/opennlp/tools/cmdline/namefind/TokenNameFinderTrainerTool.java 591 620 0.111 0.000 0.082 0.807

𝐶84 /main/java/opennlp/tools/lemmatizer/LemmatizerME.java 591 610 0.126 0.000 0.067 0.807

A study on the evolution of software quality and technical debt in open source applications

101

The final step of the benchmarking process is supported by a web application (TD Benchmarker) that

has been developed which enables the extraction of benchmarks, consisting of classes being close to a

selected archetype, for varying threshold values. Interested researchers can download the agreement-

based benchmark of choice and retrieve the identified classes for further experimentation. Moreover,

the application provides graphical illustrations of the RSS plots and the reference assessment profiles.

TD Benchmarker is available online44.

RQ1: For RQ1, where the level of agreement of the used tools is examined with respect to the measured

TD of classes, the Kendall’s W coefficient of concordance was employed which belongs to the broader

branch of methodologies known as inter-rater agreement analysis.

For RQ2 – RQ4 an agreement-based benchmark process is proposed, which is based on a statistical

approach, namely Archetypal Analysis (AA).

RQ2: In the first step of the benchmarking process, the aim is to calculate the required number of

archetypes to effectively capture the diversity of the tools. In this regard, the appropriate number of

archetypes was determined, via the graphical inspection of the RSS reduction plot (or elbow plot).

RQ3: In the second step of the benchmarking process the objective was to understand the characteristics

of the derived archetypes in an attempt to interpret them from the Technical Debt Management (TDM)

point of view. Through the graphical examination of the Archetypal Solutions figure two main

categories of the archetypes were distinguished; the Ruler and the Rebel archetypes.

RQ4: The final step of the benchmarking process involves the identification and extraction of a set of

classes that are close to a specific archetype with specific characteristics that can be interpreted in terms

of TDM. The extraction of the aforementioned set of classes was accomplished through the matrix of

𝛼-coefficients (Eq. 4).

44 https://se.uom.gr/index.php/projects/technical-debt-benchmarking

https://se.uom.gr/index.php/projects/technical-debt-benchmarking

Chapter VII. Benchmark of Technical Debt Liabilities

102

4. Results and Discussion

In this section the results for each research question are presented and discussed in the corresponding sub

section.

4.1. RQ1: To what extent do the assessors (tools) agree in the ranking of classes in terms of TD

measurement?

Based on the proposed methodology (see Section 3.4), the objective is to investigate the degree of

agreement among the applied TD tools (RQ1). Table 6 summarizes the results concerning the evaluation

of the Kendall’s W concordance coefficient for the set of the examined 50 projects. The results suggest that,

in general, the three TD tools converge on the identification and measurement of TD at class/file level.

Overall, the coefficient values range from 0.520 (for atom JavaScript project) to 0.853 (for javacv Java

project). To this regard, it is meaningful to continue with the benchmarking process and extract the subset

of classes which have been indicated as high-TD (or low-TD) classes by all tools. On the other hand, the

graphical inspection of the aggregated results (Figure 7 (dot plots)) and the distributions of the coefficients

for Java and JavaScript projects (Figure 8(a), (boxplots)) shows that the type of language seems to present

an effect on the estimated agreement of TD tools. Indeed, an independent-samples t-test indicated a

statistically significant difference between the mean values of Kendall’s W concordance coefficient for

Java (𝑀 = 0.777, 𝑆𝐷 = 0.045) and JavaScript (𝑀 = 0.647, 𝑆𝐷 = 0.075) projects, 𝑡 = 7.403, 𝑝 <

0.001 (Figure 8(b), (error bars)). Levene’s test indicated unequal variances, 𝐹 = 7.628, 𝑝 = 0.008, so the

t-test under the unequal variances assumption was used, whereas the Kolmogorov-Smirnov test for

normality assumption showed that the estimated coefficients satisfied the normality assumption, K-S 𝑍 =

0.893, 𝑝 = 0.403.

Figure 7. Dot plots with the aggregated results of Kendall’s W concordance coefficient

A study on the evolution of software quality and technical debt in open source applications

103

(a) (b)

Figure 8. Box plots (a) and error bars (b) of the distributions of Kendall’s W concordance coefficient

The general conclusion from the evaluation of the Kendall’s W concordance coefficients and the rule of

thumb proposed by Schmidt (1997) (see Section 3.4.1) is that in the case of Java projects, there is noted a

statistically significant (𝑝 < 0.001) and strong agreement among the three tools regarding the TD

assessments for the set of the conducted experiments with a mean value of 0.777 accompanied by a 95%

CI ranging into the interval [0.758, 0.795]. In contrast, despite the fact that a statistically significant

agreement among TD assessments is also indicated for the set of JavaScript projects, the strength of the

agreement is characterized as moderate, since it presents a mean value of 0.647 with a 95% CI of

[0.616, 0.678]. A possible interpretation for this finding is that tools for analyzing the quality of Java code

(e.g. through static analysis) are more mature, compared to those for analyzing JavaScript, which are

substantially younger. Therefore, it seems that along with their evolution Java analyzers have also

converged on how the analysis is performed and what is deemed as an important problem for a codebase.

On the other hand, it seems that JavaScript analyzers are in a more experimental stage, and therefore lower

consensus is reached.

Chapter VII. Benchmark of Technical Debt Liabilities

104

Table 6. Kendall’s W Concordance Coefficient among all three TD tools for each analyzed system

Project W

(p-value)

W

(p-value)

W

(p-value)

W

(p-value)

W

(p-value)

W

(p-value)

W

(p-value)

W

(p-value)

W

(p-value)

Java

arduino

0.820

(𝑝 <0.001) exoplayer

0.776

(𝑝 <0.001) joda-time

0.770

(𝑝 <0.001) opennlp

0.790

(𝑝 <0.001) testng

0.811

(𝑝 <0.001)

arthas

0.803

(𝑝 <0.001) fop

0.740

(𝑝 <0.001) libgdx

0.804

(𝑝 <0.001) openrefine

0.781

(𝑝 <0.001) vassonic

0.800

(𝑝 <0.001)

azkaban

0.793

(𝑝 <0.001) gson

0.820

(𝑝 <0.001) maven

0.692

(𝑝 <0.001) pdfbox

0.736

(𝑝 <0.001) wss4j

0.774

(𝑝 <0.001)

cayenne

0.766

(𝑝 <0.001) javacv

0.853

(𝑝 <0.001) mina

0.681

(𝑝 <0.001) redisson

0.797

(𝑝 <0.001) xxl-job

0.795

(𝑝 <0.001)

deltaspike

0.716

(𝑝 <0.001) jclouds

0.688

(𝑝 <0.001) nacos

0.788

(𝑝 <0.001) RxJava

0.828

(𝑝 <0.001) zaproxy

0.800

(𝑝 <0.001)

JavaScript

ace

0.694

(𝑝 <0.001) brackets

0.712

(𝑝 <0.001) karma

0.645

(𝑝 <0.001) mysql

0.653

(𝑝 <0.001) prettier

0.637

(𝑝 <0.001)

angular.js

0.739

(𝑝 <0.001) Chart.js

0.667

(𝑝 <0.001) Leaflet

0.553

(𝑝 <0.001) node

0.684

(𝑝 <0.001) sails

0.693

(𝑝 <0.001)

atom

0.520

(𝑝 <0.001) exceljs

0.553

(𝑝 <0.001) less.js

0.572

(𝑝 <0.001) pdf.js

0.724

(𝑝 <0.001) sequelize

0.547

(𝑝 =0.002)

bluebird

0.611

(𝑝 <0.001) fabric.js

0.643

(𝑝 <0.001) moment

0.537

(𝑝 <0.001) plotly.js

0.692

(𝑝 <0.001) webpack

0.643

(𝑝 <0.001)

bower

0.684

(𝑝 <0.001) jquery

0.768

(𝑝 <0.001) mongoose

0.754

(𝑝 <0.001) pm2

0.722

(𝑝 <0.001) yarn

0.533

(𝑝 <0.001)

A study on the evolution of software quality and technical debt in open source applications

105

4.2. RQ2: How many archetypes (reference assessments) are required to capture the diversity of

the tools?

After the verification of a statistically significant agreement among the three TD tools for the set of Java

and JavaScript projects, the next challenge involves the benchmarking process with the aim to extract a set

of classes identified as the most high-TD ones from all applied tools. Due to the extensive numerical and

graphical results, the findings derived from the analysis (Step 1 - Step 3, see Section 3.4.2) are indicatively

presented on opennlp project. Through this manner, it can be also highlighted to both researchers and

practitioners how the proposed methodology can be easily generalized to any experimental setup without

constraints regarding the number of applied TD tools. Finally, it should be reminded that the set of the

experimental results along with the raw dataset of TD estimates for the 25 Java and 25 JavaScript projects

can be easily accessed via the paper’s web page45.

Generalizing the methodology presented above (Section 3.4.2), the relative positions of the TD assessments

via the three tools can be represented by a scatter plot in a three-dimensional space (Step 1). Figure 9

displays the TD assessments, in which each point represents again, a specific class with coordinates the TD

rankings evaluated by the SonarQube (x-axis), CAST (y-axis) and Squore (z-axis) tools. Despite the fact

that drawing conclusions from the inspection of a three-dimensional plot is not a straightforward task, the

shape of the swarm of points reveals an intrinsic pattern. More precisely, there is a subset of classes that

are concentrated on the upper left corner of the plot, corresponding to classes that accumulate a high amount

of TD as it is assessed by the whole set of the applied tools. On the other hand, it is also obvious that there

are also other regions on the graph indicating divergent behaviour of the applied tools in terms of their TD

assessments. The practical implication of this phenomenon is that the three TD tools signify different

mitigation actions, which is the consequence of the utilization of different rulesets in the evaluation process

of TD.

Figure 9. Scatter plot (3D) for the rankings of the TD assessments (all three tools) (opennlp project)

45 https://se.uom.gr/index.php/projects/technical-debt-benchmarking

https://se.uom.gr/index.php/projects/technical-debt-benchmarking

Chapter VII. Benchmark of Technical Debt Liabilities

106

Indeed, the examination of the RSS (Figure 10) after the consecutive executions of the AA algorithm for

different values of archetypes shows that the convex hull of the swarm of points can be adequately

approximated by 𝑘 = 8 archetypes. Generally, the examination of the RSS plots for the remaining datasets

led us to conclude that this specific number of archetypes 𝑘 = 8 is a rational generalization for the whole

set of our experiments.

Figure 10. RSS plot (SonarQube, CAST, Squore) (opennnlp project)

4.3. RQ3: Which are the characteristics of the extracted archetypes?

Having defined the appropriate number of archetypes (𝑘 = 8), the next step (Step 2) of the proposed

approach concerns the reification of the extracted reference assessment profiles through the examination of

their characteristics. Figure 11 summarizes the profile plots for each archetype of the derived solution. The

examination of the characteristics of the eight profiles reveals, again, that there are two distinct groups

(Ruler and Rebel) that have also been identified in the case of the TD assessments on the two-dimensional

space (CAST and Squore) (see Section 3.4.2). Besides this fact, the analysis brings to the surface a new

type of profile with specific characteristics regarding the assessments of the three tools. More specifically,

the Partner46 archetype represents a reference assessment profile, in which two of the applied tools indicate

a high amount of TD, whereas on the same time, the third tool is not able to identify it indicating a low

amount of TD.

46 The Partner archetype refers to personalities whose goal is being in a relationship with people and surroundings. In analogy,

the Partner profile in our case denotes cases where two of the three tools exhibit high agreement.

A study on the evolution of software quality and technical debt in open source applications

107

Figure 11. Reference assessment profiles (archetypes) from the assessments by all three tools (opennnlp project)

The characteristics of the 𝑘 = 8 reference assessments (Figure 11) are fully described below:

• The Max-Ruler is the type of the reference assessment indicating a high amount of TD based on

the results of all applied tools (SonarQube, CAST, Squore).

• The Min-Ruler is the type of the reference assessment indicating a low amount of TD based on

the results of all applied tools (SonarQube, CAST, Squore).

• The Partner 1 is the type of the reference assessment indicating a high amount of TD based on the

results from SonarQube and Squore tools and simultaneously, a low amount of TD based on the

results of CAST tool.

• The Partner 2 is the type of the reference assessment indicating a high amount of TD based on the

results from SonarQube and CAST tools and simultaneously, a low amount of TD based on the

results of Squore tool.

• The Partner 3 is the type of the reference assessment indicating a high amount of TD based on the

results from Squore and CAST and tools and simultaneously, a low amount of TD based on the

results of Sonar tool.

• The Rebel 1 is the type of the reference assessment indicating a high amount of TD based on the

results from SonarQube tool and simultaneously, a low amount of TD based on the results of Squore

and CAST tools.

• The Rebel 2 is the type of the reference assessment indicating a high amount of TD based on the

results from CAST tool and simultaneously, a low amount of TD based on the results of SonarQube

and Squore tools.

• The Rebel 3 is the type of the reference assessment indicating a high amount of TD based on the

results from Squore tool and simultaneously, a low amount of TD based on the results of SonarQube

and CAST tools.

An interesting conclusion of the analysis on the remaining forty-nine datasets is that the abovementioned

types of archetypes are applicable for the entire spectrum of projects and classes. It is reasonable to assume

that the identified types of archetypes would be valid for any number of employed tools. For example, there

will always be some classes identified as having high TD (or low TD) by all assessors (conforming to the

Chapter VII. Benchmark of Technical Debt Liabilities

108

Max-Ruler or the Min-Ruler archetype). Nevertheless, the number of commonly identified high-TD (or

low-TD) classes is expected to decrease with the number of tools. Similarly, it is also highly probable that

one of the employed tools will tag some classes as high-TD while all other tools will not, according to the

Rebel archetype, or that some subsets of tools might agree to a larger extent (Partners). This inherent trade-

off should be considered by development teams when opting for particular quality assurance tools. The

‘intersection’ of commonly agreed artefacts with TD principal is expected to become lower as the number

of tools increases and the benefit of obtaining wider coverage should be weighed against the diversity of

the findings and the difficulties in incorporating multiple tools in the workflow. Practitioners and

researchers should be assisted in focusing on the modules that are most likely to suffer from TD and to this

end the next RQ aims at selecting the right set of classes for further analysis.

4.4. RQ4: Which classes should be selected to form an agreement-based benchmark of top-TD

modules?

In the last step of the methodology (Step 3), the focus is now on the identification of classes that are close

to the archetype signifying top-TD classes as assessed by all tools. Practically, the target is classes settled

in the neighborhood of the Max-Ruler archetype, which in turn can be specified through the definition of a

threshold value for 𝑎 coefficient. For example, in project opennlp, with 𝑎 = 0.80 as a threshold value to

capture a strong similarity (or adjacency) to the Max-Ruler archetype (in analogy to the 2-tool

representative) example presented in Section 3.4.2), for three tools we would obtain 54 top-rated TD classes

(7.70% of the total), while for two tools we obtained 84 top-rated TD classes (11.98%). The decrease in the

number of commonly identified high-TD classes confirms the observation that the higher the number of

assessors, the smaller the number of top-rated classes pointed out by all tools.

To examine the effect of the defined threshold value 𝑎 on the percentage of top-rated classes extracted by

the proposed approach, based on the source code analysis via the set of selected TD tools, sensitivity

analysis was conducted. More precisely, the percentage of top-rated classes was evaluated for a set of

threshold values of 𝑎-coefficients ranging from 0.60 to 0.90 increasing by a step of 0.05. In addition, there

is an imperative need to investigate whether the type of language presents an effect on the percentages of

top-rated classes for the above set of threshold values, since the inter-rater agreement analysis presented in

Section 4.1 revealed a statistically significant effect of the type of language on the estimated concordance

coefficients. Thus, an interesting issue that deserves further investigation is whether the type of language

also affects the percentages of the top-rated classes.

Figure 12 summarizes the results from which, it can be generally inferred that the percentage of top-rated

classes decreases as the threshold value increases for both language types. Practically, the selection of a

higher threshold value imposes a stricter policy for the identification of high-TD classes by all employed

tools. Another interesting finding is the fact that the percentages of top-rated classes/files seems to be

generally higher for Java projects in comparison to JavaScript projects.

A study on the evolution of software quality and technical debt in open source applications

109

Figure 12. Percentage of top-rated classes assessed by all three tools for increasing levels of threshold values 𝑎

(sensitivity analysis)

So, the next issue is to investigate, whether the observed phenomena can be generalized to the population

of OSS projects with similar characteristics. For this reason, the Linear Mixed Effects (LME) models [48]

are employed, which are able to model simultaneously two types of effects that are (i) the fixed effects, a

term that is used to represent factors that may affect the mean value of interest, and (ii) the random effects

that may have an impact only the variance of the response variable.

In this experimental setup, the experimental unit, for which we wish to draw conclusions regarding the

response variable Percentage (i.e. the percentage of top-rated classes) is the project, which in fact,

represents a unit drawn at random from an infinite unknown population of projects. For this reason, one

should take into account and incorporate into the analysis, the random effect of the factor Project, in order

to model the inherent variability caused by this random selection from the set of all possible OSS projects.

Regarding the fixed effects that can been thought as the effect of specific factors of interest on the response

Percentage, two factors need to be examined, which are (i) the threshold value (Threshold) of 𝑎 denoting

the closeness to the Max-Ruler archetype and (ii) the type of language (Language). Besides the

abovementioned two main effects (Threshold, Language), there is also a need to examine the interaction

effect of Threshold and Language (Threshold× Language), since the effect of the threshold value of 𝑎 on

the percentage of top-rated classes may not be the same at the two levels of language types

(Java/JavaScript).

Regarding the fixed component structure, which describes the main and interaction terms that will be

included in the inferential process, the optimal structure was defined through the protocol proposed by Zuur

et al. [49]. Described briefly, a model (defined as the beyond model) examining all factors of interest and

their possible interactions is fitted and tested against a second model after omitting the higher order

interaction term through the Likelihood Ratio (LR) test. In case of an insignificant finding, the selection is

based on the principle of parsimony, which practically means that simpler models with similar explanatory

power are preferred over more complex models with more parameters but slightly better fit. To this end,

Chapter VII. Benchmark of Technical Debt Liabilities

110

the Akaike Information Criterion (AIC) is used for the comparison process, while the model with the lowest

AIC value should be preferred over the competitive ones.

The comparison of the beyond model (mentioned above) incorporating the main effects of Threshold and

Language and their interaction term Threshold× Language against the model without the interaction term

Threshold× Language did not reveal a statistically significant difference 𝜒2 = 6.055, 𝑝 = 0.417. The

practical implication of this result is that the effect of the threshold value of 𝑎 on the percentage of top-

rated classes is the same for both language types (Java/JavaScript). The fitting of the final LME model

containing only the main effects revealed statistically significant main effects for both Threshold (𝐹 =

299.634, 𝑝 < 0.001) and type of Language (𝐹 = 29.493, 𝑝 < 0.001) on the mean percentage values of

top-rated classes. Is should also be noted that all models were fitted on the logarithmic transformations of

the raw percentages, due to the violation of homoscedasticity assumption of model’s residuals.

Moreover, the post-hoc analysis through Tukey’s HSD test [48] for the factor Threshold indicates

statistically significant differences (𝑝 < 0.05) between the pairs of consecutive levels of threshold values

(as shown in Figure 13, the error bar does not cross the vertical dashed line of zero). Finally, Table 7 reports

the expected mean percentage (accompanied by 95% CI) of top-rated classes for both language types in the

population of OSS projects with similar characteristics in order to provide an indication of how many

classes will be assessed as top-rated by all applied tools.

Figure 13. Post-hoc analysis for LME model (sensitivity analysis)

Table 7. Estimated mean percentage with 95% CI for each threshold value 𝑎 (sensitivity analysis)

 Java JavaScript

Threshold Estimation 95 % CI Estimation 95 % CI

0.60 15.24 [13.17, 17.64] 9.11 [7.87, 10.55]

0.65 13.06 [11.28, 15.12] 7.81 [6.75, 9.04]

0.70 11.13 [9.62, 12.89] 6.65 [5.75, 7.70]

0.75 8.92 [7.71, 10.32] 5.33 [4.61, 6.17]

0.80 6.81 [5.88, 7.88] 4.07 [3.52, 4.71]

0.85 4.87 [4.21, 5.64] 2.91 [2.52, 3.37]

0.90 3.28 [2.84, 3.80] 1.96 [1.70, 2.27]

A study on the evolution of software quality and technical debt in open source applications

111

As it can be observed from Table 7, out of the total population of classes in each project and depending on

the threshold value, only a small portion lying into the intervals [3.28%, 15.24%] and [1.96%, 9.11%] for

Java and JavaScript projects, respectively, is characterized as having high-TD based on the findings of all

three tools. Generally speaking, and without taking into consideration the type of language, this relatively

low number of classes, in the neighborhood of the Max-Ruler archetype can be acknowledged as a basis

concerning the high-TD classes. The resulting agreement-based benchmark can drive further research by

denoting the few modules carrying “real-TD”, rather than dealing with all candidates extracted by a single

tool, which are not confirmed by other tools. Any future approach, leveraging also the power of machine

learning, could be trained to accurately identify the top-rated classes capturing TD in a more realistic

manner. It should be noted that a similar methodology could be applied for extracting a benchmark of low-

TD classes. Such a set of classes might be valuable for studying the principles and practices resulting in

cleaner code. Nevertheless, given the current priorities of development teams and researchers the focus was

placed on benchmarks of high-TD classes. Besides the abovementioned findings, the analysis also indicates

that irrespective to the applied threshold value 𝑎 for characterizing similar classes to the Max-Ruler

archetype, the percentages of the high-TD classes are expected to be higher for Java projects compared to

the corresponding percentages derived from the analysis on JavaScript projects.

5. Implications to Practitioners and Researchers

In this section, the main outcomes are revisited, from the perspectives of practitioners and researchers.

However, it should be borne in mind that any identified implications are subject to the limitations of the

context in which the study has been performed. In particular, only the types of TD identified by the selected

tools (namely design and code debt) and two programming languages (namely Java and JavaScript) have

been considered. Moreover, the findings are based on a single measure of TD (i.e. principal) excluding

other indices such as the severity or the type of the identified inefficiencies.

Overcome construct validity threats in research (researchers)

As mentioned in the introductory section, the research community within the TD field lacks an ultimate

process to accurately capture TD principal and thus, any empirical study or technique based on TD estimates

runs the risk of not accurately measuring the real-world phenomenon under study. Each tool follows its

own approach for detecting and measuring TD, based on a distinct ruleset, yielding a different amount for

the total TD, but also pointing to different parts of the code that need to be mitigated, compared to other

tools. There are several studies trying to identify high-TD modules and studies investigating the association

of accrued TD with other factors. However, such approaches are heavily dependent on the employed tool

for suggesting the ground truth, that is, the modules that actually have TD liabilities and need to be fixed.

Apparently, because each tool evaluates TD in a different way, the generalizability of these approaches is

threatened to a large extent.

The two aspects of the proposed methodology, that is, the estimation of inter-rater agreement among TD

tools and the use of archetypal analysis for identifying classes having a desired profile (e.g. high-TD levels

by all tools) can be applied by researchers to form a more reliable basis for their experiments. More

conveniently, researchers can also employ the already available benchmarks of high-TD classes (but also

classes having a different profile if needed) from the online TD Benchmarker web application.

Consequently, leveraging the power of multiple TD tools using the proposed approach can assist in the

mitigation of construct validity threats that is currently present in the field of TD.

Chapter VII. Benchmark of Technical Debt Liabilities

112

Highlight critical modules with validated highest TD (practitioners)

Despite the widespread adoption of the TD metaphor, it is far from clear which tool IT managers should

integrate in the development and maintenance process. Employing more than one TD tool for the evaluation

of their software might be a costly option, since most of the existing tools are available only with a

commercial license. Moreover, each tool requires significant effort to deploy, properly configure and

familiarize with. However, even if a development team employs more than one tool, the union of all

findings, would result in an unrealistic amount of suggestions, rendering the process intractable. Based on

the proposed methodology, practitioners can highlight the classes that have been identified as high-TD

classes by all employed tools leading to a manageable number of target classes. Development teams can

take advantage of such agreement-based benchmark sets and focus only on the modules of their system that

are validated as high-TD modules. With respect to the benefit of the already derived benchmarks from the

analyzed systems, developers can focus on the classes close to the Max-Ruler archetype and gain insight

into the root causes of the accumulation of TD in these classes and potentially avoid non-ideal coding

practices in the future. Moreover, the non-unanimous archetypes (Rebel and Partner archetypes) can be

valuable, as well. The existence of these archetypes is the key factor that differentiates one tool from the

others. If only unanimous archetypes existed, this would mean that all tools generate the same results

pointing to the same classes/files with accrued TD principal. Through the exploration of classes/files in the

vicinity of non-unanimous archetypes development teams can gain insight into how TD tools differ on the

measurement and prioritization of TD principal. With such knowledge, developers can more confidently

invest in the TD tool that best fits their perception of when a class/file is tagged as high-TD (or low-TD).

Collection of available TD tools (researchers and practitioners)

Last but not least, another contribution of the current work is the localization and collection of available

TD assessment tools, as presented in Section 2. The list is by no means an exhaustive one, as numerous

other tools offer functionality related to the identification of code smells, anti-patterns, rule violations,

excessive metric values, etc. all of which are indicators of the existence of TD in software. Nevertheless,

the presented tools can serve as starting point both for practitioners who are searching for a TD tool to

integrate into their development process as well as researchers who are seeking an appropriate assessor of

TD principal. In both cases, the proposed methodology can assist in the critical appraisal of the agreement

or the diversity among tool findings.

6. Threats to Validity

This section presents and discusses potential threats to the validity of this case study, focusing on construct,

reliability, and external validity [50], [51]. Internal validity is not considered, since causal relations have

not been studied.

Construct Validity. Concerning construct validity, it can be argued that the basis of TD cannot be formed

solely on the findings of TD assessment tools and as a result the study might inaccurately capture the actual

phenomenon. The employed tools perform static source code analysis and thus the identified liabilities are

primarily related to code TD, and in certain cases might also point to design or architectural problems. But

according to the literature [23], [24] several other types of TD have been identified and might be present

throughout all phases of the software development lifecycle, including Test, Documentation, Build,

Infrastructure TD, etc. Consequently, the extracted TD measurements and the resulting benchmark

represent only a portion of the system TD. However, code TD has been one of the mostly studied type of

TD [24] and the target of most available tools, including the ones that have not been used in this dissertation.

Furthermore, the steps of the proposed methodology are equally applicable to the findings regarding any

A study on the evolution of software quality and technical debt in open source applications

113

type of TD and thus benchmarks can be derived for other types of problems, provided that suitable

measurement tools are available.

Another important threat to construct validity pertains to the exclusion from the study of other TD-related

information, such as the specific type of the identified inefficiencies or their severity. Indeed, it might be

the case that the level of agreement among tools varies depending on type/severity of issues and this

warrants a further study. Although TD principal is an aggregate measure encompassing all kinds of

identified problems, development teams would be more assured in case different tools agree on the more

severe problems or the type of problems which they consider relevant to their software. Nevertheless, both

aspects of the proposed approach for the quantification of the level of agreement among the tools and the

extraction of representative archetypes can be applied to any subset of the identified TD issues.

Reliability. The described methodology outlines all steps followed to carry out the inter-rater agreement

and archetypal analysis along with the provided web application that allows the extraction of benchmarks

(sets of classes close to the Max-Ruler archetype) mitigates reliability threats. One potential threat to the

ability of replicating this dissertation and reaching the same results is related to the optimal number of

archetypes defined in Step 1 of the proposed approach (Section 3.4.2). The selection of the appropriate

number of archetypes that is able to capture the diversity of the examined TD tools based on the inspection

of the multidimensional space is, to some extent, a subjective process, especially in the case of a three-

dimensional plot. In addition, the above visualization practice is not applicable in case the number of tools

is higher than three. In these cases, the practitioner should base his/her choice on the examination of the

profile plots and most importantly, on the inspection of the RSS plot to conclude on the appropriate number

of archetypes. In this experimental setup, the investigation of these graphical manners led us to the

definition of the optimal number of eight archetypes, which is a rational and common-sense finding, since

the derived archetypes represent expected behaviors, in cases where three TD tools with partially different

rulesets are used for benchmarking purposes.

External Validity. Regarding the external validity of the proposed approach, a potential threat to the

generalization of the results is related to the identification and retrieval of the set of classes that are close to

the Max-Ruler archetype (Step 3, Section 3.4.2), since the extracted set is certainly affected by the

subjectivity and strictness of the practitioner. To this regard, a sensitivity analysis was conducted in order

to examine how the choice of the threshold value for 𝑎-coefficient defining the neighbour classes affects

the percentage of classes that belongs to the extracted benchmark set. Moreover, this work investigates the

research questions in the context of 50 open source projects. Due to the limited number and types of the

analyzed systems the conclusions regarding the observed level of agreement among the tools and the

number of archetypes which are sufficient to capture the swarm of the observed points, probably cannot be

generalized across other domains, programming languages or to proprietary software. A similar threat to

external validity stems from the selection of TD assessment tools in the sense that this analysis was based

on the identified violations, which in turn reflect the particular ruleset of each tool. Therefore, the findings

on the agreement of TD assessment tools cannot be generalized beyond the employed tools.

7. Related Work

Since the first goal was to study the level of agreement among TD tools, this section presents previous

studies that compare the techniques and results of tools that explicitly or implicitly measure TD. The second

goal was to extract an agreement-based benchmark set of validated high-TD classes; therefore, other

approaches to build such benchmarks or extract thresholds in the broader area of software maintenance are

discussed, as well.

Chapter VII. Benchmark of Technical Debt Liabilities

114

7.1. Comparison of Tools measuring Technical Debt

In a previous case study [52], the authors aimed at locating the architecture debts of a proprietary web portal

system owned by a software outsourcing company using their own tool, Titan. The results of the Titan tool

(TitanDebts) were compared to the results of the SonarQube tool (SonarDebts) that the company was

already using. By examining the overlap between TitanDebts and SonarDebts, the authors found that ¼ of

the total files (25 files) were found in the intersection of the most problematic files that Titan and SonarQube

have identified. To this regard, the authors concluded that the Titan tool (which identifies architecture debts

more effectively) and the SonarQube tool detect substantially different and complementary sets of files.

A case study in 2014 [53] compared four different techniques of TD evaluation (with the associated tool to

run the analysis) including code smells (tool: codevizard), automatic static analysis issues (tool: FindBugs),

grime build up and modularity violations (tool CLIO). The authors investigated whether the set of selected

techniques/tools report the same set of modules as problematic and which was the overlap among them.

The classes of 13 Hadoop releases were measured and 30 metrics were compared. The results of the study

showed that the four techniques/tools had very little overlap, pointing to different problems in different

modules.

In an experimental study [54], the authors investigated the correspondence between several technical debt

estimation approaches and external software quality models. Specifically, they evaluated (a) SonarQubes’s,

(b) CAST’s and (c) Marinescu’s method [55] of technical debt estimation against the QMOOD quality

model, which encompasses the quality attributes; reusability, flexibility, understandability, functionality,

extendibility and effectiveness. They did not find evidence for strong relationship between the TD estimates

and the quality attributes of the QMOOD model, except for one estimation method regarding only the

flexibility and effectiveness quality attributes. The authors concluded that “it is important that industry

practitioners, ensure that the technical debt estimate they employ accurately depicts the effects of technical

debt as viewed from their quality model”.

In a recent study [56], the authors, being motivated by the perception that design problems are more

significant than coding errors for long-term software maintenance, aimed at investigating how three major

TD tools (CAST, NDepend, SonarQube) capture design debt. Particularly, the authors distinguished the

rules that capture design debt from a total of 466 examined rules from all three tools. Their results showed

that all three tools mainly focus on non-design debt (only 19% of the rules captured design issues).

Particularly, NDepend focuses the most on design rules (26% of its total rules are design-related), then

follows CAST with 17% and SonarQube with 13%.

Fontana et al. (2016) examined the impact of the elimination of architectural problems in four Java projects

on the quality indices of four tools (SonarQube, inFusion, Structural Analysis of Java (SA4J) and

Structure101). The results showed that the architectural refactorings in the four examined systems did not

have any impact on the SQALE index of SonarQube and as far as SA4J is concerned, its stability index was

affected only in one system. Consequently, the authors concluded that the SQALE index of SonarQube and

the stability index of SA4J are not capable of effectively capturing the notion of architectural debt.

In another study [58], the authors compared the techniques of five tools (CAST, inFusion, Sonargraph,

SonarQube and Structure101) that provide some kind of Technical Debt Index (TDI). The comparison of

the tools showed that all tools except for SonarQube exploit architectural information to form their TDIs.

Moreover, two of the tools (inFusion and Structure101) do not calculate the cost for TD remediation (TD

principal) whilst they only calculate the cost of keeping the software as it is (TD interest). On the other

hand, CAST and SonarQube calculate only TD Principal and not TD interest. As far as the output

A study on the evolution of software quality and technical debt in open source applications

115

measurement, CAST and Sonargraph output cost in terms of US dollars, SonarQube in terms of time to

remedy issues, while the rest produce either abstract values or values that are not expressed in money or

time.

According to the abovementioned studies that compared different TD measurement tools, the results of

each tool diverged from the results of the others. This phenomenon emphasizes our motivation to compare

the TD estimates of several TD tools and extract the high-TD modules as identified by the tools altogether.

It should be also noted that the aforementioned studies employed tools that measure TD either explicitly

(generating a direct Technical Debt Index) or implicitly (generating a general quality index). Nevertheless,

it should be reminded that, only tools that explicitly output a Technical Debt Index were employed to allow

for more focused and direct comparison of the results on TD measurement.

7.2. Benchmarks in Software Maintenance

Several studies attempt to establish benchmark datasets so that software quality assessment approaches can

be compared against them. Quite often the related research effort aims at building benchmarks to extract

representative thresholds for source code metrics or quality indices, which can then serve as baseline for

comparison with actual values of the systems under evaluation. A notable example of such benchmarks is

the benchmark repository of Software Improvement Group (SIG) against which any selected system can be

compared in terms of code quality and maintainability [59]. Below follows an overview of studies, in which

the authors developed benchmarks and aimed at deriving thresholds for the evaluation of software quality

(in descending chronological order).

In a recent study [60], the authors defended the idea that the extraction of metric thresholds should be

tailored to each software domain. They collected a large set of 3107 Java systems across 15 domains from

GitHub47 and measured a set of 8 source code metrics with the CK Tool48. The aforementioned metrics

reflected size, complexity and inheritance aspects of software. Then, the authors derived metric thresholds

using the method supported by TDTool [61]. In particular, thresholds have been selected so as to represent

various groups (i.e. high-90% and very high-95%) of the sorted metric values. The authors found evidence

that "metric thresholds vary across domains and most domain-specific thresholds differ from generic

thresholds".

Döhmen et al. (2016) built a benchmark for maintainability evolution with data from approximately 1750

industrial software systems. The data was collected from the Software Analysis Warehouse (SAW), a

property of the Software Improvement Group (SIG). SAW contains the results of the software quality

analyses that SIG conducts. The study focused on the production source code of the projects excluding

testing and auto-generated code. The authors created a prototype of a benchmark for maintainability

evolution. The benchmark was based on a group of systems, which were close to a selected open source

system, Crawljax, in terms of maintainability and volume. The authors, first, selected the systems which

had the 5% closest maintainability transitions to Crawljax and then, with the use of Empirical Cumulative

Distribution Function (ECDF) found the systems that developed equal or worse than the compared system.

Comparison against existing systems has also been used as a method for assessing the software quality of

a commercial system, property of an international company in the logistics domain [63]. The system was

analyzed in terms of size, complexity, modularity, redundancy and technical debt with the utilization of

SonarQube and NDepend. To evaluate the quality of the system, the author compared it with the quality of

a set of 1892 open source projects from GitHub of similar age and programming language. The author

47 https://github.com/
48 https://github.com/mauricioaniche/ck

https://github.com/
https://github.com/mauricioaniche/ck

Chapter VII. Benchmark of Technical Debt Liabilities

116

calculated the metrics of each project with SonarQube and then extracted the percentile thresholds of the

metrics with RTTool [64]. The system's metric was considered "normal" if its value was near the middle

percentiles and vice versa. The aforementioned benchmark was applied at file and at system level with

aggregated values.

The notion of balance between real and ideal software design was used in a study in 2014 [65], in which

the authors described a method for deriving relative thresholds for source code metrics. The method was

based on evidence that source code metrics follow fat-tailed distributions, meaning that there is no typical

value for them [66]. Therefore, the authors suggested that it is acceptable for some metrics not to follow

absolute thresholds. To this regard, they proposed the concept of relative thresholds for evaluating source

code metrics, where a percentage of source code entities should have values lower than an upper limit,

whilst another percentage of entities is accepted to exceed upper limit due to specific requirements. The

method was evaluated by applying it on the classes of 106 Java systems and extracting thresholds for seven

metrics.

A benchmark-oriented calculation of TD was proposed by Mayr et al. (2014). Their benchmark-based

model for calculation of Remediation Costs of software combined features from three existing TD

calculation approaches; CAST model, SQALE model and the SIG model. Measures obtained with these

models were normalized in terms of lines of code before used in the proposed model. For each metric, the

authors calculated a quartile-based distribution dividing the normalized values of the metric in four areas.

Metrics with values that laid below the lower or above the upper areas were considered non-conforming to

the benchmark dataset. Ultimately, the authors tested their model by applying it on two open source

projects, the quality of which had been previously evaluated and compared against the benchmark database.

The experiment showed that the model was able to calculate remediation costs that reflected the relative (to

the benchmark database) quality of the projects.

In another study [68], a method for extracting metric thresholds from benchmark data was designed. The

method was applied on a benchmark of 100 C# and Java systems proprietary and open-source from a broad

range of domains. The metrics were extracted for every entity of the system (method and file level) and

were normalized with the weight of the entity. As weight of the entity, its size in terms of LOC was

considered. Then the normalized metrics were placed in percentiles, from which the thresholds derived.

Their contribution to the industry was to successfully use the thresholds derived with their methodology

instead of the thresholds based on experts’ opinion.

8. Conclusions and Future Work

The Technical Debt metaphor successfully captures, in monetary terms, the penalty that has to be paid

because of shortcuts during software development. These shortcuts are known to introduce architectural,

design and code inefficiencies in software systems and various TD tools aim at identifying them by testing

the source code against specific rulesets. However, TD tools provide different estimates of TD principal

pointing to different mitigation actions. These discrepancies make a lot of people in academia and practice

skeptical about the validity of existing TD tools and hinder the further development of TD research as no

ground truth for accurate TD instances can be established.

To address these limitations in the TD community an empirical study was performed whose goal was

twofold: (a) to determine the level of agreement among three well-known TD tools and (b) build agreement-

based benchmarks of high-TD classes/files from a dataset resulting from 50 open-source projects. Inter-

rater agreement has been assessed, using Kendall’s W coefficient of concordance. To capture the diversity

of the examined tools with the aim of identifying representative class profiles archetypal analysis (AA) was

A study on the evolution of software quality and technical debt in open source applications

117

conducted. Once the derived reference assessments are characterized, it is straightforward to extract sets of

classes exhibiting similarity to a selected profile (e.g. that of high TD levels in all employed tools) and in

this way establish a basis.

The findings of the inter-rater agreement analysis suggest that there is a statistically significant and strong

agreement among the three TD tools on the measurement of TD at class level. However, a substantial degree

of disagreement has also been observed for the measured TD level for numerous classes. The application

of the archetypal analysis revealed that three types of reference assessments can successfully capture the

spectrum of TD measurements provided by three tools: One set of archetypes represents classes identified

as high-TD modules by only one of the tools, the second profile encompasses classes for which two of the

tools agree on the measured TD level, while the final type of archetype signifies a high amount (or low

amount) of TD based on the results of all applied tools. Selecting the classes in the vicinity of the latter

archetype yields an agreement-based benchmark of classes tagged as high-TD by all tools. Such

benchmarks, beyond their value as fields of study for poor development practices that led to low quality

classes, can potentially form the basis for training more sophisticated TD identification and measurement

approaches.

The goal was to shed light into the level of agreement among TD tools and to establish a process for deriving

an agreement-based benchmark set of high/low TD artifacts. Any interpretation of the results considering

different perspectives, such as development context, role of developers (tester, designer, analyzer, etc.) was

beyond the scope of this dissertation. Nevertheless, this forms a really interesting area of future work.

Another interesting line of research would be to investigate to which degree TD tools are compliant with

the guidelines of the OMG Specification on Automated Technical Debt Measure49.

Finally, the nature of the examined rules by each tool might be a decisive factor for the TD principal

estimates per class/file. Drilling down to the level of individual rule violations which are detected by each

tool, can shed light into the cause of their agreement or discrepancy. One interesting line of further research

would be to conduct such a study to investigate the similarity among the examined rules by mapping the

rules adopted by each tool to the rules employed by the other tools.

References

[1] W. Cunningham, “The WyCash Portfolio Management System,” in Addendum to the Proceedings on

Object-oriented Programming Systems, Languages, and Applications (Addendum), New York, NY,

USA, 1992, pp. 29–30, doi: 10.1145/157709.157715.

[2] T. DeMarco, Controlling Software Projects: Management, Measurement, and Estimates, 1 edition.

Englewood Cliffs, N.J: Prentice Hall, 1986.

[3] J. M. Conejero et al., “Early evaluation of technical debt impact on maintainability,” J. Syst. Softw.,

vol. 142, pp. 92–114, Aug. 2018, doi: 10.1016/j.jss.2018.04.035.

[4] C. Izurieta, A. Vetrò, N. Zazworka, Y. Cai, C. Seaman, and F. Shull, “Organizing the technical debt

landscape,” in 2012 Third International Workshop on Managing Technical Debt (MTD), Jun. 2012,

pp. 23–26, doi: 10.1109/MTD.2012.6225995.

[5] A. Nugroho, J. Visser, and T. Kuipers, “An empirical model of technical debt and interest,” in

Proceedings of the 2nd Workshop on Managing Technical Debt, Waikiki, Honolulu, HI, USA, May

2011, pp. 1–8, doi: 10.1145/1985362.1985364.

49 https://www.omg.org/spec/ATDM/About-ATDM

https://www.omg.org/spec/ATDM/About-ATDM

Chapter VII. Benchmark of Technical Debt Liabilities

118

[6] M. Nayebi et al., “A Longitudinal Study of Identifying and Paying Down Architecture Debt,” in 2019

IEEE/ACM 41st International Conference on Software Engineering: Software Engineering in Practice

(ICSE-SEIP), May 2019, pp. 171–180, doi: 10.1109/ICSE-SEIP.2019.00026.

[7] C. Sadowski, J. van Gogh, C. Jaspan, E. Söderberg, and C. Winter, “Tricorder: Building a Program

Analysis Ecosystem,” in 2015 IEEE/ACM 37th IEEE International Conference on Software

Engineering, May 2015, vol. 1, pp. 598–608, doi: 10.1109/ICSE.2015.76.

[8] M. G. Kendall, Rank correlation methods. Oxford, England: Griffin, 1948.

[9] A. Cutler and L. Breiman, “Archetypal Analysis,” Technometrics, vol. 36, no. 4, pp. 338–347, Nov.

1994, doi: 10.1080/00401706.1994.10485840.

[10] A. Martini and J. Bosch, “An Empirically Developed Method to Aid Decisions on Architectural

Technical Debt Refactoring: AnaConDebt,” in 2016 IEEE/ACM 38th International Conference on

Software Engineering Companion (ICSE-C), May 2016, pp. 31–40.

[11] B. Curtis, J. Sappidi, and A. Szynkarski, “Estimating the Principal of an Application’s Technical

Debt,” IEEE Softw., vol. 29, no. 6, pp. 34–42, Nov. 2012, doi: 10.1109/MS.2012.156.

[12] A. Tornhill, “Assessing Technical Debt in Automated Tests with CodeScene,” in 2018 IEEE

International Conference on Software Testing, Verification and Validation Workshops (ICSTW), Apr.

2018, pp. 122–125, doi: 10.1109/ICSTW.2018.00039.

[13] J. Holvitie and V. Leppänen, “DebtFlag: Technical Debt Management with a Development

Environment Integrated Tool,” in Proceedings of the 4th International Workshop on Managing

Technical Debt, Piscataway, NJ, USA, 2013, pp. 20–27, Accessed: May 29, 2019. [Online]. Available:

http://dl.acm.org/citation.cfm?id=2663297.2663301.

[14] S. Arvedahl, “Introducing Debtgrep, a Tool for Fighting Technical Debt in Base Station Software,” in

Proceedings of the 2018 International Conference on Technical Debt, New York, NY, USA, 2018,

pp. 51–52, doi: 10.1145/3194164.3194183.

[15] L. Xiao, Y. Cai, and R. Kazman, “Titan: a toolset that connects software architecture with quality

analysis,” in Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of

Software Engineering, Hong Kong, China, Nov. 2014, pp. 763–766, doi: 10.1145/2635868.2661677.

[16] L. Xiao, Y. Cai, and R. Kazman, “Design rule spaces: a new form of architecture insight,” in

Proceedings of the 36th International Conference on Software Engineering, Hyderabad, India, May

2014, pp. 967–977, doi: 10.1145/2568225.2568241.

[17] K. Chopra and M. Sachdeva, “EVALUATION OF SOFTWARE METRICS FOR SOFTWARE

PROJECTS,” Int. J. Comput. Technol., vol. 14, no. 6, pp. 5845–5853, Apr. 2015, doi:

10.24297/ijct.v14i6.1915.

[18] G. A. Campbell and P. P. Papapetrou, SonarQube in Action, 1st ed. Greenwich, CT, USA: Manning

Publications Co., 2013.

[19] B. Baldassari, “SQuORE: a new approach to software project assessment,” Aug. 2013.

[20] L. B. Foganholi, R. E. Garcia, D. M. Eler, R. C. M. Correia, and C. O. Junior, “Supporting Technical

Debt Cataloging with TD-Tracker Tool,” Adv Soft Eng, vol. 2015, pp. 4:4–4:4, Jan. 2015, doi:

10.1155/2015/898514.

[21] C. Fernández-Sánchez, H. Humanes, J. Garbajosa, and J. Díaz, “An Open Tool for Assisting in

Technical Debt Management,” in 2017 43rd Euromicro Conference on Software Engineering and

Advanced Applications (SEAA), Aug. 2017, pp. 400–403, doi: 10.1109/SEAA.2017.60.

[22] T. S. Mendes, F. G. S. Gomes, D. P. Gonçalves, M. G. Mendonça, R. L. Novais, and R. O. Spínola,

“VisminerTD: a tool for automatic identification and interactive monitoring of the evolution of

technical debt items,” J. Braz. Comput. Soc., vol. 25, no. 1, p. 2, Jan. 2019, doi: 10.1186/s13173-018-

0083-1.

A study on the evolution of software quality and technical debt in open source applications

119

[23] N. S. R. Alves, T. S. Mendes, M. G. de Mendonça, R. O. Spínola, F. Shull, and C. Seaman,

“Identification and management of technical debt: A systematic mapping study,” Inf. Softw. Technol.,

vol. 70, pp. 100–121, Feb. 2016, doi: 10.1016/j.infsof.2015.10.008.

[24] Z. Li, P. Avgeriou, and P. Liang, “A systematic mapping study on technical debt and its management,”

J. Syst. Softw., vol. 101, pp. 193–220, Mar. 2015, doi: 10.1016/j.jss.2014.12.027.

[25] R. van Solingen, V. Basili, G. Caldiera, and H. D. Rombach, “Goal Question Metric (GQM)

Approach,” in Encyclopedia of Software Engineering, American Cancer Society, 2002.

[26] K. L. Gwet, Handbook of Inter-Rater Reliability: The Definitive Guide to Measuring the Extent of

Agreement Among Raters, 4 edition. Gaithersburg, MD: Advanced Analytics, LLC, 2014.

[27] W. A. Scott, “Reliability of Content Analysis: The Case of Nominal Scale Coding,” Public Opin. Q.,

vol. 19, no. 3, pp. 321–325, 1955.

[28] J. Cohen, “A coefficient of agreement for nominal scales,” Educ. Psychol. Meas., vol. 20, pp. 37–46,

1960, doi: 10.1177/001316446002000104.

[29] J. L. Fleiss, “Measuring nominal scale agreement among many raters,” Psychol. Bull., vol. 76, no. 5,

pp. 378–382, 1971, doi: 10.1037/h0031619.

[30] J. Cohen, “Weighted kappa: Nominal scale agreement provision for scaled disagreement or partial

credit,” Psychol. Bull., vol. 70, no. 4, pp. 213–220, 1968, doi: 10.1037/h0026256.

[31] P. F. Watson and A. Petrie, “Method agreement analysis: A review of correct methodology,”

Theriogenology, vol. 73, no. 9, pp. 1167–1179, Jun. 2010, doi: 10.1016/j.theriogenology.2010.01.003.

[32] N. J. Salkind, Ed., Encyclopedia of Research Design, 1 edition. Thousand Oaks, Calif: SAGE

Publications, Inc, 2010.

[33] R. C. Schmidt, “Managing Delphi Surveys Using Nonparametric Statistical Techniques*,” Decis. Sci.,

vol. 28, no. 3, pp. 763–774, Jul. 1997, doi: 10.1111/j.1540-5915.1997.tb01330.x.

[34] J. Moliner and I. Epifanio, “Robust multivariate and functional archetypal analysis with application to

financial time series analysis,” Phys. Stat. Mech. Its Appl., vol. 519, pp. 195–208, Apr. 2019, doi:

10.1016/j.physa.2018.12.036.

[35] S. Li, P. Wang, J. Louviere, and R. Carson, “ARCHETYPAL ANALYSIS: A NEW WAY TO

SEGMENT MARKETS BASED ON EXTREME INDIVIDUALS,” p. 6, 2003.

[36] B. H. P. Chan, D. A. Mitchell, and L. E. Cram, “Archetypal analysis of galaxy spectra,” Mon. Not. R.

Astron. Soc., vol. 338, no. 3, pp. 790–795, Jan. 2003, doi: 10.1046/j.1365-8711.2003.06099.x.

[37] M. J. A. Eugster, “Performance Profiles based on Archetypal Athletes,” Int. J. Perform. Anal. Sport,

vol. 12, no. 1, pp. 166–187, Apr. 2012, doi: 10.1080/24748668.2012.11868592.

[38] J. C. Thøgersen, M. Mørup, S. Damkiær, S. Molin, and L. Jelsbak, “Archetypal analysis of diverse

Pseudomonas aeruginosatranscriptomes reveals adaptation in cystic fibrosis airways,” BMC

Bioinformatics, vol. 14, no. 1, p. 279, Sep. 2013, doi: 10.1186/1471-2105-14-279.

[39] Elze Tobias, Pasquale Louis R., Shen Lucy Q., Chen Teresa C., Wiggs Janey L., and Bex Peter J.,

“Patterns of functional vision loss in glaucoma determined with archetypal analysis,” J. R. Soc.

Interface, vol. 12, no. 103, p. 20141118, Feb. 2015, doi: 10.1098/rsif.2014.1118.

[40] C. Seiler and K. Wohlrabe, “Archetypal scientists,” J. Informetr., vol. 7, no. 2, pp. 345–356, Apr.

2013, doi: 10.1016/j.joi.2012.11.013.

[41] E. Canhasi and I. Kononenko, “Weighted archetypal analysis of the multi-element graph for query-

focused multi-document summarization,” Expert Syst. Appl., vol. 41, no. 2, pp. 535–543, Feb. 2014,

doi: 10.1016/j.eswa.2013.07.079.

[42] A. Tsanousa, N. Laskaris, and L. Angelis, “A novel single-trial methodology for studying brain

response variability based on archetypal analysis,” Expert Syst. Appl., vol. 42, no. 22, pp. 8454–8462,

Dec. 2015, doi: 10.1016/j.eswa.2015.06.058.

Chapter VII. Benchmark of Technical Debt Liabilities

120

[43] N. Mittas, V. Karpenisi, and L. Angelis, “Benchmarking Effort Estimation Models Using Archetypal

Analysis,” in Proceedings of the 10th International Conference on Predictive Models in Software

Engineering, New York, NY, USA, 2014, pp. 62–71, doi: 10.1145/2639490.2639502.

[44] N. Mittas and L. Angelis, “Data-driven benchmarking in software development effort estimation: The

few define the bulk,” J. Softw. Evol. Process, vol. n/a, no. n/a, p. e2258, 2020, doi: 10.1002/smr.2258.

[45] M. V. Kosti, R. Feldt, and L. Angelis, “Archetypal personalities of software engineers and their work

preferences: a new perspective for empirical studies,” Empir. Softw. Eng., vol. 21, no. 4, pp. 1509–

1532, Aug. 2016, doi: 10.1007/s10664-015-9395-3.

[46] G. C. Porzio, G. Ragozini, and D. Vistocco, “On the use of archetypes as benchmarks,” Appl. Stoch.

Models Bus. Ind., vol. 24, no. 5, pp. 419–437, 2008, doi: 10.1002/asmb.727.

[47] C. S. Pearson, Awakening the Heroes Within: Twelve Archetypes to Help Us Find Ourselves and

Transform Our World, First Edition, First Pinting edition. San Francisco: HarperOne, 2015.

[48] J. Pinheiro and D. Bates, Mixed-Effects Models in S and S-PLUS. New York: Springer-Verlag, 2000.

[49] A. Zuur, E. N. Ieno, N. Walker, A. A. Saveliev, and G. M. Smith, Mixed Effects Models and Extensions

in Ecology with R. New York: Springer-Verlag, 2009.

[50] P. Runeson and M. Höst, “Guidelines for conducting and reporting case study research in software

engineering,” Empir. Softw. Eng., vol. 14, no. 2, p. 131, Dec. 2008, doi: 10.1007/s10664-008-9102-8.

[51] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén, Experimentation in

Software Engineering: An Introduction. Springer US, 2000.

[52] R. Kazman et al., “A Case Study in Locating the Architectural Roots of Technical Debt,” in 2015

IEEE/ACM 37th IEEE International Conference on Software Engineering, May 2015, vol. 2, pp. 179–

188, doi: 10.1109/ICSE.2015.146.

[53] N. Zazworka et al., “Comparing four approaches for technical debt identification,” Softw. Qual. J.,

vol. 22, no. 3, pp. 403–426, Sep. 2014, doi: 10.1007/s11219-013-9200-8.

[54] I. Griffith, D. Reimanis, C. Izurieta, Z. Codabux, A. Deo, and B. Williams, “The Correspondence

Between Software Quality Models and Technical Debt Estimation Approaches,” in 2014 Sixth

International Workshop on Managing Technical Debt, Sep. 2014, pp. 19–26, doi:

10.1109/MTD.2014.13.

[55] R. Marinescu, “Assessing technical debt by identifying design flaws in software systems,” IBM J. Res.

Dev., vol. 56, no. 5, pp. 9:1-9:13, Sep. 2012, doi: 10.1147/JRD.2012.2204512.

[56] N. A. Ernst, S. Bellomo, I. Ozkaya, and R. L. Nord, “What to Fix? Distinguishing between Design

and Non-design Rules in Automated Tools,” in 2017 IEEE International Conference on Software

Architecture (ICSA), Apr. 2017, pp. 165–168, doi: 10.1109/ICSA.2017.25.

[57] F. A. Fontana, R. Roveda, S. Vittori, A. Metelli, S. Saldarini, and F. Mazzei, “On Evaluating the

Impact of the Refactoring of Architectural Problems on Software Quality,” in Proceedings of the

Scientific Workshop Proceedings of XP2016, New York, NY, USA, 2016, pp. 21:1–21:8, doi:

10.1145/2962695.2962716.

[58] F. A. Fontana, R. Roveda, and M. Zanoni, “Technical Debt Indexes Provided by Tools: A Preliminary

Discussion,” in 2016 IEEE 8th International Workshop on Managing Technical Debt (MTD), Oct.

2016, pp. 28–31, doi: 10.1109/MTD.2016.11.

[59] R. Baggen, J. P. Correia, K. Schill, and J. Visser, “Standardized code quality benchmarking for

improving software maintainability,” Softw. Qual. J., vol. 20, no. 2, pp. 287–307, Jun. 2012, doi:

10.1007/s11219-011-9144-9.

[60] A. Mori et al., “Evaluating Domain-Specific Metric Thresholds: An Empirical Study,” in 2018

IEEE/ACM International Conference on Technical Debt (TechDebt), May 2018, pp. 41–50.

A study on the evolution of software quality and technical debt in open source applications

121

[61] L. Veado, G. Vale, E. Fernandes, and E. Figueiredo, “TDTool: Threshold Derivation Tool,” in

Proceedings of the 20th International Conference on Evaluation and Assessment in Software

Engineering, New York, NY, USA, 2016, pp. 24:1–24:5, doi: 10.1145/2915970.2916014.

[62] T. Döhmen, M. Bruntink, D. Ceolin, and J. Visser, “Towards a Benchmark for the Maintainability

Evolution of Industrial Software Systems,” in 2016 Joint Conference of the International Workshop

on Software Measurement and the International Conference on Software Process and Product

Measurement (IWSM-MENSURA), Oct. 2016, pp. 11–21, doi: 10.1109/IWSM-Mensura.2016.014.

[63] A. Yamashita, “Experiences from performing software quality evaluations via combining benchmark-

based metrics analysis, software visualization, and expert assessment,” in 2015 IEEE International

Conference on Software Maintenance and Evolution (ICSME), Sep. 2015, pp. 421–428, doi:

10.1109/ICSM.2015.7332493.

[64] P. Oliveira, F. P. Lima, M. T. Valente, and A. Serebrenik, “RTTool: A Tool for Extracting Relative

Thresholds for Source Code Metrics,” in 2014 IEEE International Conference on Software

Maintenance and Evolution, Sep. 2014, pp. 629–632, doi: 10.1109/ICSME.2014.112.

[65] P. Oliveira, M. T. Valente, and F. P. Lima, “Extracting relative thresholds for source code metrics,”

in 2014 Software Evolution Week - IEEE Conference on Software Maintenance, Reengineering, and

Reverse Engineering (CSMR-WCRE), Feb. 2014, pp. 254–263, doi: 10.1109/CSMR-

WCRE.2014.6747177.

[66] K. A. M. Ferreira, M. A. S. Bigonha, R. S. Bigonha, L. F. O. Mendes, and H. C. Almeida, “Identifying

thresholds for object-oriented software metrics,” J. Syst. Softw., vol. 85, no. 2, pp. 244–257, Feb. 2012,

doi: 10.1016/j.jss.2011.05.044.

[67] A. Mayr, R. Plösch, and C. Körner, “A Benchmarking-Based Model for Technical Debt Calculation,”

in 2014 14th International Conference on Quality Software, Oct. 2014, pp. 305–314, doi:

10.1109/QSIC.2014.35.

[68] T. L. Alves, C. Ypma, and J. Visser, “Deriving metric thresholds from benchmark data,” in 2010 IEEE

International Conference on Software Maintenance, Sep. 2010, pp. 1–10, doi:

10.1109/ICSM.2010.5609747.

Chapter VIII. Conclusions and Future Work

122

Chapter VIII. CONCLUSIONS AND FUTURE WORK

1. Conclusions and Contribution

The overall contribution of this dissertation comprises five (5) points; (a) it provides valuable undiscovered

information on how open source web applications evolve over time since web-based systems had received

limited attention in contrast to desktop ones, (b) considering the lack of empirical evidence on the relation

between TD amount and TD Interest, it investigates to what extent the presence of TD in software modules

slows down development pace by increasing the time and effort required for fixing bugs, (c) by

acknowledging that it is the actual craftsmanship of the developers that causes the accumulation of TD, this

work outlines the characteristics of the developers who tend to add TD in open source applications, (d) it

sheds light into the reasons that drive developers to agree or disagree with automatically detected TD whose

urgency is very often questionable by developers and (e) by acknowledging the lack of a basis regarding

the detection and prioritization of TD among the existing TD tools, the current work proposes a

methodology to extract a benchmark set of modules which are ranked as high-TD modules by three (3) TD

tools altogether.

The following sub-sections develop the conclusions and the contribution of the conducted research in the

context of the five goals of this dissertation. The goals were described, in summary, in the introductory

Chapter I.

1.1. Evolution of Web Applications

The evolution of web applications relying on scripting languages such as PHP has received limited

attention, despite the fact that PHP forms the basis upon which a huge number of web applications are

developed. Driven by the wide adoption of PHP in web technologies, this dissertation investigates the

evolution of 30 PHP web applications.

The main goal was to examine the validity of the eight laws of software evolution as stated by M. M.

Lehman. These laws have been extensively studied in the context of software evolution for projects

developed in compiled languages such as C and C++ and in a non-web related context.

The results confirm the validity of continuing growth and changes for the evolution of the examined PHP

applications. However, for the examined projects the 2nd law on increasing complexity and the 8th law on

the rapid decrease of the growth rate have not been confirmed. Although the root causes for this trend

require further investigation it is reasonable to assume that this phenomenon could be attributed either to

the programming language or to the practices in web application development.

The following implications of this part of dissertation can be identified.

With respect to software practitioners and managers:

- In the context of the investigation of Lehman’s laws of evolution the employed measures can be

used to assess the evolution of other products and examine whether any striking deviations from

Lehman’s observations are valid for their projects. Since most laws are not directly quantifiable,

software maintainers could employ the same methodology with respect to the applied trend tests

and indicators that have been analyzed for each law.

A study on the evolution of software quality and technical debt in open source applications

123

- Especially with respect to the evolution of quality vs. the increase of size contrasting the results for

their own projects to those of the examined applications could highlight issues that warrant

attention. For example, it should be regarded as a warning if their own PHP web projects do not

success in allowing continuous changes combined with a non-increasing complexity, since this

trend has been observed both for small and large open-source projects in this work. If, for example,

a development team observes that complexity is constantly increasing, whereas large and

complicated PHP systems manage to keep complexity stable or even reduce it over time, then,

quality assurance should focus on ways to address the increasing complexity.

- The results suggesting that PHP web applications conform to a lifecycle model where continuous

and steady development takes places (a finding confirmed by other studies as well), imply that

development teams should opt for agile development practices, where constant change is embraced,

rather than models assuming elaborate and preconceived specifications and planning.

- The results indicating that PHP web applications continuously change and grow, a finding shared

by all other studies as well, imply that project managers should anticipate increased future needs

for resources to maintain and sustain the existing systems.

With respect to software engineering researchers:

- Based on the findings indicating that PHP web applications do not suffer from software ageing,

researchers can focus on the reasons that drive this improved behavior of PHP projects and

investigate whether this is due to the language, the domain or the practices in web application

development.

- Researchers are encouraged to investigate whether the same trends are valid for the evolution of

systems written in other scripting languages so as to investigate whether similar maintenance

patterns can be attributed to the nature of the employed languages (i.e. scripting vs. compiled).

Finally, for the specific group of research efforts that investigate the validity of Lehman’s laws, empirical

findings that suggest that: a) several laws are consistently not confirmed (e.g. Law VIII), or that b) some

laws occasionally lead to inconclusive results (e.g. Laws IV and VII) or that c) some laws are quantified by

divergent approaches (e.g. Law IV), imply that the rules might need to be examined in the context of

contemporary software development and possibly be revisited.

1.2. Technical Debt and Corrective Maintenance

The results of this work suggest that TD amount is indeed correlated with maintenance effort. In particular,

developers appear to spend more time on fixing issues in files with high levels of accrued Technical Debt,

compared to files that present less TD. Therefore, project managers should take quality-oriented decisions

to deter the appearance of software units with increased technical debt.

With respect to practitioners, the results provide additional evidence that TD undermines software

maintenance and that it should be taken under consideration before any design and implementation decision.

Moreover, the domain of the study suggests that TD appears to be important in a web context as well.

Software engineers can take advantage of such empirical evidence to convince management about the

importance and need to manage TD.

From a research perspective, since there is sufficient empirical evidence of the impact of TD amount on

corrective maintenance, the need to devise a framework for assessing the associated risk and costs of

managing TD becomes essential.

Chapter VIII. Conclusions and Future Work

124

1.3. Personalized Assessment of Technical Debt Principal

Software development is a complex activity requiring experience, skills and significant mental effort.

Artifacts produced by developers are systematically analyzed in terms of quality, which recently is

successfully captured by the Technical Debt metaphor. This dissertation investigated, through a case study

on four open-source PHP projects, the relation between introduced TD principal and developers.

The findings confirm the belief that developers’ competencies vary, since the distribution of technical debt

among developers is highly imbalanced. Moreover, different developers introduce different technical debt

violations; however, some recurring violations can be identified across developers and projects.

Finally, there is no statistically significant evidence that more experienced developers introduce less

technical debt per line of code. Such findings but more importantly the ability to perform a personalized

assessment of technical debt can be a valuable tool for effective project management and self-assessment

and improvement.

With respect to software project managers, resource allocation can benefit by assigning artifacts with

increased technical debt interest probability to software engineers that tend to introduce less technical debt

principal or even remove technical debt. In a similar line of thought, and without any intent to punish

developers, managers could identify developers who impair software quality by introducing source code

violations and technical debt instances and try to upgrade their coding habits, either by placing them next

to more experienced developers or by calling them to reflect on their common violations. Appropriate

guidelines or tooling to avoid the accumulation of particular violations can also be developed, based on the

findings from previous projects.

With respect to software developers, the results on the personalized assessment of technical debt can be a

valuable self-improvement tool. Developers can identify recurring problems that they consciously or

unconsciously introduce as well as their locations in code. Moreover, critically analyzing their own

performance with respect to TD against the rest members of their team can highlight opportunities for

improvement.

1.4. Factors Affecting Decision to Repay Technical Debt

Existing software quality tools can yield extremely long lists of refactoring suggestions, deterring

developers from adopting them. Thus, there is a need to determine which refactoring opportunities make

sense for the developers depending on their background, nature and importance of the problem, surrounding

code context, etc. This dissertation investigated various factors that potentially drive open-source software

developers to accept or reject a suggestion to resolve a TD item.

According to results, developers appear to be largely influenced by the severity of a TD issue (i.e. Critical,

Major, Minor and Info as no Blocking issues were identified). For example, it is 21.5 times more probable

that a Critical issue will be classified as needing resolution compared to an Info issue. This finding is

reasonable, as a Critical code issue like “String literals should not be duplicated” is perceived as more

urgent to be resolved than an Info code issue like “Comments should not be located at the end of lines of

code”.

The broader characterization of the TD issue also seems to have an effect on the developer’s decision. For

example, if an issue pertains to Testability (like “Expressions should not be too complex”) it is 3.9 times

more probable to be considered as needing resolution than an issue related to Maintainability (like “Sections

of code should not be "commented out”).

A study on the evolution of software quality and technical debt in open source applications

125

Finally, developers do not tend to accept suggestions for revising their own code: it is 3 times more likely

that a developer who has not participated in a project agrees with a suggestion to remove a TD issue, than

a developer who is a contributor. This might be related to the particular practices within the community of

a software project where certain violations are not considered as harmful because the evolution of the

project might have been unaffected by their presence.

On the other hand, developers’ decisions appear to be unaffected by factors such as the frequency of

modifications to the file under study (reflected in the Files Modifications Ranking variable), the time

required to fix an issue and the total TD in the examined file.

These findings can be valuable to researchers and practitioners by guiding the design of more efficient tools

that suggest refactorings with a higher probability of being adopted by the developers.

1.5. Benchmark of Technical Debt Liabilities

The Technical Debt metaphor successfully captures, in monetary terms, the penalty that has to be paid

because of shortcuts during software development. These shortcuts are known to introduce architectural,

design and code inefficiencies in software systems and various TD tools aim at identifying them by testing

the source code against specific rulesets. However, TD tools provide different estimates of TD principal

pointing to different mitigation actions. These discrepancies make a lot of people in academia and practice

skeptical about the validity of existing TD tools and hinder the further development of TD research as no

ground truth for accurate TD instances can be established.

To address these limitations in the TD community an empirical study was performed whose goal was

twofold: (a) to determine the level of agreement among three well-known TD tools and (b) build agreement-

based benchmarks of high-TD classes/files from a dataset resulting from fifty (50) open-source projects.

Inter-rater agreement has been assessed, using Kendall’s W coefficient of concordance. To capture the

diversity of the examined tools with the aim of identifying representative class profiles, archetypal analysis

was conducted. Once the derived reference assessments are characterized, it is straightforward to extract

sets of classes exhibiting similarity to a selected profile (e.g. that of high TD levels in all employed tools)

and in this way establish a basis.

The findings of the inter-rater agreement analysis suggest that there is a statistically significant and strong

agreement among the three TD tools on the measurement of TD at class level. However, a substantial degree

of disagreement has also been observed for the measured TD level for numerous classes. The application

of the archetypal analysis revealed that three types of reference assessments can successfully capture the

spectrum of TD measurements provided by three tools: One set of archetypes represents classes identified

as high-TD modules by only one of the tools, the second profile encompasses classes for which two of the

tools agree on the measured TD level, while the final type of archetype signifies a high amount (or low

amount) of TD based on the results of all applied tools. Selecting the classes in the vicinity of the latter

archetype yields an agreement-based benchmark of classes tagged as high-TD by all tools. Such

benchmarks, beyond their value as fields of study for poor development practices that led to low quality

classes, can potentially form the basis for training more sophisticated TD identification and measurement

approaches.

Below, the main outcomes of this part of dissertation are discussed, from the perspectives of practitioners

and researchers.

Chapter VIII. Conclusions and Future Work

126

Overcome construct validity threats in research (researchers)

As mentioned in the introductory section, the research community within the TD field lacks an ultimate

process to accurately capture TD principal and thus, any empirical study or technique based on TD estimates

runs the risk of not accurately measuring the real-world phenomenon under study. Each tool follows its

own approach for detecting and measuring TD, based on a distinct ruleset, yielding a different amount for

the total TD, but also pointing to different parts of the code that need to be mitigated, compared to other

tools. There are several studies trying to identify high-TD modules and studies investigating the association

of accrued TD with other factors. However, such approaches are heavily dependent on the employed tool

for suggesting the ground truth, that is, the modules that actually have TD liabilities and need to be fixed.

Apparently, because each tool evaluates TD in a different way, the generalizability of these approaches is

threatened to a large extent.

The two aspects of the proposed methodology, that is, the estimation of inter-rater agreement among TD

tools and the use of archetypal analysis for identifying classes having a desired profile (e.g. high-TD levels

by all tools) can be applied by researchers to form a more reliable basis for their experiments. More

conveniently, researchers can also employ the already available benchmarks of high-TD classes (but also

classes having a different profile if needed) from the online TD Benchmarker web application.

Consequently, leveraging the power of multiple TD tools using the proposed approach can assist in the

mitigation of construct validity threats that is currently present in the field of TD.

Highlight critical modules with validated highest TD (practitioners)

Despite the widespread adoption of the TD metaphor, it is far from clear which tool IT managers should

integrate in the development and maintenance process. Employing more than one TD tool for the evaluation

of their software might be a costly option, since most of the existing tools are available only with a

commercial license. Moreover, each tool requires significant effort to deploy, properly configure and

familiarize with. However, even if a development team employs more than one tool, the union of all

findings, would result in an unrealistic amount of suggestions, rendering the process intractable. Based on

the proposed methodology, practitioners can highlight the classes that have been identified as high-TD

classes by all employed tools leading to a manageable number of target classes. Development teams can

take advantage of such agreement-based benchmark sets and focus only on the modules of their system that

are validated as high-TD modules. With respect to the benefit of the already derived benchmarks from the

analyzed systems, developers can focus on the classes close to the Max-Ruler archetype and gain insight

into the root causes of the accumulation of TD in these classes and potentially avoid non-ideal coding

practices in the future. Moreover, the non-unanimous archetypes (Rebel and Partner archetypes) can be

valuable, as well. The existence of these archetypes is the key factor that differentiates one tool from the

others. If only unanimous archetypes existed, this would mean that all tools generate the same results

pointing to the same classes/files with accrued TD principal. Through the exploration of classes/files in the

vicinity of non-unanimous archetypes development teams can gain insight into how TD tools differ on the

measurement and prioritization of TD principal. With such knowledge, developers can more confidently

invest in the TD tool that best fits their perception of when a class/file is tagged as high-TD (or low-TD).

Collection of available TD tools (researchers and practitioners)

Last but not least, another contribution of the current work is the localization and collection of available

TD assessment tools, as presented in Section 2. The list is by no means an exhaustive one, as numerous

other tools offer functionality related to the identification of code smells, anti-patterns, rule violations,

excessive metric values, etc. all of which are indicators of the existence of TD in software. Nevertheless,

the presented tools can serve as starting point both for practitioners who are searching for a TD tool to

A study on the evolution of software quality and technical debt in open source applications

127

integrate into their development process as well as researchers who are seeking an appropriate assessor of

TD principal. In both cases, the proposed methodology can assist in the critical appraisal of the agreement

or the diversity among tool findings.

2. Future Work

Existing TD tools generate large lists of detected TD violations which can be overwhelmingly long for large

projects. Many of the detected violations are considered as non-important by the developers or they are

even ignored. In an attempt to bring to the surface only violations that are indeed urgent to fix, in this

dissertation a benchmark set of high-TD classes was extracted, derived from the results of three major TD

tools. An extension of this work would be to enforce the credibility of the benchmark set with the inclusion

of more TD tools and more analyzed projects. This way, developer teams can be more confident on the

prioritization TD management. Moreover, the interpretation of the results considering different

perspectives, such as development context, role of developers (tester, designer, analyzer, etc.) was beyond

the scope of the current research. Nevertheless, this forms a really interesting area of future work. Another

interesting line of research would be to investigate to which degree TD tools are compliant with the

guidelines of the OMG Specification on Automated Technical Debt Measure. Furthermore, the nature of

the examined rules by each tool might be a decisive factor for the TD principal estimates per class/file.

Drilling down to the level of individual rule violations which are detected by each tool, can shed light into

the cause of their agreement or discrepancy. Another valuable line of future work would be to investigate

the similarity among the examined rules by mapping the rules adopted by each tool to the rules employed

by the other tools.

It is a common ground that web technology has boomed over the last five years with the advance in cloud

computing and containerization. As a result, more languages and technologies have gained a respected

share in the global pie of web content. Modern web applications adopt the microservices design where each

microservice can be written in any language. To this end, a valuable future work would be to expand the

study on the evolution of software quality and technical debt to web applications that combine different

languages and technologies. Another interesting line of further research would be to compare the evolution

of such multi-paradigm web applications against that of "conventional" desktop systems, in order to

investigate whether there are differences in the trends of quality and TD. Such evidence would be helpful

in determining whether development practices for web applications adhere to the principles of building

large-scale, multi-person, multi-version software systems or whether the benefits is the result of their

architecture, which is often strictly dictated by the platforms being used.

The results of the current research regarding the Lehman's Laws of software evolution do not provide clear

evidence that open source web applications suffer from the so-called phenomenon of software ageing. The

deeper investigation on the factors that prevent the accumulation of TD in some systems can be a valuable

research area. For example, which is the best practice to manage TD? Perform mitigation actions (i.e.,

refactor, rewrite code) or take proactive measures to prevent the introduction of TD in the first place (e.g.

by integrating tools with IDEs and develop code step by step)? Taking also into account the cost of each

TD management approach could lead to an exploration of the tradeoffs between software quality

improvement and the required effort. Many of the existing approaches, simply assume that achieving a non-

optimal software quality (i.e. not repaying the principal of TD) will result in increased maintenance effort

(as captured by TD interest). However, one should also consider that any savings from not addressing TD

principal, and especially in large corporation, might have been directed to other sorts of investments, like

the development of additional features or produces, or even to conventional financial investments.

Chapter VIII. Conclusions and Future Work

128

Finally, acknowledging that it is the actual craftsmanship of the developers that cause the accumulation of

TD, the current dissertation investigated the relation between developers’ characteristics and their tendency

to introduce code inefficiencies. The outcomes suggest that a personalized assessment of TD can be a

meaningful research direction that unveils interesting relations that can guide Technical Debt Management.

Therefore, the topic deserves further investigation. Some tentative future research direction would be a

personalized assessment of TD interest, a detailed analysis of specific violations with respect to their

criticality, and an elaborate personality characteristics model that will provide a more accurate profile of

TD-prone developers.

129

Publications

The work of this dissertation has been documented in a number of papers that have been published in

International Conferences and Journals.

1. Journals

J1. Amanatidis, Theodoros & Chatzigeorgiou, Alexander & Ampatzoglou, Apostolos. (2017). The

Relation between Technical Debt and Corrective Maintenance in PHP Web Applications.

Information and Software Technology. 87. 10.1016/j.infsof.2017.05.004.

J2. Amanatidis, Theodoros & Chatzigeorgiou, Alexander. (2016). Studying the Evolution of PHP Web

Applications. Information and Software Technology. 72. 48-67. 10.1016/j.infsof.2015.11.009.

Submitted for publication and revised (awaiting final response)

J3. Amanatidis, Theodoros & Mittas, Nikolaos & Moschou, Athanasia & Chatzigeorgiou, Alexander

& Ampatzoglou, Apostolos & Angelis, Lefteris. (2020). Evaluating the Agreement among

Technical Debt Measurement Tools: Building an Empirical Benchmark of Technical Debt

Liabilities. Submitted for publication to the Empirical Software Engineering Journal (EMSE).

2. Conferences

C1. Amanatidis, Theodoros & Mittas, Nikolaos & Chatzigeorgiou, Alexander & Ampatzoglou,

Apostolos & Angelis, Lefteris. (2018). The developer’s dilemma: Factors affecting the Decision to

Repay Code Debt. Proceedings of the 2018 International Conference on Technical Debt

(TechDEBT), Gothenburg, Sweden. 10.1145/3194164.3194174.

C2. Amanatidis, Theodoros & Chatzigeorgiou, Alexander & Ampatzoglou, Apostolos & Stamelos,

Ioannis. (2017). Who is Producing More Technical Debt? A Personalized Assessment of TD

Principal. Proceedings of the 9th International Workshop on Managing Technical Debt (MTD’ 17),

Cologne, Germany 10.1145/3120459.3120464.

C3. Chatzigeorgiou, Alexander & Ampatzoglou, Apostolos & Ampatzoglou, Areti & Amanatidis,

Theodoros. (2015). Estimating the Breaking Point for Technical Debt. Proceedings of the 7th

International Workshop on Managing Technical Debt (MTD’ 15), Bremen, Germany

10.1109/MTD.2015.7332625.

130

References

To facilitate the tracking of the bibliography by the reader, all references (IEEE Style) are listed in the end

of each chapter.

	Summary
	Contents
	List of Figures
	List of Tables
	Chapter I. INTRODUCTION
	1. Software Evolution and Technical Debt
	2. Dissertation Goals and Research Questions
	2.1. Evolution of Web Applications
	2.2. Technical Debt and Corrective Maintenance
	2.3. Personalized Assessment of Technical Debt Principal
	2.4. Factors Affecting Decision to Repay Technical Debt
	2.5. Benchmark of Technical Debt Liabilities

	3. Dissertation outline

	Chapter II. BACKGROUND ON TECHNICAL DEBT
	1. Foreword
	2. Key Components of TD
	3. What TD really is
	4. TD Types
	5. Activities and Strategies for Managing TD
	6. Tools assessing TD (TD tools)
	7. A comment on Technical Debt Management
	References

	Chapter III. EVOLUTION OF WEB APPLICATIONS
	1. Introduction
	2. Related Work
	3. Case Study Design
	3.1. Goal and Research Question
	3.2. Selection of Cases
	3.3. Employed Process and Tools
	3.4. Data Analysis

	4. Results and Discussion
	4.1. Law I: Continuing Change
	4.2. Law II: Increasing Complexity
	4.3. Law III: Self-Regulation
	4.4. Law IV: Conservation of Organizational Stability
	4.5. Law V: Conservation of Familiarity
	4.6. Law VI: Continuing Growth
	4.7. Law VII: Declining Quality
	4.8. Law VIII: Feedback System

	5. Overview and Comparison to Previous Work
	5.1. Summary of Results
	5.2. Comparison to Previous Work

	6. Implications for Researchers and Practitioners
	7. Threats to Validity
	8. Conclusions
	References

	Chapter IV. TECHNICAL DEBT AND CORRECTIVE MAINTENANCE
	1. Introduction
	2. Case Study Design
	2.1. Goal and Research Questions
	2.2. Cases and Units of Analysis
	2.3. Data Collection
	2.4. Data Analysis

	3. Results
	4. Threats to Validity
	5. Discussion and Conclusions
	References

	Chapter V. PERSONALIZED ASSESSMENT OF TECHNICAL DEBT PRINCIPAL
	1. Introduction
	2. Related Work
	3. Case Study Design
	3.1. Research Objectives and Research Questions
	3.2. Case and Units of Analysis
	3.3. Variables and Data Collection
	3.3.1. Variables
	3.3.2. Data Collection

	3.4. Data Analysis

	4. Results and Discussion
	4.1. Distribution of TD among Developers
	4.2. TD Violations per Developer
	4.3. TD vs. Developer Maturity

	5. Implications of the Study
	6. Threats to Validity
	7. Conclusions
	References

	Chapter VI. FACTORS AFFECTING DECISION TO REPAY TECHNICAL DEBT
	1. Introduction
	2. Related Work
	3. Study Design
	3.1. Personalized report to participants
	3.2. Set-up of the Study

	4. Results and Discussion
	4.1. Statistical Analysis
	4.2. Discussion of the Results

	5. Threats to Validity
	6. Conclusions
	References

	Chapter VII. BENCHMARK OF TECHNICAL DEBT LIABILITIES
	1. Introduction
	2. TD Assessment Tools
	3. Case Study Design
	3.1. Goal and Research Questions
	3.2. Selection of Cases
	3.3. Data Collection
	3.4. Data Analysis Methodology
	3.4.1. Inter-rater Agreement (RQ1)
	3.4.2. Benchmarking through Archetypal Analysis (RQ2 – RQ4)

	4. Results and Discussion
	4.1. RQ1: To what extent do the assessors (tools) agree in the ranking of classes in terms of TD measurement?
	4.2. RQ2: How many archetypes (reference assessments) are required to capture the diversity of the tools?
	4.3. RQ3: Which are the characteristics of the extracted archetypes?
	4.4. RQ4: Which classes should be selected to form an agreement-based benchmark of top-TD modules?

	5. Implications to Practitioners and Researchers
	6. Threats to Validity
	7. Related Work
	7.1. Comparison of Tools measuring Technical Debt
	7.2. Benchmarks in Software Maintenance

	8. Conclusions and Future Work
	References

	Chapter VIII. CONCLUSIONS AND FUTURE WORK
	1. Conclusions and Contribution
	1.1. Evolution of Web Applications
	1.2. Technical Debt and Corrective Maintenance
	1.3. Personalized Assessment of Technical Debt Principal
	1.4. Factors Affecting Decision to Repay Technical Debt
	1.5. Benchmark of Technical Debt Liabilities

	2. Future Work

	Publications
	1. Journals
	2. Conferences

	References

