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Abstract

In this work we try to identify, assess and evaluate the hedging performance of derivative

contracts on equity portfolios that are available in the �nancial markets. We speci�cally

focus on the use of future contracts, such as gold and oil futures, as hedgers on equity

indices. We �rst present in brief theory and basics of equity investments and �nancial

derivatives. We further focus on the concept of hedging and the uses and characteristics

of future contracts. The thesis continues with a literature review on how the optimal

hedge ratio is de�ned and how it can be estimated with the implementation of econometric

models. We then employ multivariate GARCH BEKK models in order to estimate the

dynamic conditional variance of the assets returns and evaluate the performance of their

hedge ratios. Finally, we discuss the results and conclude with investment proposals.
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Introduction

Every equity investment undergoes some risk. Even after international diversi�cation is

achieved, following the modern diversi�cation theory of Markowitz (1952), there is always

a form of undiversi�able risk. The type of risk, called systematic, is the exposure that each

asset has on the course of the market that it belongs. Assets that are negotiated in the

same market often show similar patterns in response to news that a�ect the entire market

and create cross sectional relationships, while volatility spillovers between di�erent stock

markets might also occur. Therefore, in order for an equity investment to be more secure

in shocks that are not related to the assets' performance, hedging is necessary.

Hedging is an investment procedure through which a position on a �nancial instrument

is taken, in order to o�set the potential losses of another. One of the ways to achieve

hedging is with the use of �nancial derivatives. The �nancial derivatives are negotiated

contracts that derive their price from the value of an underlying asset. Derivatives have

many characteristics that allow them to be �exible and utilized for purposes such as hedg-

ing, arbitrage opportunities, as well as speculation. More speci�cally, there is plenty of

literature that considers the futures contracts to be the most appropriate instruments for

hedging. Their daily settlement, variety of contracts and security of default are only some

of the characteristics that make futures more suitable, compared to other derivatives.

However, after deciding which of them can be used, an investor should also select the

strategy to follow. For that reason, the optimality of the hedge ratio should be de�ned

based on the investor's pro�le. Starting from the seminal work of Ederington (1979), the

literature has proposed multiple optimal hedge ratios that can be selected based on the

investor's preferences. There are di�erent measures based on risk minimization, return

maximization, adjusted return maximization criteria and others.

A �nal question that needs to be answered before making a hedge is how the optimal

hedge ratio is calculated. The estimation includes decisions such as using ex-ante or ex-post

econometric analysis that can be further divided into static and dynamic. Furthermore,

the method for modeling the moments of the time series needs to be selected based on the

properties of the sample. It appears that for the estimation of the hedge ratio dynamic

models are the most e�ective. There is a vast literature on dynamic econometric methods

for modeling �nancial time series, among which the GARCH models present important
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advantages.

In this thesis, we review the literature aiming to �nd, which �nancial derivative is the

most e�ective for hedging, how the optimal ratio is de�ned and which is the best �tting

econometric model for estimating it. After that, we intend to assess and evaluate the

performance of futures contracts on equity investments, by testing the hedging e�ective-

ness of WTI oil and GCS gold futures on stock indices of large �nancial markets such as

the S&P500, Eurostoxx, Nikkei 250 and the Shanghai Stock Exchange. The �rst part is

theoretical and presents the main concepts regarding, equity investments, �nancial deriva-

tives, and hedging, as well as the literature review. The second part reports the empirical

analysis including the methodology, the results of BEKK models and discussion on the

�ndings.
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Chapter 1

Theoretical Review

This chapter aims to help the reader understand the key concepts concerning equity in-

vestments and futures, and review the existing literature. We consider appropriate to

introduce these concepts in order to achieve a better transition to the next parts of this

thesis. We �rst start with some de�nitions about equity investments and mutual funds;

we then introduce the most common types of �nancial derivatives and analyze in detail

the futures contracts. Hedging and its importance are later explained and a comparison

among futures and the other �nancial derivatives is made. We then present part of the

literature concerning the superiority of futures contracts as hedgers, the determination of

the optimal hedge ratio and methods for estimating it.

1.1 Equity Investments and Financial Derivatives

1.1.1 Equity Investments

An equity is generally the ownership of an entity over an asset. In capital markets a stock,

or any other security representing an interest of ownership, usually on a private company,

can be referred as equity. The most common type of equity is stocks (common or preferred).

Therefore, an equity investment can generally describe the purchase of shares of stock in

anticipation of income from dividends and capital gains.

Every investment however, involves some risk. Although the types of risk di�er among

investments, there are two broad types of risk that every equity investment undergoes; the

systematic and the non-systematic risk. The �rst is the risk that every asset is exposed

to, by being a component of a market. One could also refer to systematic risk as market

or undiversi�able risk because it actually includes the exposure that an asset has on the

market operation and course. Systematic risk a�ects the overall market and not only a

particular asset or industry. On the other hand, the non-systematic risk, which is also

called unsystematic or diversi�able risk, refers to the uncertainty caused by the course of

an asset, company or industry.
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Around the middle of the previous century, Harry Markowitz (1952) introduced the

�Modern Portfolio Theory� (MPT), that would later award him with a Nobel prize in

Economics. The MPT introduced the concept of diversi�cation which denotes that, having

a portfolio of many di�erent assets reduces the non-systematic risk at which the total

investment is exposed to. As the number of assets within a portfolio tends to in�nity, the

non-systematic risk tends to zero. Stated di�erently, the more assets a portfolio has the

less risk it faces. Diversi�cation is even more e�ective when a portfolio consists of assets

from di�erent international markets (Solnik, 1995).

An e�cient way for an investor to hold one or more portfolios is to invest in mutual

funds or ETFs instead of buying all the assets separately. A mutual fund is an investment

vehicle that is constituted of the funds of many investors that are willing to invest in

multiple similar assets. There are mutual funds for example that are designed to mirror

the movements of a stock market index. Mutual funds may include any type of asset

and have reduced transaction costs for an investor that is willing to buy the same assets

separately. Similar to MPT the �Mutual Fund Separation Theorem� denotes that the

optimal portfolio of an investor might be constructed by holding multiple mutual funds

positions, in appropriate ratios while the number of mutual funds will be less than the

number of individual assets in the portfolio.

1.1.2 Financial Derivatives

A �nancial derivative product, as its name indicates, is a �nancial instrument whose value

derives from the performance of an underlying entity (Hull, 2012) . This entity might have

the form of an asset, a bond, an index, a commodity, an interest rate or an insurance

contract and many more. The derivative can be a contract or an agreement between two

counter parties. In most cases the underlying variable is the price of a traded asset, but it

can depend on nearly any variable like the mean monthly temperature on a speci�c region,

which is the case of weather derivatives. The derivatives of both forms derive their price

form the value of the underlying asset. Another di�erence with spot investments, is that a

derivatives transaction does not necessarily include an actual transaction of the ownership

of the underlying asset at the moment that the contract is set up. The derivative represents

an agreement or an obligation to transfer the ownership of the underlying asset at a speci�c

price, time and place in the future that the contract indicates. In any derivative contract

two counter parties are needed. The party that holds a contract to buy is said to have taken

a long position, while the other side that agrees to sell holds a call position. Therefore,

for any derivative contract the presence of both sides is necessary. In other words, for

every long position an opposite short position is necessary. The need for both supply and

demand sides in �nancial derivatives, results their price to depend not only on the value of

the underlying asset but also on the interest and the creditworthiness of the parties (Kolb
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and Overdahl, 2007).

Some derivatives such as forward contracts are negotiated over-the-counter (OTC) like

any other private contract, but others such as futures and options are traded in organized

exchanges like the Chicago Mercantile Exchange (CME). As we mentioned, there are many

di�erent �nancial derivatives that vary based on the nature of their underlying asset. We

can categorize them in �nancial and commodity derivatives. Financial commodities include

derivatives in indices, bonds, interest rates, foreign exchange and others, while commodity

derivatives may include agricultural products, metals, energy products such as oil and

natural gas or commodity indices. As the integration of the �nancial markets and the

�nancialization of commodities continue to develop, new instruments will be available to

the investors in order to diversify, and hedge their investments.

The importance of �nancial derivatives can be found in both their theoretical applica-

tions and bene�ts, as well as on evidence of their widespread usage. Some of the bene�ts

of �nancial derivatives according to Kolb and Overdahl (2007) are the following.

Market completeness A complete �nancial market is one where there is perfect in-

formation, negligible transaction costs and the price of every asset is the same in every

possible state traded, so there are no arbitrage opportunities. Even though market com-

pleteness is an idealized state, derivatives markets help �nancial markets approach it. The

bilateral nature of all derivatives transactions leads to price discovery, the process that

determines the price of an asset in a market through the interaction of buyers and sellers.

Also, when investors discount the impact of future events in the value of the underlying

asset in the day of the delivery, they discount the same events before the spot market does

and therefore lead to a more e�cient use of the information. Finally, the simultaneous

operation of �nancial and derivatives markets increase the risk and return perspectives of

investors portfolios increasing their welfare.

Risk management Derivative instruments can e�ectively help investors hedge their risk

exposures. This is achieved by transferring the risk from the components of the market

that don't want it to those who are willing to accept it for a premium. Even though

they can be risky in the sense that their price �uctuates much, if they are used parallel to

equity investments they can absorb and reduce the systemic risk of those investments. The

variety of derivatives contracts allows for many types of risk to be hedged, like currency,

credit, interest rate, equity risk and others. We further analyze both hedging with �nancial

derivatives later in the next part of this chapter.

Speculation Even though �nancial derivatives were introduced with the opposite pur-

pose, if properly used, they can present signi�cant speculative opportunities. Products

5



such as options can lead to excessive returns with only slight movements in the underlying

asset price as we will later show.

Trading e�ciency Positions in �nancial derivatives can work as substitutes for spot

positions directly in the underlying assets. The derivatives have the ability to mimic the

movements in the price of the underlying asset. At the same time the futures contracts

have lower transactions costs. They can also be used in the case where an investor wants

to exempt his position in an equity investment for only a speci�c period of time. He may

buy an opposite position in a derivative product of the same underlying asset to o�set the

returns of that period, instead of selling and repurchasing the same portfolio. In this way,

many investors prefer the derivatives to the conventional investments on the underlying

security. Financial derivatives are also more liquid products, because derivatives markets

have much more trading activity. An illustration of this di�erence in liquidity is the case

of October 1987 stock market crash, when trading was interrupted in the otherwise highly

liquid New York Stock Exchange (NYSE), because of the huge imbalances between sell

and buy orders in most stocks. This illiquidity in the spot markets did not spill over into

the futures markets that continued their operation normally.

All the bene�ts mentioned above have lead to a great interest in derivatives markets

(Malliaris, 1997) that can be seen in the following statistics that were derived from the

IFA annual report 2018.

Figure 1.1: Global Volume of Futures Contracts Exchanged (in billion USD)
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Figure 1.2: Global Volume of Future Contracts per type (in billion USD)

Figure 1.3: Share of traded Futures on global volume by region

There are several types of �nancial derivatives all of which have di�erent characteristics

in terms of negotiation and obligations for the counter parties. The basic types of �nancial

derivatives are forward contracts, futures, options, swaps and quantos. Each type has

di�erent bene�ts and limitations creating many investment opportunities for all types of

market participants. The most traded derivatives and the most liquid derivative markets

are presented in the tables below.

Table 1.1: Most traded Derivative Contracts per type

Type Contract Jan-Dec 2018 Vol

Equity Bank Nifty Index Options, National Stock Exchange of India 1,587,426,222

Rates Eurodollar Futures, Chicago Mercantile Exchange 765,208,581

FOREX US Dollar/Indian Rupee Options, BSE 559,489,717

Energy Brent Oil Futures, Moscow Exchange 441,379,480

Agricultural Soybean Meal Futures, Dalian Commodity Exchange 238,162,413

Metals Gold Futures, Tokyo Commodity Exchange 8,090,879

Source: Futures Industry Association Annual Report 2018
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Table 1.2: Most liquid Derivatives Exchanges based on volume of total trades

Rank Exchange Volume

1 CME Group 4,844,856,880

2 National Stock Exchange of India 3,790,090,142

3 B3 2,574,073,178

4 Intercontinental Exchange 2,474,223,217

5 CBOE Holdings 2,050,884,142

Source: Futures Industry Association Annual Report 2018

Forward contracts

A forward contract is an agreement between two parties to exchange an asset for a certain

price, in a certain time in the future. The two sides of a forward contract include a buyer

and a seller, who together are called counterparties. The side that agrees to buy the

underlying asset has a long position, while the seller of that enters a short position (Hull,

2012). The di�erence between forward contracts and spot transactions is that, in forwards

the actual transfer of the ownership on the underlying asset doesn't take place the time the

contract is issued but in the future. There are certain terms that every contract speci�es

such as the time period, the price, details on the delivery of the asset etc., and are all

decided solely by the two parties.

The underlying asset can be anything of interest for the two parties, however, the most

usual contracts include foreign exchange and physical commodities. These two types of

forwards include the physical delivery of the underlying assets at maturity of the contract,

while many other forward types are cash-settled. In this case, if at maturity date the spot

price of the underlying asset is higher than the one speci�ed in the contract, the short side

has to make a cash payment. Similarly, if the spot price is lower, the holder of the long

position will have to make the payment.

Forwards are traded over-the-counter but while the absence of a clearing house is an

advantage in terms of transaction costs, it also makes the two sides exposed to the default

risk of the other. The simplicity of forward contracts makes them very �exible and useful

in resolving the risk related with the course of a price. If we express the strike price of an

asset as St and the agreed delivery price of the contract as F0 the payo� for the holder of

a long position will be

St − F0

This means that as long as the spot price of the asset at the delivery date is higher than

the price agreed in the contract it will be true that St > F0 =⇒ St−F0 > 0, it is bene�cial

for the holder of the contract because he will be able to acquire the asset at a lower cost.

In any other case the payo� will be negative. On the other hand the payo� for the seller
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of a forward contract will be determined by

F0 − St

and pro�t is made when F0 > St =⇒ F0 − St > 0. The positive and negative payo�s for

both sides can be seen in �gure 1.4 In this way the maximum pro�t and loss for a forward

Figure 1.4: Long and Short Forward payo�s

contract holder can be shown in Table 1.3

Table 1.3: Forward positions and payo�s

If St > F0 If St < F0

Long Forward Pro�t St − F0 Loss St − F0

Short Forward Loss F0 − St Pro�t F0 − St

Options

The options are contracts that give to their holder the right and choice to either buy or

sell an underlying asset in a predetermined price in the future. There are two classes of

options, the call options which give their holder the right to buy the underlying asset and

put options that give him the right to sell this asset. Similar to other derivatives, options

also require two opposite sides in order to build a contract. The buyer or holder of an

option has the option or choice to exercise his contract and buy (holder of call option) or

sell (holder of put option) the underlying asset in the agreed price. To acquire these rights,

owners of options buy them by paying a price or premium to the sellers of the contracts.

The seller or issuer of an option on the other hand, has the obligation to either sell (issuer

of call option) or buy (issuer of put option) the underlying asset that was agreed. In the

case of European options the right can be exercised by the holder at maturity date, while

for American options the owner can exercise it at any moment prior to maturity. The

underlying asset of an option might be an individual stock or bond, stock index, foreign
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currencies, exchange traded funds (ETFs) and futures contracts. Options are traded in

both over-the-counter and organized markets. The choices of put and call options give to

the two sides of investors, buyers and sellers, four possible positions in option contracts.

The owner of an option will always have the right to decide whether to exercise or not

his position, while the seller will always have an obligation to meet the holder's demand.

The four di�erent possible positions that an investor might take in an option result to

Table 1.4: Options types and their characteristics

Buyer Seller
Call Long Call Short Call
Put Long Put Short Put

four di�erent cases of payo�, as shown in table 1.4. There is also a speci�c category of

options that has future contracts as underlying assets. These options are referred as futures

options. They di�er from the other options that include the delivery of a physical asset or

equity in that, if the holder of a call option exercises his right he will receive a long position

in a futures contract at the option's strike price. For put options, the holder of the option

would enter into the short side of the contract and would sell the underlying asset at the

option's strike price (Kolb and Overdahl, 2007). It is also important to note that future

options are derivatives on a derivative instrument, or second derivatives. This means that

in order to specify their terms one should take into consideration the expiration dates and

the di�erent supply and demand pro�les of both products.

Because options create a greater number of outcomes in terms of pro�t for both sides

of an option, compared to the other types of derivatives, the concept of moneyness was

developed in order to distinguish the cases that are pro�table to each side if the option

is immediately exercised. If we express the spot price of the underlying asset as St and

the agreed delivery price or strike price agreed for the underlying asset as K, and p the

premium payment that the holder of the option has to pay to the issuer then, for a call

option if St > K we say that the option is in-the-money. Similarly, if St < K the call

option is out-of-the-money since for the holder of such option it is preferable to buy the

underlying asset directly from the spot market rather than exercising his call option. In

the case of zero pro�t, we say that the option is at-the-money. It can be clearly seen that

the state of the option is not pro�table for both sides. For example the case St > K is

pro�table for the holder of a call option, but not for the holder of a put option that has

the same strike price and conditions. The issuer of both sides makes pro�t only when the

option is not exercised by the holder as he keeps the premium p that was paid. In order

to calculate the pro�t for a holder of an option that is in-the-money we need to subtract

the cost that he had in order to enter the position, which is the premium. It can be shown

that if for the holder of an option it is preferable to exercise the price when the option

10



Figure 1.5: Option positions payo�s

is in-the-money, the issuer of the same option will make pro�t when the holder doesn't

exercise his right, which is when the option is at-the-money or out-of-money. In this way

Table 1.5: Option types and exercise cases

Calls Puts
In-the-money St > K St < K
At-the-money St = K St = K
Out-of-money St < K St > K

the pro�t or loss of holders and issuers is shown in table 1.6. The European options are

usually described in terms of payo� for their purchaser. The holders of long call and short

put options bene�t from increases in the spot price St above the strike price K as the

�rst will exercise the option and the second will win the premium. On the other side, the

holders of long put and short call will pro�t in the case that St falls below K because in

this case the �rst will exercise the option and the later will win the premium from the

option that will not be exercised.

There are plenty of strategies for combinations of option contracts that result to dif-

ferent risk and return characteristics and allow for speculation in any case of spot price

movement. There are many bene�ts with the use of options. The bene�ts derive from the
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Table 1.6: Option positions payo�s

St > K St < K

Long Call (St −K)− p −p
Long Put −p (K − St)− p
Short Call (St −K) + p p
Short Put p (K − St) + p

fact that options replicate the behavior of the underlying asset price, an investor can trade

options to speculate on the price movements of the underlying asset. One of the reasons

to trade an option instead of the original asset is that call options are always and put

options most of the times, cheaper than the underlying asset. Another thing is that the

option price is more volatile and can yield higher return for the same investment. In this

way, small movements in the spot price of the underlying asset can lead to large returns

in options and large movements to even larger returns.

Apart from speculation, hedging can also be achieved with the use of options if they

are traded in combination with portfolios. Investors can in this way use options to increase

or decrease risk of their existing portfolios for a very small price, which is the premium.

Options have also signi�cantly lower transaction costs and taxation. Finally, by trading

options an investor can avoid some stock market restrictions. For example, systematically

shorting a stock is highly restricted in most exchanges. By trading an option it is possible

for an investor to replicate a short sale of stock. By combining an investment in equity, with

one of all the possible positions in options the resulting pro�t for the aggregate investment

is shown in �gure 1.6.

Swap

A swap is a contract in which the two parties usually agree to exchange cash �ows in the

future, usually based on a notional principal amount. The swaps are private contracts very

similar to forwards but they di�er because the principal amount usually doesn't change

hands and because the exchanges of the cash �ows take place multiple times. The cash

�ows that are exchanged by the counterparties are most of the times to the value of interest

rates, debt instruments or foreign currencies. The terms of the agreement are decided solely

by the two counterparties and their objectives, so that each swap may vary in terms of

principal capital, interest rate, time and frequency of payments.

In the most common and simple swap type, called plain vanilla, the one counterparty

agrees to pay a constant rate on the agreed capital, in exchange of a �oating rate payment

on the same capital paid by the other counterparty. The �rst party is said to have the pay-

�xed side of the deal, while the other has the receive-�xed side of the deal. An example

of plain vanilla can be shown in �gure 1.7. The time for which the cash �ows will be
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Figure 1.6: Combined Equity and Options positions payo�s

exchanged is usually referred to as the tenor of the swap and the amount upon which the

rates are speci�ed is called notional principal. Usually the swap uses existing interest rates

such as the London Inter-bank O�ered Rate (LIBOR). If the interest rate agreed is exactly

LIBOR the swap is called LIBOR �at.

Based on the type of the underlying asset of the swap, they can be categorized in

• Interest rate swaps, that exchange di�erent types of rates such as �xed for �exible,

• Equity swaps that make payments based on the price of a speci�ed equity,

• Commodity swaps that are similarly based on the value of a commodity,

• Credit swaps where the payo� is linked to the credit characteristics of a reference

asset.

Swaps also di�er in terms of how the notional capital is determined. These swaps are

usually called �avored swaps and some of them are

• Amortizing swaps in which the notional principal is reduced with time,

• Accreting swaps are the exact opposite because the notional principal is increasing,

• Seasonal swaps in which the notional principal varies.
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Figure 1.7: Example of Swap contract
Source: International Swaps and Derivatives Association

Swaps are very useful in changing the nature of assets or liabilities. With a swap an

investor can transform a �oating rate asset with volatile cash �ows into a �xed-rate asset

with constant payments, while this can happen with debt as well. The fact that swaps

are not settled in organized exchanges creates some bene�ts in their use, but also some

disadvantages. They are very �exible, have low transaction costs and a�ord privacy (Kolb

and Overadhl, 2007). However, the absence of a regulator, to guarantee that the payments

will be made, is a disadvantage as the counterparties undergo the default risk of the other.

Another disadvantage is that in order for one party to enter a swap it must �nd another

counterparty that is willing to enter the agreement under the same terms of maturity and

cash �ow pattern. Swaps also cannot be altered or terminated early unless both sides

agree.

Future contracts

A futures contract is a standardized contract or legal agreement, to buy or sell an asset

at a speci�ed time in the future. The seller of a future contract is committed to deliver

the asset in a predetermined day in the future, in exchange of a payment that occurs

also in the future. The buyer will take delivery of the underlying asset and will pay the

agreed-upon price. It can be said that futures are a type of forward contracts that have

highly standardized and precise contract terms. The price of the asset on the delivery, is

determined at the time that the contract is exchanged by the forces of demand and supply,

while the payment is made when the contract expires.

Futures contracts are traded in organized exchanges in which a clearing house operates

as middleman, is responsible for executing the exchanges, and decides the terms of the

contracts. The terms include details such as the type of the underlying asset, the delivery

date, the contract size, the currency, the hours that the contract can be traded and others.

Especially for futures contracts of physical commodities the rules are very strict and include

many more details such as the quality of the asset, the process of product delivery and

others (Hull, 2012).
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The holder of a futures contract can close his position by exchanging it before this

expires. In this way, an investor may enter a futures position without a need for delivery.

Most of futures contracts are closed before expiration and physical delivery takes place

usually in cases when a corporation needs the commodity as input for its production

process. A hedge fund for example may enter a long position in oil futures in order to take

advantage of a possible increase in its price and not because it needs to use barrels of oil. In

this thesis we consider the use of futures as hedgers on equity investments and therefore, we

don't focus on the use of futures for hedging on physical production or corporate hedging.

Unlike the case of other �nancial derivatives, in futures contracts the clearing house

minimizes the counterparty risk to traders, by becoming the buyer to each seller, and seller

to each buyer, and assumes the risk of loss if a counterparty defaults. The clearing house

also sets a minimum price �uctuation, called tick size, and a maximum price �uctuation

which restricts the price movement of a contract in a single day.

The plethora of rules may at �rst seem very restrictive, however, they actually promote

liquidity as all participants in the market know the exact terms of the transactions and

trading tends to be more e�cient (Kolb and Overdahl, 2007).

Another important factor in futures trading is margins. Margins act as a safeguard

by requiring traders to deposit funds with a broker, before entering in futures contracts.

These funds are used to ensure that the traders will perform their contract obligations and

continuously adjust based on the value of the contracts the trader holds. If a trader has

not enough margin to meet the obligations of his open positions, he receives a call from the

clearing house to add more funds in his account. Margins restrict the activity of traders

from taking very risky positions that could lead to default, and their rate vary between

contracts and positions. Table 1.7 presents the margin requirements that CME had for

some index equity futures on December 2018. For these reasons, futures are very uniform

Table 1.7: Margin requirements of various Futures Contracts

Product Name Code Start Period End Period Maintenance Currency

NIKKEI 225 YEN FUT N1 1/12/2018 1/12/2021 560,000 JPY

S&P500 FUTURES S&P500 1/12/2018 1/12/2018 30,000 USD

BITCOIN FUTURES BTC 1/12/2018 1/12/2018 7,515 USD

E-MINI NASDAQ 100 FUT NQ 1/12/2018 1/12/2018 7,000 USD

FTSE EMERGING INDEX FUT EI 1/12/2018 1/12/2019 2,600 USD

Source: CME Group

and their well-speci�ed terms provide a good guarantee that the asset will be delivered on

time and in an appropriate manner.

There are many types of futures based on the nature of the underlying asset.

• Physical commodity futures, that include the future delivery of agricultural products,
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such as corn or soy bushels, metallurgical products like gold and silver, and energy

commodities such as barrels crude oil and natural gas.

• Foreign currency futures, that include the delivery of a quantity on foreign exchange.

Interest-earning assets futures, in which the underlying asset might be treasury notes,

bonds, Eurodollar deposits, interest rate swaps and other interest paying instruments.

• Index futures, are actually stock index futures that are linked to the course of indices

such as S&P500 or Russell 2000. This type of futures does not include the physical

delivery of a portfolio but it is settled with a reversing trade or cash payment instead.

• Individual stock futures, include the delivery of ownership on stocks of private en-

terprises.

• Cryptocurrency futures, CME has recently introduced Bitcoin futures contracts and

National Association of Securities Dealers Automated Quotations (NASDAQ) also

plans to do so.

In our analysis we will use physical commodity, asset-type futures, namely oil and gold.

Trading futures contracts is very similar to trading assets in the spot markets. When

an investor buys a future contract it is said to have a long position, while when he sells a

contract he enters a short position. When one trader buys a future contract from another

one that sells it, the transaction results to one contract of trading volume. The number of

futures contracts obligated for delivery each moment is called open interest. The volume

and open interest of various futures types that were traded on CME on 19th December

2018 are presented in Table 1.8 Similarly to spot exchanges, an increase in the price of a

Table 1.8: Volume and Open Interest of Futures that are traded on CME

Type Volume Open Interest

Agriculture 857,885 4,692,949

Energy 2,233,633 11,785,118

Equities 5,582,760 5,179,170

FOREX 833,498 1,586,209

Interest Rate 11,125,416 29,476,359

Metals 490,393 1,040,999
Source: CME Group

futures contract above the delivery price generates a pro�t for a long position and a loss

for a short position. On the other hand, a decrease in the price of a futures contract below

the delivery price results to a loss for a long position and pro�t for a short position.

Very similar to forward contracts payo�s, if we express the futures price of an asset as
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Ft and the agreed delivery price as F0 the daily settlement will be

Ft − F0

and every scenario when Ft > F0 =⇒ Ft − F0 > 0, is bene�cial for the holder of a long

position on the contract, because he can either acquire the underlying asset at a lower cost

compared to the spot market (opportunity cost) or sell the contract before this expires and

make a pro�t. The same case results to a loss of −(Ft − F0) for a short position holder of

the contract. Pro�t will be made from a short position if the futures price is lower than

the delivery price F0 > Ft =⇒ F0 − Ft > 0 and the payo� will be equal to

F0 − Ft

and in this case the loss for a long position on that contract will be −(F0 − Ft). Futures

Figure 1.8: Long and Short Futures payo�s

have many di�erent and common characteristics as other �nancial derivatives some of them

are:

1. Similar to options, futures contracts are traded on organized exchanges as opposed

to forwards and swaps that are over-the-counter private agreements between the

counterparties.

2. Futures are standardized in that their terms are speci�ed, restrictive and vary only

between di�erent types of futures. This is di�erent with forwards and swaps where

the terms might take any form creating unlimited possibilities of contracts.

3. Futures operate in the presence of a clearing house that is responsible for executing

all the exchanges and guaranteeing the on time delivery of all products, something

that does not exist in other derivatives markets.

4. Futures markets also rely on a system of margins that protects the �nancial integrity

of the contracts. They therefore have zero credit risk.
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5. Futures are settled daily. In this way, their prices are in continuous move and their

value changes daily, in contrast with forwards whose value is determined only upon

delivery date.

6. Holders of futures contracts can easily o�set and close their positions prior to the

expiration of the contracts.

As Tesler and Higinbotham (1977) mention, an organized futures market facilitates trans-

actions and substitutes the trustworthiness of the exchanging parts. Similar to the other

derivatives, futures can be used for speculation or hedging. However, there is one more

purpose in futures markets, that of price discovery. While all other instruments derive

their price from the spot price of the underlying asset, futures re�ect the expectations of

investors for the price of the asset the day of the delivery (Working, 1961; Sliber, 1981;

Evans, 1978). Price discovery refers to the reveal of information about the future in cash

markets through futures markets. The strong positive relationship (further analyzed in

Chapter 1.2.1) between futures and spot prices is not only expected but it also appears

very useful for predictions. Futures can even assist the price discovery of even spot mar-

kets if the later are not well developed. Also, according to Dale (1981) the greater the risk

reduction comes from futures markets, the greater the demand for tradable goods in an

economy is.

As we mentioned earlier, there are multiple di�erent contracts for di�erent delivery

dates of the same underlying asset. The prices of more distant futures are usually higher

than those of the nearby months, in what is called a normal market. If the distant futures

cost less than those close to delivery, we say that there is an inverted market. This

intracommodity spread should tend to zero as the expiration of one contract approaches

the contract of the next negotiable delivery date. This enables an investor to roll forward

a contract and extend its expiration time as the values of the expiring and new contract

are equal.

Quantos

Finally, another �nancial instrument that uses derivatives is Quantos. A quanto is an

instrument in which, while the initial price of the underlying asset of a derivative is valued

in one currency, the instrument itself is settled in another currency at some rate. In this

way, a quanto enables investors to arrange payments in di�erent currencies other than the

asset's pricing currency without being exposed to currency risk. The fee that is paid is

guaranteed and doesn't �uctuate as the exchange rate does. There are quantos for all

�nancial derivatives except for forwards. Quanto futures contracts for example can be

used to purchase futures contracts in a European stock market index which is settled in

US dollars. Quanto options, are used when the underlying and a �xed strike price are paid
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in di�erent currency. With quanto swaps one counterparty pays a non-local interest rate

to the other, but the notional amount is in local currency.

1.2 Hedging

The multiple natures of �nancial derivatives allow them to be utilized by di�erent type of

investors and strategies. Derivatives might be used for speculation, arbitrage purposes or

hedging. In this thesis we focus in this last practice of �nancial derivatives. The derivative

markets facilitate hedging by allowing to transfer the risk of price changes to those who

are willing to undertake it (Ederington, 1979).

A hedge is an investment procedure through which a position in a certain �nancial

instrument is taken in order to o�set the potential losses of a di�erent initial investment.

The hedging position can mitigate di�erent types of �nancial risk such as currency risk,

credit risk, interest rate risk, equity risk and more. Commodity hedging for example can

be used by producers in order to protect themselves from �uctuations in their production

price or from unfavorable weather. In our case however, we will focus on hedging against

risks that are related with equity investments. In this scope, it is suitable to mention some

aspects of market risks that altogether compose the systematic risk previously mentioned.

Equity risk is the risk that the price of an asset might change due to the dynamics in the

stock market, and not relative to the performance of the asset itself. Currency risk refers to

the risk that foreign exchange rates will change and consequently the value of an asset held

in this currency. Interest rate risk is the risk that the interest rates will change and can

a�ect an investment that has positions in �xed income products. Finally, the commodity

risk, involves the risk that the price of a commodity will change. We can infer that if a

commodity price changes unfavorably, the pro�tability of a company on this sector will

also change negatively and therefore the value of an asset on this company will decrease.

Generally, the aim of a hedging strategy is to reduce some type of risk of those that we

mentioned above. A perfect hedge can be considered one that completely eliminates risk.

This is however very uncommon, and therefore we study how closely di�erent strategies

tend to a perfect hedge. A perfect hedge can be estimated using ex-ante data but not

applied in real investments as the information is not available at the time the hedging

strategy is drawn. Therefore, in order to create a hedge strategy one should use ex-post

data, which can be obtained from historical prices of the futures and equities investments.

In technical terms there are many ways through which the performance or e�ciency of a

hedging strategy can be quantitatively evaluated on historical data. The most common

measure, is the decrease of portfolio returns volatility. This can for example be achieved

with minimum variance hedge ratio. We later cover many of the measures that have been

used in the literature, in order to determine the appropriate hedge ratio.
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These two objectives characterize the hedging strategies as positive or passive hedging

(Gregoriou & Pascalau, 2011). A positive hedging strategy aims to maximize the revenues

of the hedged investment. When an investor is facing systemic risk greater than usual,

he can use the positive hedging to hedge the systemic risk of the portfolio. This would

normally be a temporary choice and after the release of risk, he will close the position. A

passive hedging strategy has an objective to reduce the risk regardless of the revenue that

will decrease due to its operation.

Hedging can be also adopted in the case where an investor wishes to get-o� a position

for a time period without undergoing the transaction costs of selling and repurchasing this

portfolio. If the investor �nds a contract that acts as perfect hedge and o�sets all the

possible losses from the initial investment, then the overall return will be zero while the

investor only purchased and then sold for example a number of future contracts instead of

selling and repurchasing the entire portfolio. Figure 1.9, using the data sample that will be

Figure 1.9: Hedged vs Unhedged portfolio value

analyzed in the next chapter, shows how the returns of an investment on S&P500 change

when an equally weighted short hedge with oil futures is introduced. In the speci�c case

the returns are lower but signi�cantly less volatile. This can be also seen in �gure 1.10

that compares the distribution of returns of the hedged and unhedged portfolio. More daily

returns accumulate around zero for the hedged portfolio, but also to be more uniformly

distributed.

1.2.1 Hedging with futures contracts

As we have previously mentioned hedging aims to reduce the price risk of an investment.

One can achieve that by taking a position in futures contracts. This position should be

opposite to the original so that the gain of the future contract will o�set the loss of the

initial position.

There are therefore, two forms of hedging long hedges and short hedges. A long hedge
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Figure 1.10: Hedged vs Unhedged portfolio returns distribution
Source: Shin Chan Business Repository

involves taking a long position in a futures contract as a counter-position on a shorted

portfolio or assets. Similarly a short hedge includes a short position on a futures contract

for a long position in the initial investment. The total return of the two portfolios is shown

in Figure 1.11.

In our analysis, where equity investments are considered, an investor may has chosen

a long position on a well diversi�ed portfolio, but also wants to hedge against equity risk,

being concerned about the performance of the market. In such case, he could o�set the

potential loss of a potential market fall by shorting a stock index futures contract that

mirrors the movement of the stock market as a whole. There are certain characteristics

Figure 1.11: Combined Equity and Futures payo�
Source: Kolb and Overdahl (2007)

of the spot and futures markets that allow this function of hedging. First, both prices

generally change in the same direction. This happens because, even though they are two

separate markets, the economic environment and the factors a�ecting the prices in both

markets are similar, so that futures markets lead to price discovery. Secondly, if the asset

that is to be hedged is similar with the underlying asset of the future contract, then as

the expiration date of the future contract approaches the spot and future price will tend

to be equal. At delivery day any di�erence between the two prices should only be due to
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transaction costs. If the price of the future contract starts higher than the spot price it will

tend to decrease while if it starts from a lower level it will tend to increase. If the price of

Figure 1.12: Spot and Future price convergence
Source: Hull (2012)

the future contract has not been equal to the spot price, as the expiration date approaches

arbitrageurs will take advantage of the situation and immediately force the two prices into

convergence. The measure of the spread between the spot and future price is mentioned

as basis so that

Basist = St − Ft (1.1)

where St represents the spot price of the asset to be hedged at time t and Ft the future

price of the contract used in order to hedge. Therefore, if the hedged and hedging assets

are the same, the basis will be zero at expiration date. The basis will be positive for every

time that St > Ft and negative when St < Ft. When the rate of change between two

periods is positive and higher for the spot price then the basis increases and we refer to

that as �strengthening of the basis�. When on the other hand, the future price increases

more than the spot price then the basis declines and there is a �weakening of the basis�.

In the real market however, there are many reasons why hedging with futures is not so

straightforward. First, the asset that is to be hedged may not be the same with the asset

that is underlied by the future contract. There are only few future contracts compared to

the total of assets that are traded globally. Therefore, it is very common for an investor not

to able to use a future contract that exactly includes the underlying assets of the initial

investment. In this case the investor will choose a future contract that will be highly

correlated with the equity investment and will therefore have the desired properties. A

hedge of this type is referred to as a �cross hedge�. Another reason is that the investor

may not know the exact date that the asset will be purchased or sold. Also, the hedge

may require the futures contract to be closed out before its delivery month. The contract

may be rolled to the future but still it would be very rare for the delivery date to be the

same with that of the transaction needed. In this case we refer to a �stack hedge� which in

contrast with a �strip hedge� at includes di�erent contracts for each delivery date. These
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problems result to what is referred as basis risk. If we set bt1 = St1 − Ft1 as the basis at

the �rst moment of the investment and bt2 = St2 − Ft2 the basis in every next period, the

uncertainty of bt2 determination is considered as the basis risk. This risk might lead to

either worsening or improvement of the hedging strategy. For example for a long hedge, if

the basis strengthens unexpectedly the hedged position worsens, but if the basis weakens

then the same position improves. Usually when the underlying asset of the future contract

is not the same with the initial position the basis risk would normally be greater. Finally,

the investor will also choose the contract to use based on the liquidity.

In any case, a cross hedge with future contracts is the most widely used way to hedge

an equity investment. In this thesis we don't get far from this scope and we focus on the

employment of future contracts as hedgers for many reasons. Firstly, the future contracts

are standardized. This means that they are traded on exchanges under speci�c conditions

and terms. For example each contract represents always a speci�c quantity of the under-

lying asset while in a forward contract, which is a private agreement, the terms may vary.

Therefore, it is very di�cult to use and compare di�erent forward contracts as they are

not negotiated under similar terms. Secondly, the future contracts are exchanged in orga-

nized markets. This implies that their prices are continuously recorded and are publicly

available; in contrast with forward contracts that are traded over the counter. An other

reason that results from the fact that futures are traded in organized markets is that they

don't involve counterparty risk. The parties of all sides are obligated to pay margins to

the clearing house and therefore there is no risk that the other party might default and

won't ful�ll the agreement. In other derivatives that do not require margins the systemic

risk that the investor intents to hedge may be transferred to default risk.

What is of the highest importance for the investor, however, is to decide the appropriate

number of future contacts to be used. If an investor buys exactly the same amount of

contracts as his positions in equities, then we refer to a full hedge which is not necessarily

optimal. More speci�cally, the ratio of the number of futures relative to the number of

assets in the initial investment that speci�es the appropriate number of futures needed.

This ratio is called �hedge ratio�. If we are able to answer what is the optimal ratio for an

equity investment, we are then able to specify the exact amount of future contracts needed

to hedge the equity investment. There has been a great research regarding the calculation

of the optimal ratio. We deal with it extensively later on in the Methodology section.

The e�ciency of futures contracts in hedging was �rst introduced by the seminal work

of Ederington (1979). He stared studying interest rate futures and found that the recently-

introduced at the time, Government National Mortgage Association (GNMA) futures mar-

ket was more e�ective in reducing risk than the Treasury Bills (T-Bill) market, especially

in short-term hedging periods. He also found that futures hedging performance is even

better in long term periods.
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Since that time, many researchers have been interested in both evaluating the hedging

performance of futures contracts and comparing it with that of other �nancial derivatives.

Baillie et al. (1991) for example �nd that the use of futures contracts on commodities

signi�cantly reduces the �uctuations of portfolio prices compared to cash positions only,

but with di�erent signi�cance for each commodity. Benet (1992) �nds that the use of

constant cross-hedge with both commodity and currency futures are su�cient but perform

better under shorter horizons. Also, Lien and Wilson (2001) showed that the conventional

hedging strategy is su�cient to reduce the risk of an investment using crude oil futures.

Lien et al. (2002) proved that the conventional hedging model is also su�cient to reduce

the risk of an investment by using ten di�erent futures contracts.

Cotter and Hanly (2006) using stock index futures proved that there is a di�erence in

the hedging performance for short compared to long hedgers, suggesting that investors who

are interested in opposite tails of the return distribution can bene�t if they use hedging

performance metrics that di�erentiate. Lien and Yang (2008) have found that the perfor-

mance of futures contracts to reduce risk is even more e�ective when asymmetric e�ect is

taken into account by conditional models.

As forwards (Giddy, 1976) and swaps are private agreements that are not �exible, for

all the reasons we have already mentioned, most of the literature has focused on comparing

the hedging performance of futures and options.

Paroush and Wolf (1986) show that the concurrent use of forwards and futures contracts

enables the complete separation of production and hedging decisions in the framework of

utility maximization. Futures are proposed for hedging purposes even in the presences of

basis risk in futures markets.

Chang and Shanker (1986) after testing mean-variance criteria, concluded that cur-

rency futures are better in hedging than currency options are. Benet and Luft (1995) also

revealed that S&P500 futures better reduce the variance of returns than S&P500 options

do. Battermann et al. (2000) based their analysis on expected-utility maximization and

proposed that futures are better instruments than options in the production and hedging

framework.

Ware and Winter (1988) challenged the hypothesis that contingent exposures favor

the use of options in hedging. A more analytical framework by Steil (1993) also rejected

this argument and both papers concluded that options play no signi�cant role in hedging

transaction risk exposures.

Ahmadi et al. (1986) rejected the argument that that options are better than futures as

hedging instruments, as they can eliminate downside risk associated with negative target

returns. They speci�cally found that currency futures provide signi�cantly more e�ective

hedging than currency options for the British pound, the Deutsche mark and the Japanese

yen when the target return is zero.
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Also according to Lapan et al. (1991), in order to achieve an optimal hedge, when their

prices are considered unbiased, futures are only required and options are redundant. In-

stead, they �nd that options are used as an alternative instrument to futures for speculation

when market prices are perceived as biased.

Similar results were found by Lien and Tse (2001), when they examined the hedging

e�ectiveness of the futures and options for three major currencies. They con�rmed that

currency futures outperform currency options in hedging, with only exception a situation

in which a hedger will be optimistic and not very concerned about potential large losses.

Cheung et al. (1990) suggest that in both minimum variance and minimum mean-Gini

approaches futures are better hedging instruments than options.

Finally, Adams and Montesi (1995) provide evidence that in the real world, corporate

managers prefer to hedge the downside risk using futures instead of options, mainly due

to the large transaction costs occurred in option trading.

Generally, it is true that options lead to a larger excess return per unit risk than

futures. However, this is true only when we don't consider the transaction costs. The

above conclusion is reversed when transaction costs are taken into account and empirical

results tend to be mostly in favor of futures (Lien et al., 2002).

1.3 Literature Review

1.3.1 Determining the optimality conditions for hedge ratio

The determination of the optimal hedge ratio has long been a concern for the scienti�c

community of �nance. After the introduction of the �rst �nancial derivatives in organized

exchanges, economists have tried to de�ne the optimal hedge ratio. Based on the neoclassi-

cal economic paradigm, the investor will choose the best hedge based on the maximization

of his expected utility and on indi�erence curves between di�erent investments (Johnson,

1960; Rutledge, 1972).

Fishburn (1977) introduced �rst a mean-variance analysis for �nancial derivatives in

which he associated risk with target returns, while Ederington (1979) was the �rst to

evaluate the hedging performance of the newly introduced at the time futures contracts.

In the same framework of utility maximization Benninga et al. (1984) and Cecchetti et al.

(1988) improved the research speci�cally on hedging with futures contracts.

As the research continued the interest was turned to a more technical level and many

methods were developed in order to determine the exact number of contracts to build a

hedging strategy. It was made clear that in order to achieve that, one should decide both,

how the optimal hedge ratio should be de�ned and then how it can be estimated.

The �rst question depends on the theoretic assumptions regarding the investor's pref-

erences towards risk and on practical issues that emerge, such as the transaction costs.
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Di�erent approaches include minimization and the minimization of risk conditioned to the

total returns, the maximization of the investor's expected utility. The �rst and more pop-

ular de�nition of hedging is that of Minimum-variance (MV) hedge ratio. This method,

�rst introduced by Johnson (1960) and Ederington (1979), states that the optimal hedge

ratio is the one that minimizes the variance of portfolio returns. Risk is quanti�ed by vari-

ance and therefore the minimization of variance, leads to minimization of the risk that an

investment undergoes. Less exposure to risk leads to higher utility levels for the investor.

This method has also been widely used by Figlewski (1984) and Howard & D'Antonio

(1984), as well as in papers of Cecchetti et al. (1988), Alder and Detemple (1988) and

Myers & Thompson (1989).

However, after implementing a minimum-variance hedge ratio, a practical issue arises.

Hedge ratios that aim only at the reduction of risk can lead to minimal or zero total

returns for the overall investment. The need for conditional hedge ratios led Howard and

D'Antonio (1984) and Chen et al., (2001) to use the Sharpe ratio in order to de�ne the

optimal hedge ratio. The Sharpe ratio subjects the excess return of a portfolio to its risk

by dividing the �rst with the later. A di�erent process was used by Cecchetti et al. (1988)

and Lence (1995, 1996) who de�ne the optimal hedge ratio as the one that maximizes

the expected utility of the investor based on both the risk and returns of his potential

investments.

An alternative approach is the use of a Minimum mean Extended-Gini (MEG) coe�-

cient hedge ratio. First introduced by Kolb & Okunev (1992, 1993), the optimum MEG

hedge ratio involves the minimization of a coe�cient that is based on a cumulative prob-

ability density function that is in turn estimated by ranking the observed return on the

hedged portfolios. Several variations of the model have also been created by Cheung, et

al. (1990), Lien & Sha�er (1999), Shalit (1995) who tests instrumental variables and Lien

& Luo, (1993b) that propose a non-parametric kernel function instead of a rank function.

Another measure that can be adopted to de�ne the optimal hedge ratio is the General-

ized Semi-Variance (GSV) method. This can be implemented to give either the minimum

GSV hedge ratio (Fishburn, 1977; Bawa, 1978; Crum et al. 1981, De Jong et al., 1997;

Lien & Tse, 1998; 2000; Chen et al., 2001), or the maximum-mean GSV hedge ratio that

can be calculated following Chen et al. (2001). Finally, the minimum value-at-risk (VaR)

hedge ratio over a time period was proposed by Hung et al. (2006).

1.3.2 Estimation methods for the optimal hedge ratio

The second question is how the optimal hedge ratio, should be estimated. Di�erently

stated, one should determine how the variables in any of the proposed formulas should

be calculated. As we have mentioned earlier, the variance of both futures and spot prices

have an important role in the determination of the optimal hedge ratio. Therefore, it is
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essential to determine the way that the variance and the other necessary measures must

be estimated from a statistical and econometric point of view.

1.3.2.1 Static Models

The �rst methods considered the variance and covariance to be constant with time and

therefore resulted in single-value static optimal hedge ratios. The conventional method

for calculating the variance is that of the Ordinary Least Squares (OLS). First utilized by

Ederington (1979) and Howard & D'Antonio (1984) the simple regression method became

very popular and was used in many papers mostly due to the absence of more sophisticated

econometric models. For instance, the method was incorporated in many papers such as

those of Malliaris & Urrutia (1991), Benet (1992), Kolb & Okunev (1992), Ghosh (1993),

Kuo & Chen (1995), Lence (1995), Vähämaa (2003), Lien (2005), Deng et al. (2012).

Similar to the OLS static hedge ratios, other static hedge ratios have also been proposed

by Grammatikos & Saunders (1983) and Wang et al. (2015) who employed a Random

Coe�cient Method in order to estimate the parameters.

However, the application of a single-value hedge ratio over a sustained period will

most probably not be optimal as market conditions and the relationship between the spot

and future prices continuously change. As Alder and Detemple (1988) underline if the

regression coe�cients depend on exogenous state variables, OLS procedures provide only

approximations and more complex statistical techniques are required. A constant hedge

ratio may be optimal only in the case where there is no quantity uncertainty and a perfect

hedge is possible. Generally, minimum-variance hedges must be continuously rebalanced as

in any occurring event, the minimum or zero-variance hedges will not be optimal. The need

for a time-varying hedge ratio therefore emerges and a method that will estimate time-

varying estimations for the variables is necessary. Working (1961) states that �hedging is

done in expectation of a change in spot-futures relations� and not by moving together.

Lien et al. (1996) have found that if there is a cointegration relationship between the

spot and futures prices and one omits this relationship, then the optimal futures position

will be smaller, and the hedging performance relatively poor. They also showed that spot

and futures prices can be expressed by a complete cointegration system. If cointegration

relationship between spot and futures is not taken into account there will be a misspeci�-

cation of their pricing behavior and result will be underhedging (Gosh 1993; Lien 1996). In

the case that a cointegration relationship is found, Error Correction Models (ECM) should

be constructed before the hedge ratio is estimated. Using index futures Ghosh, (1993)

proved that the out-of-sample performance of a hedge ratio obtained from ECM is better

compared to the conventional static hedge ratio of the Ederington model, and the same re-

sult was found from an intertemporal ECM (Ghosh & Clayton, 1996). Chou et al. (1996),

similarly showed that the error correction models are superior to the conventional models
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based on likelihood ratio statistics. They also found that the out-of- portfolio variances

of error correction hedging models outperformed the conventional method models by an

average of 2%. Finally, Li (2010) supported the superiority of the threshold Vector Error

Correction Model (VECM) in enhancing hedging e�ectiveness for emerging markets, while

Lien & Luo (1993a) also con�rm the presence of cointegration relationships between spot

and futures prices of indices and currencies using multi-period hedge ratios.

1.3.2.2 Dynamic Models

In 1986, Bollerslev (1986) and Taylor (1986) developed the Generalized Autoregressive

Conditional Heteroscedastic (GARCH) model that quanti�es volatility in a time vary-

ing framework. Also, as Park and Bera (1987) indicate heteroscedasticity appears to be

a serious problem in cross-hedging strategies. The model was immediately applied for

the determination of time-varying variance and the determination of the optimal hedge

ratio in many papers. Cecchetti et al. (1988) showed that Autoregressive Conditional Het-

eroskedasticity (ARCH) procedures can allow the hedge ratio to change over time and result

in signi�cantly lower ratios than conventional static models. Similarly, Sephton (1993a)

proved that the GARCH-based hedge ratio performs better compared to the conventional

minimum-variance hedge ratio using commodity futures. Lien & Luo (1993a) also discov-

ered strong GARCH e�ects in cointegrated markets and that the parameters estimated

from the GARCH processes di�er much compared to those of simple error-correction mod-

els and are more likely to be statistically signi�cant. Park & Switzer (1995b) also showed

that the GARCH hedge is more economically useful in improving the utility function of an

investors as opposed to the OLS hedge.

1.3.2.3 Univariate GARCH models Tong (1996) stated that GARCH-modeled dy-

namic hedging reduces risk more than static hedging with an in-sample improvement of

6 percent, and an out-of-sample improvement of 2 percent, while more complex hedging

methods didn't seem to improve much the performance. The inferiority of the Ederington

method for static hedge ratio was also proved by Lien (2005). The conclusion that the

dynamic hedging methods outperform the conventional method is also shown by Baillie &

Myers (1991), Lien & Tse (2001; 2002), Lien (2009), Lee & Yoder (2007a), as well as Zan-

otti et al. (2010), Moon et al. (2009) and Ewing & Malik (2013) that all used univariate

GARCH models for di�erent classes of futures in order to estimate the optimal hedge ratio

and evaluate the performance of such hedges.

1.3.2.4 Multivariate GARCH models The GARCH models have many variations

that can be used based on the objectives of the research. More complex methods of GARCH

models include bivariate and multivariate GARCH models. Park & Switzer (1995a), have
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showed that a dynamic hedging strategy based on the estimation of a bivariate GARCH

improves the hedging performance of a conventional constant hedging strategy. Olgun

et al. (2011) also used bivariate GARCH frameworks to reveal that the dynamic hedge

strategy outperforms the static and traditional strategies. The superiority of multivariate

GARCH models was also proved by Park & Switzer (1995b) and Yang & Allen (2005) for

stock index futures and Chang et al. (2010) for energy futures. Bivariate GARCH models

were also suggested by Lien & Luo (1994), Lien & Yang (2008), Salvador & Aragó (2014).

CCC GARCH The use of Constant Conditional Correlation (CCC) GARCH has

been widely accepted using exchange rates (Hsin et al., 2007), energy (Arouri et al., 2012),

and stock index futures (Basher & Sadorsky, 2016). Yang et al. (2004) found that all the

approaches favor the CCC-GARCH hedge ratio estimates to the conventional hedge ratios

in all out-of-sample analyses.

DCC GARCH However, as CCC GARCH does not model the stochastic behavior

of the correlation, an improved version was necessary. Dynamic Conditional Correlation

(DCC) GARCH models that allow for the correlation to vary and have been preferred by

the most researchers from that time. DCC GARCH models are proved to provide hedge

ratios with superior hedging performance in the works of Lien & Tse (2002), Chang et

al. (2010) that use energy futures, Park & Jei (2010) who implement commodity futures

and Chang et al. (2013) who use currency futures hedges. Similarly, Chang et al. (2010)

showed that the optimal portfolio weights of multivariate volatility models for Brent and

West Texas Intermediate (WTI) suggest holding crude oil futures in larger proportions

than spot. Basher et al. (2016) have tried to hedge emerging market stock prices with

oil, gold, Volatility Index (VIX), and bonds futures using DCC GARCH models. They

concluded that stock and oil prices display positive leverage e�ects and that hedge ratios

vary considerably over di�erent periods, proving that hedged positions should be updated

regularly. The highest hedging e�ectiveness was achieved with oil futures.

There are also many variations of multivariate GARCH models that account for dif-

ferent speci�cations in the samples used. For example, Lai et al. (2009) proposed a new

class of RV-based GARCH model that can estimate risk-minimizing hedge ratios and they

proved once more the return-based GARCH to have many bene�ts relative to OLS mod-

els. Bivariate GARCH (BGARCH) are applied by Sim & Zurbruegg (2001) as well as,

Park et al. (2010) and Exponential GARCH (EGARCH) models have been tested by Lien

& Tse (2002) who found that GARCH strategies may be better in terms of variance re-

duction than the strategies provided by Stochastic Volatility (SV) models and Xu & Li

(2017). Arouri et al. (2012) also test Vector Autoregressive GARCH (VAR-GARCH) and

Hsin et al. (2007) and Chang (2012) try Vector Autoregressive Mean Average GARCH
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(VARMA-GARCH) models.

1.3.2.5 Extended multivariate GARCH models More specialized GARCH are also

implemented by Lee & Protter (2008) and Hsu et al. (2008) that examine index futures and

suggest that Regime Switching Volatility Spillover GARCH (RSVSG) have higher hedging

e�ectiveness. AFRIMA GARCH were used by Lien & Tse (1999), Lee & Yoder (2007)

and Chang (2012) and Exogenous Variables GARCH (X-GARCH) by Sim & Zurbruegg

(2001) and Sultan & Hasan (2008). In some of the works mentioned above BEKK models

have also been tested and their performance was evaluated (Hsin et al., 2007; Arouri et

al., 2012).

Another well-established method is the Copula-based GARCH. Examining Asian stock

market indices, Lai et al. (2009) showed that Copula-Threshold GARCH (T-GARCH)

time-varying hedge ratios are more e�ective in reducing risks in portfolio returns than

OLS and DCC hedge ratios do. They further presented that even though DCC and copula

do not reduce the risk signi�cantly more than OLS hedge ratios in stable markets like those

of Japan and Singapore, they provide higher returns. The e�ectiveness of copula-based

GARCH was again proved by Hsu et al. (2008) that examined stock index and currency

futures, and Ghorbel & Trabelsi (2012) that did so with oil futures. Chang (2012) employed

a time varying asymmetric copula-based model to account for leverage e�ects.

The most recent paper published concerning the estimation of the optimal hedge ra-

tio for future contracts, by the time this thesis was written, is that of Lai (2018) who

implements a Realized-beta GARCH model.

Koutmos et al. (1996) have already proved that stock return volatility is an asymmetric

function of past innovations, which is the leverage e�ect. They noticed that equilibrium

models, which rely on contemporaneous relationships, may be miss-speci�ed. Moreover, the

hedging strategies that ignore the time varying covariance structure of the two markets,

are not likely to be optimal. The importance of such leverage e�ects was taken into

consideration by Lien et al. (2007) who developed dynamic minimum variance hedge

ratios (MVHRs) using BGRACH bivariate models. Their performance revealed that the

models with asymmetric e�ects provide a more e�ective reduction of the risk. Similar

results were found by Lien et al. (2008) who observed in both in-sample and out-of-sample

results that incorporating the asymmetry basis e�ect into the hedging strategy leads to a

better risk reduction. They similarly showed that the dynamic hedging strategy generated

from the asymmetric model outperforms the conventional strategies even after considering

the transaction costs. Ghorbel (2012) concluded that a precise speci�cation of the joint

distribution of risk factors can more e�ectively hedge the risk exposure of portfolios and

he also suggested that the use of GARCH Regime Switching models that di�erentiate the

ratios between crises and more quiet periods can provide superior hedging strategies. Lee
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and Chien (2010) revealed that state-dependent IS-DCC outperforms state-independent

DCC GARCH, while the three-state IS-DCC has the best hedging e�ectiveness, showing

importance of modeling higher-state switching correlations in dynamic futures hedging.

Salvador et al. (2012) showed that introducing nonlinearities through a regime-switching

model, leads to more e�cient hedge ratios and superior hedging performance compared to

the other methodologies (constant hedge ratios and linear GARCH). Lee et al. (2007b)

have employed Markov Regime Switching Time-Varying Correlation GARCH to show that

this model outperforms the CCC GARCH, and later Lee & Protter (2008) developed a

Markov Regime Switching Generalized Orthogonal GARCH model with Conditional Jump

Dynamics (JSGO) which was proven to improve the hedging e�ectiveness both in reducing

the variance and maximizing the utility.

1.3.2.6 Other dynamic models The Markov Regime Switching method was found

to be inferior in performance compared to a Random Coe�cient Autoregressive Regime

Switching (RCARRS) as this was developed by Lee et al. (2006).

Lai (2016) introduced the use of High-Frequency-Based Volatility (HEAVY) hedge

ratios as he found that noise-free predictions are superior, substantially increasing the

utility hedgers with pronounced risk aversion. The importance of removing micro-structure

noise and asynchronous trading from covariance estimation is raised for the prediction of

the hedge ratio. Later Lai et al. (2017) showed that high-HEAVY hedge ratios perform

more e�ectively than GARCH hedge ratios do in shorter hedging horizons. Momentum

e�ects have some properties of short-time response that considered important for hedge

ratio estimation are revealed only with such models.

Finally, Wang et al. (2015) proposed that under the minimum variance framework the

Naïve hedging strategy is consistently and signi�cantly the best performing. Wei et al.

(2011) proposed that copula�Multifractal Volatility (MFV) models obtain better hedging

e�ectiveness, than copula�GARCH type models and involve fewer transaction costs.

Moosa (2003) using stock and currency futures found that the model speci�cation does

not change the performance of a hedging instrument. Instead he �nds that the correlation

between the prices of the unhedged position and the hedging instrument is what matters

the most for the success of a strategy. Low et al. (2002) developed a variant cost of carry

model that using stock index and energy futures outperformed all other hedging strategies

on ex-ante basis. Finally, other estimation methods have been used by Lien and Shrestha

(2010) that employ a Multivariate Skew-Normal Distribution Method, Lence (1995, 1996)

that uses a Coe�cient of Absolute Risk Aversion function (CARA) and again Lien and

Shrestha (2007) this time with a Wavelet analysis.
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Chapter 2

Empirical Application

2.1 Methodology

2.1.1 Optimal hedge ratios

Since risk is usually measured by the volatility of portfolio returns and the hedging aims

to reduce such risks, a possible solution to the problem of de�ning the hedge ratio is

to choose the ratio that will minimize the variance of portfolio returns containing equity

investment and futures positions. According to Johnson (1960) this optimal hedge ratio

can be calculated in the following way. Suppose that, ∆S is the change in the spot price

or di�erently said the return of the equity investment, ∆F is the change in the futures

price during the same period, σS , σF the standard deviations of the spot and future returns

(∆S,∆F ), ρ is the correlation coe�cient between ∆S and ∆F , and �nally h is the hedge

ratio. If we take a total of h positions in futures, the total return of the hedged portfolio

will be equal to Rportfolio = h∆F −∆S for a long hedge and Rportfolio = (∆S − h∆F ) for

a short hedge. The variance of the two portfolios V ar(Rportfolio) will be the same for both

long and short hedges and is obtained as V ar(∆S−hDF ). On the basis of this expression

using the properties of the variance formula we can show that

V ar(Rportfolio) = V ar(∆S) + V ar(h∆F )− 2Cov(∆S, h∆F )

= V ar(∆S) + h2V ar(∆F )− 2hCov(∆S,∆F )

v = σ2
S + h2σ2

F − 2hpσSσF (2.1)

If equation 2.1 is minimized with respect to h we will get

h = ρ
σS
σF

(2.2)
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or di�erently stated

h =
Cov(∆S,∆F )

V ar(∆F )

At this stage, the hedge ratio is not a time-varying value. Equation 2.2 is known as �static

optimal hedge ratio�. The standard deviations and the correlation are considered constant

during the life of the hedge. Another way for de�ning the optimal hedge ratio is that

proposed by Howard and D'Antonio (1984), where the criterion incorporates the portfolio

return in the hedging strategy. The return and the variance are used in a risk-return

trade-o� as in the Sharpe measure. So the optimal level of futures contracts is calculated

by maximizing the ratio of the portfolio's excess return with respect to its volatility.

maxSharpeRatio n =
E(Rportfolio)−Rf

σportfolio
(2.3)

Where n is the optimal number of future contract units and Rf the risk-free interest

rate. The earlier discussion would be appropriate for only one-period hedging strategies.

However, this assumption is not realistic (Lien and Luo, 1994) as the settlement of futures

is daily and the hedger's horizon includes multiple periods. We can relax these assumptions

by estimating time-varying standard deviations and correlations. The GARCH models are

considered appropriate by the scienti�c community for this purpose and equation 2.2 will

be transformed respectively to

ht = ρt
σS,t
σF,t

(2.4)

There are many methods to model volatility of equation 2.4 such as using historical or

implied volatility. The hedge ratio can work as an information transmission mechanism

that incorporates information from the futures market into the spot investment. However,

it has been observed that �nancial data, such as asset returns, are usually nonlinear and

therefore linear models would most probably fail to capture some of the properties of the

sample (Brooks, 2014). These characteristics are

1. Leptokurtosis, which is the tendency of the returns not to follow the normal distri-

bution, but rather to exhibit distributions with fat tails and more concentration in

the mean.

2. Volatility Clustering, which is the tendency of the volatility to appear in groups.

Generally, large returns either positive or negative are followed by large returns while

small returns are followed by small returns. This happens because the presence of

information which drives price changes is not evenly spaced in time.

3. Leverage, which is the tendency of volatility to be larger when the returns are nega-

tive, compared to that when returns are positive.

For the reasons stated above a simple OLS regression between spot and future returns in
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order to calculate the correlation coe�cient ρ or the standard errors σS , σF with historical

data, is not considered appropriate, while models that are nonlinear in the mean, the

variance or even both might be. Using more sophisticated dynamic hedging techniques

can better prevent from excess volatility.

2.1.2 Volatility modeling

The importance of time-varying second-order moments has been widely recognized in ap-

plied �nance. One available method developed by Roberts (1959) to model volatility non

linearly, is with Exponentially Weighted Moving Average Models (EWMA), in which the

variance of a series is calculated based on the sum of squared di�erences of each observation

with the sample's mean, multiplied by a decay factor that distributes higher weights to the

more recent observations. An alternative method is that of Autoregressive (AR) Volatility

models. In this case the variance at every time period can be calculated as a function of

its previous values.

σ2
t = β0 +

p∑
j=1

βjσ
2
t−j + εt (2.5)

At this moment it is important, for the construction of the models that we will use later in

this chapter, to introduce the notion of conditional variance. Suppose that the error term

of the regression that models the volatility is ut, under the Classical Linear Regression

Model assumptions the variance of this error term will be homoscedastic, or its variance

will be constant through time V ar(ut) = σ2. However, constant error-variance is extremely

unusual to be found in �nancial time series. The variance of the errors appears to be het-

eroscedastic and can be e�ectively modeled with the use of an Autoregressive Conditional

Heteroscedastic (ARCH) model. If we denote the conditional variance of ut as σ
2
t then

σ2
t = var(ut|ut−1, ut−2, . . .) = E[(ut − E(ut)

2|ut−1, ut−2, . . .)] (2.6)

if we also assume that E(ut) = 0 then equation 2.6 can be rewritten as

σ2
t = var(ut|ut−1, ut−2, . . .) = E[u2

t |ut−1, ut−2, . . .] (2.7)

so that the conditional variance of a zero mean variable that follows the normal distribution

is equal to the conditional expected value of the square of ut. So the ARCH model allows

for the conditional variance of the error term σ2
t to depend on the immediately previous

value of the squared error u2
t . In our case the variables are the spot and futures returns

and the random variables ut are the error term that results from

∆S = µ∆S + utS
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∆F = µ∆F + utF

Having said that, the conditional variance of the returns will be written in an ARCH(q)

model as

σ2
t = a0 + a1u

2
t−1 + a2u

2
t−2 + . . .+ aqu

2
t−q (2.8)

σ2
t = a0 +

q∑
i=1

aiu
2
t−i

From now on, we will refer to the conditional variance as ht following the relevant literature

i.e. ut ∼ N(0, ht). The conditional variance therefore depends on a set of information which

we seek to incorporate.

2.1.2.1 GARCH models

Previous research seems to conclude that the best �tting model of variance of �nancial

time series is the Generalized Autoregressive Conditional Heteroscedastic (GARCH) model

which was developed by Bollerslev (1986) and allows for the conditional variance to depend

also upon its previous values. Equation 2.9 extends a ARCH(q) to a GARCH(q,p)

σ2
t = a0 + a1u

2
t−1 + a2u

2
t−2 + . . .+ aqu

2
t−q + β1σ

2
t−1 + β2σ

2
t−2 + . . .+ βpσ

2
t−p (2.9)

σ2
t = a0 +

q∑
i=1

aiu
2
t−i +

p∑
j=1

ajσ
2
t−j

Information criteria most of the times propose that GARCH(1,1) is more parsimonious and

captures volatility clustering in the returns. The GJR model, as proposed by Glosten et al.

in 1993, is an extension of the a GARCH(1,1) model that accounts for possible asymmetries

by using a indicator variable. This model can be used to indicate the presence of leverage

e�ect in our sample's returns.

σ2
t = a0 + a1u

2
t−1 + βσ2

t−1 + γu2
t−2It−1 (2.10)

where It−1 = 1if ut−1 < 0 and It−1 = 0 otherwise. The estimate γ re�ects only the

cases where the return is negative and if γ > 0 and statistically signi�cant then there is

presence of leverage e�ect in our series. If γ is found negative then model is still admissible

if γ + α1 � 0. Up to now with these models we are able to estimate the time-varying

variance in the spot prices of the equity portfolio and the prices of hedges.

2.1.2.2 Multivariate GARCH models

In order to estimate the time-varying ρt of equation 2.4, we need to obtain the time-

varying variances, as well as, the time varying correlation of each pair. The calculation of
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the moving hedge ratio though, can be alternatively estimated by using the time-varying

covariance. As we mentioned in volatility modeling, implied covariance or EWMA models

can be applied to do so. However, following the literature (Cecchetti et al., 1988; Baillie

and Myers, 1991; Sephton, 1993a) we implement GARCH models that will result to both

a conditional covariance and a conditional correlation for each pair of assets. In bilateral

relationships the ARCH models are proved to be the most pro�table (Engle, 1993), while

research has found that the GARCH(1,1) model seems to be particularly useful to describe

a wide variety of �nancial market data (Bollerslev et al., 1994).

The bivariate GARCH models require as inputs two returns series for every pair of

assets and incorporate the information of one series to the other. In our case, this is

done by adding the lagged variance of the futures returns in the variance modeling of

the equity returns. In this way we can account for some stylized facts of the variance of

real time, such as contemporaneous cross correlation and volatility spillovers. Among the

multiple variations of multivariate GARCH models, we choose to estimate BEKK models

as they provide time-varying correlations, contrary to CCC GARCH, and have by de�nition

positive de�nite covariance matrix compared to the other models (Engle and Kroner, 1995).

The BEKK model (Baba et al., 1990) assumes that the conditional variance-covariance

matrix Ht is positive de�nite. More speci�cally,

Ht = W ′W +A′Ht−1A+B′Ξt−1Ξ′t−1B (2.11)

Where Ht =


h11t h12t . . . h1nt

h21t h22t . . . h2nt

...
...

. . .
...

hn1t hn2t . . . hnnt

 is a n× n conditional variance-covariance matrix

between n variables or portfolio assets, W is an upper triangular parameter matrix, A,B

two n×n matrices of estimated parameters and Ξ =


u1t

u2t

...

u3t

 a disturbance vector so that

Ξ′Ξ =


u1t

u2t

...

unt


[
u1t u2t . . . unt

]
=



u2
1t

u2
2t
...

u2
nt

u2
1tu

2
2t

...

u2
(n−1)tu

2
nt


in regression term equation 2.11
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can be written as

hij,t = wij +
∑

aijui,(t−1)uj,(t−1) +
∑

βijhij,(t−1) (2.12)

for i, j = 1, 2, . . . , n

The CCC-GARCH was developed by Bollerslev (1990) and requires for the correlations

between disturbances to be �xed through time. Although the conditional covariances

are not �xed, they are very close to variances. If we write the correlations between the

disturbances as εt, the conditional variances in the �xed correlation model, even though

estimated together, take the form of a univariate GARCH as shown in equation 2.13. The

diagonal elements of Ht, hij,t for every i 6= j are de�ned in equation 2.14 indirectly by the

correlations ρij

hii,t = ci + aiε
2
i,t−i + bihii,t−1 (2.13)

hij,t = ρijh
1/2
ii,t h

1/2
jj,t (2.14)

At this point, we need to mention that although the hypothesis of constant correlation

through time, there is no evidence against it for stock returns series with the relative tests

employed until now. However CCC-GARCH does not model the stochastic behavior of that

correlation matrix at all. It is an artifact of the model whose results may be unreasonable.

The DCC-GARCH on the other hand, as its name (Dynamic Conditional Correlation)

denotes, allows for the correlation between the variable to vary with time. There are several

variations of DCC models but the most popular is that of Engle (2002). If we denote as Dt

the diagonal matrix of the conditional standard deviations on the leading diagonal, and Rt

as the conditional correlation matrix, then the variance-covariance matrix can be written

as

Ht = DtRtDt (2.15)

Many variations, such as an exponential smoothing approach, of this model can be obtained

based on the speci�cation about Rt.

As we showed earlier, the BEKK model provides a richer dynamic structure and has

the property of positive de�nite conditional covariance matrices. Also the diagonal version

of BEKK economizes the number of parameters and as Bollerslev et al. (1988) indicate,

if we assume the matrices A and B to be diagonal a more parsimonious representation is

obtained as it will imply that each variance-covariance element depends only on its previous

values and prediction errors. By taking equation 2.11, the general form of a BEKK model

will be given by

Ht = M ′M +B′Ht−1B +A′εt−1ε
′
t−1A (2.16)
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where the coe�cient of the matrices are given by

A =

[
a11 a12

a21 a22

]
, B =

[
b11 b12

b21 b22

]
,M =

[
m11 0

m12 m21

]
(2.17)

with the formulation guaranteeing that Ht will be positive de�nite for all t and with the

diagonal representation indicating that the conditional variances (Ht) are function of their

lagged values (Ht−1) and lagged squared returns (εt−1εt−1), so that a BEKK(1,1) model

will result to N(5N+1)/2 parameters. The parameters of such models are estimated by the

maximum likelihood method (ML) that optimizes numerically the Gaussian log-likelihood

function. If f denotes the normal density the contribution of each observation in time t to

the log-likelihood lt of the sample will be given by:

lt = ln {f (εt|Ft−1)} = −N
2
ln(2π)− 1

2
ln(|Σt|)−

1

2
εTt Σ−1

t εt (2.18)

2.2 Data Description

The data are daily closing prices for spot variables and daily closing continuous prices for

futures contracts, that were derived from the database of Factset on 4th March 2019. The

moments depend on the frequency, aggregation and seasonality of the sample. In our case

we chose a daily frequency in order to have a greater sample and therefore obtain more

robust interpretations. The sample is composed of about 7,300 observations spanning from

the beginning of 1990 until the last trading day of 2018. The series of spot prices are the

S&P500 index (S&P500), the Euro Stoxx index (ES), the Japan Nikkei 250 index (NIK)

and the Shanghai Stock Exchange Composite index (SSE), all of which are expressed in

index units. For the futures contracts, the Crude Oil West Texas Intermediate (WTI)

that is negotiated in New York Mercantile Exchange (NYMEX), counted in US dollars per

barrel and Gold (GCS) negotiated in the same exchange and counted in US dollars per oz.

The plot of each of the variables can be seen in the following �gure.

Figure 2.1: Daily closing values of S&P500 index, oil and gold futures

In our analysis we �rst focus only with the relation between the S&P500 and the two
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hedgers WTI and GCS, that are all negotiated in the US markets. Then, we enrich the

results by testing the same models on other international stock markets.

Figure 2.2: Simultaneous plot of the main variables S&P500, WTI, GCS
* S&P500 and GCS (left axis) and WTI (right axis)

After that, daily returns of the series are calculated by subtracting each price from its

previous value and dividing it with the same number as shown in equation 2.19.

Rt =
Pt − Pt−1

Pt−1
(2.19)

The descriptive statistics of the returns are shown in table 2.1, and their plots in �gure 2.3

respectively. From now on, we will use the returns in all the estimations that follow. The

returns are symbolized in the tables and �gures with the name of the asset following by

the letter r i.e. for WTI the returns are WTIR.1

Table 2.1: Descriptive Statistics of returns

WTIR GCSR SPR ESR NIKR SSER

Mean 0.000366 0.000209 0.000329 0.000218 6.70e-05 0.000525

Median 0.000551 0.00000 0.000503 0.000345 -2.97e-05 0.000199

Maximum 0.202542 0.092318 0.115809 0.115642 0.133973 1.109237

Minimum -0.318917 -0.093446 -0.090352 -0.099760 -0.10585 -0.321892

Std. Dev. 0.022961 0.010183 0.011067 0.013379 0.015708 0.026253

Skewness -0.309950 -0.079607 -0.078715 -0.015752 0.187291 12.14990

Kurtosis 12.34872 10.84204 11.91435 10.06486 7.465253 503.6600

Jarque-Bera 26,726.19 1,8731.17 24,201.50 15,733.05 5,965.077 68,8322.72

Probability 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Observations 7307 7307 7307 7565 7130 6575

1All the models that follow are estimated using the returns of the assets. Only for convenience, we refer
to the variables with their full name in the text and descriptions of the �gures and tables, and we use their
returns in the estimations.
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Figure 2.3: Daily returns of S&P500 index, oil and gold futures

We can clearly see that the non-stationary price series are now converted into a sta-

tionary process without trend. However, because we use data from �ve di�erent stock

markets that trade on di�erent days, while the two futures contracts are traded in the US,

the resulting samples have neither the same size nor negotiation days. For that reason, we

exclude from the sample the dates that have at least one missing value in any variable.

In that way the remaining sample is reduced as shown in table 2.2 but is continuous and

have respective trading days in both stock indices and futures. The histograms of the rest

variables are displayed in the appendix.

Table 2.2: Sample size alignment after excluding missing dates

WTIR GCSR SPR ESR NIKR SSER

Observations 7307 7307 7307 7307 6901 6360

2.3 Results

2.3.1 Static Analysis

As most �nancial series show clusters of high volatility in their returns, it can be seen from

the squared returns that the variables of this analysis are not an exception. It seems that

during some time periods the series are signi�cantly more volatile usually around crisis

events, when the traded volume is also increased. This can be due to the fact that in high

frequency data the amount and quality of information is received by market participants

in clusters that also delay to process it and react.
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Figure 2.4: Squared returns of S&P500, WTI and GCS

This volatility clustering is also con�rmed and more evident in a 25-step moving stan-

dard deviation plot of the series as shown in �gure 2.5. The persistence in variance is a

stylized fact for �nancial series and refers to the tendency of high conditional variance to

be followed by high values.

Figure 2.5: Moving Standard Deviations of S&P500, WTI and GCS returns

What we speci�cally seek to �nd is whether the relation between the futures and the

index can be used to hedge a position on the later. After having con�rmed a relationship,

we will be able to model the volatility of the series and decide on how this relation can

be optimally used to hedge. A static covariance analysis at �rst indicates statistically

signi�cant correlations with a stronger relation between the index and oil futures (correla-

tion coe�cient = 0.12), than between the index and gold futures (correlation coe�cient =

-0.05).

Table 2.3: Static Covariance analysis

WTIR GCSR

SPR

Covariance 3.27e-05 -5.96e-06
Correlation 0.128861 -0.052903
t-statistic 11.10629 -4.527952
Probability 0.0000 0.0000
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Table 2.4: Static Covariance analysis II

ESR NIKR SSER

WTIR

Covariance 6.42e-05 2.25e-05 1.97e-05
Correlation 0.0217331 0.066676 0.033289
t-statistic 17.29973 5.192145 2.587923
Probability 0.0000 0.0000 0.0097

GCSR

Covariance 1.60e-05 1.93e-05 6.16r-06
Correlation 0.118124 0.124249 0.022693
t-statistic 9.242733 9.729304 1.763627
Probability 0.0000 0.0000 0.0778

The simple Ordinary Least Squares regressions in which the returns of the index are

used as a dependent variable on the independent oil and gold futures returns separately

and simultaneously as shown in the following regressions:

SPrt = C + βWTIrt + et (2.20)

SPrt = C + βGCSrt + et (2.21)

SPrt = C + β1WTIrt + β2GCSrt + et (2.22)

The obtained results are presented in table 2.5 and 2.6 respectively

Table 2.5: Estimation results from equations 2.20 and 2.21

SPR SPR
C 0.000307 C 0.000341

b WTIR 0.062112 b GCSR -0.057500
t-statistic 11.10 t-statistic -4.527952
Probability 0.0000 Probability 0.0000
R-squared 0.01660 R-squared 0.00279

Table 2.6: Estimation results from equation 2.22

SPR Coe�. t-statistic Probability

C 0.000323 2.5204 0.0117
WTIR 0.070514 12.3717 0.0000
GCSR -0.090701 -7.0579 0.0000

A unit root analysis (results presented in the appendix) on the levels of prices and

then on the returns reveals the existence of a unit root. The autocorrelation and partial

correlation analysis also revealed little or no evidence of linear structure in the return

series. Since no autocorrelation is found in the returns, there is no need for the conditional

mean to be speci�ed. Modeling of the conditional variance is only necessary.
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However, the moving standard deviations have already suggested for a relatively un-

stable relation through time. If we compare the static measures with a 25-step moving

correlation, it can be clearly seen that the relation between the spot and the futures is nei-

ther stable nor has the same direction during the entire sample, as the sign of the relation

changes multiple times. This indicates that using a static measure does not fully re�ect the

dynamics between the assets and undermines the potential of implementing their changing

relationship. In �gure 2.6 the moving correlation (dark continuous line) is compared to

the static value of the Pearson correlation coe�cient (dashed faded line) for both pairs.

Figure 2.6: Moving Correlation for S&P500-WTI and S&P500-GCS pairs

If we use the results from tables 2.2 and 2.4, the equation 2.3 yields to a static hedge

ratio of hSP,WTI = 0.06211 for WTI, and hSP,GCS = −0.05749 for GCS, which can be

interpreted as, for every position taken in spot on the S&P500 index, 0.06 contracts of oil

futures are needed to hedge it. But as the nature of the risk within the markets changes over

time, the modeling of the hedge ratio should take into account the time-varying dimension.

2.3.2 Dynamic Analysis

In order to estimate a moving optimal hedge ratio that will incorporate the dynamic

nature of the relations between the assets, we need to model the volatility in a time-

varying context. The dynamic variance and correlation that will be conditional to their

previous values, the volatility and the variance of the other asset can be obtained using

a diagonal BEKK model, which in this case will be bivariate as we use pairs of spot and

future contracts. The equations that were used are of the following form

Ht = M ′M +B′Ht−1B +A′εt−1ε
′
t−1A

or

Ht = MM ′ +

[
b11 0

0 b22

][
h11,t−1 h12,t−1

h21,t−1 h22,t−1

][
b11 0

0 b22

]
+
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[
a11 0

0 a22

][
ε21,t−1 ε1,t−1ε2,t−1

ε2,t−1ε1,t−1 ε22,t−1

][
a11 0

0 a22

]′

′

Engle and Kroner (1995) suppose that the diagonal elements of M and all aii, bii diagonal

elements are restricted to be strictly positive. The resulting Ht is the variance-covariance

matrix between each pair of equity index and future contract, and are estimated with the

log-likelihood that is derived from

lt = ln {f (εt|Ft−1)} = −N
2
ln(2π)− 1

2
ln(|St|)−

1

2
εTt S

−1
t εt

S&P500 & WTI futures

Table 2.7: BEKK estimation coe�cients for S&P500-WTI

Constants Coe�cient Std. Error z-Statistic Prob.

C(1) 0.000565 8.98e-05 6.296693 0.0000

C(2) 0.000342 0.000196 1.741418 0.0816

Equation Estimated

GARCH=M+A1A1(RESD(-1)^2)+B1B1GARCH(-1)

Variance Equation Coe�cients

M(1,1) 1.23e-06 1.05e-07 11.72341 0.0000

M(1,2) 2.41e-07 1.03e-07 2.326808 0.0200

M(2,2) 3.00e-06 4.43e-07 6.758067 0.0000

A1(1,1) 0.282422 0.006312 44.74389 0.0000

A1(2,2) 0.230450 0.005244 43.94527 0.0000

B1(1,1) 0.954309 0.002075 459.9013 0.0000

B1(2,2) 0.971033 0.001460 665.2874 0.0000

Log likelihood 42385.27 Schwarz IC -11.59032

Avg. log likelihood 2.900320 Hannan-Quinn IC -11.59589

Akaike IC -11.59882

In this case, the su�cient condition for positive de�niteness of Ht is true as the diag-

onal elements of M,A,B matrices are strictly positive and there are no other equivalent

representations di�erent than those produced by the diagonal BEKK model. The variances

and covariance estimated with the BEKK model (�gure 2.7) con�rm the static measures

results, that WTI is more closely related to the S&P500 and will therefore be a better

hedger. The model produces in the time-varying conditional variance of each series, their

conditional covariance and a conditional correlation. For the S&P500-WTI pair the condi-

tional covariance seems to be stable through time with only one major exception in 2009,

when it tends to 0.002 and some other minors in 1992, 2011 and 2016. On the other hand,

the Conditional Correlation is moving in a range from -0.74 to 0.8 and is, for most cases,

below zero until 2009, while for the period 2009-2018 the relation changes to positive and

the coe�cient moves around 0.4. The comparison with the static correlation coe�cient

(dashed faded line) in �gure 2.9 clearly shows that the static measure fails to incorporate
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the negative relationship that exists in the �rst third of the sample, as well as, the stronger

positive relationship that is evident in the later part. This means that based on the static

measures would not take advantage of these dynamics in the hedging strategy and the poor

interpretation could probably lead to even extra losses.

Figure 2.7: BEKK Conditional Covariance and Variance estimations S&P500-WTI

Figure 2.8: BEKK Conditional Correlation estimations S&P500-WTI

The dynamic hedge ratio obtained using the BEKK model takes values from around

-0.4 to 0.8 positions of WTI futures for every single position taken in the spot index. It is

once again of interest to compare the dynamic hedge ratio with the static one (black line

in �gure 2.9) that proposed holding less that 0.1 futures for every spot position.
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Figure 2.9: Static vs Dynamic Hedge Ratio with WTI futures

The negative values in the hedge ratio do not imply less e�ciency for WTI as a hedger

for that period, (this will be quanti�ed later on with the use of the hedging e�ectiveness

ratio) but instead they show how the inverted relation can be taken in advantage by

changing the position on the future from short to long for that period. In order to be

able to evaluate the e�ectiveness of the hedger, we �rst need to estimate the returns of

the hedged portfolio employing the basis of spot minus futures returns and the estimated

hedge ratio

RH,t = RS,t − hS,F,tRF,t (2.23)

as indicated by Chang et al. (2011). Then, we calculate the conditional variance of

the hedged and unhedged portfolio with a GARCH(1,1) model. The following formula

quanti�es the hedging e�ectiveness of a hedger based on variance reduction.

HE =

[
varunhedged − varhedged

varunhedged

]
(2.24)

The information from the future contract is incorporated into the hedged portfolio via

the hedge ratio that is used in equation 2.23 and comes as a result of the BEKK model.

Following these steps, �gure 2.10 is obtained showing the hedging e�ectiveness of the oil

futures. HE → 1 is an indication of a more e�ective period.
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Figure 2.10: Hedging E�ectiveness of WTI futures

Figure 2.11: Hedged vs Unhedged Portfolio Variance S&P500-WTI

Considering that volatility is linked to information �ow (Ross, 1989), we can assume that

the amount of information from the futures markets, that is incorporated in the hedged

portfolio variance, is increased after the �nancial crisis of 2007-2009. In an attempt to �nd

which market events have an e�ect on the futures prices table 2.8 reports some events that

a�ected the global markets and caused the returns of WTI futures to peak or plunge.

All of the shocks are related with major oil exporting countries and represent expec-

tations that the supply �ow of the oil will either be disrupted or suddenly increased. The

variance of the hedged portfolio does not seem to be very reduced compared to the un-

hedged portfolio in the plot.

However, via hedging e�ectiveness, we can observe there is a sustained period of time

during which WTI is more appropriate for hedging the S&P500 index. This period refers

to the global �nancial crisis of 2007-2009 and the later recession 2009-2014 (Bureau of

Economic Analysis). This period is also marked by increased volatility in the index as

was previously shown, probably because of increased speculation, justifying why this spe-

ci�c period requires a hedging instrument to mitigate the turmoil. If next, the hedging

e�ectiveness of the futures is compared with the variance of the hedged portfolio and the
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Table 2.8: S&P500-WTI Hedge ratio extreme values and respective market events

Positive Peaks Dates Event

April 2002 Venezuelan coup d'état attempt

July 2008
Global �nancial crisis

October 2008

July 2010 Deepwater Horizon oil spill

May 2011 Serious Market Drop

Negative Bottoms Dates Event

August 1991 Unsuccessful coup attempt against Soviet President Gorbachev.

November 1997 OPEC agrees to an increase in its production ceiling,

to 27.5 million barrels per day.

September 2001 Major trading markets in the US, including the NYMEX,

reopen for the �rst time since September 11.

crisis events, we can see that during periods that WTI has a higher hedging e�ectiveness,

the variance of the hedged portfolio is very low and stable after S&P500 crises periods, as

indicated in �gure 2.12.

Figure 2.12: Hedging E�ectiveness vs Hedged Portfolio Variance S&P500-WTI

These �ndings are consistent with the theory proposed by Andrew Lo (2004), namely

the Adaptive Market Hypothesis (AMH). The theory is based on adaptivity as a character-

istic of all living organisms in biology. According to this theory, market participants and

therefore their actions as a whole, are not rational with the strict sense of the term. The

investors instead base their investment decisions on heuristic rules that come as a result of

adapting to their continuously changing environment. This seems to be true in our case

as well, as the hedging e�ectiveness of the WTI contracts is signi�cantly increased after

market changing events.

The results are also con�rmed in the case where we examine the same models in a
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sub-sample that excludes the period after �nancial crisis, where the need for hedging was

found to be more requisite, and leaves the time period from 1990 to 2006. The hedging

e�ectiveness ratio moves in lower values that exceed the 0.4 threshold only once.

Figure 2.13: Hedging E�ectiveness of WTI futures in sub-sample

S&P500 & GCS futures

Table 2.9: BEKK estimation coe�cients for S&P500-GCS

Constants Coe�cient Std. Error z-Statistic Prob.

C(1) 0.000584 9.16e-05 6.376340 0.0000

C(2) 9.11e-06 9.11e-05 0.100007 0.9203

Equation Estimated

GARCH=M+A1A1(RESD(-1)^2)+B1B1GARCH(-1)

Variance Equation Coe�cients

M(1,1) 1.36e-06 1.18e-07 11.50310 0.0000

M(1,2) -8.17e-08 3.92e-08 -2.086647 0.0369

M(2,2) 2.16e-07 3.14e-08 6.864373 0.0000

A1(1,1) 0.291883 0.007266 40.16872 0.0000

A1(2,2) 0.180387 0.002410 74.86404 0.0000

B1(1,1) 0.950771 0.002471 384.7236 0.0000

B1(2,2) 0.983372 0.000400 2457.867 0.0000

Log likelihood 48119.00 Schwarz IC -13.15970

Avg. log likelihood 3.292665 Hannan-Quinn IC -13.16527

Akaike IC -13.16820

Once more, the su�cient condition for positive de�niteness of Ht is true as the diagonal

elements ofM,A,B matrices are strictly positive (M(1, 1) = 1.36e−06,M(2, 2) = 2.16e−
07). Following the same procedure for the Gold futures, we �rst estimate the BEKK

conditional measures, the hedged portfolio returns and variance and then the optimal hedge

ratio. In this example, the results di�er as the covariance between the two assets is lower
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and the conditional correlation much more unstable. Compared to WTI the conditional

variance of GCS has more extreme values, as the variance surpasses both the 0.0002 and

0.0004 threshold in more occasions, and the conditional covariance shows multiple jumps

most of which are negative.

Figure 2.14: BEKK Conditional Covariance and Variance estimations S&P500-GCS

Figure 2.15: BEKK Conditional Correlation estimations S&P500-GCS

The conditional correlation between S&P500 and GCS also shows how the static mea-

sure (dashed, faded line) fails to entail some periods of stronger negative correlation, that

reaches to -0.73, but also some periods that the relation changes to a positive one. The

peak in positive relationship is observed just after the �nancial crisis on 5th February

2010, approaching 0.66 but it is not sustained as it falls to negative values in just 3 months

later. The aforementioned results would make us expect that the more weak relationship

will lead to lower hedging e�ectiveness for the certain asset. The hedge ratio in this case,

as presented in �gure 2.16, continuously moves around zero and gets bottom values after

crises events. In our sample these moments arise after the dot-com bubble, around the end

of 2002, and after the �nancial crisis of 2007-2009, around the middle of 2011. This means

that gold returns are signi�cantly more volatile posterior to �nancial crises.
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Figure 2.16: Static vs Dynamic Hedge Ratio with GCS futures

Table 2.10: S&P500-GCS Hedge ratio extreme values and respective market events

Positive Peaks Dates Event

February 1998
Concern that uncoordinated central bank

gold sales had destabilized the gold market.

February 2009
Global �nancial crisis. Gold rises back above $1,000 an ounce

to a peak of $1,005.40 during the �nancial crisis.

May 2010
Fears over the contagion of debt problems

in the Eurozone fuel safe-haven buying.

Negative Bottoms Dates Event

September 2001 Major trading markets in the US, including NYMEX,

reopen for the �rst time since September 11.

September 2011 The �August 2011 stock markets fall�

Figure 2.17: Hedging E�ectiveness of GCS futures

Indeed, the hedging e�ectiveness �uctuates mostly around zero, having a mean of 0.013

and a median of -0.0013. Except one sole occasion, that of 5th February 2010, where the
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e�ectiveness peaked 0.54, the ratio strongly indicated that the asset is not e�ective in

hedging the S&P500. Even though the conditional variance of the hedged portfolio with

GCS futures seems to reduce the variance of the initial position in S&P500, as indicated

in �gure 2.18, the conditional variance of the portfolio seems to be uncorrelated with the

hedging e�ectiveness ratio of the same asset, indicating that the hedger is not responsible

for the periods where the risk is reduced.

Figure 2.18: Hedging E�ectiveness vs Hedged Portfolio Variance S&P500-GCS

The results are also con�rmed when tested in the same sub-sample of 1990-2006. The

properties of GCS, that is found not to be a good hedger. The Hedging E�ectiveness ratio

passes the 0.2 threshold only a few times, with most of the values around zero.

Figure 2.19: Hedging E�ectiveness of GCS futures in sub-sample

Methodological comparison

After having tested those two contracts, we are able to compare the results based on the

methodology used. We estimate a rolling hedge ratio with 25-day step, so that the hedging
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decision is adjusted each trading month. We then proceed with a comparison of the hedging

e�ectiveness in two di�erent scenarios:

• Dynamic Conditional Hedge Ratio vs Unconditional (Static) Hedge Ratio

• Dynamic Conditional Hedge Ratio vs Rolling Hedge Ratio

The conditional hedge ratio as we showed is a result of bivariate BEKK variance-covariance

estimations, the static hedge ratio is the beta coe�cient of an OLS regression between

the two variables of each pair, while the rolling hedge ratio is a result of a moving beta

coe�cient estimated form moving variance and moving covariance. The hedge ratio is

multiplied by the returns of the hedging contract and their product is then subtracted from

the initial S&P500 return (that is considered as the unhedged portfolio). The obtained

series leads to the returns of the hedged portfolio. The time-varying variance of the hedged

portfolio is taken using a GARCH(1,1) process in all cases, to produce the variance of the

hedged portfolio. The variance of the unhedged portfolio is similarly estimated from a

GRACH(1,1) process of S&P500 returns.

Figure 2.20: Hedging E�ectiveness Conditional vs Unconditional WTI Hedge
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Figure 2.21: Hedging E�ectiveness Conditional vs Unconditional GCS Hedge

What we observe once more, though formally quanti�ed this time, is that the dynamic

conditional hedge outperforms the static one for both assets. The hedging e�ectiveness of

the static hedge ratio for WTI futures never exceeds 0.33 and is generally moving around

zero. This e�ectiveness has also a skewness of -2, compared to 1.6 of the dynamic, implying

that most of its values are negative. Similar results are found in the comparison of the two

ratios for GCS futures as well. The hedging e�ectiveness of the static hedge never exceeds

0.16, while the dynamic reaches 0.54. The e�ectiveness of the static is more negatively

skewed and has a kurtosis of 5.62 compared to 24.74, implying that most of its values are

found close to the mean which in this case is almost zero. The descriptive statistics of the

hedging e�ectiveness for each methodology can be found in the Appendix. It can be seen

graphically that the conditional hedge is generally more e�ective than the unconditional

one for the entire sample, but this is even more evident in incidents of �nancial crises when

the amount of information that needs to be incorporated is increased. The unconditional

model also fails to take advantage of the negative relationship between WTI and S&P500

in the end of 1990, when it is less e�ective.
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Figure 2.22: Hedging E�ectiveness Dynamic Conditional vs Rolling WTI Hedge

We proceed with the comparison of the conditional model to the other alternative

methodology, namely the rolling hedge. In this case however, the results are not so evident.

In �gure 2.22 it can be seen that the hedging e�ectiveness of the rolling hedge is higher

than that of the conditional one, especially for the less volatile period of 1992 to 2008.

During the 2007-2014 �nancial crises the two measures seem to be equivalent, but this

changes again following 2014. With the exception of periods with high information �ow,

the rolling hedge seems to outperform the conditional one. However, if we compare the

di�erence of the hedging e�ectiveness of the two methodologies we will realize that their

di�erence is probably not signi�cant. We therefore de�ne the di�erence of the hedging

e�ectiveness as:

d = he.conditional − he.rolling

Where the he denotes the hedging e�ectiveness ratio of the hedged portfolio will be in-

creasing estimated with each method. When d takes positive values, it implies that the

conditional hedge is more e�ective. In �gure 2.23, the di�erence is of small scale as the

mean is around zero and that the conditional model outperforms the rolling only in cases

of demand shocks in 1999, 2008 and 2014.
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Figure 2.23: Di�erence in Hedging E�ectiveness Dynamic Conditional vs Rolling WTI
Hedge

Similar results are obtained for the GCS hedge. As it can be seen in �gure 2.24,

the hedging e�ectiveness of the rolling hedge is almost always slightly higher than the

conditional one with the later having some negative spikes.

Figure 2.24: Hedging E�ectiveness Dynamic Conditional vs Rolling GCS Hedge

We reestimate the di�erence of the two hedging e�ectiveness measures and plot the

resulting series in �gure 2.25. Their di�erence seems not to be signi�cant for most of the

sample, however there are incidents where the rolling hedge is much more e�cient. These

cases can be seen as the extreme negative spikes that exceed -0.4 and occurred in 1990,

around the dot com bubble in 2000 and during the 2014 oil price drop.
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Figure 2.25: Di�erence in Hedging E�ectiveness Dynamic Conditional vs Rolling GCS
Hedge

These observations lead us to the conclusion that the conditional hedge clearly outper-

forms the unconditional one, and that the rolling hedge in some cases might outperform

the conditional. This probably refers to events, when there is no considerable information

�ow a�ecting the cross sectional relationship between the spot and the futures market, and

the simple adaptation based on their past values is su�cient to hedge the portfolio.

Eurostoxx & WTI, GCS futures

We move on by testing the hedging e�ectiveness of the two futures contracts on indices

that are negotiated in other stock markets. In such case, the cross section relationships will

either be altered or there might be evidence of volatility spillover from one stock market

to another. More speci�cally, we test if there are information �ows from the US futures

market into spot markets around the globe. In this section, we present only the plots of

the series obtained from the BEKK estimations, while the estimated coe�cients can be

found in Appendix.

Figure 2.26: BEKK result Covariance between ES-WTI (left) and ES-GCS (right)
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Starting with the European index Eurostoxx, the estimated covariances presented in

�gure 2.26 imply that there is little, if no signi�cant covariance between the European

index and the futures. The covariance moves around zero for both pairs and is lower in the

case of GCS. The scale of the covariance is below 0.1 during the entire period examined,

and even though both futures display some spikes in their covariance with the index, it is

still not signi�cant as it nearly passes 0.02.

Figure 2.27: BEKK dynamic hedge ratio between ES-WTI (left) and ES-GCS (right)

Considering the absence of a strong relationship in both pairs, we expect that the hedge

ratio will not have signi�cant values. This is indeed found in �gure 2.27, where the hedge

ratio cannot exceed 0.003.

The weakness of the relationships is again con�rmed by the hedging e�ectiveness ratio,

getting values that are closer to zero than to the unit that would indicate a good hedge.

Despite the three positive peaks in WTI hedging e�ectiveness during 2007-2014 and three

negative bottoms in GCS the ratios are moving around zero and indicate that the assets do

not constitute suitable hedgers for this index. One possible reason, might be the fact that

European �rms listed in Eurostoxx are not dependent on the US oil exporting markets

and have stronger links to BRENT oil products. As for gold futures, the result may be

expected as we previously found that they are relatively not e�ective even in hedging the

US index.
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Figure 2.28: Hedging E�ectiveness of WTI (left) and GCS (right) on Eurostoxx index

Nikkei & WTI, GCS futures

In this section we test the hedging e�ectiveness of the US oil and gold futures for Nikkei 250

index. As it can be seen in �gure 2.30 the results from the BEKK estimations are similar

to those of the European index. The obtained covariances are not signi�cant in both cases,

and despite one negative shock in 1991 and a positive in 2008, the covariances are generally

moving around zero. The scale of the measures does not pass 0.0025 in WTI and 0.0006

in GCS, implying that there is no signi�cant relationship between the US futures and the

Japanese stock index.

Figure 2.29: BEKK estimated Covariance between NIK-WTI (left) and NIK-GCS (right)

These low covariances lead to similarly low hedge ratios as they can be seen in �gure

2.30. The absence of a durable and signi�cant relationship in the pairs gives hedge ratios

that equal zero and have only few shocks that are short in duration and trivial in impact.

More speci�cally, the peaks do not surpass 0.0015 in WTI and 0.005 in GCS hedge ratio.
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Figure 2.30: BEKK dynamic hedge ratio between NIK-WTI (left) and NIK-GCS (right)

In a similar way, the hedging e�ectiveness of both pairs is moving around zero as the

hedged portfolio returns are not very di�erent to those of the initial investment in solely

the Nikkei index. The estimates clearly indicate that the Japanese spot markets do not

signi�cantly receive information �ows from US futures markets. It is more plausible that

investors acting in Japan prefer to trade on futures markets that are geographically closer,

while at the same time Japan is not dependent on oil imports from US. This �nding is

speci�cally in line with the phenomenon described as �home equity bias� by Coval and

Moskowitz (1999). It is argued that investors and investment funds tend to be biased

towards asset proximity when issues such as information asymmetry arise (Gehrig, 1999;

Brennan and Cao, 1997; Coval and Markowitz, 2001).

Figure 2.31: Hedging E�ectiveness of WTI (left) and GCS (right) on Nikkei index

Shanghai Composite index & WTI, GCS futures

The last stock market is the Chinese Shanghai Stock Exchange. This time the sample

is smaller starting from 1992. There is still a special regime as both private and public

companies are listed on it. The trading of the index was much volatile during the �rst

years but later fell in very bear periods from 1994 to 2006 and 2009 to 2014. The BEKK
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estimated covariances are again very low with a mean close to zero. The scale is lower

than 0.001 for WTI and 0.0002 for GCS as well.

Figure 2.32: BEKK result Covariance between SSE-WTI (left) and SSE-GCS (right)

The obtained hedge ratio for WTI hedge approaches one in 1993 and 2014 but has

three negative bottoms that reach -3 in the period 1992-1994. The GCS hedge is close to

the unit more than four times and even reaches the value of 2 during the same period of

1992-1994. However, during the period 1994-2018 the hedge ratio of both assets is moving

around zero.

Figure 2.33: BEKK dynamic hedge ratio between SSE-WTI (left) and SSE-GCS (right)

The hedging e�ectiveness of the futures is more signi�cant on the Chinese index com-

pared to the European and Japanese, with a scale from -0.4 to 0.4 for WTI and -0.1 to

0.2 for GCS. However, even the highest values are not persistent as they last for only few

days and the shocks do not seem to be caused by the same factors.
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Figure 2.34: Hedging E�ectiveness of WTI (left) and GCS (right) on Shanghai Composite
index

2.4 Discussion

Our �rst �nding concerns volatility clustering in all series except the SSE. This stylized

fact was con�rmed in our sample and therefore a method that models volatility seem to

be appropriate.

In a second stage, we compared the hedging e�ectiveness of the futures using both con-

ditional and unconditional models, with the former being superior. The dynamic modeling

of the series in the case of the conditional model can better incorporate information from

the futures market to the spot equity indices and take advantage of the moving relationship

that exists between the assets. On the other side, the unconditional model fails to take

into account the moving relationships and misses periods that the relationship is inverted.

Furthermore, the superiority of the conditional model is notably increased during crises

episodes such as the dot com bubble, the 2007-2009 �nancial crisis, as well as oil price

shocks. This can be explained by the fact that during such periods the volume of trades

and information increases signi�cantly. The conditional model that uses the information

from the futures market as input is even more e�ective, when there are considerably more

information �ows.

Regarding the evaluation of the contracts, the WTI futures were proved to hedge better

in the S&P500 index, compared to GCS gold futures. One of the reasons might be the

properties that the assets obey. Oil futures are one of the most volatile futures contracts,

while gold is considered a safe haven and is generally less �uctuating. This behavior of the

assets generates respective amounts of information and a�ects the relationships between

the assets. Another reason for the WTI-S&P500 pair might be the fact that many oil

companies are listed in the S&P500. According to Factset, among the companies listed in

S&P500, 5% are oil and gas re�ners, while others concern large capitalization �rms such

as Exxon Mobil, Phillips 66, Marathon Petroleum and so on. Therefore, the prices of the
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WTI futures play a signi�cant role in their revenue and operational activity.

Finally, we provided evidence that the US traded futures are not e�ective hedgers for

equity indices, traded in other countries. Their covariance and hedging e�ectiveness was

insigni�cant for Europe and Japan indices and even in the case of China, the results were

not persistent. It seems that �home equity bias� prevails and investors in the various

stock exchanges seek to hedge their positions using products from markets close to them.

Furthermore, prices of assets that are negotiated on the same market often show similar

patterns as a response to news that are important for the market as a whole (Hafner and

Herwartz, 1998). For that reason the two futures can e�ectively hedge only the US index.
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Conclusion

In this work we tried to assess and evaluate the ability of �nancial derivatives to hedge

equity investments. We were primarily interested in �nding how futures contracts can be

used to hedge diversi�ed portfolios in the form of equity indices. We speci�cally examined

the e�ectiveness of WTI oil and GCS gold futures to hedge stock market indices of major

stock markets such as the S&P500, Eurostoxx, Nikkei 250 and the Shanghai Stock Ex-

change. In this aim, we �rst reviewed the literature and then proceeded to the empirical

application of econometric models on historical data.

In chapter one, we investigated the existing bibliography in order to �nd how the

academic community has dealt with the question of hedging with �nancial derivatives. In

�rst place, we found that futures have many properties that allow them to be more �exible

and convenient for hedging compared to other instruments such as forwards or options.

Second, there is plenty of literature on how the optimal hedge ratio is de�ned. Among the

multiple optimum conditions, the minimum variance criterion is the most common, but

the optimal hedge ratio should be selected based on the investor's preferences. Last, it

arises that the most appropriate method for estimating optimal hedge ratio is to take into

account the time-varying variance with ARCH-type models.

In the empirical application, evidence is provided about volatility clustering in returns

series, while bivariate diagonal BEKK GARCH model is applied prior to the computation

of dynamic optimal hedge ratio. Estimation results indicate that the conditional models are

notably more e�cient during periods of economic crises, when the incorporated information

�ows are increased. Furthermore, the WTI oil futures turned out to be more e�ective

instruments in hedging the S&P500 index, compared to the GCS gold futures probably

due to the individual characteristics of each asset. Finally, none of the contracts was proved

to be signi�cantly e�cient in hedging the equity indices of other stock markets, as a result

of the weak relationship between the US traded assets and the foreign exchanges.

Hedging can signi�cantly reduce the risk of a diversi�ed portfolio, such as an equity

index, when the underlying assets are negotiated in markets presenting strong linkages and

sharing common channels. As �nancial interdependence enhances and contagion incites

volatility spillovers, the need for hedging increases. Investors should therefore be aware

of the information �ows as well as the continuously changing cross relationships between
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their assets, and consider them in their investment decisions.
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Appendix

Figure 2.35: Plot of all the series used

Figure 2.36: Histograms of all the returns for all series
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Table 2.11: Unit Root Test

Null Hypothesis: SPR has a unit root

Exogenous: Constant

Lag Length: 33 (Automatic - based on AIC, maxlag=35)

t-statistic Prob.

Augmented DF statistic -15.39056 0.0000

Test critical values 1% level -3.431072

5% level -2.861743

10% level -2.566920

Null Hypothesis: WTIR has a unit root

Exogenous: Constant

Lag Length: 14 (Automatic - based on AIC, maxlag=35)

t-statistic Prob.

Augmented DF statistic -20.75847 0.0000

Test critical values 1% level -3.431072

5% level -2.861743

10% level -2.566920

Null Hypothesis: GCSR has a unit root

Exogenous: Constant

Lag Length: 11 (Automatic - based on AIC, maxlag=35)

t-statistic Prob.

Augmented DF statistic -26.18611 0.0000

Test critical values 1% level -3.431072

5% level -2.861743

10% level -2.566920

Null Hypothesis: RESID01SP_WTI has a unit root

Exogenous: Constant

Lag Length: 34 (Automatic - based on AIC, maxlag=35)

t-statistic Prob.

Augmented DF statistic 0.028010 0.9600

Test critical values 1% level -3.431072

5% level -2.861743

10% level -2.566920

Null Hypothesis: RESID02SP_GCS has a unit root

Exogenous: Constant

Lag Length: 17 (Automatic - based on AIC, maxlag=35)

t-statistic Prob.

Augmented DF statistic -1.098422 0.7187

Test critical values 1% level -3.431072

5% level -2.861743

10% level -2.566920
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Table 2.12: BEKK estimation coe�cients for ES-WTI

Constants Coe�cient Std. Error z-Statistic Prob.

C(1) 0.000425 0.000114 3.723635 0.0002

C(2) 0.000371 0.000197 1.885377 0.0594

Equation Estimated

GARCH=M+A1A1(RESD(-1)^2)+B1B1GARCH(-1)

Variance Equation Coe�cients

M(1,1) 1.74e-06 1.05e-07 11.72341 0.0000

M(1,2) -4.02e-08 1.03e-07 2.326808 0.6839

M(2,2) 3.50e-06 4.43e-07 6.758067 0.0000

A1(1,1) 0.253339 0.005409 46.83565 0.0000

A1(2,2) 0.228789 0.005782 39.56932 0.0000

B1(1,1) 0.962500 0.001689 569.9340 0.0000

B1(2,2) 0.970708 0.001631 595.2067 0.0000

Log likelihood 40634.47 Schwarz IC -11.11111

Avg. log likelihood 2.780516 Hannan-Quinn IC -11.11668

Akaike IC -11.11960

Table 2.13: BEKK estimation coe�cients for ES-GCS

Constants Coe�cient Std. Error z-Statistic Prob.

C(1) 0.00448 0.000114 3.932495 0.0001

C(2) 3.49e-05 9.00e-05 0.387914 0.6981

Equation Estimated

GARCH=M+A1A1(RESD(-1)^2)+B1B1GARCH(-1)

Variance Equation Coe�cients

M(1,1) 2.26e-06 2.03e-07 11.16724 0.0000

M(1,2) 2.03e-07 5.38e-08 3.773616 0.0200

M(2,2) 2.24e-07 3.33e-08 6.729897 0.0000

A1(1,1) 0.292377 0.007363 39.71072 0.0000

A1(2,2) 0.184253 0.002501 73.67390 0.0000

B1(1,1) 0.950447 0.002364 402.0610 0.0000

B1(2,2) 0.982634 0.000423 2321.726 0.0000

Log likelihood 46501.73 Schwarz IC -12.71704

Avg. log likelihood 3.181999 Hannan-Quinn IC -12.72261

Akaike IC -12.72553
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Table 2.14: BEKK estimation coe�cients for NIK-WTI

Constants Coe�cient Std. Error z-Statistic Prob.

C(1) 0.000323 0.000151 2.137805 0.0325

C(2) 0.000366 0.000209 1.747111 0.0806

Equation Estimated

GARCH=M+A1A1(RESD(-1)^2)+B1B1GARCH(-1)

Variance Equation Coe�cients

M(1,1) 5.40e-06 4.92e-07 10.96500 0.0000

M(1,2) 2.05e-07 2.12e-07 0.966465 0.3338

M(2,2) 3.56e-06 5.41e-07 6.580694 0.0000

A1(1,1) 0.295467 0.007924 37.28639 0.0000

A1(2,2) 0.227875 0.006109 37.29959 0.0000

B1(1,1) 0.945044 0.003073 307.4850 0.0000

B1(2,2) 0.970932 0.001755 553.2529 0.0000

Log likelihood 36701.31 Schwarz IC -10.62499

Avg. log likelihood 2.659130 Hannan-Quinn IC -10.63083

Akaike IC -10.63391

Table 2.15: BEKK estimation coe�cients for NIK-GCS

Constants Coe�cient Std. Error z-Statistic Prob.

C(1) 0.000286 0.00015 1.909935 0.0561

C(2) 0.0000351 0.0000934 0.3762 0.7068

Equation Estimated

GARCH=M+A1A1(RESD(-1)^2)+B1B1GARCH(-1)

Variance Equation Coe�cients

M(1,1) 0.00000583 0.000000512 11.38872 0.0000

M(1,2) 0.000000401 8.73e-08 4.597355 0.0000

M(2,2) 0.000000217 3.49e-08 6.236599 0.0000

A1(1,1) 0.318348 0.00861 36.97461 0.0000

A1(2,2) 0.183607 0.00258 71.16196 0.0000

B1(1,1) 0.937162 0.003395 276.0775 0.0000

B1(2,2) 0.982842 0.000454 2163.883 0.0000

Log likelihood 42272.62 Schwarz IC -12.23963

Avg. log likelihood 3.06279 Hannan-Quinn IC -12.24547

Akaike IC -12.24855

69



Table 2.16: BEKK estimation coe�cients for SSE-WTI

Constants Coe�cient Std. Error z-Statistic Prob.

C(1) 0.000364 0.000158 2.303784 0.0212

C(2) 0.000501 0.000220 2.281967 0.0225

Equation Estimated

GARCH=M+A1A1(RESD(-1)^2)+B1B1GARCH(-1)

Variance Equation Coe�cients

M(1,1) 5.73E-07 1.05E-07 5.437387 0.0000

M(1,2) 1.30E-07 1.36E-07 0.957427 0.3384

M(2,2) 2.83E-06 4.59E-07 6.169694 0.0000

A1(1,1) 0.219645 0.002379 92.30814 0.0000

A1(2,2) 0.211777 0.006290 33.66872 0.0000

B1(1,1) 0.977473 0.000360 2715.159 0.0000

B1(2,2) 0.975227 0.001578 617.8846 0.0000

Log likelihood 32498.52 Schwarz IC -10.20727

Avg. log likelihood 2.554915 Hannan-Quinn IC -10.21352

Akaike IC -10.21683

Table 2.17: BEKK estimation coe�cients for SSE-GCS

Constants Coe�cient Std. Error z-Statistic Prob.

C(1) 0.000391 0.000158 2.472658 0.0134

C(2) 7.86e-05 9.67e-05 0.813307 0.4160

Equation Estimated

GARCH=M+A1A1(RESD(-1)^2)+B1B1GARCH(-1)

Variance Equation Coe�cients

M(1,1) 6.06Ee-07 1.13e-07 5.384389 0.0000

M(1,2) -1.30e-08 5.33e-08 -0.243670 0.8075

M(2,2) 3.07e-07 4.57e-08 6.709757 0.0000

A1(1,1) 0.228987 0.002373 96.51656 0.0000

A1(2,2) 0.194776 0.002929 66.50367 0.0000

B1(1,1) 0.975771 0.000370 2639.996 0.0000

B1(2,2) 0.980332 0.000622 1575.382 0.0000

Log likelihood 37605.97 Schwarz IC -11.81338

Avg. log likelihood 2.956444 Hannan-Quinn IC -11.81964

Akaike IC -11.82295
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Table 2.18: Descriptive Statistics of the Hedging E�ectiveness on S&P500

S&P500
WTI Hedge GCS Hedge

HE Dynamic HE Static HE Dynamic HE Static

Mean 0.04587 -0.003843 0.013883 0.000593

Median 0.001928 0.003060 -0.001355 0.004025

Maximum 0.636564 0.323490 0.547442 0.158938

Minimum -0.262628 -1.033019 -1.220525 -0.259102

Std. Dev. 0.121170 0.094470 0.090116 0.034187

Skewness 1.618164 -2.001435 -0.670190 -0.730970

Kurtosis 5.523380 18.43272 24.74419 5.626608

Table 2.19: Descriptive Statistics of the Hedging E�ectiveness on other indices

ES HE_WTI HE_GCS
Mean 4.84E-05 2.02E-05
Median 1.89E-05 5.72E-06
Maximum 0.002577 0.000617
Minimum -0.000291 -0.000167
Std. Dev. 0.000187 5.27E-05
Skewness 8.370903 4.893732
Kurtosis 92.44944 38.45736

NIK HE_WTI HE_GCS
Mean 3.98E-06 1.31E-05
Median -1.54E-07 4.62E-06
Maximum 0.000691 0.000462
Minimum -0.000167 -0.000335
Std. Dev. 3.77E-05 3.66E-05
Skewness 6.587771 2.656271
Kurtosis 73.66869 30.35801

SSE HE_WTI HE_GCS
Mean -0.010981 0.002959
Median -0.019111 -0.002702
Maximum 0.447761 0.175562
Minimum -0.385510 -0.145196
Std. Dev. 0.066953 0.027723
Skewness 1.009614 1.534687
Kurtosis 8.412786 8.948987
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