
University of Macedonia

Doctoral Thesis

Design and development of a hybrid
mathematical programming algorithm

Author:

Themistoklis Glavelis

Supervisor:

Prof. Nikolaos Samaras

A thesis submitted in fulfilment of the requirements

for the degree of PhD Thesis

in the

Algorithmic Operations Research Group (algOR)

Department of Applied Informatics

July 2019

http://www.uom.gr
http://users.uom.gr/~glavelis/
http://users.uom.gr/~samaras/
http://algor.uom.gr
http://www.uom.gr/index.php?newlang=eng&tmima=6&categorymenu=2

Declaration of Authorship

I, Themistoklis Glavelis, declare that this thesis titled, ’Design and development of a

hybrid mathematical programming algorithm’ and the work presented in it are my own.

I confirm that:

� This work was done wholly or mainly while in candidature for a research degree

at this University.

� Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated.

� Where I have consulted the published work of others, this is always clearly at-

tributed.

� Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

i

“The Purpose of Mathematical Programming is Insight, not Numbers.”

Arthur Geoffrion (1976)

University of Macedonia

Abstract

Department of Applied Informatics

PhD Thesis

Design and development of a hybrid mathematical programming algorithm

by Themistoklis Glavelis

One of the most significant and well-studied optimization problems is the Linear Pro-

gramming problem (LP). LP consists of optimizing, (minimizing or maximizing) a linear

function over a certain domain. The domain is given by a set of linear constraints. The

presence of effective presolve techniques is of great importance for every linear program-

ming solver. The main goal of the presolve session is to reduce the problem’s size and to

determine whether the problem is unbounded or infeasible. Computational results with

a set of optimal benchmark problems from NETLIB are also presented. Finally, simplex

algorithm has been used in order to solve benchmarks before and after a new proposed

presolve technique has been performed to LPs.

Moreover, an experimental investigation of a variation of Primal-Dual Exterior Point

Simplex Algorithm (PDEPSA) is presented and it is called Primal-Dual Interior Point

Simplex Algorithm (PDIPSA). In order to gain an insight into the practical behaviour

of the proposed algorithm, we have performed some computational experiments. Our

computational results demonstrate that PDIPSA is faster comparable with simplex al-

gorithm and primal exterior point algorithm.

The main aim of this thesis is to present a hybrid algorithm which combines the strengths

of Interior Point Methods (IPMs) and Exterior Point Simplex Algorithms (EPSAs). The

hybrid algorithm takes full advantage of IPM at the first iterations which lead to sig-

nificant enhancement of the objective function’s value. The hybrid algorithm uses the

Primal Dual Interior Point Simplex Algorithm (PDIPSA) which is a variation of EPSAs

and computes a direction to the feasible region according to the interior point that was

calculated by IPM. Furthermore, a computational study is presented with experiments

over the Netlib set (optimal, Kennington and infeasible LPs) and the Misc section of

Mészáros collection.

Supervisor: Samaras Nikolaos

Title: Professor

http://www.uom.gr
http://www.uom.gr/index.php?newlang=eng&tmima=6&categorymenu=2

Acknowledgements

I owe my deepest gratitude to my supervisor Prof. Nikolaos Samaras for his encourage-

ment, guidance, and support throughout this entire process. I am grateful to him for

his endless patience and enthusiasm for the topic from our first meeting many years ago

to our final editing days. His great experience and expert knowledge in the field of Lin-

ear Programming was always a great motivation and without his invaluable advice and

guidance the completion of this thesis would be impossible. He is not only a valuable

associate and instructor, but also a lifetime friend.

I am also grateful to Prof. Konstantinos Paparrizos who was always willing to take time

out of his busy schedule to help me with his ideas whenever I needed them. I would also

like to thank Prof. Andreas Georgiou for agreeing to serve on my committee, reviewing

my work and his comments were really valuable.

Throughout this journey I have had the pleasure of working with excellent colleagues

from all over the globe. Each and every one of them has helped in my understanding

of the linear programming. In particular, I would like to point out a few people that

helped me along the way and I spent much time with them on a daily basis as being

member of the Algorithmic Operations Research Group (AlgOR). I would like to thank

especially my colleague Nikolaos Ploskas, I know him for the last fifteen years and

he is an invaluable friend and his support was significant even when the situations

were no so easy for me. Moreover, I would like to express my thanks to my colleagues

Charalampos Triantafyllidis, George Geranis and Dorothea Petraki for their cooperation

and partnership.

Finally, and perhaps most important, this thesis would not have been possible without

the unquestioning support, sacrifice, and patience of my family. Thanks in particular

to my father, George, my mother Kondylio, my siblings Fillipos and Anastasios. Last

but not least, I owe a special thanks to Anastasia without her endless support and

understanding not only this Thesis but nothing would be completed.

iv

Contents

Declaration of Authorship i

Abstract iii

Acknowledgements iv

Contents v

List of Figures vii

List of Tables viii

1 Introduction 1

1.1 Contributions of this thesis . 1

1.2 Operations Research . 2

1.3 Overview . 4

2 Linear Programming 7

2.1 Introduction . 7

2.2 History of Linear Problem . 8

2.3 The Linear Problem . 11

2.4 Duality . 15

2.5 Geometry . 17

3 Linear Programming Algorithms 20

3.1 Introduction . 20

3.2 Simplex Algorithm . 20

3.3 Exterior Point Simplex Algorithm . 29

3.4 Interior Point Methods . 40

3.5 Conclusions . 46

4 Presolve Techniques and A New Method 47

4.1 Introduction . 47

4.2 Background . 49

4.3 Scaling Techniques . 50

4.3.1 Equilibration . 51

4.3.2 Geometric Mean . 51

v

Contents vi

4.3.3 Hybrid . 51

4.4 Eliminate Empty Rows and Columns . 52

4.5 Eliminate Singleton Rows . 52

4.6 Eliminate Singleton Inequality Rows . 53

4.7 Eliminate Dual Singleton Inequality Row 54

4.8 Eliminate Free Singleton Column . 54

4.9 Eliminate Redundant Bounds from Constraints 54

4.10 Eliminate Linearly Dependent Rows . 55

4.11 A New Presolve Technique - Eliminate Redundant Columns 56

4.12 Computational Study . 63

4.12.1 Statistics Before the Presolve Analysis 64

4.12.2 Statistics After the Presolve Analysis 67

4.12.3 Statistics For New Presolve Technique 70

4.13 Conclusions . 74

5 Primal-Dual Interior Point Simplex Algorithm 76

5.1 Introduction . 76

5.2 PDEPSAs . 77

5.3 Geometrical Representation . 79

5.4 Description of PDIPSA . 80

5.5 Proof of Correctness . 83

5.6 Revised Form and Solution of General LPs 84

5.7 Computational Study . 89

5.8 Conclusions . 94

6 Hybrid Algorithm 95

6.1 Introduction . 95

6.2 Description of the Algorithm . 96

6.3 Proof of Correctness . 103

6.4 Computational Study . 105

6.5 Conclusions . 111

7 Conclusions 113

7.1 Results . 113

7.2 Future Research . 115

Bibliography 116

List of Figures

1.1 The Operations Research Approach . 4

2.1 Example of feasible region . 18

2.2 Example of Feasible Region Bounded . 18

2.3 Example of Feasible Region Unbounded 19

2.4 Example of Feasible region empty . 19

4.1 Constraints Reduction . 72

4.2 Variables Reduction . 72

4.3 Non-Zeros A Reduction . 73

5.1 The geometrical representation . 78

5.2 Stalling . 80

5.3 Cycling . 81

5.4 Speed-up ratios for n× n LPs and 5% density. 93

5.5 Speed-up ratios for n× n LPs and 10% density. 93

5.6 Speed-up ratios for n× n LPs and 20% density. 94

6.1 Performance profile based on the execution time of the three algorithms . 109

vii

List of Tables

2.1 Diet problem . 12

3.1 Revised Simplex Algorithm . 24

3.2 Exterior Point Simplex Algorithm . 34

3.3 Mehrotra’s Predictor-Corrector Method 44

4.1 Description of the Computing Environment 63

4.2 Optimal Benchmarks: Statistics Before the Presolve Analysis 65

4.3 Optimal Benchmarks: Statistics After the Presolve Analysis 68

4.4 Optimal Benchmarks: Statistics After the New Presolve Technique 70

4.5 Optimal Benchmarks: New Presolve Technique Reduction and Rest Pre-
solve Technique Reduction . 71

4.6 Efficiency of the New Presolve Technique 74

5.1 Primal–Dual Exterior Point Simplex Algorithm 79

5.2 Primal-Dual Interior Point Simplex Algorithm 82

5.3 Results for randomly generated sparse LPs with dimension n × n and
density 5% . 90

5.4 Results for randomly generated sparse LPs with dimension n × n and
density 10% . 91

5.5 Results for randomly generated sparse LPs with dimension n × n and
density 20% . 92

6.1 Hybrid Approach Combining Mehrotra’s Predictor-Corrector Method and
PDIPSA . 97

6.2 Statistics of the Netlib (optimal and Kennington LPs) and Mészáros LPs 105

6.3 Execution time and number of iterations 109

viii

Chapter 1

Introduction

1.1 Contributions of this thesis

The current thesis provides contributions to the following fields:

� Despite the explosion in computational power of hardware, the presence of effective

presolve techniques is of great importance for every linear programming solver. The

main goal of the presolve session is to reduce the problem’s size and to determine

whether the problem is unbounded or infeasible. The implementation of presolve

techniques can lead to significant reduction of data size in a Linear Programming

problem (LP) and as a result to significant reduction of execution time. One of the

goals of the current thesis is to present a new presolve technique and to perform

a computational study. Computational results with a set of optimal benchmark

problems from NETLIB are also presented. The computational study includes

statistics of benchmarks before the application of the presolve session, statistics

after the application of the presolve session and the impact of the proposed new

presolve technique. Finally, simplex algorithm has been used in order to solve

benchmarks before and after the new presolve technique has been performed. On

the average the new presolve technique has achieved 5.47% reduction in the number

of iterations and 5.99% reduction in the cpu time.

� Another aim of this thesis is to present an experimental investigation of a Primal-

Dual Exterior Point Simplex Algorithm (PDEPSA) for LPs. There was a huge gap

between the theoretical worst case complexity and practical performance of simplex

type algorithms. PDEPSA traverses across the interior of the feasible region in

an attempt to avoid combinatorial complexities of vertex following algorithms. In

order to gain an insight into the practical behaviour of the proposed algorithm,

1

Chapter 1. Introduction 2

we have performed some computational experiments. Our computational results

demonstrate that PDEPSA is faster than the simplex algorithm and the primal

exterior point algorithm. Moreover, a clear advantage is obtained by PDEPSA in

the number of iterations and the CPU execution time.

� Furthermore, the main aim of this thesis is to present a hybrid algorithm which

combines the strengths of Interior Point Methods (IPMs) and Exterior Point Sim-

plex Algorithms (EPSAs). The hybrid algorithm takes full advantage of IPM at

the first iterations which lead to significant enhancement of the objective func-

tion’s value. However, it has been observed that after of some iterations, IPMs do

not converge fast to the optimal solution; at this stage the EPSA is applied. IPMs

move inside the feasible region from one interior point to another. Our variation

of EPSA demands an initial interior point, this starting point is crucial and it

is computed by IPM. The hybrid algorithm uses the Primal Dual Interior Point

Simplex Algorithm (PDIPSA) which is a variation of EPSA and computes a direc-

tion to the feasible region according to the interior point that was calculated by

IPM. Also a computational study is presented with experiments over the Netlib

set (optimal, Kennington and infeasible LPs) and the Misc section of Mészáros

collection. Computational results show algorithm’s superiority over the Simplex

Algorithm and EPSA.

1.2 Operations Research

Operations Research (OR) is the science which is responsible for problem formulation

and solutions which can conclude to improvements to the process of appropriate decision

making. A common misunderstanding is that OR is a collection of mathematical tools.

Although OR uses a variety of mathematical techniques and models, it is applicable to

a much broader field. Since its first steps, OR has significantly contributed in many

factors such as industry, managerial and decision-making procedures, which is the main

activity of an engineer or a manager. The main goal of OR is to analyse and optimize

the performance of real life problems.

OR is a relatively new area of research and it puts its fundamental principles in the last

fifty years while its origins stems from the latter half of World War II. Despite the fact,

that it started its first steps in World War II, OR met rapid expansion and it is applied

to a vast number of problems during the last decades. Nowadays, OR is an independent

well-defined research field and its procedures are used in a wide range of application

areas.

Chapter 1. Introduction 3

It is well known that the origins of OR is in England during World War II when Royal

Air Force attempted to implement an optimal solution for its’ radar defence systems.

The main goal of this project was to improve the operational efficiency of these systems.

Consequently, this procedure of making a research of how to make a process to run more

efficiently soon started to expand into other areas of the war. USA took the opportunity

and USA Navy used the principles of OR in the antisubmarine warfare.

With the end of World War II, OR spread rapidly among the researchers who saw many

common characteristics between the problems that military faced and the problems of

real life in industry. Industrialization encouraged and gave a significant boost to OR

to evolve its principles and methods while the allocation of limited resources to various

activities arose as one of the most significant industrial problems. Furthermore, the

increasing specialisation fed and made more difficult the attempt to locate the optimal

assignment of industry resources in order to increase the productivity. Consequently,

over the next years OR introduced and increased its role in a wide variety of issues in

transportation, production planning, computer operations, financial assets, risk manage-

ment and many other fields in business productivity. Except for the industrial sector,

OR techniques has been applied in sectors like health care, energy policy, defence and

water resource planning.

Consequently, OR is one of the most significant tools in improving the process of decision

making and its framework should be clear in order to be applied to a generic problem.

This framework is constituted of seven sequential steps: Orientation, Problem Definition,

Data Collection, Model Formulation, Solution, Model Validation and Output Analysis,

and Implementation and Monitoring. These seven steps is a circle and each step feeds

information to the next step and as a result a continuous feedback as it is shown in the

next Figure.

This work concentrates on the stage of computing the optimal solution when the problem

is represented by a model. In the past, researchers have spent a lot of their efforts in this

field and as a result nowadays there is a large amount of methods for this purpose. As

it is mentioned before, in OR the problem is expressed in the form of a model and linear

programming is a technique for identifying the best choice based on certain criteria.

More specific, the goal of linear programming is to optimise some criteria within some

constraints. The model consists of an objective function which represents profit, loss

or return on investment and a number of constraints in the allocation of the available

resources. There is a huge number of methods to solve a LP. The main goal of this

thesis is to introduce a new approach and method for solving a LP, at the same time of

improving the computational performance in contrast to well-known techniques.

Chapter 1. Introduction 4

Figure 1.1: The Operations Research Approach.

1.3 Overview

In Chapter 2, there is the presentation of the fundamentals of linear programming and

its evolution through the last decades. Moreover, the mathematical model of LPs and

notations are included. We discuss the significance of linear programming in the attempt

of solving real life problems. In addition, we describe the crucial characteristics of

duality and how it contributed to the improvements of linear programming algorithms.

At last, we mention the significant geometric interpretations of LPs which can reveal

many interesting attributes of linear programming.

In Chapter 3, we present the main categories of linear programming algorithms which are

mainly separated into 2 different families: (i) simplex-type algorithms, and (ii) interior

point methods. Moreover, we discuss the primal revised simplex algorithm, the most

widely-used method to solve a LP and we present the primal exterior point simplex

algorithm, a simplex-type algorithm that uses two paths to reach the optimal solution.

Furthermore, a brief overview of basic concepts of interior point methods is included

with the Mehrotra’s Predictor-Corrector method, a primal-dual infeasible interior point

Chapter 1. Introduction 5

method. For each one of these three algorithms, we present its main steps and some

illustrative examples in order to demonstrate theirs steps and processes.

In Chapter 4, we describe the significance of preprocessing in linear programming. The

main reason for making the presence of preprocessing necessary is the numerical difficul-

ties that a software application may face while solving a large scale LP. Consequently,

we implement three different scaling techniques and nine presolve methods: (i) elimi-

nation of empty rows, (ii) elimination of empty columns, (iii) elimination of singleton

equality rows, (iv) elimination of singleton inequality rows, (v) elimination of dual single-

ton inequality rows, (vi) elimination of implied free singleton columns, (vii) elimination

of implied bounds from constraints, (viii) making coefficient matrix A structurally full

rank, (ix) elimination of linearly dependent rows that aim to reduce the size of a LP.

Moreover, the scaling process includes 3 different methods, the equilibration, the geo-

metric mean and the hybrid technique which combines the first two methods. Finally,

a new presolve technique is introduced with significant computational results from the

analysis of primal feasibility conditions.

In Chapter 5, PDIPSA is presented, a variation of Primal Dual Exterior Simplex Algo-

rithms which have been proved extremely computational effective in practice. PDIPSA’s

main difference stems from the fact that it traverses across the interior of the feasible

region in an attempt to avoid combinatorial complexities of vertex following algorithms.

Furthermore, this difference is clearly demonstrated through a geometric example which

illustrates the new approach which is included by PDIPSA in contrast to others PDEP-

SAs. Moreover, we include the proof of correctness of the algorithm and we present the

method for solving general LPs. Finally, a computational study is presented to highlight

the efficiency of the algorithm.

In Chapter 6, we present a hybrid algorithm which is a combination of an interior point

method and an exterior point simplex algorithm. The idea of combining these two

different types of methods stemmed from the observation that IPMs are able to spot

very fast feasible solutions with good objective values, but they need a relatively long

time to converge to the optimal solution. In order to take full advantage of EPSA, we

used the PDIPSA which is described in Chapter 5. Primal-dual algorithms can deal

more effectively with the problems of stalling and cycling and as a result, they are able

to improve the performance of EPSA. The IPM, which we use in our hybrid algorithm,

is Mehrotra’s Predictor-Corrector method, an infeasible primal-dual IPM. The main

advantage of this hybrid algorithm is that it exploits the strengths of both IPM and

PDIPSA. In the first iterations, IPM moves inside the feasible area and computes interior

points. Finally, in order to gain an insight into the practical behaviour of the proposed

Chapter 1. Introduction 6

algorithm, we have performed a computational study on a set of benchmark problems

(Netlib, Kennington, Mészáros).

In the last Chapter, we conclude the main results of the current thesis and we present

some ideas for further work in the future.

Chapter 2

Linear Programming

2.1 Introduction

The transformation of a real-life problem into a mathematical model is the main idea

of linear programming. Moreover, linear programming focus on the process of analysing

and solving the model with designing algorithms which can conclude to the solution of

initial real-life problem. The main parts of the mathematical model is the objective func-

tion which has to be optimized(minimized or maximized), a finite number of constraints

and a finite number of decision variables.

Linear programming is the main part of management science and operations research.

Furthermore, decision support systems base on linear programming models for the quan-

titative analysis of real-life problems and this is the main reason for being so widely

known among the scientific community. Some of the most interesting issues that benefit

from linear programming are the economic optimization problems, strategic planning

problems and algorithm analysis. Apart from its practical applications, linear program-

ming includes significant aspects from theoretical point of view referring to algorithmic

and algebraic concepts with geometric angles of incidences. Consequently, many re-

searchers focused their attention on linear programming and how they could enhance

algorithms and computational methods in order to formulate and solve problems from

very different scientific areas. However, many concerns arise especially when the prob-

lem’s size grows and they are referring to accuracy errors, optimal data structures and

implementation issues. Except for this, linear programming also includes significant ge-

ometric interpretations, for example in small size problems, a graphical representation

of the objective function and the feasible region can easily reveal the optimal solution

of the initial model.

7

Chapter 2. Linear Programming 8

As it mentioned previously, linear programming refers to an optimization problem with

three essential ingredients: a variable vector x consisting of a set of unknowns to be

determined, an objective function of x to be optimized, and a set of constraints to be

satisfied by x and all of them are linear inequalities and/or equalities. Consequently,

linear programming is the subject of studying and solving LPs. The needs of the second

World War and the necessity of solving military logistic problems introduced the fun-

damental principles of linear programming. However, its applications are still used by a

great number of sectors both in scientific community and in industrial area.

2.2 History of Linear Problem

The search of the origin and the development of every research area through decades

are always interesting and beneficial for everyone. Likewise, the first steps of linear

programming were made in early 1820s from the famous French mathematician J.B.J.

Fourier who gave his name to mathematical series and from V. Poussin in early 1910s

but both of their works went unnoticed. Another significant academician was L.V. Kan-

torovich who published the book Mathematical Method of Production Management and

Planning in 1939 [58] and he presented mathematical models and how real-life problems

could be solved. Moreover, F.L. Hitchcock introduced on his paper the transportation

problem in 1941 [52]. All of these research work remained unnoticed until the late 1940s

and early 1950s when simplex method triggered the spread of linear programming.

World War II was a crucial point for the development of linear programming, Operations

Research and Optimization have greatly benefited. Despite the fact that World War II

was the deadliest military conflict in history in absolute terms of total dead and over 60

million people were killed, which was about 3% of the 1940 world population, it gave

rise to a large number of scientific areas.

After the end of the World War II, George B. Dantzig who already had received his

PhD, was a mathematical advisor to U.S. Air Force Controller in 1946 [22]. His main

challenge was to create a process for human assignment to assembly line and to optimize

the logistical supply program. After the analysis stage, he created a model without an

objective function. In 1947, Dantzig proposed an algorithm with the name Simplex in

tableau format which is recognized as one of the top algorithms of the 20th century [24]

[25] [26] and it is marked as the birth of linear programming. The original example of

Dantzig included the best assignment of 70 people to an equal number of jobs. From

one point of view, the problem is a 1-to-1 correspondence between people and the jobs.

In practice, there are 70! activities and it is impossible to determine the best among

them by comparing all, although the different assignments are a finite number. The

Chapter 2. Linear Programming 9

specific example clearly shows the difficulties that decision makers faced before 1947,

where experience and mature judgement were the only tools for a ’good’ solution which

was not the optimal in many cases.

As it is known, the electronic computer provoked dramatical changes in all scientific

areas and of course to linear programming and the simplex method. The first attempts

took place at National Bureau of Standards in USA by A. Hoffman and his team. In

1954 Orchard-Hays[85] focused on introducing a simplex method based on commercial

software and his work were further developed by man researchers during the next years.

From its first steps, linear programming has significant applications like in military,

economic and industrial. Some of the most well known problems which can be solved

with the linear programming are the transportation[52] and the diet problem[108].

In this two decades, 50’s and 60’s, three main new areas attract the academic attention,

the matrix factorization theory, network flows and the duality theory [69] [71] [1]. Later,

the matrix inversion became the subject for serious research work and the handling of

sparse matrices arose and finally became part of all the commercial software [103] [104].

Consequently, a big discussion about the practical performance of the Simplex method

started and there were many attempts to estimate the execution time of the algorithm

proportionally to the problem size [61] [62] [84]. The simplex algorithm has exponential

time computational complexity [64], when a polynomial time one is the desirable com-

plexity. In contrast to simplex, the former Soviet Union mathematician L.G. Khachiyan

[63] proposed a first polynomial time LP solver, the ellipsoid algorithm. However, it’s

computational performance were poorer than the Simplex’s, due to the fact that the

polynomial time complexity is the worst case complexity and in practice it is rare.

In 1984, Indian mathematician Narendra Karmarkar (1984) introduced an Interior Point

Method (IPM) which was promisingly fast in practice and its complexity was a poly-

nomial time. Karmarkar’s method was based on previous of affine scaling algorithm

[28], [29], the method of logarithmic barriers of Frisch [35] [36] and the method of the

central path of Huard [54] [55]. The specific algorithm uses a set of interior points and

it computes the optimal solution within few iterations in most cases.

The most common variation of IPMs is the primal dual algorithms where both the primal

and the dual problem are solved simultaneously. Moreover, it has been observed that

most of the IPMs are infeasible in nature, they start from an infeasible point and they

enter the feasible region after of some iterations. Lustig [70] were the first who presented

infeasible IPMs. Moreover, the primal-dual predictor-corrector path by Mehrotra [79] is

the most well known variant of IPMs and the LinProg optimization package of Matlab

is based on one of these variants.

Chapter 2. Linear Programming 10

Meanwhile, the development of Simplex method continued and Harris [51] presented new

pivot rules. After of few years, recurrence formulas with promising numerical results were

presented by Forrest and Goldfarb [33]. As it is mentioned previously, the worst case

complexity is not very common in real experience and Borgwardt [14] [15] showed that

the average time complexity of Simplex method is closer to polynomial rather than to

exponential. In addition to this, Smale [106] [107] using another pivot rule agreed with

the previous statement.

In the late 80’s Exterior Point Simplex Algorithms (EPSA) arose in literature, they were

a new type of Simplex and they based on two paths by Paparrizos [91]. However, after of

few years Paparizzos presented an EPSA for a network optimization problem, applicable

to the assignment problem. There are many research papers which describe variants of

EPSA family algorithms [6] [20]. Morever, Paparrizos introduced the generalization of

EPSA for LP later [92] and a full analysis of EPSA family there is in Paparrizos et al.

[94]. EPSA in contrast to Primal Simplex Algorithm uses two paths to converge to the

optimal solution, the first path constitutes of infeasible points and the other of feasible

points. The most significant advantage of the two paths method is that EPSA does not

move from one adjacent vertex to another but it visits infeasible points and as a result

it can calculate the optimal solution in less steps (iterations).

Furthermore, there are two crucial points for improving the computational behaviour of

Simplex Algorithm, the initial basic partition and the pivoting rule which refer to the

choice of potential entering and leaving variables of the LP. The pivoting rule affects

dramatically the number of iterations which needed in order to reach the optimal solu-

tion and it is of great value, especially for large scale LPs. There are many and great

papers [76] [87] [111] about pivoting rules which focused on enhancing the computational

performance of Simplex. Pan presented great works [88] [89] with promising computa-

tional performance against other pivoting rules like Dantzig’s. Moreover, Arsham et al.

[7] proposed a total new technique which is independent of artificial variables. Through

decades, there were many new methods for pivoting [90] and some of them consisted

of interior and boundary points and they were the first immature attempts to combine

completely different approaches. In addition, Malakooti and Najjar [75] [83] presented

a combination of IMPs and boundary methods like Simplex with significant results and

its main advantage is its capability to avoid large number of boundary points.

The current thesis presents variations of EPSA and it attempts to enhance the computa-

tional performance of previous exterior algorithms which focus on both the primal and

the dual LP, Primal Dual Exterior Point Simplex Algorithm (PDEPSA). Apart from

that, the proposed enhanced version of PDEPSA is combined with an IPM in order to

Chapter 2. Linear Programming 11

examine a completely different approach of exploiting the strengths of PDEPSAs and

IMPs while avoiding their weaknesses.

2.3 The Linear Problem

The main purpose of linear programming is to choose the best way to allocate limited

sources in a specific problem. For example, in the case of a manufacturer who is produc-

ing several different types of goods, he must decide how many of each type to produce.

However, there are some limitations or constraints that manufacturer should take them

under consideration, like the available labor and the fact that the machines can only run

for a certain number of hours a day before they overheat. Moreover, his main target

is to produce enough goods to meet the demands of his customers and maximize his

earnings at the same time of reducing the costs of his company.

Likewise, lets assume the case of an airline which is interested of assigning crews to flights

to minimize layover time. In addition, the workers’ contracts limit the number of hours

per day that employees are allowed to work. Apart from that, the contract specifies that

an individual in a crew may not fly more than three flights per day. Consequently, the

airline must decide under these and other constraints for the assignments that it should

make. All of these types of problems are frequently met in linear programming where

the goals are to maximize profits or minimize costs, or maximize output or minimize

waste.

An illustrative example

One of the most well-known LPs is the diet problem. Considering the following example,

a dietician is preparing a diet consisting of two foods, A and B. Each unit of food A

contains 10 grams of protein, 7 grams of fat and 25 grams of carbohydrate and costs 70

cents. Each unit of food B contains 40 grams of protein, 8 grams of fat and 17 grams of

carbohydrate and costs 30 cents. Moreover, the diet being prepared should contain the

following minimum requirements: at least 50 grams of protein, at least 24 grams of fat

and at least 30 grams of carbohydrate. Consequently, the dietician has to calculate the

units of each food in order to satisfy all the minimal requirements and to minimize the

cost for his customer.

Data problem

All the appropriate information is on the next table in order to make the formulation

easier:

Chapter 2. Linear Programming 12

Table 2.1: Diet problem

Food A Food B Minimum Requirements

Protein 10 40 50

Fat 7 8 20

Carbohydrate 25 17 35

Cost 0.7 0.3

The numbers on the right side, 50, 20, 35 represent the minimum amount in grams of

protein, fat and carbohydrate in the diet. The numbers inside the table represent the

number of grams of either protein, fat, or carbohydrate in each unit of food. There

are in fact an infinite number of ways of combining foods A and B in order to meet the

minimum requirements and it is obvious that this type of problems is not easy, especially

when the number of foods is much larger.

Set up the model

Since, the number of units of foods A and B are the quantities which must be calculated,

let x1 = the number of units of food A used in diet and let x2 = the number of units of

food B used in diet. Since, each unit of food A costs e0.70, the x1 units of food A that

are used will cost e0.7x1 and for food B the cost is e0.3x1. Hence, the total cost is

C = 0.7x1 + 0.3x2 (2.1)

which is what it should be minimized.

The next step refers to minimum requirements. According to the table above, each unit

of food A contains 10 grams of protein, so the x1 units of food A contains 10x1 grams of

protein. Similarly, the food B contains 40x1 grams of protein. Consequently, the total

number of grams of protein used in a diet containing x1 units of food A and x2 units of

food B is

10x1 + 40x2

In addition, according to minimum requirements must be at least 50 grams. This leads

to the inequality

10x1 + 40x2 ≥ 50 (2.2)

Similarly, for the fat requirement:

7x1 + 8x2 ≥ 20 (2.3)

Chapter 2. Linear Programming 13

And for the carbohydrate requirement:

25x1 + 17x2 ≥ 35 (2.4)

There are certain obvious but not explicitly stated restrictions in the variables, that

the number of units of food A and the number of units of food B used must both be

non-negative. That is,

x1, x2 ≥ 0 (2.5)

Combining (2.1)-(2.5):

min c = 0.7x1 + 0.3x2

s.t. 10x1 + 40x2 ≥ 50

7x1 + 8x2 ≥ 20

25x1 + 17x2 ≥ 35

xj ≥ 0, (j = 1, 2)

The constraints (2.1)-(2.4) are called the main constraints of the LP and constraints

(2.5) are called non-negative or physical constraints. The cost function (2.1) is called

the objective.

The Standard Form of a LP model

Decision Variables

A LP model contains real decision variables, denoted by x1, . . . , xn where n is a finite

positive integer. In above example there are 2 decision variables x1 and x2.

Objective Function

The objective function c1x1 + . . .+ cnxn is a linear function in the n decision variables

with c1, . . . , cn real numbers, called the objective coefficients. Depending on whether

the objective function has to be maximized or minimized, the objective function of the

model is written as:

max(c1x1 + . . .+ cnxn) or

min(c1x1 + . . .+ cnxn)

respectively. In the diet example, the objective function is min(0.7x1 + 0.3x2). The

values of the objective function are called the objective values.

Chapter 2. Linear Programming 14

Constraints

A constraint of a LP model is either a ≤,≥ or = and the symbol ⊕ is used to represent

one of them:

ai1x1 + . . .+ ainxn ⊕ bi

The entry aij is the coefficient of the j − th decision variable xj in the i− th constraint.

Let m be the number of constraints. All (left-hand sides of the) constraints are linear in

x1, . . . , xn. For i ∈ 1, . . . ,m and j ∈ 1, . . . , n, the entries aij , bj and ci are real numbers

and are called the parameters of the LP.

Non-negativities

A non-negativity of a LP-model is an inequality of the form:

xi ≥ 0

The set of vectors in <n satisfying the constraints and the non-negativities of the model

is called the feasible region. A LP model is called feasible if its feasible region is not

empty, otherwise is called infeasible. An optimal solution of a maximizing (respectively,

minimizing) LP model is a point in the feasible region with maximal (or minimal)

objective value, this objective value is called the optimal objective value.

Consequently, a minimizing LP model, with ’≥’ constraints and non negativities can be

written:

min c1x1 + . . . + cnxn

s.t. a11x1 + . . . + a1nxn ≥ b1
... + . . . +

... ≥
...

am1x1 + . . . + amnxn ≥ bm

xj ≥ 0, (j = 1, . . . , n)

A more general form of the standard model of LP is the following:

min cTx

s.t. Ax⊕ b

x ≥ 0

Chapter 2. Linear Programming 15

The Typical Form of a LP model

LPs are presented in two different forms, there is the general and the typical form. In

typical form all of the constraints are converted to absolute equalities and as a result we

can express the LP with the following form:

min cTx

s.t. Ax = b (LP.1)

x ≥ 0

In order to transform a problem of standard form to typical form, slack variables are used.

In the diet problem the 1st constraint 10x1+40x2 ≥ 50 can be written 10x1+40x2−x3 =

50 if variable x3 is added and it is called the slack variable of the constraint (2.2).

Including slack variables for all constraints of the diet problem, the LP can be written

as:
min c = 0.7x1 + 0.3x2

s.t. 10x1 + 40x2 − x3 = 50

7x1 + 8x2 − x4 = 20

25x1 + 17x2 − x5 = 35

xj ≥ 0, (j = 1, 2, 3, 4, 5)

The vast majority of LPs are real-life problems and this is the reason that concludes to

the non negativity constraint for the decision variable x, another term for the variable x

is the natural constraint. From now on we assume every LP as minimization problem,

there are maximization problems too, but we can easily transform them to minimization

problems, if we use the opposite objective function in the mathematical model. With

the term feasible points we refer to the set of points that satisfy all the constraints and

they are also known as the feasible region of the LP.

2.4 Duality

J. Von Neumann [117] presented for first time the dual form of a LP. There are strong

connections between the dual and the initial problem, the variables of the dual problem

are associated with the constraints and non-negativities of the original problem. The

initial problem is called primal model. The most significant issue is that the dual problem

includes optimality criteria for feasible solutions of the primal problem. Moreover, the

Chapter 2. Linear Programming 16

sensitivity analysis of the primal model is based on the dual problem. The primal

problem refers for example to the optimization of the amount of profit obtainable from

the production activity, in contrast the dual is associated with economic worth of the

limited resources and capacities.

Consider the next 2 LPs:

max 5x1 + 2x2

s.t. x1 + 3x2 ≤ 12

3x1 − 4x2 ≤ 9

7x1 + 8x2 ≤ 20

xj ≥ 0, (j = 1, 2)

(2.6)

min 12w1 + 9w2 + 20w3

s.t. w1 + 3w2 + 7w3 ≥ 5

3w1 − 4w2 + 8w3 ≥ 2

wj ≥ 0, (j = 1, 2, 3)

(2.7)

The two LPs 2.6 and 2.7 are very different each other. They have a different number of

variables and a different number of constraints. However, with a closer look, it seems

that there are some relationships between them.

First of all, the number of constraints in 2.6 is equal to the number of variables in 2.7

and the number of constraints in 2.7 is equal to the number of variables in 2.6.

Secondly, the constants on the right hand side of the main constraints of 2.6 are precisely

the coefficients in the objective function of 2.7,while the constants on the right hand side

of the main constraints of 2.7 are the coefficients of the objective function of 2.6.

Moreover, the coefficients of the first variable x in 2.6 are precisely the coefficients of

the first constraint in 2.7, while the coefficients in the second column of 2.6 are precisely

the coefficients of the second constraint of 2.7.

Furthermore, all of the inequalities have been reserved.

Last but not least, the original LP was a maximum program, while this new program is

a minimum program.

While these relationships might show that the two linear programs are related, the fact

remains that these programs are very different and many people would probably feel

that there really should be no connection between the optimal solution of 2.6 and that

of 2.7. The fact is that there is an extremely close relationship between the optimal

values of the objective functions of these two LPs.

Chapter 2. Linear Programming 17

Programs 2.6 and 2.7 are called dual linear programs. More specifically, given a max-

imum program then its dual program is a minimum program formed in the following

way. Associate with each main constraint in the original program a variable. These

variables are called dual variables. So in 2.6 the first constraint is associated with the

variable w1, the second constraint with the variable w2 and the third with the variable

w3. Moreover, the constants on the right hand side of the main constraints of the origi-

nal program become the coefficients of these dual variables in the new objective function

and this new dual objective function is to be minimized. The coefficients in the first

column of the original program become the coefficients of these dual variables in the first

constraint of the new LP. Similarly, the coefficients of the second column of the original

LP become the coefficients of the second constraint in the new LP, etc. In addition, all

the inequalities are reserved.

2.5 Geometry

In previous sections, we discussed the formulation of several types of LPs. In the cur-

rent section, by examining matters geometrically [102], we are able to lay some of the

groundwork for the very powerful and interesting aspects of linear programming.

Consider the next LP:

max 2x + 3y

s.t. 2x + 4y ≥ 8

2x + 5y ≤ 18

3x + y ≥ 5

x − 2y ≤ 2

x, y ≥ 0

(2.8)

Using the graphical method, the constraints and non-negativities are drawn in a rect-

angular coordinate-system.

In Fiqure 2.1 the decision variables x and y are non-negative and we conclude to the

shaded area determined by all the constraints. Moreover, we end up with the feasible

region which includes all the points which satisfy all the constraints and non-negativities.

Moreover, it may happen that a LP has more than one optimal solution, then the optimal

solution is called multiple. There are three different types of feasible regions:

Chapter 2. Linear Programming 18

Figure 2.1: Example of feasible region

Feasible Region Bounded. A non empty feasible region is called bounded, if all

decision variables are bounded on the feasible region. Consequently, the objective values

are then also bounded on the feasible region, see Fiqure 2.2.

Figure 2.2: Example of Feasible Region Bounded

Feasible Region Unbounded. A non empty feasible region is called unbounded if

it is not bounded, at least one of the decision variables can take on arbitrarily large

values on the feasible region. It depends on the objective function whether an optimal

Chapter 2. Linear Programming 19

solution exists, in case that an optimal solution does not exist then the model is called

unbounded, see Fiqure 2.3.

Figure 2.3: Example of Feasible Region Unbounded

Feasible region empty. If the feasible region does not include any point then the LP

is called infeasible, see Fiqure 2.4.

Figure 2.4: Example of Feasible region empty

Chapter 3

Linear Programming Algorithms

3.1 Introduction

There are mainly two-different families of linear programming algorithms: (i) simplex-

type algorithms, and (ii) interior point methods. This Chapter will give a brief overview

to these different families of algorithms. More specifically, Section 3.2 presents the

primal revised simplex algorithm, the most widely-used method to solve a LP. Section

3.3 presents the primal exterior point simplex algorithm, a simplex-type algorithm that

uses two paths to reach the optimal solution. Section 3.4 gives a brief overview of

basic concepts of interior point methods and presents the Mehrotra’s Predictor-Corrector

method, a primal-dual infeasible interior point method. For each one of these three

algorithms, we present its main steps and also provide an example to demonstrate its

execution. Finally, conclusions are presented in Section 3.5.

3.2 Simplex Algorithm

The most widely-used method for solving LPs is the simplex algorithm, proposed by

Dantzig [25] [27]. The simplex algorithm is one of the top ten most important algorithms

in the 20th century [32]. The simplex algorithm starts with a feasible basic solution and

reaches an optimum solution by moving from one feasible solution to another, along

the edges of the feasible region. The simplex algorithm guarantees monotonicity of

the objective value. In the rest of this Section, we present the primal revised simplex

algorithm.

20

Chapter 3. Linear Programming Algorithms 21

Prior to the application of the simplex algorithm, a presolve and a scaling routine should

be executed to reduce the problem’s dimensions and improve the computational proper-

ties of the constraint matrix A (for more details, see Chapter 4). Then, an initial basis

should be calculated in order to initialize the simplex algorithm. The simplest initial

basis is the all-artificial basis [10, 21]. Artificial variables are added to all constraints

of the original LP. The initial basis is matrix I. This method is very simple, but usu-

ally results in many iterations. Another simple initial basis is the slack-artificial basis

[11]. Slack and surplus variables are added firstly to all inequality constraints. Then,

artificial variables are added to equality constraints and inequality constraints of the

type ≥. The initial basis is a matrix containing the slack variables added in inequality

constraints of type ≤ and the artificial variables. The slack-artificial basis is better than

the all-artificial basis but it also leads to more iterations than other methods. Many

sophisticated methods have been proposed in the literature for the initialization of the

simplex algorithm [17] [47] [11]. In our implementation, we use a Gauss-Jordan elimina-

tion with partial pivoting that calculates a row echelon form of the constraint matrix.

This method is more time-consuming than using the all-artificial or the slack-artificial

basis, but it yields more advanced bases and it also leads the revised simplex algorithm

to perform less iterations than using the other two previously mentioned methods.

Having calculated a basic partition (B,N), if the solution xB ≥ 0 (xB = A−1
B b), then

we apply the revised simplex algorithm to solve the original problem. Otherwise, we

formulate an auxiliary problem to find an initial feasible basis. Three methods are

mainly used to drive out the artificial variables: (i) the two-phase method, (ii) the

big-M method, and (iii) the single artificial variable method.

The big-M method attempts to execute Phase I and Phase II in a single execution of

the simplex algorithm. The big-M method adds an artificial variable to each constraint

and modifies the objective function in order to penalize the artificial variables:

min cTx+MeT y

s.t. Ax+ Imy = b

x, y ≥ 0

where M is a large positive constant, much larger than the largest coefficient in vector

c. If the original LP is feasible and its optimal value is finite, all artificial variables will

eventually be driven to 0.

The single artificial variable method selects a submatrix AB ∈ Rm×m of A to be the

basis irrespective of whether the solution xB = A−1
B b ≥ 0. If A has full row rank, then

such a matrix exists; if not, we can apply a presolve method prior to the execution of the

Chapter 3. Linear Programming Algorithms 22

simplex algorithm to make the constraint matrix A of full row rank. If xB = A−1
B b ≥ 0,

then an initial basic feasible solution was found and we can apply simplex algorithm to

solve the original LP. If xb � 0, then we add a single artificial variable and we can use

either the two-phase or the big-M method.

In our implementation, we use the two-phase method along with the single artificial

technique. The two-phase method adds an artificial variable to each constraint and

solves an auxiliary LP in Phase I:

min eT y

s.t. Ax+ Imy = b

x, y ≥ 0

where e ∈ Rn is a vector of ones. The auxiliary LP is solved using the simplex algorithm.

The leaving variable k is the index with the minimum value of xB. The artificial variable

y enters the basis. Hence, we update the basic partition, B = B ∪ [n + 1] \ [k] and

N = N ∪ [k].

The last column of the constraint matrix A is calculated as:

d = −ABe

Initially, we calculate the following matrices and vectors:

A−1
B , xB = A−1

B b, w = cTBA
−1
B , and sN = cTN − wAN

Then, we perform the optimality test. We terminate the algorithm or proceed with

Phase II in the following cases:

� If sN ≥ 0 and y 6= 0, then the LP is infeasible. Otherwise, we proceed with Phase

II.

� If the artificial variable y left the basic list, we proceed with Phase II.

If the auxiliary LP is not optimal, then we continue with the remaining steps of Phase I.

We use Dantzig’s rule to choose the entering variable. Dantzig’s pivoting rule selects the

columnAl with the most negative sl. We also calculate the pivoting column: hl = A−1
B Al.

Next, we perform the minimum ratio test in order to calculate the leaving variable k:

Chapter 3. Linear Programming Algorithms 23

xk = xB[r] =
xB[r]

hil
= min

{
xB[i]

hil
: hil > 0

}
Then, we update the basic partition, B = B ∪ [l] \ [k] and N = N ∪ [k] \ [l]. Finally, we

update the basis inverse using the Product Form of the Inverse (PFI) method. The PFI

scheme updates the basis inverse using the following equation:

(
AB
)−1

= (ABE)−1 = E−1(AB)−1 (3.1)

where E−1 is the inverse of the eta-matrix and can be computed by the the following

equation:

E−1 = I − 1

hrl
(hl − el) eTl =

1 −h1l

. . .
...

1/hrl
...

. . .

−hml/hrl 1

(3.2)

Note that the basis inverse is calculated from scratch every 80 iterations. Finally, we

update vectors xB, w and sN :

xB = A−1
B b, w = cTBA

−1
B , and sN = cTN − wAN

We start again with the optimality test and all other steps presented previously for

Phase I until we find a feasible basis for the original problem or we find that the original

problem is infeasible. In the first case (feasible basis), we continue with Phase II by

applying the revised simplex algorithm to the original problem. We start by initializing

the needed vectors and matrices:

A−1
B , xB = A−1

B b, w = cTBA
−1
B , and sN = cTN − wAN

Next, we perform the optimality test of Phase II. If sN ≥ 0, then the linear programming

problem is optimal. Otherwise, we continue with the remaining steps of Phase II. We

use Dantzig’s rule to choose the entering variable. Dantzig’s pivoting rule selects the

column Al with the most negative sl, as already mentioned. We also calculate the

pivoting column: hl = A−1
B Al.

If hl ≤ 0, then the LP is unbounded. Otherwise, we perform the minimum ratio test to

calculate the leaving variable k:

xk = xB[r] =
xB[r]

hil
= min

{
xi
hil

: i ∈ B, hil > 0
}

Chapter 3. Linear Programming Algorithms 24

In case of ties when selecting the entering and leaving variable, we break ties by selecting

the variable with the smallest subscript. Then, we update the basic partition, B =

B ∪ [l] \ [k] and N = N ∪ [k] \ [l]. Finally, we update the basis inverse using the PFI

method: (
AB
)−1

= (ABE)−1 = E−1(AB)−1 (3.3)

Note again that the basis inverse is calculated from scratch every 80 iterations. Finally,

we update vectors xB, w and sN :

xB = A−1
B b, w = cTBA

−1
B , and sN = cTN − wAN

We start again with the optimality test and all other steps presented previously for

Phase II until we find a feasible basis for the linear programming problem or we find

that the problem is unbounded.

A formal description of the revised simplex algorithm is given in Table 3.1.

Table 3.1: Revised Simplex Algorithm

Step 0. (Initialization).
Presolve and scale the LP.
Select an initial basic partition (B, N).

If xB = A−1
B b ≥ 0, proceed to Step 2.

Step 1. (Phase I).
Construct an auxiliary problem by adding an artificial variable y with a
coefficient vector equal to −ABe.
Apply the revised simplex algorithm in the auxiliary problem.
If the final basic solution (B, N) is feasible, then proceed to Step 2.
Else the problem is infeasible.
Step 2. (Phase II).
Step 2.0. (Initialization).
Compute (AB)−1 and vectors xB, w and sN .
Step 2.1. (Test of Optimality).
If sN ≥ 0 then the problem is optimal.
Else choose the index l of the entering variable using Dantzig’s rule.
Step 2.2. (Pivoting).
Compute the pivot column hl = (AB)−1Al.
if hl ≤ 0 then the problem is unbounded.
else choose the leaving variable xB[r] = xk using the following relation:

xk = xB[r] =
xB[r]

hil
= min

{
xi
hil

: i ∈ B, hil > 0
}

Step 2.3. (Update).

Swap indices k and l. Update the new basis inverse
(
AB
)−1

, using PFI.
Update vectors xB, w and sN .
Go to Step 2.1.

Chapter 3. Linear Programming Algorithms 25

Next, we will demonstrate the revised simplex algorithm with an example. The LP that

will be solved is the following:

min z = 8x1 + 4x2 − 6x3

s.t. x1 + x2 + x3 ≤ 2

3x1 + x2 − x3 ≥ 3

3x1 + 2x2 − x3 ≥ 5

xj ≥ 0, (j = 1, 2, 3)

Let’s convert the LP in its standard form:

min z = 8x1 + 4x2 − 6x3

s.t. x1 + x2 + x3 + x4 = 2

3x1 + x2 − x3 − x5 = 3

3x1 + 2x2 − x3 − x6 = 5

xj ≥ 0, (j = 1, 2, 3, 4, 5, 6)

So, the matrices and vectors that will be given as input to simplex algorithm are the

following:

A =

1 1 1 1 0 0

3 1 −1 0 −1 0

3 2 −1 0 0 −1

 , c =

8

4

−6

0

0

0

, b =

2

3

5

We start with the basic partition B = [4, 5, 6] and N = [1, 2, 3]. The initial basis is not

feasible (xB � 0):

AB =

1 0 0

0 −1 0

0 0 −1

 = A−1
B

xB = A−1
B b =

2

−3

−5

So, we should formulate the auxiliary problem and apply simplex algorithm (Phase I).

We add the artificial variable y and calculate vector d:

Chapter 3. Linear Programming Algorithms 26

d = −ABe =

−1

1

1

The auxiliary LP that will be solved in Phase I is the following:

min z = y

s.t. x1 + x2 + x3 + x4 − y = 2

3x1 + x2 − x3 − x5 + y = 3

3x1 + 2x2 − x3 − x6 + y = 5

xj , y ≥ 0, (j = 1, 2, 3, 4, 5, 6)

The leaving variable is x6:

min
{
xB[4], xB[5], xB[6]

}
= min {2,−3,−5} = −5

We update the basic partition, B = [4, 5, 7] and N = [1, 2, 3, 6]. Finally, we update the

needed matrices and vectors:

A−1
B =

1 0 1

0 −1 1

0 0 1

xB = A−1

B b =

7

2

5

w = cTBA

−1
B =

[
0 0 1

]
sN = cTN − wAN =

[
−3 −2 1 1

]

Next, we perform the optimality test. sN � 0, so the current basic partition is not

optimal. According to Dantzig’s rule, the entering variable is x1 since it has the most

negative sl (−3). Then, we calculate the pivoting column:

h1 = A−1
B A.1 =

4

0

3

Next, we perform the minimum ratio test:

Chapter 3. Linear Programming Algorithms 27

min
{
xi
hil

: i ∈ B, hil > 0
}

= 5
3 =

xB[7]

h31

The leaving variable is x7. So, we update the basic partition, B = [4, 5, 1] and N =

[7, 2, 3, 6]. Next, we update the basis inverse using PFI:

E−1 =

1 0 −4/3

0 1 0

0 0 1/3

(
AB
)−1

= E−1A−1
B =

1 0 −1/3

0 −1 1

0 0 1/3

Finally, we update the needed vectors:

xB = A−1
B b =

1/3

2

5/3

w = cTBA

−1
B =

[
0 0 1

]
sN = cTN − wAN =

[
1 0 0 0

]
We continue with the second iteration by performing the optimality test. sN ≥ 0, so

the current basic partition is optimal for the auxiliary LP and feasible for the original

problem. We delete the artificial variable from the nonbasic list, so the nonbasic list is

N = [2, 3, 6] and proceed to Phase II.

We start Phase II (third iteration) by calculating the needed vectors:

A−1
B =

1 0 −1/3

0 −1 1

0 0 1/3

xB = A−1

B b =

1/3

2

5/3

w = cTBA

−1
B =

[
0 0 8/3

]
sN = cTN − wAN =

[
−4/3 −10/3 8/3

]
We start by performing the optimality test. sN � 0, so the current basis is not optimal.

According to Dantzig’s rule, the entering variable is x3 since it has the most negative sl

(−10/3). The pivoting column is equal to:

Chapter 3. Linear Programming Algorithms 28

h3 = A−1
B A.3 =

4/3

0

−1/3

Next, we perform the minimum ratio test to find the leaving variable:

min
{
xi
hil

: i ∈ B, hil > 0
}

= 1/3
4/3 =

xB[4]

h13

The leaving variable is x4.

Next, we update the basic partition, B = [3, 5, 1] and N = [2, 4, 6], and the basis inverse

using PFI:

E−1 =

3/4 0 0

0 1 0

1/4 0 1

(
AB
)−1

= E−1A−1
B =

3/4 0 −1/4

0 −1 1

1/4 0 1/4

Finally, we update the needed vectors:

xB = A−1
B b =

1/4

2

7/4

w = cTBA

−1
B ==

[
0 0 8/3

]
sN = cTN − wAN =

[
−1/2 5/2 7/2

]
We start the fourth iteration by performing the optimality test. sN � 0, so the current

basis is not optimal. According to Dantzig’s rule, the entering variable is x2 since it has

the most negative sl (−1/2). The pivoting column is equal to:

h2 = A−1
B A.2 =

1/4

1

3/4

Next, we perform the minimum ratio test to find the leaving variable:

min
{
xi
hil

: i ∈ B, hil > 0
}

= 1/4
1/4 =

xB[3]

h12

Chapter 3. Linear Programming Algorithms 29

The leaving variable is x3.

Next, we update the basic partition, B = [2, 5, 1] and N = [3, 4, 6], and the basis inverse

using PFI:

E−1 =

4 0 0

−4 1 0

−3 0 1

(
AB
)−1

= E−1A−1
B =

3 0 −1

−3 −1 2

−2 0 1

Finally, we update the needed vectors:

xB = A−1
B b =

1

1

1

w = cTBA

−1
B ==

[
0 0 9/8

]
sN = cTN − wAN =

[
2 4 4

]

Next, we start the fifth iteration by perform the optimality test. sN ≥ 0, so the current

basic solution is optimal. As a result, we calculate the solution vector and the value of

the objective function:

x =

1

1

0

z = cTBxB = 12

3.3 Exterior Point Simplex Algorithm

Since the development of the simplex method, various papers presented variants of the

simplex method that relax feasibility requirements. A simplex-type algorithm generating

solutions that are not feasible is called an exterior point simplex algorithm (EPSA) [92].

Dantzig’s [27] parametric self-dual algorithm, Kuhn’s [66] Hungarian method for the

assignment problem, Iri’s [57] successive shortest part method for minimum cost flow

problems, Zionts’ [122] and Terlaky’s [110] criss-cross methods are some examples of

exterior point methods. However, as all these methods are completely combinatorial,

Chapter 3. Linear Programming Algorithms 30

they are not very efficient in practice for solving LPs. The first efficient implementation

of an EPSA for solving LPs was proposed by Paparrizos [92].

EPSA was proposed by Paparrizos initially for the assignment problem [91] and then for

the solution of LPs [92]. The geometry of the exterior point simplex algorithms shows

that this algorithm is more efficient than the simplex algorithm [94]. The key idea of the

exterior point simplex algorithm is based on making steps in directions that are linear

combinations of attractive descent directions that can lead to fast convergence to the

optimal solution. Two paths are created by the exterior point simplex algorithm; the

first one consists of basic but not feasible solutions and the second path is feasible. A

more effective approach proposed by Samaras [105]. Samaras transformed the exterior

path into a dual feasible simplex path. This algorithm is called Primal-Dual Exterior

Point Simplex Algorithm (PDEPSA). Its revised form was presented in [93]. A more

effective approach is the Primal-Dual Interior Point Simplex Algorithm (PDIPSA) [41].

PDIPSA is able to deal with stalling and cycling more effectively than the other exterior

point simplex algorithms. The key advantage of PDIPSA is that it uses an interior

point in order to compute the leaving variable in contrast to primal-dual exterior point

algorithms that use a boundary point. PDEPSA and PDIPSA are further discussed in

Chapter 5.

Ploskas et al. [95] proposed a parallel implementation of an exterior point simplex

algorithm showing promising results. Ploskas & Samaras [101] proposed a GPU-based

implementation of PDEPSA achieving a maximum speedup of 181 on dense LPs and

20 on sparse LPs over MATLAB’s interior point method. In addition, the GPU-based

implementation was 2.3× faster than MATLAB’s interior point method on a set of

benchmark LPs.

In the rest of this Section, we present the exterior point simplex algorithm. Prior to

the application of the simplex algorithm, a presolve and a scaling routine should be

executed to reduce the problem’s dimensions and improve the computational properties

of the constraint matrix A (for more details, see Chapter 4). Then, an initial basis

should be calculated in order to initialize the simplex algorithm. As already presented,

we use a Gauss-Jordan elimination with partial pivoting that calculates a row echelon

form of the constraint matrix.

Initially, we should determine if the direction dB crosses the feasible region using the

following relation:

β = max
{

xi
−di : i ∈ B, xi < 0

}
< α = min

{
xi
−di : i ∈ B, di < 0

}

Chapter 3. Linear Programming Algorithms 31

where 1 ≤ i ≤ m, dB = −
∑

j∈P λjhj , P = {j ∈ N : sj < 0}, hj = A−1
B A.j , and λ is an

arbitrary vector such that λ =
(
λ1, λ2, · · · , λ|P |

)
> 0. If P 6= Ø and β < α, then the

direction dB crosses the feasible region, so we apply the exterior point simplex algorithm

to the original problem (Phase II). If P = Ø or the direction dB does not cross the feasible

region, then we formulate an auxiliary problem to find an initial feasible basis (Phase

I) using the revised simplex algorithm. Note, that it is possible to also use the exterior

point simplex algorithm in Phase I.

As already presented in the previous Section, we use the two-phase method along with

the single artificial technique to formulate the following auxiliary LP in Phase I:

min eT y

s.t. Ax+ Imy = b

x, y ≥ 0

where e ∈ Rn is a vector of ones. The auxiliary LP is solved using the simplex algorithm,

as shown in Section 3.2.

While performing the optimality test for Phase I, we find either a feasible basis for the

original problem or that the original problem is infeasible. In the first case (feasible

basis), we continue with Phase II by applying the exterior point simplex algorithm to

the original problem. We start by initializing the needed vectors and matrices:

A−1
B , xB = A−1

B b, w = cTBA
−1
B , and sN = cTN − wAN

Next, we calculate sets P and Q:

P = {j ∈ N : sj < 0}, Q = {j ∈ N : sj ≥ 0}

Moreover, we define an arbitrary vector λ = (λ1, λ2, · · · , λ|P |) > 0 and compute s0 as

follows:

s0 =
∑

j∈P λjsj

and the direction dB = −
∑

j∈P λjhj , where hj = A−1
B AP .

Next, we perform the optimality test of Phase II. The LP is optimal when one of the

following conditions is true:

� Set P is empty

Chapter 3. Linear Programming Algorithms 32

� dB ≥ 0 and s0 = 0

In addition, if dB ≥ 0 and s0 < 0, then the problem is unbounded. Otherwise, we

continue with the remaining steps of Phase II. We select the leaving variable k using the

following relation:

a =
xB[r]

−dB[r]
= min

{
xi
−di : i ∈ B, di < 0

}

If a =∞, the problem is unbounded. Otherwise, the following vectors are calculated:

HrP =
(
A−1
B

)
r.
AP and HrQ =

(
A−1
B

)
r.
AQ

Then, we compute ratios θ1 and θ2:

θ1 = −sP
HrP

= min
{
−sj
Hrj

: Hrj > 0 ∧ j ∈ P
}

and

θ2 =
−sQ
HrQ

= min
{
−sj
Hrj

: Hrj < 0 ∧ j ∈ Q
}

In addition, we determine indices t1 and t2 such that P [t1] = p and Q[t2] = q. If θ1 ≤ θ2

then l = p and we update sets P and Q, P = P \ [l] and Q = Q ∪ [k]. Otherwise,

l = q and we update only set Q, Q = Q ∪ [k] \ [l]. We also update the basic partition,

B = B ∪ [l] \ [k] and N = P ∪Q.

Finally, we update the basis inverse using the PFI method:

(
AB
)−1

= (ABE)−1 = E−1(AB)−1 (3.4)

where E−1 is the inverse of the eta-matrix and can be computed by the the following

equation:

E−1 = I − 1

hrl
(hl − el) eTl =

1 −h1l

. . .
...

1/hrl
...

. . .

−hml/hrl 1

(3.5)

Note again that the basis inverse is calculated from scratch every 80 iterations. Finally,

we update vectors xB, w, sN and dB:

xB = A−1
B b, w = cTBA

−1
B , sN = cTN − wAN , and db = E−1dB

Chapter 3. Linear Programming Algorithms 33

If θ1 ≤ θ2, then dB(r) = dB(r) + λl.

We start again with the optimality test and all other steps presented previously for Phase

II until we find an optimal basis for the LP or we find that the problem is unbounded.

A formal description of the exterior point simplex algorithm is given in Table 3.2.

Next, we will demonstrate the exterior point simplex algorithm with an example. The

linear programming problem that will be solved is the following:

min z = 8x1 + 4x2 − 6x3

s.t. x1 + x2 + x3 ≤ 2

3x1 + x2 − x3 ≥ 3

3x1 + 2x2 − x3 ≥ 5

xj ≥ 0, (j = 1, 2, 3)

Let’s convert the LP in its standard form:

min z = 8x1 + 4x2 − 6x3

s.t. x1 + x2 + x3 + x4 = 2

3x1 + x2 − x3 − x5 = 3

3x1 + 2x2 − x3 − x6 = 5

xj ≥ 0, (j = 1, 2, 3, 4, 5, 6)

So, the matrices and vectors that will be given as input to exterior point simplex algo-

rithm are the following:

A =

1 1 1 1 0 0

3 1 −1 0 −1 0

3 2 −1 0 0 −1

 , c =

8

4

−6

0

0

0

, b =

2

3

5

We start with the basic partition B = [4, 5, 6] and N = [1, 2, 3]. The initial basis is not

feasible (P 6= Ø but β > α):

A−1
B =

1 0 0

0 −1 0

0 0 −1

Chapter 3. Linear Programming Algorithms 34

Table 3.2: Exterior Point Simplex Algorithm

Step 0. (Initialization).
Presolve and scale the LP.
Select an initial basic partition (B,N).
Calculate set P = {j ∈ N : sj < 0}.
If P 6= Ø and direction dB crosses the feasible region, proceed to Step 2.
Step 1. (Phase I).
Construct an auxiliary problem by adding an artificial variable y with a
coefficient vector equal to −ABe.
Apply revised simplex algorithm in the auxiliary problem.
If the final basic solution (B, N) is feasible, proceed to Step 2.
Else the problem is infeasible.
Step 2. (Phase II).
Step 2.0. (Initialization).
Compute (AB)−1 and vectors xB, w and sN .
Calculate sets P = {j ∈ N : sj < 0} and Q = {j ∈ N : sj ≥ 0}.
Define λ = (λ1, λ2, · · · , λ|P |) > 0 and compute s0 and dB:

s0 =
∑

j∈P λjsj and the direction dB = −
∑

j∈P λjhj
where hj = A−1

B A.j .
Step 2.1. (Test of Optimality).
If P = Ø then the problem is optimal.
Else

If dB ≥ 0 then
If s0 = 0 then the problem is optimal.

Else choose the leaving variable xB[r] = xk using the following relation:

a =
xB[r]

−dB[r]
= min

{
xi
−di : i ∈ B, di < 0

}
If a =∞ then the problem is unbounded.

Step 2.2. (Pivoting).

Compute the vectors: HrP =
(
A−1
B

)
r.
AP and HrQ =

(
A−1
B

)
r.
AQ.

Compute the ratios θ1 and θ2:

θ1 = −sP
HrP

= min
{
−sj
Hrj

: Hrj > 0 ∧ j ∈ P
}

and

θ2 =
−sQ
HrQ

= min
{
−sj
Hrj

: Hrj < 0 ∧ j ∈ Q
}

Calculate the indices t1 and t2 such that P [t1] = p and Q[t2] = q.
If θ1 ≤ θ2 then set l = p
Else set l = q.
Step 2.3. (Update).

Swap indices k and l. Update the new basis inverse
(
AB
)−1

, using PFI.
Update sets P and Q. Set B(r) = l.
If θ1 ≤ θ2, set P = P \ [l] and Q = Q ∪ [k].
Else set Q(t2) = k.

Update vectors xB, w sN and dB. using the relation dB = E−1dB.

If l ∈ P , set dB(r) = dB(r) + λl.

Go to Step 2.1.

Chapter 3. Linear Programming Algorithms 35

xB = A−1
B b =

2

−3

−5

w = cTBA

−1
B =

[
0 0 0

]
sN = cTN − wAN =

[
8 4 −6

]
P = {j ∈ N : sj < 0} = [3]

hj = A−1
B AP =

1

1

1

λ = (λ1, λ2, λ3) = (1, 1, 1), dB = −

∑
j∈P λjhj =

−1

−1

−1

β = max

{
xi
−di : i ∈ B, xi < 0

}
= −3

α = min
{

xi
−di : i ∈ B, di < 0

}
= −5

So, we should formulate the auxiliary problem and apply the revised simplex algorithm

(Phase I). We add the artificial variable y and calculate vector d:

d = −ABe =

−1

1

1

The auxiliary LP that will be solved in Phase I is the following:

min z = y

s.t. x1 + x2 + x3 + x4 − y = 2

3x1 + x2 − x3 − x5 + y = 3

3x1 + 2x2 − x3 − x6 + y = 5

xj , y ≥ 0, (j = 1, 2, 3, 4, 5, 6)

The leaving variable is x6:

min
{
xB[4], xB[5], xB[6]

}
= min {2,−3,−5} = −5

We update the basic partition, B = [4, 5, 7] and N = [1, 2, 3, 6]. Finally, we update the

needed matrices and vectors:

Chapter 3. Linear Programming Algorithms 36

A−1
B =

1 0 1

0 −1 1

0 0 1

xB = A−1

B b =

7

2

5

w = cTBA

−1
B =

[
0 0 1

]
sN = cTN − wAN =

[
−3 −2 1 1

]
Next, we perform the optimality test. sN � 0, so the current basic partition is not

optimal. According to Dantzig’s rule, the entering variable is x1 since it has the most

negative sl (−3). Then, we calculate the pivoting column:

h1 = A−1
B A.1 =

4

0

3

Next, we perform the minimum ratio test:

min
{
xi
hil

: i ∈ B, hil > 0
}

= 5
3 =

xB[7]

h31

The leaving variable is x7. So, we update the basic partition, B = [4, 5, 1] and N =

[7, 2, 3, 6]. Next, we update the basis inverse using PFI:

E−1 =

1 0 −4/3

0 1 0

0 0 1/3

(
AB
)−1

= E−1A−1
B =

1 0 −1/3

0 −1 1

0 0 1/3

Finally, we update the needed vectors:

xB = A−1
B b =

1/3

2

5/3

w = cTBA

−1
B =

[
0 0 1

]
sN = cTN − wAN =

[
1 0 0 0

]

Chapter 3. Linear Programming Algorithms 37

We continue with the second iteration by performing the optimality test. sN ≥ 0, so

the current basic partition is optimal for the auxiliary LP and feasible for the original

problem. We delete the artificial variable from the nonbasic list, so the nonbasic list is

N = [2, 3, 6] and proceed to Phase II.

We start Phase II (third iteration) by calculating the needed vectors:

A−1
B =

1 0 −1/3

0 −1 1

0 0 1/3

xB = A−1

B b =

1/3

2

5/3

w = cTBA

−1
B =

[
0 0 8/3

]
sN = cTN − wAN =

[
−4/3 −10/3 8/3

]

Next, we calculate sets P and Q, P = {j ∈ N : sj < 0} = [2, 3] and Q = N \ P = [6].

Then, we calculate the direction dB:

hj = B−1AP =

1/3 4/3

1 0

2/3 −1/3

dB = −

∑
j∈P λjhj =

−5/3

−1

−1/3

P 6= Ø, so the current base is not optimal. dB � 0, so we continue to find the leaving

variable using the following relation:

a = min
{

xi
−di : i ∈ B, di < 0

}
= 1/3

5/3

The leaving variable is x4. Then, we compute vectors HrP and HrQ:

HrP =
(
A−1
B

)
r.
AP =

[
1/3 4/3

]
HrQ =

(
A−1
B

)
r.
AQ =

[
1/3
]

Next, we compute the ratios θ1 and θ2:

Chapter 3. Linear Programming Algorithms 38

θ1 = −sP
HrP

= min
{
−sj
Hrj

: Hrj > 0 ∧ j ∈ P
}

= 10/3
4/3

θ2 =
−sQ
HrQ

= min
{
−sj
Hrj

: Hrj < 0 ∧ j ∈ Q
}

=∞

θ1 ≤ θ2, so the leaving variable is x3. We update sets P and Q, P = [2], Q = [6, 4],

and the basic partition, B = [3, 5, 1], N = [2, 6, 4]. We continue calculating the pivoting

column:

h3 = A−1
B A.3 =

4/3

0

−1/3

 , h3(1) = −1, h3 =

−1

0

−1/3

Then, we update the basis inverse using PFI:

E−1 =

3/4 0 0

0 1 0

1/4 0 1

(
AB
)−1

= E−1A−1
B =

3/4 0 −1/4

0 −1 1

1/4 0 1/4

Finally, we update the needed vectors:

xB = A−1
B b =

1/4

2

7/4

w = cTBA

−1
B =

[
−5.2 0 7.2

]
sN = cTN − wAN =

[
−4/2 −10/3 8/3

]
dB = E−1dB =

−5/4

−1

−3/4

, dB(1) = dB(1) + 1 = −5/4 + 1 = −1/4

We start the fourth iteration by performing the optimality test. P 6= Ø, so the current

base is not optimal. dB � 0, so we continue to find the leaving variable using the

following relation:

a = min
{

xi
−di : i ∈ B, , di < 0

}
= 1/4

1/4

The leaving variable is x3. Then, we compute vectors HrP and HrQ:

Chapter 3. Linear Programming Algorithms 39

HrP =
(
A−1
B

)
r.
AP =

[
1/4
]

HrQ =
(
A−1
B

)
r.
AQ =

[
1/4 3/4

]
Next, we compute the ratios θ1 and θ2:

θ1 = −sP
HrP

= min
{
−sj
Hrj

: Hrj > 0 ∧ j ∈ P
}

= 1/2
1/4

θ2 =
−sQ
HrQ

= min
{
−sj
Hrj

: Hrj < 0 ∧ j ∈ Q
}

=∞

θ1 ≤ θ2, so the leaving variable is x2. We update sets P and Q, P = Ø, Q = [6, 4, 3],

and the basic partition, B = [2, 5, 1], N = [6, 4, 3]. We continue calculating the pivoting

column:

h2 = A−1
B A.3 =

1/4

1

3/4

 , h2(1) = −1, h2 =

−1

1

3/4

Then, we update the basis inverse using PFI:

E−1 =

4 0 0

−4 1 0

−3 0 1

(
AB
)−1

= E−1A−1
B =

3 0 −1

−3 −1 2

−2 0 1

Finally, we update the needed vectors:

xB = A−1
B b =

1

1

1

w = cTBA

−1
B =

[
−4 0 4

]
sN = cTN − wAN =

[
−4/3 −10/3 8/3

]
dB = E−1dB =

−1

0

0

, dB(1) = dB(1) + 1 = −1 + 1 = 0

Next, we start the fifth iteration by performing the optimality test. P = Ø, so the

current basic solution (B = [2, 5, 1], N = [6, 4, 3]) is optimal. As a result, we calculate

the solution vector and the value of the objective function:

Chapter 3. Linear Programming Algorithms 40

x =

1

1

0

z = cTBxB = 12

3.4 Interior Point Methods

Since Dantzig’s initial contribution [25], many researchers have made efforts to enhance

the performance of the simplex algorithm. Researchers proposed interior point methods

(IPMs) that traverse across the interior of the feasible region [36] [53] [117]. However,

the proposed algorithms are not efficient in practice due to the very expensive time

per iteration and numerical difficulties. Later, Khachiyan [63] proposed the ellipsoid

method, the first polynomial algorithm for LP. However, this method was not efficient

due to very expensive time per iteration. In 1984, a totally new method arose and

changed everything in LP; Karmarkar’s method [60] was the first efficient IPM. Since

then, many IPMs have been proposed [43] [44] [79] [73] (for a literature review, see [46]

[112] [120]).

As its name indicates, an IPM moves through the interior of the feasible region towards

the optimal solution; this is the big difference with the simplex algorithm, which follows a

sequence of adjacent boundary points to the optimal solution. It has been observed that

IPMs can deal much better than the simplex algorithm in large-scale sparse LPs [46];

these problems are very common in transportation and scheduling applications that have

network models at their core. IPMs are also of interest from a theoretical point of view,

because they have polynomial complexity. There are three main categories of IPMs:

(i) affine-scaling methods, (ii) potential reduction methods, and (iii) central trajectory

methods. The affine-scaling algorithm is an attractive choice due to its simplicity and

its relative good performance in practice. However, its performance is sensitive to the

starting point. Potential reduction methods do not have the simplicity of affine-scaling

methods, but they are more attractive than affine-scaling methods. IPMs based on the

central trajectory are the most useful in theory and the most used in practice.

The main advantages of IPMs in comparison to the simplex algorithm are: (i) the number

of iterations is not related with the number of vertices, and (ii) IPMs are not influenced

by degeneracies. On the other hand, IPMs have some significant weaknesses: (i) it has

been observed that IPMs are not very effective to detect infeasibility or unboundedness

in some cases, and (ii) although IPMs have a fast convergence to optimal solution in the

first iterations, they present a very slow rate of convergence in the later iterations.

Chapter 3. Linear Programming Algorithms 41

The primal–dual path following algorithm is an example of an IPM that operates si-

multaneously on the primal and dual LPs. Moreover, the primal–dual algorithms that

incorporate predictor and corrector steps are the most efficient IPMs. In the rest of this

Section, we give a brief overview of the basic concepts of primal-dual IPMs and then

we describe Mehrotra’s Predictor-Correct method that we use in our implementations

when an IPM is needed.

As already presented in Chapter 2, solving the primal LP is equivalent of solving the

dual LP. The primal and dual LPs are referred as the primal-dual pair. According to

the duality theory, if x and (w, s) are feasible for the primal and dual LPs, respectively,

then bTw ≤ cTx. The duality gap (|cTx− bTw|) is the difference between the objective

function of the primal LP and the dual LP.

Let u = (x,w, s) be an interior point with x > 0 and s > 0. If the interior point is not

optimal, we can apply Newton’s method with a fixed barrier parameter µ > 0 to obtain

a new interior point ū.

The dual residual (rd), the primal residual (pd) and the complementarity residual (rc)

at u are calculate as:

rd = ATw + s− c
rp = Ax− b
rc = Xs− µe

(3.6)

Using also Karush-Kuhn-Tucker (KKT) conditions for the primal-dual pair, we can

formulate the following linear system:

0 AT I

A 0 0

S 0 X

∆x

∆w

∆s

 =

rd

rp

rc

 (3.7)

The solution of the above system gives as the solution:

∆w = (AXS−1AT)−1(rp −AS−1(rc −Xrd))
∆s = rd −AT∆w

∆x = S−1(rc −X∆s)

(3.8)

Solving the above system, we can calculate the next interior point. Then, we continue

applying the Newton method until a termination criterion is satisfied. Next, we describe

Mehrotra’s Predictor-Corrector method.

Chapter 3. Linear Programming Algorithms 42

Prior to the application of the simplex algorithm, a presolve and a scaling routine should

be executed to reduce the problem’s dimensions and improve the computational prop-

erties of the constraint matrix A (for more details, see Chapter 4). After that, we need

to calculate an initial interior point. Most primal-dual IPMs need a strictly feasible

interior point as a starting point. However, Mehrotra’s Predictor-Corrector method is

an infeasible primal-dual IPM and it just requires an interior point (x0, s0) > 0 for the

starting point. We calculate a new interior point (x,w, s) in each iteration. This point

may be infeasible with (x, s) > 0.

Mehrotra proposed a heuristic to obtain a starting interior point:

x̄ = AT (AAT)−1b, w̄ = (AAT)−1Ac, s̄ = c−AT w̄
δx = max(−1.5min(x̄), 0), δs = max(−1.5min(s̄), 0)

δ̄x = δx + 0.5 (x̄+δxe)T (s̄+δse)∑n
i=1 s̄i+δs

, δ̄s = δs + 0.5 (x̄+δxe)T (s̄+δse)∑n
i=1 x̄i+δx

x0 = x̄+ δ̄xe, w
0 = w̄, s0 = s̄+ δ̄se

(3.9)

After finding the starting point, we continue performing the steps of Mehrotra’s Predictor-

Method, described below, until a termination criterion is satisfied. The termination

criterion is the following:

max(µ, ||Ax− b||, ||ATw + s− c||) ≤ tol (3.10)

where tol is the tolerance.

As the name reveals, Mehrotra’s Predictor-Corrector method uses two direction, the

predictor and the corrector. In the predictor step, the following system of equations is

solved:

0 AT I

A 0 0

S 0 X

∆xp

∆wp

∆sp

 =

ATw + s− c
Ax− b
Xs

 =

rd

rp

rc

 (3.11)

where (∆xp,∆wp,∆sp) is the Newton direction. Then, we calculate the largest step

lengths αpp, α
p
d ∈ (0, 1]:

x(αpp) = x− αpp∆xp, s(α
p
d) = s− αpd∆s

p ≥ 0 (3.12)

where:

Chapter 3. Linear Programming Algorithms 43

αpp = min

{
1,min∆xpi>0

xi
∆xpi

}
, αpd = min

{
1,min∆spi>0

si
∆spi

}
(3.13)

Next, we compute the centering parameter σ:

σ =

(
(x− αpp∆xp)T

(
s− αpd∆s

p
)

nµ

)3

(3.14)

where µ = xT s/n.

In the corrector step, the following system of equations is solved:

0 AT I

A 0 0

S 0 X

∆x

∆w

∆s

 =

ATw + s− c
Ax− b
Xs− σµe

+

0

0

∆Xp∆sp

 (3.15)

As the coefficient matrix is the same in the corrector and predictor step, we can use only

one factorization at its iteration.

Next, we calculate the primal and dual steps lengths:

αp = min

{
1, ηmin∆xi>0

xi
∆xi

}
, αd = min

{
1, ηmin∆si>0

si
∆si

}
(3.16)

where η ∈ (0, 1) is a value close to 1.

We also update the interior point:

x̄ = x− αp∆x
w̄ = w − αd∆w
s̄ = s− αd∆s

(3.17)

Finally, we perform the termination test to find out if the solution satisfies the termina-

tion criterion or we should continue performing the next iteration of the method.

A formal description of the MPC method is given in Table 3.3.

Next, we will demonstrate Mehrotra’s Predictor-Corrector method with an example.

Since this method includes a factorization and the solution of two systems of equations,

it is out of scope of this thesis to present the exact steps of the algorithm. We will only

focus on how the interior point is updated and we will demonstrate the convergence of

the algorithm to the optimal solution.

Chapter 3. Linear Programming Algorithms 44

Table 3.3: Mehrotra’s Predictor-Corrector Method

Step 0. (Initialization).
Presolve and scale the LP.
Find an initial interior point (x0, w0, s0) using Mehrotra’s heuristic (3.9).
Step 1. (Termination Criterion).
Calculate the primal (rp), dual (rd) and complementarity (rc) residuals.
Calculate the duality measure (µ).
If max(µ, ||rp||, ||rd||) ≤ tol then the problem is optimal.
Step 2. (Predictor Step).
Solve the system (3.11).
Step 3. (Centering Parameter Step).
Compute the centering parameter σ.
Step 4. (Corrector Step).
Solve the system (3.15).
Step 5. (Update Step).
Update the solution (x,w, s).
Go to Step 1.

The LP that will be solved is the following:

min z = 8x1 + 4x2 − 6x3

s.t. x1 + x2 + x3 ≤ 2

3x1 + x2 − x3 ≥ 3

3x1 + 2x2 − x3 ≥ 5

xj ≥ 0, (j = 1, 2, 3)

Let’s convert the LP in its standard form:

min z = 8x1 + 4x2 − 6x3

s.t. x1 + x2 + x3 + x4 = 2

3x1 + x2 − x3 − x5 = 3

3x1 + 2x2 − x3 − x6 = 5

xj ≥ 0, (j = 1, 2, 3, 4, 5, 6)

So, the matrices and vectors that will be given as input to IPM are the following:

A =

1 1 1 1 0 0

3 1 −1 0 −1 0

3 2 −1 0 0 −1

 , c =

8

4

−6

0

0

0

, b =

2

3

5

Chapter 3. Linear Programming Algorithms 45

Using Mehrotra’s heuristic (3.9), we can calculate an initial interior point:

x =

2.2719

2.4719

1.4719

1.6719

1.8719

0.8719

, w =

−1.3143

1.3905

1.7714

, s =

3.4548

4.0071

2.1024

4.9405

5.0167

5.3976

In the first iteration, we perform all the steps described previously and we finally calcu-

late a new interior point:

x =

1.1555

0.9558

0.0074

0.1138

1.2986

0.1964

, w =

−4.5975

0.8098

3.0787

, s =

0.9319

1.6302

2.4860

4.5975

0.8098

3.0787

The objective value using this solution is 13.0229. Hence, we observe that Merhotra’s

Predictor-Corrector method with only one iteration reached very close to the optimal

solution, which is 12.

In the second iteration, we perform all the steps described previously and we finally

calculate a new interior point:

x =

1.0143

0.9826

0.0019

0.0081

1.0201

0.0010

, w =

−3.5950

0.0897

3.7486

, s =

0.0802

0.0082

1.4333

3.5950

0.0897

3.7486

The objective value using this solution is 12.0332, even closer to the optimal solution,

which is 12. Hence, we observe that Mehrotra’s Predictor-Corrector method (and IPMs

in general) has a very fast convergence to the optimal solution at the first iterations.

However, the convergence is very slow at the last iterations. For example, Mehrotra’s

Predictor-Corrector method needs six iterations to find the solution to this linear pro-

gramming problem.

Chapter 3. Linear Programming Algorithms 46

Chapter 6 presents a hybrid algorithm that takes advantage of Mehrotra’s Predictor-

Corrector method fast convergence in the first iterations and combines it with an exterior

point simplex algorithm, which is utilized in the last iterations.

3.5 Conclusions

This Chapter gave an overview of the linear programming algorithms used in this disser-

tation. The primal revised simplex algorithm is one of the most important LP algorithms

and is used on many applications. We also presented the most well known simplex ex-

terior point simplex algorithm. Moreover, we will build on this algorithm in the next

Chapters and present other variants of this algorithm. We also presented Mehrotra’s

Predictor-Corrector method, an algorithm that we combine with the exterior point sim-

plex algorithm in Chapter 6 in order to build a very efficient hybrid algorithm.

Chapter 4

Presolve Techniques and A New

Method

4.1 Introduction

It is well known that preprocessing is of great value for linear programming and its

significance has been proved in practice. The main reason for making the presence of

preprocessing necessary is the numerical difficulties that software face while solving a

large scale LP. In addition, some LPs are automatically created from modelling software.

The use of modelling software includes both advantages and disadvantages. Modelling

software packages are extremely useful and they simplified the use of linear program-

ming techniques in a vast number of sectors for people who are not experts in linear

programming. On the other hand, the simple ways of constructing a LP led to problems

with larger dimensions and their form became more complicated for linear programming

solvers.

Preprocessing can contribute significantly to reduce this gap between the problem form,

which is produced from modelling software, and the form that a linear programming

solver demands for an accurate solution within an acceptable time interval. The main

goal of preprocessing is to construct a new equivalent LP with significant reduced dimen-

sions. As it is obvious, presolve methods are all these techniques that are responsible

for reforming a LP to an equivalent problem with less dimensions in order to enhance

the solvers’ computational performance.

As it is mentioned previously, preprocessing can improve the computational performance

of a LP solver; the main goals of presolve methods are [82]:

� Reduction of the dimensions of LPs.

47

Chapter 4. A New Presolve Method 48

� Enhancement of some arithmetic and computational characteristics of LPs.

� Detection if a LP is infeasible or unbounded.

� Detection of specific characteristics and forms of LPs that are detected only when

presolve methods are used.

The significant role of preprocessing was recognized from the first years of linear pro-

gramming. In general, preprocessing includes techniques that can reduce the size of LPs

and the number of non-zero elements. This can be achieved by eliminating redundant

constraints and variables.

Consequently, for all these reasons, presolve analysis became a fundamental component

of all well-known commercial and non-commercial linear programming packages which

include many presolve techniques. The number of constraints and variables in the linear

optimization problems are mainly those that are responsible for the increase or decrease

of the computational complexity. Consequently, it is possible to achieve significant re-

ductions to the size of the problem if presolve methods are applied prior to the execution

of a linear programming algorithm. This reduction in the size of the LPs can result in

the decrease of execution time that a linear programming solver demands in order to

solve it.

Solving LPs efficiently has always been a challenge for Operations Research community.

The wide range of industrial and scientific applications that requires fast and efficient lin-

ear programming solvers is the reason for the existence of preprocessing methods. These

presolve techniques can be combined with simplex methods, interior point methods and

exterior point algorithms.

Preprocessing can be applied in many different ways; other techniques focus on the

bounds of variables and how they can be strengthened, while other procedures are im-

plemented in order to eliminate redundant constraints of the initial LP. Consequently,

a new equivalent LP is produced after a presolve method is applied. In this new LP,

the same presolve techniques are applied consecutively until no changes are happened

to LP. Furthermore, presolve procedures can be used by any linear programming solver

independently of its algorithm. In contrast to the benefits, they are some crucial points,

for example, in many cases the detection of redundant constraints and variables are

extremely computationally demanding.

The structure of this Chapter is as follows. In Section 4.2, we present some useful in-

formation referring to the evolution of presolve techniques and their main categories.

In Section 4.3 to 4.10, a complete presolve routine is presented, which consists of three

different scaling techniques and eight presolve methods that aim to reduce the size of the

Chapter 4. A New Presolve Method 49

LP. Furthermore, in Section 4.11, a new presolve technique is introduced with significant

computational results from the analysis of primal feasibility conditions. Computational

results with a set of optimal benchmark problems from the NETLIB set are also pre-

sented in Section 4.12. The computational study includes statistics of benchmarks before

the application of the presolve session, statistics after the application of the presolve ses-

sion and the impact of the proposed new presolve technique. Finally, simplex algorithm

has been used in order to solve benchmarks before and after the new presolve technique

has been performed and its execution time and number of iterations to solve the LPs

are reported. Finally, conclusions are presented in Section 4.13.

4.2 Background

Presolve procedures have arisen in the literature many decades ago and nowadays, they

are one of the most fundamental parts in all linear programming solvers. Furthermore,

previous researchers have discussed and studied thoroughly the use of presolve techniques

in linear programming. The first approaches presented the idea of using general linear

transformations on the constraints in order to reduce the number of non-zeros in the

LPs.

Furthermore, presolve techniques are able to spot possible infeasibility and unbound-

edness of the problem. For all these reasons presolve analysis became a fundamental

component of all the well-known commercial and non-commercial linear programming

solvers. The number of constraints and variables in the linear optimization problems is

mainly responsible for the increase or decrease of computational complexity [8].

In 1970, the preconditioning techniques were widely introduced through a paper of

Reid [103] referring to large sparse matrices. When these matrices are reasonably well-

conditioned, an iterative procedure was applied in order to reduce the steps performed

by the algorithm to compute the linear solution. This paper inspired many researchers

to be involved in this issue. Moreover, in the next years, researchers focused their work

on row elimination and bound tightening in mathematical programming systems [74]

[121].

There are many presolve techniques already in use in many linear programming solvers.

Furthermore, previous researchers [34] [72] [82] [109] [119] have discussed and studied

thoroughly the use of presolve techniques in linear programming. The first approaches

presented the idea of using general linear transformations on the constraints in order to

reduce the number of non-zeros in the LPs [2] [19] [77]. A recently new set of presolve

techniques for LPs with box constraints is presented by Ioslovich [56].

Chapter 4. A New Presolve Method 50

Finally, a detailed survey of presolve techniques can be found in [5]. These presolve

techniques can be combined with simplex methods, interior point methods and exterior

point algorithms [45] [50] [105] [116] [118]. Moreover, there are many papers referring to

the effective implementation of presolve procedures in linear programming algorithms

[59] [18] [9], [39].

The presolve techniques can be divided into four categories. These categories are:

� Techniques derived from analysis of the primal feasibility conditions.

� Techniques derived from the dual feasibility conditions.

� Techniques derived from the complementarity conditions.

� Linear transformations performed on a set of equalities which aim to reduce the

density of the constraint matrix A.

4.3 Scaling Techniques

Presolve procedures are well known as preconditioning techniques and one of the most

well-known preconditioning techniques is scaling. The numerical accuracy is the main

concern of LP solver at the same time of reducing the computational time. The problem

of accuracy is most common on large scale problems and it stems from the class difference

that the numerical values seem to include. Matrices and vectors with no such problems

are known as well-scaled because they can reduce the number of iterations and at the

same time they do not affect the correctness of the solution.

In this Section, three different scaling techniques are used, the equilibration method,

the geometric mean and the hybrid technique which combines the first two methods.

The equilibration and geometric mean methods are the two most widely-used scaling

techniques. Apart from these three methods, there are many other scaling techniques

[23] [37] [68] [30], however the equilibration method remains the winner according to

measurements like solution time, scaling time, solution iterations and condition number

[98] [99].

Consequently, it is obvious that scaling is implemented as a part of the presolve tech-

niques and its main goals are [114]:

� To enhance the condition number of the constraint matrix A and the numerical

properties of the LP.

Chapter 4. A New Presolve Method 51

� To enforce the algorithm achieve the proper tolerances which are essential for the

numerical accuracy.

� To create more clear bounds of variables.

� To lead to significant reductions of computational time through the reduction of

algorithm iterations.

4.3.1 Equilibration

In the equilibration technique, the main goal is to transform the constraint matrix A in

a new matrix where all of its elements will have values between −1 and 1. The desirable

result will be achieved if the constraint matrix A is scanned twice, first a row scan is

performed and then a column scan. Each row is multiplied by the inverse of its largest

element in absolute value.

Furthermore, the largest element in absolute value is spotted in each column and if this

value is greater than 1, then the specific column is multiplied by the inverse of this

element.

4.3.2 Geometric Mean

In geometric mean, the main goal is the variance reduction of the nonzero elements of the

constraint matrix A. Similarly to the equilibration technique, the constraint matrix A is

scanned twice. However, in the geometric mean technique, a column scan is performed

initially. The geometric mean is calculated for each column and its inverse is multiplied

by the elements of the specific column.

sj = (X̄jXj)
−1/2 : j ∈ N (4.1)

Respectively, each row is multiplied by its geometric mean.

ri = (X̄iXi)
−1/2 : i ∈M (4.2)

4.3.3 Hybrid

Finally, in the hybrid technique, both the equilibration and the geometric mean are

taking place. Firstly, the equilibration technique is performed and then the geometric

mean technique.

Chapter 4. A New Presolve Method 52

4.4 Eliminate Empty Rows and Columns

A row of the constraint matrix A is an empty row if all the coefficients in that row are

zeros.

bi ≤ ai1x1 + ai2x2 + . . .+ ainxn ≤ b̄i (4.3)

with i = 1, 2, . . . ,m and aij = 0, j = 1, 2, . . . n. A constraint of this type can be

redundant or it can state that the LP is infeasible.

All possible cases are shown below:

1. ai1x1 + ai2x2 + . . .+ ainxn ≤ b̄i and b̄i ≥ 0. The constraint is redundant.

2. ai1x1 + ai2x2 + . . .+ ainxn ≤ b̄i and b̄i < 0. The linear problem is infeasible.

3. ai1x1 + ai2x2 + . . .+ ainxn ≥ bi and bi ≤ 0. The constraint is redundant.

4. ai1x1 + ai2x2 + . . .+ ainxn ≥ b̄i and b̄i > 0. The linear problem is infeasible.

5. ai1x1 + ai2x2 + . . .+ ainxn ≥ bi = b̄i = bi and bi = 0. The constraint is redundant.

6. ai1x1 + ai2x2 + . . . + ainxn ≥ bi = b̄i = bi and bi 6= 0. The linear problem is

infeasible.

A column of the constraint matrix A is an empty column if all of its elements are zeros.

A variable of this type can be redundant or it can state that the LP is unbounded.

All possible cases are shown below:

1. cj ≥ 0. The variable (column) is redundant and it can be deleted.

2. cj < 0. The linear problem is unbounded.

4.5 Eliminate Singleton Rows

A row of the constraint matrix A is a singleton row if the constraint is an equality and

only one element in that row is non-zero. Using mathematical notation, the singleton

row can be stated as follows:

ai1x1 + ai2x2 + . . .+ ainxn = bi = b̄i (4.4)

Chapter 4. A New Presolve Method 53

with only one aik 6= 0 ∧ aij = 0, j 6= k.

According to the above statement, the value of xk corresponding to the column k is fixed

at bi/aik. Moreover, there are two cases in this occasion:

1. xk ≥ 0. In this case, the row i and the column k are redundant and they can be

deleted.

2. xk < 0. In this case, the current value is out of the bounds for the variable and

the LP is infeasible.

The result of this presolve technique is the calculation of the value of one variable. After

the replacement of this variable to all constraints, it is very often to arise a new singleton

row; as a result, the current presolve technique should continue until no singleton row

is found.

4.6 Eliminate Singleton Inequality Rows

A constraint with only one non-zero coefficient:

bi ≤ ai1x1 + ai2x2 + . . .+ ainxn ≤ b̄i (4.5)

with i = 1, 2, . . . ,m and k, j ∈ [1, 2, . . . , n] is called a singleton inequality row. A

constraint of this type can be redundant or it can state that the LP is infeasible. All

possible cases are shown below.

If the constraint is of type aikxk ≤ b̄i then there are the cases:

1. aik > 0 ∧ b̄i < 0. The LP is infeasible.

2. aik < 0 ∧ b̄i > 0. The constraint i is redundant and it can be eliminated.

3. aik > 0 ∧ b̄i = 0. The constraint i and the variable k are redundant and they can

be eliminated.

4. aik < 0 ∧ b̄i = 0. The constraint i is redundant and it can be eliminated.

If the constraint is of type aikxk ≥ b̄i then there are the cases:

1. aik > 0 ∧ b̄i < 0. The constraint i is redundant and it can be eliminated.

Chapter 4. A New Presolve Method 54

2. aik < 0 ∧ b̄i > 0. The LP is infeasible.

3. aik > 0 ∧ b̄i = 0. The constraint i is redundant and it can be eliminated.

4. aik < 0 ∧ b̄i = 0. The constraint i and the variable k are redundant and they can

be eliminated.

4.7 Eliminate Dual Singleton Inequality Row

This technique is very similar with the previous. Initially, the dual LP is created.

Next, the algorithm searches for singleton inequality rows. In other words, the previous

technique is applied on the dual LP of the initial problem.

4.8 Eliminate Free Singleton Column

A constraint

aijx+ aisxs = b̄i = bi = b (4.6)

with i = 1, 2, . . . ,m and s ∈ [1, 2, . . . , n]in which there is a singleton column (only

ais 6= 0) with:

ais > 0 ∧ aij ≤ 0, j 6= s (4.7)

or

ais < 0 ∧ aij ≥ 0, j 6= s (4.8)

then the variable xs can be deleted from the LP. In addition, the ith constraint can be

removed too.

4.9 Eliminate Redundant Bounds from Constraints

A constraint of the type:

bi ≤ aix ≤ b̄i (4.9)

with the variables x, x ≤ x ≤ x̄ and x = 0, x̄ = +∞, calculates new bounds for the

constraints. These new bounds can easily be computed by:

Chapter 4. A New Presolve Method 55

bi
′ = inferior

x≤x≤x̄
〈aix〉 =

∑
aij≥0

aijxj +
∑
aij≤0

aij x̄j (4.10)

b̄i
′ = superior

x≤x≤x̄
〈aix〉 =

∑
aij≥0

aij x̄j +
∑
aij≤0

aijxj (4.11)

The function inferior calculates the greatest from the inferior bounds and the function

superior calculates the lowest from the superior bounds.

If [bi
′, b̄i
′]∩ [bi, b̄i] = �, then the LP is infeasible. On the other hand, if [bi

′, b̄i
′] ⊆ [bi, b̄i],

then the ith constraint is redundant and it can be eliminated.

4.10 Eliminate Linearly Dependent Rows

Two constraints ai and ak with i 6= k are called linearly dependent if

ai = λak (4.12)

with λ ∈ R, i, k ∈ {1, 2, . . . ,m} with i 6= k.

This kind of constraints are redundant and one of the constraints can be eliminated

from the LP. The Gaussian elimination method is needed for spotting of all linearly

dependent constraints. Furthermore, linearly dependent constraints can be also spotted

during the process of calculating the rank of matrix A.

The first step is to construct the augmented matrix [A|b], since operations on equations

also affect their right hand side. The main goal of this process is to produce an equiv-

alent matrix that will have an upper triangular form. Consequently, constraints of the

following form will be produced

ai1x1 + ai2x2 + . . .+ ainxn = 0, i = 1, 2, . . . ,m (4.13)

where aij = 0, j = 1, 2, . . . , n.

In case that during operations a constraint is produced of the form

ai1x1 + ai2x2 + . . .+ ainxn = bi, i = 1, 2, . . . ,m (4.14)

where aij = 0 and b 6= 0, j = 1, 2, . . . , n, then the LP is infeasible.

Chapter 4. A New Presolve Method 56

4.11 A New Presolve Technique - Eliminate Redundant

Columns

The proposed new presolve technique is derived from the analysis of the primal feasibility

conditions. It performs well in the process of reducing the dimensions of LPs.

Case 1. A linear constraint of the form:

a1x1 + a2x2 + . . .+ akxk = 0 (4.15)

with ai > 0, i = 1, 2, . . . , k implies that xj = 0 ∀ j = 1, 2, . . . , k.

Proof. It is very easy to check the correctness of the above statement. Assume that

there is a feasible solution to the LP. As a consequence xj = 0, j = 1, 2, . . . , n. Then,

according to the constraint (1) and with all ai > 0, i = 1, 2, . . . , k, we can conclude that

either there is xj < 0 with j 6= i or xj = 0 ∀ j = 1, 2, . . . , k. The first case xj < 0 with

j 6= i is not possible because it is against the constraint xj ≥ 0. Consequently, xj = 0 ∀
j = 1, 2, . . . , k.

Case 2. Likewise, a constraint of the form:

a1x1 + a2x2 + . . .+ akxk = 0 (4.16)

with ai < 0, i = 1, 2, . . . , k implies that xj = 0 ∀ j = 1, 2, . . . , k.

Proof. Similarly, there are two possible cases; the first claims that all xj = 0 ∀ j =

1, 2, . . . , k and the second that there is xi < 0 with j 6= i, which is not possible because

this case is excluded by the constraint xj ≥ 0 that stands for all variables in a LP.

Hence, all variables xj = 0, j = 1, 2, . . . , k are redundant in both cases and they can be

deleted from the LP. Consequently, the constraints are linearly dependent and they can

be deleted from the LP.

In the next section, we present some small examples of our new presolve technique in

order to demonstrate it in practice.

Illustrative Examples

We illustrate our presolve technique by applying it to the following LP, which is optimal

with an optimal value of the objective function z∗ = 2.6667.

Chapter 4. A New Presolve Method 57

min −2 x1 + 3x2 − x3 + 5x4

s.t. 3 x1 + 5x2 + 7 x3 + 2x4 = 4

− x1 + x2 − 2 x3 − x4 ≥ − 14

9 x1 + 15x2 + 21x3 + 11x4 ≤ 12

2 x1 − 3x2 − 5 x3 + 3x4 ≤ 16

xj > 0, j = 1, 2, 3, 4

First of all, the slack variables x5, x6 and x7 are introduced. In matrix notation the

above problem is written as follows:

min cTx

s.t. Ax = b (LP.1)

x ≥ 0

where

C =
[
−2 3 −1 5 0 0 0

]

A =

3 5 7 2 0 0 0

−1 1 −2 −1 −1 0 0

9 15 21 11 0 1 0

2 −3 −5 3 0 0 1

b =

4

−14

12

16

After the application of appropriate elementary row operations, like the multiplication

of the first row of the constraint matrix A by −3 and its addition to the third row of

Chapter 4. A New Presolve Method 58

the constraint matrix A, the updated constraint matrix A and vector b are:

A =

3 5 7 2 0 0 0

−1 1 −2 −1 −1 0 0

0 0 0 5 0 1 0

2 −3 −5 3 0 0 1

b =

4

−14

0

16

Now, the third row of the above constraint matrix A is the following:

5x4 + x6 = 0 (4.17)

In this case variables x4, x6 and the third constraint are redundant and they can be

eliminated. Consequently, the new matrices of the specific LP are:

C =
[
−2 3 −1 0 0

]

A =

3 5 7 0 0

−1 1 −2 −1 0

2 −3 −5 0 0

b =

4

−14

16

As we can observe, the number of variables has been reduced after the application of

the new presolve technique. Moreover, the reduced problem is still an optimal problem

with optimal objective value z∗ = 2.6667.

Apart from that, it is possible to detect a constraint of the form:

a1x1 + a2x2 + . . .+ akxk = 0 (4.18)

with ai < 0, i = 1, 2, . . . , k, which means that xj = 0 ∀ j = 1, 2, . . . , k . The next

example shows clearly this case. Consider the following LP after the addition of slack

variables x5, x6, x7 and x8.

Chapter 4. A New Presolve Method 59

min −4 x1 + x2 − 2 x3 + x4

s.t. x1 + 2x2 + 3 x3 + 4x4 + x5 = 4

− x1 − x2 − 2 x3 − x4 + x6 ≤ − 14

2 x1 + x2 + 4 x3 + 5x4 + x7 ≤ 12

2 x1 + x2 + 4 x3 + 2x4 + x8 ≤ 16

xj > 0, j = 1, 2, 3, 4

The above LP is an optimal one with optimal value of the objective function z∗ = 12.

In matrix notation, the specific LP is written as follows:

C =
[
−4 1 −2 1 0 0 0

]

A =

1 2 3 4 1 0 0 0

−1 −1 −2 −1 0 −1 0 0

2 1 4 5 0 0 1 0

2 1 4 2 0 0 0 −1

b =

8

−3

11

6

If we multiply the second row of the above constraint matrix A by 2 and add it to the

last row of the constraint matrix A and vector b, the new constraint matrix A and vector

b are:

A =

1 2 3 4 1 0 0 0

−1 −1 −2 −1 0 −1 0 0

2 1 4 5 0 0 1 0

0 −1 0 0 0 −2 0 −1

b =

8

−3

11

0

Chapter 4. A New Presolve Method 60

Note that the last row of the constraint matrix A has the following form:

− x2 − 2x6 − x8 = 0 (4.19)

In this case, variables x2, x6, and x8, and the last constraint are redundant and therefore

can be deleted. The new matrices and vectors of the LP are:

C =
[
−4 −2 1 0 0

]

A =

1 3 4 1 0

−1 −2 −1 0 0

2 4 5 0 1

b =

8

−3

11

The reduced LP is still optimal with an optimal value of the objective function z∗ = 12.

Another significant issue of the proposed new presolve technique is that it can be com-

bined with other presolve techniques in order to achieve greater dimensions reductions

in LPs. For example, it is very possible to appear linearly dependent constraints after

the deletion of one variable. Two constraints ai and ak with i 6= k are called linearly

dependent if ai = λak with λ ∈ R. The Gaussian elimination method can be used for

spotting of all the linearly dependent constraints. In the next example, it is clear how

these two methods can be combined and how significant results can be produced. Next,

there is a LP after the addition of the slack variable x6:

C =
[
1 1 −2 1 0 0

]

A =

1 4 1 5 1 0

7 8 4 6 0 0

4 4 2 3 0 0

5 12 4 15 3 1

b =

12

8

4

36

Chapter 4. A New Presolve Method 61

The above LP is optimal and the optimal value of the objective function is z∗ = 1. If we

multiply the third row of constraint matrix A by −2 and we add it to the second row,

the updated constraint matrix A and vector b are:

A =

1 4 1 5 1 0

−1 0 0 0 0 0

4 4 2 3 0 0

5 12 4 15 3 1

b =

12

0

4

36

Now, the second row of the constraint matrix A is the following:

− x1 = 0 (4.20)

In this case, variable x1 is redundant and it can be deleted. The new matrices and

vectors of the LP are:

C =
[
1 −2 1 0 0

]

A =

4 1 5 1 0

8 4 6 0 0

4 2 3 0 0

12 4 15 3 1

b =

12

8

4

36

It is clear that constraints 2 and 3 are linearly depended and as a result one of them can

be eliminated from the problem. We delete the second constraint and the new problem

is:

C =
[
1 −2 1 0 0

]

Chapter 4. A New Presolve Method 62

A =

4 1 5 1 0

4 2 3 0 0

12 4 15 3 1

b =

12

4

36

We can also continue with the application of our new presolve technique and multiply

the first constraint by −3 and then add it to the last constraint. The new constraint

matrix A and vector b are:

A =

4 1 5 1 0

4 2 3 0 0

0 1 0 0 1

b =

12

4

0

The last constraint of the constraint matrix A is:

x3 + x6 = 0 (4.21)

Hence, variables x3, x6 and the last constraint are redundant and they can be deleted.

The new matrices of the linear problem are:

C =
[
1 1 0

]
A =

[
4 5 1

4 3 0

]

b =

[
12

4

]

The reduced problem is still optimal with optimal value of the objective function z∗ = 1.

It is obvious, that the advantages of the new presolve technique in combination with

other presolve techniques are of great value and they can lead to significant dimensions

reductions of LPs. In the latter example, the initial problem had 4 constraints and 6

Chapter 4. A New Presolve Method 63

Table 4.1: Description of the Computing Environment

CPU Intel(R) Core�, i7 3.00 GHz (2 processors)
RAM size 16384 MB

L3 Cache size 8 MB
L2 Cache size 4x256 KB
L1 Cache size 4x32 KB

Operating System Microsoft Windows 7 Professional SP1
MATLAB version 7.0.1.24704 R14 SP1

variables and the final problem has 2 constraints and 3 variables. We achieve a 50%

reduction in constraints and 50% reduction in variables.

4.12 Computational Study

The computational comparison was implemented in the MATLAB version R14. The

main reasons for this choice were the inherent capability of MATLAB for matrix oper-

ations and the support for sparse matrices. Our tests ran in the environment described

in Table 4.1.

We implemented the following presolve techniques:

� Eliminate empty rows

� Eliminate empty columns

� Eliminate singleton equality rows

� Eliminate singleton inequality rows

� Eliminate dual singleton inequality rows

� Eliminate implied free singleton columns

� Eliminate implied bounds from constraints

� Make coefficient matrix A structurally full rank

� Eliminate linearly dependent rows

The presolve techniques were implemented as a function. A LP is passed as input to this

function along with some others parameters. In this computational study, 53 optimal

benchmarks are used, from the NETLIB collection, that do not have bounds and ranges

in their MPS files.

Chapter 4. A New Presolve Method 64

4.12.1 Statistics Before the Presolve Analysis

Below there is some useful information about the optimal benchmarks, which are going

to be used in the computational study. The first column of the table includes the name of

the benchmark, the second the number of constraints, the third the number of variables,

the fourth the number of non-zeros elements of matrix A, the fifth column the sparsity

of the constraint matrix A, the sixth the maximum value of the constraint matrix A, the

seventh the minimum value of the constraint matrix A, the eighth the condition number

of the constraint matrix A and the ninth the condition number of matrix M . Using

mathematical notation, matrix M is:

M =

[
A b

c 0

]

C
h

a
p

ter
4
.

A
N

ew
P

reso
lve

M
eth

od
65

Table 4.2: Optimal Benchmarks: Statistics Before the Presolve Analysis

Problem Constraints Variables Non-Zeros A Sparsity A Max(A) Min(A) C.N. A C.N. M

25FV47 820 1,571 10,400 0.81% 238.95 -207 3,89E+19 5,62E+18

ADLITTLE 56 97 383 7.05% 55 -64.3 9,37E+02 9,71E+04

AFIRO 27 32 83 9.61% 2,429 -1.06 1.61E+16 1.99E+05

AGG 488 163 2,410 3.03% 424 -24.391 1.09E+19 4.53E+23

AGG2 516 302 4,284 2.75% 424 -24.391 8.98E+33 1.28E+27

AGG3 516 302 4,300 2.76% 424 -24.391 1.51E+34 3.03E+28

BANDM 305 472 2,494 1.73% 200 -104 3.79E+03 3.78E+03

BEACONFD 173 262 3,375 7.45% 500 -100 1.46E+04 1.03E+06

BLEND 74 83 491 7.99% 66 -14 1.69E+17 1.59E+17

BNL1 643 1,175 5,121 0.68% 5.4 -78 7.47E+34 3.43E+36

BNL2 2,324 3,489 13,999 0.17% 30 -78 1.81E+33 3.47E+33

BRANDY 220 249 2,148 3.92% 203.7 -60 Inf Inf

D2Q06C 2,171 5,167 32,417 0.29% 2.32E+03 -982 1.48E+20 2.05E+19

DEGEN2 444 534 3,978 1.68% 1 -1 4.21E+17 1.57E+18

DEGEN3 1,503 1,818 24,646 0.90% 1 -1 5.61E+16 1.09E+17

E226 223 282 2,578 4.10% 771 -1.49E+03 1.58E+34 1.21E+34

FFFFF800 524 854 6,227 1.39% 1.09E+05 -120 3.85E+22 7.51E+21

ISRAEL 174 142 2,269 9.18% 1,600 -1,600 3.21E+16 7.26E+18

LOTFI 153 308 1,078 2.29% 1,000 -475 4.15E+07 6.68E+08

MAROS-R7 3,136 9,408 144,848 0.49% 1 -1 2.32E+06 2.83E+05

QAP8 912 1,632 7,296 0.49% 1 -1 1.86E+17 2.40E+19

QAP12 3,192 8,856 38,304 0.14% 1 -1 2.31E+17 5.16E+19

QAP15 6,330 22,275 94,950 0.07% 1 -1 1.54E+17 1.42E+20

SC50A 50 8 130 5.42% 2 -1 4.72E+06 6.63E+03

SC50B 50 48 118 4.92% 3 -1 7.43E+06 1.21E+04

SC105 105 103 280 2.59% 2 -1 1.11E+02 2.86E+04

C
h

a
p

ter
4
.

A
N

ew
P

reso
lve

M
eth

od
66

SC205 205 203 551 1.32% 2 -1 6.39E+02 2.06E+05

SCAGR7 129 140 420 2.33% 1.5 -9.32 1.03E+04 6.75E+05

SCAGR25 471 500 1,554 0.66% 1.5 -9.32 2.70E+09 5.04E+06

SCFXM1 330 457 2,589 1.72% 99 -130 6.38E+17 3.17E+18

SCFXM2 660 914 5,183 0.86% 99 -130 1.26E+18 5.36E+18

SCFXM3 990 1,371 7,777 0.57% 99 -130 1.02E+18 5.24E+18

SCORPION 388 358 1,426 1.03% 1 -1 2.75E+03 6.06E+05

SCRS8 490 1,169 3,182 0.56% 389 -2 5.66E+16 2.84E+17

SCSD1 77 760 2,388 4.08% 1 -1 2.12E+06 2.27E+02

SCSD6 147 1,350 4,316 2.17% 1 -1 8.85E+06 1.29E+03

SCSD8 397 2,750 8,584 0.79% 1 -1 9.93E+02 2.24E+04

SCTAP1 300 480 1,692 1.18% 80 -33 1.11E+17 1.07E+17

SCTAP2 1,090 1,880 6,714 0.33% 80 -33 6.67E+16 6.45E+17

SCTAP3 1,480 2,480 8,874 0.24% 80 -33 2.16E+17 2.05E+18

SHARE1B 117 225 1,151 4.37% 1.32E+03 -480 1.38E+05 3.54E+05

SHARE2B 96 79 694 9.15% 101 -103 1.84E+18 8.25E+16

SHIP04L 402 2,118 6,332 0.74% 4.706 -1 Inf Inf

SHIP04S 402 1,458 4,352 0.74% 4.706 -1 Inf Inf

SHIP08L 778 4,283 12,802 0.38% 5 -1 Inf Inf

SHIP08S 778 2,387 7,114 0.38% 5 -1 Inf Inf

SHIP12L 1,151 5,427 16,170 0.26% 1.6 -1 Inf Inf

SHIP12S 1,151 2,763 8,178 0.26% 1.6 -1 Inf Inf

STOCFOR1 117 111 447 3.44% 336.6 -1 6.36E+05 4.69E+04

STOCFOR2 2,157 2,031 8,343 0.19% 336.6 -1 1.07E+06 1.29E+05

TRUSS 1,000 8,806 27,836 0.32% 1 -1 4.77E+02 2.53E+04

WOOD1P 244 2,594 70,215 11.09% 244 -1,000 1.22E+14 1.37E+14

WOODW 1,098 8,405 37,474 0.41% 1,000 -1,000 4.76E+04 4.77E+04

Chapter 4. A New Presolve Method 67

4.12.2 Statistics After the Presolve Analysis

In Table 4.3, there are the same statistics as above, the number of constraints, variables,

non-zeros elements of the constraint matrix A, sparsity of the constraint matrix A,

condition number of the constraint matrix A and condition number of matrix M for the

same optimal benchmarks. In contrast, all these values refer to the benchmarks after

the presolve techniques have been performed (only the proposed new presolve technique

was not used).

As it is obvious from Tables 4.2 and 4.3, all presolve techniques are important and they

can lead to significant reductions. Apart from that, it is clear why presolve techniques

became a fundamental component of all the commercial linear programming packages.

According to these tables, the percentages of reduction for constraints, variables and

the non-zeros of the constraitn matrix A are of great value. In many benchmarks, the

range of reductions varies from 15% to 45% and in some benchmarks, the percentage

of reduction is more than 50%. Furthermore, it is significant to comment the values of

the condition number of matrices A and M after the presolve techniques are applied to

the benchmarks. It is obvious that these values have also been significantly reduced.

Some illustrative examples are the reductions in benchmarks like AGG2, BEACONFD,

BNL2, BRANDY, MAROS-R7, SHIP04L, SHIP04S, SHIP08L, SHIP08S, SHIP012L and

SHIP012S. On the other hand, there is no reduction of the data size in some benchmarks

(only 10 from 53).

C
h

a
p

ter
4
.

A
N

ew
P

reso
lve

M
eth

od
68

Table 4.3: Optimal Benchmarks: Statistics After the Presolve Analysis

Problem Constraints Variables Non-Zeros A Sparsity A Max(A) Min(A) C.N. A C.N. M

25FV47 788 1,541 10,236 0.84% 238.95 -206.9 3.49E+18 3.68E+18

ADLITTLE 55 95 375 7.18% 55 -64.3 9.38E+06 98,875.21

AFIRO 27 32 83 9.61% 2.43 -1.06 1.61E+16 1.99E+05

AGG 468 163 2,348 3.08% 424 -2.44 7.42E+33 1.42E+38

AGG2 390 112 1,723 3.94% 424 -2.44 1.05E+19 8.07E+23

AGG3 514 301 4,274 2.76% 424 -2.44 9.27E+32 4.11E+27

BANDM 255 422 2,032 1.89% 200 -104 2.93E+18 3.89E+18

BEACONFD 104 193 1,826 9.10% 1 -1 8.41E+16 8.67E+20

BLEND 71 80 446 7.85% 66 -14 7.19E+17 3.44E+17

BNL1 618 1,169 5,095 0.71% 5.4 -78 4.04E+40 1.35E+35

BNL2 1,853 3,007 12,674 0.23% 30 -78 1.25E+65 2.61E+35

BRANDY 134 207 1,901 6.85% 203.7 -60 3.56E+16 1.18E+16

D2Q06C 2,131 5,124 31,472 0.29% 2,322.7 -981.7 7.75E+18 9.63E+18

DEGEN2 442 534 3,944 1.67% 1 -1 9.41E+16 1.37E+18

DEGEN3 1,501 1,818 24,639 0.90% 1 -1 5.55E+16 1.11E+17

E226 200 271 2,470 4.56% 771 -1.49 8.13E+48 5.27E+33

FFFFF800 322 663 5,001 2.34% 221.29 -120 1.84E+34 1.11E+37

ISRAEL 174 142 2,269 9.18% 1,600 -1,600 3.21E+16 7.26E+18

LOTFI 133 288 809 2.11% 1000 -475 14.31E+06 3.52E+08

MAROS-R7 2,152 7,440 100,486 0.63% 1 -1 2.27E+04 2.82E+09

QAP8 912 1,632 7,296 0.49% 1 -1 1.86E+17 2.40E+19

QAP12 3,192 8,856 38,304 0.14% 1 -1 2.31E+17 5.16E+19

QAP15 6,330 22,275 94,950 0.07% 1 -1 1.54E+17 1.42E+20

SC50A 49 48 130 5.53% 2 -1 4.72E+06 6.63E+06

SC50B 48 48 118 5.12% 3 -1 7.43E+06 12050.53

SC105 104 103 280 2.61% 2 -1 1.11E+06 1.11E+06

C
h

a
p

ter
4
.

A
N

ew
P

reso
lve

M
eth

od
69

SC205 203 202 550 1.34% 2 -1 6.39E+06 20,5726.8

SCAGR7 127 138 410 2.34% 1.5 -9.32 10,230.31 57,9541.9

SCAGR25 469 498 1,544 0.66% 1.5 -9.32 26.9E+09 4.83E+06

SCFXM1 310 440 2,352 1.72% 99 -130 7.74E+32 2.02E+33

SCFXM2 620 880 4,709 0.86% 99 -130 1.52E+33 3.87E+33

SCFXM3 930 1,320 7,066 0.58% 99 -130 7.16E+32 6.47E+33

SCORPION 320 328 1,178 1.12% 1 -1 7.47E+17 1.78E+20

SCRS8 428 1,112 2,966 0.62% 388.77 -2 1.66E+21 4.36E+21

SCSD1 77 760 2,388 4.08% 1 -1 2.12E+06 2.27E+02

SCSD6 147 1,350 4,316 2.17% 1 -1 8.85E+06 1.29E+03

SCSD8 397 2,750 8,584 0.79% 1 -1 9.93E+02 2.24E+04

SCTAP1 284 480 1,638 1.20% 80 -33 4.60E+06 1.16E+06

SCTAP2 1,033 1,880 6,489 0.33% 80 -33 4.38E+06 2.10E+06

SCTAP3 1,408 2,480 8,595 0.25% 80 -33 7.21E+06 3.70E+06

SHARE1B 112 220 1,120 4.55% 1,322.2 -479.56 1.38E+05 4.55E+06

SHARE2B 96 79 694 9.15% 101 -103 1.84E+18 8.25E+16

SHIP04L 323 2,089 4,719 0.70% 4.71 -1 5.43E+30 4.54E+33

SHIP04S 235 1,341 3,029 0.96% 4.71 -1 2.48E+31 1.46E+34

SHIP08L 630 4,209 9,504 0.36% 5 -1 3.56E+30 3.38E+32

SHIP08S 358 2,041 4,612 0.63% 5 -1 8.12E+30 4.64E+32

SHIP12L 756 5,146 11,467 0.29% 1.6 -1 2.99E+31 6.20E+31

SHIP12S 384 2,110 4,694 0.58% 1.6 -1 3.57E+31 9.60E+32

STOCFOR1 102 96 367 3.75% 336.6 -1 53,8109.1 52,683.89

STOCFOR2 1,996 1,870 7,152 0.19% 336.6 -1 1,06E+06 12,9874.6

TRUSS 1,000 8,806 27,836 0.32% 1 -1 4.77E+02 2.53E+04

WOOD1P 243 2,593 67,710 10.75% 942.76 -1000 3.57E+31 9.60E+32

WOODW 1,094 8,401 31,566 0.34% 1000 -1000 3.57E+31 9.60E+32

Chapter 4. A New Presolve Method 70

4.12.3 Statistics For New Presolve Technique

In Table 4.4, there is some useful information that refers to the reduction in the size of

LPs which has been made from the application of the new presolve technique. The new

presolve technique has effect in 20 out of 53 benchmarks. The first column of the table

includes the name of the benchmark, the second the number of constraints, the third

the number of variables, the fourth the non-zeros elements of the constraint matrix A,

the fifth the sparsity of the constraint matrix A, the sixth the condition number of the

constraint matrix A and the seventh the condition number of matrix M .

Table 4.4: Optimal Benchmarks: Statistics After the New Presolve Technique

Problem Constraints Variables Non-Zeros A Sparsity A C.N. A C.N. M

AGG 390 112 1,723 3.94% 1.05E+19 8.07E+23

BANDM 243 398 1,925 1.99% 2.89E+06 3.82E+06

BEACONFD 82 143 1,255 10.70% 7.05E+06 1.01E+06

BNL1 618 1,169 5,095 0.71% 1.99E+35 1.87E+20

BNL2 1,853 3,007 12,674 0.23% 6.12E+36 2.79E+21

E226 199 266 2,388 4.51% 4.91E+34 1.31E+19

FFFFF800 322 663 5,001 2.34% 1.13E+19 1.19E+21

SCFXM1 305 431 2,320 1.76% 1.01E+18 3.03E+18

SCFXM2 610 862 4,645 0.88% 5.38E+05 3.00E+18

SCFXM3 915 1,293 6,970 0.59% 7.53E+17 4.67E+18

SCORPION 317 324 1,159 1.13% 7.47E+06 177,533.7

SCRS8 425 1,109 1,109 0.63% 1.66E+06 4,36E+06

SHIP04L 292 1,890 4,275 0.77% 2.46E+15 4.59E+18

SHIP04S 216 1,266 2,860 1.05% 1.45E+17 1.99E+19

SHIP08L 470 3,099 7,100 0.49% 3.99E+15 1.15E+18

SHIP08S 276 1,582 3,622 0.83% 3.82E+17 2.11E+17

SHIP12L 610 4,147 9,230 0.36% 4.02E+16 5.28E+16

SHIP12S 340 1,919 4,273 0.65% 3.29E+16 2.69E+18

WOOD1P 171 1,801 46,830 15.21% 4.65E+14 6.61E+14

WOODW 708 5,351 19,796 0.52% 28,769.9 29,540.73

Table 4.5 includes the reduction of the constraints, the variables and the non-zeros of

the constraint matrix A. The first column refers to the constraints reduction that the

new presolve technique is responsible for and the second has the total variables reduction

which stems from all the presolve techniques including the proposed new technique. The

next four columns refer to the variables reduction and the non-zeros of the constraint

matrix A reduction. Moreover, the percentages for these reductions appear in the last

three columns. On average, the new presolve technique has achieved 26.64% reduction

in the number of constraints, 48.03% reduction in the number of variables and 30.73%

reduction in the number of non-zeros.

C
h

a
p

ter
4
.

A
N

ew
P

reso
lve

M
eth

od
71

Table 4.5: Optimal Benchmarks: New Presolve Technique Reduction and Rest Presolve Technique Reduction

Problem

New Total New Total New Total %New %New %New

Technique Techniques Technique Techniques Technique Techniques Technique Technique Technique

Constraints Constraints Variables Variables Non-Zeros A Non-Zeros A Constraints Variables Non-Zeros A

Reduction Reduction Reduction Reduction Reduction Reduction Reduction Reduction Reduction

AGG 78 98 51 51 625 687 79.59% 100.00% 90.98%

BANDM 12 62 20 74 107 569 19.35% 27.03% 18.80%

BEACONFD 22 91 52 119 571 2,120 24.18% 43.70% 26.93%

BNL1 0 25 2 6 0 26 0.00% 33.33% 0.00%

BNL2 0 471 5 482 0 1,325 0.00% 1.04% 0.00%

E226 1 24 5 16 82 190 4.17% 31.25% 43.16%

FFFFF800 0 202 2 191 0 1,226 0.00% 1.05% 0.00%

SCFXM1 5 25 9 26 32 269 20.00% 34.62% 11.90%

SCFXM2 10 50 18 52 64 538 20.00% 34.62% 11.90%

SCFXM3 15 75 27 78 96 807 20.00% 34.62% 11.90%

SCORPION 3 71 4 34 19 267 4.23% 11.76% 7.12%

SCRS8 3 65 18 60 1,857 2,073 4.62% 30.00% 89.58%

SHIP04L 31 110 199 228 444 2,057 28.18% 87.28% 21.58%

SHIP04S 19 186 75 192 169 1,492 10.22% 39.06% 11.33%

SHIP08L 160 308 1,110 1,184 2,404 5,702 51.95% 93.75% 42.16%

SHIP08S 82 502 459 805 990 3,492 16.33% 57.02% 28.35%

SHIP12L 146 541 999 1,280 2,237 6,940 26.99% 78.05% 32.23%

SHIP12S 44 811 191 844 421 3,905 5.43% 22.63% 10.78%

WOOD1P 72 73 792 793 20,880 23,385 98.63% 99.87% 89.29%

WOODW 386 390 3,050 3,054 11,770 17,678 98.97% 99.87% 66.58%

AVERAGE 26.64% 48.03% 30.73%

Chapter 4. A New Presolve Method 72

Figure 4.1: Constraint Reduction: % Reduction of the New Presolve Technique

Figure 4.2: Variable Reduction: % Reduction of New the Presolve Technique

It is clear from the computational results that the new presolve technique can lead to

significant reductions in problem’s dimensions. The reduction of problem’s dimension

can be crucial for the execution time of a linear programming solver. According to the

results, the new presolve technique has remarkable results in reduction of constraints,

variables and non-zeros elements of a LP.

Figure 4.1, which refers to the constraints reduction, shows that the new presolve tech-

nique is almost totally responsible for the whole reduction in some benchmarks. These

Chapter 4. A New Presolve Method 73

Figure 4.3: Non-Zeros A Reduction: % Reduction of New presolve Technique

benchmarks are the WOOD1P and WOODW and the reduction percentage that stems

from the new presolve technique is above 95%. Moreover, AGG and SHIP08L present

significant reductions that came from the new presolve technique. Finally, the new

presolve technique is responsible for almost 20% reduction of the total reduction in the

majority of benchmarks. In Figure 4.2, the variables reduction is presented and it is very

interesting since the new presolve technique eliminates directly variables from a LP in

contrast to previous results which show the constraints reduction after the combination

of the new presolve with other presolve techniques, like the elimination of linearly de-

pendent rows. Likewise, benchmarks AGG, WOOD1P and WOODW present the most

promising results for the new presolve technique. Furthermore, the average percentage

of variables reduction derived from the new presolve technique is 48.03%. In Figure

4.3, there is the percentage of reduction in the number of non-zeros. Benchmarks like

AGG, SCRS8, WOOD1P and WOODW have significant reduction of non-zeros due to

the new presolve technique, something which can lead to significant reduction of execu-

tion time in the process of solving these LPs. On average, the new presolve technique

has achieved 26.64% reduction in the number of constraints, 48.03% reduction in the

number of variables and 30.73% reduction in the number of non-zeros.

In order to gain a clearer and deeper insight about the practical performance of the pro-

posed presolve technique, we carry out an experimental study. We solved the benchmarks

of Table 4.4 before and after the new presolve technique is performed. For this purpose,

we used the Optimization Toolbox of Matlab (linprog function). The Optimization Tool-

box version 4.3 implements three different algorithms; a small-scale simplex algorithm,

Chapter 4. A New Presolve Method 74

a medium-scale active set projection method and a large-scale primal-dual interior point

method. In our experiment, we used the simplex algorithm. All the reported CPU

times were measured in seconds with the Matlab built-in function cputime. Table 4.6

reports results on the performance of the new presolve technique, before and after it

is performed. A∗ denotes that this problem is scaled using the equilibration scaling

technique. The columns entitled Niter stand for the number of iterations needed by

the simplex algorithm to solve a problem. The columns entitled cpu refer to the CPU

time needed by the simplex algorithm to solve a problem. The last two columns show

the percentages for the Niter and cpu reductions, respectively. On average, the new

presolve technique has achieved 5.47% reduction in the number of iterations and 5.99%

reduction in the execution time.

Table 4.6: Efficiency of the New Presolve Technique

Problem

Before After ∆ %Niter ∆ %Cpu

Niter Cpu Niter Cpu Reduction Reduction

AGG 30 0.5460 22 0.4212 33.33% 22.86%

BANDM * 347 0.8892 217 0.6396 37.46% 28.07%

BEACONFD 13 0.0936 13 0.0936 0.00% 0.00%

BNL1 354 8.7205 354 8.7205 0.00% 0.00%

BNL2 * 2,612 111.2777 2,612 111.2777 0.00% 0.00%

E226 333 0.4992 324 0.4712 2.70% 5.61%

FFFFF800 173 0.7488 173 0.7488 0.00% 0.00%

SCFXM1 171 0.6240 158 0.5943 7.60% 4.76%

SCFXM2 318 1.6848 301 1.6611 5.35% 1.41%

SCFXM3 472 3.7596 447 3.5924 5.30% 4.45%

SCORPION 36 0.4368 36 0.4368 0.00% 0.00%

SCRS8 368 0.7176 336 0.6396 8.70% 10.87%

SHIP04L 246 0.4836 246 0.4836 0.00% 0.00%

SHIP04S 183 0.3276 183 0.3276 0.00% 0.00%

SHIP08L 379 4.3992 374 3.5880 1.32% 18.44%

SHIP08S 236 0.4524 213 0.3981 9.75% 12.00%

SHIP12L 634 6.4116 634 6.4116 0.00% 0.00%

SHIP12S 313 0.6240 330 0.6869 -5.43% -10.08%

WOOD1P 217 1.7316 217 1.7316 0.00% 0.00%

WOODW 824 12.0815 796 9.5005 3.40% 21.36%

AVERAGE 5.47% 5.99%

4.13 Conclusions

From the computational results presented in previous section, it can be concluded that

the presolve techniques are highly successful in reducing the size of a LP. Furthermore,

the time taken by the presolve techniques is negligible compared to the time taken by

the linear programming solver. In addition, the time taken by the linear programming

Chapter 4. A New Presolve Method 75

solver in order to solve the presolved problem is significantly less than the time taken

by it to solve the same unpresolved LP. It should be noted that presolve techniques can

be very useful if they are combined either with interior-point algorithms or simplex-

type methods. Another possible use of the presolve procedure is as a model analyzing

tool, because this procedure might reveal bad formulations such as primal and dual

infeasibility. The possible detection of infeasible problems is especially advantageous

for interior-point algorithms or simplex-type methods because this kind of problems is

extremely time-consuming.

The computational results for the new presolve technique presented in this paper are

quite satisfactory. This technique is a new approach for detecting and eliminating redun-

dancies from a LP. The application of the proposed presolve technique reduces signifi-

cantly the problem’s dimensions, at the same time of decreasing the total execution time.

According to computational results, the new presolve technique has yielded significant

reductions in many optimal benchmarks.

Chapter 5

Primal-Dual Interior Point

Simplex Algorithm

5.1 Introduction

As it was already mentioned in previous Chapters, there was a huge gap between the

theoretical worst-case complexity and the practical performance of simplex-type algo-

rithms. Apart from the simplex algorithm, another approach to solve LPs is not just

to move from one basic vertex to another but to visit points in the exterior of the

feasible region. The algorithm that includes these kinds of features is called Exterior

Point Simplex Algorithm (EPSA). Furthermore, a significant improvement of EPSA is

the primal-dual versions of the algorithm which also revealed its superiority contrary

to the simplex algorithm and they are known as Primal-Dual Exterior Point Simplex

Algorithms (PDEPSAs).

The aim of this chapter is to present an experimental investigation of a Primal-Dual

Interior Point Simplex Algorithm (PDIPSA) for solving LPs [42]. As its name reveals

PDIPSA is a variation of PDEPSAs and its main difference stems from the fact that

it traverses across the interior of the feasible region in an attempt to avoid combina-

torial complexities of vertex following algorithms. In order to gain an insight into the

practical behavior of the proposed algorithm, we have performed some computational

experiments. Our computational results demonstrate that PDIPSA is faster than the

simplex algorithm and the primal exterior point simplex algorithm. A clear advantage

is obtained by PDIPSA both in number of iterations and CPU time.

76

Chapter 5. Primal-Dual Interior Point Simplex Algorithm 77

The structure of this Chapter is as follows. In Section 5.2, the basic concepts of primal-

dual exterior point simplex algorithms are presented. In Section 5.3, we show geometri-

cally the differences between PDIPSA and PDEPSA, while Section 5.4 presents PDIPSA.

Section 5.5 includes the proof of correctness of the algorithm and Section 5.6 discusses

the revised form of this algorithm and how it is able to solve general LPs. A compu-

tational study is presented in Section 5.7 to highlight the efficiency of the algorithm.

Finally, conclusions are presented in Section 5.8.

5.2 PDEPSAs

In this section, we are going to describe a PDEPSA. For the initialization of the algorithm

a dual feasible basis B is needed. We denote by x = (xB, xN) and (w, s) = (sB, sN)

the solutions of the primal LP and the the dual LP corresponding to the basic partition

(B,N), respectively. In addition, an initial point y is necessary for the initialization

of the algorithm. This point can be a basic, a boundary or an interior point. As it is

obvious, a sequence of dual feasible basis Bn, n = 1, 2, ... is constructed by the algorithm

and we denote by xn the primal solution and (wn, sn) the dual solution. Moreover, xn

is not necessary feasible to the primal LP.

A direction d′ = x′ − y′ is calculated, where y′ is the initial primal feasible solution of

the primal LP; the y′ can be a non-basic solution. Direction d′ is an ascent direction

for the objective function cT because y′ is feasible to the primal LP and x′ refers to a

feasible basis of the dual LP. The direction d′ enters the feasible region of the primal

LP through the boundary point y′′ and this point lies on a hyperplane. This hyperplane

corresponds to a basic variable, which we denote by xk < 0. Consequently, a dual pivot

operation takes place in which the basic variable xk exits the basis. In addition, a new

basis B′′ is calculated and the corresponding solutions x′′, w′′, s′′. After n iterations, the

algorithm concludes on the dual feasible basis Bn and the points xn, wn, sn, yn, and the

algorithms finishes when xn becomes feasible to the primal LP.

In Figure 5.1, an illustrative example is presented. The algorithm moves from point x′

to x′′ and x′′′ and it also computes the points y′ to y′′ and y′′′. The initial point y′ is an

interior point and the next points y′′ and y′′′ are boundary points. Moreover, at each

iteration the direction di = yi − xi is computed and the points xi and yi, i > 1 lie in

the same hyperplane xk = 0. The algorithm stops at point y′′′ = 0, which is the optimal

solution.

The algorithm is formally described in Table 5.1. From the geometrical representation,

we observe that point y = x+λd lies on hyperplane xk = 0 and y is feasible to the primal

Chapter 5. Primal-Dual Interior Point Simplex Algorithm 78

Figure 5.1: The geometrical representation.

LP. Furthermore, the correctness of the algorithm is easily proved due to the similarity

to the dual simplex method. It is obvious that a dual feasible solution is computed in

each iteration and the algorithm stops when the basic solution is also primal feasible.

Consequently, the algorithm solves correctly any LP.

A good implementation of this type of PDEPSA is described by Paparrizos et al. [93].

The main idea of the Revised Primal Dual Simplex Algorithm (RPDSA) is based on

the process of moving from any interior point to an optimal basic solution. Although

this algorithm is better from the exterior point simplex algorithm, it also faces some

weaknesses. RPDSA begins with an interior point and at each iteration a boundary

point is used in order to compute the leaving variable. It has been observed that the

problem of stalling and cycling can arise very often at this stage. This weakness can

be overcome if the boundary point is replaced by an interior point. The transfer to the

interior of the feasible region disappears the problem of stalling and cycling.

Chapter 5. Primal-Dual Interior Point Simplex Algorithm 79

Table 5.1: Primal–Dual Exterior Point Simplex Algorithm

Step 0. (Initialization).
Start with a dual feasible basic partition (B,N) and a primal feasible solution y of
the primal LP.
Set:

xB = (AB)−1 b, wT = (cB)T (AB)−1, sN = (cN)T − wTAN , d = y − x
Step 1. (General Step).
while (∃i ∈ B : xi < 0)

λ =
xB[r]

−dB[r]
= max

{
xi
−di : i ∈ B, xi < 0

}
y = x+ λd

HrN = (B)−1
r. AN

µ =
sN(t)

HrN(t)
= min

{
sN(j)

−HrN(j)
: HrN(j) < 0

}
k = B(r), p = N(t), B(r) = p,N(t) = k
xB = (AB)−1b, wT = (cB)T (AB)−1, (sN)T = (cN)T − wTAN
d = y − x

end

5.3 Geometrical Representation

In this Chapter, we propose an alternative efficient approach of PDEPSA that it clearly

outperforms the simplex algorithm and EPSA. This approach is much more efficient

because it can overcome two significant drawbacks of PDEPSA, stalling and cycling.

Furthermore, this algorithm is primal–dual, meaning that it simultaneously solves both

the primal and the dual LP. In contrast to PDEPSA, in our algorithm, we use an interior

point at each iteration to compute the leaving variable and this is the key factor that

leads the algorithm to avoid the problem of stalling and cycling.

A geometrical representation is necessary to clarify the reasons that our algorithm can

deal quite satisfactory with these two drawbacks. In Figure 5.2, we present a LP where

the problem of stalling arises. We assume that our algorithm is at vertex A at the

current iteration. According to PDEPSA, the direction d′ computes the boundary point

y′ from which it enters the feasible region. This point is used to choose the leaving

variable (constraint); at this point, there are three possible options, constraints (1), (2)

or (3). In other words, there are bonds in the specific LP. If the next leaving variable

is constraint (1), then our algorithm will move to vertex B. In this case, the new

direction enters again the feasible region from point y′; keeping the point y′ boundary,

the algorithm will move to vertices C and D consecutively until it reaches vertex E,

which is the optimal solution. Consequently, it will compute the optimal value after

four iterations; this phenomenon of pivoting between degenerated vertices of the feasible

region is called stalling. The problem of stalling can be overcome if the boundary point

y′ is replaced from an interior point y′′. Now, using this interior point the direction d′′

Chapter 5. Primal-Dual Interior Point Simplex Algorithm 80

Figure 5.2: Stalling

enters the feasible region from the boundary point point y′′′. Only constraint (3) comes

through this point and PDIPSA will move to vertex D without visiting vertices B and

C. Consequently, the optimal solution will be calculated in two iterations in contrast to

PDEPSA that needs four iterations.

Apart from the problem of stalling, PDEPSA has another significant drawback, it is

vulnerable to cycling. In order to clarify this specific situation, we assume in the above

LP that the objective function is parallel to line ε1 (see Figure 5.4). According to

PDEPSA, the algorithm’s pivot from vertex A to vertex D cannot lead to any change of

the objective function’s value. Furthermore, in such cases, the algorithm may continue

cycling from one vertex to another. This weakness can be also overcome if we replace

the boundary point with an interior point as it was described previously.

5.4 Description of PDIPSA

In this section, we briefly describe PDIPSA (for a full description of PDIPSA see [105]

and for solving general LPs with PDIPSA see [93]).

PDIPSA is initialized with a dual feasible basis. The procedure of a dual feasible basis

construction is based on a big–M problem [105]; so, it essentially attempts to execute

phase I and phase II of a simplex-type algorithm in a single execution. The solutions of

Chapter 5. Primal-Dual Interior Point Simplex Algorithm 81

Figure 5.3: Cycling

the primal LP and the dual LP corresponding to the basic partition (B,N) are denoted

by x = (xB, xN) and (w, s) = (w, sN), respectively. We assume that an interior point y

to problem (LP.1) is available. We explain how we choose the initial point y later in this

Section. The main idea of our algorithm is that the point y must be an interior point.

The algorithm generates a sequence of dual feasible bases B(k), k = 1, 2, · · · . The primal

solution x(k) and the dual solution (w(k), s(k)) correspond to the basis B(k). Recall that

x(k) is not (in general) feasible to the primal LP.

Initially a direction dB = yB−xB, where yB is an initial interior point of the primal LP,

is computed. As xB corresponds to a feasible basis of the dual LP and yB is feasible to

primal LP, the direction dB is an ascent direction for the objective function cTx.

At the next step, the leaving variable xk = xB[r] is calculated from the maximum ratio

test:

a =
xB[r]

−dB[r]
= max

{
xi
−di

: i ∈ B, di > 0 ∧ xi < 0

}
i.e., r is the index of the basic list B where the fraction xi

−di , i ∈ B, di > 0 ∧ xi < 0, is

maximized. In case of ties, the rightmost index is selected.

Chapter 5. Primal-Dual Interior Point Simplex Algorithm 82

The ray R = {x+ a′d : a′ ≥ 0} enters the feasible region of the primal LP through the

boundary point x+ ad. Then, the algorithm moves to the point yB, which is inside the

feasible region. This computation is achieved by the relation yB = xB + a′dB, where

a′ = a+1
2 .

Let H be a hyperplane on which the point yB lies on. This hyperplane corresponds to

a basic variable, which we denote by xk. Obviously, xk ≥ 0. At this point, a dual pivot

operation on which the basic variable xk exits the basis is performed. This operation

computes a new dual feasible basis AB and the corresponding solutions x, w, and s. The

algorithm terminates when x becomes feasible to (LP.1).

PDIPSA can be described formally as shown in Table 5.2.

Table 5.2: Primal-Dual Interior Point Simplex Algorithm

Step 0. (Initialization).
A) Start with a dual feasible basic partition (B,N) and an interior point
y > 0 of (LP.1).
Set:

P = N,Q = ∅
and compute

xB = (AB)−1 b, wT = (cB)T (AB)−1, sN = (cN)T − wTAN
B) Compute the direction dB from the relation: dB = yB − xB
Step 1. (Test of optimality and choice of the leaving variable).
if x ≥ 0 then STOP. (LP.1) is optimal.
else

Choose the leaving variable xk = xB[r] from the relation:

a =
xB[r]

−dB[r]
= max

{
xi
−di : i ∈ B, di > 0 ∧ xi < 0

}
Step 2. (Computation of the next interior point).
Set:

a′ = a+1
2

Compute the interior point from the relation: yB = xB + a′dB
Step 3. (Choice of the entering variable).

Set: HrN = (AB)−1
r AN

Choose the entering variable xl from the relation:
−sl
HrN

= min
{
−sl
HrN

: Hrj ∧ j ∈ N
}

Compute the pivoting column: hl = (AB)−1A.l
if l ∈ P then
P ← P \ {l}

else
Q← Q \ {l}

Step 4. (Pivoting).
Set:

B[r] = l and Q← Q ∪ {k}
Using the new partition (B,N) where N = (P,Q), compute/update the

new basis inverse A−1
B and the variables xB, w, and sN .

Go to step 0B.

Chapter 5. Primal-Dual Interior Point Simplex Algorithm 83

By the choice of a in the maximum ratio test, we conclude that the point y = x + a′d,

where a′ = a+1
2 , lies on hyperplane xk = 0. Also, y is feasible to (LP.1). Furthermore,

the geometrical representation, which was presented previously, and the similarity of

the algorithm to the dual simplex algorithm (in fact, it can be seen as a modification of

the dual simplex algorithm) reveals immediately the correctness of the algorithm. The

algorithm constructs dual feasible solutions. When it stops, the basic solution is also

primal feasible. Hence, the algorithm correctly solves any LP. Furthermore, PDIPSA

can deal very effectively with the problem of stalling and cycling.

A revised form of the algorithm is implemented in this dissertation. Any known tech-

nique for updating the basic inverse matrix (AB)−1 and the vectors xB, w, and sN can

be combined with the algorithm. Here, our effort is focused on how the direction d

can be computed more efficiently. Our results lead to a different calculation of dB; the

component dB is updated in a way very similar to that of xB. Moreover, our results lead

to the construction of a big–M problem (for solving general LPs). The revised form of

the algorithm and the method it uses to solve general LPs are discussed in Section 5.6.

5.5 Proof of Correctness

The geometrical representation that was presented in Section 5.3 and the similarity of

the proposed algorithm to the dual simplex method reveal immediately the correctness

of the algorithm. The algorithm finds a basic solution that is also primal feasible when

it terminates. To complete the proof of correctness of the algorithm, it suffices to show

that every basic partition, which is constructed by PDIPSA, is dual feasible and the

computation of the maximum ratio test is well defined.

Theorem 1: If the initial basic partition of PDIPSA is dual feasible, then every con-

secutive partition is dual feasible.

Proof: The proof is by induction on the number of iterations. Denote by k the number

of iterations. It is obvious from Step 0A of PDIPSA that for k = 1 the relations

S
(1)
j ≥ 0 , j ∈ N (1), and S

(1)
j = 0, j ∈ B(1), hold. Suppose now that the relation S

(k)
j ≥ 0,

j ∈ N (k), holds. Let (B(k+1), N (k+1)) be the new basic partition and S
(k+1)
j , j ∈ N (k+1),

the corresponding dual slack variables. The dual slack variables can be computed by

the relation

S
(k+1)
j = S

(k)
j −

S
(k)
l

Hrl
Hrj , j ∈ N (k+1) (5.5.1)

Chapter 5. Primal-Dual Interior Point Simplex Algorithm 84

where Hrj , j ∈ N (k+1), is the pivot row. From the choice of the entering variable xl

−S(k)
l

Hrl
= min{

−S(k)
l

Hrl
: Hrj < 0 ∧ j ∈ N (k)} (5.5.2)

we conclude that
−S(k)

l
Hrl

≥ 0. If Hrj ≤ 0, j ∈ N (k+1), then S
(k+1)
j ≥ 0 holds as the

summation of two vectors with positive entries. If Hrj > 0, j ∈ N (k+1), then the relation

(3.1) is equivalent to

S
(k)
j

Hrj
≥
S

(k)
l

Hrl

which is true according to relation (5.5.2) and consequently S
(k+1)
j ≥ 0. Hence, if the

initial basic partition is dual feasible, then PDIPSA constructs dual feasible partitions

at every iteration.

Lemma 1: At every iteration of PDIPSA, the maximum ratio test yields a ∈ (0, 1).

Proof: The condition xB[i] < 0 combined with the relation dB = yB − xB and the facts

that xB is dual feasible and yB is primal feasible, implies the relation xi < 0 ⇒ di >

0, i ∈ B.

From the maximum ratio test we have

a = max{−xi
di

: i ∈ B, di > 0 ∧ xi < 0} =

max{ |xi|
yi − xi

: i ∈ B, di > 0 ∧ xi < 0} =

max{ |xi|
|yi|+ |xi|

: i ∈ B, di > 0 ∧ xi < 0}

It is obvious from the above relation that 0 < a < 1.

5.6 Revised Form and Solution of General LPs

As in most implementations, a revised form is used in this thesis and it is described in

this Section. As it is well known, the computational time is one of the most significant

issues for every mathematical software. Likewise, in linear algorithms, which are based

on simplex algorithms, the inversion of the basis is the most time consuming operation.

Chapter 5. Primal-Dual Interior Point Simplex Algorithm 85

The most common procedures lie on the idea to update the current basis through specific

steps. Consequently, researchers have taken for granted that any computational efficient

version of simplex algorithm use updating methods.

Our algorithm is not restricted in a specific technique but it can corporate with any

known method for updating the basic inverse matrix (AB)−1 and the vectors xB, w, sN .

In our implementation, we update the basis inverse with the help of a set of eta vectors,

the procedure is a version of the product form of inverse. According to this technique, the

new basis (AB)−1 can be calculated by updating the current basis inverse (AB)−1 based

on information from the entering variable l. The new basis inverse can be computed by

the equation:

(AB)−1 = (ABE)−1 = E−1(AB)−1 (5.1)

where E−1 is the inverse of the eta matrix and it is calculated as follows:

E−1 = I − 1

hrl
(hl − el)(el)T =

1 · · · −h1l/hrl · · · · · ·
... · · ·

... · · ·
...

... · · · 1/hrl · · ·
...

... · · ·
... · · ·

...
... · · · −hml/hrl · · · 1

An illustrative example is necessary in order to clarify the above method. We will apply

it to the following LP:

min x1 + x2 − 4x3

s.t. 2 x1 + 2x2 + 2x3 ≤ 18

− x1 + 1x2 + x3 ≤ − 4

3 x1 + 3x2 − 3x3 ≤ 6

xj > 0, j = 1, 2, 3

First of all, the slack variables x4, x5 and x6 are introduced. In matrix notation the

above problem is written as follows:

Chapter 5. Primal-Dual Interior Point Simplex Algorithm 86

min cTx

s.t. Ax = b (LP.1)

x ≥ 0

where:

C =
[
1 1 −4 0 0 0

]

A =

2 2 2 1 0 0

−1 1 1 0 1 0

3 3 −3 0 0 1

b =

18

4

6

The first feasible partition is B = [4 5 6], N = [1 2 3]. Consequently:

(AB)−1 = AB = [A.4, A.5, A.6] or

(AB)−1 =

1 0 0

0 1 0

0 0 1

According to our algorithm, x6 is the leaving variable and x1 the entering variable.

Moreover, the leaving variable is the 3rd column in B, so hl = h3 = (AB)−1A.3 =

[2 1 3]T . In the next step, the E matrix is calculated:

E−1 =

1 0 2

0 1 1

0 0 3

And finally, the new basis inverse:

(AB)−1 = (ABE)−1 = E−1(AB)−1

Chapter 5. Primal-Dual Interior Point Simplex Algorithm 87

(AB)−1 =

1 0 2

0 1 1

0 0 3

Another significant aspect with crucial behaviour for the computational performance of

our algorithm is the computation of the direction d. The computation of d is based on a

very similar way to that of AB. A different description of the above algorithm is created

in a simpler approach that leads to a big-M problem.

Assume that x is a basic nonfeasible solution and y a feasible (not basic) solution of a

LP. Consequently, the direction d = x− y can be written as

Ad = A(y − x) = Ay −Ax = b− b = 0

If we combine this relation with xN = 0, then we can produce

AByB +ANyN −ABxB = 0

which is equal to

ABdB = −ANyN

and

dB = −(AB)−1ANyN (5.2)

As it was described previously in the geometrical representation of the algorithm, y′ is

the boundary point from which the ray R = x+ td : t ≥ 0 enters the feasible region of

the LP, so:

y′ = x+ λd (5.3)

where λ is computed by the maximum ratio test of Step 2 of the algorithm. Also,

B̄ = B−{k} ∪ {p}, N̄ = N −{p} ∪ {k} is the next basic partition for the next iteration

of the algorithm. Moreover, N(t) = k and B(r) = p.

Combining ȳk = 0, xN = 0 and 5.2:

ȳN̄ = λ(yN − ypet) (5.4)

where et is the tth unit vector of dimension n−m.

Likewise, x̄ is the basic solution at the next iteration and E the eta matrix when the rth

column is replaced by the vector hp = (AB)−1ap. Moreover:

Chapter 5. Primal-Dual Interior Point Simplex Algorithm 88

(AB̄)−1 = E−1(AB)−1 (5.5)

E−1hp = er (5.6)

where er is the rth vector with m elements.

As it was mentioned previously, the next direction is d̄ = x̄− ȳ. And if we use relation

5.2, we have:

d̄B̄ = −(AB̄)−1AN̄yN̄ (5.7)

So:

AN̄ = AN +D (5.8)

where D is a m(n− z) zero matrix and its tth column is replaced by the vector ap − ak.

Now, the combination of relations (5.2), (5.3), (5.4), (5.5), (5.6), (5.7) and (5.8) leads to

1

λ
d̄B̄ = − 1

λ
(AB̄)−1AN̄yN̄

= − 1

λ
E−1(AB)−1(AN +D)(yN − ypet)λ

= −E−1(AB)−1ANyN +−E−1(AB)−1DyN + E−1(AB)−1ANypet) + E−1(AB)−1Dypet)

= E−1dB − E−1(hp − hk)yp + E−1hpyp + E−1(hp − hk)yp

= E−1dB + eryp

(5.9)

Finally, yp = 0 when the nonbasic index p becomes basic and yp > 0, after the addition

of yp to the rth component of the updated dB. This is something that stems from the

fact that ȳk = 0 for the leaving index k = B(r).

A revised version of the algorithm has been presented. This revised version starts with

a dual feasible partition (B,N) and a vector yN ≥ 0 where the direction d intersects the

feasible region and we have dB = −ANyN and dN = yN . Moreover, the direction d is

updated according to the relation 5.9 and we set yp = 0 if yp ≥ 0.

Chapter 5. Primal-Dual Interior Point Simplex Algorithm 89

A good idea for solving general LPs is to use the big-M method when the initial basis

B is not dual feasible. In addition, the new problem is formulated as:

min (cB)TxB + (cN)TxN

s.t. ABxB +ANxN = b,

eTxN + xN+1 = M, (LP.1)

x, xn+1 ≥ 0

where M is a sufficiently big number, xn+1 a slack variable and e ∈ Rn−m is a vector of

ones and xn+1 is a slack variable.

Moreover, B ∪ {p} is dual feasible to (LP.1) where p stems from the relation: sp =

min
{
sj : j ∈ N

}
. Since sN = cN − ATw and wT = (cB)T (AB)−1, we add an artificial

variable xn+2 at the next step. Consequently, the new problem is:

min (cB)TxB + (cN)TxN +M ′xn+2

s.t. ABxB +ANxN + fxn+2 = b,

eTxN + xN + gxn+2 = M, (LP.2)

x, xn+1, xn+2 ≥ 0

where F ∈ Rm, g is scalar and M ′ is a sufficiently big number and we can set M = M ′.

For the vector f and the scalar g, we have:

− e = Ae+ F (5.10)

− 1 = n−m+ g (5.11)

5.7 Computational Study

In order to test the performance and the practical effectiveness of our algorithm, a

computational study is presented. The computational study compares three algorithms;

the revised simplex algorithm, the Exterior Point Simplex Algorithm (EPSA) and the

Primal Dual Interior Point Simplex Algorithm (PDIPSA). In all instances the compared

algorithms converge to the same solution.

Chapter 5. Primal-Dual Interior Point Simplex Algorithm 90

Table 5.3: Results for randomly generated sparse LPs with dimension n × n and
density 5%

Density 5%
PDIPSA EPSA Simplex

CPU time
Niter

CPU time
Niter

CPU time
Niter

(sec) (sec) (sec)

500× 500 0.8502 406 3.7924 1, 536 3.9617 1, 660
600× 600 1.4492 520 6.8079 2, 042 8.5560 2, 487
700× 700 2.3447 684 11.4099 2, 627 17.9035 3, 706
800× 800 3.5225 831 19.4112 3, 238 33.4693 5, 187
900× 900 5.2479 1, 010 27.5498 3, 591 48.6587 6, 034
1, 000× 1, 000 7.7650 1, 218 39.6211 4, 148 82.6693 7, 962
1, 100× 1, 100 11.3865 1, 131 59.9605 4, 991 138.3463 10, 331
1, 200× 1, 200 15.6400 1, 552 75.3610 5, 406 197.5266 12, 372
1, 300× 1, 300 21.9790 1, 749 103.0355 6, 151 300.8046 15, 533
1, 400× 1, 400 27.4468 1, 916 125.4295 6, 676 416.6580 18, 237
1, 500× 1, 500 34.0847 2, 071 151.6782 7, 120 574.1572 21, 802
1, 600× 1, 600 46.9520 2, 428 186.7300 7, 712 748.6919 24, 400
1, 700× 1, 700 54.4100 2, 576 225.6000 8, 388 1, 012.0000 28, 642
1, 800× 1, 800 64.1663 2, 696 270.6056 9, 015 1, 366.8000 34, 026
1, 900× 1, 900 80.0582 2, 988 328.8189 9, 713 1, 643.0000 36, 365
2, 000× 2, 000 91.4950 3, 175 375.5810 10, 164 2, 057.0000 41, 011

Total 468.7981 27, 139 2, 011.3925 92, 518 8, 650.2031 269, 755

Mean 29.2999 1, 696 125.7120 5, 782 540.6377 16, 860

All implemented algorithms are running in MATLAB Professional R2010b. The com-

puting environment includes an Intel(R) CoreTM i7 3.00 GHz (2 processors) and 16 GB

RAM. The operating system was Microsoft Windows 7 Professional SP1 edition. All

times in the following tables are measured in seconds with the ”cputime” built-in func-

tion of MATLAB, including the time spent on scaling. All runs were made as a batch

job. The constraint matrices for most practical LPs are sparse. Only nonzeros in the

coefficient matrix are stored and operated on. Matlab stores sparse matrices on a sin-

gle processor in Compressed Sparse Column (CSC) data structure. Two techniques are

used in order to improve the performance of memory-bound code in MATLAB. These

techniques are: (i) Pre-allocate arrays, and (ii) Store and access data in columns. In

order to guarantee the accuracy, periodically we compute from scratch the inverse of the

basis.

Three different density classes of LPs are used in the computational study: 5%, 10%

and 20%. In each dimension, 10 different instances are tested. These LPs include only

randomly generated matrices. The initial basis consists of only slack variables.

Tables 5.3 - 5.5 present the average execution time in seconds (CPU time) and the

average number of iterations (niter) that each of the algorithms spent to solve the LPs.

The last row of each table shows the mean value at each column.

Chapter 5. Primal-Dual Interior Point Simplex Algorithm 91

Table 5.4: Results for randomly generated sparse LPs with dimension n × n and
density 10%

Density 10%
PDIPSA EPSA Simplex

CPU time
Niter

CPU time
Niter

CPU time
Niter

(sec) (sec) (sec)

500× 500 0.9641 420 3.7627 1, 529 5.9177 2, 281
600× 600 1.7690 569 7.0434 1, 996 13.9170 3, 557
700× 700 2.5460 653 11.8650 2, 378 24.2287 4, 658
800× 800 4.2027 828 19.6858 2, 817 41.2261 6, 001
900× 900 6.7361 1, 049 26.6060 3, 186 71.3937 7, 869
1, 000× 1, 000 9.0184 1, 109 38.6524 3, 646 112.3835 9, 647
1, 100× 1, 100 13.8825 1, 290 55.6768 4, 195 174.3109 11, 878
1, 200× 1, 200 20.6296 1, 539 67.4408 4, 485 245.1684 13, 907
1, 300× 1, 300 25.7230 1, 644 97.9452 5, 265 387.0143 17, 688
1, 400× 1, 400 31.8000 1, 762 111.0493 5, 484 514.3469 19, 897
1, 500× 1, 500 42.4307 2, 048 139.9000 5, 889 646.8230 22, 105
1, 600× 1, 600 49.3322 2, 077 166.4187 6, 305 878.5583 25, 665
1, 700× 1, 700 63.1305 2, 351 208.5203 6, 852 1, 137.4827 28, 744
1, 800× 1, 800 77.4171 2, 567 251.1772 7, 338 1, 441.0763 32, 301
1, 900× 1, 900 90.2918 2, 680 296.2397 3, 505 1, 773.6488 35, 054
2, 000× 2, 000 104.0885 2, 803 332.9217 8, 147 2, 300.1632 40, 319

Total 543.9622 25, 389 1, 834.9050 76, 706 9, 767.6594 281, 571

Mean 33.9976 1, 587 114.6816 4, 794 610.4787 17, 598

As it is obvious from Table 5.3, PDIPSA is clearly superior to the other two algorithms.

The execution time of PDIPSA is much lower than EPSA and simplex algorithm. For

example, PDIPSA needs almost 8 seconds to solve a 1, 000×1, 000 LP when EPSA needs

almost 40 seconds and even worse the simplex algorithm needs 83 seconds to complete the

computations. Likewise, the number of iterations is much greater for simplex algorithm

and much less for PDIPSA.

In addition, in a 2, 000 × 2, 000 LP, the simplex algorithm requires on average 41, 000

iterations, while PDIPSA needs 3, 200 iterations and EPSA 10, 200 iterations. In the

same problem, PDIPSA needs almost 90 seconds, while the simplex algorithm needs

2, 100 seconds. One may infer a growth in the relative speed of PDIPSA with respect

to simplex and EPSA as problem sizes increase. It is clear that PDIPSA can lead to

significant reductions of the execution time and the number of iterations.

In less sparse problems, PDIPSA continues to present its good performance. Its su-

periority is clear and with no doubt it is an efficient and promising algorithm. In all

dimensions, PDIPSA has the shortest execution time and the smallest number of itera-

tions.

In addition, in the last group of problems that includes denser instances, PDIPSA also

has the best performance. In a 1, 500×1, 500 LP, PDIPSA requires on average 52 seconds,

Chapter 5. Primal-Dual Interior Point Simplex Algorithm 92

Table 5.5: Results for randomly generated sparse LPs with dimension n × n and
density 20%

Density 20%
PDIPSA EPSA Simplex

CPU time
Niter

CPU time
Niter

CPU time
Niter

(sec) (sec) (sec)

500× 500 1.1747 403 3.4476 1, 313 6.5975 2, 270
600× 600 2.2386 527 5.4132 1, 548 13.6264 3, 255
700× 700 3.4632 634 11.9684 1, 964 26.4489 4, 469
800× 800 5.2323 762 17.7794 2, 302 43.8315 5, 597
900× 900 8.6003 905 25.5483 2, 598 74.2187 7, 137
1, 000× 1, 000 12.6954 1, 043 35.2547 2, 937 125.6610 8, 928
1, 100× 1, 100 16.7529 1, 088 50.4632 3, 304 184.9891 10, 597
1, 200× 1, 200 22.9415 1, 246 63.3988 3, 555 231.0437 11, 292
1, 300× 1, 300 31.5106 1, 415 87.3496 4, 099 349.3742 13, 595
1, 400× 1, 400 42.2669 1, 1604 104.9980 4, 250 441.9010 15, 130
1, 500× 1, 500 51.6083 1, 1733 129.9145 4, 673 600.8061 17, 246
1, 600× 1, 600 63.8855 1, 850 171.6245 5, 232 840.5429 20, 385
1, 700× 1, 700 76.7353 1, 963 210.9352 5, 653 1, 097.0000 23, 049
1, 800× 1, 800 90.8534 2, 068 251.1585 6, 049 1, 364.2000 24, 985
1, 900× 1, 900 112.5890 2, 291 297.1148 6, 407 1, 720.4000 27, 967
2, 000× 2, 000 135.8129 2, 462 362.7834 6, 951 2, 183.1451 30, 733

Total 678.3608 21, 994 1, 829.1521 62, 835 9, 303.7861 226, 635

Mean 42.3976 1, 375 114.3220 39, 27 581.4866 14, 165

while EPSA needs 130 seconds and the simplex algorithm 600 seconds. Likewise, the

number of iterations is much less in PDIPSA, which is able to find the optimal solution

only in 1, 730 iterations, while EPSA needs 4, 670 iterations and the simplex algorithm

almost 17, 200 iterations.

Furthermore, Figures 5.4 - 5.6 show more clearly the superiority of PDIPSA over EPSA

and the simplex algorithm. Figures 5.4 - 5.6 present the ratios (execution time of

EPSA)/(execution time of PDIPSA), (iterations of EPSA)/(iterations of PDIPSA), (ex-

ecution time of the simplex algorithm)/(execution time of PDIPSA) and (iterations of

the simplex algorithm)/(iterations of PDIPSA) for the corresponding densities and di-

mensions. The above ratios indicate how many times PDIPSA is better than EPSA and

the simplex algorithm.

Figure 5.4 shows that as the problem dimensions increase, the superiority of PDIPSA

over EPSA does not vary a lot and we can claim that PDIPSA is five times faster than

EPSA and it requires five times less iterations to complete its computations. On the

other hand, the superiority of PDIPSA over the simplex algorithm increases proportion-

ally with the dimension of the problems. In small LPs, PDIPSA is almost five times

faster and requires five times less iterations than the simplex algorithm. On the other

Chapter 5. Primal-Dual Interior Point Simplex Algorithm 93

Figure 5.4: Speed-up ratios for n× n LPs and 5% density.

Figure 5.5: Speed-up ratios for n× n LPs and 10% density.

hand, in 2, 000 × 2, 000 LPs, PDIPSA is almost 23 times faster and it needs 13 times

less iterations.

As the density of problems increases, PDIPSA continues its superiority and the results

are very satisfactory. Comparatively to EPSA, PDIPSA is 4 times faster and it demands

4 times less iterations in small size LPs. However, in medium scale LPs the difference

decreases to 3 times for the execution time and the number of iterations. Comparing to

the simplex algorithm, the results are very similar with the previous group of problems

(density 5%); the superiority of PDIPSA over simplex algorithm increases analogically

with the dimension of problems.

In the last group of problems with density at the level of 20%, the results do not differ

a lot from the previous. PDIPSA is almost 3 times better than EPSA both in the

execution time and the number of iterations. On the other hand, PDIPSA is almost 6

times faster and it requires 6 times less iterations in small size LPs than the simplex

algorithm. In medium scale LPs, the difference increases and PDIPSA is up to 16 times

faster referring to the execution time and performs 10 times less iterations than the

simplex algorithm.

Chapter 5. Primal-Dual Interior Point Simplex Algorithm 94

Figure 5.6: Speed-up ratios for n× n LPs and 20% density.

The results of the computational study clearly proved that PDIPSA is faster and requires

fewer iterations than the simplex algorithm. Nevertheless, it is significant to mention the

fact that as the density increases the superiority of PDIPSA decreases. More specific, in

2, 000 × 2, 000 dimension and 5% density, PDIPSA is 23 times faster than the simplex

algorithm, while in 20% density, PDIPSA is almost 16 times faster. Despite the fact

that this looks like a drawback, in fact it is not. In real world applications, the vast

majority of LPs are extremely sparse problems, and their density does not reach the

level of 5%. Consequently, this computational performance of PDIPSA is a remarkable

advantage and clearly shows its worth.

5.8 Conclusions

The current Section investigated the practical behavior of PDIPSA. PDIPSA attempts

to avoid the problem of stalling and cycling. The elimination of these disadvantages can

lead to a more effective algorithm with better computational performance.

The computational results shows that PDIPSA is superior to EPSA and the simplex

algorithm in all densities and dimensions. PDIPSA shows the same behavior comparing

to EPSA in all dimensions of LPs. Their difference is not affected by the different

dimensions of LPs. On the other hand, the performance of PDIPSA is getting better

comparing to the simplex algorithm while the size of the LPs increases. Moreover, the

computational performance of PDIPSA is much better in very sparse problems. The

difference between simplex algorithm and PDIPSA is greater in sparser problems. This

is a strong and significant advantage of PDIPSA because in real problems the level of

density is very low.

Chapter 6

Hybrid Algorithm

6.1 Introduction

Interior point methods and simplex-type algorithms are the most widely-used algorithms

for solving LPs. During the last decades, researchers proposed more efficient implemen-

tations of linear programming algorithms. Other efforts focused on the parallelization

of linear programming algorithms, on CPUs [48] [49] [95] [96] [113] and on GPUs [67]

[80] [100] [101], and the combination of different linear programming algorithms [4] [12]

[13] [41] [65] [115]. The proposed algorithm belongs to the latter category. The idea to

combine two types of LP algorithms is not new. Kortanek & Zhu [65] proposed a pivot-

ing procedure from an interior point to a boundary point without worsing the objective

value. This procedure can be performed in finite steps but may not be polynomial.

Bixby et al. [12] and Bixby & Saltzman [13] proposed a combination of an IPM with the

simplex algorithm. The hybrid procedure starts running an IPM first and later switches

to the simplex algorithm. Andersen & Ye [4] proposed a combination of an IPM with a

pivoting algorithm using a totally different idea from [12] [13]; they construct an artifi-

cial LP, which approximates the original problem, in any iteration of an IPM. Finally,

they apply Megiddo’s procedure [78] to compute an optimal basis of the approximate

problem in n pivot steps. Al-Najjar and Malakotti [3] proposed hybrid-LP, a method

for solving LPs using both interior and boundary paths. Their method uses an interior

direction to pass to an improved basic feasible solution. Then, the simplex algorithm

can be applied in order to reach an optimal solution. The computational results of the

hybrid-LP method are very promising. Pan [90] proposed a pivoting algorithm using the

affine-scaling technique. This method produces a sequence of interior points as well as

a sequence of vertices, until reaching an optimal vertex. Triantafyllidis [115] proposed

a non-monotonic variant of the exterior point algorithmic family by combining EPSA

95

Chapter 6. Hybrid Algorithm 96

with IPMs. Glavelis et al. [41] proposed also a combination of an IPM and an EPSA

algorithm.

This Chapter presents a hybrid algorithm that combines the strengths of interior point

methods and exterior point simplex algorithms [40]. The idea of combining these two

different types of methods stemmed from the observation that IPMs are able to spot

very fast feasible solutions with good objective values, but they need a relatively long

time to converge to the optimal solution. In order to take full advantage of EPSA, we

used a variation of a Primal-Dual Exterior Point Simplex Algorithm (PDEPSA). Primal-

dual algorithms can deal more effectively with the problems of stalling and cycling and

as a result, they are able to improve the performance of EPSA. This variation, which

was presented in Chapter 5, is called Primal-Dual Interior Point Simplex Algorithm

(PDIPSA) since the algorithm computes a direction to the feasible region according to

the interior point that was found by an IPM. The IPM, which we use in our hybrid

algorithm, is Mehrotra’s Predictor-Corrector method, an infeasible primal-dual IPM.

The main advantage of this hybrid algorithm is that it exploits the strengths of both IPM

and PDIPSA. In the first iterations, IPM moves inside the feasible area and computes

interior points. At this point, the proposed algorithm uses PDIPSA to find the optimal

solution in less expensive iterations. The goal of the proposed implementation is twofold:

(i) improve the performance of EPSA, and (ii) find an optimal basic solution starting

from an interior point (purification process). The latter goal is preferable for a couple

of reasons [4]. First of all, a basic solution has generally fewer nonzero elements than

a solution in the interior of the optimal face, which is desirable when LP relaxations of

integer programming problems are solved. Secondly, an optimal basic solution can be

used to warm-start simplex-type algorithms to solve closely related LPs.

This Chapter is organized as follows. Section 6.2 includes the description of the general

framework of the proposed algorithm. In Section 6.3, we give the proof of correctness. In

order to gain an insight into the practical behavior of the proposed algorithm, we have

performed a computational study on a set of benchmark problems (Netlib, Kennington,

Mészáros). These results are presented in Section 6.4. Finally, the conclusions of this

Chapter are outlined in Section 6.5.

6.2 Description of the Algorithm

A hybrid algorithm is proposed in this Section. This algorithm combines an IPM with

an EPSA and more specifically Mehrotra’s Predictor-Corrector method with PDIPSA;

the most efficient IPM and EPSA, respectively. The main goal of this combination is to

Chapter 6. Hybrid Algorithm 97

adopt the strengths of each algorithm and to eliminate their disadvantages. According to

this thought, the hybrid algorithm executes Mehrotra’s Predictor-Corrector method for

a few iterations in order to start PDIPSA from a ”good” interior point. Then, PDIPSA

completes the calculations and solves the LP.

PDIPSA demands a starting interior point; this point is computed by Mehrotra’s Predictor-

Corrector method. Moreover, the interior point is necessary for the calculation of the

direction d, which reveals the leaving variable. Another significant issue is that a ”good”

initial interior point can lead to significant less iterations of PDIPSA. Consequently, if

the initial point is closer to optimal vertex, then the optimal solution will be sooner

spotted by PDIPSA. This is the main reason for using an IPM at the first stage. IPM

is able to move to an interior point close to the optimal vertex at the first iterations.

Furthermore, we avoid a significant disadvantage of IPMs, their late convergence at the

last iterations. In this step, PDIPSA receives the interior point and continues finding the

solution. Taking under consideration IPMs’ relative large computational cost per itera-

tion and late convergence at the last iterations, our hybrid approach takes full advantage

of IPMs at the same time of giving a ”good” interior point to PDIPSA.

The hybrid algorithm is described formally as follows:

Table 6.1: Hybrid Approach Combining Mehrotra’s Predictor-Corrector Method and
PDIPSA

Step 1. (IPM).
Perform a few iterations with Mehrotra’s Predictor-Corrector method in
order to compute a ”good” interior point y.
Step 2. (PDIPSA).
A) Initialize PDIPSA with a dual feasible basic partition (B,N) and the
interior point y taken from Step 1.
B) Iteratively, PDIPSA continues until it computes the optimal solution as
it was described in Chapter 5.

Next, we will demonstrate the hybrid algorithm with an example. The LP that will be

solved is the following:

min z = 8x1 + 4x2 − 6x3

s.t. x1 + x2 + x3 ≤ 2

3x1 + x2 − x3 ≥ 3

3x1 + 2x2 − x3 ≥ 5

xj ≥ 0, (j = 1, 2, 3)

Chapter 6. Hybrid Algorithm 98

Let’s convert the LP in its standard form:

min z = 8x1 + 4x2 − 6x3

s.t. x1 + x2 + x3 + x4 = 2

3x1 + x2 − x3 − x5 = 3

3x1 + 2x2 − x3 − x6 = 5

xj ≥ 0, (j = 1, 2, 3, 4, 5, 6)

So, the matrices and vectors that will be given as input to the hybrid algorithm are the

following:

A =

1 1 1 1 0 0

3 1 −1 0 −1 0

3 2 −1 0 0 −1

 , c =

8

4

−6

0

0

0

, b =

2

3

5

We start with the basic partition B = [4, 5, 6] and N = [1, 2, 3]. The initial basis is not

dual feasible (xB � 0):

AB =

1 0 0

0 −1 0

0 0 −1

 = A−1
B

xB = A−1
B b =

2

−3

−5

w = cTBA

−1
B =

[
0 0 0

]
sN = cTN − wAN =

[
8 4 −6

]
Using the big-M method, the auxiliary LP is formulated:

A =

1 1 1 1 0 0 0

3 1 −1 0 −1 0 0

3 2 −1 0 0 −1 0

1 1 1 0 0 0 1

 , c =

8

4

−6

0

0

0

0

, b =

2

3

10000

Chapter 6. Hybrid Algorithm 99

According to Dantzig’s rule, the entering variable is x3 since it has the most negative

sl (−6). We update the basic partition, B = [4, 5, 6, 3] and N = [1, 2, 7]. Finally, we

update the needed matrices and vectors:

A−1
B =

1 0 0 −1

0 −1 0 −1

0 0 −1 −1

0 0 0 1

xB = A−1
B b =

−9, 998

−10, 003

−10, 005

10, 000

w = cTBA

−1
B =

[
0 0 0 −6

]
sN = cTN − wAN =

[
14 10 6

]

dB =

1

1

1

1

At the next step, the leaving variable xk = xB[r] is calculated from the maximum ratio

test:

a =
xB[r]

−dB[r]
= max

{
xi
−di : i ∈ B, di > 0 ∧ xi < 0

}
= −10,005

−1

Hence, the leaving variable is x6.

Using Mehrotra’s heuristic (3.9), we can calculate an initial interior point:

x =

9, 792

10, 137

11, 860

5, 309

9, 102

9, 963

15, 307

, w =

−0.7931

1.3678

1.8621

−0.7931

, s =

2.8086

3.4063

1.7282

3.7052

4.2799

4.7741

3.7052

In the first iteration, we perform all the steps of Mehrotra’s Predictor-Corrector steps

described in Chapter 3 and we finally calculate a new interior point:

Chapter 6. Hybrid Algorithm 100

x =

2, 077

1, 357

1, 038

27

4, 300

4, 531

10, 025

, w =

−3.9893

1.6228

1.8532

−0.6674

, s =

2.2286

3.3275

2.1328

3.9893

1.6228

1.8532

0.6674

Hence, the hybrid algorithm will start from the feasible basic list B = [4, 5, 6, 3] and the

interior point:

yB =

26.5

4, 299.5

4, 530.7

1, 038

Next, we initialize sets P and Q, P = N = [1, 2, 7] and Q = Ø. Then, we compute

vector HrN :

HrN = (AB)−1
r AN =

[
−4 −3 −1

]
Next, we find the entering variable:

−sl
HrN

= min
{
−sl
HrN

: Hrj ∧ j ∈ N
}

= −10
−3

The entering variable is x2.

So, we update sets P and Q, P = [1, 7] and Q = [6], and the basic partition, B =

[4, 5, 2, 3] and N = [1, 6, 7]. Finally, we update all needed matrices and vectors:

E−1 =

1 0 0 0

0 1 −2/3 0

0 0 −1/3 0

0 0 1/3 1

(
AB
)−1

= E−1A−1
B =

1 0 0 −1

0 −1 2/3 −1/3

0 0 1/3 1/3

0 0 −1/3 2/3

xB = A−1

B b =
[
−9, 998− 3, 3333, 3356, 665

]

Chapter 6. Hybrid Algorithm 101

w = cTBA
−1
B =

[
0 0 10/3 −8/3

]
sN = cTN − wAN =

[
2/3 10/3 8/3

]

dB = yB − xB =

10, 025

7, 633

1, 196

−5, 627

In the first iteration, we perform the test of optimality. The current basic partition is

not dual feasible (xB � 0). So, we select the leaving variable:

a =
xB[r]

−dB[r]
= max

{
xi
−di : i ∈ B, di > 0 ∧ xi < 0

}
= −9,998
−10,025

The leaving variable is x4.

Next, we compute the next interior point:

a′ = a+1
2 = 0.9987

yB = xB + a′dB =

13.3

4, 289.4

4, 529.1

1, 045.4

Then, we compute vector HrN :

HrN = (AB)−1
r AN =

[
0 0 −1

]
Next, we find the entering variable:

−sl
HrN

= min
{
−sl
HrN

: Hrj ∧ j ∈ N
}

= −8/3
−1

The entering variable is x7.

So, we update sets P and Q, P = [1] and Q = [6, 4], and the basic partition, B =

[7, 5, 2, 3] and N = [1, 6, 4]. Finally, we update all needed matrices and vectors:

E−1 =

−1 0 0 0

−1/3 1 0 0

1/3 0 1 0

2/3 0 0 1

Chapter 6. Hybrid Algorithm 102

(
AB
)−1

= E−1A−1
B =

−1 0 0 1

−1/3 −1 2/3 0

1/3 0 1/3 0

2/3 0 −1/3 0

 xB = A−1
B b =

9, 998

−0.3

2.3

−0.3

w = cTBA

−1
B =

[
−8/3 0 10/3 −8/3

]
sN = cTN − wAN =

[
2/3 10/3 8/3

]

dB = yB − xB =

−9, 984.7

4, 289.7

4, 526.8

1, 045.8

In the second iteration, we perform the test of optimality. The current basic partition

is not dual feasible (xB � 0). So, we select the leaving variable:

a =
xB[r]

−dB[r]
= max

{
xi
−di : i ∈ B, di > 0 ∧ xi < 0

}
= −0.3
−1,045.8

The leaving variable is x3.

Next, we compute the next interior point:

a′ = a+1
2 = 0.5002

yB = xB + a′dB =

5, 004

2, 145.2

2, 266.4

522.7

Then, we compute vector HrN :

HrN = (AB)−1
r AN =

[
−1/3 1/3 2/3

]
Next, we find the entering variable:

−sl
HrN

= min
{
−sl
HrN

: Hrj ∧ j ∈ N
}

= −2/3
−1/3

The entering variable is x1.

So, we update sets P and Q, P = Ø and Q = [6, 4, 3], and the basic partition, B =

[7, 5, 2, 1] and N = [3, 6, 4]. Finally, we update all needed matrices and vectors:

Chapter 6. Hybrid Algorithm 103

E−1 =

1 0 0 0

0 1 0 −4

0 0 1 4

0 0 0 −3

(
AB
)−1

= E−1A−1
B =

−1 0 0 1

−3 −1 2 0

3 0 −1 0

−2 0 1 0

 xB = A−1
B b =

9, 998

1

1

1

w = cTBA

−1
B =

[
−8/3 0 10/3 −8/3

]
sN = cTN − wAN =

[
2 4 4

]

dB = yB − xB =

−4, 994.0

2, 144.2

2, 265.4

521.7

In the third iteration, we perform the test of optimality. The current basic partition is

dual feasible (xB ≥ 0). As a result, we calculate the solution vector and the value of the

objective function:

x =

1

1

0

z = cTBxB = 12

6.3 Proof of Correctness

To prove the correctness of the algorithm, it suffices to show that every basic partition,

which is constructed by PDIPSA, is dual feasible and the computation of the maximum

ratio test is well defined.

Theorem 1: If the initial basic partition of PDIPSA is dual feasible, then every con-

secutive partition is dual feasible.

Proof: The proof is by induction on the number of iterations. Denote by k the number

of iterations. It is obvious from Step 0A of PDIPSA that for k = 1 the relations

S
(1)
j ≥ 0 , j ∈ N (1), and S

(1)
j = 0, j ∈ B(1), hold. Suppose now that the relation S

(k)
j ≥ 0,

j ∈ N (k), holds. Let (B(k+1), N (k+1)) be the new basic partition and S
(k+1)
j , j ∈ N (k+1),

Chapter 6. Hybrid Algorithm 104

the corresponding dual slack variables. The dual slack variables can be computed by

the relation

S
(k+1)
j = S

(k)
j −

S
(k)
l

Hrl
Hrj , j ∈ N (k+1) (3.1)

where Hrj , j ∈ N (k+1), is the pivot row. From the choice of the entering variable xl

−S(k)
l

Hrl
= min{

−S(k)
l

Hrl
: Hrj < 0 ∧ j ∈ N (k)} (3.2)

we conclude that
−S(k)

l
Hrl

≥ 0. If Hrj ≤ 0, j ∈ N (k+1), then S
(k+1)
j ≥ 0 holds as the

summation of two vectors with positive entries. If Hrj > 0, j ∈ N (k+1), then relation

(3.1) is equivalent to

S
(k)
j

Hrj
≥
S

(k)
l

Hrl

which is true according to relation (3.2) and consequently S
(k+1)
j ≥ 0. Hence, if the

initial basic partition is dual feasible, then PDIPSA constructs dual feasible partitions

at every iteration.

Lemma 1: At every iteration of PDIPSA, the maximum ratio test yields a ∈ (0, 1).

Proof: The condition xB[i] < 0 combined with the relation dB = yB − xB and the facts

that xB is dual feasible and yB is primal feasible, implies the relation xi < 0 ⇒ di >

0, i ∈ B.

From the maximum ratio test we have

a = max{−xi
di

: i ∈ B, di > 0 ∧ xi < 0} =

max{ |xi|
yi − xi

: i ∈ B, di > 0 ∧ xi < 0} =

max{ |xi|
|yi|+ |xi|

: i ∈ B, di > 0 ∧ xi < 0}

It is obvious from the above relation that 0 < a < 1.

Chapter 6. Hybrid Algorithm 105

6.4 Computational Study

In this Section, we present the results from a computational study that we conducted

to demonstrate the efficiency of the proposed hybrid algorithm. The computational

comparison has been performed on a quad-processor Intel Core i7 3.4 GHz with 32

Gbyte of main memory and 8 cores, a clock of 3.7 GHz, an L1 code cache of 32 KB per

core, an L1 data cache of 32 KB per core, an L2 cache of 256 KB per core, an L3 cache

of 8 MB and a memory bandwidth of 21 GB/s, running under Microsoft Windows 8 64-

bit. All algorithms have been implemented using MATLAB Professional R2015b. Some

linear algebra built-in functions were also used to code the algorithms (e.g., inverse of an

array, multiplication of two arrays, multiplication of array and vector, and the mldivide

operator for solving systems of linear equations). Execution times have been measured in

seconds using tic and toc MATLAB’s built-in functions. For each instance, we averaged

times over 10 runs. All runs were executed as a batch job.

Totally, 83 LPs were considered from the Netlib set (optimal and Kennington LPs)

[16] [38] and the problematic, misc and stochlp sections of Mészáros collection [81].

The Netlib library is a well known suite containing many real world LPs. Ordóñez and

Freund [86] have shown that 71% of the Netlib LPs are ill-conditioned. Hence, numerical

difficulties may occur. We implemented a MPS reader to read MPS files and convert

data into MATLAB mat files. All runs terminated with correct optimal objective values.

Table 6.2 presents some useful information about the test bed, which was used in the

computational study. The first column includes the name of the problem, the second

the number of constraints, the third the number of variables, the fourth the nonzero

elements of matrix A and the fifth the optimal objective value.

Table 6.2: Statistics of the Netlib (optimal and Kennington LPs) and Mészáros LPs

Name Constraints Variables Nonzeros A
Optimal

objective value

aa4 426 7,195 52,121 2.59E+04

aa5 801 8,308 65,953 5.37E+04

aa6 646 7,292 51,728 2.70E+04

adlittle 56 97 383 2.25E+05

afiro 27 32 83 -4.65E+02

agg 488 163 2,410 -3.60E+07

agg2 516 302 4,284 -2.02E+07

agg3 516 302 4,300 1.03E+07

aircraft 3,754 7,517 20,267 1.57E+03

beaconfd 173 262 3,375 3.36E+04

Chapter 6. Hybrid Algorithm 106

blend 74 83 491 -3.08E+01

bnl2 2,324 3,489 13,999 1.81E+03

car4 16,384 33,052 63,724 3.55E+01

cari 400 1,200 152,800 5.82E+02

cr42 905 1,513 6,614 2.80E+01

cre-a 3,516 4,067 14,987 2.36E+07

d6cube 415 6,184 37,704 3.15E+02

fffff800 524 854 6,227 5.56E+05

fit1d 24 1,026 13,404 -9.15E+03

forplan 161 421 4,563 -6.64E+02

fxm2-6 3,900 5,602 32,239 1.84E+04

fxm3-6 6,200 9,492 54,589 1.86E+04

gen 769 2,560 63,085 0.00E+00

gen1 769 2,560 63,085 0.00E+00

gfrd-pnc 616 1,092 2,377 6.90E+06

iiasa 669 2,970 6,648 2.63E+08

israel 174 142 2,269 -8.97E+05

jendrec1 2,109 4,228 89,608 7.03E+03

lotfi 153 308 1,078 -2.53E+01

maros-r7 3,136 9,408 144,848 1.50E+06

nsic1 451 463 2,853 -9.17E+06

nsic2 465 463 3,015 -8.20E+06

nsir1 4,407 5,717 138,955 -2.89E+07

nsir2 4,453 5,717 150,599 -2.72E+07

osa-07 1,118 23,949 143,694 5.36E+05

osa-14 2,337 52,460 314,760 1.11E+06

osa-30 4,350 100,024 600,138 2.14E+06

p05 5,090 9,500 58,955 3.15E+02

p010 10,090 19,000 117,910 1.12E+06

pgp2 4,034 9,220 18,440 4.47E+02

primagaz 1,554 10,836 21,665 1.07E+09

r05 5,190 9,500 103,955 5.58E+05

rail507 507 63,009 409,349 1.72E+02

rail516 516 47,311 314,896 1.82E+02

rail582 582 55,515 401,708 2.10E+02

rat1 3,136 9,408 88,267 2.00E+06

rat5 3,136 9,408 137,413 3.08E+06

rat7a 3,136 9,408 268,908 2.07E+06

recipe 91 180 663 -2.67E+02

Chapter 6. Hybrid Algorithm 107

rosen2 1,032 2,048 46,504 -5.44E+04

rosen7 264 512 7,770 -2.03E+04

rosen8 520 1,024 15,538 -4.21E+04

rosen10 2,056 4,096 62,136 -1.74E+05

sc105 105 103 280 -5.22E+01

sc205 205 203 551 -5.22E+01

sc205-2r-400 8,813 8,814 24,030 -1.01E+01

sc205-2r-800 17,613 17,614 48,030 -1.01E+01

sc205-2r-1600 35,213 35,214 96,030 0.00E+00

sc50a 50 48 130 -6.46E+01

sc50b 50 48 118 -7.00E+01

scagr25 471 500 1,554 -1.48E+07

scagr7 129 140 420 -2.33E+06

scagr7-2b-64 9,743 10,260 32,298 -8.33E+05

scagr7-2r-216 8,223 8,660 27,042 -8.34E+05

scagr7-2r-432 16,431 17,300 54,042 -8.34E+05

scfxm1 330 457 2,589 1.84E+04

scfxm1-2b-64 19,036 28,914 106,919 2.88E+03

scfxm3 990 1,371 7,777 5.49E+04

scrs8 490 1,169 3,182 9.04E+02

sctap1 300 480 1,692 1.41E+03

sctap2 1,090 1,880 6,714 1.72E+03

sctap3 1,480 2,480 8,874 1.42E+03

share1b 117 225 1,151 -7.66E+04

share2b 96 79 694 -4.16E+02

ship12l 1,151 5,427 16,170 1.47E+06

ship12s 1,151 2,763 8,178 1.49E+06

slptsk 2,861 3,347 72,465 2.99E+01

standata 359 1,075 3,031 1.26E+03

stocfor1 117 111 447 -4.11E+04

stocfor2 2,157 2,031 8,343 -3.90E+04

stocfor3 16,675 15,695 64,875 -4.00E+04

testbig 17,613 31,223 6,639 -6.04E+01

zed 116 43 567 -1.51E+04

Since our primary aim is to improve the computational performance of PDIPSA, we

compare the proposed algorithm, HYBRID, with PDIPSA. As described in Section 6.2,

HYBRID uses Mehrotra’s Predictor-Corrector method to calculate an interior point. In

Chapter 6. Hybrid Algorithm 108

addition, we have implemented the primal revised simplex algorithm (RSA) and we use

it in the computational study as a reference point for the comparison. All algorithms

use the same preprocessing, scaling and basis update methods. Their major difference

is how they select the entering and leaving variable. In the simplex implementation,

we use Dantzig’s pivoting rule; however, if degeneracy is detected, then simplex will

automatically switch to the steepest-edge pivoting rule and the problem will be per-

turbed. We selected to use Dantzig’s pivoting rule since the steepest edge variant that

we implemented is quite expensive and thus, we use it only when degeneracy is detected.

When stalling occurs, our algorithm automatically perturbs the upper and lower bounds

by adding a small positive number (we use a value of 1e-6) to the bounds. After the

solution of the perturbed problem, we remove the perturbation by resetting the problem

to its original values. All algorithms share the same data structures and sparse linear

algebra routines. All LPs have been presolved and scaled prior to the execution of each

algorithm using the equilibration scaling technique. The basis update method used in all

algorithms is the Product Form of the Inverse [97]. In order to guarantee the accuracy,

we compute from scratch the inverse of the basis every 80 iterations.

Table 6.3 presents the execution time and the number of iterations of each algorithm

over the Netlib and Mészáros set of LPs, while figure 6.1 presents the performance profile

based on the execution time of the algorithms. The performance profile is displayed in

logarithmic scale with base 2 using a tool developed in [31]. We also report the number

of iterations performed by Mehrotra’s Predictor-Corrector method (”Interior Iter”) in

order to initialize the proposed algorithm (HYBRID). A limit of 1, 000 seconds was

set, so symbol ”-” denotes that this algorithm did not find an optimal solution in the

specific time interval. HYBRID is able to solve all instances, while PDIPSA did not solve

three instances (rail507, rail516, and rail582) and RSA did not solve eleven instances

(aa5, aa6, d6cube, jendrec1, nsir2, p010, rail507, rail516, rail582, scfxm1-2b-64, and

slptsk). In addition, we report the geometric mean of the execution time and number of

iterations for all algorithms. We also report the geometric mean of the execution time

and the number of iterations for the instances solved by all three algorithms (shown in

parentheses in the last row of the table).

When considering all problems, HYBRID is 1.53× faster than PDIPSA and 2.1× faster

than RSA. Moreover, HYBRID performs 1.36× less iterations than PDIPSA and 1.69×
less iterations than RSA. When considering only the instances that all three algorithms

can solve, HYBRID is 1.49× faster than PDIPSA and 1.73× faster than RSA. Moreover,

HYBRID performs 1.34× less iterations than PDIPSA and 1.57× less iterations than

RSA. Taking also into account that PDIPSA and RSA fail to solve some instances,

HYBRID is superior to PDIPSA and RSA on these benchmark instances. Finally,

Chapter 6. Hybrid Algorithm 109

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PDIPSA
HYBRID
RSA

Figure 6.1: Performance profile based on the execution time of the three algorithms

HYBRID has better or equal performance than PDIPSA and RSA on 70 (84.3%) and

65 (78.3%) instances, respectively.

Table 6.3: Execution time and number of iterations

Problem
PDIPSA HYBRID RSA

Time Iter Time Iter
Interior
Iter Time Iter

aa4 17.31 4,565 15.49 4,430 2 49.70 14,833

aa5 102.29 8,096 77.24 6,826 2 - -

aa6 46.26 5,377 40.54 5,053 2 - -

adlittle 0.03 77 0.03 89 2 0.03 97

afiro 0.01 17 0.01 14 3 0.01 14

agg 0.10 149 0.06 77 7 0.06 83

agg2 0.38 296 0.18 173 5 0.10 138

agg3 0.36 291 0.20 195 5 0.10 138

aircraft 5.44 1,989 5.27 1,675 1 10.84 4,034

beaconfd 0.04 86 0.04 83 4 0.02 47

blend 0.02 59 0.01 37 5 0.02 76

bnl2 12.90 2,149 11.37 1,630 20 71.19 3,921

car4 3.86 2,798 3.50 2,163 10 17.21 10,349

cari 0.87 459 1.62 494 1 1.69 1,116

cr42 1.06 625 0.87 571 5 1.13 581

cre-a 11.93 2,993 10.34 2,892 1 72.01 4,899

d6cube 146.95 7,528 115.43 6,243 15 - -

fffff800 0.20 170 0.21 191 1 0.25 399

fit1d 4.54 626 2.53 651 3 2.24 1,773

forplan 0.28 244 0.22 200 3 0.07 180

Chapter 6. Hybrid Algorithm 110

fxm2-6 4.19 1,303 2.59 895 3 8.01 1,868

fxm3-6 98.51 5,168 71.56 2,673 10 128.05 6,532

gen 33.06 8,162 16.83 5,278 1 96.48 15,304

gen1 35.75 8,162 19.47 6,434 2 210.56 20,112

gfrd-pnc 0.64 335 0.53 331 6 1.61 550

iiasa 2.97 2,448 2.19 1,953 8 2.83 1,966

israel 0.16 313 0.11 166 8 0.10 262

jendrec1 333.20 9,230 113.76 4,005 5 - -

lotfi 0.09 195 0.07 180 3 0.17 123

maros-r7 50.87 2,631 43.84 2,419 10 82.11 3,310

nsic1 0.31 552 0.13 307 1 0.14 405

nsic2 0.19 283 0.18 270 6 0.16 432

nsir1 113.88 5,206 21.22 2,631 2 32.89 3,547

nsir2 46.48 2,845 32.86 2,676 5 - -

osa-07 7.60 897 6.67 631 15 5.58 719

osa-14 31.19 1,879 34.30 1,421 10 52.83 2,512

osa-30 138.23 3,881 133.10 2,813 10 284.17 4,889

p05 27.97 1,829 34.60 1,820 1 536.28 3,118

p010 175.27 3,648 190.61 3,539 1 - -

pgp2 10.17 5,138 9.62 4,855 2 17.91 6,024

primagaz 12.30 2,253 11.95 2,208 1 109.09 6,098

r05 34.33 1,763 35.56 1,761 1 506.04 3,101

rail507 - - 266.36 3,635 5 - -

rail516 - - 222.02 4,734 5 - -

rail582 - - 258.71 3,231 5 - -

rat1 7.70 1,613 7.05 1,589 10 44.71 2,901

rat5 23.80 2,015 21.83 1,928 12 35.51 3,107

rat7a 81.57 2,866 66.17 2,475 15 127.08 4,221

recipe 0.02 32 0.02 23 6 0.02 48

rosen2 3.14 990 2.21 734 1 17.61 4,161

rosen7 0.21 195 0.11 159 3 0.30 517

rosen8 1.09 484 0.45 338 2 1.13 988

rosen10 14.91 1,828 7.04 1,329 4 36.15 4,777

sc105 0.03 76 0.03 66 5 0.02 68

sc205 0.17 180 0.10 159 2 0.09 166

sc205-2r-400 5.37 924 0.28 47 1 0.17 51

sc205-2r-800 39.88 1,685 1.48 87 1 0.98 91

sc205-2r-1600 314.74 3,364 11.44 167 1 9.81 171

sc50a 0.02 39 0.01 32 5 0.02 27

Chapter 6. Hybrid Algorithm 111

sc50b 0.01 32 0.01 31 5 0.01 29

scagr25 0.3 215 0.17 149 12 0.79 462

scagr7 0.04 82 0.03 76 2 0.03 82

scagr7-2b-64 126.85 2,617 21.56 2,937 3 36.23 4,278

scagr7-2r-216 13.32 2,616 13.43 2,503 3 24.95 4,653

scagr7-2r-432 98.28 5,238 94.37 5,248 3 188.36 9,629

scfxm1 0.36 344 0.32 248 10 0.21 349

scfxm1-2b-64 828.32 4,820 625.38 3,878 1 - -

scfxm3 4.57 1,310 2.83 829 9 3.36 1,090

scrs8 0.56 414 0.63 450 3 0.55 583

sctap1 0.12 282 0.12 241 1 0.22 387

sctap2 0.36 362 0.65 429 1 3.11 1,042

sctap3 0.95 623 1.48 636 1 5.56 1,155

share1b 0.11 148 0.09 112 1 0.07 155

share2b 0.05 97 0.04 84 5 0.05 136

share12l 0.22 176 0.32 303 2 0.45 204

share12s 0.15 326 0.16 335 1 0.16 311

slptsk 143.47 1,301 99.37 1,193 5 - -

standata 0.26 362 0.18 228 1 0.13 216

stocfor1 0.01 17 0.01 22 2 0.02 30

stocfor2 4.29 784 5.3 914 2 9.9 1,214

stocfor3 330.85 4,955 259.15 2,984 2 584.23 10,142

testbig 43.07 804 2.21 803 1 0.79 804

zed 0.01 29 0.01 25 3 0.02 50

Average
2.94

(1.49)
791.58

(585.85)
1.92

(1.01)
583.10

(438.67)
3

(3)
4.04

(1.74)
984.16

(690.60)

6.5 Conclusions

Some combinations of LP algorithms have been already proposed in the literature. In this

paper, we study the combination of an IPM and an EPSA algorithm. More specifically,

we used Mehrotra’s Predictor-Corrector method and PDIPSA, a primal-dual interior

point simplex algorithm. Our hybrid approach starts running Mehrotra’s Predictor-

Corrector method for a number of iterations in order to calculate a “good” interior

point. Then, it initializes PDIPSA with a dual feasible basic partition and the interior

point. Finally, PDIPSA continues solving the problem. Our aim is to take full advantage

of both LP algorithms; use Mehrotra’s Predictor-Corrector method at the first iterations

Chapter 6. Hybrid Algorithm 112

which lead to significant enhancement of the objective function’s value and then, use

PDIPSA at the latter iterations which lead to fast convergence to an optimal solution.

PDIPSA was utilized because of its behavior to the problem of stalling and cycling which

enhances its computational performance and makes it one of the most efficient variations

of EPSA.

A computational study was also presented with experiments over the Netlib (optimal

and Kennington) and the Mészáros collection. Computational results showed that the

proposed hybrid algorithm can improve PDIPSA’s execution time significantly. More

specifically, the proposed hybrid algorithm is 1.53× faster than PDIPSA and it performs

1.36×% less iterations than PDIPSA. In addition, the proposed hybrid algorithm is on

average 2.1× faster than the primal revised simplex algorithm.

Chapter 7

Conclusions

This chapter presents the most significant conclusions of the current thesis. A thesis

that focuses on Linear Programming which shows the differences between the three

main categories of linear programming algorithms, simplex type algorithms, interior

point methods and exterior point simplex algorithms.

7.1 Results

At the beginning, we include a short presentation of some general discussion about linear

programming, operations research and the history of LP. Moreover, notations and the

main parts of a LP is presented in order to help readers with no experience in linear

programming, illustrative examples are also included for the same purpose. Another

significant section that is of great value, is the duality and its unique characteristics

which triggered the explosion of a new group of algorithms, the primal dual algorithms.

In addition, we present some very useful information about the geometry of LP.

Furthermore, we have presented three different groups of linear programming algorithms.

The primal revised simplex algorithm and an exterior point simplex algorithm, both

of them belong to simplex-type algorithms. The third category includes an interior

point method based on Mehrotra’s Predictor-Corrector method. As its name shows,

an IPM moves through the interior of the feasible region towards the optimal solution.

Consequently, this is the main difference with the simplex algorithm, which follows a

sequence of adjacent boundary points to the optimal solution. In contrast to IPM and

Simplex algorithm, EPSA uses basic points which are not feasible. Consequently, it

moves exterior to feasible region, something which can lead to significant reduction of

algorithm’s iterations.

113

Chapter 7. Conclusions 114

A significant section in linear programming is the preprocessing techniques which are of

great value especially in large scale LPs. The main goal of preprocessing is to construct a

new equivalent LP with significant reduced dimensions which can lead to enhancements

of the software’s computational performance. Preprocessing can improve the compu-

tational performance of a LP solver with many ways: (i) Reduction of the dimensions

of LP, (ii) Enhancement of some arithmetic and computational characteristics of LP,

(iii) Detection if a LP is infeasible or unbounded and (iv) Detection of specific charac-

teristics and forms of LP that are detected only when presolve methods are used. For

all of these reasons, we include a complete presolve routine consisting of three different

scaling techniques and eight presolve methods. Furthermore, a new presolve technique is

introduced with significant computational results from the analysis of primal feasibility

conditions. Computational results with a set of optimal benchmark problems from the

NETLIB set are also presented and they clearly show that the presolve techniques are

highly successful in reducing the size of a LP. Moreover, the computational results for

the new presolve technique presented in this thesis are quite satisfactory. The applica-

tion of the proposed presolve technique reduces significantly the problems’ dimensions

and at the same time decreases the total solver’s solution time. On average, the new

presolve technique has achieved 26.64% reduction in the number of constraints, 48.03%

reduction in the number of variables and 30.73% reduction in the number of non-zeros.

Furthermore, the new presolve technique has achieved 5.47% reduction in the number

of iterations and 5.99% reduction in the execution time.

As it is mentioned in the introduction of the current thesis, we investigate the combi-

nation of linear programming algorithms from different groups and more specifically we

combine an IPM with EPSA, as a result we have presented a computational comparison

of PDEPSA, a variation of EPSAs and we conclude to PDIPSA which showed a very

promising computational behaviour. PDIPSA attempts to avoid the problem of stalling

and cycling which can lead to a more effective algorithm with better computational per-

formance. The computational results showed that PDIPSA is superior to EPSA and the

simplex algorithm in all densities and dimensions. Apart from that, the performance of

PDIPSA is getting better comparing to the simplex algorithm while the size of the LPs

increases. Moreover, the computational performance of PDIPSA is much better in very

sparse problems. The difference between simplex algorithm and PDIPSA is greater in

sparser problems. This is a strong and significant advantage of PDIPSA because in real

problems the level of density is very low.

We have also studied the combination of an IPM and a variation of EPSAs. We used

Mehrotra’s Predictor-Corrector method due to its significant computational performance

and PDIPSA which showed its superiority in Chapter 6 and it is a primal-dual exterior

Chapter 7. Conclusions 115

point simplex algorithm. Our hybrid approach starts running Mehrotra’s Predictor-

Corrector method for a number of iterations in order to calculate a ”good” interior point

y for the initialization of PDIPSA which continues solving the problem. Our aim is to

take full advantage of both LP algorithms; use Mehrotra’s Predictor-Corrector method at

the first iterations which lead to significant enhancement of the objective function’s value

and then, we use PDIPSA at the latter iterations which lead to fast convergence to the

optimal solution. Finally, the results from the computational survey with experiments

over the Netlib (optimal and Kennington) and the Mészáros collection showed that the

proposed hybrid algorithm can improve PDIPSA’s execution time significantly. More

specifically, the proposed hybrid algorithm is 1.53× faster than PDIPSA and it performs

1.36×% less iterations. Finally, the proposed hybrid algorithm is on average 2.1× faster

than the primal revised simplex algorithm.

7.2 Future Research

A very interesting topic for further research and work is to investigate the possible

relation between the dimensions of LP and the number of iteration of the IPM which is

used in the first stage of the hybrid algorithm.

Furthermore, in the current thesis, we used Mehrotra’s Predictor-Corrector method for

the IPM, it would be very useful to investigate if the combination of PDIPSA with other

IPM would be more computational effective. For example, a computational comparison

between the combination of PDIPSA with each of one algorithm of the three different

categories of IPMs: (i) affine-scaling methods, (ii) potential reduction methods, and (iii)

central trajectory methods could conclude to significant conclusions.

Moreover, last years there is significant research work on field of the parallel implemen-

tation of linear programming algorithms due to the availability of cost-effective parallel

computers. Researchers had mainly focused on the attempt to implement parts of the

Simplex algorithm like the inverse of matrix A. However, it would extremely useful to

compare parallel implementation of hybrid algorithms with its sequential implementa-

tion and with parallel Simplex.

Bibliography

[1] Ahuja, R.K., Magnanti, T.L. & Orlin, J.B. (1993). Network flows, algorithms and

applications, Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

[2] Adler, M., Resende, C., Veiga, G. & Karmarkar, N. (1989). An implementation of

Karmarkar’s algorithm for linear programming. Mathematical Programming, 44,

297–335.

[3] Al-Najjar, C. & Malakooti, B. (2011). Hybrid–LP: Finding advanced starting

points for simplex and pivoting LP methods. Computers & Operations Research

38(2), 427–434.

[4] Andersen, E.D. & Ye, Y. (1996). Combining interior–point and pivoting algorithms

for linear programming. Management Science 42(12), 1719–1731.

[5] Anderson, E.D. & Anderson, K.D. (1995). Presolving in Linear Programming,

Mathematical Programming, 71, 221–245.

[6] Anstreicher, K. & Terlaky, T. (1994). A monotonic build up simplex algorithm for

linear programming, Operations Research, 42, 556–561.

[7] Arsham, H., Cimplerman, G., Nadja, D., Talib, D. & Janez, G. (2005). A computer

implementation of the push and pull alogrithm and it’s computational comparison

with lp implex method, Applied Mathematics and Computation, 170, 36–63.

[8] Baricelli, P., Mitra, G. & Nygreen, B. (1998). Modelling of augmented makespan

assignment problems (AMAPs): Computational experience of applying integer

presolve at the modeling stage, Annals of Operations Research, 82, 269–288.

[9] Benzi, M. (2002). Preconditioning techniques for large linear systems A survey,

Journal of Computational Physics, 182, 418–477.

[10] Bertsimas, D. & Tsitsiklis, J. N. (1997). Introduction to linear optimization. Bel-

mont, MA: Athena Scientific, 6, 65–67.

[11] Bixby, R. E. (1992). Implementing the simplex method: The initial basis. ORSA

Journal on Computing, 4(3), 267–284.

116

Chapter 7. Conclusions 117

[12] Bixby, R.E., Gregory, J.W., Lustig, I.J., Marsten, R.E. & Shanno, D.F. (1992).

Very Large–scale Linear Programming: A Case Study in Combining Interior Point

and Simplex Methods. Oper. Res. 10(5), 885–897.

[13] Bixby, R.E. & Saltzman, M.J.: Recovering an Optimal Basis from an Interior

Point Solution. (1993). Oper. Res. Letter 15(4), 169–178.

[14] Borgwardt, K.H. (1982a). Some distribution-dependent results about the asymp-

totic order of the arerage number of pivot steps of the simplex method. Math Oper

Res, 7, 441–462.

[15] Borgwardt, K.H. (1982b). The average number of pivot steps required by the

simplex method is polynomial. Z Oper Res, 26, 157–177.

[16] Carolan, W.J., Hill, J.E., Kennington, J.L., Niemi, S. & Wichmann, S.J. (1990).

An Empirical Evaluation of the KORBX Algorithms for Military Airlift Applica-

tions. Operations Research 38(2), 240–248.

[17] Carstens, D. M. (1968). Crashing techniques. W. Orchard-Hays, Advanced Linear-

Programming Computing Techniques, McGraw-Hill, New York, 131–139.

[18] Chan, K. (2005). Matrix Preconditioning Techniques and Applications. Cambridge

University Press.

[19] Chang, S.F. & McCormick, S.T. (1992). A hierarchical algorithm for making sparce

matrices sparser, Mathematical Programming, 56, 1–30.

[20] Chen, D., Pardalos, P. & Saunders M. (1994). The simplex algorithm with a new

primal and dul pivot rule, Operations Research Letters, 16, 121–127.

[21] Chvatal, V. (1983). Linear programming. Macmillan.

[22] Cottle, R.W., Johnson, E & Wets, R. (2007) George B. Dantzig (1914–2005). Not

AMS 54:344–362 CPLEX ILOG (2007) 11.0 User’s manual. ILOG SA, Gentilly,

France

[23] Curtis, A. R. & Reid, J. K. (1972). On the automatic scaling of matrices for

Gaussian elimination. J. Inst. Math. Appl., 10, 118–124.

[24] Dantzig, G. B. (1947). Maximization of a linear function of variables subject to lin-

ear inequalities. T.C. Koopmans: Activity Analysis of Production and Allocation,

New York, 1947, 339–347.

[25] Dantzig, G. B. (1949). Programming in linear structure. Econometrica, 17, 73–74.

Chapter 7. Conclusions 118

[26] Dantzig, G. B. & Wood, M. K.(1951). Programming of interdependent activities,

i: general discussion. Econometrica, 17, 193–199.

[27] Dantzig, G. B. (1963). Linear programming and extensions. Princeton, NJ: Prince-

ton University Press.

[28] Dikin, I. I. (1967). Iterative solution of problems of linear and quadratic program-

ming, Soviet Mathematics Doklady, 8, 674–675.

[29] Dikin, I. I. (1974). On the convergence of an iterative process, Soviet Mathematics

Doklady, 12, 60–64.

[30] de Buchet, J. (1966). Experiments and statistical data on the solving of large–

scale linear programs. In Hertz, D.A., Melese, J. (eds.) Proceedings of the Fourth

International Conference on Operational Research, Wiley–Interscience, New York,

3–13.

[31] Dolan, E. D. & More, J. J. (2002).Benchmarking optimization software with per-

formance profiles. Mathematical Programming, 91(2), 201–213.

[32] Dongarra, J. & Sullivan, F. (2000). Guest Editors’ Introduction: The Top 10

Algorithms. Computing in Science & Engineering, 22–23.

[33] Forrest, J.J.H. & Goldfarb, D. (1992). Steepest edge simplex algorithm for linear

programming. Math Program, 57, 341–374

[34] Fourer, R. & Gay, D.M. (1993). Experience with a Primal Presolve Algorithm,

AT&T Bell Labooratories, Technical Report.

[35] Frisch, K. R. (1954). Principles of linear programming: With particular refence

to the bouble gradient form of the logarithmic potential method, Memorandum,

University Institute of Economics, Oslo, Norway.

[36] Frisch, K. R. (1955). The logarithmic potential method of convex programming.

Technical report, University Institute of Economics, Oslo, Norway.

[37] Fulkerson, D. R. & Wolfe, P. (1962). An algorithm for scaling matrices. SIAM

Rev., 4, 142–146.

[38] Gay, D.M. (1985). Electronic mail distribution of linear programming test prob-

lems. Mathematical Programming Society COAL Newsletter 13, 10–12.

[39] Glavelis, Th., Paparrizos, K. & Samaras, N. ”Computational experience with pre-

solve techniques”, In Proc. (electronic form) 9th Balkan Conference on Operational

Research, 02-06 September, Constanta, Romania, (2009).

Chapter 7. Conclusions 119

[40] Glavelis, Th., Ploskas, N. & Samaras, N. (2018) ”Improving a primal–dual simplex-

type algorithm using interior point methods”, Optimization, Vol. 67 (12), pp.

2259-2274.

[41] Glavelis, T., Ploskas, N. & Samaras, N.: Combining interior and exterior simplex

type algorithms. In Proceedings of the 17th Panhellenic Conference on Informatics,

pp. 174–179. ACM (2013).

[42] Glavelis, Th. & Samaras, N. (2013). ”An experimental investigation of a primal-

dual exterior point simplex algorithm”, Optimization: A Journal of Mathematical

Programming and Operations Research, Vol. 62(8), pp. 1143–1152.

[43] Gondzio, J. (1992). Splitting dense columns of constraint matrix in interior point

methods for large-scale linear programming. Optimization, 24, 285–297.

[44] Gondzio, J. (1996). Multiple centrality corrections in a primal-dual method for

linear programming. Computational Optimization and Applications, 6, 137–156.

[45] Gondzio, J. (1997). Presolve Analysis of Linear Programs Prior to Applying an

Interior Point Method, INFORMS Journal on Computing, 9, 73–91.

[46] Gondzio, J. (2012). Interior point methods 25 years later. European Journal of

Operational Research 218(3), 587-601.

[47] Gould, N. I. & Reid, J. K. (1989). New crash procedures for large systems of linear

constraints. Mathematical Programming, 45(1-3), 475–501.

[48] Hall, J.A.J. & McKinnon, K.I.M.: PARSMI, a parallel revised simplex algorithm

incorporating minor iterations and Devex pricing. In Wasniewski, J., Dongarra,

J., Madsen, K., Olesen, D. (eds.) Applied Parallel Computing, Lecture Notes in

Computer Science, Springer, 1184, 67–76 (1996).

[49] Hall, J.A.J. & McKinnon, K.I.M. (1998). ASYNPLEX, an asynchronous parallel

revised simplex algorithm. Annals of Operations Research 81, 27–49.

[50] Hall, J. & McKinnon, K. (2005). Hyper-Sparcity in the revised simplex method

and how to exploit it. Computational Optimization and Applications, 32, 259–283.

[51] Harris, P.M.J. (1973). Pivot selection methods of the Devex LP code. Math Pro-

gram, 5, 1–28

[52] Hitchock, F. L., (1941). The distribution of a product from several sources to

numerous localities. Journal of Mathematical Physics, 20, 224–230.

Chapter 7. Conclusions 120

[53] Hoffman, A. J., Mannos, M., Sokolowsky, D., & Wiegman, N. (1953). Computa-

tional experience in solving linear programs. Journal of the Society for Industrial

and Applied Mathematics, 1, 17–33.

[54] Huard, P. (1967). Resolution of mathematical programming with nonlinear con-

straints by the method of centers, In Abadie, J. Nonlinear Programming, 207–219.

[55] Huard, P. (1970). A method of centers by upper-bounding functions with applica-

tions, In Rose, Nonlinear Programming: Proceedings of a symposium held at the

University of Wisconsin, adison, USA, 1–30.

[56] Ioslovich, I. (2004). Robust reduction of a class of large-scale linear programs,

SIAM Journal on Optimization, 12, 262–282.

[57] Iri, M., (1960). A new method of solving transportation-network problems. Journal

of the Operations Research Society of Japan 3(1), 2.

[58] Kantorovich, L.V. (1960). Mathematical methods in the organization and planning

of production. Manag Sci 6, 550–559. Original Russian version appeared in 1939.

[59] Kardani, O., Lyamin, A.V., & Krabbenhøft, K. (2013). Preconditioned Conju-

gate Gradient for Large Sparse Systems Arising from Optimization Problems in

Geomechanics,” in Proceedings of World Congress on Engineering, 216–221.

[60] Karmarkar, N.K. (1984). A new polynomial time algorithm for linear program-

ming. Combinatorica 4, 373–395.

[61] Khachiyan, L. G. (1965). The intrinsic computational difficulty of functions. in

Logic Methodology and Philosophy of science, Bar, Hillel, North-Holland, Ams-

terdam, The Netherlands, 24–30.

[62] Khachiyan, L. G. (1965). Paths, trees and flowers. Canadian Journal of Mathe-

matics, 17, 449–467.

[63] Khachiyan, L. G. (1979). A polynomial algorithm in linear programming. Soviet

Mathematics Doklady, 20, 191–194.

[64] Klee, V. & Minty G.J. (1972). How good is the simplex algorithm? In: Shisha O

Inequalities–III, Academic, New York, 159–175.

[65] Kortanek, K.O. & Zhu, J. (1988). New Purification Algorithms for Linear Pro-

gramming. Naval Res. Logistic Quarterly 35, 571–583.

[66] Kuhn, H.W. (1955). The Hungarian method for the assignment problem. Naval

research logistics quarterly 2(1-2), 83-97.

Chapter 7. Conclusions 121

[67] Lalami, M.E., El-Baz, D. & Boyer, V.: Multi gpu implementation of the simplex

algorithm. In Proceedings of the 2011 IEEE 13th International Conference on High

Performance Computing and Communications (HPCC), Banff, Canada, 179–186

(2011)

[68] Larsson, T. (1993). On scaling linear programs – Some experimental results. Op-

timization, 27, 335–373.

[69] Lemke, E. C. (1954). The dual method of solving the linear programming problem.

Naval Research Logistics Quarterly, 1, 36–47.

[70] Lustig, I. (1990). Feasibility issues in a primal-dual interior point algorithm for

linear programming. Mathematical Programming, 49, 154–162.

[71] Van Loan, N. J. (2000). Introduction to scientific computing. Prentice-Hall, Inc,.

Upper Saddle River, N. J.

[72] Lustig, J. (1989). An analysis of an available set of linear programming test prob-

lems, Computers and Operations Research, 16(2), 173–184.

[73] Lustig, I. J., Marsten, R. E., & Shanno, D. F. (1992). On implementing Mehro-

tra’s predictor corrector interior point method for linear programming. SIAM J.

Optimization, 2, 435–449.

[74] Mahajan, A. (2011) Presolving mixed integer linear programs. Wiley Encyclopedia

of Operations Research and Management Science, John Wiley & Sons, Inc., 4141–

4149.

[75] Malakooti, B., & Najjar, A.C. (2010). The complex interior boundary method for

linear and nonlinear programming with linear constraints, Applied Mathematics

and Computation, 216, 1903–1917.

[76] Maros, I. (2003). Computational Techniques of the Simplex Method, International

Series in Operations Research & Management Science, 61, Kluwer Academic Pub-

lishers, Boston, MA.

[77] McCormick, S.T. (1990). Making sparse matrices sparser: Computational results,

Mathematical Programming, 49, 91–111.

[78] Megiddo, N.: On Finding Primal– and Dual–optimal Bases. ORSA J. Computation

3(1), 63–65 (1991)

[79] Mehrotra, S. (1992). On the implementation of a primal-dual interior point

method. SIAM J. Optimization, 2, 575–601.

Chapter 7. Conclusions 122

[80] Meyer, X., Albuquerque, P. & Chopard, B.: A multi–GPU implementation and

performance model for the standard simplex method. In Proceedings of the 1st

International Symposium and 10th Balkan Conference on Operational Research,

Thessaloniki, Greece, 312–319 (2011)

[81] Mészáros, C.: Linear programming test problems. http://www.sztaki.hu/

~meszaros/public_ftp/lptestset/misc/ (2016). Accessed 5 May 2016.

[82] Mészáros, C. & Suhl, U. H. (2003). Advanced preprocessing techniques for linear

and quadratic programming. OR Spectrum, 25(4), 575–595.

[83] Najjar, A.C. & Malakooti, B. (2011). Hybrid-lp: Finding advanced starting points

for simplex and pivoting lp methods, Computers & Operations Research, 38, 427–

434.

[84] Von Neumann, J. (1953). A certain zero-sum two-person game equivalent to the

optimal assignment problem, Contributions to the Theory of Games, II, Kuhn,

W.H., Tucker, W.A., Annals of Mathematics Studies, 28, 5–12.

[85] Orchard-Hays, W. (1954). Background development and extensions of the revised

simplex method. Report RM 1433, The Rand Corporation, Santa Monica.

[86] Ordóñez, F. & Freund, R. (2003). Computational experience and the explanatory

value of condition measures for linear optimization. SIAM J. Optimization 14(2),

307–333.

[87] Pan, P.Q. (1990). Practical finite pivoting rules for the simplex method. OR Spek-

trum, 12, 219–225.

[88] Pan, P.Q. (2008). Efficient nested pricing in the simplex algorithm. Operations

Research Letters, 36, 309–313.

[89] Pan, P.Q. (2008). largest-distance pivot rule for the simplex algorithm. European

Journal of Operational Research, 187, 393–402.

[90] Pan, P.Q. (2013). An affine-scaling pivot algorithm for linear programming. Opti-

mization 62(4), 431–445.

[91] Paparrizos, K. (1991). An infeasible exterior point simplex algorithm for assign-

ment problems. Mathematical Programming 51(1–3), 45–54.

[92] Paparrizos, K. (1993). An exterior point simplex algorithm for (general) linear

programming problems. Annals of Operations Research 47, 497–508.

[93] Paparrizos, K., Samaras, N. & Stephanides, G. (2003). A new efficient primal dual

simplex algorithm. Computers & Operations Research, 30(9), 1383-1399.

http://www.sztaki.hu/~meszaros/public_ftp/lptestset/misc/
http://www.sztaki.hu/~meszaros/public_ftp/lptestset/misc/

Chapter 7. Conclusions 123

[94] Paparrizos, K., Samaras, N. & Tsiplidis, K. (2009). Pivoting algorithms for (LP)

generating two paths. Encyclopedia of optimization, 2nd edition, 2965–2969.

[95] Ploskas, N., Samaras, N. & Sifaleras, A. (2009). A Parallel Implementation of an

Exterior Point Algorithm for Linear Programming Problems. In Proceedings of the

9th Balcan Conference on Operational Research (BALCOR 2009), 2-6 September,

Constanta, Romania.

[96] Ploskas, N., Samaras, N. & Margaritis, K.: A Parallel Implementation of the Re-

vised Simplex Algorithm Using OpenMP: Some Preliminary Results. In Optimiza-

tion Theory, Decision Making, and Operations Research Applications, 163–175.

Springer New York (2013)

[97] Ploskas, N. & Samaras, N. (2013). A Computational Comparison of Basis Updating

Schemes for the Simplex Algorithm on a CPU–GPU System. American Journal of

Operations Research 3, 497–505.

[98] Ploskas, N. & Samaras, N. (2013). The Impact of Scaling on Simplex Type Algo-

rithms. In Proceedings of the 6th Balkan Conference in Informatics, ACM, 19–21

September, Thessaloniki, Greece, 17–22.

[99] Ploskas, N. & Samaras, N. (2015). A computational comparison of scaling tech-

niques for linear optimization problems on a graphical processing unit. Interna-

tional Journal of Computer Mathematics, 92(2), 319–336.

[100] Ploskas, N. & Samaras, N. (2014). GPU accelerated pivoting rules for the simplex

algorithm. Journal of Systems and Software 96, 1–9

[101] Ploskas, N. & Samaras, N. (2015). Efficient GPU-based implementations of simplex

type algorithms. Applied Mathematics and Computation, 250, 552–570.

[102] Ploskas, N. & Samaras, N. (2017). Linear Programmins Using Matlab. Springer

Optimization and Its Applications.

[103] Reid, J.K. (1971). On the method of conjugate gradients for the solution of large

sparse systems of linear equations, Proceedings of the conference on Large Sparse

Sets of Linear Equations, 231–254.

[104] Rose, J.D. & Willoughby, A.R. (1972). Sparse matrices and their applications,

Plenum Press.

[105] Samaras, N (2001). Computational improvements and efficient implementation of

two path pivoting algorithms, PhD Dissertation, University of Macedonia.

Chapter 7. Conclusions 124

[106] Smale, S. (1983a). On the average number of steps of the simplex method of linear

programming. Math Program 27, 241–262.

[107] Smale, S. (1983b). The problem of the average speed of the simplex method. In:

Bachem A, Grotschel M, Korte B, (eds) Mathematical programming, the state of

the art. Springer, Berlin, 530–539.

[108] Stigler, G. J. (1945). The cost of subsistence. Journal of Farm Economics, 27,

303–314.

[109] Swietanowski, A. (1995). A modular presolve procedure for large scale lin-

ear programming. International Institute for Applied Systems Analysis. url:

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.53.8206

[110] Terlaky, T. (1985). A convergent criss-cross method. Optimization 16(5), 683–690.

[111] Terlaky, T. & Zhang S. (1993). Pivot rules for linear programming: A survey on

recent theoretical developments, Annals of Operations Research, 46, 203–233.

[112] Terlaky, T. (Ed.): Interior point methods of mathematical programming, 5,

Springer Science & Business Media (2013)

[113] Thomadakis, M.E., Liu, J.C.: An efficient steepest-edge simplex algorithm for

SIMD computers. In Proceedings of the 10th International Conference on Super-

computing (ICS 1996), Philadelphia, Pennsylvania, USA, 286–293 (1996)

[114] Tomlin, J. A. (1975). On scaling linear programming problems. Math. Program.

Stud., 4, 146–166.

[115] Triantafyllidis, C.P.: A Non–Monotonic Infeasible Interior–Exterior Point Al-

gorithm for Linear Programming. PhD thesis, University of Macedonia, Greece

(2014)

[116] Urdaneta, J., Perez, L.G., Gomez, J.F., Feijoo, B. & Gonzalez, M. (2000). Pre-

solve analysis and interior point solutions of the linear programming coordination

problem of directional overcurrent relays, Electrical Power and Energy Systems,

23, 819–825.

[117] Von Neumann, J. (1947). On a maximization problem. Technical report, Institute

for Advanced Study, Princeton, NJ, USA.

[118] Ye, Y. (1989). Eliminating Columns in the simplex Method for linear program-

ming, Journal of Optimization Theory and Applications, 63(1), 69–77.

[119] Weispfenning, V. (2004). Solving constraints by elimination methods, Automated

Reasoning, 3097, 336–341.

Chapter 7. Conclusions 125

[120] Wright, S.J.: Primal-dual interior-point methods. Siam (1997)

[121] Williams, H. (1992). The elimination of integer variables. The Journal of the Op-

erational Research Society, 43(5), 387–393.

[122] Zionts, S. (1969). The criss-cross method for solving linear programming problems.

Management Science 15(7), 426–445.

	Declaration of Authorship
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Contributions of this thesis
	1.2 Operations Research
	1.3 Overview

	2 Linear Programming
	2.1 Introduction
	2.2 History of Linear Problem
	2.3 The Linear Problem
	2.4 Duality
	2.5 Geometry

	3 Linear Programming Algorithms
	3.1 Introduction
	3.2 Simplex Algorithm
	3.3 Exterior Point Simplex Algorithm
	3.4 Interior Point Methods
	3.5 Conclusions

	4 Presolve Techniques and A New Method
	4.1 Introduction
	4.2 Background
	4.3 Scaling Techniques
	4.3.1 Equilibration
	4.3.2 Geometric Mean
	4.3.3 Hybrid

	4.4 Eliminate Empty Rows and Columns
	4.5 Eliminate Singleton Rows
	4.6 Eliminate Singleton Inequality Rows
	4.7 Eliminate Dual Singleton Inequality Row
	4.8 Eliminate Free Singleton Column
	4.9 Eliminate Redundant Bounds from Constraints
	4.10 Eliminate Linearly Dependent Rows
	4.11 A New Presolve Technique - Eliminate Redundant Columns
	4.12 Computational Study
	4.12.1 Statistics Before the Presolve Analysis
	4.12.2 Statistics After the Presolve Analysis
	4.12.3 Statistics For New Presolve Technique

	4.13 Conclusions

	5 Primal-Dual Interior Point Simplex Algorithm
	5.1 Introduction
	5.2 PDEPSAs
	5.3 Geometrical Representation
	5.4 Description of PDIPSA
	5.5 Proof of Correctness
	5.6 Revised Form and Solution of General LPs
	5.7 Computational Study
	5.8 Conclusions

	6 Hybrid Algorithm
	6.1 Introduction
	6.2 Description of the Algorithm
	6.3 Proof of Correctness
	6.4 Computational Study
	6.5 Conclusions

	7 Conclusions
	7.1 Results
	7.2 Future Research

	Bibliography

