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Abstract 

 

The presence of trends and cycles in commodities is examined for the updated Grilli 

and Yang database from 1900 to 2010. We employ the Hamilton filter to obtain the 

trend and cycle for each commodity and the commodity indexes. The Prebisch-Singer 

Hypothesis, of a downward trend of the commodities, holds for the most period of our 

sample and for the majority of the data. The corresponding cycles from the Hamilton 

filter, have a shorter duration than the Super Cycles and have at least one additional 

cycle wave. The present analysis focuses also on the relationship among commodity 

prices, different levels of economic activity and interest rate. The empirical results 

provide evidence that commodity prices Granger-cause interest rate and mainly the 

Chile GDP, while interest rate Granger causes commodity prices and the economic 

activity of the US. Finally, there is a causality running from the economic activity of 

the world towards the commodity prices. 
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1. Introduction 
Commodity markets have been a roller coaster for several years. The recent global 

economic crisis was preceded by a boom in commodity prices that was unprecedented 

in its magnitude and duration. This peak in the commodity markets came to an end 

when the global economic activity slowed down, diminishing demand on the 

commodity markets with falling prices. However, commodity markets started to 

recover fast.  

Understanding how commodity markets move and how the fluctuations of the prices 

affect the economic activity has been widely investigated in the literature even from the 

start of the 20th century. Kitchin and later Kondratiev and Schumpeter were among the 

first to outline the presence of commodity cycles and their connection to the prosperity 

and stagnation of the economic activity. 

Why someone should focus on the trends and cycles in commodity markets? The 

presence of these two phenomena in commodity markets matters for obtaining the 

proper decision in many aspects of the markets such as the production of commodities, 

the stability of the financial sector and the consistent policy towards economic growth. 

A significant proportion of national income for many developing countries is often 

generated by a small number of primary commodities (see Harvey et al. 2010). The 

nature and causes of trends and cycles in commodity markets , therefore, have a 

significant implication for growth and poverty policies in developing countries. 

Production in many commodity markets is achieved through initial capital investments 

that take years to mature in revenue. Thus, firms must factor trends in the markets into 

their investment decisions. Commodity markets are considered recently by financial 

investors as a distinct asset class, that is widely used as a hedging tool in portfolio 

management. Moreover, this financialization fueled the speculation in commodity 

markets and this behavior can lead to the emerging of new cycles and trends in the 

markets. Subsequently, commodity price movements are connected to the financial 

sector and its crises (see Eberhardt and Presbitero. 2018). 

The analysis of long-run commodity prices is dominated by the Prebisch-Singer 

Hypothesis (PSH) which implies a negative trend in commodity prices relative to 

manufactures. The majority of recent studies employ dataset form Grilli and Yang 

(1988), in order to obtain empirical evidence validating the PSH. Many studies find 

evidence supporting the PSH and the presence of a secular trend throughout the 

presence of structural breaks. Alongside the trend analysis of the commodity markets, 

there is also the analysis of the cyclical components of the commodities. The empirical 

analysis of this part of the literature is based on the use of different filters, that can 

separate the trend and the cycle portions of a series.  From the analysis of the cycles in 

the commodity prices stems the Super Cycles theory (see Cuddington and Jerrett. 

2007). Those long cycles have a duration of 35 years on average. Some studies have 

attempted to model the relationships between the long commodity series and 

macroeconomic variables (see Erten and Ocampo. 2012 and Harvey et al. 2017). They 

find evidence of a causal relationship between the commodity prices and historical 

macroeconomic data. 
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This paper attempts to examine the presence of trends and cycles in the commodity 

prices using a novel filtering technique, as it was proposed by Hamilton (2017). We use 

the extended Grilli and Yang database for the commodity prices and the commodity 

indexes from 1900 to 2011. In our analysis, furthermore, we are focusing on the causal 

relationship between the commodity prices, the economic activity and the interest rate, 

following the empirical approach of Harvey et al. (2017).  In order to analyze the nexus 

of trends and cycles under this new approach, we are trying to answer the following 

questions: (i) Does the PSH holds in the commodity markets, in the trend obtained by 

the Hamilton filter? (ii) Does the cycle series of the commodities pay any resemblance 

to the Super Cycles? (iii) Is there a relationship among commodity prices, the economic 

activity , and interest rates? (iv) If yes, how different levels of economic activity shape 

the previous causal relations? 

This study contributes to the existing literature in several ways. First of all, the present 

study uses a differentiated filtering approach, rather than previous researches, in order 

to alleviate the drawbacks of the Hordrick-Prescott Filter and the other filters. Our 

analysis is based on the extended dataset of Grilli and Yang that integrates the period 

of the recent economic crisis and we can obtain new empirical results regarding this 

period. Moreover, any significant relationship among our long series of macroeconomic 

variables and the commodity prices, contributes alongside previous researches to this 

less commonly addressed topic. Country-specific economic activity may have some 

important policy implications. If the results for commodity prices indicate a relationship 

with economic activity and interest rates, then policymakers would, therefore, need to 

pursue policies, that account for the monetary policy and promote growth. 

The remainder of the paper is organized as follows: Section 2 presents a brief literature 

review of studies concerning the trends and cycles in commodity prices and Section 3 

a more comprehensive literature review of studies focusing on the PSH and the Super 

Cycles. Section 4 describes the Hamilton filter and all the previous filters demonstrating 

their differences. There is also the specification of the stationary VAR, from which we 

obtain the Granger causality of our long-time variables. The data are presented in 

Section 5. Empirical results are discussed in Section 6 and concluding remarks are 

summarized in the final section. In Section 9, someone can find all the tables mentioned 

in the comments of our findings. Finally, Section 10 serves as the Appendix of the 

literature with the analytical review tables and in Section 11 someone can find all the 

Figures that present the trend and cycle result of different filters for each commodity 

and index. 

2. The Cycles and Trends in Commodity Prices: A Brief Discussion 

of the Literature 

 The understanding of the movements of the basic economic factors was always a major 

discussion in the literature. Kitchin (1923) considers the wholesale prices of 

commodities as a significant factor, among bank clearings and interest rate, for his 

analysis of the cycles and trends of economic factors.  He was able to identify, through 

a primal statistical analysis, evidence of a rising trend in the commodity prices and the 

other economic factors. Moreover, he illustrated the presences of small cycles that last 
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for around three years and trade cycles that last about eight years. The debate about the 

effect of the prices of primary commodities on the economic factors continues. Barsky 

and Killian (2004) discuss the possible effect of oil prices on the macroeconomic 

factors, but they can not establish a significant link. 

Commodity price fluctuations have always been of importance to the development of 

countries. Labys, Koubassi and Terraza (2000) employ the Structural Time Series 

(STS) to examine twenty-one primary commodity price series of export importance. 

Their result suggests the predominance of one short cycle with duration of less than a 

year and a second cycle that lasts around two years. Camacho and Perez-Quiros (2013) 

analyze the interactions between commodity prices and the GDP of seven Latin 

exporters. They conclude that commodity prices have nonlinear effects on the output 

and the state of the cycles of those two variables should be acknowledged in the 

economic policies. 

The influence of the commodity price cycles is also important in investors’ decision as 

Fernandez (2015) illustrates. The business cycles of commodities prices show strong 

co-movement and are highly significant for the whole period from 1968 to 2013.  

Those co-movements are not only present on the short term but also on the long term 

as Chauduri (2001) finds evidence of cointegration on between real primary commodity 

prices and real oil prices. However, this trend is not single and varies in different periods 

as Ghoshray and Johnson (2010) and Ghoshray (2011) outline using different 

commodity prices and econometric methods for the trend and the unit root of the series. 

The "financialization" of commodity markets can lead to new cycles to commodity 

prices. Those cycles originate not from endogenous cycles but from the speculators and 

the financial participants of the markets (Reitz and Westerhoff, 2007). Bastourre, 

Carrera and Ibarlucia (2010) find that small misalignments of the prices tend to persist 

when accounting for the "financialization" of the markets. In addition, they find real 

exchange rate, real international rate and real returns of stocks to be highly significant 

variables for the changes in commodity prices. The new relationship that emerges in 

the co-movements of the commodity prices is being investigated using different 

methods. They vary from GARCH to network analysis and causality testing. 

(Büyükşahin and Robe (2011); Nazlioglu, et al.(2013); Matesanz, et al.(2014); 

Bampinas and Panagiotidis (2015)).  They all conclude that in the period after the 

financial crisis the spillovers have intensified and new relationships are emerging 

among the commodity prices.  In this scope, there is a series of studies that try to 

identify the effect of global liquidity on the commodity prices (Belke et al. (2009); 

Belke et al. (2012); Belke et al. (2014)). They find evidence that global liquidity has a 

positive effect on the commodity prices and hence inflation. Moreover, they identify a 

negative relationship between the interest rate and commodity prices. 

The importance of understating commodity price movements can be highlighted by the 

findings of Eberhardt and Presbitero (2018). They develop an empirical model to 

predict banking crises in a sample of 60 low-income countries (LICs) accounting for 

changes in primary commodity prices. They conclude that commodity price movements 

are a key driver of crisis episodes among other well-established drivers.
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3. The Cycles and Trends in Commodity Prices:  Prebisch–Singer 

Hypothesis 

The early literature of cycles in real commodity prices was developed by Kondratiev 

and Schumpeter. Business Cycles (Schumpeter, 1939) was the first framework that 

analyzed the presence of long Kondratiev cycles and shorter Juglar and Kitchin cycles. 

Schumpeter argued that prices are driven down by innovation in the long run, but with 

a cyclical portion, that depends on the innovation’s clusters that create growth or decay 

in the different sectors. These two phases will also affect the prices of primary 

commodities, that are at first increased their prices relative to manufactured goods. 

Following the accumulation of innovation in the different sectors their prices for 

primary commodities. tend to decrease relative to the ones of manufactured goods. 

This deterioration in terms of trade between primary and manufactured goods was also 

observed in the terms of trade of developing countries. Singer (1950) and Prebisch 

(1950) studying both the case of economic development in Latin America faced a 

controversy. The increase of the gap between industrialized and developing countries 

alongside the deterioration of the terms of trade for exporters of primary commodities 

relative to Britain. They composed the Prebisch-Singer Hypothesis (PSH) claiming that 

the relative price of primary commodities in terms of manufactures shows a downward 

trend.  

A huge part of the empirical studies is based on the comprehensive work and the dataset 

form Grilli and Yang (1988) (GY).  They compiled a dataset of twenty-four non-fuel 

commodities that are aggregated in commodity price indexes that are deflated by the 

manufactures UN index and the United States Manufacturing Price Index. The dataset 

extends annually from 1900 to 1986. They confirm that there is a negative trend on the 

relative prices of all primary commodities, but the magnitude of the trend varies among 

the different subgroups of the primary commodities.  

The following years different studies used that novel dataset to investigate the PSH 

using different methodological approaches. On strand employed models that focused 

on the analysis of deterministic and stochastic trend (Ardeni and Wright (1990); Kellard 

and Wohar (2002); Ocampo and Parra-Lancourt (2010)). Others focused on different 

methods (Bleaney and Greenaway (1993)) or tried alternative datasets (Reinhart and 

Wickham (1994)). Many of these studies find evidence supporting the PSH and the 

presence of a secular trend throughout the presence of structural breaks in the different 

variables. However, when the literature accounted for the structural breaks or advanced 

unit root testing (Kellard and Wohar (2005); Ghoshray and Johnson (2010); Nazlioglu 

(2014)) the PSH could not be validated to hold for all primary commodities and the 

cyclical part tends to be traced by the different studies. 

Cuddington and Jerrett (2007) using a dataset of metals and applying the Christiano and 

Fitzgerald (CF) asymmetric band-pass filter established the method for examining the 

Super Cycles in commodity prices. They conclude that the evidence of three Super 

Cycles in the last a hundred and fifty years with phases spanning from ten to thirty-five 

years. Following the previous super cycle approach, Erten and Ocampo (2012) 
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advanced their methodological approach. They examine an extended dataset that 

includes the oil and the GY aggregate indexes updated until 2010 alongside the output 

of OECD and world. They found evidence of four past Super Cycles ranging from thirty 

to forty years, with the mean of each super-cycle for non-oil commodities tending to be 

lower than that of the previous cycle.  The innovation of using a VECM to assess the 

relationship among commodity prices and output cycles provided the evidence that 

Super Cycles in output can effectively predict Super Cycles in real non-fuel commodity 

prices. 

They were the first that provided causal evidence of the relationship between 

commodity prices and output as it was first described in PSH. The literature before this 

novelty did not focus on prices directly but associated the output growth with the 

volatility in terms of trade of markets (Blattman, Hwang and Williamson (2004)) or 

accounted the increasing volatility of commodity prices as proxy of terms of trade 

deterioration (Jacks, Rourke and Williamson (2011)).  

A most recent part of empirical studies is based on the new dataset from Harvey, 

Kellard, Madsen and Wohar (2010) (KHMW). The dataset is compiled by annual data 

from 1650 to 2005 for 25 commodities. They try to investigate the PSH using 

techniques to assess the trend function and the existence of any possible structural 

breaks. They find evidence of a long run secular, deteriorating trend phenomenon for a 

significant proportion of primary commodities. In a later study (Harvey, Kellard, 

Madsen and Wohar (2012)), they include the Super Cycle methodology and compare 

their results to the GY database (as updated by (Pfaffenzeller et al. (2007)). They show 

that relative commodity prices present a significant and downward global trend. In 

addition, there is evidence of Super-Cycles with a lifecycle of twenty-seven years and 

short-run cycles are lasting four years. Their most recent study Harvey, Kellard, 

Madsen and Wohar (2017) employs the trend and breaks techniques on a Stationary 

VAR similar to the model of Erten and Ocampo (2012). As variables for the VAR they 

account for the combinations of commodity prices, GDP and interest rates. The 

evidence of the VAR shows that commodity prices Granger-cause income and interest 

rates, while interest rates Granger cause commodity prices. On the scope of the PSH, 

they find a downward trend with breaks over the entire industrial age for commodity 

prices. 

Using the KHMW dataset Bloch, Madsen, and Sapsford (2009) apply a Schumpeterian 

analysis to understand trend and cycle in the prices of primary commodities. They 

conclude showing that there is a downward trend in nominal commodity prices from 

the 17th through 19th Century and in the price of primary commodities relative to 

manufactures throughout our historical period, including the 20th Century.  The find 

evidence of the PSH but it is not in the exact scope of their analysis. Arezki , Hadri, 

Loungani, and  Rao (2014) perform advanced panel stationarity test on KHMW dataset. 

They find mixed results of the PSH, but with downward sloped regressions and possible 

structural breaks, evidence similar to previous studies with unit root methodology. 

Yamada and Yoon (2014) use the updated GY database (Pfaffenzeller et al. (2007)) for 

investigating the PSH. They incorporate the L1 – trend filter method for retrieving the 

long-term trend. For the majority of primary commodities, they find that their piecewise 
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linear trends are negatively sloped during some of the sample periods.  They conclude 

that the Prebisch–Singer hypothesis holds sometimes, but not always, for many of the 

primary commodities in the Grilli–Yang data. 

Winkelried (2015) extended the previous study with calibrating the L1 – trend filter for 

each specific series and investigated the presence of Super Cycles on the updated GY 

database (Pfaffenzeller et al. (2007)) and the KHMW dataset. The scope of the study is 

to revisit the trend and cyclical behavior of relative primary commodity prices. The 

findings regarding the PSH do not variate from the literature as the PSH holds in certain 

periods rather than universally. Super Cycles are present in every series in accordance 

with previous cycle literature. 

There is also a part of the literature that is not directly connected to the PSH literature 

but overlaps with the selected scopes of our study.   

Byrne, Fazio and Fiess (2010) apply PANIC and FAVAR in the updated GY database. 

They investigate the relationship of real commodity prices, real interest rate, and risk. 

There is evidence of co-movement of commodity prices, with a negative relationship 

between real interest rate and real commodity prices. These findings are similar to 

Harvey, Kellard, Madsen and Wohar (2017) where interest rate tends to Granger cause 

commodity prices. 

Stuermer (2013) uses annual data from 1840 to 2010 to construct a Structural VAR 

with long term restriction between world primary production of each mineral, real 

commodity prices and World GDP. The selected commodities were copper, lead, tin, 

zinc, and crude oil.  His findings suggest the partial support of PSH as the prices for 

copper show a significant negative linear trend. The trend is also negative but less 

significant for lead and zinc prices, but tin and crude oil do not present any trend. 

Similar to the VECM of Erten and Ocampo (2012), there are evidence of a relation 

between price fluctuations and the output demand rather than supply shocks. 

Zapata, Detre and Hanabuchi (2012) using a Christiano and Fitzgerald (CF) band-pass 

filter finds evidence of cycles in S&P 500, PPI for all commodities and specific for farm 

and food products, fuels, and metals that have an average length of 31years. 

Fernandez (2015) use the updated GY database (Pfaffenzeller et al. (2007)) trying to 

investigate the presence of short cycles and the possibility of co-movements of the 

commodity prices. There is evidence of short cyclical components on commodity prices 

and evidence of excess co-movement between the commodities. 

Erdem and Ünalmıs (2016) use different datasets form oil prices to investigate the 

presence of Cycle in the prices of oil.  They find evidence of short-term cycles, long-

term cycle, super cycles and the long-term trend of the real oil price. Evidence of Super 

Cycles are also present in copper and agriculture prices. A more analytical review of 

the selected literature can be found on the corresponding tables in Appendix A.
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4. Econometric Methodology 

In this section, the econometric methodology used in this study is presented. The 

econometric approach to investigate the presence of  trends and cycles in the prices of 

the commodities is based on the use of the Hamilton Filter. The first part involves the 

characteristics of the Hodrick-Prescott Filter and other frequency filters that are 

commonly implemented. The second part illustrates the innovative method of filtering 

as it is presented by Hamilton (2017).  The third part investigates the implication of the 

findings of the Hamilton filter in a macroeconomic setting.

 

4.1 Hodrick-Prescott Filter and other filters 

 

4.1.1 Hodrick-Prescott Filter 
 

The Hodrick and Prescott (1997, HP) filter has been used to extract the trend and cycle 

components of economic time series data. The filter proposed for interpreting the trend 

component tx
 by minimizing the objective function: 

 
2 2 2

1 3

( ) ( )
T T

t t hp t

t t

y x x
= =

− +    (1) 

Where T is the sample size. The 
t ty x−  component measures the errors and the 2

tx  

measures the smoothness of the trend. The smoothing parameter that controls the trade-

off between the size of the error and the smoothness of the trend is noted by 
hp , which 

is a continuous function of time. 

An alternative representation of (1) can be  

 
2 2

2 2hpy x Dx− + , (2)  

Where 1( ... ) ' T

ty y y R=  , 1( ... ) ' T

tx x x R=   and 2 1/2

2 ( )i iu u=   is the Euclidean or 

2 -norm  vector of u . D represents the second-order matrix that 

2 2 2

3( ... ) T

tDx x x R −=    that has the following form: 

 
( 2)

1 2 1

1 2 1

TD R − 

− 
 

=  
 − 

 (3) 

The solution to (1) is then given by  
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1( ' ) *hp

T hpx I D D y A y −= + =  (4) 

 

Where 
tI  is an identity matrix of size T . It is known that as 0, hp

hp x →  converges to 

the original series, whereas , hp

hp x →  approaches the linear trend that fits the data 

best. 

We can derive the cyclical component of the HP filter by  

 hp

t tc y x= −  (5)

4.1.2 The Band- Pass filters 

The band-pass filter proposed by Baxter and King (1999) takes the form of a two-sided 

moving average: 

 ( )
K

bp

k t k t

k K

x a y a L y−

=−

= =  (6) 

The weight can be derived from the inverse Fourier transform of the frequency response 

function. Baxter and king adjust the filter with a constrain that the sum of coefficients 

must be zero. The ( )a L  can be factored as 

 1( ) (1 )(1 ) *( )a L L L a L−= − −  (7) 

with *( )a L being a symmetric moving average with 1K − leads and lags.  

Christiano and Fitzgerald (2003) proposed two variations to the band-pass filter. The 

first varies on the choice of the objective function used to select the moving average 

weights. The second introduced a time-varying filter with weights both depending on 

the data and changing for each observation.  

In choosing between fixed length and full sample asymmetric methods, we should 

consider that the fixed length filters require that we use the same number of lead and 

lag terms for every weighted moving average. Thus, a filtered series computed using 

leads and lags observations will lose observations from both the beginning and end of 

the original sample. In contrast, the asymmetric filtered series do not have this 

requirement and can be computed to the ends of the original sample. 

Acknowledging the advantages of the Asymmetric Christiano and Fitzgerald filter there 

is an empirical methodology introduced in Cuddington and Jerrett (2008) and also 

implemented by Erten and Ocampo (2012). This empirical methodology using the 

Asymmetric Christiano and Fitzgerald filter focuses on the detection of super cycles 

with long time span. The natural logarithms of real commodity price indices are 

decomposed into three components: the long-term trend ( _ )LP T , the super-cycle 

component ( _ )LP SC  and the other shorter cycle component ( _ )LP O : 

 _ _ _t t t tLP LP T LP SC LP O + +  (8) 
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Considering how long a super cycle lasts Cuddington and Jerret, yielding a complete 

cycle of roughly 20–70 years. They extract the super-cycle component by applying the 

BP(20,70) filter to each price series:  

 _ _ (20,70)LP SC LP BP  (9) 

The long-term trend is defined as all the cyclical components with a period in excess of 

70 years:    

 _ _ (70, )LP T LP BP   (10) 

This approach allows the long-time trend to evolve over time. The remaining shorter 

cyclical components, that range with cycles of 2 through 20 years can be filtered: 

 _ _ (2,20)LP O LP BP  (11) 

The total “non-trend” components are defined as the total deviation from the long-term 

trend, or the summation of the super cycles with the other shorter cycles : 

 _ _ (2,20) _ (20,70)LP NT LP BP LP BP +  (12) 

Equivalently the cycle-trend decomposition in (8) can be written as follows: 

 

_ _ _

_ (70, ) _ (20,70) _ (2,20)

_ _

t t t t

t

t

LP LP T LP SC LP O

LP LP BP LP BP LP BP

LP LP T LP NT

 + +

  + +

 +

 (13) 

4.1.3 The 1 - filter   

An interesting variation to HP filter was proposed by Kim et.al(2009) replacing the 

Euclidean or  2  -norm with an 1 - norm, so the 1 -trend is obtained by minimizing 

the following objective function : 

 2 2

1

1 3

( ) | |
T T

t t t

t t

y x x
= =

− +    (14) 

or, in matrix notation, 

 2

2 1 1y x Dx− +  (15) 

where 1 ( )i iu u=  denotes the 1 - norm of the vector u . 

Because of the appearance of  1 - norm in the objective function, Kim et.al (2009) term 

their approach 1 -trend filtering, which generally produces piecewise linear trends. The 

objective in (14) and (15) that is strictly convex and coercive in x and has a unique 

minimizer. The solution to (14) is : 

 1( ... )lt lt lt T

Tx x x R=   (16) 
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where ‘lt’ stands for linear trend. The 1 -trend is a piecewise function of time that 

connects 1k + linear segments, where k  is the number of “structural breaks” in the 

series. The constant 
1  is a smoothing parameter, and Kim et.al(2009) show that like 

hp  when 
1 0 →  the ltx  converges to the original data 

ty , whereas as 
1 → it 

converges to the best affine fit to the data.  

The cyclical component of the 1 -trend filtering is: 

 lt

lt tc y x= −  (17) 

The question of how to properly calibrate 1 still remains. The task is complicated and 

the adequate calibration needs to be data-dependent. Yamada and Yoon (2014) set the  

1 =20 when using the CVX package in MATLAB. Winkelried (2015) implement the 

same fitting error criterion that combines the 
hp  and the 

1 , calibrating the filters 

individually for each series conditional of the fitting for specified values of the 

smoothing parameters. For the  

The drawbacks of using the above filters are being discussed among several studies. 

The HP filter is the one with the most shortcomings that are being outlined even in 

recent studies. Phillips and Jin (2015) concluded that the HP filter may not successfully 

de-trend even if the true series is only I (1). In addition, De Jong and Sakarya (2016) 

observed significant nonstationary stemming from observations near the end or the start 

of the sample, leading to the failure of the assumption of stationarity of the HP cycle. 

The BP filters tried to overcome some of the drawbacks with the Asymmetric 

Christiano and Fitzgerald filter achieving the most alleviation of the problems. 

Although, the use of weights still makes some underlying assumptions of the 

relationship of the filter with the selected data. Finally, the  
1
- filter seems to be the 

most adequate for the filtering process. However, the need for proper calibration and 

the deviations in the available methods in order to calculate the 
1
- norm, makes the 

use of it challenging. 

Hamilton (2017) proposes an alternative to the HP filter, that might overcome the 

drawbacks of the other filters, due to its simplicity of calculation and the lack of use of 

an a priori transformation function for the series.  He denotes the failure of the HP filter, 

as it introduces spurious dynamic relations that are an artifact of the filter and have no 

basis in the true data-generating process. His approach preserves the underlying 

dynamic relations and consistently estimates well-defined population characteristics for 

a broad class of possible data-generating processes. 

4.2 The Hamilton Filter  

If (1 )d

tL y−  is stationary for some 1d  , then for a finite 1h  , 

 (1) (2) ( ) 1 ( )d d h

t h h t h t h t ty k y k y k y w−

+ = +  + +  +  (18) 
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with (1 )s sL = − , (1) 1lk =  for 1,2,..l =  and ( ) ( 1)

1

js s

j ll
k k −

=
=  for 2,3, ,s d= and ( )h

tw

is a stationary process. 

Let 
1 1( , , , ,1)t t t t px y y y− − +

=  for some p d and consider an OLS estimation of 

t h t t hy x u+ +
= + for 1, ,t T=  with estimated coefficient : 

 

1

1 1

ˆ
T T

t t t t h

j j

x x x y

−

+

= =

   
=    

   
  . (19) 

If p d= , the OLS residuals ˆ
t hy x +

− converge to the variable ( )( ) ( )h h

t tw E w− in (18). 

If p d , the OLS residuals converge to the residuals from a population linear 

projection of ( )h

tw  on ( )1 1, , , ,1d d d

t t t p dy y y− − + +


   . 

The previous propositions establish that estimating an OLS regression of 
t hy +

 on a 

constant and the 4p = most recent values of y as of date t , 

 
0 1 2 1 3 2 4 3t h t t t t t hy y y y y u    + − − − += + + + + + , (20) 

the residuals   

 0 1 2 1 3 2 4 3
ˆ ˆ ˆ ˆ ˆˆ

t h t h t t t tu y y y y y    + + − − −= − − − − −  (21) 

offer a way to construct the stationary, or cyclical, component. 

The advantages of the proposed procedure over the HP filter can be summarized as the 

following. First, a true ability of y to predict x  is represented by and finding that 
t̂ hu +

 

predicts  some other variable 
t h jx + +

 . Second, the value of 
t̂ hu +

will be difficult to predict 

from variables dated t  and earlier. Third, the value of 
t̂ hu +

 is model-free and essentially 

an assumption-free summary of the data. With Hamilton (2017) approach, that can 

isolate a stationary component from an (4)I series, we can have consistently estimated 

population characteristics preserving at the same time the underlying dynamic relations. 

Hence, we get consistent estimations for the trend and the cycle characteristics of the 

underlying series. 

For the identification of turning points and the measurement of cycle durations, we 

follow the approach of Winkelried (2015). We date cycles using the algorithm of Bry 

and Boschan (1971). We identify turning points in ˆ
tu , that are the local maximum and 

minimum of the cycles. A local maximum is defined as peak and a local minimum as a 

trough, with peak and trough alternating. The window of the period to trace the turning 

points is calibrated for each cycle series, but we set values analogously to the super-

cycle methods, as they described. 

4.3 The Macroeconomic model 

Erten and Ocampo (2013) investigated the possibility of cointegration between real 

commodity prices and income. Harvey et. All (2017) apply a stationary VAR to assess 
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the relationship among commodity prices, economic activity and interest rate. To select 

among the two approaches, we have to test for a unit root. We apply the Zivot and 

Andrews unit root test with structural break both in constant and trend. This test is 

preferred to the usual ADF test, due to the findings and the characteristics of the selected 

macroeconomic variables that according to Harvey et. All (2017). Alongside with 

Harvey et. All (2017) there was evidence of stationarity with a broken trend, though we 

continue our approach using a stationary VAR, based on commodity prices, GDP series, 

and interest rates. A stationary VAR(p) is estimated: 

 
1 1 , 1, ,t t p t p tz u z z u t T− −= + + + + =  (22) 

Where 
1( , , )t t ktz z z = . The lag lengths are chosen by selecting the Schwartz from the 

selection criteria. An alteration to the original model comes from the inclusion to the 

VAR the commodity prices in the form of the cycle results of the Hamilton filter. 

In order to validate our approach, we perform the Granger causality test and compare 

the results along with those from Harvey et. Al (2017). 

5. The Dataset  

The extended Grilli-Yang data series comprises twenty-four, internationally traded, 

non-fuel commodities, that comprises of three different categories: Food, nonfood, and 

metals. The commodities are Aluminum, Banana, Beef, Cocoa, Coffee, Copper, Cotton, 

Hide, Jute, Lamb, Lead, Maize, Palm Oil, Rice, Rubber, Silver, Sugar, Tea, Timber, 

Tin, Tobacco, Wheat, Wool, and Zinc. The commodity prices are deflated by the United 

Nations Manufacturers Unit Value (MUV) index, with the MUV series reflecting the 

unit values of manufacturing exports from a number of industrial countries.  

The source of the data is http://www.stephan-pfaffenzeller.com/gycpi/, which is the 

latest revision maintained by Stephan Pfaffenzeller. Pfaffenzeller et al. (2007) extended 

the original Grilli-Yang data series until 2011. The sample period is from 1900 to 2011, 

with a total of 112 observations of annual data. 

We also use the eight aggregate commodity price indexes that are available for the same 

period. They correspond to the whole group of commodities, as it was originally 

indexed by Grilli and Yang, alongside with the subgroups of metals, non-food 

agricultural commodities, and food commodities. They are also comprised of two 

groups, one with arithmetic weights and one with geometric weights. As weights are 

being used the 1977 to 1979 values of world export for each commodity. The 

commodity price indexes are also deflated by the MUV index. 

For the historical macroeconomic data, we use datasets similarly to Harvey et. al (2017) 

and Erten and Ocampo (2013). In terms of economic activity, we source our data  from 

Angus Maddison’s data, covering from 1900 until 2010, by the Maddison Project 

available at https://www.rug.nl/ggdc/historicaldevelopment/maddison/. From the 

database there, we obtain the USA GDP, the UK GDP, the Chile GDP, and the World 

GDP. For the last annual series, there are available complete data from 1950 to 2010 

and point estimates for 1900,1913 and 1940. Analogously to Erten and Ocampo (2013), 

http://www.stephan-pfaffenzeller.com/gycpi/
https://www.rug.nl/ggdc/historicaldevelopment/maddison/
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we interpolate the missing world data using the note that the OECD GDP accounts for 

52%,54% and 55% of world GDP, respectively for each point estimate. 

Finally, the source of the historical interest rate is from the Bank of England, that has 

available annual data on long-term government bonds from 1703 and was retrieved 

from the Federal Reserve Bank of St. Louis (FRED). 

6. Empirical Analysis 

In this section, we present the outcomes of the application of the Hamilton filter to the 

Grilli and Young dataset.  For the beginning, we present the outcomes of the replication 

of all the previous filtering methods alongside the representation of the results of the 

Hamilton Filter. The first set of diagrams present the trends and cycles of the CPI for 

the sample period. In Figure 1, we observe similarities among the previous filtering 

methods, that tend to lead to the smoothed representation of the trend. On the contrary, 

the Hamilton filter leads to a more discrete trend that has many periods of an upward 

and downward trend. Moreover, the values of the Hamilton trend tend to be higher than 

the ones of the previous filters.  

Those differences stem from the unique methodology of the Hamilton filter since the 

presented results are mostly data driven series. However, the presence of more upward 

trends in the results of the filter makes the support of the PSH hypothesis more 

challenging.  

Figure 1: Trend representation of CPI 
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In Figure 2, we present the cycles of the different filters. The estimated Hamilton cycle 

differs also in this set. It follows the cyclical movements of the majority of the filters, 

with the main deviation of the larger scale of the reported values. Small variations in 
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the Hamilton cycle of CPI can be observed especially in the 1920s era.  The cycles 

appear to follow the super-cycle series as it is represented by the 1l -filter in Yamada 

and Yoon (2014). 

Similar findings to those of the two previous diagrams are observed in the whole 

dataset, not only in the aggregate series but also in the specific commodity series that 

are available (Figures for the whole dataset, that present the trend and cycle 

representations, can be found in Appendix B). 

Figure 2: Cycle representation of CPI 
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The Hamilton filter behaves differently from all the other filters. The estimated cycles 

have larger magnitude and the subsequent trends have more variation in their direction. 

Those preliminary results from the diagrams regarding the trend and cycles of the 

Hamilton filter are examined more thoroughly in the two following parts. 

6.1. Trends and the PSH Hypothesis 
 

We examine, the slope of the Hamilton trend for every commodity and the eight 

aggregate indexes. We are interested in the negative or downward trends that are 

present. Given their presence and adequate number, we can asses the longevity of the 

PSH hypothesis in the 20th century, under the scope of the Hamilton approach. 

Figure 3 shows the negative trends for each commodity from the late 1910s to 2010. It 

is evident that each commodity has its unique trend characteristics. Some have small 

consecutive years of downward trend, in contrast with others that present long periods 

of a negative trend. Such groups of commodities can be identified in each of the three 

major commodity types. In the case of the metals, we have the zinc and lead, with many 
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small periods of negative trend. On the contrary, silver, aluminum and copper exhibit 

some long periods of negative trend. From the group of non-foods commodities, we 

can distinguish as main representatives of this phenomenon the hide and jute. Finally, 

from the food commodities, the most representative groups are those of maize and lamb. 

It is worth to point out that there are certain periods, in which the prices of different 

commodities lack a downward trend. Those periods are not common for every 

commodity, but we can distinguish the most prominent. The first one can be 

characterized as the period of the Great Depression in the early 1930s. The second on 

then one of the WWII in the 1940s. In the same manner, the commodities tend to uphold 

their downward trend of their prices in periods of economic depression.  

The attempt to interpretate any relationship among the economic output and the price 

of commodities will be presented in the last part of the results. 

We subsequently display the negative trends from the aggregate commodity indexes. 

Figure 4 illustrates the periods of downward trend for all the indexes. It is obvious that 

we can distingue certain periods with upward trend. Those periods can be identified as 

the periods of economic depression, similarly to the analysis above. When we compare 

the trends from the weighted indexes to the ones with geometric weights, we can 

observe that longer periods tend to shorten, resulting in some cases to lesser 

observations. 

 

 

Our figures vary from the ones reported from Yamada and Yoon (2014) and Winkelried 

(2015). This variation stems from the difference in our methodological approach. 

However, we can draw certain results regarding the PS Hypothesis. Most of the 

commodities exhibit slopes of their trends that are negative, for more than the half of 

the examined periods. Only three commodities, namely maize, beef and zinc, fail to 

hold the majority of their tredns’ slopes negative. Therefore, we find strong evidence 

that the Prebisch-Singer Hypothesis holds sometimes for these commodities.  

1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

Figure 4 : Periods of downward Hamilton trends for aggregate indexes 
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Figure 3 : Periods of downward Hamilton trends for commodities
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However, the strength of the hypothesis weakens during periods of economic 

depressions, where many commodity prices tend to increase. A similar picture emerges 

from the evaluation of the PS hypothesis on the aggregate commodity price indexes. 

Most indexes exhibit negatively sloped trends for most of the sample periods. The only 

index that fails to support the PSH is the metals one with geometric weights. Our 

findings are similar to the ones from Yamada and Yoon (2014) and Winkelried (2015). 

The Prebisch-Singer Hypothesis holds sometimes for the most periods in the data set. 

6.2. Hamilton Cycles 
From what we have seen in the first part of our analysis, we observed that the cycles 

that are extracted from the Hamilton filter pay many resemblances to the ones of the 

HP filter, the CF asymmetric filter and the two cycles of the variation of the 1l -filter in 

Winkelried (2015). However, we have noted that the cycles in Hamilton tend to have 

somewhat different periods and higher magnitude. The presence of cycles tends to have 

an effect on the price of the commodities as it variates the subsequent trend of each 

commodity. Following the approach of Winkelried (2015), we try to identify the 

periods that those discrepancies are apparent. Table 1 reports the turning points 

associated with the aggregate price indexes and Table 2 reports the turning points 

associated with each commodity price. 

Our findings are mainly in agreement with the previously documented literature of 

Super Cycles (Cuddington and Jerrett, 2005; Erten and Ocampo,2013; Winkelried, 

2015). The Hamilton cycles tend to have a resemblance to the Super Cycles but are in 

a degree shorter in length and suggest the presence of one or more cyclical waves.  

From Table 1 we can identify that the median of peaks and troughs is three for the 20th 

century. This suggests the presence of three cyclical waves during the sample period. 

The median duration of a contractionary phase, i.e. the transition from peak to trough 

is around 10 years and of an expansionary phase, i.e. the transition from through to peak 

is about 20 years, suggesting a cycle duration of 30 to 35 years. This is the main 

variation from the Supercycles evidence previous literature has identified. 

We observe that the aggregate indexes of the food and non-food commodities have 

similar cyclical behavior to the one of the CPI. In contrast, the aggregate index of the 

metals has a shorter contractionary phase and greater expansionary phase. When we 

examine the geometrically weighted indexes, we do not observe variations in the 

previous results for the CPI_CW and CPIM_CW. The differences are evident on the 

geometrical indexes of food and non-food, with additional peaks and troughs identified, 

leading to shorter cycles of around 20 years with the contractionary phase of 9 years 

and of expansionary phase of 12 years. 

In Table 2 we present the associated turning points for each commodity price along 

with the number of peaks and troughs. There we can identify some distinctive patterns 

among groups of commodities. Food prices have in median three cycle waves, with 

duration from 24 to 35 years. The expansionary phase and contractionary phase vary 

among the different food prices. Metals have in median more than four peak and 

troughs, with shorter duration (25 years). The expansionary phase is shorter than the 

contractionary phase for most metals. The remaining commodities have in median 
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around three cycle waves, with duration from 25 to 51 years. The expansionary phase 

and contractionary phase vary among the different non-food prices. 

Table 1: Turning points and duration of Hamilton Cycles for aggregate indexes 

 

Moreover, most prices produce a peak and a trough surrounding 1920 (the end of the 

American industrialization momentum), a peak or a trough during the 1950s (the 

reconstruction of Europe) or 1970s and 1980s (the recession in US and Japan) and a 

trough in late 1990s (early recession in western world). Notably, most prices produce a 

peak in the late 2000s (the recent recession of 2008), which in some cases are followed 

by a trough in the subsequent following years. 

 It is evident that the Hamilton Cycles are somewhat shorter than the previously 

documented literature of Super Cycles and have at least one cycle wave. In addition to 

this, the expansion of the sample date until 2010 allows for the incorporation of the 

effects of the recent recession of 2008. The cyclical behavior is apparent for the 

commodities and their indexes and the analysis of the interactions with macroeconomic 

data is evident from the recent literature. (Erten and Ocampo,2013; Harvey et al., 2017) 

We can still observe the presence of values of high correlation among the cycle series 

of the commodities, as it is presented in Table 3. In order to evaluate which cyclical 

component is leading, we imply the Granger Causality test in the VAR of the 

commodity cycles. From Table 4 we can observe that certain commodities tend to cause 

other commodities more often than others. The main leading components are those of 

Aluminum, Copper, Cotton, Lamb, Lead, Maize, Timber and Wool. There are also 

bidirectional causalities showing that certain commodities tend to co-move during the 

cycle period. These findings are similar to those of Fernandez (2015) that validate the 

presence of co-movements among the commodities. In analogy, we perform the same 

test for VAR with the groups of Food, Metals and Non-food commodities (Tables 5 

to7). We are able to identify also, in this case, certain commodities that are leading the 

cycle of the other commodities for every different group.  

 

  Peaks ( P )  Troughs (T ) Mean Duration in Years 

 
PN  Dates 

TN  Dates P P→  T T→  T P→  P T→  

CPI 3 1929,1974 ,2008 3 1921,1933,1982, 39 30.5 25 6 

CPIM 3 1929,1955,2007 3 1924,1945,1993 39 34.5 9.6 27 

CPINF 3 1940,1979,2007 4 1921,1959,1986,2009 33.5 29.3 20 9.3 

CPIF 3 1947,1974,2008 3 1933,1958,1982 30.5 24.5 18.6 9.5 

CPI_CW 3 1929,1974,2008 3 1921,1933,1992 39.5 35.5 21.6 11 

CPIM_CW 3 1929,1955,2007 3 1924,1945,1993 39 34.5 9.6 27 

CPINF_CW 4 1940,1951,1979,2007 4 1931,1949,1967,1986 22.3 18.3 12.5 8.6 

CPIF_CW 4 1929,1947,1974,2008 5 1921,1933,1962,1992,2009 26.3 22 12.5 9.5 
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Table 2: Turning points and duration of Hamilton Cycles for commodity prices 

  Peaks ( P )  Troughs (T ) Mean Duration in Years 

 
PN  Dates 

TN  Dates P P→  T T→  T P→  P T→  

Banana 3 1932,1982,2008 3 1919,1974,1999 38 40 10 29.5 

Beef 4 1931,1960,1983,2004 4 1923,1951,1975,1996 24.3 24.3 8.25 16 

Cocoa 3 1954,1973,2008 3 1923,1962,1993 27 35 19 14 

Coffee 3 1929,1954,1977 4 1921,1940,1962,1992 24 23.6 12.3 11.3 

Lamb 4 1935,1960,1983,2003 4 1923,1950,1975,1995 22.6 24 9.5 14 

Maize 3 1929,1974,2008 3 1921,1955,1992 39.5 35.5 14.3 22 

Palm Oil 3 1941,1998,2008 3 1926,1986,2005 33.5 39.5 10 26 

Rice 3 1926,1974,2008 3 1920,1936,1982 41 31 23.3 9 

Sugar 3 1920,1974,1993 3 1931,1982,2004 36.5 36.5 27 46 

Tea 3 1928,1954,1984 4 1921,1946,1973,1992 28 23.6 35.5 15 

Wheat 3 1947,1974,2008 3 1923,1954,1982 30.5 29.5 23.3 7.5 

Cotton 4 1923,1946,1976,1994 3 1931,1970,1992 23.6 30.5 7.6 46.5 

Hide 3 1930,1979,2001 4 1923,1958,1981,2009 35.5 28.6 16 12.6 

Jute 3 1951 ,1984,2006 4 1933,1959,1993,2007 27.5 24.6 18.6 6 

Rubber 3 1940,1980,2007 4 1933,1971,1992,2009 33.5 25.3 10.3 21.5 

Timber 4 1918,1941,1974,2007 3 1926,1949,1986 29.6 30 20.3 38 

Tobacco 4 1920,1935,1983,2002 4 1929,1942,1993,2005 27.3 25.3 18.6 34 

Wool 2 1951,2007 2 1932,1981 56 49 22.5 30 

Aluminum 4 1931,1955,1981,2006 4 1924,1947,1973,1993 25 23 9 15.3 

Copper 4 1929,1953,1989,2007 4 1924,1945,1978,1998 26 24.6 8.25 16.6 

Lead 3 1952,1979,2007 3 1933,1962,1987 27.5 27 18.6 9 

Silver 3 1919,1935,1980 3 1921,1943,1991 30.5 35 25.5 40 

Tin 5 1925,1939,1965,1980,2008 5 1921,1943,1959,1973,1991 20.75 17.5 6 14.5 

Zinc 4 1929,1975,1989,2006 5 1923,1958,1982,1998,2008 25.6 21.25 9.5 15 
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Since our next step is to evaluate the composite commodity prices indexes, we also 

perform the previous test to the prices of the commodities alongside with the index. 

From Table 8 we can observe nine commodities leading the CPI, namely Copper, 

Cotton, Lamb, Silver, Timber, Tobacco, Wheat, Wool and Zinc. Causal bidirectional 

relation with the CPI is found for four of them. We perform these tests for the leading 

components for all the indexes and the corresponding commodities (Tables 9 to 14).  

We notice certain commodities to maintain their lead regardless of the index, showing 

evidence of being the leading elements for the prices. Although aggregation for the 

cyclical components may lead to wrong results, the most noticeable cases of 

commodities are those of Maize, Rice, Aluminum, Silver, Cotton and Wool.

 

6.3 Stationary VAR analysis with macroeconomic variables 
 

To assess whether the approach is appropriate for the relationship among the 

commodity prices, the economic activity and the interest rate we test each series for 

unit root. Table 15 presents results from Zivot and Andrews unit root test with structural 

break both in constant and trend.  

The selection of the Zivot and Andrews unit root test is due to the findings and the 

characteristics of the selected macroeconomic variables that according to Harvey et. All 

(2017). We find evidence of stationarity of all the series and we proceed in analogy to 

Harvey et. All (2017) with the estimation of a stationary VAR. Analyzing the 

relationships among the Hamilton cycle series of the commodities, the GDP series, and 

the interest rate, we show in the following tables the results of the Granger causality 

tests, within different VAR frameworks. 

Table 15: Unit root tests 

  ZA 

CPI  0.000828*** 

CPI_CW  0.000473*** 

CPIF  0.000936*** 

CPIF_CW  0.001106*** 

CPIM  0.051954* 

CPIM_CW  0.005318*** 

CPINF  0.040362** 

CPINF_CW  -6.293131^ 

GDP World  0.003964 *** 

GDP US  0.000637*** 

GDP UK  0.001925*** 

GDP Chile  0.001270 *** 

Interest Rate  0.007634*** 

Note: *, **, *** denote the 10%,5%,1% significance level respectively. ^ notes the 

Lee Strazicich LM t-stat at a 5% significance level with two structural breaks. 
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Table 16 shows the results of different Granger causality tests in the Framework of the 

CPI cycle component as a proxy for the commodity prices. We detect causality running 

from the cycle of commodity prices to the GDP of Chile when we refer to a VAR of 

CPI and a joint GDP series of Chile. There is also evidence of one-way causality 

running from CPI to the interest rate in the corresponding VAR. We, therefore, apply a 

VAR framework corresponding to different GPD series, with the CPI and Interest rate. 

We find bidirectional causality between the interest rate and the CPI and one-way 

causality, running from the World GDP to CPI, in the subsequent VAR. When we 

account for the US GDP in the VAR, we find also a bidirectional causality between 

interest rate and the CPI. Similarly, there is bidirectional causality between the CPI and 

the interest rate in the VAR that accounts for the UK GDP as an alternative for the GDP. 

Finally, the VAR, that examines the relationship of the GDP of Chile with the CPI and 

the interest rate, finds evidence of bidirectional causality between the GDP of Chile and 

the CPI and between the interest rate and the CPI.  

In Table 17 we present the results of the causality test in the framework that accounts 

for the CPIF (CPI of food commodities). There is a causality running from the CPIF to 

the GDP of Chile and a causality running from CPIF to interest rate, in the 

corresponding VAR frameworks. In the VAR frameworks, that have as endogenous all 

three variables, we find a bidirectional causality running between the CPIF and interest 

rate. In the case of the UK GDP, the causality runs only from the CPIF to the interest 

rate. Surprisingly, there is one-way causality running from the interest rate to the US 

GDP in the specific VAR framework. For the remaining framework, that integrates the 

Chile GDP, we find two bidirectional causalities, one between the CPIF and interest 

rate and one among causality the CPIF and the Chile GDP. 

In Table 18 we have some differences in the results of the Granger Causality tests. For 

the first five VAR frameworks, we can only find evidence of causality running from 

the Chile GDP to the CPIM (CPI of metal commodities). A bidirectional causality is 

evident among the World GDP and the interest rate, with the World GDP Granger 

causing the CPIM, in the subsequent VAR. For the VAR, that integrate three variables 

and the proxy of Chile GDP, we find that GDP series of the Chile GDP Granger causes 

the CPIM, with the interest rate Granger causing the CPIM.  In the framework with the 

US GDP, a Granger causality is running from the interest rate to the US GDP. The 

framework with the UK GDP fails to identify any causality. 

When we account for the CPI of non-food commodities (CPINF) the identified causal 

relationships are fewer (Table 19). We find a causality funning from CPINF to the 

interest rate. In the VAR frameworks with three variables, there are significant findings 

only when we account for the World GDP and the US GDP. We find evidence of 

causality running from World GDP to the CPINF and a causality running from the 

interest rate to the CPINF. For the VAR with the US GDP, we find causality running 

from interest rate to the US GDP and causality running from CPINF to the interest rate. 

No causal relationship was evident in the VAR framework with the UK GDP. 



25 
 

To account for the validity of our causality results and to explore possible relationships 

that arise from the different aggregation of the indexes we incorporate in the previous 

VAR frameworks the geometrically aggregated indexes of the commodity prices 

(CPI_CW, CPIF_CW, CPIM_CW, and CPINF_CW).  

Regarding the findings of the Granger causality test for the CPI_CW, we observe some 

differences from the previous iteration of the CPI. There are three new causal 

relationships that arise, two in the VAR frameworks with two variables and one in the 

framework with three variables and the US GDP (Table 20). The first is the one-way 

Granger causality running from the CPI_CW to the UK GDP. The second one is the 

bidirectional causality between Chile GDP and CPI_CW. The last Granger causality 

runs from the interest rate to the US GDP.  In Table 21, no new findings rise, but the 

same causal relations are evident for each of the different VAR frameworks, in analogy 

to the findings of CPIF. 

There are two VAR frameworks with the CPIM_CW, that exhibit new findings, 

regarding the Granger causality (Table 22). There is bidirectional causality between 

CPIM_CW and the Chile GDP, in the subsequent VAR. We also identify for the first 

time a Granger causality running from the US GDP to the CPIM_CW, the sole evidence 

of causality among US GDP and a commodity index. 

Finally, in the VAR frameworks with the CPINF_CW (Table 23) some new causalities 

are evident and only two remain significant in comparison to the findings regarding the 

CPINF. There is evidence of causality running from the CPINF_CW to the UK GDP 

and also from the CPINF_CW to the Chile GDP, in the VARs that integrate these 

iterations of GDP. Moreover, we find evidence of a Granger causality between the 

CPINF_CW and the World GDP and a Granger causality from the CPINF_CW to the 

UK GDP. Finally, the two causal relations that are still significant are those of the 

interest rate towards the US GDP and the CPINF_CW towards the interest rate, in the 

corresponding VAR iteration. 

Taken as a whole the results in the following tables we can confirm that commodity 

prices tend to Granger cause mainly the economic activity of the Chile and interest 

rates, while the interest rate tends to Granger cause prices and the GDP of US. We also 

observe that the World GDP Granger causes the CPI, CPIM, and CPIM_CW in the 

specific VAR frameworks. Interestingly, these implications pay resemblance to the 

findings of Harvey et al. (2017), even though our analysis is based on a smaller dataset 

and with alternative approximations for the commodity prices. 

7. Concluding Remarks 

This study examines the presence of trends and cycles in the commodity prices, by 

introducing an alternative filtering method in order to obtain the trend and cycle of the 

underlying commodities. We utilize the Hamilton filter, using the extended Grilli and 

Yang dataset from 1900 to 2011. The empirical analysis focuses on three different 

paths. First, we examine the validation of the PSH in the findings of the trend series, 



26 
 

acquired by the Hamilton filter. Then we evaluate the characteristics of the cycle series. 

Finally, we focus on the relationship between the commodity prices, the interest rate, 

and the economic activity. 

Considering the replication of previous studies that utilize different filters, we compare 

our findings from the Hamilton filter to them. We observe that the series obtained from 

the new filtering method have different characteristics. The trends tend to have higher 

variation than before. The cycles tend to have higher magnitude compared to those of 

the other filters. 

The results from the trend analysis, validate the presence of a downward trend for most   

of the commodities and the aggregate indexes. This suggests that the Prebisch-Singer 

Hypothesis holds sometimes, but not in periods of economic depressions. 

Furthermore, we try to identify the turning points and the length of the cycles of 

commodity prices. Our findings indicate the presence of cycles that are marginally 

shorter than the previously documented Super Cycles. Moreover, we show that the 

resent economic depression of 2009 produces an additional cycle wave to the ones 

previously identified during periods of economic downturns. Results from the Granger 

causality of the cycles show that certain prices of commodities are leading the cyclical 

components of the prices of the remaining commodities and the underlying indexes. 

Following the recent work that suggested the presence of relations among economic 

activity, interest rates, and commodity prices, we adopt a stationary VAR approach that 

assesses different ranges of economic activities with the different composite price 

indexes. The causality analysis confirms the existence of certain relationships. There is 

evidence that commodity prices Granger-cause interest rate and mainly the GDP Chile, 

while interest rate Granger causes commodity prices and the economic activity of the 

US. Moreover, there is a causality running from the economic activity of the world 

towards the commodity prices. The results pay resemblance to the findings of Harvey 

et al. (2017). From an economic policy perspective, our results indicate that any changes 

in the monetary policy have a significant effect on the commodity prices and the 

economic activity of large economies like the US. Moreover, any change in commodity 

prices has a significant effect on the exporting countries that have smaller economic 

activity and are not that diverse, in respect of terms of trade. Finally, the global 

economic activity has a direct effect on the prices of most of the commodities except 

for the ones related to food consumption. Since commodity prices have a significant 

role in the advancement of the economic activity of the exporting countries, any 

variations of them must be taken into consideration before policymakers implement any 

policy that can affect the economic activity. 
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9. Tables of Results 

  Table 3: Correlation Matrix of Commodities 

 

 

Aluminum Banana Beef Cocoa Coffee Copper Cotton Hide Jute Lamb Lead Maize
Palm 

Oil
Rice Rubber Silver Sugar Tea Timber Tin Tobacco Wheat Wool Zinc

Aluminum
1.00

Banana 0.56 1.00

Beef 0.25 -0.07 1.00

Cocoa 0.07 0.12 -0.25 1.00

Coffee 0.12 0.27 -0.44 0.70 1.00

Copper 0.40 0.29 0.07 0.35 0.22 1.00

Cotton -0.39 -0.26 -0.30 0.31 0.46 0.09 1.00

Hide 0.02 -0.16 0.11 0.20 -0.01 0.05 0.10 1.00

Jute 0.04 0.18 -0.03 0.29 0.32 0.42 0.40 0.23 1.00

Lamb 0.32 -0.03 0.79 -0.34 -0.46 -0.08 -0.29 0.00 -0.22 1.00

Lead 0.08 0.34 -0.25 0.55 0.49 0.68 0.38 -0.08 0.51 -0.26 1.00

Maize -0.02 0.06 0.01 0.34 0.22 0.40 0.46 0.24 0.44 0.03 0.48 1.00

Palm Oil 0.12 -0.04 0.08 0.43 0.27 0.39 0.43 0.20 0.43 0.16 0.46 0.66 1.00

Rice -0.23 0.10 -0.23 0.50 0.42 0.38 0.31 -0.20 0.35 -0.25 0.62 0.31 0.28 1.00

Rubber 0.14 0.16 -0.15 0.38 0.30 0.57 0.23 0.13 0.38 -0.05 0.53 0.28 0.32 0.51 1.00

Silver 0.35 0.09 0.09 0.47 0.35 0.33 0.24 -0.13 0.13 0.19 0.46 0.37 0.48 0.33 0.35 1.00

Sugar -0.34 -0.42 -0.16 0.29 0.08 0.22 0.53 0.06 0.07 -0.14 0.28 0.40 0.26 0.35 0.25 0.24 1.00

Tea 0.26 0.44 -0.17 0.30 0.52 0.21 0.27 -0.14 0.35 -0.03 0.35 0.05 0.24 0.34 0.40 0.13 -0.22 1.00

Timber -0.17 -0.42 0.15 0.17 -0.03 0.24 0.45 0.29 0.11 0.08 0.16 0.39 0.52 -0.02 0.17 0.13 0.46 -0.11 1.00

Tin 0.41 0.29 0.05 0.52 0.44 0.47 0.28 -0.04 0.36 0.16 0.62 0.49 0.60 0.43 0.47 0.81 0.14 0.39 0.14 1.00

Tobacco -0.02 0.00 -0.01 -0.19 0.07 -0.33 0.23 -0.41 0.07 0.15 -0.12 -0.03 0.00 -0.17 -0.35 0.10 -0.12 0.14 -0.13 0.03 1.00

Wheat -0.11 -0.11 -0.09 0.48 0.21 0.36 0.39 0.17 0.42 -0.14 0.54 0.71 0.52 0.45 0.25 0.43 0.54 -0.12 0.27 0.42 -0.03 1.00

Wool 0.06 0.17 -0.21 0.29 0.23 0.38 0.42 0.00 0.40 -0.12 0.54 0.47 0.43 0.26 0.32 0.31 0.24 0.26 0.30 0.42 0.21 0.43 1.00

Zinc 0.24 0.22 -0.05 0.39 0.21 0.71 0.11 0.33 0.45 -0.20 0.56 0.40 0.27 0.36 0.63 0.22 0.29 0.11 0.21 0.43 -0.49 0.42 0.29 1.00
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Table 4: VAR Granger Causality test for all Commodities  

Beef → Aluminum Lamb → Aluminum Lead → Aluminum Maize → Aluminum Silver → Aluminum Tea → Aluminum 

0.0245 0.0423 0.0357 0.0342 0.0000 0.0347 

Copper → Banana Cotton → Cocoa Tea → Cocoa Timber → Cocoa Coffee → Cotton Cocoa → Copper 

0.0345 0.0419 0.0282  0.0296 0.0101 0.0384 

Coffee → Copper Hides → Copper Maize → Copper Timber → Copper Tobacco → Copper Maize → Cotton 

0.0468 0.0077 0.0194 0.0005 0.0319 0.0008 

Wheat → Cotton Aluminum → Hides Beef → Hides Jute → Hides Lamb → Hides Lead → Hides 

0.0078 0.0447 0.0002 0.0048 0.0008 0.0010 

Rubber → Hides Wool → Hides Zinc → Hides Aluminum → Jute  Copper → Jute Wheat → Jute 

0.0447 0.0001 0.0010 0.0064 0.0313 0.0018 

Aluminum → Lamb Coffee → Lamb Tin → Lamb Wheat → Lamb Zinc → Lamb Aluminum → Lead 

0.0433 0.0482 0.0476 0.0156 0.0411 0.0034 

Beef → Lead Copper → Lead Cotton → Lead Hides → Lead Lamb → Lead Timber → Lead 

0.0374 0.0081 0.0059 0.0102 0.0012 0.0001 

Tobacco → Lead Wool → Lead Zinc → Lead Banana → Maize Copper → Maize Cotton → Maize 

0.0080 0.0002 0.0005 0.0127 0.0013 0.0003 

Lead → Maize Rubber → Maize Tobacco → Maize Zinc → Maize Copper → Palm Oil  Lamb → Palm Oil 

0.0026 0.0095 0.0425 0.0243 0.0174 0.0122 

Aluminum→ Rice Copper → Rice Rubber → Rice Timber → Rice Wool → Rice Aluminum → Rubber 

0.0343 0.0344 0.0418 0.0041 0.0024 0.0044 

Beef → Rubber Copper → Rubber Lamb → Rubber Maize → Rubber Rice → Rubber Timber → Rubber 

0.0097 0.0002 0.0419 0.0419 0.0437 0.0000 

Banana → Silver Tea → Silver Timber → Silver Tin → Silver Wool → Silver Aluminum → Sugar 

0.0403 0.0416 0.0112 0.0030 0.0279 0.0138 

Copper → Sugar Lamb → Sugar Lead → Sugar Maize → Sugar Tea → Sugar Wool → Sugar 

0.0000 0.0433 0.0024 0.0900 0.0216 0.0115 

Copper → Timber Lamb → Timber Lead →Timber Wool →Timber Cocoa → Tin Cotton → Tin 

0.0076 0.0309 0.0413 0.0038 0.0487 0.0047 

Hides → Tin Lamb → Tin Maize → Tin Tea → Tin Timber → Tin Tobacco → Tin 

0.0289 0.0016 0.0045 0.0236 0.0000 0.0280 

Wool → Tin Aluminum → Tobacco Rubber → Tobacco  Zinc → Tobacco  Timber → Wheat Coffee → Wool 

0.0012 0.0417 0.0481 0.0320 0.0010 0.0234 

Cotton → Wool Timber→ Wool Aluminum → Zinc Copper → Zinc Jute → Zinc Lead → Zinc 

0.0066 0.0108 0.0047 0.0315 0.0367 0.0017 

Timber → Zinc Tobacco → Zinc     

0.0062 0.0199     

      

Note: Tabulated numbers are p -values. All reported values are the statistically significant ones from VAR of all the Hamilton Cycles for each commodity 
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Table 5: VAR Granger Causality test for Food Commodities  

Wheat → Beef  Coffee → Cocoa Maize → Cocoa Rice → Coffee Wheat → Lamb Palm Oil → Maize 

0.0084 0.0394 0.0039 0.0043 0.0063 0.0338 

Lamb  → Palm Oil   Banana → Sugar Rice → Sugar Banana → Tea  Beef → Tea Lamb → Tea 

0.0244 0.0109 0.0166 0.0242 0.0015 0.0081 

Maize → Tea  

0.0332 

Note: Tabulated numbers are p -values. All reported values are the statistically significant ones from VAR of the Hamilton Cycles for each commodity 

      

 

Table 6: VAR Granger Causality test for Metal Commodities  

Silver → Aluminum Aluminum → Lead Tin → Silver Lead → Tin  

0.0077 0.0074 0.0498 0.0095 

Note: Tabulated numbers are p -values. All reported values are the statistically significant ones from VAR of the Hamilton Cycles for each commodity 

      

 

Table 7 : VAR Granger Causality test for Non-Food Commodities  

Hides → Cotton Wool → Hides  Cotton →   Jute Timber →   Jute Cotton → Rubber  Jute → Rubber 

0.0369 0.0001 0.0053 0.0141 0.0290 0.0277 

Timber →   Rubber Wool → Rubber Hides →   Timber Wool →   Timber Cotton → Tobacco Rubber → Tobacco 

0.0000 0.0495 0.0092 0.0059 0.0458 0.0004 

Timber → Tobacco Timber → Wool     

0.0377 0.0274     

Note: Tabulated numbers are p -values. All reported values are the statistically significant ones from VAR of the Hamilton Cycles for each commodity 

      

 

Table 8: VAR Granger Causality test for Food Commodities and CPI 

Copper → CPI Cotton → CPI Lamb → CPI Silver → CPI Timber → CPI Tobacco → CPI 

0.0000 0.0002 0.0010 0.0159 0.0019 0.0122 

Wheat → CPI Wool → CPI Zinc → CPI    

0.0231 0.0015 0.0059    

 CPI → Cotton CPI → Lamb  CPI → Tea CPI → Timber CPI → Tobacco   

0.0076 0.0473 0.0039 0.0002 0.0011  

Note: Tabulated numbers are p -values. All reported values are the statistically significant ones from VAR of the Hamilton Cycles for each commodity 

      

 



34 
 

 

Table 9: VAR Granger Causality test for Food Commodities and CPI_CW 

Copper → CPI_CW Cotton → CPI_CW Lamb → CPI_CW Wheat → CPI_CW Wool → CPI_CW CPI_CW → Timber 

0.0000 0.0011 0.0039 0.0449 0.0332 0.0299 

Note: Tabulated numbers are p -values. All reported values are the statistically significant ones from VAR of the Hamilton Cycles for each commodity 

      

 

Table 10: VAR Granger Causality test for Food Commodities and CPIF 

Maize → CPIF Rice → CPIF Sugar → CPIF Wheat → CPIF CPIF → Lamb  

0.0027 0.0267 0.0088 0.0148 0.0174  

Note: Tabulated numbers are p -values. All reported values are the statistically significant ones from VAR of the Hamilton Cycles for each commodity 

      

 

Table 11: VAR Granger Causality test for Food Commodities and CPIF_CW 

Coffee → CPIF_CW Maize → CPIF_CW Rice → CPIF_CW 

0.0337 0.0311 0.0028 

Note: Tabulated numbers are p -values. All reported values are the statistically significant ones from VAR of the Hamilton Cycles for each commodity 

      

 

Table 12: VAR Granger Causality test for Food Commodities and CPIM_CW 

Aluminum → CPIM_CW Copper → CPIM_CW Lead → CPIM_CW Silver → CPIM_CW 

0.0166 0.0174 0.0209 0.0012 

Note: Tabulated numbers are p -values. All reported values are the statistically significant ones from VAR of the Hamilton Cycles for each commodity 

      

 

Table 13: VAR Granger Causality test for Food Commodities and CPINF 

Cotton → CPINF Jute → CPINF Timber → CPINF CPINF → Tobacco CPINF → Wool 

0.0147 0.0256 0.0128 0.0046 0.0145 

Note: Tabulated numbers are p -values. All reported values are the statistically significant ones from VAR of the Hamilton Cycles for each commodity 

 

Table 14: VAR Granger Causality test for Food Commodities and CPINF_CW 

Cotton → CPINF_CW Wool → CPINF_CW 

0.0363 0.0278 

Note: Tabulated numbers are p -values. All reported values are the statistically significant ones from VAR of the Hamilton Cycles for each commodity 
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Table 16: VAR Granger Causality test for CPI 

World GDP →CPI CPI→ World GDP US GDP →CPI CPI→ US GDP UK GDP →CPI CPI→ UK GDP 

0.1682 0.3561 0.4385 0.9184 0.2930 0.0595 

   

Underlying VAR (CPI and World GDP) Underlying VAR (CPI and US GDP) Underlying VAR (CPI and UK GDP) 

   

Chile GDP →CPI CPI→ Chile GDP Interest Rate →CPI CPI→ Interest Rate   

0.0556 0.0288* 0.0567 0.0037*   

   

Underlying VAR (CPI and Chile GDP) Underlying VAR (CPI and Interest Rate)  

   

   

World GDP →CPI Interest Rate →CPI CPI→ World GDP Interest Rate → World GDP CPI→ Interest Rate World GDP → Interest Rate 

0.0037* 0.0037* 0.3335 0.7372 0.0048* 0.2553 

      

Underlying VAR (CPI, World GDP and Interest Rate) 

      

US GDP →CPI Interest Rate →CPI CPI→ US GDP Interest Rate → US GDP CPI→ Interest Rate US GDP → Interest Rate 

0.1078 0.0037* 0.3335 0.7372 0.0046* 0.7394 

      

Underlying VAR (CPI, US GDP and Interest Rate) 

      

UK GDP →CPI Interest Rate →CPI CPI→ UK GDP Interest Rate → UK GDP CPI→ Interest Rate UK GDP → Interest Rate 

0.1025 0.0198* 0.2092 0.7806 0.0092* 0.5648 

      

Underlying VAR (CPI, UK GDP and Interest Rate) 

      

Chile GDP →CPI Interest Rate →CPI CPI→ Chile GDP Interest Rate → Chile GDP CPI→ Interest Rate Chile GDP → Interest Rate 

0.0053* 0.0146* 0.0205* 0.3637 0.0048* 0.2906 

      

Underlying VAR (CPI, Chile GDP and Interest Rate) 

Note: Tabulated numbers are  p -values. * denotes the potential of a Granger causality 
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Table 17: VAR Granger Causality test for CPIF 

World GDP →CPIF CPIF→ World GDP US GDP →CPIF CPIF→ US GDP UK GDP →CPIF CPIF→ UK GDP 

0.5426 0.6650 0.8112 0.9175 0.7489 0.0816 

   

Underlying VAR (CPIF and World GDP) Underlying VAR (CPIF and US GDP) Underlying VAR (CPIF and UK GDP) 

   

Chile GDP →CPIF CPIF→ Chile GDP Interest Rate →CPIF CPIF→ Interest Rate   

0.2119 0.0165* 0.1454 0.0073*   

   

Underlying VAR (CPIF and Chile GDP) Underlying VAR (CPIF and Interest Rate)  

   

   

World GDP →CPIF Interest Rate →CPIF CPIF→ World GDP Interest Rate → World GDP CPIF→ Interest Rate World GDP → Interest Rate 

0.0545 0.0160* 0.6478 0.8349 0.0120* 0.5358 

      

Underlying VAR (CPIF, World GDP and Interest Rate) 

      

US GDP →CPIF Interest Rate →CPIF CPIF→ US GDP Interest Rate → US GDP CPIF→ Interest Rate US GDP → Interest Rate 

0.2608 0.0465* 0.5176 0.0102* 0.0078* 0.6555 

      

Underlying VAR (CPIF, US GDP and Interest Rate) 

      

UK GDP →CPIF Interest Rate →CPIF CPIF→ UK GDP Interest Rate → UK GDP CPIF→ Interest Rate UK GDP → Interest Rate 

0.2862 0.0556 0.2525 0.6997 0.0149* 0.4794 

      

Underlying VAR (CPIF, UK GDP and Interest Rate) 

      

Chile GDP →CPIF Interest Rate →CPIF CPIF→ Chile GDP Interest Rate → Chile GDP CPIF→ Interest Rate Chile GDP → Interest Rate 

0.0397* 0.0238* 0.0113* 0.3402 0.0109* 0.5512 

      

Underlying VAR (CPIF, Chile GDP and Interest Rate) 

Note: Tabulated numbers are  p -values. * denotes the potential of a Granger causality 

 



37 
 

 

Table 18: VAR Granger Causality test for CPIM  

World GDP →CPIM  CPIM → World GDP US GDP →CPIM  CPIM → US GDP UK GDP →CPIM  CPIM → UK GDP 

0.0529 0.8499 0.2231 0.8543 0.3400 0.4799 

   

Underlying VAR (CPIM and World GDP) Underlying VAR (CPIM and US GDP) Underlying VAR (CPIM and UK GDP) 

   

Chile GDP →CPIM  CPIM → Chile GDP Interest Rate →CPIM  CPIM → Interest Rate   

0.0140* 0.2551 0.4045 0.0912   

   

Underlying VAR (CPIM and Chile GDP) Underlying VAR (CPIM and Interest Rate)  

   

   

World GDP →CPIM  Interest Rate →CPIM  CPIM → World GDP Interest Rate → World GDP CPIM → Interest Rate World GDP → Interest Rate 

0.0015* 0.0086* 0.8275 0.8573 0.0493* 0.2621 

      

Underlying VAR (CPIM, World GDP and Interest Rate) 

      

US GDP →CPIM  Interest Rate →CPIM  CPIM → US GDP Interest Rate → US GDP CPIM → Interest Rate US GDP → Interest Rate 

0.0630 0.1131 0.8833 0.0196* 0.2652 0.6144 

      

Underlying VAR (CPIM, US GDP and Interest Rate) 

      

UK GDP →CPIM  Interest Rate →CPIM  CPIM → UK GDP Interest Rate → UK GDP CPIM → Interest Rate UK GDP → Interest Rate 

0.1301 0.1526 0.5352 0.2698 0.3736 0.3482 

      

Underlying VAR (CPIM, UK GDP and Interest Rate) 

      

Chile GDP →CPIM  Interest Rate →CPIM  CPIM → Chile GDP Interest Rate → Chile GDP CPIM → Interest Rate Chile GDP → Interest Rate 

0.0022* 0.0476* 0.2364 0.5658 0.0651 0.4326 

      

Underlying VAR (CPIM, Chile GDP and Interest Rate) 

Note: Tabulated numbers are  p -values. * denotes the potential of a Granger causality 
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Table 19: VAR Granger Causality test for CPINF  

World GDP →CPINF  CPINF → World GDP US GDP →CPINF  CPINF → US GDP UK GDP →CPINF  CPINF → UK GDP 

0.2307 0.0688 0.5127 0.8826 0.1008 0.1410 

   

Underlying VAR (CPINF and World GDP) Underlying VAR (CPINF and US GDP) Underlying VAR (CPINF and UK GDP) 

   

Chile GDP →CPINF  CPINF → Chile GDP Interest Rate →CPINF  CPINF → Interest Rate   

0.1981 0.4847 0.0964 0.0243*   

   

Underlying VAR (CPINF and Chile GDP) Underlying VAR (CPINF and Interest Rate)  

   

   

World GDP →CPINF  Interest Rate →CPINF  CPINF → World GDP Interest Rate → World GDP CPINF → Interest Rate World GDP → Interest Rate 

0.0295* 0.0469* 0.0605 0.6104 0.0543 0.3186 

      

Underlying VAR (CPINF, World GDP and Interest Rate) 

      

US GDP →CPINF  Interest Rate →CPINF  CPINF → US GDP Interest Rate → US GDP CPINF → Interest Rate US GDP → Interest Rate 

0.2944 0.0563 0.5726 0.0118* 0.0368* 0.9310 

      

Underlying VAR (CPINF, US GDP and Interest Rate) 

      

UK GDP →CPINF  Interest Rate →CPINF  CPINF → UK GDP Interest Rate → UK GDP CPINF → Interest Rate UK GDP → Interest Rate 

0.0972 0.0930 0.3189 0.5265 0.0744 0.7369 

      

Underlying VAR (CPINF, UK GDP and Interest Rate) 

      

Chile GDP →CPINF  Interest Rate →CPINF  CPINF → Chile GDP Interest Rate → Chile GDP CPINF → Interest Rate Chile GDP → Interest Rate 

0.0760 0.1420 0.4354 0.5628 0.0602 0.4240 

      

Underlying VAR (CPINF, Chile GDP and Interest Rate) 

Note: Tabulated numbers are  p -values. * denotes the potential of a Granger causality 
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Table 20: VAR Granger Causality test for CPI_CW 

World GDP →CPI_CW CPI_CW→ World GDP US GDP →CPI_CW CPI_CW→ US GDP UK GDP →CPI_CW CPI_CW→ UK GDP 

0.2890 0.3363 0.6158 0.7981 0.4730 0.0367* 

   

Underlying VAR (CPI_CW and World GDP) Underlying VAR (CPI_CW and US GDP) Underlying VAR (CPI_CW and UK GDP) 

   

Chile GDP →CPI_CW CPI_CW→ Chile GDP Interest Rate →CPI_CW CPI_CW→ Interest Rate   

0.0364* 0.0058* 0.0864 0.0139*   

   

Underlying VAR (CPI_CW and Chile GDP) Underlying VAR (CPI_CW and Interest Rate)  

   

World GDP →CPI_CW Interest Rate →CPI_CW CPI_CW→ World GDP Interest Rate → World GDP CPI_CW→ Interest Rate World GDP → Interest Rate 

0.0106 0.0110* 0.3169 0.7435 0.0091* 0.4453 

      

Underlying VAR (CPI_CW, World GDP and Interest Rate) 

      

US GDP →CPI_CW Interest Rate →CPI_CW CPI_CW→ US GDP Interest Rate → US GDP CPI_CW→ Interest Rate US GDP → Interest Rate 

0.1878 0.0037* 0.6532 0.0152* 0.0075* 0.7677 

      

Underlying VAR (CPI_CW, US GDP and Interest Rate) 

      

UK GDP →CPI_CW Interest Rate →CPI_CW CPI_CW→ UK GDP Interest Rate → UK GDP CPI_CW→ Interest Rate UK GDP → Interest Rate 

0.1979 0.0153* 0.1325 0.7828 0.0153* 0.5995 

      

Underlying VAR (CPI_CW, UK GDP and Interest Rate) 

      

Chile GDP →CPI_CW Interest Rate →CPI_CW CPI_CW→ Chile GDP Interest Rate → Chile GDP CPI_CW→ Interest Rate Chile GDP → Interest Rate 

0.0087* 0.0117* 0.0086* 0.3005 0.0085* 0.4730 

      

Underlying VAR (CPI_CW, Chile GDP and Interest Rate) 

Note: Tabulated numbers are  p -values. * denotes the potential of a Granger causality 
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Table 21: VAR Granger Causality test for CPIF_CW 

World GDP →CPIF_CW CPIF_CW→ World GDP US GDP →CPIF_CW CPIF_CW→ US GDP UK GDP →CPIF_CW CPIF_CW→ UK GDP 

0.5870 0.7805 0.8104 0.8480 0.6794 0.0627 

   

Underlying VAR (CPIF_CW and World GDP) Underlying VAR (CPIF_CW and US GDP) Underlying VAR (CPIF_CW and UK GDP) 

   

Chile GDP →CPIF_CW CPIF_CW→ Chile GDP Interest Rate →CPIF_CW CPIF_CW→ Interest Rate   

0.1639 0.0102* 0.0796 0.0060*   

   

Underlying VAR (CPIF_CW and Chile GDP) Underlying VAR (CPIF_CW and World GDP)  

   

   

World GDP →CPIF_CW Interest Rate →CPIF_CW CPIF_CW→ World GDP Interest Rate → World GDP CPIF_CW→ Interest Rate World GDP → Interest Rate 

0.0623 0.0161* 0.7601 0.8481 0.0083* 0.5343 

      

Underlying VAR (CPIF_CW, World GDP and Interest Rate) 

      

US GDP →CPIF_CW Interest Rate →CPIF_CW CPIF_CW→ US GDP Interest Rate → US GDP CPIF_CW→ Interest Rate US GDP → Interest Rate 

0.2893 0.0284* 0.7498 0.0165* 0.0070* 0.7003 

      

Underlying VAR (CPIF_CW, US GDP and Interest Rate) 

      

UK GDP →CPIF_CW Interest Rate →CPIF_CW CPIF_CW→ UK GDP Interest Rate → UK GDP CPIF_CW→ Interest Rate UK GDP → Interest Rate 

0.3287 0.0390* 0.1826 0.6525 0.0122* 0.4734 

      

Underlying VAR (CPIF_CW, UK GDP and Interest Rate) 

      

Chile GDP →CPIF_CW Interest Rate →CPIF_CW CPIF_CW→ Chile GDP Interest Rate → Chile GDP CPIF_CW→ Interest Rate Chile GDP → Interest Rate 

0.0250* 0.0174* 0.0062* 0.2944 0.0076* 0.5547 

      

Underlying VAR (CPIF_CW, Chile GDP and Interest Rate) 

Note: Tabulated numbers are  p -values. * denotes the potential of a Granger causality 
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Table 22: VAR Granger Causality test for CPIM_CW 

World GDP →CPIM_CW CPIM_CW→ World GDP US GDP →CPIM_CW CPIM_CW→ US GDP UK GDP →CPIM_CW CPIM_CW→ UK GDP 

0.0591 0.5833 0.2033 0.8156 0.3444 0.1947 

   

Underlying VAR (CPIM_CW and World GDP) Underlying VAR (CPIM_CW and US GDP) Underlying VAR (CPIM_CW and UK GDP) 

   

Chile GDP →CPIM_CW CPIM_CW→ Chile GDP Interest Rate →CPIM_CW CPIM_CW→ Interest Rate   

0.0182* 0.1300 0.2990 0.0594   

   

Underlying VAR (CPIM_CW and Chile GDP) Underlying VAR (CPIM_CW and Interest Rate)  

   

   

World GDP →CPIM_CW Interest Rate →CPIM_CW CPIM_CW→ World GDP Interest Rate → World GDP CPIM_CW→ Interest Rate World GDP → Interest Rate 

0.0008* 0.0034* 0.5529 0.7846 0.0297* 0.2348 

      

Underlying VAR (CPIM_CW, World GDP and Interest Rate) 

      

US GDP →CPIM_CW Interest Rate →CPIM_CW CPIM_CW→ US GDP Interest Rate → US GDP CPIM_CW→ Interest Rate US GDP → Interest Rate 

0.0436* 0.0660 0.8198 0.0190* 0.4124 0.6784 

      

Underlying VAR (CPIM_CW, US GDP and Interest Rate) 

      

UK GDP →CPIM_CW Interest Rate →CPIM_CW CPIM_CW→ UK GDP Interest Rate → UK GDP CPIM_CW→ Interest Rate UK GDP → Interest Rate 

0.1007 0.0894 0.2213 0.2688 0.5036 0.3345 

      

Underlying VAR (CPIM_CW, UK GDP and Interest Rate) 

      

Chile GDP →CPIM_CW Interest Rate →CPIM_CW CPIM_CW→ Chile GDP Interest Rate → Chile GDP CPIM_CW→ Interest Rate Chile GDP → Interest Rate 

0.0019* 0.0249* 0.1086 0.4750 0.0382* 0.3691 

      

Underlying VAR (CPIM_CW, Chile GDP and Interest Rate) 

Note: Tabulated numbers are  p -values. * denotes the potential of a Granger causality 
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Table 23: VAR Granger Causality test for CPINF_CW 

World GDP →CPINF_CW CPINF_CW→ World GDP US GDP →CPINF_CW CPINF_CW→ US GDP UK GDP →CPINF_CW CPINF_CW→ UK GDP 

0.5822 0.0220 0.8167 0.6909 0.7918 0.0009* 

   

Underlying VAR (CPINF_CW and World GDP) Underlying VAR (CPINF_CW and US GDP) Underlying VAR (CPINF_CW and UK GDP) 

   

Chile GDP →CPINF_CW CPINF_CW→ Chile GDP Interest Rate →CPINF_CW CPINF_CW→ Interest Rate  

0.1423 0.0322* 0.4832 0.1271 

   

Underlying VAR (CPINF_CW and Chile GDP) Underlying VAR (CPINF_CW and Interest Rate)  

   

   

World GDP →CPINF_CW Interest Rate →CPINF_CW CPINF_CW→ World GDP Interest Rate → World GDP CPINF_CW→ Interest Rate World GDP → Interest 

Rate 

0.1394 0.0783 0.0208* 0.6882 0.1807 0.6429 

      

Underlying VAR (CPINF_CW, World GDP and Interest Rate) 

      

US GDP →CPINF_CW Interest Rate →CPINF_CW CPINF_CW→ US GDP Interest Rate → US GDP CPINF_CW→ Interest Rate US GDP → Interest Rate 

0.5088 0.0906 0.6534 0.0177* 0.0475* 0.9153 

      

Underlying VAR (CPINF_CW, US GDP and Interest Rate) 

      

UK GDP →CPINF_CW Interest Rate →CPINF_CW CPINF_CW→ UK GDP Interest Rate → UK GDP CPINF_CW→ Interest Rate UK GDP → Interest Rate 

0.5073 0.0932 0.0030* 0.6264 0.1057 0.7974 

      

Underlying VAR (CPINF_CW, UK GDP and Interest Rate) 

      

Chile GDP →CPINF_CW Interest Rate →CPINF_CW CPINF_CW→ Chile GDP Interest Rate → Chile GDP CPINF_CW→ Interest Rate Chile GDP → Interest 

Rate 

0.2247 0.1388 0.1046 0.4647 0.1710 0.7435 

      

Underlying VAR (CPINF_CW, Chile GDP and Interest Rate) 

Note: Tabulated numbers are  p -values. * denotes the potential of a Granger causality 
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10. Appendix A - Literature Tables  

Table A1: Literature review of studies in commodity cycles and PSH 

 
Authors Commodities Period Method Variables Empirical Results 

Kitchin (1923) Wholesale prices 
of commodities 

1890-1922 
(selected dates) 

Graphical analysis of cycles and 
minimum and maximum analysis 

 

US and UK bank clearings, 
Wholesale prices of commodities 

and interest rate 

Evidence of rising trend in prices.  
Small cycles last 3.3 years and trade 
cycles about 8 years. 
 
 

Grilli and Yang 

(1988) 

Grilli and Yang  
Commodity Price 

Index 

1900-1986 
(annual data) 

OLS estimation of model with 
time trend and dummy variables 

6 aggregate commodity price 
indexes  (of 24 commodities) for 
nonfuel, nonfuel with alternative 
weights, all commodities, food 

,metals ,nonfood agricultural raw 
materials and the  manufactures 
UN index and the  United States 

Manufacturing Price Index 

Relative prices of all primary 

commodities fell on trend by 0.5 

percent a year and those of nonfuel 

primary commodities by 0.6 percent a 

year. They confirm the sign, but not the 

magnitude, of the trend (Support of 

PSH) 

 

Possibility of changing trends of 

relative primary commodity prices over 

time. 

 

Ardeni and    

Wright 

(1990) 

Grilli and Yang  
Commodity Price 

Index 

1865-1986 
(annual data) 

 

ARIMA models with deterministic 
and stochastic trend  with 

structural breaks 

Total commodities, Total metals, 
Mainly tropical agriculture and  
Mainly non-tropical agriculture 

 

The evidence of a secular deterioration 
in the permanent component of 
commodity prices is confirmed over all 
samples. PSH seems validated. 

Evidence of structural breaks that may 
show cyclical behavior is trace with 
dummies for each   commodity variable. 
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Table A2: Literature review of studies in commodity cycles and PSH 
 

Authors Commodities Period Method Variables Empirical Results 

Bleaney and 

Greenaway 

(1993) 

Grilli and Yang 
(1988) dataset, 
aggregate  ad 

component series 

1990-1991 
(annual data) 

OLS with error correction towards 
trend 

aggregate series and component 
series of food, non-food 

agricultural commodities and 
metal 

Statistically significant long-run 
downward trend in the prices of primary 
products, but a slow one. The 
magnitude and statistical significance 
of the trend varies according to the time 
span of data used.  (Evidence of PSH) 

Reinhart and 

Wickham (1994) 

All non-oil 
commodities, 

beverages, food , 
metals 

1957:I- 1993:II 
(quarterly data) 

ARMA with disentangling trend 
from cycle and Kalman Filter 

prices of All non-oil 
commodities, beverages, food, 

metals 

Trends for all series from both methods 
are negative. Evidence of cycles in 
series is presented. (Evidence of PSH) 

Real commodity prices have been 
declining, with this decline being 
mostly secular. 

Kellard and 

Wohar (2002) 

Grilli and Yang 
(1988) dataset, 24 
commodities price 

indexes 

1990-1998 
(annual data) 

ARMA model with trend tracing 
for  unit root and structural breaks 

 

Commodity prices and traced 
structural breaks 

23 out of the 24 commodities can be 
classified as trend-stationary. No 
examination of the presence of negative 
trend. No Cycle tracing. (Weak support 
of PSH) 
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Table A3: Literature review of studies in commodity cycles and PSH 
 

Authors Commodities Period Method Variables Empirical Results 

Blattman,Hwang  

and 

Williamson(200

4) 

42 commodities 
on world markets 

1870–1939 
(annual data) 

 

Panel analysis of  empirical  
model of  Trade and Capital with  

Hodrick-Prescott (HP) filter 

Average GDP per capita growth 
rates, on average trend growth 
and volatility in the terms of 

trade 

and 

Level of capital flows on terms 
of trade growth and volatility 

 

No PSH with trends but investigation 
through volatility and HP filter 
calibration. 

Volatility was more important for 
accumulation and growth than secular 
change and both effects were 
asymmetric between Core and 
Periphery. Support of PSH trivial 
through, Terms of Trade which are 
important determinant of growth. 

 

 

Kellard and 

Wohar (2005) 

Grilli and Yang 
(1988) dataset, 24 
commodities price 

indexes 

1990-1998 
(annual data) 

ARMA model with trend tracing 
and structural breaks 

 

Commodity prices and traced 
structural breaks 

Although 15 commodity prices exhibit 
at least one negative trend, a measure of 
the prevalence of a negative trend 
reveals that in only 8 cases does the 
deterioration exists for at least 70% of 
the sample period. (Weak support of 
PSH) 

Cuddington and 

Jerrett (2007) 

Aluminum, 
copper, lead, 

nickel, tin, and 
zinc (Heap 

Dataset (2005)) 

1850–2005 
(annual data) 

 

Hodrick-Prescott (HP) filter , 
Christiano and Fitzgerald (CF) 
asymmetric  band-pass filter 

real and nominal prices of 
aluminum, copper, lead, nickel, 

tin, and zinc 

Evidence of super cycles in metal prices 
with phases from 10 to 35 years. The 
super cycle is more clearly defined 
when one looks at nominal rather than 
real prices. 

 
PSH holds for some commodities and 
some periods in others. 
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Table A4: Literature review of studies in commodity cycles and PSH 
 

 

 

 

Authors Commodities Period Method Variables Empirical Results 

Bloch, Madsen , 

and Sapsford 

(2009) 

Harvey, Kellard, 

Madsen and 

Wohar (HKMW 

2010) dataset 

1650-2005 
(annual data) 

 

Schumpeterian analysis to 
understanding trend and cycle in 

the prices of primary commodities 

Real price of primary 
commodities, Price index for 

primary commodities and Price 
index for manufactured goods. 

A downward trend in nominal 
commodity prices from the 17th 
through 19th Century and in the price of 
primary commodities relative to 
manufactures throughout our historical 
period, including the 20th Century. 
Cyclical movements not accounted 
(Support PSH) 

Ocampo and   

Parra-Lancourt 

(2010) 

Updated Grilli and 
Yang  Commodity 

Price Index 
(Pfaffenzeller et 

al. (2007) 

1865-2009 
(annual data) 

 

ARMA with deterministic and 
stochastic trend  with structural 

breaks 

Total commodities, Total metals, 
Mainly tropical agriculture and  
Mainly non-tropical agriculture 

 

Negative trend experienced by the 
commodity prices in the 20th century. 
PSH seems validated. 

Evidence of structural breaks that may 
show cyclical behavior is traced for 
each   commodity variable. 

Erten and 

Ocampo (2010) 

Grilli and Yang  

Commodity Price 

Index updated by 

Ocampo and 

Para(2010)  and 

Oil 

1865-2010 
(annual data)) 

VECM and  Christiano and 
Fitzgerald (CF) band-pass filter 

for variables 

Total prices, metals, Total 
agriculture. Tropical agriculture, 
Non-tropical agriculture, Oil and 

OECD output, World output 

Four past Super Cycles are traced 
ranging from 30 to 40 years. The mean 
of each super cycle for non-oil 
commodities tends to be lower than that 
of the previous cycle, suggesting a step-
wise deterioration over the entire 
period. Long term trends are mostly 
negative. (Partial Support PSH). 
VECM results support super cycles in 
world output level predict the super 
cycles in real non-fuel commodity 
prices, both for the total index and sub-
indices. 
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Table A5: Literature review of studies in commodity cycles and PSH 

 

 

Authors Commodities Period Method Variables Empirical Results 

Ghoshray and 

Johnson (2010) 

crude oil, natural 

gas and coal 

prices 

Jan1975- Dec 
2007 

(monthly data) 

Advanced unit root testing and 
ARMA model with trend tracing 

and structural breaks 

crude oil, natural gas and coal 
prices 

Oil is mostly negatively trended in time 
periods, coal is trendless, and gas is 
mainly positive and less trendless. 
(Partial  Support PSH). No cycle 
analysis 
 
All series exhibit multiple breaks in 
trend and level. 

Byrne, Fazio and 

Fiess 

(2010) 

Updated Grilli and 
Yang  Commodity 

Price Index 
(Pfaffenzeller et 

al. (2007) 

1900-2008 
(annual data) 

and 

PANIC and Factor Augmented 
VAR 

real commodity prices, real 
interest rate and risk 

Analysis does not provide evidence on 
cycles or PSH. 

Evidence of co-movement of 
commodity prices, with negative 
relationship between real interest rate 
and real commodity prices and between 
risk and commodity prices. 

Harvey, Kellard, 

Madsen and 

Wohar (2010) 

Beef, Coal, 
Cotton, Gold, 

Lamb, Lead, Rice, 
Silver, Sugar, Tea, 

Wheat, Wool, 
Coffee, Tobacco, 

Pig Iron, 
Aluminum, 

Cocoa, Copper, 
Hide Banana and 
Jute, Nickel, Oil, 
Tin, Zinc, Banana 

and Jute 

1650-2005 
(annual data) 

Harvey et al. (2007, 2008) 
techniques to assess the trend 

function and the existence of any 
possible structural breaks. 

25 commodities (composing 
Harvey, Kellard, Madsen and 

Wohar (HKMW 2010) dataset) 

Results show that eleven price series 

present a significant and downward 

trend over all or some fraction of the 

sample period. 

 

 

In the long run a secular, deteriorating 

trend is a relevant phenomenon for a 

significant proportion of primary 

commodities. (Support of PSH). 
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Table A6: Literature review of studies in commodity cycles and PSH 
 

 

 

Authors Commodities Period Method Variables Empirical Results 

Jacks, Rourke 

and Williamson 

(2011) 

Different 
commodities 

based on different 
datasets 

1700-1950 
(annual data) 
1720-2008 

(monthly data) 

Volatility analysis and GARCH 
Conditional Variance 

Prices for all food, agricultural 
raw materials, minerals, ores, 
and metals , manufactures or 
final goods and aggregates 

Analysis does not provide evidence on 
cycles or PSH. 
 
Volatility has not increased over time, 
with primary commodities being more 
volatile than manufactures. 
Globalization and world market 
integration lead to lower commodity 
price volatility. Volatility is associated 
with growth. 
 
 
 

Zapata, Detre 

and Hanabuchi 

(2012) 

PPI for farm and 
food products, 

fuels, and metals. 

1871–2010 
(annual data) 

 

Christiano and Fitzgerald band-
pass filter and MOTAD 

S&P 500, PPI for all 
commodities and specific for 
farm and food products, fuels, 

and metals. 

Cycles have average length of 31 years. 
(no evidence of PSH) 
 
Relative price strength is dominated by 
commodities with rational investors 
focusing more on agricultural 
commodities. 
 
 

Harvey, Kellard, 

Madsen and 

Wohar (2012) 

Harvey, Kellard, 
Madsen and 

Wohar (HKMW 
2010) dataset 

1650-2010 
(annual data) 

Trend tests with structural breaks 
and   Christiano and Fitzgerald 

(CF) asymmetric  band-pass filter 
for cycle decomposition. 

Commodity Composite Price 
Index(CPI),   a non-oil version of 
the Commodity Composite Price 
Index (CCPI’) and GY non-fuel 
weighted aggregate real index 

(GYCPI) 

Relative commodity prices present a 

significant and downward global trend. 

(Sypport of PSH). 

 

Super-Cycles evidence suggest a 

lifecycle of 27 years and short-run 

cycles are lasting four years. 
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Table A7: Literature review of studies in commodity cycles and PSH 
 

 

 

Authors Commodities Period Method Variables Empirical Results 

Stuermer(2013) 
copper, lead, tin, 

zinc, and crude oil 
1840-2010 

(annual data) 

Structural vector autoregressive 
(VAR)  model with long term 
restictions to each of the five 

markets. 

World primary production of 
each mineral, real commodity 

prices, World GDP. 

Prices for copper show significant 
negative linear trend. The trend is also 
negative but less significant for lead 
and zinc prices. Tin and crude oil 
present no trend.(Partial evidence of 
PSH) 
 
Results of VAR suggest that price 
fluctuations are primarily driven by 
output demand rather than supply 
shocks. 

Nazlioglu (2014) 

Updated Grilli and 

Yang  Commodity 

Price Index 

(Pfaffenzeller et 

al. (2007) 

1865-2003 
(annual data) 

Panel KPSS test and trend 
stationary model with structural 

breaks 

24 commodities from Updated 
Grilli and Yang  Commodity 

Price Index (Pfaffenzeller et al. 
(2007)) 

International commodity prices are 
trend stationary and shows that the 
commodity prices have different trend 
dynamics. PSH does not hold in all 
significant estimated trends. (Partial  
Support PSH) 

Arezki, Hadri, 

Loungani,and  

Rao  (2014) 

Harvey, Kellard, 

Madsen and 

Wohar (HKMW 

2010) dataset 

1650-2005 
(annual data) 

 

Panel stationarity tests with 
multiple structural breaks and 

Piecewise regressions 
25 relative commodity prices 

All series are found to be stationary. 
PSH test results are mixed, however 
most of the regression slopes are 
downward. 
 
Primary commodity prices are found 
highly volatile, possible evidence of 
cycles due to presence of structural 
breaks. 
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Table A8: Literature review of studies in commodity cycles and PSH 
 

 

Authors Commodities Period Method Variables Empirical Results 

Yammada and 

Yoon (2014) 

Updated Grilli and 
Yang  Commodity 

Price Index 
(Pfaffenzeller et al. 

(2007) 

1900-2010 
(annual data) 

Hodrick and Prescott  filter 
and L1 – trend filter with 

structural breaks 

24 commodities and 8 aggregate 
commodity price indexes   from 

Updated Grilli and Yang  Commodity 
Price Index (Pfaffenzeller et al. 

(2007)) 

Prebisch–Singer hypothesis(PSH) holds 

sometimes, but not always, for many of 

the primary commodities in the Grilli–

Yang data. (Partial support of PSH) 

 

For most primary commodities, we find 

that their piecewise linear trends are 

negatively sloped during some of the 

sample periods. 

 

Winkelried 

(2015) 

Updated Grilli and 
Yang  Commodity 

Price Index 
(Pfaffenzeller et al. 
(2007)  &   Harvey, 
Kellard, Madsen and 

Wohar (HKMW) 
data 

1900–2010 
(annual data) 

And 
1650-2005 

(annual data) 
 

Hodrick and Prescott  filter, 
L1 – trend filter,  Bry and 

Boschan Cycle 

Updated Grilli and Yang  Commodity 
Price Index (Pfaffenzeller et al. 

(2007)) for all the commodities  &   
Harvey, Kellard, Madsen and Wohar 
(HKMW) data for all commodities 

PSH holds in specific commodities. 
 
Evidence of super cycles in all series 
 
 
 

Fernandez 

(2015) 

Updated Grilli and 

Yang  Commodity 

Price Index 

(Pfaffenzeller et al. 

(2007) and oil 

1900-2010 
(annual data) 

OLS and 2SLS for co-
movement analysis (use of 
HP Filter), Business Cycles 

with Bry and Boschan 
algorithm, CVaR 

 

Commodity prices, apparent 
consumption and macroeconomic 

indicators 

Evidence of short cyclical components on 
commodity prices. (no evidence of PSH) 
 
Evidence of excess co-movement 
between the commodities. 
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Table A9: Literature review of studies in commodity cycles and PSH 
 

 

  

Authors Commodities Period Method Variables Empirical Results 

Erdem and  

Ünalmıs  (2016) 

Oil, Copper and 

Agriculture Prices 

1861-2014 
(annual data) 

And 
1946:1 to 

2014:4 
(quarterly data) 

 

Hodrick-Prescott (HP) 
filter , Christiano and 

Fitzgerald (CF) band-pass 
filter and Bry and Boschan 

(BB) Cycle 

Oil, Copper and Agriculture Prices 
filtered by HP, CF and BB Cycle 

Evidence of short-term cycles, long-term 
cycle, super cycles and the long-term trend 
of the real oil price. 
Evidence of Super Cycles in Copper and 
Agriculture Prices. 
 
PSH does not seem to hold from HP filter 
 

Harvey, Kellard, 

Madsen and 

Wohar (2017) 

Harvey, Kellard, 

Madsen and Wohar 

(HKMW 2010) 

dataset 

1650-2014 
(annual data) 

Techniques to assess the 
trend function and the 

existence of any possible 
structural breaks and 

Stationary VAR 
 

Commodity price series  and GDP  
and combinations of commodity 
prices, GDP, and interest rates 

Commodity prices present a downward 

trend with breaks over the entire industrial 

age (Support of PSH). 

 

Evidence of VAR show that commodity 

prices Granger cause income and interest 

rates, while interest rates Granger cause 

commodity prices. Commodity price 

movements have an asymmetric country 

effect on economic activity 
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11. Appendix B- Figures of commodities and indexes   

Figure B1 : Trend representation of Aluminum 
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Figure B2 : Cycle representation of Aluminum 
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Figure B3 : Trend representation of Banana 
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Figure B4 : Cycle representation of Banana 
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Figure B5 : Trend representation of Beef 
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Figure B6 : Cycle representation of Beef 
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Figure B7 : Trend representation of Cocoa  
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Figure B8 : Cycle representation of Cocoa 

-1.0

-0.5

0.0

0.5

1.0

1.5

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

RLCOCO_HP_CYCLE RLCOCO_CF_20_CYCLE

RLCOCO_CF_70_CYCLE RLCOCO_L1_YY_CYCLE

RLCOCO_L1_W_CYCLE RLCOCO_HCYCLE
 



56 
 

Figure B9 : Trend representation of Coffee 
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Figure B10 : Cycle representation of Coffee 
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Figure B11 : Trend representation of Copper 

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

RLCOP_HP_TREND RLCOP_CF_TREND

RLCOP_L1_Y_TREND RLCOP_L1_W_20_TREND

RLCOP_L1_W_70_TREND RLCOP_HTREND
 

 

Figure B12 : Cycle representation of Copper 
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Figure  B13: Trend representation of Cotton 
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Figure B14 : Cycle representation of Cotton 
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Figure B15 : Trend representation of CPI 
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Figure B16 : Cycle representation of CPI 
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Figure B17 : Trend representation of CPIF 
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Figure B18 : Cycle representation of CPIF 
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Figure B19 : Trend representation of CPIM 
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Figure B20 : Cycle representation of CPIM 
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Figure B21 : Trend representation of CPINF 

 

-.4

-.2

.0

.2

.4

.6

.8

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

RLGYCPINF_HP_TREND RLGYCPINF_CF_TREND

RLGYCPINF_L1_YY_TREND RLGYCPINF_L1_W_20_TREND

RLGYCPINF_L1_W_70_TREND RLGYCPINF_HTREND
 

 

Figure B22 : Cycle representation of CPINF 
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Figure B23 : Trend representation of CPI CW 
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Figure B24 : Cycle representation of CPI CW 
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Figure B25 : Trend representation of CPIF CW 
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Figure B26 : Cycle representation of CPIF CW 
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Figure B27 : Trend representation of CPIM CW 
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Figure B28 : Cycle representation of CPIM CW 
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Figure B29 : Trend representation of CPINF CW 
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Figure B30 : Cycle representation of CPINF CW 
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Figure B31 : Trend representation of Hides 

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

RLHIDES_HP_TREND RLHIDES_CF_TREND

RLHIDES_L1_YY_TREND RLHIDES_L1_W_20_TREND

RLHIDES_L1_W_70_TREND RLHIDES_HTREND
 

Figure B32 : Cycle representation of Hides 
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Figure B33 : Trend representation of Jute 
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Figure B34 : Cycle representation of Jute 
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Figure B35 : Trend representation of Lamb 
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Figure B36 : Cycle representation of Lamb 
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Figure B37 : Trend representation of Lead 
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Figure B38 : Cycle representation of Lead 
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Figure B39 : Trend representation of Maize 
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Figure B40 : Cycle representation of Maize 
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Figure B41 : Trend representation of Palm Oil 
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Figure B42 : Cycle representation of Palm Oil 
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Figure B43 : Trend representation of Rice 
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Figure B44 : Cycle representation of Rice 
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Figure B45 : Trend representation of Rubber 
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Figure B46 : Cycle representation of Rubber 
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Figure B47 : Trend representation of Silver 

-1.0

-0.5

0.0

0.5

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

RLSILV_HP_TREND RLSILV_CF_TREND

RLSILV_L1_YY_TREND RLSILV_L1_W__20_TREND

RLSILV_L1_W__70_TREND RLSILV_HTREND
 

Figure B48 : Cycle representation of Silver 
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Figure B49 : Trend representation of Sugar 
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Figure B50 : Cycle representation of Sugar 
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Figure B51 : Trend representation of Tea 
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Figure B52 : Cycle representation of Tea 
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Figure B53 : Trend representation of Timber 

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

RLTIMB_HP_TREND RLTIMB_CF_TREND

RLTIMB_L1_YY_TREND RLTIMB_L1_W_20_TREND

RLTIMB_L1_W_70_TREND RLTIMB_HTREND
 

Figure B54 : Cycle representation of Timber 
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Figure B55 : Trend representation of Tin 
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Figure B56 : Cycle representation of Tin 
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Figure B57 : Trend representation of Tobacco 
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Figure B58 : Cycle representation of Tobacco 
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Figure B59 : Trend representation of Wheat 
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Figure B60 : Cycle representation of Wheat 
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Figure B61 : Trend representation of Wool 
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Figure B62 : Cycle representation of Wool 
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Figure B63 : Trend representation of Zinc 
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Figure B64 : Cycle representation of Zinc 
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