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Abstract

We study the effect of increasing the frequency of observations and the data span
on alternative cointegration tests (Engle-Granger, Phillips-Ouliaris and Johansen),
we consider systems with two, three and four variables via Monte Carlo simulations.
We find that when both the data length and the frequency vary, the power of the
tests depends more on the sample length. In addition, we explore the behaviour
of unit root tests and the Engle-Granger and Johansen methods when explosive
processes are included. The results show that the performance of the tests depends
on the kind of the type of the explosion.
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Chapter 1

Introduction

In probability theory and statistics, a unit root is a feature of some stochastic
processes (such as random walks) that can cause problems in statistical inference
involving time series models. A linear stochastic process has a unit root if a root of
the process’s characteristic equation has an absolute value equal to 1. If the other
roots of the characteristic equation lie inside the unit circle, that is, have a modulus
(absolute value) less than one, then the first difference of the process will be sta-
tionary; otherwise, the process will need to be differenced multiple times to become
stationary. Due to this characteristic, unit root processes are also called difference
stationary. A process that has to be differenced k times to become stationary is also
called integrated of order k, (I(1)).

In an influential paper, Nelson and Plosser (1982) provided statistical evidence
that many US macroeconomic time series (like GNP, wages, employment, etc.) have
stochastic trends. They also showed that unit root processes have non-standard
statistical properties, so that conventional econometric theory methods do not apply
to them. In fact, they showed that applying usual linear regressions non-stationary
variables leads to the so called spurious regression.

Imagine the regression yt = a0 +a1xt +ut and assume that xt is an random walk
and yt is an independent random walk. Then the true value of a1 is of course 0, but
the limiting distribution of â1 is such that it converges to a function of Brownian
motions. This is an example of a spurious regression. A very high value of the
coefficient of determination (R2) and a very low Durbin-Watson value indicate that
one possibly is facing a regression where unit roots should be taken into account.

The phenomenon that non-stationary processes can have linear combinations
that are stationary was called cointegration by Granger (1983), who used it for
modelling long-run economic relations. Cointegration is a statistical property of a
collection (X1, X2, ..., Xk) of time series variables. First, all of the series must be
integrated of order d. Next, if a linear combination of this collection is integrated of
order zero, then the collection is said to be co-integrated. Formally, if (X, Y, Z) are
each integrated of order d, and there exist coefficients a, b, c such that aX+ bY + cZ
is integrated of order 0, then X, Y , and Z are cointegrated. Cointegration has
become an important property in contemporary time series analysis. The paper
by Engle and Granger (1987), which showed the equivalence of the error correction
formulation and the phenomenon of cointegration, started a rapid development of
the statistical and probabilistic analysis of the ideas.

There are three popular methods for testing for cointegration. The Engle-
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Granger two-step method, the Phillips-Ouliaris test and the Johansen test. Each
one has different properties, advantages and disadvantages. Since their development
these methods have been well studied and are now an important tool in time series
analysis.

The term unit root process is sometimes inaccurately used to describe explosive
processes. A process is called explosive if its characteristic equation contains a root
with a modulus greater than one. Although an explosive process looks similar to
non-stationary one, it requires a more careful approach and analysis. Imagine for
example an autoregressive one ((AR(1)) explosive process xt = ρxt−1 + ut where
ρ > 1. One can easily understand how a shock in the disturbance term will affect
the behaviour of such a process. Until recently it was considered unlikely explosive
processes to arise in economics. However studies have shown that a financial crises
is often preceded by an asset market growth or rampant credit growth.

The development of econometric tests that can detect explosive behaviour have
attracted many researchers. A study by Gürkaynak (2005) showed that until that
moment econometric detection of asset price bubbles cannot be achieved with a
satisfying degree of certainty. Phillips et al. (2011) proposed a method for detecting
a single bubble in asset price series. Although this method has been proven effective
enough, it is insufficient when applied on time series which contain multiple bubbles.
Phillips et al. (2013) provided a framework for testing and dating multiple bubble
incidents in a series by extending the mechanisms of the Phillips et al. (2011).

The violation of usual asymptotic properties of cointegration tests caused by
explosive behaviour lead the researchers to employ the I(2) model for cointegration
analysis when there were explosive roots in the data. This changed when Bent
(2000) and Nielsen (2010) showed that the asymptotic results for the Johansen’s
test are valid for explosive growing variables.

In this study we examine the effects of temporal disaggregation in cointegration
analysis. Our study consists of two main parts. In the first part we perform a large
number of Monte Carlo simulation experiments to examine the effects of changing
the frequency of observations and the total data span on the Engle-Granger, the
Phillips-Ouliaris and the Johansen cointegration tests. Based mostly on Otero and
Smith (2000) we examine the importance of the two properties in systems with three
and four variables. We focus our study mostly on the Johansen test since it allows for
more than one cointegrating relationship and it is the most used methodology when
testing for cointegration in multivariate systems. The extant literature is rich in
studies that investigate the effects of temporal disaggregation. However, all papers
only consider two variables. We contribute to the existing literature by considering
cases of three and four variables.

In the second part we focus our research on explosive time series. We examine
the behaviour of the SADF and the GSADF tests when both the data span and the
frequency vary. We consider three different explosive models proposed by Phillips
et al. (2013), Blanchard (1979) and Evans (1991). We then employ the Johansen
and the Engle-Granger test in systems which exhibit explosive behaviour.

The main results of our study can be summarized along these lines. Considering
the three cointegration tests, the ability of the three examined methods to detect
cointegration is based more on the total sample length than on the frequency of ob-
servations when all variables are integrated of order one. When explosive processes
enter the system we observe the following pattern. In the presence of a sole bubble,
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both methods (the Phillips-Ouliaris is not considered in this part of the study) per-
form better when a longer period is used. However when they deal with periodically
collapsing bubbles the power of both tests depends more on the frequency of obser-
vations. Finally, the SADF and GSADF tests produce better results when applied
on high frequency samples rather than a longer data length.

The analysis was conducted using the R statistical language. R is a program-
ming language and free software environment for statistical computing and graphics
supported by the R Foundation for Statistical Computing. The R language is widely
used among statisticians and data miners for developing statistical software and data
analysis. As of December 2018, R ranks 16th in the TIOBE index, a measure of
popularity of programming languages. The language uses libraries and packages
which give the program the required functionality. During our study we widely used
packages ”tseries”, ”tsDyn”, and ”urca” which implement a variety of time series
analysis techniques such as unit root and cointegration tests, ”exuber” which is
used for testing for and dating periods of explosive dynamics and the ”MonteCarlo”
package which is used for automatically setting up loops to run over parameter grids.

The rest of the paper proceeds as follows. Chapter 2 reviews the existing lit-
erature; Chapter 3 contains the most important points of the theory, one should
be familiar with in order to better comprehend this study; Chapter 4 discusses the
different Monte Carlo scenarios we examine; Chapter 5 provides the results; Chapter
6 illustrates two empirical examples and Chapter 7 concludes.
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Chapter 2

Literature Review

The effects of increasing the frequency of observations and the data span on both
unit roots and cointegration tests is a subject of discussion among researchers. The
Monte Carlo experiments played a significant role in this search. Based on Monte
Carlo simulations, Shiller and Perron (1985) argue that the power of unit root tests
depends solely on the total sample length. Hooker (1993) examined the properties
of the Engle and Granger (1987) cointegration method and showed that contrary
to unit root tests, the Engle-Granger test gains significant power from temporal
disaggregation. The findings of Shiller and Perron (1985) were supported by Lahiri
and Mamingi (1995) who showed that when both the data length and the frequency
varies the power of Engle-Granger depends more on the total sample length. The
Johansen (1988) test was later examined by Otero and Smith (2000) who showed
that the ability of the test depends more on the sample length than the number of
observations. More recently, Zhou (2001) showed that when the studies are restricted
by relatively short time spans of 30 to 50 years, increasing data frequency may yield
considerable power gain and less size distortion, especially when the cointegrating
residual is not nearly non-statianory.

Other studies approach the problem using real data. Bagnai (2008) support that
a large span of data is required to confirm Thirlwall’s hypothesis. while Narayan
and Sharma (2015) investigate the importance of high frequency for the impact of
forward premium on spot exchange rate.

At the same time, the academic literature on explosive time series has received
more and more attention. A number of bubble detecting methods have been pro-
posed. Considering dividend and stock price data Shiller (1980), Blanchard and
Watson (1982) and West (1988) assume that inconsistency with the efficient mar-
ket hypothesis is evidence for the existence of bubbles. Nelson and Plosser (1982)
however, support that apparent evidence for bubbles can be reinterpreted in terms
of market fundamentals that are unobserved by the researcher.

Diba and Grossman (1988) and Hamilton and Whiteman (1985) recommend
another method of testing for rational bubbles by investigating the stationarity
properties of asset prices and observable fundamentals. Using standard unit root
tests applied to real U.S. Standard and Poor’s Composite Stock Price Index data
over the period 1871-1986, Diba and Grossman (1988) test levels and differences of
stock prices for non-stationarity, finding support in the data for non-stationarity in
levels but stationarity in differences. Since differences of an explosive process still
manifest explosive characteristics, these findings appear to reject the presence of a
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market bubble in the data. Although the results were less definitive, further tests
by Diba and Grossman (1988) provide confirmation of cointegration between stock
prices and dividends over the same period, supporting the conclusion that prices
do not diverge from long-run fundamentals and thereby giving additional evidence
against bubble behavior.

Evans (1991) shows through simulation methods that non-recursive unit root
tests have low power and frequently cannot reject the the null of no explosive be-
haviour even when present in the data. Nonlinear dynamics, such as those displayed
by mildly explosive processes, may lead the standard right-tailed ADF test to find-
ings of spurious stationarity. Intuitively, this is the case because increases followed
by downward corrections make the process appear mean-reverting and stationary in
finite samples even when it is inherently not.

The situation remains the same when it comes to asset price data. A review by
Gürkaynak (2005) offers an insight in the attempts to construct a proper method to
detect explosive behaviour. Phillips et al. (2011) proposed the sup ADF (hereafter
SADF), a recursive test procedure for testing explosive behaviour. The test is effec-
tive when only one explosive episode is contained in the data but has little power
when the data contains multiple bubbles with periodically collapsing behaviour.
The power loss are due to the he complex nonlinear structure involved in multiple
bubble phenomena. Phillips et al. (2013) developed a new recursive procedure, the
generalized sup ADF (hereafter GSADF), which is not affected by multiple bubbles
as the SADF. Until recently explosive behaviour in economic and financial variables
were typically considered a temporary rather than a permanent feature. However
the empirical evidence has demonstrated that the that explosive episodes might last
even for more than a decade.

For many years the I(2) model was used for cointegration analysis when there
were explosive roots in the data. A study by Juselius and Mladenovic (2002) of Yu-
goslavian hyper-inflation data found that cointegration analysis is a useful economet-
ric tool despite the explosive behaviour of the data and the consequent violation of
the usual assumptions to cointegration analysis. Bent (2000) and Bent (2005)showed
that the asymptotic results for the Johansen’s test are valid for explosive growing
variables.
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Table 2.1: List of previous studies

Year Authors Results
1985 Shiller, Perron The sample length affects the power of DF test
1993 Hooker The power of Engle-Granger test increases when

the frequency is increased
1995 Lahiri, Mamingi The data span affects the Engle-Granger test more

than the frequency of observations
2000 Otero, Smith The data span affects the Johansen test more than

the frequency of observations
2001 Zhou When the data span is short, increasing the fre-

quency yields power gains to the Engle-Granger,
Horvath-Watson and Johansen tests

1980 Shiller Empirical study on rational bubbles in the stock
market

1982 Blanchard, Watson Bubbles in asset prices and market bubbles are
consistent with rational bubbles

1988 West Small sample bias in methods for detecting explo-
sive behaviour

1982 Nelson, Plosser Question the power of previous bubble tests
1985 Hamiliton, Whiteman Most of the existing tests for bubble detection are

not valid
1988 Diba, Grossman Detecting bubbles based on stationarity in differ-

ences
1991 Evans Low power in non-recursive unit root tests
2000 Bent Asymptotic results for Johansen test hold for ex-

plosive variables
2002 Juselius, Mladenovic Treating variables as explosives instead of I(2) in

cointegration analysis
2005 Bent Asymptotic results for Johansen test hold for ex-

plosive variables
2005 Gurkaynak Paper report of bubble detecting tests
2011 Phillips, Wu, Yu The supremum augmented Dickey-Fuller test
2013 Phillips, Shi, Yu The generalized supremum augmented Dickey-

Fuller test
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Chapter 3

Theoretical framework

3.1 Cointegration tests

3.1.1 Engle-Granger two-step method

Granger (1983) gave the following definition of cointegration.

Definition 3.1.1 Let zt be a vector of variables, the components of the zt are coin-
tegrated of order (d,b) if

1. All component of zt are I(d).

2. There is at least one vector of coefficients α such that αT zt is integrated of
order d− b.

Engle and Granger (1987) proposed a cointegration test consisting of two steps.
To explain the procedure of the test we assume that there are two variables xt
and yt which both are I(1). In the first step we pretest the variables in order to
confirm that they are non-stationary. If both time series are I(0) then the standard
regression analysis is valid. A great number of tests have been proposed through the
years in order to test for stationarity. These are the augmented Dickey-Fuller test
and the Phillips-Perron unit root tests and the KPSS (Kwiatkowski et al. (1992))
stationarity test.

The second step is to estimate the regression

yt = β0 − β1xt + εt (3.1)

using the ordinary least squares (OLS). The predicted residuals ε̂t are subjected
to the ADF test. Since the residuals are themselves estimates, Mackinnon (1990)
estimated new corrected critical values. If we confirm the stationarity of the residuals
we can form the error correction model (ECM) using them as one variable.

∆yt = a∆xt + ρε̂t + µ+ ut (3.2)

Although the Engle-Granger method is easy to apply, there are some drawbacks.
First of all, only one cointegrating relationship can be examined at a time. Addi-
tionally, we have to treat the variables asymmetrically and specify one dependent
variable. The method also suffers from low statistical power of the unit root tests
at stage one and from possible small sample bias overall. Finally, the validity of
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the long-run parameters in the first regression stage where one obtains the residuals
cannot be verified because the distribution of the OLS estimator of the cointegrat-
ing vector is highly complicated and non-normal. The cointegration procedures
proposed later, address most of these problems.

3.1.2 Phillips-Ouliaris cointegration test

Phillips and Ouliaris (1990) showed that residual-based unit root tests applied to the
estimated cointegrating residuals, obtained in the first stage of the Engle-Granger
method, do not have the usual Dickey–Fuller distributions under the null hypothesis
of no-cointegration. Because of the spurious regression phenomenon under the null
hypothesis, the distribution of these tests have asymptotic distributions that depend
on the number of deterministic trend terms and the number of variables with which
cointegration is being tested.

As a solution to this problem they introduced two new residual-based tests, the
variance test and the multivariate statistic test. The two unit root tests examine
the null hypothesis of no cointegration against the alternative of the presence of
cointegration using scalar unit root tests applied to the residuals. The multivariate
trace statistics has the advantage over the variance ratio test in that it is invariant
to normalization, that is, whichever variable is taken to be the dependent variable,
the test will yield the same results, Pfaff (2006).

Both tests are based on the residuals of the first-order vector autoregression

zt = Π̂zt−1 + x̂t (3.3)

where zt is partitioned as zt = (yt, x
T
t ). The variance ratio statistic P̂u is then defined

as

P̂u =
T ω̂11.2

T−1
∑T

t=1 ê
2
t

(3.4)

where ε̂t are the residuals of the long-run equation (3.1). The conditional covariance
ω̂11.2 is derived from the covariance matrix Ω̂ of the residuals ξt of the equation (3.3)
and is defined as

ω̂11.2 = ω̂11 − ω̂T
21Ω̂

−1
22 ω̂21 (3.5)

where the covariance matrix Ω has been partitioned as

Ω̂ =

[
ω̂11 ω̂21

ω̂21 Ω̂22

∣∣∣∣ (3.6)

and is estimated as

Ω̂ = T−1
T∑
t=1

ξ̂Tt ξ̂t + T−1
l∑

s=1

wsl

T∑
t=1

(ξ̂tξ̂
T
t−s + ξ̂t−sξ̂

T
t ) (3.7)

with the weighting functions wsl = 1 − s/(l + 1). Therefore, the variance ratio
statistic measures the size of the residual variance from the cointegrating regression
of yt on xt against that of the conditional variance of yt given xt. In the case of
cointegration, the test statistic should stabilize to a constant, whereas if a spurious
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relationship is present, this would be reflected in a divergent variance of the long-
run equation residuals from the conditional variance. Critical values of the test have
been tabulated in Phillips and Ouliaris (1990).

The multivariate trace statistic, denoted as P̂z, is defined as

P̂z = Ttr(Ω̂M−1
zz ) (3.8)

where Mzz = t−1
∑T

t=1 ztz
T
t , and Ω̂ estimated as in Equation (3.7). Critical values

for this test statistic are provided in Phillips and Ouliaris (1990), too. The null
hypothesis is that no cointegration relationship exists.

3.1.3 Johansen test

The greatest deficiency of the two method we discussed so far, is that we can only
detect and estimate a single cointegration relationship at a time. However if we deal
with more than two time series, it is possible that more than one cointegrating rela-
tionship exists. In fact, between m variables there can be up to m− 1 cointegrating
relationships. The Johansen approach offers a solution to this problem.

Assume a vector autoregressive model (VAR) in it the usual form,

yt = β1yt−1 + β2yt−2 + ...+ βktt−k + ut (3.9)

where yt is a (g×1) vector of variables. We transform the VAR to

∆yt = Πyt−k + Γ1∆yt−1 + Γ2∆yt−2 + +Γk − 1∆yt−(k−1) + ut (3.10)

where Π = (
∑k

j=1 βi)− Ig and Γi = (
∑i

j=1 βi)− Ig. Since in the long-run all ∆yt−i
become 0, Π is the long-run coefficient matrix.

The Johansen procedure focuses on the rank of the Π matrix via its eigenvalues.
If the coefficient matrix Π has reduced rank r < g, then there exist matrices α and
β each with dimensions g × r and rank r so that, Π = αβT and βTyt is stationary.
The number of cointegrating relationships is r, the elements of α are known as
the adjustments parameters in the vector error correction model (VECM) and each
column of β is a cointegrating vector. For a given r, the maximum likelihood
estimator of β defines the combination of yt−1 that yields the r largest canonical
correlation of ∆yt with yt−1 after correcting for lagged differences and deterministic
variables when present. Johansen (1988) proposes a two different likelihood ratio
tests of significance of these canonical correlations and thereby the reduced rank of
the Π matrix, the trace test and maximum eigenvalue test, formulated as

λtrace(r) = −T
g∑

i=r+1

ln(1− λ̂i) (3.11)

λmax(r, r + 1) = −T ln(1− λ̂r+1) (3.12)

where λ̂i is the estimated value for the ith ordered eigenvalue from the Π matrix.
λtrace tests the null hypothesis that the number of cointegrating vectors is less than
or equal to r against an unspecified alternative, while λmax tests the null that the
number of cointegrating vectors r against an alternative of r+1. If the matrix Π has
zero rank then there is no long-run relationship and if it has full rank, the original
variables are stationary.
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The distribution of the test statistics is non-standard. The critical values depend
on the value of g − r, the number of non-stationary components, and whether a
constant and/or trend are included in the regressions. Johansen (1988) were the
first to tabulate critical values for the Johansen test. As the test gained popularity
and the asymptotic and small properties have been revised, new critical values were
tabulated by Osterwald-Lenum (1992), Doornik (1998) and MacKinnon et al. (1999).
In this study we use the critical values proposed by MacKinnon et al. (1999).

3.2 Tests for explosive behaviour

3.2.1 Supremum Augmented Dickey-Fuller test

In order to describe the recursive implementation of the SADF and GSDAF tests,
some notation is required. Specifically, in the analysis of explosive behaviour in time
series the full sample is normalised on the interval [0, 1] (i.e., divided by the number
of observations T ). We denote r1 and r2 the corresponding fractions of the sample
which define the beginning and end of a subsample such that 0 ≤ r1 ≤ r2 ≤ 1. We
denote by rw = r2 − r1 the window size of regression estimation, while r0 is the
fixed initial window required by the econometrician such that the subsample in r2
satisfies that r2 ∈ [r0, 1]

The SADF test, proposed by Phillips et al. (2011) is a recursive procedure based
on the recursive estimation of the ADF regression on subsamples of the data. The
approach uses a forward expanding estimation subsample with the end of the sub-
sample r2 increasing from r0 ∈ (0, 1) (the fixed minimum size for the initial window)
to one (the last available observation). The starting point of each estimation is
kept fixed at r1 = 0, so the expanding window size of the regression is simply given
by rw = r2. Then, incrementing the window size r2 ∈ [r0, 1] with one additional
observation at a time, the recursive estimation of the regression equation

∆yt = ar1,r2 + βr1,r2yt−1 +
k∑

j=1

ψj
r1,r2

∆yt−j + εt (3.13)

over the forward expanding subsample yields a sequence statistics,

ADF r2
0 =

β̂0,r2

s.e.(β̂0,r2)

The Phillips et al. (2011) test statistic, is defined as the supremum value of the
sequence of ADF r2

0 statistics expressed as follows,

SADF (r0) = sup
r2∈[r0,1]

ADF r2
0 (3.14)

The minimum window size is set to 0.01+1.8/
√
T . Whenever SADF (r0) exceeds

the corresponding right-tailed critical value from its limit distribution, the unit root
hypothesis is rejected in favour of mildly explosive behaviour.

The rolling-window structure of the SADF (r0) test leads to improved power
in detecting mildly explosive behaviour relative to what can be achieved with a
standard ADF 1

0 test alone. Furthermore, Homm and Breitung (2011) show through
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simulation experiments that the SADF (r0) test generally outperforms alternative
testing methods commonly used to detect a single structural break in the persistence
of the process from I(1) to explosive as well. Phillips and Yu (2011) modified the
technique and provided a technology for identifying bubble behavior with consistent
dating of their origination and collapse.

The alternative tests considered by Homm and Breitung (2011) aim to detect a
permanent structural break in the persistence of the process and, as a consequence,
perform well only when the series becomes explosive but never bursts in-sample. In-
tuitively, the SADF (r0) test’s power and its performance deteriorate in the presence
of recurring (more than one) and periodically collapsing episodes of exuberance, as
established in Phillips et al. (2013)

3.2.2 Generalized supremum ADF

Phillips et al. (2013) proposed another recursive (right-tailed) unit root test, the
Generalized SADF (GSADF), covering a larger number of subsamples than the
SADF (r0) test by relaxing the requirement that the starting point of the subsample
r1 be kept fixed. This additional margin of flexibility on the estimation window of
the GSADF (r0) results in substantial power gains, consistent with multiple and
periodically collapsing episodes of explosiveness in the data (while the SADF (r0)
test is only consistent with a single such episode in in-sample).

The GSADF approach builds on the forward expanding estimation subsample
strategy of the SADF procedure, but instead allows the starting point of the sub-
sample r1 to change. The initial window size r0 satisfies that r0 < r2, while the
expanding windows size of the regression (over the normalized sample) is defined as
rw = r2− r1. Incrementing the window size r2 ∈ [r0, 1] with one additional observa-
tion at a time over each starting point of the sample r1 ∈ [o, r2 − r0], the recursive
estimation of the ADF regression equation in (3.13) yields a sequence of statistics,

ADF r2
r1

=
β̂r1,r2

s.e.(β̂r1,r2)

The Phillips et al. (2013) test statistic is defined as the supremum value of the
sequence ADF r2

r1
statistics expressed as follows,

GSADF (r0) = sup
r1∈[0,r2−r0]

{
sup

r2∈[r0,1]
ADF r2

r1

}
(3.15)

Whenever GSADF (r0) exceeds the corresponding right-tailed critical value from
its limit distribution, the unit root hypothesis is rejected in favour of mildly explosive
behaviour. The rolling window structure of the GSADF (r0) test leads to improved
power in detecting recurring episodes of mildly explosive behaviour relative to what
can be achieved with the standard ADF 1

0 and with the SADF (r0) test.
The critical values for the both the SADF and the GSADF test are obtained via

Monte Carlo simulations.
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Chapter 4

Design of the Monte Carlo
experiments

Our aim is to study the effects of changing the frequency of the observations and the
total sample length on the power of the tests described in the previous chapter. For
this purpose, using data generation processes (DGP) we construct systems of two,
three and four variables. Each time series has a sample length of 1188 observations.
This corresponds to 99 years of monthly data. We create quarterly and annual data
using two different methods. The first method keeps only the last observation of ev-
ery quarter (year). The second method averages the three (twelve) non-overlapping
observations corresponding to each quarter (year). We then employ the tests to
sample of 33, 66 and 99 years of monthly, quarterly and annual observations. The
power of the tests are based on 1000 replications. The procedure we just described
is used throughout this study. Unless stated otherwise a significance level of 5% is
used. When needed, the Schwarz information criterion (SIC) is employed to deter-
mine the VAR’s lag order. Koehler and S. Murphree (1988) compared the SIC and
the Akaike information criterion (AIC) and concluded that the SIC leads to lower
order models and is preferable to apply.

4.1 Cointegration

4.1.1 The Engle-Granger and Phillips-Ouliaris methods

We begin the analysis with the two single-equation methods, the Engle-Granger
and the Phillips-Ouliaris. For the first case of two time series. Following Otero and
Smith (2000) and construct two time series using the DGP,

yt + xt = u1,t, u1,t = u1,t−1 + error

yt + 2xt = u2,t u2,t = ρu2,t−1 + error
(4.1)

We examine ρ = 0.98, 0.95 0.92, 0.85.
We consider two more systems. The first contains three time series and it is

based on the procedure below,

xt = u2,t + u3,t − u1,t, u1,t = u1,t−1 + error

yt = 2(u1,t + u3,t)− u2,t, u2,t = 0.95u2,t−1 + error

zt = u2,t + u3,t − u1,t, u3,t = 0.98u3,t−1 + error

(4.2)
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For the case of four time series we build the following system,

xt = u3,t + u4,t − u1,t − u2,t, u1,t = u1,t−1 + error

yt = 2(u1,t + u2,t)− u3,t − u4,t, u2,t = 0.95u2,t−1 + error

zt = 2(u1,t + u3,t − u2,t)− u4,t, u3,t = 0.98u3,t−1 + error

wt = u2,t + u4,t − u1,t − u3,t, u4,t = 0.98u4,t−1 + error

(4.3)

All the errors are independent standard normal and unless stated otherwise we
assume that every disturbance term does so. The first value of the autoregressive
processes ut is set to zero.

The Engle-Granger and the Phillips-Ouliaris tests are then employed to test for
cointegration. The Engle-Granger is applied to systems (4.1), (4.2) and (4.3), two,
three and four times respectively. Every time the test is applied a different variable
is considered as endogenous. This is due to the fact that the Engle-Granger method
treats the variables asymmetrically. As regards the Phillips-Ouliaris test, we only
use the multivariate trace statistics which is invariant to normalization.

4.1.2 Johansen test

The three systems are also tested for cointegration using the Johansen procedure.
In the system (4.2), however, the coefficients of the autoregressive procedures u2,t
and u3,t are equal to 0.85 and 0.92 respectively. Actually, during our analysis we
first examined the Johansen procedure using the values 0.85 and 0.92. When we
applied the Engle-Granger and the Phillips-Ouliaris methods, the probability to
detect a cointegration relationship were incredibly high regardless of the sample
and temporal disaggregation were hardly observed. Changing the values of the
parameters eased our analysis.

The examination of the systems (4.2) and (4.3) with the Johansen test revealed
that more than one cointegrating vectors are present (the results are fully presented
in the next chapter). This makes us wonder if the effects of changing the frequency
of observations and the total sample length on the power of the test is different
depends on the number of the existent cointegrating vectors. In order for our study
to be complete, we create additional multivariate systems where different numbers
of cointegration relationships exist. Systems (4.2) and (4.3) contain two and three
cointegrating vectors respectively. We consider the supplementary cases of zero and
one vectors for the three time series and the cases of zero, one and two cointegrating
vectors for the four time series.

For the case of three variables and no cointegration we examine a system which
consists of three random walk processes. To create a system of three variables with
one cointegrating relationship we follow the DGP,

xt = u2,t − u1,t
yt = 2u1,t − u2,t
zt = zt−1 + error

(4.4)

where, u1,t = u1,t−1 + error and u2,t = 0.95u2,t−1 + error.
To study the behaviour of the Johansen test in the case of four variables and

absence of cointegration we employ the the DGP,
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xt = xt−1 + u1,t

yt = xt + u2,t

zt = zt−1 + error

wt = wt−1 + error

(4.5)

where u1,t follows a random walk and u2,t = 0.95u1,t−1 + error.
In the next system exactly one cointegrating vector is present.

yt + xt = u1,t

yt + 2xt = u2,t

zt = zt−1 + error

wt = wt−1 + error

(4.6)

with u1,t following a random walk and u2,t = 0.92u2,t−1 + error.
Finally, for the case of two cointegrating vectors we create four time series fol-

lowing the DGP,

xt = u2,t + u3,t − u1,t, u1,t = u1,t−1 + error

yt = 2(u1,t + u3,t)− u2,t, u2,t = 0.95u2,t−1 + error

zt = u2,t + u3,t − u1,t, u3,t = 0.98u3,t−1 + error

wt = wt−1 + error

(4.7)

4.2 Explosive behaviour

The ability of a test two detect explosive behaviour depends on a great degree on
the kind of the bubble. For example, the SADF can easily detect a single bubble
but it fails to recognize multiple collapsing explosive episodes.

We apply the two right-tailed unit root tests on three different kind models. The
first model proposed by Phillips et al. (2011) follows the DGP,

xt =


0, if t = 0

xt−1 + error, if t < τe or t > τf

δTxt−1 + error, if τe ≤ t ≤ τf

(4.8)

where T is the sample size, δT = 1 + cT−a with c > 0 and a ∈ (0, 1). The series
follows a pure random walk process except for a bubble period from τe to τf . During
that period it follows a mildly explosive process with expansion rate given by the
autoregressive coefficient δT . We set T = 1188, c = 1, a = 0.6, τe = 120 and
τf = 298. Given that, the explosive process takes place during the years 10-25.

The second model is based on Blanchard (1979). It consists of two regimes,
which occur with probability π and 1 − π. In the first regime, the bubble grows
exponentially,

xt =
1 + r

π
+ xt−1 + error (4.9)
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whereas in the second regime, the bubble collapses to a white noise. We set π = 0.7
and r = 0.05.

The last series follows Evans (1991).

xt =

{
(1 + r)xt−1ut, if xt−1 ≤ a

[δ + π−1(1 + r)θt(xt−1)− (1 + r)−1δ]ut, if xt−1 > a
(4.10)

δ and a are positive parameters with 0 < δ < (1 + r)a, ut is an exogenous iid
positive random variable with Et−1ut = 1, and θt is an exogenous independently
and identically distributed Bernoulli process (independent of u) which takes the
value 1 with probability π and 0 with probability 1 − π, where 0 < π ≤ 1. When
xt−1 ≤ a the bubble grows at an average rate of 1 + r. When xt−1 > a the bubble
expands at an increased rate of (1 + r)π−1. We set a = 1, δ = 0.5, π = 0.7 and
r = 0.05. The last two models contain multiple explosive episodes.

Although not our main concern, during the analysis we examine the three models
using common unit root tests. We apply the Dickey and Fuller (1981), Kapetanios
et al. (2003) (KSS) and Zivot and Andrews (1992) tests on all three time series.

The last part of the simulations deals with cointegration tests on explosive time
series. We consider two cases. First, we construct the following time series,

xt = u2,t − u1,t

yt =

{
2u1,t − u2,t, everywhere

δTxt−1 + error, if 120 ≤ t ≤ 298

(4.11)

where,

u1,t = u1,t−1 + error

u2,t = ρu2,t−1 + error

ρ = 0.98, 0.95 0.92, 0.85, u1,0 = u2,0 = 0 and the errors are independent standard
normal. Obviously, xt is integrated of order 1 and yt contains a single bubble which
occur during the years 10-24. One can easily confirm this using common unit root
tests.

Second, we consider series which exhibit multiple explosive incidents. We follow
the DGP,

xt = u2,t − u1,t
yt = 2u1,t − u2,t

(4.12)

where u1,t is a random walk. Considering u2,t there are two subcases, the first time
it follows the process described by Blanchard (1979) and the second time it follows
the process described by Evans (1991).

4.3 A note on the lag order

Let us return to system (4.5) where,
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xt = xt−1 + u1,t, u1,t ∼ N(0, 1)

yt = xt + u2,t

and u2,t is an AR(1) process,

u2,t = 0.95u2,t−1 + et, et ∼ N(0, 1)

We denote the quarterly and annual data obtained with the method of skip
sampling,

xendt = xt·s

yendt = yt·s

where s = 3 for quarterly and s = 12 for annual, hence

xendt = xendt−1 + uend1,t ,

uend1,t = u1,t·s−(s−1) + u1,t·s−(s−2) + ...+ u1,t·s,

E[uend1,t , u
end
1,t−j] = 0forj 6= 0 and

yendt = xendt + uend2,t ,

uend2,t = 0.95suend2,t−1 + eendt ,

eendt = et + 0.95et·s−1 + ...+ rs−1et·−(s+1)

Because E[uend2,t , u
end
2,t−j] = 0 for j 6= 0, u2,t remains an AR(1) process.

We denote the averaged quarterly and annual data as

xavt =
1

s

st∑
i=st−(s−1)

xi

yavt =
1

s

st∑
i=st−(s−1)

yi

xavt is also xavt−1 = xavt−1 + uav1,t. The error term uav1,t is written,

u1,t =
1

s

st∑
i=s(t−1)−(s−1)

xi

By the definition of yavt we get yavt = xavt + uav2,t. The error term uav1,t can be
expressed by the two equations,

uav2,t =
1

s

st∑
i=st−(s−1)

u2,i

uav2,t = 0.95s uav2,t−1 + eavt
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Combining the two equations gives us,

eavt =
1

s

{
st∑

i=st−(s−1)

[
ei(

s−i∑
j=0

0.95j)

]
+

s(t−1)∑
i=s(t−(s−1)

[
ei(

s−1∑
j=s−i+1

0.95j)

]}
It is shown that E[uav1,t, u

av
1,t−1] 6= 0 and E[eavt , u

av
t−1] 6= 0 yet E[uav1,t, u

av
1,t−1] = 0

and E[eavt , u
av
t−1] = 0. This means that uav1,t and eavt are moving average processes

(MA(1)) and thus could be expressed in a typical MA(1) form,

u1,t = wt − θwt−1 = (1− θL)wt

et = vt − φvt−1 = (1− φL)vt

where E[wt, wt−j] = 0 and E[vt, vt − j] = 0 for j 6= 0, θ and φ are the moving
average parameters and L is the lag operator. Because the first order autocorrelation
of an MA(1) process is equal to −θ/(1 + θ2), the approximate values of θ and φ can
be computed by solving the following

E[uav1,t, e
av
1,t−1]

E[(uav1,t)
2]

=

∑s
i=2

[(∑s−i
j=0 ρ

j

)(∑s−1
j=s−i+1 ρ

j

)]
∑s

i=1

[(∑s−i
j=0 ρ

j

)2]
+

[(∑s−1
j=s−i+1 ρ

j

)2] =
−θ

1 + θ2

E[eavt , e
av
t−1]

E[(eavt )2]
=

∑s
i=2[(s+ 1− i)(i− 1)]∑s

i=2(s+ 1− i)2 +
∑s

i=2(i− 1)2
=
−φ

1 + φ2

Note that θ is a function of ρ and φ can be considered as a special case of θ for
ρ = 1. As the models of cointegration tests are mostly presented in an autoregressive
or VAR form, the existence of an MA(1) tern in xavt and uav2,t may require may require
an infinite lag structure. THat is, when

xavt =xavt−1 + (1− θL)wt

uav2,t =0.95s + uav2,t−1 + (1− φL)vt

Denoting ∆xavt = xavt − xavt−1 and zt = uav2,t − 0.95s + uavw,t−1, we have

∆xavt /(1− θL) =∆xavt − θ∆xavt−1 + θ2∆xavt−2 − θ3∆xavt−3 + ... = wt

wt/(1− φL) =wt − φwt−1 + φ2wt−2 − φ3wt−3 + ... = vt

∆xavt and zt are AR processes with an infinite lag structure.
In practice, if the MA coefficient theta is relatively small, the study would not be

hurt by the problem of underparameterization if we use the models with finite but
sufficient lag lengths. As we have already said, we use the SIC for the selection of the
lag order. Supplementary simulations, not presented here, showed that although the
AIC often results in higher order VARs, the results from the analysis are qualitatively
the same.
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Chapter 5

Results

5.1 Single-equation cointegration tests

We employ the Engle-Granger and the Phillips-Ouliaris tests on the time series
produced be equations (4.1), (4.2), (4.3). Tables 5.1, 5.2 and 5.3 present the results.
Because the two tests differ only in the second step they exhibit similar behaviour.

Tables 5.1 and 5.2 report the results from the the two tests applied on (4.1). We
first observe that the value of ρ affects the power of the tests. As ρ approaches 1 the
performance of the tests worsens. Both the frequency of observations and the total
sample length play a role on the performance of the tests. Increasing the frequency
of observations yields substantial power gains. For example, for ρ = 0.85, averaged
data and p = 0.05, using quarterly instead of annual data triples the probability the
Engle-Granger method to detect a cointegrating vector. In general setting ρ equal
to 0.85 produces results which do not comply with the results we obtain for the rest
of the values of ρ. As ρ approaches one, the ability of the two tests depends more
on the total sample length. For instance, for ρ = 0.98, using annual data for 66
years yields more power to the Engle-Granger test than using monthly data for 33
years. We should keep in mind that a sample of 33 years of monthly data contains
396 observations while a sample of 66 years of annual data only 66.

Applying the Phillips-Ouliaris method produces similar results. Even when ρ
is equal to 0.85 increasing the sample length while using annual data yields great
power gains. As ρ grows the importance of the total sample length becomes more
visible. We should also note that for most cases we obtain better results using the
Phillips-Ouliaris test than the Engle-Granger.

Table 5.3 consists of four subtables. The upper left subtable contains the results
from the Engle-Granger applied on (4.2). Using quarterly over annual data yields
less power gains than increasing the total data length. The only case where this does
not hold is when using quarterly data for 66 years. Using monthly over quarterly
increases the probability of detecting a cointegrating relationship. However this
increase can be considered insignificant compared to the increase in the power from
using a longer data set.

The upper right part of table 5.3 reports the from the Engle-Granger applied on
(4.3). Using a set of 99 years give us a probability of detecting cointegration over
85% regardless of the frequency. When we use a sample of 66 years, lowering the
frequency yields to substantial power loss. However there is greater loss when we use
a sample of monthly observations of 33 years than a sample of annual observations
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Table 5.1: Empirical power of Engle-Granger method

ρ = 0.85 33 years 66 years 99 years
Monthly 0.894 0.823 0.886 0.793 0.888 0.810

Quarterly skip 0.745 0.808 0.925 0.860 0.934 0.887
Annual skip 0.211 0.317 0.536 0.671 0.879 0.876

Quarterly avg 0.727 0.815 0.931 0.859 0.931 0.882
Annual avg 0.238 0.353 0.549 0.674 0.873 0.879

ρ = 0.92 33 years 66 years 99 years
Monthly 0.639 0.699 0.862 0.767 0.852 0.758

Quarterly skip 0.427 0.556 0.879 0.819 0.918 0.826
Annual skip 0.128 0.240 0.393 0.540 0.815 0.847

Quarterly avg 0.410 0.556 0.876 0.835 0.920 0.835
Annual avg 0.142 0.234 0.412 0.574 0.807 0.835

ρ = 0.95 33 years 66 years 99 years
Monthly 0.330 0.454 0.793 0.753 0.862 0.755

Quarterly skip 0.229 0.352 0.716 0.750 0.887 0.822
Annual skip 0.104 0.188 0.283 0.419 0.660 0.758

Quarterly avg 0.242 0.352 0.703 0.749 0.888 0.827
Annual avg 0.126 0.193 0.297 0.417 0.655 0.755

ρ = 0.98 33 years 66 years 99 years
Monthly 0.100 0.143 0.242 0.368 0.529 0.617

Quarterly skip 0.083 0.133 0.197 0.317 0.423 0.557
Annual skip 0.063 0.127 0.148 0.216 0.272 0.429

Quarterly avg 0.082 0.157 0.189 0.314 0.422 0.557
Annual avg 0.074 0.129 0.139 0.215 0.267 0.406

Every first column refers to 5% significance level and every second
column to 10% significance level.

for 66 years, over a sample of monthly data for 66 years.

In the lower subtable of 5.3 the results from the Phillips-Ouliaris test are re-
ported. When employed on three series, the probability to identify a cointegrating
relationship using a sample of 99 years is one regardless of the frequency (except
for annual data obtained with the averaging with non-overlapping method). The
explanation for this value is that systems in the systems (4.2) and (4.3) exist more
than one cointegrating relationships. This will become clearer when we will repeat
the analysis using the Johansen test. Because we use the multivariate trace statistic
test which is invariant to normalization the probability of detecting a cointegrat-
ing vector is much higher than using the Engle-Granger test. However this test is
greatly affected when the smallest sample is used. Especially when the averaging
with non-overlapping observations method is used, the test always fails to detect a
cointegrating vector. Looking at the probabilities in the remaining cases we can con-
clude that the ability of the test to identify a cointegrating vector depends more on
the total sample length. Finally, is worth mentioning that using the skip sampling
method produces better results than the averaging method.
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Table 5.2: Empirical power of Phillips-Ouliaris test

ρ = 0.85 33 years 66 years 99 years
Monthly 0.894 0.807 0.893 0.808 0.906 0.830

Quarterly skip 0.939 0.873 0.940 0.873 0.945 0.898
Annual skip 0.929 0.901 0.949 0.898 0.942 0.895

Quarterly avg 0.937 0.872 0.945 0.880 0.943 0.897
Annual avg 0.798 0.854 0.959 0.910 0.949 0.895

ρ = 0.92 33 years 66 years 99 years
Monthly 0.843 0.788 0.874 0.778 0.862 0.762

Quarterly skip 0.860 0.823 0.916 0.847 0.908 0.844
Annual skip 0.715 0.799 0.941 0.880 0.945 0.888

Quarterly avg 0.718 0.780 0.924 0.851 0.913 0.844
Annual avg 0.343 0.521 0.929 0.878 0.949 0.890

ρ = 0.95 33 years 66 years 99 years
Monthly 0.524 0.624 0.861 0.764 0.835 0.732

Quarterly skip 0.513 0.636 0.897 0.810 0.896 0.808
Annual skip 0.409 0.549 0.910 0.885 0.921 0.858

Quarterly avg 0.324 0.473 0.862 0.812 0.903 0.811
Annual avg 0.126 0.260 0.743 0.807 0.917 0.858

ρ = 0.98 33 years 66 years 99 years
Monthly 0.124 0.199 0.362 0.478 0.654 0.708

Quarterly skip 0.119 0.210 0.355 0.464 0.650 0.713
Annual skip 0.123 0.216 0.340 0.459 0.613 0.707

Quarterly avg 0.053 0.123 0.242 0.358 0.527 0.637
Annual avg 0.017 0.048 0.144 0.259 0.364 0.515

Every first column refers to 5% significance level and every second
column to 10% significance level.

Table 5.3: Testing for cointegration multiple variables with single-equation methods

33 years 66 years 99 years 33 years 66 years 99 years
three variables four variables

The Engle−Granger two-step procedure
Monthly 0.196 0.637 0.792 0.521 0.708 0.996

Quarterly skip 0.179 0.534 0.789 0.481 0.599 0.956
Annual skip 0.023 0.231 0.523 0.065 0.522 0.856

Quarterly avg 0.176 0.548 0.776 0.492 0.612 0.984
Annual avg 0.030 0.239 0.518 0.052 0.503 0.835

The Phillips−Ouliaris test
Monthly 0.710 1.000 1.000 0.312 0.876 0.997

Quarterly skip 0.545 0.999 1.000 0.136 0.790 0.994
Annual skip 0.004 0.844 1.000 0.001 0.132 0.641

Quarterly avg 0.286 0.989 1.000 0.010 0.471 0.928
Annual avg 0.000 0.384 0.983 0.000 0.016 0.204

The upper and lower subtables report the probability of detecting a cointegrating vector
using the Engle-Granger and Phillips-Ouliaris methods respectively, in systems (4.2) (left)
and (4.3) (right).
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5.2 Multivariate cointegrating test

In this section we present the results from the Johansen test. Table 5.4 reports
the probability of identifying a cointegrating relationship between two series using
the λmax test. There is little power gain from using monthly data over quarterly
data. However, the use of annual data causes substantial power loss. As the value of
approaches one the power gains from using a longer sample length become greater.
In most cases, the observed power gains to the higher frequency data, compared to
annual data can be produced by increasing the sample length by a few years. For
example, for ρ = 0.95, using the λmax test statistic we need less than 40 years to
yield similar power results as 33 years of monthly data. Since we obtain similar
results from using the Trace statistic, we will not report them here. We must point
out, however, that the Trace statistic is less powerful than the λmax.

Table 5.4: Empirical power of Johansen test

λmax test Trace test
ρ = 0.85 33 years 66 years 99 years 33 years 66 years 99 years
Monthly 0.948 0.939 0.941 0.958 0.934 0.946

Quarterly skip 0.937 0.947 0.944 0.954 0.935 0.943
Annual skip 0.537 0.643 0.941 0.524 0.653 0.940

Quarterly avg 0.930 0.944 0.942 0.931 0.931 0.940
Annual avg 0.498 0.920 0.949 0.452 0.896 0.928

ρ = 0.92 33 years 66 years 99 years 33 years 66 years 99 years
Monthly 0.761 0.935 0.936 0.781 0.948 0.943

Quarterly skip 0.678 0.933 0.936 0.697 0.952 0.940
Annual skip 0.353 0.526 0.944 0.362 0.488 0.949

Quarterly avg 0.692 0.930 0.944 0.707 0.948 0.950
Annual avg 0.381 0.830 0.897 0.355 0.826 0.899

ρ = 0.96 33 years 66 years 99 years 33 years 66 years 99 years
Monthly 0.386 0.909 0.950 0.373 0.898 0.956

Quarterly skip 0.340 0.852 0.951 0.311 0.859 0.954
Annual skip 0.219 0.383 0.916 0.219 0.367 0.919

Quarterly avg 0.289 0.819 0.952 0.358 0.820 0.950
Annual avg 0.244 0.642 0.756 0.254 0.665 0.734

ρ = 0.98 33 years 66 years 99 years 33 years 66 years 99 years
Monthly 0.096 0.258 0.550 0.088 0.239 0.544

Quarterly skip 0.098 0.228 0.531 0.099 0.220 0.513
Annual skip 0.113 0.171 0.413 0.111 0.175 0.419

Quarterly avg 0.130 0.214 0.445 0.116 0.208 0.464
Annual avg 0.145 0.248 0.294 0.136 0.245 0.303

The left subtable presents the results from the λmax test and the right subtable the results
from the Trace test. The same structure is also used for Tables 5.5 and 5.6.

When three or four variables are tested the power of the tests depends almost
solely on the data length. For a fixed number of years changing the frequency
has little effect on the power of the test. In several cases, i.e, for the case of four
variables and two cointegrating vectors, using a sample of 99 years over a sample of
66 years also has little effect on the test, especially for the monthly and quarterly
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Table 5.5: Empirical power of Johansen test applied on three variables

λmax test Trace test
33 years 66 years 99 years 33 years 66 years 99 years

No cointegration:
Monthly 0.928 0.936 0.945 0.936 0.941 0.954

Quarterly skip 0.900 0.929 0.944 0.909 0.932 0.943
Annual skip 0.877 0.904 0.937 0.857 0.907 0.933

Quarterly avg 0.920 0.830 0.941 0.925 0.930 0.951
Annual avg 0.806 0.870 0.917 0.791 0.887 0.913

One cointegrating vector:
Monthly 0.237 0.758 0.949 0.236 0.681 0.926

Quarterly skip 0.221 0.699 0.943 0.219 0.606 0.910
Annual skip 0.224 0.445 0.779 0.255 0.407 0.720

Quarterly avg 0.197 0.551 0.883 0.231 0.494 0.815
Annual avg 0.286 0.457 0.764 0.322 0.448 0.711

Two cointegrating vectors:
Monthly 0.720 0.936 0.933 0.776 0.936 0.933

Quarterly skip 0.570 0.938 0.938 0.617 0.941 0.938
Annual skip 0.177 0.770 0.930 0.113 0.809 0.930

Quarterly avg 0.611 0.932 0.928 0.627 0.932 0.928
Annual avg 0.160 0.714 0.918 0.109 0.745 0.925

The first subtable reports the prop ability of not detecting a cointegrating vector in system
where no cointegration exists. The second and third subtable report the probability of
identifying one and two vectors in systems where exactly one and two vectors exist.

observations. However, using the shortest sample length of 33 years yields important
power loss. This more clearly observed when at least one cointegration relationship
is present.

Although not the main concern of our study, we try to compare the power of the
power of the two statistics. When applied on three time series the Trace statistic
behaves better when no cointegrating vectors exist and monthly and quarterly data
are used. When one cointegrating relationship is present the λmax test produces
stronger results using monthly data, quarterly data obtained with the method of
the skip sampling and for a data length of 66 years. Of course we can not pronounce
over a test based on these results. In the presence of two cointegrating vectors,
the λmax produces better results only for the smallest sample of annual data for 33
years. For the largest samples, monthly data for 99 and 66 years and quarterly data
for 99 years (1188, 792 and 396 observations respectively) the two tests identify the
cointegrating vectors with the exact same probability.

Considering the case of four variables, when no cointegration relationship exists
the λmax test is preferable while when one cointegrating vectors exist there is a
higher probability that the Trace test can detect it. Finally, when two and three
cointegrating vectors exist we could possibly conclude that λmax outperforms the
Trace test on longer data sets but it is outperformed on the shortest sample length
of 33 years. Again we should notice that for the biggest data sets no test can clearly
produce stronger results.

Obviously, we can not safely pronounce over the power of one test over the other.
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However it is safe to conclude that in the presence of multiple cointegrating vectors
the λmax is preferably used for longer data sets while the Trace test for smaller
samples.

Table 5.6: Empirical power of Johansen test applied on four variables

λmax test Trace test
33 years 66 years 99 years 33 years 66 years 99 years

No cointegration:
Monthly 0.874 0.898 0.915 0.819 0.880 0.900

Quarterly skip 0.790 0.876 0.903 0.727 0.844 0.879
Annual skip 0.638 0.829 0.861 0.494 0.755 0.820

Quarterly avg 0.753 0.859 0.894 0.655 0.839 0.879
Annual avg 0.533 0.748 0.775 0.355 0.655 0.736

One cointegrating vector:
Monthly 0.159 0.514 0.664 0.235 0.585 0.681

Quarterly skip 0.156 0.473 0.676 0.225 0.555 0.707
Annual skip 0.243 0.328 0.546 0.361 0.431 0.651

Quarterly avg 0.195 0.523 0.617 0.264 0.602 0.635
Annual avg 0.315 0.357 0.538 0.404 0.479 0.637

Two cointegrating vectors:
Monthly 0.434 0.936 0.948 0.402 0.901 0.949

Quarterly skip 0.317 0.933 0.946 0.342 0.903 0.933
Annual skip 0.250 0.552 0.922 0.315 0.512 0.871

Quarterly avg 0.348 0.887 0.947 0.370 0.814 0.946
Annual avg 0.330 0.471 0.894 0.382 0.450 0.818

Three cointegrating vectors:
Monthly 0.211 0.924 0.946 0.274 0.897 0.946

Quarterly skip 0.120 0.876 0.947 0.181 0.834 0.946
Annual skip 0.010 0.400 0.897 0.041 0.447 0.876

Quarterly avg 0.134 0.879 0.943 0.212 0.851 0.941
Annual avg 0.008 0.296 0.855 0.041 0.401 0.838

See notes on Table 5.5.

5.3 Testing for explosive behaviour

From now on our analysis focuses on explosive behaviour. Table 5.7 reports the
probability of detecting explosive behaviour using the SADF and GSADF test. As
we have already mentioned, we consider three models proposed by Phillips et al.
(2013), Blanchard (1979) and Evans (1991) respectively. Table 5.6 sums up our
findings. Both tests detect the bubble in the Phillips’ model with a rate of success
higher than 90%. Therefore, we face difficulty in deciding which characteristic affects
the tests more. However, contrary to previous findings, increasing the sample length
yields power loss. Since the model proposed by Phillips et al. (2013) contains a single
bubble the two tests demonstrate equal power.

The superiority of the GSADF test becomes obvious when we employ the two
tests to detect the presence of explosive behaviour in models proposed by Blan-
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Table 5.7: Empirical power of SADF and GSADF

SADF GSADF
33 years 66 years 99 years 33 years 66 years 99 years

DGP based on Phillips
Monthly 0.908 0.908 0.905 0.904 0.902 0.898

Quarterly skip 0.910 0.906 0.901 0.905 0.907 0.899
Annual skip 0.901 0.900 0.896 0.907 0.900 0.894

Quarterly avg 0.925 0.925 0.924 0.924 0.926 0.927
Annual avg 0.915 0.916 0.917 0.922 0.920 0.917

DGP based on Blanchard
Monthly 0.507 0.707 0.772 0.993 1.000 1.000

Quarterly skip 0.416 0.528 0.589 0.818 0.928 0.972
Annual skip 0.058 0.059 0.078 0.098 0.107 0.139

Quarterly avg 0.419 0.536 0.614 0.834 0.947 0.977
Annual avg 0.128 0.179 0.210 0.222 0.325 0.394

DGP based on Evans
Monthly 0.828 0.843 0.870 0.992 1.000 1.000

Quarterly skip 0.532 0.605 0.644 0.782 0.922 0.957
Annual skip 0.023 0.061 0.060 0.026 0.061 0.080

Quarterly avg 0.517 0.940 0.684 0.815 0.940 0.971
Annual avg 0.145 0.188 0.220 0.190 0.296 0.376

The table reports the probability of rejecting the null of the SADF (left) and (GSADF)
(right) test in favour of the alternative of a mildly explosive process.

chard (1979) and Evans (1991). When describing the two models in section 4.3 we
highlighted their main feature which is the multiple periodically collapsing explosive
incidents. We can safely deduce from the results that the ability of the two right-
tailed unit root tests depends more on the frequency of observations. Regardless
of the sample length using annual instead of quarterly data yields significant power
losses. To get a better understanding of the effect of changing the frequency, if we
apply the SADF test on series generated following Evans’ model, we get a higher
probability to detect a bubble using monthly data for 33 years than using quarterly
data for 99 years.

The two models exhibit similarities, the different expansion rates of the bubbles
cause the tests to react differently. The GSADF, for example, produces better results
when applied on Blanchard’s model. The SADF on the other hand behaves better
when applied on Evans’ model.

During the analysis we examined the the three models using standard left-tailed
unit root tests. We briefly present and discuss some of our findings. Starting with the
most common one, the ADF test detects a unit root in all models with a probability
higher than 90% for all samples.

The next unit root test to be examined is the KSS. The KSS test examines the
hypothesis of a linear time series with a unit root under the alternative of a nonlinear
stationary process. When applied on an explosive process it pronounces over the
nonlinear stationarity.

For a series generated by equation (4.9) and using a sample of monthly observa-
tions for 33 years the test recognizes a stationary time series with probability 83%.
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Table 5.8: Probability of KSS to reject H0

33 years 66 years 99 years
Monthly 0.830 0.810 0.737

Quarterly skip 0.820 0.802 0.709
Annual skip 0.842 0.774 0.642

Quarterly avg 0.821 0.800 0.710
Annual avg 0.852 0.753 0.627

Monthly 0.992 0.996 0.999
Quarterly skip 0.985 0.996 1.000

Annual skip 0.432 0.647 0.694
Quarterly avg 0.958 0.984 0.992

Annual avg 0.537 0.761 0.819
Monthly 0.996 0.998 0.999

Quarterly skip 0.995 0.997 0.999
Annual skip 0.378 0.644 0.694

Quarterly avg 0.971 0.980 0.996
Annual avg 0.617 0.817 0.842

The probability falls both when we increase the data size and when we decrease the
frequency of observations. The importance of the data span over the frequency is
more clearly visible when we use a sample of 99 over a one of 66 years. Regardless
of the frequency the test suffers greater loss when we use the longest sample.

The series generated by equations (4.10) and (4.11) produce similar results.
There is little power gain from using monthly over quarterly data and even less
gain from using a longer sample. Using annual data yields subsequent power losses,
especially when we use a period of 33 years and the method of skip sampling. When
annual data is used there are also notable gains in the power of the test when we
increase the data length.

The last unit root test we examine is the Zivot-Andrews. The test has a null
hypothesis of a unit root with structural break in the intercept. There are three
alternatives depending on the model we choose. These alternatives are a trend
stationary process that allows for a one time break in the level, the trend or both.
We examined all the cases for three models but we only present the results regarding
the series generated by equation (4.9) (Table 5.9). The reason is that the test failed
to reject the unit root hypothesis for a time series proposed by Evans (1991) and
produced the exact same probability (approximately 0.7) for the model proposed by
Blanchard (1979).

When the alternative is stationarity with a break in the trend the test almost
always fails to reject the null hypothesis for a sample of 33 years. Using a 66 years
sample it is more likely that we reject the initial hypothesis. For that sample a using
a higher frequency yields power gains. However the gains are greater when a the
longest sample is used. For example using 99 years of quarterly data increases the
probability of rejecting H0 by 10% while using monthly data instead of quarterly
only increases the probability by 1%.

The second case examines the presence of the a unit root under the alternative
of a stationary series with a break in the level. The test more often rejects the
null hypothesis. Again the ability of the test is affected more by the sample length
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Table 5.9: Zivot-Andrews testing for statinarity

33 years 66 years 99 years
with break in the trend:

Monthly 0.005 0.666 0.762
Quarterly skip 0.009 0.651 0.760

Annual skip 0.014 0.564 0.762
Quarterly avg 0.003 0.703 0.775

Annual avg 0.008 0.624 0.767
with break in the level:

Monthly 0.674 0.709 0.771
Quarterly skip 0.578 0.669 0.763
Annual skipp 0.032 0.253 0.733
Quarterly avg 0.647 0.717 0.782

Annual avg 0.045 0.350 0.752
with break in the trend and in the level:

Monthly 0.003 0.747 0.780
Quarterly skip 0.005 0.736 0.775

Annual skip 0.007 0.699 0.769
Quarterly avg 0.002 0.757 0.785

Annual avg 0.003 0.721 0.775

than the frequency. That said we should not underestimate the importance of the
frequency. Using quarterly data yields substantial power gain which in the case of
33 years overcome the gain from an increased sample length.

The alternative hypothesis of the third case allows for a break both in the trend
and in the level. The results are similar to the case. For the shortest sample the test
identifies a unit root with a 99% probability. For the two remaining sample periods
the test treats the series a stationary. The performance of the test is depends more
on the total sample than the frequency of observations.

5.4 Explosive behaviour in cointegration tests

In the last part of the simulations examine the behaviour of the Johansen and the
Engle-Granger cointegration methods when they deal with variables that exhibit
explosive behaviour.

We begin with the system generated by (4.12). Table 5.10 contains the results
from the two cointegration tests. Considering the Johansen test, only the results
from the λmax statistic are reported, since the Trace test produces similar results.
Although both tests fail to identify a cointegration relationship most of the times,
the effect of changing the sample length is still apparent. Using a data set of 99 years
over a data set of 66 years doubles the probability of detecting a cointegrating vector.
As before, the power of both tests falls as the value of ρ approaches one. Comparing
the performance of the two tests, we see that the Engle-Granger method accepts a
cointegration relationship for a sample of 99 years with a higher probability, but for
the two shortest samples, it fails to outperform the Johansen test.

Table 5.11 consists of two smaller subtables. The upper subtable contains the
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Table 5.10: Cointegration analysis of system 4.12

Johansen Engle−Granger
33 years 66 years 99 years 33 years 66 years 99 years

ρ = 0.85
Monthly 0.079 0.181 0.326 0.019 0.100 0.471

Quarterly skip 0.058 0.141 0.296 0.011 0.082 0.463
Annual skip 0.051 0.103 0.233 0.010 0.048 0.449

Quarterly avg 0.080 0.202 0.572 0.015 0.070 0.458
Annual avg 0.051 0.105 0.234 0.010 0.053 0.492
ρ = 0.92
Monthly 0.064 0.155 0.321 0.016 0.107 0.450

Quarterly skip 0.053 0.142 0.291 0.010 0.098 0.452
Annual skip 0.050 0.116 0.257 0.012 0.065 0.437

Quarterly avg 0.071 0.202 0.578 0.014 0.092 0.465
Annual avg 0.076 0.108 0.248 0.014 0.085 0.496
ρ = 0.95
Monthly 0.046 0.151 0.330 0.014 0.092 0.471

Quarterly skip 0.039 0.150 0.316 0.006 0.073 0.454
Annual skip 0.056 0.121 0.287 0.011 0.057 0.423

Quarterly avg 0.067 0.218 0.568 0.012 0.074 0.437
Annual avg 0.077 0.124 0.292 0.011 0.065 0.492
ρ = 0.98
Monthly 0.043 0.108 0.265 0.011 0.073 0.476

Quarterly skip 0.042 0.093 0.265 0.010 0.066 0.443
Annual skip 0.061 0.107 0.227 0.016 0.058 0.417

Quarterly avg 0.075 0.174 0.551 0.020 0.059 0.477
Annual avg 0.070 0.119 0.246 0.007 0.055 0.478

results from the cointegration analysis of the system (4.13) when u2,t is based on
Blanchard. Again, we obtain similar results from λmax and the Trace statistics,
therefore we only report the results from the λmax. First of all, we notice that
for every sample the Johansen test yields stronger results than the Engle-Granger.
In fact, the probability to detect a cointegration relationship using the Johansen
procedure is always higher than 90% except for the sample of annual data for 33
years. This complicates our analysis and we are not able to decide which feature
affects the ability of the Johansen test more. However we can conclude that using
averaged quarterly over annual observations for 33 years yields greater power gains
than using annual observations for 66 years.

Although the Engle-Granger lacks of power we can pronounce over the impor-
tance of the frequency of observations. It is actually preferable to use monthly data
of 33 years than quarterly, data acquired with the method of skip sampling, for 99
years. We can also conclude that if we need to lower the frequency of observations
we better use the averaging with non-overlapping method.

We receive similar results when Evans’ model is used to generate u2,t. We still can
not safely decide which of the two characteristics affects the power of the Johansen
test more. As in the previous case, the ability of the Engle-Granger test depends
more on the frequency of observations. The only exceptions concerns the use of
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Table 5.11: Cointegration analysis of system 4.13

Johansen Engle−Granger
33 years 66 years 99 years 33 years 66 years 99 years

Model based on Blanchard (1979)
Monthly 0.943 0.950 0.958 0.222 0.350 0.448

Quarterly skip 0.941 0.939 0.951 0.099 0.150 0.198
Annual skip 0.677 0.925 0.952 0.006 0.031 0.030

Quarterly avg 0.935 0.938 0.959 0.150 0.252 0.298
Annual avg 0.639 0.901 0.940 0.012 0.106 0.119

Model based on Evans (1991)
Monthly 0.948 0.953 0.951 0.198 0.580 0.702

Quarterly skip 0.940 0.955 0.938 0.163 0.278 0.336
Annual skip 0.657 0.921 0.934 0.006 0.034 0.029

Quarterly avg 0.938 0.949 0.940 0.184 0.332 0.397
Annual avg 0.559 0.911 0.921 0.013 0.091 0.117

annual data for 66 years over monthly data for 33 years. We need around 41 years
of monthly data to yield similar power gains as 66 years of quarterly data.
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Chapter 6

Empirical applications

6.1 Coffee prices

To illustrate our findings from the simulations, we investigate the relationship be-
tween coffee prices. We use time series information on the four composite “indicator
prices” constructed by the International Coffee Organization (ICO). These are spot
coffee prices of Colombian milds, other milds, Brazilian unwashed arabica, and ro-
busta. A similar analysis has been conducted by Vogelvang (1992) and revealed the
existence of two cointegrating vectors.

The data set consists of monthly data over the 1965-2018 period and was kindly
provided to us by professor Jesus Otero. Using the monthly data we compute
quarterly and annual versions by skip sampling and averaging techniques. We then
employ the Johansen test to test for cointegration for three sampling periods: 1965-
2018, 1983-2018, 2001-2018.

Table 6.1: Cointegration analysis of coffee prices using Johansen test

Annual Quarterly Monthly
r λmax Trace λmax Trace λmax Trace
Period: 1965-2018
0 36.01*** 64.69*** 39.98*** 76.64*** 42.71*** 89.80***
1 14.51 28.68 23.78** 36.66*** 33.09*** 47.09***
2 9.07 14.16 8.05 12.88 8.52 14.00
Period: 1983-2018
0 28.86** 51.28** 28.26** 53.34** 30.32** 66.91***
1 13.12 22.42 14.05 29.36* 20.98* 36.60**
2 8.00 9.30 10.44 14.93 10.28 15.62
Period: 2001-2018
0 18.08 28.93 15.83 37.27 24.76 58.61

The values denote the test statistics for r0, r1 and r2. ***, ** and * denote
significance at the 1, 5 and 10% significance levels, based on the critical values
tabulated by MacKinnon et al. (1999)

Preliminary analysis revealed that all four variables are integrated of first order.
Table 6.1 reports the results from Johansen test for the averaging method. We use
r to denote the number of cointegrating vectors under the null hypothesis. We rely
on the Schwartz criterion for the VAR order. There is no evidence of a cointegrating
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relationship for the shortest period of time. Over the period 1983-2018 both the
λmax and the Trace tests detect two vectors when we use monthly data and one
vector we use annual data. Applied on quarterly data the λmax tests identifies only
one vector while the Trace test identifies two. Using the longest sample period of
53 years we are able to detect two vectors using monthly and quarterly observations
and one cointegrating vector using annual data. We obtain similar results when we
use the averaging with non-overlapping observations technique.

6.2 House prices and GDP

In the previous example we investigated the long-run relationship of four stationary
variables. We now employ the Johansen method, to test for cointegration between
variables that exhibit explosive behaviour. Specifically, we examine the cointegration
relationship of houses prices in the U.S.A. and the GDP. Knoll et al. (2017) has
studied the evolution of house prices in the long-run. Based on extensive data
collection they proved that in most industrial economies houses prices rose sharply
in the last decades. We obtain annual data from Òscar Jordà et al. (2016) that
cover the 1918-2016 period. For the quarterly and monthly data we presume that
the values of observations follow a linear progress. We test 3 samples as in the Monte
Carlo simulations.

Preliminary analysis revealed the existence of a bubble in the house prices during
the period 1944-2016. For the GDP there is evidence for two bubbles. One during
the years 1942-1945 and a longer one during the period 1965-2016. For the period
of 33 years the test rejects cointegration for annual and quarterly data. For monthly
data we accept a cointegration relationship only for a 5% significance level. The test
supports the presence of a cointegrating vector for the two longest sample periods.

Table 6.2: Cointegration analysis of house prices and GDP

Type of data 1984-2016 1951-2016 1918-2016
Monthly:
λmax test 15.64** 27.39*** 43.91***

Trace test 18.20** 39.05*** 48.87***
Quarterly:
λmax test 9.16 27.72*** 43.89***

Trace test 12.85 33.17*** 48.76***
Annual:
λmax test 11.54 35.51*** 56.15***

Trace test 15.50 39.26*** 58.94***

The values present the test statistic for the null hypoth-
esis of no cointegrating vectors. *** and ** denote the
significance at the 1 and 5% significance levels, based on
the critical values tabulated by MacKinnon et al. (1999)
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Chapter 7

Conclusions

Practitioners often have to decide whether to use monthly, quarterly or annual data
when testing for unit roots and cointegration. In this research, we contact a Monte
Carlo simulation experiments to examine the effects of increasing the frequency of
observation and the data span on the Engle-Granger, the Phillips-Ouliaris and the
Johansen cointegration tests. We considered cases of systems containing two, three
and four time series and subcases considering the number of existing cointegrating
vectors. In all cases the results indicate that when interested in long-run equilibrium,
we ought to rely on data collected over a long period of time, rather than on a large
number of data collected over a relatively short period of time. This findings are also
supported by an empirical example where we investigated the relationship between
coffee prices.

In addition, we also undertake simulation experiments that ought to be inter-
esting for applied empirical work, such as the cases where practitioners face the
presence of explosive behaviour, non-linearities and structural breaks in the under-
lying variables of interest. We mostly focus on explosive behaviour. Particularly,
we investigate the effect of temporal disaggregation on the SADF and GSADF tests
and on the Johansen and the Engle-Granger cointegration tests when encounter
variables which exhibit explosive behaviour. Contrary to the previous results, the
two bubble tests perform better when a higher frequency of observations is used.
Additionally, the cointegration tests depend more on the data frequency when the
variables contain multiple of incidents of periodically collapsing bubbles. On the
contrary, when only one mildly explosive bubble exists, the two tests depend more
on the total sample length.

In our research we simulated ”monthly” data and obtained the ”quarterly” and
”annual” observations using the methods of skip sampling and averaging. However
one could begin with low frequency data and construct higher frequency data using
the different methods, such as linear or quadratic interpolation. One could test
whether it is safe to fill missing values using these methods and compare the most
probably increased power of the tests to the power of the tests when actual high
frequency data is used.

Finally one could complement the existing literature by considering additional
assumptions regarding the data. For example one could examine the effects of
changing the data span and the frequency of observations on stock data which
exhibits characteristics such as volatility clustering and fat tails.
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Òscar Jordà, Schularick, M., and Taylor, A. M. (2016). Macrofinancial History and
the New Business Cycle Facts. In NBER Macroeconomics Annual 2016, Volume
31, NBER Chapters, pages 213–263. National Bureau of Economic Research, Inc.

34



Appendix A

Alternative cointegration cases
including explosive series

During our research we conducted additional simulations which we briefly discuss
here. In the first alternative case we implant the bubble to series xt instead of
yt. The probability of identifying a cointegrating vector is lower but the general
behaviour of the test is not affected.

Table A.1: Power of Johansen test when bubble appears on x

ρ = 0.85 33 years 66 years 99 years
Monthly 0.038 0.134 0.284

Quarterly skip 0.034 0.120 0.275
Annual skip 0.043 0.112 0.242

Quarterly avg 0.049 0.189 0.571
Annual avg 0.053 0.125 0.242

ρ = 0.92 33 years 66 years 99 years
Monthly 0.036 0.110 0.268

Quarterly skip 0.036 0.110 0.271
Annual skip 0.043 0.102 0.224

Quarterly avg 0.050 0.182 0.553
Annual avg 0.052 0.110 0.222

ρ = 0.95 33 years 66 years 99 years
Monthly 0.030 0.092 0.253

Quarterly skip 0.031 0.095 0.260
Annual skip 0.045 0.104 0.225

Quarterly avg 0.046 0.173 0.543
Annual avg 0.062 0.109 0.229

ρ = 0.98 33 years 66 years 99 years
Monthly 0.032 0.078 0.223

Quarterly skip 0.032 0.075 0.228
Annual skip 0.046 0.081 0.200

Quarterly avg 0.049 0.155 0.531
Annual avg 0.059 0.104 0.222

In the second case both time series contain a bubble during the same period. We
observe a lower probability compared to the initial results but again the significance
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of a longer data length is more important than the number of observations. We
obtain similar results when both time series contain a bubble at the same period.

Table A.2: Bubbles coincide

ρ = 0.85 33 years 66 years 99 years
Monthly 0.056 0.119 0.328

Quarterly skip 0.044 0.118 0.304
Annual skip 0.056 0.110 0.262

Quarterly avg 0.067 0.194 0.573
Annual avg 0.070 0.119 0.278

ρ = 0.92 33 years 66 years 99 years
Monthly 0.039 0.107 0.315

Quarterly skip 0.041 0.112 0.306
Annual skip 0.053 0.116 0.253

Quarterly avg 0.065 0.192 0.564
Annual avg 0.067 0.119 0.272

ρ = 0.95 33 years 66 years 99 years
Monthly 0.035 0.107 0.299

Quarterly skip 0.038 0.111 0.297
Annual skip 0.047 0.106 0.245

Quarterly avg 0.061 0.183 0.553
Annual avg 0.060 0.119 0.264

ρ = 0.98 33 years 66 years 99 years
Monthly 0.033 0.084 0.253

Quarterly skip 0.029 0.090 0.243
Annual skip 0.051 0.091 0.217

Quarterly avg 0.052 0.169 0.531
Annual avg 0.059 0.099 0.232

The last case we examined concerns two explosive time series with bubbles ap-
pearing at different periods. In series yt the explosive process takes time during
years 10-25 and in xt during the years 40-55. The results we obtained using a 33
years sample are similar to those obtained when only yt contained a bubble. Using
a 66 years sample yields power loss up to 50% compared to the initial simulations.
Using the longest sample period yields power gains but the probability of identifying
a cointegrating vector remains low.
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Table A.3: Bubbles appear at different periods

33 years 66 years 99 years
Monthly 0.056 0.054 0.179

Quarterly skip 0.044 0.062 0.167
Annual skip 0.056 0.059 0.145

Quarterly avg 0.067 0.132 0.531
Annual avg 0.070 0.071 0.166

ρ = 0.92 33 years 66 years 99 years
Monthly 0.039 0.057 0.174

Quarterly skip 0.041 0.059 0.166
Annual skip 0.053 0.061 0.144

Quarterly avg 0.065 0.134 0.517
Annual avg 0.067 0.075 0.160

ρ = 0.95 33 years 66 years 99 years
Monthly 0.035 0.047 0.158

Quarterly skip 0.045 0.048 0.151
Annual skip 0.053 0.061 0.148

Quarterly avg 0.058 0.131 0.527
Annual avg 0.064 0.063 0.162

ρ = 0.98 33 years 66 years 99 years
Monthly 0.039 0.046 0.174

Quarterly skip 0.043 0.052 0.158
Annual skip 0.054 0.065 0.143

Quarterly avg 0.064 0.142 0.532
Annual avg 0.064 0.074 0.166
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