
Specification and Verification of an
Attribute-based Usage Control Approach

for Open and Dynamic Computing
Environments

Christos Grompanopoulos
Department of Applied Informatics

University of Macedonia

This dissertation is submitted for the degree of

Doctor of Philosophy

July 2014

i

This Dissertation Advisory Committee (DAC) consists of the following members (listed

alphabetically):

• Professor Athanasios Manitsaris

(Dept. of Applied Informatics, University of Macedonia, Greece.)

• Assistant Professor Christos Georgiadis

(Dept. of Applied Informatics, University of Macedonia, Greece.)

• Associate Professor Ioannis Mavridis (PhD Supervisor)

(Dept. of Applied Informatics, University of Macedonia, Greece.)

This Dissertation Defence Committee (DDC) consists of the following members (listed

alphabetically):

• Associate Professor Alexandros Chatzigeorgiou

(Dept. of Applied Informatics, University of Macedonia, Greece.)

• Assistant Professor Christos Georgiadis

(Dept. of Applied Informatics, University of Macedonia, Greece.)

• Professor Dimitris Gritzalis

(Dept. of Informatics, Athens University of Economics & Business, Greece.)

• Associate Professor Ioannis Mavridis

(Dept. of Applied Informatics, University of Macedonia, Greece.)

• Assistant Professor Panagiotis Katsaros

(Dept. of Informatics, Aristotle University of Thessaloniki, Greece.)

ii

• Assistant Professor Panayotis Fouliras

(Dept. of Applied Informatics, University of Macedonia, Greece.)

• Associate Professor Theodoros Kaskalis

(Dept. of Applied Informatics, University of Macedonia, Greece.)

I would like to dedicate this dissertation to my family,

for their love, endless support and encouragement.

Acknowlegements

First and foremost, I would like to express my sincere appreciation and gratitude to my

supervisor, Associate Professor Ioannis Mavridis. His guidance and support all these years

and during the completion of this dissertation have been invaluable. Even in difficult times,

a meeting with him always reinvigorated my enthusiasm and raised my spirits.

I am also extremely grateful to the members of my dissertation committee, Professor

Athanasios Manitsaris and Assistant Professor Christos Georgiadis, for their time and dedi-

cation in reviewing my work and for their advice throughout my dissertation.

I would also like to thank my colleague and friend Antonios Gouglidis at the Department

of Applied Informatics of the University of Macedonia, for sharing his thoughts and feelings

during the completion of this laborious but very rewarding journey.

Finally, I would also like to take this opportunity and express my profound gratitude to

my parents and all of my family for their continuous support and encouragement.

Abstract

Computing systems are always evolving in order to keep pace with the requirements posed

by their users. For example, widespread of networking technologies has resulted in the tran-

sition from the standalone computer model to the client-server computer model. Moreover,

social trends as frequent travelling and social networking, led to the creation of small-sized

computing devices that are equipped with sensors to recognize their surrounding environ-

ment and adapt accordingly to it. Therefore, novel computing environments were emerged,

as ubiquitous computing, grid - cloud computing systems and the Internet of Things. The

aforementioned computing environments set new requirements in several areas, including

the very important area of security. Specifically, from a computer security, and particularly

from an access control point of view, the evolution of computing systems induces the cre-

ation of Open and Dynamic Computing Environments (ODCE). These environments are

characterized as open since there are no boundaries between the legitimate and illegal users

of a system. And they are characterized as dynamic since their configuration is constantly

changing. Nevertheless, existing access control approaches are not designed for application

in ODCE, therefore they cannot fully support the unique requirements posed by ODCE.

Consequently, an exhaustive requirements analysis regarding access control models that are

targeted to ODCE is required, which will subsequently help in the definition of proper ac-

cess control approaches for application in ODCE.

In this dissertation, we analyze existing access and usage control approaches to identify

a number of unique requirements posed by ODCE. Secondly, we formally define an attribute

vi

based usage control model for ODCE that is designed based on the identified requirements.

Last but not least, we check the proposed model for its correctness, i.e., the adherence of

the model to its initially defined specifications.

Specifically, we provide information on the RBAC, ABAC and UCON access/usage

control models, which are mostly applicable in the examined case of ODCE. Moreover, we

present information regarding the modeling of concurrent systems, as the access control

systems. The aforementioned information helps in the identification of the demanded speci-

fications in the context of access/usage control models in ODCE. Moreover, state-of-the-art

verification techniques are described since it is required to check the correctness of the newly

defined models in respect to their initial specifications. In turn, we highlight through rep-

resentative usage scenarios the challenging issues and limitations that are introduced when

attempting to utilize the UCON family of models in modern computing environments.

Based on the requirement analysis results of access control in ODCE, we propose a for-

mal specification of UseCON model using the Temporal Logic of Actions (TLA+) formal

language. Consequently, we evaluate UseCON, which incorporates a number of significant

features compared with existing access/usage control models. The proposed model, firstly,

results in support of extended expressiveness over the existing usage control models. This

extended expressiveness of UseCON stems from the utilization, during the creation of usage

allowance decision, of information originating from either a single or a set of both direct and

indirect entities. Secondly, UseCON inherently supports the utilization of historical infor-

mation of usages through the automatic management of use entities. Additional advantages

of the proposed model are considered to be its support for simplified policy administration

processes, and additional unique features like the negotiation of actions etc.

In order to prove the correctness of the defined UseCON model we contacted research on

formal verification techniques, thus, resulting in the definition of a set of safety and liveness

properties. The verification of the defined set of properties was performed by applying

vii

a model checking technique with the TLC model checker. We conclude this dissertation

by providing additional information regarding the TLC verification process, and further

discuss our findings, pointing to the contributions of this research work and to possible

future research directions, as well.

Contents

Contents viii

List of Figures xi

List of Tables xii

1 Introduction 1
1.1 Motivation . 2
1.2 Objectives . 5
1.3 Research areas . 5

1.3.1 Requirement analysis . 6
1.3.2 Specifications modeling . 6
1.3.3 Formal verification . 7

1.4 Structure of the dissertation . 7

2 Background 10
2.1 Introduction . 10
2.2 Open and Dynamic Computing Environments 11
2.3 Access control models . 12

2.3.1 Role based access control (RBAC) 14
2.3.2 Attribute based access control (ABAC) 17
2.3.3 Usage control (UCON) . 18

2.4 Specification and verification of systems 22
2.4.1 Specification fundamentals . 22
2.4.2 Verification techniques . 23
2.4.3 Model checking . 25

2.5 Specification and verification in TLA+ . 27
2.6 Related work on the specification and verification of UCON 30

Contents ix

2.7 Chapter summary . 33

3 Requirements analysis 34
3.1 Introduction . 34
3.2 Access control requirements . 36
3.3 A critique on existing access control solutions 39

3.3.1 Security characteristics of entities 39
3.3.2 Contextual information . 41
3.3.3 Historical information of usages 42

3.4 Chapter summary . 46

4 The proposed model 48
4.1 Introduction . 48
4.2 A brief description . 48
4.3 Specification of UseCON in TLA+ . 51

4.3.1 Basic elements . 52
4.3.2 Transition systems . 59

4.4 Example of a policy specification . 66
4.5 Chapter summary . 71

5 Evaluation 73
5.1 Introduction . 73
5.2 Model characteristics . 73

5.2.1 Abstraction of actions . 74
5.2.2 Utilization of usage information 78

5.3 Model properties . 81
5.3.1 Use management . 81
5.3.2 An example policy . 84

5.4 Chapter summary . 86

6 Formal verification 87
6.1 Introduction . 87
6.2 Model checking with TLC . 88

6.2.1 Use management . 89
6.2.2 An example policy . 91

6.3 Discussion . 94

Contents x

6.4 Chapter summary . 98

7 Conclusions 99
7.1 Summary of the contributions . 99
7.2 Future work . 101
7.3 Closing remarks . 102

Appendix A TLA+ source code 104

Appendix B Publications 124

References 127

List of Figures

2.1 The core RBAC model (Ferraiolo et al., 2003). 14
2.2 Basic ABAC scenario (Hu et al., 2014). 19
2.3 Components of the UCON model (Park and Sandhu, 2004). 20
2.4 Family of UCON sub-models. 21
2.5 Transition system . 24
2.6 The model checking process (Baier and Katoen, 2008) 26

4.1 Accomplishment status of a single usage 50
4.2 UseCON usage control system . 51
4.3 Use attributes updates during the exercise of a usage in UseCON 59
4.4 Transition system of a single usage pre-authorization UseCON model . . . 60
4.5 Transition system of a single usage ongoing authorization UseCON model . 60
4.6 Transition system of a multiple usage pre-authorization UseCON model . . 64
4.7 Transition system of a multiple usage ongoing authorization UseCON model 66
4.8 Examples of usage-revoking strategies . 69

5.1 Sequence of messages for action negotiation 76
5.2 Violation of safety properties . 83

6.1 Model declaration in TLC . 92
6.2 Deadlock violation results in TLC . 95
6.3 Verification results in TLC . 96

List of Tables

2.1 Comparison of related works . 33

3.1 Utilization of decision criteria in UCON 45
3.2 An analysis of challenging issues of UCON in ODCE 47

5.1 Safety and liveness properties in UseCON 84

6.1 Verification results for UseCON models 97

Chapter 1

Introduction

Technological innovations are constantly transforming the architecture of computer sys-

tems. For example, the widespread of networking technologies resulted in the transition

from the standalone computer model to the client-server computer model. Moreover, social

trends like frequent travelling and social networking, led to the creation of small-sized com-

puting devices (e.g., PDA’s) that are equipped with sensors to recognize their surrounding

environment and adapt accordingly to it. Consequently, novel computing environments are

emerged, as ubiquitous computing (Weiser, 1994, 1999), Internet of Things (Atzori et al.,

2010), Cloud (Foster et al., 2008) and Grid computing environments (Foster et al., 2001).

From a computer security, and particularly from an access control point of view, the evo-

lution of computing systems induces the creation of Open and Dynamic Computing Envi-

ronments (ODCE) (Kagal et al., 2006). ODCE are characterized as open since there are no

boundaries between the legitimate and illegal users of a system. This occurs since any user

without clear knowledge of her identity may request access to a system’s resource. ODCE

are also characterized as dynamic since the configuration of these systems is constantly

changing (e.g., users join in or leave, request or terminate access to resources). Moreover,

the utilization of contextual information for the creation of an access decision enhances the

1.1 Motivation 2

dynamic nature of ODCE. In the rest of this chapter, we elaborate on the clarification of the

motivation of this research work, along with the objectives and the areas that we conducted

research upon.

1.1 Motivation

The evolution of computing systems introduces new requirements for the access control sys-

tems that are called to support them. In traditional computing systems operated by a small

number of users, access control models utilize only a single criterion for allowing an access

request. This criterion is related to the security characteristics of the subject and object in-

volved in the requested access (Samarati and Vimercati, 2001a). Specifically, whenever a

subject requests to access an object, the subject’s clearance and object’s classification when

it comes in Mandatory Access Control (MAC) models (Sandhu, 1993), the subject’s iden-

tity when it comes in Discretionary Access Control (DAC) models (Qiu et al., 1985) and

an activated role from a set of authorized roles of a subject when it comes in Role Based

Access Control (RBAC) models (Sandhu et al., 1996), are utilized accordingly. In contrast

with MAC, DAC and RBAC, attribute based access control approaches (Jin et al., 2012)

are capable of supporting partially-unknown users, by utilizing not the identity but instead

a number of subject and object security related characteristics, which are expressed in the

form of attributes. Moreover, a number of extensions to the aforementioned access control

models have been proposed that are able to utilize contextual information for the creation of

an access decision (Kulkarni and Tripathi, 2008; Kumar et al., 2002).

The Usage CONtrol (UCON) family of models (Park and Sandhu, 2004) provides an

integration of traditional access control, digital rights and trust management. Additionally,

UCON introduces the concepts of continuity of decision and attribute mutability. Continuity

of decision considers that access to a resource is no longer a spontaneous action, but it may

1.1 Motivation 3

last for some time. Consequently, decision factors are evaluated not only before, but also

during the exercise of an access, and thus, resulting into evolving the concept of access

control to that of usage control. Moreover, attribute mutability is responsible for updating

attribute values of the participating entities (i.e., subject or object) as a side effect of an

allowed usage. Consequently, new permissions are created due to these updated attribute

values, and thus, results in a dynamic usage control model. Moreover, UCON utilizes three

criteria for the creation of a usage decision. These are the security related characteristics,

(i.e., properties) of an entity, contextual and historical information about usages. Entity’s

properties, which are expressed into its attribute values, are utilized in authorizations, while

contextual information represented by special system variables is evaluated in conditions.

Historical information of usages is utilized either by authorizations with attribute mutability

or by obligations. The aforementioned obligations are actions performed by subjects in the

system in order to permit the allowance of a usage request.

However, despite of its aforementioned virtues, UCON raises a number of challenging

issues in modern computing environments (Grompanopoulos and Mavridis, 2012b). Specif-

ically, whenever a subject s requests the execution of a right on an object o then only the

decision criteria related directly with s and o are utilized in the decision creation process

(Park and Sandhu, 2004; Zhang et al., 2005). These entities are called direct entities of

the usage. However, it’s possible that decision criteria related with other entities than s

and o to be also evaluated for the creation of the usage decision. These entities are called

indirect entities. For example, let’s assume a scenario where Alice is a child. If Alice re-

quests to visit a museum then security criteria related with Alice’s father (i.e., Bob) might

be utilized for the creation of the access decision. A criterion of this category might be

the fact that Bob is the owner of a family free entrance card. Another limitation imposed

by UCON is its inability to support complicated operations of subjects on objects required

by modern computing environments. For example, every banking transaction incorporates

1.1 Motivation 4

detailed information including a timestamp, the currency, the transaction’s purpose and so

on. In UCON, it is not feasible to express the previous transaction using only a simple right

(Grompanopoulos and Mavridis, 2012b). This results in the creation of an enormous amount

of UCON rights by the usage control system. Moreover, the attribute mutability mechanism

introduced in UCON presents a number of limitations in utilizing historical information of

usages. Specifically, attribute mutability in UCON records only the permitted usages and

not the denied ones. Additionally, UCON attribute mutability does not distinguish between

usages terminated by an ongoing rule violation and those terminated by a subject request.

Therefore, the motivation of this dissertation is three-folded. Firstly, we concentrate on

the on the analysis of the access control requirements that are posed by ODCE, and on the

evaluation of existing approaches in access control. Secondly, in order to support the new

requirements imposed by ODCE, a Use-based usage CONtrol model (UseCON) was pro-

posed in (Grompanopoulos and Mavridis, 2012a; Grompanopoulos et al., 2013). UseCON,

similarly to UCON, is able to utilize during the decision making process the three aforemen-

tioned criteria (i.e., properties, context and historical information). Additionally, UseCON

is able to utilize criteria originating from either direct or indirect entities. Moreover, it sup-

ports complicated operation modes of subjects on objects (e.g., banking transactions) and

provides a detailed utilization of historical information of usages compared with the one

provided by the attribute mutability mechanism in UCON. Last but not least, a formal spec-

ification of the UseCON model is provided and a set of properties are defined so that to help

in the formal evaluation of the proposed attribute based usage control model using model

checking techniques.

1.2 Objectives 5

1.2 Objectives

Attribute Based Access Control (ABAC) and usage control, with UCON being a dominant

approach in usage control models, have useful characteristics for the application of the ac-

cess control process in ODCE. Specifically, ABAC represents a point on the spectrum of

logical access control from simple access control lists to more capable role-based access,

and finally to a highly flexible method for providing access based on the evaluation of at-

tribute (Hu et al., 2014). UCON mediates access to resources not only before, but also

during the access, and thus, leverages the concept of access control to that of usage control

(Park and Sandhu, 2004). However, there are cases were more expressiveness and function-

ality is required, as in the case of the examined ODCE. Although a considerable amount of

work has been done in the field of access control for ODCE (see Chapter 2), access control

models that are available to date are not able to fully support the unique characteristics of

ODCE (see Chapter 3). In this dissertation, we focus on the definition of an attribute based

usage control approach that is able to cope with the requirements posed by ODCE. The main

objective of our work can be summarized as follows.

In the context of requirements analysis we identify a set of requirements that must be

fulfilled by ODCE through a series of use cases and related literature. Secondly, we define

an attribute based usage control model that will integrate the required functionality in respect

to the identified requirements. Finally, the last objective is to provide a formal method to

verify the correctness of the defined access control model.

1.3 Research areas

The contributions of this dissertation are three-fold; first, we analyze the access control

requirements of ODCE and evaluate the limitations and shortcomings of existing access

1.3 Research areas 6

and usage control approaches in order to identify a number of unique characteristics posed

by ODCE. Secondly, we formally define an attribute based usage control model for ODCE

that is designed based on the identified requirements. Last but not least, we check the

proposed model for its correctness, i.e., the adherence of the model to its initially defined

specifications. In the remainder of this section, we present the contributions in more details.

1.3.1 Requirement analysis

Through representative example scenarios and related literature, we highlight the additional

requirements that are posed when attempting to implement access control process in ODCE.

Moreover, we investigate the limitations of existing access control solutions (UCON) when

they are applied to ODCE. The access control requirements that are gathered, together with

the limitations of the UCON model, are utilized as the design characteristic for the proposed

attribute based usage control model.

1.3.2 Specifications modeling

An important contribution of this dissertation is the definition of an attribute based usage

control model for ODCE. Specifically, the original contributions of our work can be sum-

marized as follows.

The UseCON model incorporates a number of significant features compared with ex-

isting access/usage control models. Firstly, UseCON’s extended expressiveness over the

other models is the result of utilizing information originating from either a single or a set of

both direct and indirect entities in the creation of the usage allowance decision. Secondly,

UseCON inherently supports the utilization of historical information of usages through the

automatic management of use entities; therefore, a policy administrator via the definition

of policy update procedures, does no longer require further to record usage information.

1.4 Structure of the dissertation 7

Consequently, there is a clear distinction between the model’s operations, (i.e., utilization

of historical usages) and the operations performed by an administrator (i.e., definition of

policy rules).

1.3.3 Formal verification

The third contribution of this dissertation refers to the formal verification of the UseCON

model. Therefore, we provided a sound and solid formal definition of the internal actions

performed by the model through the development of a formal specification for the model.

This specification provides an unambiguous and sound understanding of the novel concepts

introduced by UseCON (i.e., the utilization of the indirect entities in the usage control de-

cision and the extended utilization of historical information of usages, through use entities).

Moreover, the support of concurrent operations by multiple usages differentiates the spec-

ification from existing usage control specifications. In addition, a number of properties

(i.e, type consistency, safety and liveness) for both the core model and policy implementa-

tions were verified for their correctness (i.e., adherence of the defined model and supported

policies to the initially defined requirements) through the application of an automated and

error-free model checking technique.

1.4 Structure of the dissertation

This chapter has discussed the motivation and the main objectives of our work and outlined

the major contributions of this dissertation. The remaining chapters are structured as follow.

Chapter 2 discusses background information regarding the operational characteristics

of ODCE focusing in the impact on system’s security. Moreover, existent solutions in the

area of access control models are presented. Furthermore, the specification and verification

fundamentals, especially in concurrent systems, are presented with a focus in the utiliza-

1.4 Structure of the dissertation 8

tion of model checking techniques for the verification of system properties. In addition,

background information regarding the Temporal Logic of Actions (TLA+), a system speci-

fication and verification language, are also presented. Finally, the chapter concludes with a

presentation of related works on the specification and verification of existent access control

models.

Chapter 3 presents a requirement analysis regarding access control in ODCE through

several examined scenarios and related literature. Moreover, a detailed critique on the

utilization of the usage decision criteria by existing usage control solutions, specifically

UCON, is also performed. The results of the previous procedure are used for the determi-

nation of the design characteristics for the usage control model proposed in Chapter 4.

Chapter 4 describes the proposed attribute based usage control model for ODCE. The

chapter begins with a brief description of the proposed Use-based usage control model

(UseCON) and of it’s core features. In turn, the formal specification in TLA+ of UseCON

is presented next. Furthermore, the chapter concludes with a formal specification in TLA+

of a policy example. Specifically, two different specification approaches are presented that

implements the same "high-level" policy.

Chapter 5 evaluates the proposed model in terms of the presented characteristics and

properties. Specifically, Section 5.2 highlights the novel characteristics presented by UseCON

as the abstraction of actions and the utilization of historical information. Moreover, Section

5.3 defines the type consistency, safety and liveness properties for the use management

process of the UseCON specification, as this was presented in Chapter 4, in order to be

checked for correctness. In addition, analogous properties are defined for two specification

approaches of a policy example that was presented in Chapter 4.

Chapter 6 presents information on the verification process of the UseCON properties

already defined in Chapter 5 in a TLA+ enabled model checker software. Furthermore, a

discussion is presented regarding the implementation metrics and performance results of the

1.4 Structure of the dissertation 9

applied model checking technique.

Chapter 7 summarizes the contributions of this dissertation and outlines future work.

Chapter 2

Background

2.1 Introduction

This chapter provides information on access control in ODCE. Specifically, the dominant

access control approaches are presented along with their specification and verification. The

process of access control in a computing system ensures that only authorized users have

access to the resources of the computing system (Capitani di Vimercati et al., 2007; Goll-

mann, 1999). Access control is an essential requirement for a system in order to provide the

properties of confidentiality, integrity and availability. The permissions or authorizations of

users are calculated with policies or rules (Samarati and Vimercati, 2001b). The remainder

of the chapter is organized as follows. Section 2.2 presents security threats in modern com-

puting environments. Section 2.3 provides information on access control, and elaborates on

three access control approaches i.e., RBAC, ABAC and UCON. RBAC gains popularity due

to the large number of installed systems and the easiness of the administration that offer. On

the other hand ABAC approaches provide more flexible access control due to the fact that

they can base the access control decision to a number of criteria and not only the identity of

the participating entities (subject, object). Moreover, another interesting access/usage con-

2.2 Open and Dynamic Computing Environments 11

trol model (UCON) that is based on top of an ABAC model is also presented. In Section 2.4

we present information on the system’s specification with a focus on transition systems and

system’s verification with focus on model checking. Consequently, in Section 2.5 we pro-

vide further information regarding the specification and verification of systems in the TLA+

language. UCON design characteristics as the utilization of contextual information and con-

tinuity of decisions renders it a perfect candidate for use in ODCE. Therefore, in Section

2.6, we elaborate on the specifications and verification solutions that have been developed

for the UCON model.

2.2 Open and Dynamic Computing Environments

The proliferation of computing into the life of millions of people created the need for novel

computing environments. Ubiquitous computing systems have natural interfaces that are

capable of supporting common forms of human expression and leverage more of our im-

plicit actions in the world (Abowd and Mynatt, 2000; Weiser, 1994). Moreover, contextual

information is utilized by applications in order to provide relevant information or services

to the user (Abowd et al., 1999; Chen et al., 2000). Pervasive computing environments

(Kagal et al., 2001; Saha and Mukherjee, 2003) describe the interaction, coordination, and

cooperation of numerous, casually accessible, and often invisible computing devices and

services. In a try to eliminate the gap between information and natural objects, the Internet

of Things is defined as a superset of all objects that are uniquely identifiable by electro-

magnetic means and for which it is possible to specify a semantic and/or behavior (Ashton,

2009; Atzori et al., 2010). The Grid (Berman et al., 2003) and more recently the Cloud

(Foster et al., 2008; Theoharidou et al., 2013) computing environments represent large scale

distributed computing environments that deliver on-demand to the users computing power,

storage, platforms and services. A key feature in Cloud and Grid computing is that the

2.3 Access control models 12

supplied computing power, storage or services are abstracted, virtualized and dynamically

scaled and managed Foster and Kesselman (2003).

All the aforementioned computing environments extend the security perimeter from an

"isolated" environment, as a desktop computer, to a more widely defined and dynamically

modified environment, as a mobile device connected to the Internet through a wireless con-

nection. Moreover, the operations performed by users on their mobile devices varies from

simple, e.g., checking email, controlling home devices, to more complex, e.g. booking air-

line tickets buying or selling good, manage bank accounts. Consequently, the violation of

security in modern computing environments may have an impact not only on business, but

also in the personal data of the users (Gritzalis et al., 2014). Therefore, information sys-

tem’s security and privacy, once narrow topics primarily of interest to IS designers, have

become critically important to society at large. People are the security administrators of

their own data and require having control of data disclosure and of further their use. Fi-

nally, computing systems are evolving to distributed systems that are characterized as Open

and Dynamic Computing Environments (ODCE). Open in that they don’t pre-identify a set

of known participants, and dynamic in their configuration in modified constantly because

user’s login/logout on a high frequent basis and also because contextual information, which

is utilized for the access decision, is constantly changing.

2.3 Access control models

Access control is the security process of a computing system that mediates every request to

resources and data and determines whether the request should be granted or denied (Benan-

tar, 2005; Gollmann, 1999). Access control is not an isolated process, but it relies on and

coexists with other security services in a computer system like authentication and audit

(Sandhu and Samarati, 1996). The development of an access control system requires the

2.3 Access control models 13

specification of three abstractions of controls: access control policies, models, and mech-

anisms (Benantar, 2005; Hu et al., 2006; Samarati and Vimercati, 2001b). Access control

policies are high-level requirements that specify the rules who are allowed to access which

resources under certain conditions. The policies are enforced through access control mech-

anisms that are low level, software and hardware, functions. Rather than evaluating and

analyzing policies at a mechanism level, models are defined that are formal representations

of the access control policies and are useful for proving theoretical limitations of a system.

Moreover, the fundamentals functions of Access Control Decision (ADF) and Enforcement

(AEF) was proposed in (ITU-T, 1995). ADF is a specialized function that creates access

control decisions by applying policy rules to an access request and the surrounding con-

text. Moreover, the AEF is a specialized function that is part of the access path between the

requestor and the resource that enforces the decision created by the ADF.

Therefore, various access control policies and models have been introduced Sandhu and

Samarati (1994), namely the Mandatory Access Control policies (MAC), the Discretionary

Access Control policies (DAC) and the Role Based Access Control policies (RBAC), and

lately the Attribute Based Access Control (ABAC). Each one of them serves specific security

requirements in different working environments. Furthermore, research on the MAC, DAC,

RBAC and ABAC has proven that an access control model, which can express the RBAC

policies is also capable of enforcing both MAC and DAC policies (Ferraiolo et al., 2003,

chap. 6), and moreover that ABAC can express RBAC policies. The ABAC model was

mainly introduced to overcome a number of RBAC’s shortcomings (Yuan and Tong, 2005).

Following in this section, we provide information on the standard for the RBAC (ANSI,

2004), ABAC and Usage Control (Park and Sandhu, 2004; Sandhu and Park, 2003; Zhang

et al., 2008). UCON is stated in this section since it is an ABAC approach able to cope with

usage control. In turn, usage control seems to fulfill several requirements posed by ODCE.

2.3 Access control models 14

Fig. 2.1 The core RBAC model (Ferraiolo et al., 2003).

2.3.1 Role based access control (RBAC)

The RBAC model has received considerable attentions from researchers for its capabilities

of abstraction and generalization. RBAC is considered to be abstract since it includes only

properties that are relevant to security. Furthermore, it is considered to be a generic model,

because many designs could be considered valid interpretations of the model (Ferraiolo

et al., 2003). In addition, RBAC supports various access control principles as Least Priv-

ilege, and Separation of Duties (SoD)/Administrations (Sandhu et al., 1996). The RBAC

model consists of four components having each a different functionality. The components

are Core RBAC, Hierarchical RBAC, Static Separation of Duty (SSD), and Dynamic Sepa-

ration of Duty (DSD).

The core RBAC model consists of five static elements, as depicted in Figure 2.1: users,

roles, and permissions, which contain operations and objects. Following Figure 2.1 it ap-

plies that roles are assigned to users and permissions are assigned to roles. The mapping

between users and roles is considered to be of type many-to-many (i.e., one user can be

assigned to many roles and many users can be assigned to one role). The same applies to

the role to permission assignment. It is noteworthy to state that negative permissions are not

supported in RBAC. Furthermore, the indirect assignment of users to permissions greatly

enhances the administration in RBAC, and revocation of assignments can be done easily.

2.3 Access control models 15

Moreover, in RBAC implementations we can distinguish the design and run-time phases.

During the design time phase, system administrators can define assignments between the el-

ements, and that model enforces the aforementioned assignments during the run-time phase.

The run-time phase is achieved by the concept of the session. This unique, among other

group-based access control mechanisms, feature allows a set of users’ roles to be activated.

This means a user could be assigned to various roles during the design phase, but do not

need to be always or simultaneously activated (by the principle of least privilege). However,

the capability of sessions has been questioned with a suggestion of replacement for them as

stated in (Li et al., 2007).

The Hierarchical RBAC enhances administration flexibility through the capability of

permission (operations to objects) inheritance; permissions (assigned to a role) can be in-

herited to another role through hierarchical relation assignments without reassigning the

same permissions to the inherited role. For instance, assuming two roles r1 and r2 and two

permission sets PRMS1 = (p1, p2) and PRMS2 = (p3, p4), which are initially assigned to

roles r1 and r2, respectively. Role r1 inherits role r2 means all permissions of r2 are also

available to r1. The inherited permission can be expressed by the union of PRMS1 and

PRMS2. The immediate inheritance relation is denoted by the →, for example, r1 → r2.

User membership refers to the assignment of users to roles in a hierarchy, and thus, users

are authorized to have all the permission assigned to roles either directly or via inheritance.

The Hierarchical RBAC supports general and limited role hierarchies. General hierarchies

are composed of partial order sets of common inheritance relations. And, in more restrictive

environments, limited hierarchies require the existence of either a single immediate ascen-

dant or descendant role in the hierarchy. Mathematically, hierarchy is a partial order defining

seniority relations between roles, whereby senior roles acquire the permissions from their

juniors and junior roles acquire users from their seniors (ANSI, 2004).

Another advantageous characteristic of RBAC is that it can constrain authorization with

2.3 Access control models 16

SSD and DSD relationships to prevent the Conflict Of Interest (COI), which is common

from business requirements. SSD handles the enforcement of static COI policies. For ex-

ample, let r1 and r2 be two conflicting roles, and user u1 assigned to role r1. RBAC prohibits

the assignment of user u1 to role r2 by enforcing an SSD constraint between roles r1 and r2

since the two roles are COI. The constraints are defined and restricted in the design phase.

In the presence of role a hierarchy, the SSD constrains are enforced in the same way for

all the directly assigned and inherited roles. DSD relationships can handle COI policies in

the context of a session, where a user is activated with a set of assigned roles when logged

into the system. As in SSD, in DSD also applies that constraints are specified in the design

phase. However, they are enforced during the run-time of the authoring process through ac-

tivated sessions, and thus, it prevents the simultaneous activation of two or more conflicting

roles.

Moreover, one of RBAC’s greatest virtues is that of role based administration. RBAC

administration is divided into two spaces that of user and administrator. The former includes

user roles and the latter administrative roles with permissions and operations, respectively.

Once again, the principle of least privileged is maintained. In the literature we have identi-

fied several RBAC administration models that are proposed (Crampton and Loizou, 2002),

(Ferraiolo et al., 2003), (Oh and Sandhu, 2002), (Sandhu et al., 1999). However, each of

them is making use of a different approach in role based administration.

An area of great scientific interest, where a lot of effort has been presented, is the ca-

pability to support contextual information in RBAC. A first attempt was the introduction

of environment roles in an attempt to uniformly treat contextual information with subject

and object characteristics (Covington et al., 2001). A different approach was proposed in

(Kulkarni and Tripathi, 2008) where the fulfillment of contextual condition are required

for role admission or dynamic object binding. A similar approach that dynamically adjusts

role assignments and permission assignments based on contextual information was also pro-

2.3 Access control models 17

posed in (Zhang and Parashar, 2004). Moreover, the integration of contextual information

with team based access controlwas proposed in (Georgiadis et al., 2001) in orfer to provide

access control for collaborative activity best accomplished by teams of users.

2.3.2 Attribute based access control (ABAC)

The distinguishing design characteristic in ABAC is that permissions are not assigned di-

rectly to the identities of an entity (subjects-objects). Instead, the attributes of entities are

used as a basis for forming authorizations. Attributes are considered to be the security-

related characteristics of the participating entities (e.g., a subject’s attribute could be: his/hers

name, date of birth, home address, training record etc). Consequently, the process of an ac-

cess control decision in an ABAC system is performed as follows: "subjects that request

to perform operations on objects are granted or denied based on the subject’s, object’s as-

signed attributes, the environment conditions, and a set of policies that are specified in terms

of those attributes and conditions." (Hu et al., 2014). As stated in the previous definition,

a policy plays a crucial role in the operation of ABAC. A policy is created by the resource

administrator or owner and it is an access control rule using attributes of subjects and ob-

jects to govern the set of allowable capabilities (e.g., all doctors with 10 years of experience

and more can view the patient’s medical records). Moreover, recent definitions of ABAC

include environmental conditions into the policy rules, and thus, adding flexibility to the

possible declared policies (Hu et al., 2014). As a consequence to the design characteristics

of ABAC it provides significant improvements to the access control process. Firstly, access

decisions can change between requests by simply changing attribute values, and without

the need for changing the subject/object relationships that define the underlying rule sets.

This provides a more dynamic access control management capability and limits long-term

maintenance requirements of object protections. Secondly, ABAC enables object owners or

2.3 Access control models 18

administrators to apply access control policy without prior knowledge of the specific sub-

ject and for an unlimited number of subjects that might require access. As new subjects

join the organization, rules and objects do not need to be modified. Thirdly, ABAC so-

lutions can easily support multi-factor decisions (e.g., decision dependent on a number of

users attributes possibly combined with environmental conditions) unlike other access con-

trol model as in RBAC where the handling of analogous access decisions would require the

creation of numerous roles that are ad-hoc and limited in membership, leading to what is

often termed "role explosion". A high-level definition of ABAC is depicted in Figure 2.2

where the ABAC access control mechanism receives the subject’s access request and then

it examines the subject’s and object’s attributes against a specific policy. The access control

mechanism then determines what operations the subject may perform upon the object.

Recent studies have proved that existing access control models like DAC, MAC and

RBAC, can be "easily and naturally" configured by ABAC Jin et al. (2012). Moreover,

the flexibility and scalability of an ABAC model, compared with RBAC, contributes to the

creation of access control models and mechanisms for ODCE that are based on ABAC Lang

et al. (2009); Wang et al. (2004).

2.3.3 Usage control (UCON)

The UCON model (Park and Sandhu, 2004) consists of six components, viz. subjects,

objects, rights, authorizations, obligations and conditions. Subject is the entity that requests

the usage of another entity (object), both introduced from the primary access control models

(Lampson, 1974). However, subjects and objects in UCON are defined and represented

with security relevant characteristics called attributes. The utilization of subject and object

attributes provides the capability for fine-grained usage control on resources and the ability

to support users without knowledge of their identity (Kagal et al., 2006). The usage modes

2.3 Access control models 19

Fig. 2.2 Basic ABAC scenario (Hu et al., 2014).

2.3 Access control models 20

Fig. 2.3 Components of the UCON model (Park and Sandhu, 2004).

that a subject can exercise on an object are represented in UCON with rights. Rights are

specific and they are not associated with attributes, in contrast to subjects and objects.

The allowance of a subject to exercise a right on an object is not predetermined, but it is

decided at the time of the usage request, with the evaluation of a decision factor. UCON in-

troduces three decision factors, named Authorizations (A), oBligations (B) and Conditions

(C). Authorizations are functional predicates that utilize the values of subject and object

attributes. An obligation is one or more activities that must have been performed by the

subject as a requirement for the requested usage to be allowed. The selection of the re-

quired obligations is based on the attribute values of the subject and the object involved

in the usage. Moreover, the subject and object pair in an operation required by an obliga-

tion, may differ from the subject and object pair involved in the usage under consideration.

Conditions are also functional predicates, like authorizations, but they utilize only system

related information contained in special system variables, named condition variables. The

UCON components and their relationships are depicted in Figure 2.3 as originally presented

in (Park and Sandhu, 2004).

Two innovative concepts introduced in UCON is continuity of decision and attribute

2.3 Access control models 21

Fig. 2.4 Family of UCON sub-models.

mutability (Park and Sandhu, 2004). More specifically, the exercise of a right from a sub-

ject in an object, is not a spontaneous action, but it may last some time and include several

sub-actions. With the utilization of continuity of decision, authorizations, obligation and

conditions are categorized into pre and ongoing (required before and during the usage, re-

spectively). Moreover, attribute mutability updates the attributes of the subject or the object

as a consequence of an allowed usage. The attribute update procedure can be executed be-

fore (1), during (2), after (3) the exercise of an allowed usage, or not executed at all (0). Fig-

ure 2.4 is a graphical representation of the family of UCON sub-models (Park and Sandhu,

2004) that encompasses decision factors, continuity of decision and attribute mutability.

A key factor for UCON’s acceptance by modern computing environments as ODCE, is

the development of adequate usage control enforcement methods. Some solutions for the

enforcement of usage control already exist, but to cover a wide range of application areas.

These solutions need to mature and expand. This leaves many interesting areas of current

and future research that are of great practical relevance (Nyre, 2011) (Pretschner et al.,

2008). In addition (Almutairi and Siewe, 2011) proposes Context-Aware Usage CONtrol

2.4 Specification and verification of systems 22

(CA-UCON) model which extends the traditional UCON model to enable adaptation to

environmental changes in the aim of preserving continuity of access. Moreover, additional

improvements to the original UCON model have also been proposed. In (Yang et al., 2009)

permissions are valid only for a set time period and only for a given number of times. Work

in (Krautsevich et al., 2010) calculates the outcome of usage control decision information

regarding trust and risk. A specialized solution that permits the operation of dynamic virtual

organizations in GRID environment is also presented in (Gui et al., 2011)

2.4 Specification and verification of systems

In this section, we provide prerequisite information regarding the formal specification and

verification of concurrent computer systems. Specifically, we provide information on a

system’s specification with transition systems, along with verification techniques with a

focus on the specification and verification of properties using a model checking technique.

2.4.1 Specification fundamentals

Concurrent computer systems1 are a special category of systems where many computations

are executing simultaneously and possible interacting with each other (Ben-Ari, 2006). Sup-

port of concurrency is fundamental in interactive systems, (i.e., systems where users and

computers are inter-acting), because there is no way to limit the users’ behaviour or prevent

them from interrupting the system’s execution. The proposed attribute based usage control

model is an interactive, and thus, a concurrent system since a user may arbitrarily request

new usages or terminate existing ones during the execution of system’s computations. In

order to describe the behaviour of a system in a sound mathematical basis, formal methods

are widely used in computing science (Wing, 1990). TLA+ is a formal language especially

1We onwards use the terms of computer system and system interchangeably.

2.4 Specification and verification of systems 23

designed to express and specify concurrent systems (Lamport et al., 2002). TLA+, as the

majority of temporal logic formal approaches, uses the semantics of transitions systems,

which is the dominant method for formal representation of concurrent systems.

Transition systems

Formal methods provide a framework to systematically specify, develop and verify com-

puter systems (Wing, 1990). The first step for the creation of a system’s specification is

the identification of all system’s values (i.e., every data item manipulated by the system).

System’s algorithms assign these values to a set of infinite variables names. The second

step is the description of the system’s behaviour with a transition system class of models

which constitute the dominant method for the description of concurrent systems (Baier and

Katoen, 2008). Transition systems are directed graphs where nodes represent system states

and edges represent transitions or actions (i.e., state changes). A system state is the as-

signment with a value to every variable var of the system. We write s[[x]] to denote the

assignment of a value in variable x in state s. A constant is a variable that is assigned with

a stable value to every state of the system. Actions specify how the system can evolve from

one state to another. A sequence of system states, that is created by the application of a se-

ries of actions on an initial state, composes a behaviour. An example of a transition system

is depicted in Figure 2.5.

2.4.2 Verification techniques

The principal methods for the verification of complex systems can be grouped under four

types. These are testing, simulation, deductive verification, and model checking (Heljanko,

2006). Testing is performed on the system itself. However, testing of usage control sys-

tems for ODCE is not always a cost effective process, since it can be performed when an

2.4 Specification and verification of systems 24

Fig. 2.5 Transition system

implementation of the system is available. Furthermore, it can only prove the existence

of bugs, but not their absence. Similarly, simulation-based approaches suffer from lack of

completeness as it is impossible or impractical to test all system trajectories. Furthermore,

simulation-based testing is semi-automatic since the user must provide a large number of

test cases. Deductive verification is based on manual mathematical proof of correctness

of a model of a system. It is a very highly cost process and, furthermore, requires highly

skilled personnel. Model checking verifies a system’s model against defined properties; it

is not vulnerable to the likelihood that an error is exposed. This contrasts with testing and

simulation that are aimed at tracing the most probable defects. Additionally, it provides

diagnostic information in case a property is invalidated, which is very useful for debugging

purposes. In principle, model checking is an automated process and its use requires neither

a high degree of user interaction nor complex test data. Furthermore, it does not require

the development of custom tools for verifying a system, which can be a time-consuming

and error-prone process. On the contrary, verification via model checking can be applied

using existing model checkers. Therefore, model checking can serve as a technique to de-

2.4 Specification and verification of systems 25

tect non-conformance, between an access or usage control system and its initially defined

specifications, as efficiently as possible.

2.4.3 Model checking

Model checking is an automated technique that, given a model of a system and a formal

property, systematically checks whether this property holds for a given/any state/behavior

of that model. In order to verify that a system satisfies a property the following three things

are required (Huth and Ryan, 2004):

• A model of the system, which is developed in a formal specification language of the

model checker. The model of a system describes all the behaviours of the system in an

accurate and unambiguous way. They are mostly expressed using transition systems

as described in the previous section.

• The property of the system, specified in the temporal logic language and used by the

model checker. Temporal logic is basically an extension of traditional propositional

logic with operators that refer to the behaviour of the systems over time. To make a

rigorous verification possible, properties should be described in a precise and unam-

biguous manner.

• The execution of the model checker having as inputs the model of the system and

the system’s properties. The model checker first has to be initialized by appropriately

setting the various options and directives that may be used to carry out the exhaustive

verification. Subsequently, the actual model checking takes place. This is basically a

solely algorithmic approach in which the validity of the property under consideration

is checked in all states of the systems model.

2.4 Specification and verification of systems 26

Fig. 2.6 The model checking process (Baier and Katoen, 2008)

In Figure 2.6 we depict the model checking process with all the intermediate stages.

In a nutshell, both the system and requirements are formally defined in a temporal logic

language. Using a model checker software, it is feasible to check the satisfiability of the

defined requirements in the model. In case a property doesn’t hold, then a counterexample

is provided showing the full trace that led to the erroneous behaviour.

The model checking software applies algorithms for exploring the state space of a transi-

tion system to determine if it obeys a specification of its intended behavior. There may be a

modeling error that implies the correction of the model and the verification has to be started

with the improved model. If the error analysis shows that there is a discrepancy between

the design and its model, then either a design error has been exposed or a property error

has taken place. These errors when using model checking software are accompanied with

counter example traces. The automatic generation of such counter example traces consists

of an important tool for design and debugging purposes of the systems.

The properties that can be defined in a system are categorized, but not limited, into safety

and liveness. A safety property determines that the system does not attempt to do something

2.5 Specification and verification in TLA+ 27

which is not permitted, while a liveness property ensures that the system will eventually do

something that is required (Kindler, 1994).

Some of the problems of model checking are (Baier and Katoen, 2008):

• It suffers from the state-space explosion problem, i.e., the number of states needed

to model the system accurately may easily exceed the amount of available computer

memory. Despite the development of several very effective methods to combat this

problem, models of realistic systems may still be too large to fit in memory.

• Its usage requires some expertise in finding appropriate abstractions to obtain smaller

system models and to state properties in the applied temporal logic.

• It is not guaranteed to yield correct results: as with any tool, a model checker may

contain software defects.

2.5 Specification and verification in TLA+

A system’s specification in TLA+ follows the Standard Model, which is the description

of a set of behaviours each representing a possible execution of the system. Every TLA+

specification is composed of predicates, actions and temporal formulas.

Specifically, a predicate is a boolean-valued expression built from variables and con-

stants and is evaluated on a state. The evaluation of a predicate in a state is performed by

calculating the predicate’s expression with the assigned values of the included variables in

this state. A formal definition follows:

s[[p]] = p(∀ ’u’ : s[[u]]/u) (2.1)

where p(∀’u’ : s[[u]]/u) denotes the evaluation of predicate p by substituting every variable

2.5 Specification and verification in TLA+ 28

u with the assigned value in state s (s[[u]]). If a predicate p is evaluated as true in state s

then this states that predicate p satisfies state s.

An action denotes a relation between pairs of states of the system (denoted as system

steps). Moreover, an action is a boolean-valued expression built from constants, primed and

unprimed variables. Primed variables refer to new states while unprimed refer to old states.

A formal definition of actions follows:

s[[a]]t = a(∀ ’u’ : s[[u]]/u, t[[u]]/u′) (2.2)

We say that action a satisfies states s,t, or that s,t is an a-step if the evaluation of the action,

with unprimed variables assigned value from state s and primed variables assigned value

from state t, is true. A predicate can be considered as a special action that is evaluated only

on the first state of a step.

A temporal formula in TLA+ is a boolean valued expression that is evaluated on be-

haviours. More specifically, a temporal formula F is composed by action and predicates

combined with logical and temporal operators. An action / predicate can be considered as

a special temporal formula that is evaluated on the first step / state of the behaviour. Some

of the fundamental temporal operators in TLA+ follow:

• Always �. The formula F must satisfy every suffix of the behaviour. The semantics

of the always temporal operator follows:

< s0,s1, . . . > [[�F]], ∀n ≥ 0: < sn,sn+1, . . . > [[F]] (2.3)

where the , operator utilized in an expression id , exp defines id to be synonymous

with the expression exp. Replacing id by exp does not change the meaning of the

specification.

2.5 Specification and verification in TLA+ 29

• Eventually ♦. The formula F must satisfy some states of the behaviour. The semantics

or eventually can be defined by utilizing the always temporal operator as follows:

♦F , ¬�¬F (2.4)

• Leads to . The formula F G asserts that whenever F is true, G is eventually true.

That is G is true at the same time with F or some time later. The leads to operator can

be defined utilizing the previous temporal operators as:

F G,�(F =⇒ ♦G) (2.5)

Consequently, all the accepted behaviours of a system can be specified in TLA+ with a

temporal formula called specification of the following form:

Spec, Init ∧�Next (2.6)

where Init is a predicate and Next is an action. A behaviour satisfies Spec if the first state

of the behaviour satisfies Init and every consequent step satisfies Next. However, a well-

defined specification should allow stuttering steps (steps that leave the system variables

unchanged). Thus, the specification has the following form:

Spec, Init ∧�[Next]<v1,...,vn> (2.7)

where [Next]<v1,...,vn> is defined as:

[Next]<v1,...,vn> , Next ∨ ((v′1 = v1)∧ . . .∧ (v′n = vn)) (2.8)

2.6 Related work on the specification and verification of UCON 30

The formula (2.7) demands that the transition from one state to another is either a Next-step

or a stuttering step that leaves the system variables unchanged.

However, the TLA+ specification expressed in (2.7), also describes behaviours that may

stop at any point, including a behaviour that starts in a valid initial state and takes no step.

Weak fairness property of the action Next (WFvars(Next)) asserts that behaviours are not

allowed to stop in a state in which Next action is enabled (Action A is enabled in a state s if

there exists a state t such that s → t is an Next-step). Therefore, the specification of a system

that permits stuttering steps and supports the weak fairness property for action Next has the

following form:

Spec, Init ∧�[Next]<v1,...,vn>∧WFvars(Next) (2.9)

A verification property in TLA+ is described together with a system’s specification and

has the form of an invariant or a property-temporal formula (Lamport et al., 2002). An

invariant is a predicate that is evaluated on a system state. Consequently, an invariant

holds on a system specification, if and only if, every state of all the behaviours of a system

satisfy that predicate. Moreover, a temporal formula is evaluated on a system behaviour.

Consequently, a temporal formula hold on a specification, if and only if, it is satisfied by all

the behaviors of the system.

2.6 Related work on the specification and verification of

UCON

A number of formal models have been developed in order to capture the new semantics of

continuity of decision and utilization of historical information in the usage decision mak-

ing process through the attribute mutability mechanism. The formal model expressed by

Zhang was developed in an extended version of TLA, developed also by Zhang, and mainly

2.6 Related work on the specification and verification of UCON 31

targeted to highlight the enhanced expressiveness of UCON, compared to existing access

control models (Zhang, 2006; Zhang et al., 2005). Additionally, the same specification sets

as a level of atomicity the internal actions of the model and separates the actions that update

the state of the usage from those that update the attribute value of the entities. However,

the specification introduced in (Zhang et al., 2005) represents only a single usage process,

and thus, it is raising questions on the operation of the usage control system where multiple

usages are executing concurrently.

Zhang also analyzes the safety problem in a UCON system where new objects are cre-

ated by proposing an additional model (Zhang, 2006; Zhang et al., 2006). The formal model

expressed in (Zhang, 2006; Zhang et al., 2006) permits the existence of multiple usages.

However it sets as level of atomicity the entire usage, thus eliminating the impact of concur-

rent operations into the internal state transitions of the usage states. Moreover, the formal

model in (Zhang, 2006; Zhang et al., 2006) does not utilize a well-known formal language

since it is described in a Z-like format. Both formal models proposed by Zhang are capable

of expressing not only the model itself but also the policies supported by the model. This is

done by specifying authorization predicates and attribute update procedures.

Another specification of a usage control was developed by Janicke in (Janicke et al.,

2007) to support continuous on-going scenarios. Specifically, it is stated that within an

initial usage entitled session, a number of "internal" usage requests may be performed.

However, in order to support immediate revocation of usages, the latter is required to be

performed by atomic actions. An alternative option states that the "internal" usage is not be-

ing revoked immediately but no additional usage requests are permitted. This specification

was developed in ITL and it supports concurrent usages only within sessions. An additional

formal model based on the POlicy Language based on Process algebra (POLPA) is pre-

sented in (Martinelli and Mori, 2010). This formalization presents only the basic features of

UCON; does not deal with concurrency issues and does not present policy implementation

2.6 Related work on the specification and verification of UCON 32

paradigms.

The verification of properties in usage control models has not been studied in (Janicke

et al., 2007; Martinelli and Mori, 2010). The expressiveness and flexibility of the usage

control model were presented in (Zhang et al., 2005) through the demonstration of policies

such as RBAC, Chinese Wall, and so on. Moreover, the formal model in (Zhang et al.,

2006) studied the safety problem in usage control concluding that only a very restricted

pre-authorization subset of usage control models may support the safety problem. Work in

(Ranise and Armando, 2012) also examined the safety problem in UCON policies. Nev-

ertheless, it generalizes the restrictions imposed by (Zhang et al., 2006). Specifically, the

formal model proposed in (Ranise and Armando, 2012) permits concurrent execution of

usages and also allows attribute values to get values over infinitive domains using simple

algebraic structure. A first attempt to formally analyze usage control policies with a model

checker is presented in (Pretschner et al., 2009). Specifically, a formal model of simple us-

age control policies using an extension of Linear Temporal Logic (LTL). Thus, policies were

analyzed by the NuSMV model checker tool, but no decidability result was derived. The au-

thors in (Rajkumar et al., 2010) verified a policy implementation of a usage control system

in SPIN. The implementation was designed for a Web based conference management ap-

plication. However, it supports concurrent applications through a common communication

channel. Furthermore, the usage scenario lacks of support for ongoing rules. Separation of

duties policies in usage control is studied in (Lu et al., 2012), where initially they define

a set-based specification of separation of duty policies and then they adapt it to attribute

values of usage control. This results in applying already existing static mutually exclusive

attribute (SMEA) constraints theory.

A comparison of the aforementioned information is depicted in Table 2.1

2.7 Chapter summary 33

Table 2.1 Comparison of related works

2.7 Chapter summary

In this chapter, we provided information about ODCE and related research work in the areas

of access control models and their specification. Specifically, we highlighted the operational

characteristics of ODCE along with the security threats presented in them. Moreover, we

have given information on the RBAC, ABAC and UCON models, which are mostly appli-

cable in the examined case of ODCE. Furthermore, we provided information on the specifi-

cation of concurrent systems utilizing transition systems and verification utilizing the model

checking technique. The process of system specification and verification in TLA+ was also

presented next. The presented work on the specification and verification of models renders

the aforementioned information valuable regarding the modeling of access or usage control

systems since it can help in the identification of required specifications of access/usage con-

trol models for ODCE and also check the correctness of the designed or produced models

in respect to their initial specifications.

Chapter 3

Requirements analysis

3.1 Introduction

Controlling the access to the resources of a system is an essential requirement for every

computer security system (Lampson, 1974). Traditional access control models utilize only

a single criterion for the allowance of an access request, which is related to the security char-

acteristics of the subject and object involved in the requested access (Samarati and Vimer-

cati, 2001a). More specifically, whenever a subject requests to access an object, the sub-

ject’s clearance and the object’s classification in Mandatory Access Control (MAC) models

(Sandhu, 1993), the subject’s identity in Discretionary Access Control (DAC) models (Qiu

et al., 1985) and an activated role from a set of authorized to the subject in Role Based

Access Control (RBAC) models (Sandhu et al., 1996), are being utilized accordingly. At-

tribute based access control approaches (OASIS, 2011) provide enhanced flexibility, when

compared to the aforementioned access control models, by utilizing a number of subject and

object security related characteristics, which are expressed in the form of attributes. How-

ever, recent research work highlights the fact that modern access control models, protocols

and mechanisms are required to support modern computing environments. Challenges and

3.1 Introduction 35

research directions in building models, protocols and architectures to support access control

in pervasive/ubiquitous computing environments are presented in (Dritsas et al., 2006; Joshi

et al., 2008; Thomas and Sandhu, 2004). A detailed categorization of access control require-

ments imposed by GRID and cloud systems are also presented in (Gouglidis and Mavridis,

2010; Theoharidou et al., 2013). Finally, the ASCAA (i.e., Abstraction, Separation, Con-

tainment, Automation and Accountability) principles for the next-generation RBAC model

are presented in (Sandhu, 2008).

The Usage CONtrol (UCON) family of models (Park and Sandhu, 2004) provides an

integration of traditional access control, digital rights and trust management. Moreover,

UCON encompasses attribute-based characteristics, along with the concepts of continuity of

decision and attribute mutability. Through the utilization of continuity of decision in UCON,

access control to a resource is being controlled either continuously through an ongoing rule,

or only before an access is permitted through a pre rule, as in traditional access control

models. Therefore the term usage is preferred to be used instead of access. Moreover,

the complexity of modern computing environments requires the utilization of a number of

criteria during the usage control decision making process. UCON, employs three criteria

for the creation of a usage decision, namely, the security related characteristics (henceforth

called properties), contextual information and information regarding previous or current

usages of the system’s entities. However, whenever a subject s requests the usage of an

object o, the usage control decision making can be based on either information related to

s and/or o, or on information related to other system entities (e.g. father’s properties may

have an influence on the son’s permissions), and henceforth mentioned as direct and indirect

entities of the requested usage, respectively.

Despite the fact that the usage control decision making process in UCON utilizes all

the three criteria, these are commonly related only to the direct entities. Additionally, the

attribute mutability mechanism of UCON introduces a number of limitations regarding the

3.2 Access control requirements 36

utilization of information about previous/current system usages. For example, no informa-

tion about previous requested usages that were denied is recorded and no discrimination is

done between the usages that have been revoked by the usage control system and the us-

ages that have been terminated by a subject’s request. Consequently, attribute mutability

is unable to support a policy rule that is based on historical information regarding revoked

usages. Moreover, modern computing environments present novel and complicated usage

modes performed on objects by subjects, which are poorly supported through right entities

in UCON. These complex operation modes require additional information that is essential

for their execution, unlike the simple and straightforward operation modes that were previ-

ously supported by traditional access control models, e.g. read, write and execute operations

in an operating system. For example, a banking transaction encompasses additional infor-

mation, which is necessary for its operation, like the amount of transfer, the execution date

etc.

In this chapter, in Section 3.2, we highlight the access control requirements imposed

by ODCE. Furthermore, by recognizing the fact the UCON is the most promising access /

usage control approach for ODCE, we continue in Section 3.3 with a detailed categorization

of the usage decision criteria utilized in UCON along with representative usage scenarios.

3.2 Access control requirements

The following access control requirements have been resulted from an analysis of the ODCE

characteristics through the application of different scenarios as presented in (Damiani et al.,

2005; Grompanopoulos and Mavridis, 2010; Thomas and Sandhu, 2004).

Support of partially unknown-users: In several ODCE scenarios, the users of a system

might not be known a priori by the system. Therefore, there is a requirement for an access

control system that will be capable of making a decision based not only on the identity

3.2 Access control requirements 37

of a user, but also on the user’s security related properties (Damiani et al., 2005). In this

case, the access control system gains in flexibility, as it is able to permit or deny access to

partially unknown users. In order to satisfy the aforementioned requirements, the adoption

of an attribute based access control approach is straightforward. Moreover, the utilization

of historical information (i.e., transactions of a user in a system) in the decision making

process helps in the creation of trust relationships, and thus, can be used for the definition of

access control criteria (Artz and Gil, 2007; Boukerche and Ren, 2008; Kagal et al., 2001).

Cooperation among heterogeneous entities: A typical requirement in ODCE is the

need for cooperation among different administrative authorities (Bacon et al., 2002). There-

fore, in order to achieve collaboration among participants, it is necessary to have a common

language regarding the definition of access control policies and entity attributes (Damiani

et al., 2005). Moreover, the access decision creation in ODCE requires the utilization of

information from a wide-range of participating entities. Specifically, whenever a subject s

requests the usage of an object o, the usage control decision making can be based either on

information related to s and/or o, or on information related to other system entities (e.g.,

father’s properties may have an influence on son’s permissions). We further on refer to them

as direct and indirect entities of the requested usage, respectively. A basic design character-

istic of an access control approach for ODCE should be its ability to utilize, in the decision

making process, criteria that are related not only to direct but also to indirect entities.

Utilization of contextual information: The use of contextual information during the

decision making process of an access control system consists of another requirement (Cov-

ington et al., 2001; Georgiadis et al., 2001; McDaniel, 2003). Thus, it is essential for a mech-

anism to collect (Baldauf et al., 2007) contextual information and evaluate it (Delir Haghighi

et al., 2008; Duan and Canny, 2005; Ranganathan et al., 2004). Additionally, it should be

possible to incorporate in access control policies context conditions as well as provide a

unified model to represent contextual information (Cuppens and Cuppens-Boulahia, 2008).

3.2 Access control requirements 38

Protection of privacy: A requirement of vital importance in ODCE is that of privacy

(Cheng et al., 2005; Ranganathan, 2004; Theoharidou et al., 2013). For instance, the use of

portable devices (e.g., mobile phones, tablets) by users, not only for business, but also for

their everyday personal operations (e.g., contacts, photos) may raise privacy issues. Conse-

quently, disclosure of personal information has a major impact on its users. Users require

the full protection of their private information with minimal effort. Therefore, contextual in-

formation collected by sensors must also be protected as part of a user’s private information

(Minami and Kotz, 2005).

Ease of administration: The new computing paradigms that are realized in ODCE

environments impose new requirements since they support a wide range of daily functions.

These functions are performed by administrators who might have limited or no knowledge

of the underneath technologies (Sandhu, 2008). Therefore, system features such as the

support of complex access control policies are required to be performed transparently.

Resource constrained operations: There are several cases where a device in an ODCE

might operate on batteries, and thus, has limited computing resources (Thomas and Sandhu,

2004). The constrained resources posed by ubiquitous environments prevent the use of

highly secure and complex solutions (e.g., public-key infrastructure - PKI). Thus, in most

cases it is required to use lightweight security approaches to ensure less power consumption

and less usage of CPU and memory resources. Specifically, low bandwidth communication

channels among participants require minimizing the communication overhead.

Adaptation on operational changes: A core feature of ODCE is that they operate in

continually changing conditions. This is because, firstly, contextual information can be dy-

namic (e.g., time, available bandwidth), secondly, participating users can constantly change

position, and thirdly, applications, data and devices may or may not be available for use

(Kagal et al., 2003; Toninelli et al., 2007). Therefore, capabilities as decision mutability

are required to be supported, especially in cases where usage control is applied. Addition-

3.3 A critique on existing access control solutions 39

ally, access control policies should be automatically altered as a result of environmental

changes. In order to satisfy the aforementioned requirement, a continuous evaluation of the

access control decision, (as it is expressed by usage control), should also be applied in the

proposed model.

3.3 A critique on existing access control solutions

UCON is a next generation access control model capable of evaluating a number of us-

age decision criteria for the allowance or not of a usage request. Nevertheless, a limited

utilization of the aforementioned criteria, related to the indirect entities, is being noticed.

A detailed description of the criteria’s utilization, along with corresponding representative

usage scenarios1, follows.

3.3.1 Security characteristics of entities

Security characteristics of system entities in UCON, are associated with subject and object

attributes. These attributes are utilized by functional predicates (authorizations) that are

evaluated for the usage decision. An example of a usage scenario, where only the subject’s

and object’s properties are taken into consideration during the usage decision making pro-

cess, is implementation of a MAC policy in UCON as presented in (Park and Sandhu, 2004).

More specifically, in a system that implements a MAC policy the following rules apply:

Usage Scenario 1 A clearance attribute is assigned to all the subjects of the system. More-

over, a classification attribute that shares the same value domain with clearance, is also

assigned to all the objects of the system. A relation exists between the values of clearance

and classification, thus creating a form of hierarchy. Consequently, a subject can read an

1All the usage scenarios presented in this paper refer to pre authorization policy rules. However, the same
criteria can also be applied to ongoing authorization rules.

3.3 A critique on existing access control solutions 40

object only if its clearance overcomes the object’s classification. In addition, an object can

be written by a subject only if its classification overcomes a subject’s clearance.

Implementing the usage scenario 1 in UCON requires the utilization of authorization

predicates that are evaluated on subject and object attributes. It is worth mentioning that

UCON utilizes attributes for two purposes. More specifically, UCON does not only asso-

ciates the entity’s properties into the attribute values but also records into them the execution

of system usages through the attribute mutability mechanism. Nevertheless, the values of

the attributes that associate the properties of the entities are not updated automatically by the

usage control system (update procedures) but only after the intervention of an administrator.

A limitation in UCON’s authorizations is the fact that only the attributes from the direct

entities are utilized. Nevertheless, in modern access control scenarios, it is possible that

properties from indirect entities could also affect the authorization evaluation. A represen-

tative usage scenario that falls into the latter category is the following:

Usage Scenario 2 Bob is a subscriber to a golf club that provides an amusement park for

the children of its members. Bob’s daughter, Alice is permitted to use all the available toys

except from the carousel. Alice is permitted to use the carousel only if her father (Bob) is a

member of the golden club category.

When attempting to support the usage scenario 2 in UCON, Alice and carousel are con-

sidered to be the direct entities of the requested usage. However, during the usage decision

making process, the values of Bob’s attributes (e.g. his golden category membership) are

also required. Due to the fact that Bob is an indirect entity, his attributes are not directly

utilized in the corresponding authorization predicate. Nevertheless, if Alice is supported by

an attribute "father" (that is assigned with the value of "Bob") then UCON is capable of

resolving Bob’s attribute values and consequently utilize them for the usage decision.

3.3 A critique on existing access control solutions 41

3.3.2 Contextual information

Contextual information in UCON is associated with special system variables, which are

entitled condition variables. These variables are utilized in condition predicates in order

to create a usage decision. A usage scenario, as originally presented in (Park and Sandhu,

2004), that requires the utilization of contextual information for the creation of the usage

decision follows:

Usage Scenario 3 The members of an institution are categorized into "faculty" and "stu-

dent". The same categorization is also applied to the institution’s areas. A member of a

specific category (e.g. faculty) can exercise a right only in areas having the corresponding

label (e.g. faculty areas).

The presented approach in (Park and Sandhu, 2004), proposes the evaluation of con-

dition predicates that contain condition variables, which associate the location information

with direct entities. However, in case where contextual information that is associated with

the indirect entities is required for the usage decision, UCON seems to be incapable of re-

solving which condition variable represents the contextual information that is related with a

particular system entity. A usage scenario where contextual information, which is associated

with the indirect entities, is utilized for the usage decision follows:

Usage Scenario 4 The doctors in a hospital are categorized into "seniors" and "juniors"

in respect of their operational experience. Every "junior" doctor is supervised by a corre-

sponding "senior" doctor. Whenever a "junior" doctor, named Alice, sets a request for the

execution of a specialized operation, e.g. an open heart surgery, a policy directive requires

the physical coexistence of Alice’s "senior" doctor supervisor, named Bob.

A policy rule in UCON that models the usage scenario 4 requires the comparison be-

tween two locations represented by two separated condition variables. The problem arises

3.3 A critique on existing access control solutions 42

from the fact that Bob is an indirect entity. In such a case, specifying in UCON the par-

ticular condition variable that represents Bob’s location seems to be impossible. In usage

scenario 4, Alice is the direct entity of the usage request and only information related with

her is utilized for the usage decision (condition). Even if UCON can represent with an Al-

ice’s attribute the fact that Bob is her supervisor, it is not possible to link at the same time

Bob with a condition variable that represents his location. A solution could be provided by

utilizing a number of condition variables that represent contextual information, which are

irrelevant with the direct entities of the usage (e.g. "subjectsSupervisorLocation" may be the

condition variable that represents the location of Bob). However, in a system with a large

number of condition variables, such an implementation could result in a very complicated

usage control system.

3.3.3 Historical information of usages

There are cases where historical information of previous or current usages executed by the

direct entities, are needed to be utilized for usage decision. A usage scenario, where the

previous usages of a subject may affect the allowance of a new usage requested by the same

subject, is the following:

Usage Scenario 5 An on-line collaborative educational software provides to its members

the capability to post questions that can be answered by other members. However, a policy

rule requires that a member is allowed to set a new question only if he had previously

provided at least two answers to questions of other members.

UCON is capable of supporting usage scenario 5 either through authorizations that in-

corporate attribute update procedures or through obligations. Specifically, if answering a

question is considered to be a system usage, then each time a member provides an answer,

3.3 A critique on existing access control solutions 43

the value of an attribute that records this usage is being updated (attribute mutability). Con-

sequently, an authorization predicate is evaluated, based on the value of the aforementioned

attribute, to allow or not to the posting of a new question. More specifically, attribute muta-

bility in UCON actually implements a mechanism that records the allowed system usages in

attributes of direct entities. For example, every time a user listens to a music file, a specific

attribute of her is being updated. The values of these attributes do not represent security

characteristics of entities and are updated automatically by the attribute mutability mecha-

nism. As a result, information about allowed usages is utilized for usage decision. However,

attribute mutability faces a number of issues. Firstly, it provides limited knowledge regard-

ing the system usages (only the allowed ones that contain attribute updates). Secondly, at-

tribute mutability complicates the policy administration process by adding attribute update

procedures to policy rules.

Giving an answer to the question in usage scenario 5, can be considered as an obliga-

tion operation that must be executed twice as a criterion for allowing a usage request to

post a new question. Obligation operations in UCON also represent usages that are exer-

cised by subjects on objects. However, these obligation operations are discriminated from

normal system usages because they are not controlled by a decision factor (Authorization,

oBligation or Condition) and can be performed whenever required (Zhang et al., 2005).

Nevertheless, in modern computing environments, it is possible for the usage decision to be

dependent on past usages of indirect entities. A usage scenario that falls into this category

is the following:

Usage Scenario 6 In a research institute, a presentation room is equipped with both an

interactive board and a media player. A policy rule requires that an employee is permitted

to access the media player only if there is no other presentation in progress (usage of the

interactive board) in the same room.

3.3 A critique on existing access control solutions 44

Usage scenario 6 can be modeled only through UCON’s obligations and not through au-

thorizations that incorporate attribute mutability update procedures (as happened with usage

scenario 5). Authorizations with attribute mutability fail to model scenario 6 because only

the attributes of the direct entities of a usage are being updated. Moreover, authorizations

utilize only attribute values from direct entities. Thus, the usage of the media player in

usage scenario 6 without the utilization of obligations, seems to be impossible. However, a

significant drawback of obligations is the lack of a feasible fulfillment mechanism, as it is

mentioned in (Lazouski et al., 2010).

Therefore, we summarize the utilization of UCON’s usage decision criteria in Table

1, based on the analysis performed in the aforementioned scenarios. The usage decision

criteria are represented as rows on the left side of the table. These are, as identified, the

properties, context (contextual information), and history (information regarding previous or

concurrent usages) of the system entities. The far right two columns of the table represent

the origin of the aforementioned criteria, which can stem from either a direct or an indirect

entity. Thus, each usage decision criterion, originating from an entity, is utilized by UCON’s

decision factors that are expressed in the corresponding cell. Each UCON decision factor

is represented by a letter (Authorization, oBligation, Condition) combined, if required, with

the attribute mutability mechanism. For instance, if a usage decision criterion is based on

historical information stemmed from direct entities, then UCON is capable of utilizing it by

using either authorizations with attribute mutability (A+m) or obligations (B).

Supporting Complicated Usage Modes

Rights in UCON are described as “privileges that a subject can hold and exercise on an ob-

ject” (Park and Sandhu, 2004). However, rights are not described by attributes, as opposed

to subjects and objects. Such a modeling decision seems to be adequate for simple and

straight-forward rights, like reading or writing a file. However, in modern computing envi-

3.3 A critique on existing access control solutions 45

Table 3.1 Utilization of decision criteria in UCON

ronments subjects may need to access objects with novel and complicated access modes. A

usage scenario that requires a complicated usage mode is the following:

Usage Scenario 7 Electronic banking transactions must confirm with a government pol-

icy directive requesting that players of on-line betting companies must be adults. More

specifically, whenever a customer attempts to make a money transfer to a betting company’s

account, his age must be evaluated. In addition, the amount of money transfer must not

overcome the customer’s account balance.

In the usage scenario 2, the customer’s account is the subject of the usage, whereas the

money transfer is the right and the account of the betting company is the object. The ne-

cessity for associating the amount of money with the money transfer results in the need for

enhancing rights with a more detailed description.

A possible solution in UCON, to overcome the lack of right attributes, might include

decomposing the transaction of usage scenario 2 into two different rights. In the first right,

the customer’s account is the subject, whereas the money transfer is the object. In the sec-

ond, subject is the money transfer and object is the bank account of the betting company.

For each one of these rights, a respective UCON policy rule is created. However, utilizing

these two UCON policy rules has significant drawbacks. Firstly, UCON modeling does not

depict that these two policy rules are related with each other. Only the policy administra-

tor is aware that these two rules are correlated and must be checked in a particular order.

3.4 Chapter summary 46

Secondly, and more importantly, is the fact that UCON’s modeling is quite different from

the way security policies are expressed, usually through natural languages, e.g. the same

way assembly differs from SQL programming. As a result, UCON introduces additional

complexity to the policy administrator tasks. Thirdly, the fact of using only simple rights

(e.g. read, write, etc.) limits the policy administrator’s ability to create a rule that controls

either all the rights or only a specific one.

The replacement of UCON’s right component with a new one, called action, could pro-

vide a solution to the previous described UCON right shortcomings. Actions can be de-

scribed, like subjects and objects, with attributes. It is worth mentioning that the necessity

for further enrichment of UCON with right attributes was also proposed in (Zhang and

Parashar, 2004). Moreover, actions can support efficiently complicated rights. The previous

example with the banking transaction can now be modeled by utilizing an action having

attributes that describe the transaction amount, the purpose of money transfer, etc. Ac-

tions, along with their attributes, can contribute to the increasing of policy language expres-

siveness. In addition, action attributes can reduce the gap between UCON modeling with

multiple policy rules and expressing security policies in almost natural language. Action at-

tributes can also enable the creation and management of possible existing right hierarchies,

as presented in (Park and Sandhu, 2004).

Moreover, a detailed analysis of the challenging issues that UCON presents in ODCE

are depicted in Table 3.2.

3.4 Chapter summary

In this chapter, we highlighted through representative usage scenarios and related literature

the additional requirements that are posed when attempting to implement the access control

process to ODCE. Moreover, a critique on existent access control approaches, focusing on

3.4 Chapter summary 47

Table 3.2 An analysis of challenging issues of UCON in ODCE

UCON, is also presented. Specifically, a classification of usage decision criteria, originating

from either direct or indirect entities, highlighted the limitations of the UCON model and

spotted out the necessity for a new use-based usage control model.

Chapter 4

The proposed model

4.1 Introduction

This chapter presents our proposed UseCON model for ODCE, which is designed in regard

to the requirements identified in Chapter 3. The remainder of the chapter is organized as

follows. Section 4.2 provides information regarding the proposed model including its main

entities and relations between them. In Section 4.3, we provide a formal specification of

our proposed model in TLA+, and in Section 4.4, we illustrate a policy specification also in

TLA+ through an example. Section 4.5 concludes the chapter.

4.2 A brief description

The UseCON model is composed by three entities, namely subjects, objects and actions.

These three entities, together with uses, are the core components of UseCON. Decision

factors in UseCON are the attribute dependent authorizations and the usage dependent au-

thorizations.

Subject and object are fundamental concepts, proposed already by primary access con-

4.2 A brief description 49

trol models. More precisely, a subject is an entity that requests the execution of an operation

on another entity named object. An action entity represents the novel and complicated op-

erations of subjects on objects, imposed by modern computing environments. Moreover, all

the security relevant characteristics, including related contextual information, of subjects,

objects and actions are described through their attributes. An example of an action entity

is a money transfer of a bank account with attributes describing the amount of transfer,

the date of execution, the currency etc. A core component of the UseCON model is the

use component which represents the security related semantics of a usage. A use, is cre-

ated when a subject requests the execution of an action on an object. A use is described

through attributes that record the detailed security-relevant characteristics and capabilities

that are associated with the requested usage. Each use is further associated with a state at-

tribute, which embodies the accomplished status of the usage in progress, as it is described

in (Zhang et al., 2005) and it is depicted in Figure 4.1. The state attribute receives each time

one of the following values (Grompanopoulos et al., 2013):

• Requested: Upon request for a usage, the appropriate attributes are associated with

the use and proper values are assigned to them. The pre-authorization policy rules,

which govern the requested usage, has not been evaluated yet.

• Activated: The requested usage has been allowed, as a result of successfully fulfilled

pre-authorization policy rules, and is being executed.

• Denied: The requested usage has been denied, because it failed to satisfy the pre-

authorization rules.

• Stopped: The allowed / ongoing usage has been terminated by the system due to a

violation of an ongoing authorization rule.

• Completed: The usage that has been completed due to a subject’s intervention.

4.2 A brief description 50

Fig. 4.1 Accomplishment status of a single usage

An authorization is the only decision factor in UseCON. However, for the creation of a

usage decision, the UseCON model utilizes three criteria viz. the (properties) of the entities,

contextual information and historical information about usages. Therefore, authorizations

are categorized into Attribute dependent Authorizations (AdAs) and Usage dependent Au-

thorizations (UdAs) as follows:

• Contextual information and properties that describes an entity are associated with the

corresponding entity’s attributes. The values of these attribute in turn are utilized by

AdAs policy rules for the creation of a usage decision.

• Historical information of usages is utilized by UdAs. Specifically, in UseCON, uses

record all the information regarding the previous or concurrent usages exercised in the

system. Consequently, a UdA policy rule utilizes the historical information contained

into the use attribute values to allow or deny a usage request.

Integrating authorizations with continuity of decision results into two UseCON sub-

models. These are the pre-Authorizations and the ongoing Authorizations sub-models. The

UseCON elements and the relations between them are depicted in Figure 4.2.

UseCON presents extended expressiveness, as required by modern computing environ-

4.3 Specification of UseCON in TLA+ 51

Fig. 4.2 UseCON usage control system

ments, not only due to the fact that is able to utilize all the three criteria (i.e., contextual

information, properties and historical information) but also because these criteria can be

related to either direct or indirect entities or even to any subset of the usage control system

entities, e.g. a bank should issue new loans to a customer only if the sum of the existing

loans of all customers is lower than a given amount. Moreover, UseCON inherently supports

the utilization of historical information of usages and not through the application of attribute

update mechanism as UCON does. Consequently, there is a strict distinction between the

functional components of the internal usage control model (e.g., creation and state transition

actions of use entities) and the components that define the specific policy implementations

of the model (e.g., the creation of the usage decision – policy rules).

4.3 Specification of UseCON in TLA+

In this section, we present a logic based approach to formally define UseCON in TLA+.

Specifically, basic elements of specifications are presented together with the representation

of policy rules and use attribute update procedures. Moreover, the transition system of both

4.3 Specification of UseCON in TLA+ 52

a pre and an ongoing usage control system that supports the concurrent operation of multiple

usages, are followed.

4.3.1 Basic elements

A system’s usage represents the request for the execution of an action (a) from a subject (s)

on an object (o). All subjects, objects and actions utilized in the usage control system define

the sets of subjects (S), objects (O) and actions (A), respectively. Set E refers to the union

of S, O and A sets, as follows:

E , S∪O∪A

The security related characteristics of an entity are represented through its attribute val-

ues. An attribute is a function whose domain is a particular set (S or O or A) and its range

is composed of specific attribute values, as follows:

Atti(e) ∈ [e ∈ E 7→ RangeAtti]

For every system entity an identification attribute id is defined for assigning a unique

value to the entity that remains constant through the life-time of the usage control system.

Thus, the following invariant is valid for all the behaviours of the usage control system.

∀ e1,e2 ∈ E : id[e1] = id[e2]⇒ e1 = e2

In UseCON, the operation of the usage control system does not modify automatically

the attribute values of system entities (S, O or A). Thus, the manipulation of attribute values

of system entities is proposed to be covered manually by the usage control administration

model. Consequently, a system entity is represented with a constant record having as fields

the entity’s attribute values, as follows:

4.3 Specification of UseCON in TLA+ 53

e, [id 7→ k,att1 7→ l1,att2 7→ l2, . . . ,attn 7→ ln]

where e ∈ E is a system entity and atti, i ∈ 1, . . . ,n is a value of one of its attributes. The

notation e.atti represents the value of the attribute atti of entity e. The first record field of

every entity is the id attribute. Therefore, the set of subjects, objects and actions (S, O and

A respectively) are defined, as follows:

S, {s1, . . . ,sn}

O, {o1, . . . ,on}

A, {a1, . . . ,an}

A usage request in UseCON results into the creation of a use. A use materializes the

accomplishment status of the usage in progress and it is described with attributes. More

specifically, every use instance must contain an use’s id attribute with value a tuple com-

posed of the attributes values sid, oid, aid that describe the identities of the subject, the

object and the action participating in the materialized usage. A special attribute st is associ-

ated to every use instance representing the accomplishment status of the usage, as presented

in subsection 4.2 taking one of the values requested, activated, denied, stopped and com-

pleted.

A use instance u that materializes a specific usage request from subject s to object o for

action a is represented in the specification of the model with a variable record, having as

4.3 Specification of UseCON in TLA+ 54

fields its attribute values as follows:

u, [sid 7→ s.id,oid 7→ o.id,aid 7→ a.id,st 7→ state,

uatt1 7→ v1,uatt2 7→ v2, . . . ,uattn 7→ vn]

where s.id, o.id and a.id are the identity values of the subject, the object, and the action,

respectively. The state attribute st gets a value state which belongs to the following set:

state ∈ {"requested", "activated", "denied", "completed", "stopped"}, u.atti, i = 1,2, . . . ,n

are the use attributes. The set of all the system uses is U . During the operation of the usage

control system, U is populated due to the usage requests. Moreover, as these usage requests

are served by the usage control system, the use attribute values are modified. Specifically,

the U is altered whenever a new usage is requested or a usage changes its progress status

(e.g., from activated to stopped) through the accomplishment of a system action, as are de-

scribed in the next subsection. Consequently, the only variable utilized in the specification

is U, which is the set containing all the usages operated in the UseCON model and it is

declared as follows:

VARIABLES U (4.1)

Initially, for every TLA+ specification, particular modules are included that permit the

utilization of specific operators. In our specification, the finiteSets and Integers modules

are included that encompass arithmetic and set - related operators, like Cardinality. The

semantics of module declaration are the following:

EXT ENDS Integers,FiniteSets

4.3 Specification of UseCON in TLA+ 55

Decision Making in UseCON

The flexibility of UseCON’s policy rules to utilize information originated from a multitude

of sources, contributes to the extended expressiveness of the model. For example, authoriza-

tion predicates in UCON are categorized into unary predicates, which compare an attribute

value with a constant value, and binary predicates, which compare two attribute values

(Zhang and Parashar, 2004). However, both unary and binary predicates utilize attribute

values related only with direct entities. Nevertheless, policy rules in UseCON provide an

enhanced utilization of information from entity and use attribute values. More precisely, the

general form of a UseCON policy rule that governs the allowance of a usage request from a

subject s on an object o with an action a, is a boolean valued expression with semantics as

follows:

Policy_Rule(s,o,a,S,O,A), expression(e1, . . . ,en)

where s,o,a are the particular direct entities of the usage and S,O,A are the sets of all

entities. In addition, two or more UseCON policy rules can be combined together with

logical operators as follows:

p = p1 ⊗ p2 ⊗ . . .⊗ pn

where ⊗ is a logical operator, (e.g. AND, OR, etc), and pi i = 1, . . . ,n is a policy rule.

The parameters ei : i ∈ 1, . . . ,n of a policy rule that are utilized for the evaluation of the

expression may have various origins, and thus lead to the creation of the following categories

of policy rules:

• Direct Policy Rules: The parameters ei in the expression of a direct policy rule are

values only from attributes of direct entities or constant values. Specifically, all pa-

4.3 Specification of UseCON in TLA+ 56

rameters ei, are defined by the following formula:

ei ∈ {s,o,a} or ei , l

where l is a constant value. Examples of using direct policy rules of entities might

be the expression which verifies that the age of a subject is over 18. Another direct

policy rule is the expression that evaluates if the clearance of a subject is greater than

the classification of an object. In both aforementioned examples security properties

related only with the direct entities, i.e. age of subject, clearance or classification of

subject and object, are utilized in the policy rule.

• Indirect Policy Rules: The expression of an indirect policy rule consists of attribute

values stemmed not only from direct, but also from indirect entities. However, there

is a logic relation between the two types of entities (i.e., direct and indirect) which

is represented in some attribute values of the entities. For example, an employee

named Alice should have an attribute "supervisor" assigned with the value of the id

attribute of Alice’s supervisor. Consequently, the utilization of the indirect entities

in the policy rule is possible, through an appropriate expression (i.e., selection) that

takes parameters the attribute values of direct entities. The semantics for the selection

expression follows:

ei ,CHOOSE x ∈ E : select(x,s,o,a, l)

An example of an indirect policy rule is an expression which evaluates if the father

of a child is a member of a "golden" category class. In this example, the child is a

direct entity where the father is an indirect. The selection expression should utilize

the fact that there is a "father" attribute in the child entity having the attribute value of

4.3 Specification of UseCON in TLA+ 57

her father’s identity.

• Complex Indirect Policy Rules Modern computing environments impose complicated

access control policies where the usage decision is based on information related not

only with a single entity, but with a subset of entities. Such complicated policies can

be supported in UseCON through complex indirect policy rules. More specifically,

a parameter ei of a complex indirect policy rule can be, apart from a single (direct,

or indirect) attribute value, an aggregation of information. This information is de-

rived from all the entities that satisfy a desired (select) predicate. The semantics of a

parameter ei of a complex indirect policy rule follows:

ei , aggregation({e ∈ E : select(e)})

An example of a complex indirect policy rule is one that confirms that the sum of

the balances from all the accounts of a bank’s customer is over a specific amount.

Information that is related with a set of bank accounts, those belonging to the corre-

sponding user, is required for the evaluation of the aforementioned policy rule. Conse-

quently, the selection expression defines the subset of the bank accounts that belongs

to the specific customer.

Use Attribute Update Procedures

Attribute values are utilized by UseCON policy rules through the usage decision making

process. Consequently, the implementation of a high level policy should also cope with

the definition of use attribute value update procedures because these values determine the

outcome of the policy rule. However, attribute mutability of uses in UseCON has a different

objective from that by UCON (Park and Sandhu, 2004). Specifically, UseCON attribute

mutation does not support historical information, e.g., how many times an object has been

4.3 Specification of UseCON in TLA+ 58

accessed, which is now supported by the creation of use entities. Instead the mutation of

attribute values only records security related information that are related with the usage.

Moreover, a categorization of the use attributes according to the nature of information they

record follows:

• Induced Attributes. Information that can be inferred from entities involved in a us-

age (i.e., subject, object and action) that a specific use materializes. An example of

induced use attribute is the price of a service.

• Observed Attributes. Information recorded during the exercise of a usage. Such info

cannot be derived directly from the entities involved in the usage. Examples of ob-

served use attributes is the duration of the usage, or the set-time of usage request

etc.

Update procedures for induced attributes can be specified during the definition of the

implementation of a high level policy by the policy administrator. However, update pro-

cedures for observed attributes require the existence of a system function that returns the

required value. For example, a policy’s specification, which requires to record the system

time whenever a usage is permitted, follows:

preU pdate, [u EXCEPT !.st = ”activated”, !.allowedtime = SystemTime()]

where SystemTime() is an internal function provided by the system framework that provides

the current time.

Attribute update procedures in UseCON are performed whenever a usage changes its

state (e.g., from "requesting" to "activated"). Therefore, during the execution of a usage, the

times of use attribute update in UseCON are represented in Figure 4.3.

4.3 Specification of UseCON in TLA+ 59

Fig. 4.3 Use attributes updates during the exercise of a usage in UseCON

4.3.2 Transition systems

Actions in the UseCON model are categorized to those triggered by a subject’s request and

those operated automatically by the usage control system. More specifically, for every usage

supervised by the usage control system the following actions can be triggered by a subject

(Figure 4.4 and 4.5):

• Request: This action performs the transition from the "Init" state of the usage to

"Requested". Moreover, Request creates a particular use instance that materializes

the requested usage and also assigns values to the use’s id attribute.

• Complete: This action changes the usage’s state from "Activated" to "Completed".

The actions performed automatically by the usage control system, follows:

• preEvaluate: This action is performed by the usage control system only when the

usage’s allowance is governed by a pre-authorization rule. This action changes the

usage’s state to either "Activated" or "Denied", depending on the outcome of the ex-

amined policy rule.

• onEvaluate: In case the allowance of a usage is governed by an ongoing authorization

rule, the onEvaluate action is performed by the usage control system. If the particular

policy rule is satisfied then the usage’s state remains unchanged. In case the policy

rule is not satisfied, the usage’s state is changed to "Stopped".

4.3 Specification of UseCON in TLA+ 60

Fig. 4.4 Transition system of a single usage pre-authorization UseCON model

Fig. 4.5 Transition system of a single usage ongoing authorization UseCON model

• Activate: This action is performed only when the usage’s allowance is governed by an

ongoing authorization rule. It follows the execution of the Request action and changes

the usage’s state from "requested" to "activated".

Any of the previous actions apart from modifying the st attribute value they may also

update other use attribute values. Such modifications in the use attribute values are con-

sidered to be implementation specific, as already described in subsection 4.3.1. Moreover,

despite the existence of a great number of updates on attribute values, the execution of any

of the previous actions is considered to be atomic 1, i.e. a single step of a behaviour.

The transition system for a single usage UseCON system controlled by a pre and an

ongoing authorization policy rule is depicted in Figure 4.4 and Figure 4.5 respectively.

In initial state of the UseCON’s transition system where multiple usages are operating

concurrently no usages are exercised in the system, and thus, the first state of every be-
1This constraint is realistic due to the fact that a use is recorded centrally on the policy decision point and

there is no need for attribute updates of other entities (subject or object)

4.3 Specification of UseCON in TLA+ 61

haviour must satisfy the TLA+ predicate Init which defines that the set-variable U is an

empty set:

Init ,U = {}

Moreover, according to the time period that a usage request evaluation is performed, a

Pre-Authorization and Ongoing Authorization transition systems are created. The TLA+

specification follows:

Pre-Authorization

As it is depicted in Figure 4.4 the possible actions that can be performed on a pre-Authorization

UseCON system are either the usage request for a new usage, either the evaluation of an al-

ready requested usage or the termination of a usage that is already executed. Therefore, the

Next action, that describes all the possible next states could be either a Request or a Evaluate

or a Complete action and is described as follows:

Next , Request ∨ preEvaluate∨Complete

More specifically, the Request action selects non- deterministically 2 a new usage x.

This is verified by searching the set of uses U , and returning one that has not already been

requested by the subjects or processed by the usage control system. Consequently, in case

that this particular x exists, the request action creates the corresponding use instance that

materializes usage x and inserts it to the set U. The semantics of Request action follows:

2the non-determinism property is implied by the use of ∃ operator. For comprehensive information refer to
(Lamport, 2002)

4.3 Specification of UseCON in TLA+ 62

Request , ∃u ∈ (S×A×O) : (

∧ ∀ x ∈U : (x.sid ̸= u[1].id ∨ x.aid ̸= u[2].id ∨ x.oid ̸= u[3].id)

∧U ′ =U ∪{createUse(u)})

The preEvaluate action examines if there are any usages that have been requested but

have not been processed by the usage control system. More specifically, preEvaluate ex-

amines if there is any use instance with state attribute value equals to "requested". Conse-

quently, the action evaluates the policy rule that governs the allowance of the usage that the

specific use instance materializes. Based on the outcome of that policy rule the action mod-

ifies the state of the use either to "activated" or to "denied" with preUpdate and denUpdate

use attribute update procedures respectively as follows:

preEvaluate, ∃u ∈U : (∧ u.state = ”requested”

∧ IF(PolicyRule)T HEN

U ′ = (U \{u})∪{preU pdate(u)}

ELSE

U ′ = (U \{u})∪{denU pdate(u)})

Action Complete simulates a subject’s request to terminate the execution of a currently

active usage. If such a use exists, its state attribute value should be equal to "activated".

Consequently, the completed action modifies the state attribute value from "activated" to

"completed" with the comUpdate use attribute update procedure. The semantics of the

4.3 Specification of UseCON in TLA+ 63

Complete action follows:

Complete, ∃u ∈U : (∧ u.state = ”activated”

∧U ′ = (U \{u})∪{comU pdate(u)})

CreateUse is the procedure that creates a use instance that has the identities of the direct

subject, object, action. The semantics of the createUse procedure follows:

createUse(x), [sid 7→ x[1].id,aid 7→ x[2].id,oid 7→ x[3].id,

state 7→ requested,att 7→ k]

All the other use attribute update procedures perform a dual role. Firstly, they alter

the state use attribute to the desired value (e.g. preUpdate to "activated" or comUpdate to

"completed"). Secondly, the use attribute update procedures modify the values of other use

attributes according to the requirements of the usage control system that they are called to

describe. For example, a possible preUpdate procedure can be the following:

preU pdate, [u EXCEPT !.st = ”activated”, !.att = value]

where the EXCEPT in TLA+ is a special purpose operator representing the modification of

a function from a state to the next. In that next state all function values are left unchanged

unless stated otherwise 3. The same semantics apply to the denUpdate, comUpdate proce-

dures.

The transition system of a pre-Authorization UseCON system with two usages that are

operating concurrently is depicted in fig 4.6. For figure simplicity reasons it is assumed that

the policy rule is always valid so every usage that is requested is consequently activated.

3For a comprehensive definition of EXCEPT operator refer to (Lamport, 2002)

4.3 Specification of UseCON in TLA+ 64

Fig. 4.6 Transition system of a multiple usage pre-authorization UseCON model

Ongoing Authorization

The transition system of the Ongoing Authorization UseCON model is differentiated from

the pre Authorization model in a number of ways (as it is depicted in differences between

Figure 4.4 and Figure 4.5). Firstly, in an ongoing model, a usage that is requested is per-

mitted to be activated without the evaluation of any policy rule. Secondly, at a given time

interval 4, an ongoing action onEvaluate is executed. Thus, the specification of the Next

action on an ongoing authorization model has the following semantics:

Next , Request ∨Activate∨onEvaluate∨Complete

The Activate action searches for the existence of a use with state attribute value equal

to"requested" and consequently updates it to "activated" by executing the preUpdate proce-

4The determination of the exact interval is left open as an implementation issue

4.3 Specification of UseCON in TLA+ 65

dure.

Activate, ∃u ∈U : (∧ u.state = ”requested”

∧U ′ = ({U \{u})∪{preU pdate(u)})

Whereas onEvaluate action evaluates an ongoing policy rule and based on this result it

either leaves use to "activate" state, but it can possibly update the rest use attribute values

with onUpdate procedure, or modify its state attribute value to "stopped" with termUpdate

use attribute update procedure as follows:

onEvaluate, ∃u ∈U : (∧ u.state = ”activated”

∧ IF(PolicyRule)T HEN

U ′ = ({U \{u})∪{onU pdate(u)}

ELSE

U ′ = ({U \{u})∪{stopU pdate(u)})

Moreover, in the case where there is no need for an ongoing use attribute update procedure,

the onUpdate procedure can be substituted with the UNCHANGED U TLA+ operator that

leaves the variable U unmodified.

The semantics of Request and Complete actions are the same with the pre-authorization

model. Moreover, the transition system of an ongoing UseCON system with two usages

that are operating concurrently is depicted in Figure 4.6. For figure simplicity reasons it is

assumed that the policy rule is always valid so there is no usage that is terminated by the

system.

4.4 Example of a policy specification 66

Fig. 4.7 Transition system of a multiple usage ongoing authorization UseCON model

4.4 Example of a policy specification

The development of an access/usage control system is a multi-layer process that results in

the definition of an access/usage control policy, model and mechanism (Samarati and Vimer-

cati, 2001a). A policy declares the high level directives that regulate access to resources,

while the model is a formal representation of the system. Moreover, the mechanism defines

the low-level hardware and software functions that implement the desired policy. UseCON

is a general purpose usage control model that is capable of supporting a wide range of high

level policies (Grompanopoulos et al., 2013). However, for the implementation of a specific

high-level policy through UseCON, the specification of policy rules and use attribute value

update procedures is required. Policy rules are required because they are responsible for

getting a decision regarding a usage allowance. Additionally, attribute value update proce-

dures indirectly determine a usage decision, and consequently the policy. This is feasible by

mutating the attribute values utilized by policy rules. A motivating scenario that presents a

high level usage control policy follows:

4.4 Example of a policy specification 67

Usage Scenario 8 An educational institute provides to its members a number of compu-

tational resources to utilize. A resource’s usage can be categorized to either academic or

personal. In order to provide the desired Quality of Service (QoS), the institute defines a

high level policy stating that an upper bound applies on the number of simultaneous usages

per resource.

A number of usage revoking strategies can be implemented, when the upper limit of

simultaneous usage on a resource is reached. For instance, a possible strategy could state

that "academic" oriented usages should override "personal" usages on the same resource.

Another strategy, motivated by "social fairness", could require revoking the usage requested

by the subject that occupies the greatest number of resources in the system.

The implementation of the aforementioned strategies, using a pre-authorization UseCON

model, requires that whenever a usage on a resource is requested, it must be checked if the

total number of usages performed on this resource has reached out to a maximum number.

Therefore, if the number of usages reaches out the maximum number then a revoke-usage

strategy is applied. This, results in revoking either the requested or the already activated

usages. If not, the requested usage is promptly activated. A specification in TLA+ that

implements the aforementioned operations follows:

4.4 Example of a policy specification 68

preEvaluate, ∃u ∈U : (

∧ u.state = ”requested”

∧ ∨ (∧NumO fUsonOb ject(u) ̸= MAXLIMIT −1

∧ U ′ = (U \{u})∪{preU pdate(u)})

∨ (∧NumO fUsonOb ject(u) = MAXLIMIT −1

∧ LET act ,CHOOSE x ∈U : SameOb jectAct(x,u) IN

IF (Policy_Rule(act,u))

T HEN

U ′ = (U \{u})∪{termU pdate(u)}

ELSE

U ′ = (U \{u})∪{preU pdate(u), termU pdate(act)})

where NumOfUsonObejct returns the number of concurrent usages on the resource that

usage u requests and it is defined as:

NumO fUsonOb ject(x),Cardinality(u ∈U : x.oid = u.oid)

and SameObjectAct declares the set of activated usages 5 on the same resource with the

requested usage and is defined as:

SameOb jectAct(x,y), x.oid = y.oid ∧ x.st = ”activated”

5For reasons of simplicity and limitations in the software that performs verification of TLA+ specifications,
we use a single entity set instead of a SameObjectAct.

4.4 Example of a policy specification 69

Fig. 4.8 Examples of usage-revoking strategies

In Figure 4.8 we depict two possible running instances of the usage scenario analyzing

the operation of usage-revoking. The high-level policy defines an upper limit of two simul-

taneous usages for every object in a system. In Figure 4.8, a violation of high-level policy

exists regarding object 3. By utilizing the first revoking method, a usage requested from

subject 2 will be terminated due to the fact that it is requested by an action that has a lower

priority (i.e., a2). However, by utilizing the second revocation method, a usage requested

from subject 1 will be terminated due to the fact that subject 1 utilizes the largest number in

resources in the system.

The revoke-usage strategy is defined with an appropriate Policy rule presented in the

following next two subsections.

Prioritizing actions

In this usage revoking method actions are organized hierarchically. Therefore, a greater

arithmetic value in the attribute of an action, compared with another action, defines a se-

4.4 Example of a policy specification 70

niority relation between them (i.e., the former action is senior to the latter action). When-

ever the maximum number of usages on a resource is reached out, the most "junior" usage

action in the hierarchy is revoked. The operation of the usage-revoke method entitled pri-

oritizing actions is depicted on the left side of Figure 4.8 where usage from s2 is revoked

because it encompasses an action with lower priority a2. The semantics of the Policy rule

that determines which usage must be revoked follows:

Policy_Rule(x,y), SelectAction(x).att > SelectAction(y).att

where SelectAction returns the action that a specific usage exercises. The determination of

the specific action is accomplishment through the utilization of the identity attribute value

and it is defined as

SelectAction(x),CHOOSE a ∈ A : a.id = x.aid

It is worthy to mention that the above revoke-usage strategy is static since the deci-

sion regarding which usage to revoke between two usage is always the same. Thus, the

aforementioned decision is independent from the usages that has already been requested or

executed in the system.

Equal distribution of resources to subjects

The revoke-usage strategy that supports an equal distribution of resources to the users will,

at first, determine the set of subjects that use or request the object that violates the high level

policy. In turn, it will revoke the usage that is related with the subject having the greatest

number of "activated" resources usages. The operation of the usage-revoke method entitled

4.5 Chapter summary 71

equal distribution of resources is depicted on the right side of Figure 4.8 where usage from

s1 is revoked because s1 occupies the greatest number of objects in the system. The Policy

rule that implements this revoke-usage strategy follows:

Policy_Rule(x,y), Numo fUses(SelectSub j(x))> Numo fUses(SelectSub j(y))

where NumofUses(x) calculates the number of usages that the direct subject of usage x

currently occupies and it is defined as:

Numo fUses(x),Cardinality({u ∈U : u.oid = x.oid})

and SelectSubj(x) returns the direct subject from the usage x and it is defined as:

SelectSub j(x),CHOOSE s ∈ S : s.id = x.sid

The aforementioned revoke-usage strategy is characterized as dynamic since the decision

regarding which usage to revoke between two usages, is not always the same. Specifically,

the usage revoke decision is based on the number of activated usages of each subject which

cannot be predetermined a priori but only during runtime.

4.5 Chapter summary

An access control is proposed in this chapter for ODCE. To meet the requirements posed

by ODCE, the proposed UseCON model incorporates a number of significant features com-

pared with existing access/usage control models. Firstly, UseCONs extended expressive-

ness over the existing usage control models is the result of utilizing information originating

4.5 Chapter summary 72

from either a single or a set of both direct and indirect entities in the creation of the usage

allowance decision. Secondly, UseCON inherently supports the utilization of historical in-

formation of usages through the automatic management of use entities; Moreover, a strict

formal model of UseCON is presented in TLA+ that supports the concurrent operation of

multiple usages. Lastly, through an example, we demonstrated how to specify policies in

the TLA+.

Chapter 5

Evaluation

5.1 Introduction

This chapter elaborates on information regarding the evaluation of the proposed UseCON

model. Specifically, Section 5.2 highlights the novel characteristics of the proposed UseCON

model which are stemmed from its design decisions. Moreover, in Section 5.3 we present

the definition of the properties that should be verified in order to prove the correctness of

both the UseCON model and, furthermore, of an example policy that was prior presented in

Chapter 4.

5.2 Model characteristics

The UseCON model enhances UCON’s fundamental design guidelines as continuity of de-

cision and attribute based usage control. This is done by introducing a number of innovative

modeling decisions. Specifically, UseCON directly associates entities with contextual infor-

mation and also replaces UCON’s rights with actions which are enhanced with attributes.

Moreover, UseCON utilizes for the usage decision information originating from both di-

5.2 Model characteristics 74

rect and indirect entities. The aforementioned design decisions in combination with the

augmented utilization of historical information, which is supported through uses, results in

enhanced capabilities, as demonstrated in the following examples.

5.2.1 Abstraction of actions

In UCON, rights correspond to permissions for subjects to execute usage functions on ob-

jects. However, rights are not described with attributes. The replacement of UCON’s simple

rights with UseCON’s actions described by attributes, provides enhanced capabilities, as

follows.

Simplifying the administration of policy rules.

A UCON policy rule governs the allowance either for a specific right or all rights. Thus,

every time a new right is introduced in the security system, the policy administrator should

most likely create a corresponding policy rule that permits its usage. However, in a com-

puting environment that encompasses a great number of rights, policy administration is

becoming a complicated process. In UseCON, the description of actions by attributes pro-

vides the policy administrator with the capability to govern the allowance of a set of actions

by a single policy rule, as presented in the following example.

Example 1 A company that offers location discovery services provides the capability to its

customers to require the location of an object. A customer, according to his classification,

can request the location of an object with a desired accuracy level. For example, members

of the “golden” category might request the location of an object with an accuracy expressed

in meters, while regular users are able to request the location of an object in kilometers.

Modeling example 1 in UCON requires the creation of a unique right entity for each

accuracy level of the location discovery service. Moreover, the policy administrator must

5.2 Model characteristics 75

create an additional policy rule (authorization, condition or obligation) that governs the

allowance of the particular right’s request. Hence, it is impossible with UCON modeling to

create a policy rule that governs the allowance of a subset of rights e.g. rights that model

location discovery services.

However, the replacement of UCON rights with UseCON actions associated with at-

tributes provides the capability to model the relation that possibly exists between actions.

More specifically, in example 1, every action is associated with an attribute, named type.

Actions that refer to location discovery services have a unique type attribute value e.g. "Loc-

Service". Thus, by utilizing the value of type, a policy rule is able to govern the allowance

of all the actions that represent location discovery services.

The UseCON modeling in example 1, results into the following policy rules rules:

accuracy : A →W Location accuracy level supported by the service

category : S →C Customer’s category. “Premium” or “Regular”

type : A → T Type of service. “LocService” for location discovery

allowed(s,o,a)⇒ type(a) = “LocService” ∧ category(s) = “premium”

allowed(s,o,a)⇒ type(a) = “LocService” ∧ category(s) = “regular”

∧accuracy(s) = “kilometers”

The first policy rule governs the allowance of two actions (location discovery service with

accuracy level of kilometers and location discovery service with accuracy level of meters).

The additional accuracy attribute utilized in the second policy rule represents the accuracy

level of the location discovery service e.g. "kilometers" or "meters".

5.2 Model characteristics 76

Fig. 5.1 Sequence of messages for action negotiation

Negotiating action parameters.

The utilization of action’s attributes in UseCON does not only simplify the policy adminis-

tration process, as mentioned previously, but also provides enhanced capabilities for nego-

tiating the action parameters of a usage request.

In UCON, a subject is able to request the usage of a specific right but it is not possible to

request a "generic" right, e.g. the location of an object without specifying particular accu-

racy requirements. However, the utilization of the attribute type, as introduced in UseCON

modeling of example 1, is further able to provide to subjects the capability to request the

execution of a usage by only specifying the type of the action. Therefore, the subject of

example 1 may request the execution of any action that contains the value “LocService”

in the type attribute. When the UseCON decision creation engine receives such a request,

it evaluates the policy rules that govern the allowance of actions with the specific value in

the attribute type. Consequently, the usage control system does not respond with a simple

allow or deny message, but with a list containing all the suggested actions that the subject

is permitted to exercise. Thus, if the returned list is not empty, the subject can select the

action that satisfies her needs and send a new request. The sequence of messages exchanged

between the subject and the UseCON usage decision engine is depicted in Figure 5.1.

5.2 Model characteristics 77

Supporting Action Hierarchies.

Relevant actions can participate in an action hierarchy. An example of action hierarchy in a

hospital sector is presented in (Park and Sandhu, 2004) where an action "a doctor writes a

remedy on a patient’s record" is considered to be senior to the action "a doctor simply reads

the patient’s medical history". The hierarchy of actions depends on the security policy of

the particular usage control system. However, the policy rule for a senior action dominates

on the policy rules for all its junior actions. A more detailed example is the following:

Example 2 The security policy of a hospital defines that only doctors can read the medical

history of a patient. However, altering a patient medical record is permitted only to doctors

that have the same specialty with the category of the patient’s illness.

As UCON rights are not described with attributes, it seems impossible to model the

relations between them and form a hierarchy. In UseCON, however, the classification of

actions is possible through the utilization of action attributes. Consequently, both the policy

administrator and the usage control mechanism are able to utilize such hierarchy information

in order to enhance the expressiveness of the policy rules and to simplify the usage decision

creation process, respectively. For example, whenever a subject requests the usage of two

directly related actions, a proper usage control mechanism should evaluate only the policy

rule that permits the senior action in the action hierarchy. In addition, in UseCON modeling

of example 2, the policy administrator is capable of creating a rule that permits the execution

of a read action on a medical record of a patient (a junior action), by examining if the

requesting subject has previously exercised a write action on the medical record of any

patient (a senior action). The modeling of example 2 with the use of a policy rule follows:

snr : A → 2A The set that contains the ids of the senior actions

5.2 Model characteristics 78

allowed(s,o,a)⇒| {u′ ∈U : status(u′) = “completed” ∧ sid(u′) = id(s)∧

oid(u′) = id(o)∧aid(u′) ∈ snr(a)} |≥ 1

5.2.2 Utilization of usage information

The introduction of the use entity in UseCON provides new capabilities to the policy ad-

ministrator. The utilization of use entities along with their attributes values provides the

capability for enhanced utilization of historical information of usages and proper associa-

tion of information to the system entities, as it is presented in the following examples.

Supporting Transactions.

Some properties are not related with a single entity (subject or object), but with a com-

bination of them. For example, an object attribute in UCON is associating information

originating either directly from the object or from the right - object combination e.g. the

price of the service (Park and Sandhu, 2004). Thus, if different rights can be exercised

on an object, a separate price attribute for every one of these rights should be created. In

addition, a detailed analysis unveils that the price of a service is actually associating infor-

mation originating form the subject - object - right combination. More specifically, different

customers may be charged with different prices for the execution of the same right on the

same object. Therefore, the association of properties in a usage control system either with a

single entity or with a usage is proposed. The former kind of information is associated with

the related entity attributes while the latter with the corresponding use attributes.

While the values of entity attributes are set by an administrative operation, the creation

of use entities and their corresponding attribute values are not predetermined but they are

accomplished during the operation of the usage control system. More specifically, a subject

entity and its attribute values are determined before the execution of any usage. However, a

use entity and its attribute values are created only when a subject requests the correspond-

5.2 Model characteristics 79

ing usage. The values of use attributes should be assigned with rules that are application

dependent and utilize the attribute values of the other entities participating in the usage. An

example of information that is associated with use attributes is related to transactions. A

transaction is a complicated system process that is composed from a set of particular sys-

tem usages. In the UseCON model, every usage is modeled through a use entity that is

associated with a transaction attribute. Uses that belong to the same transaction can share

the same value of the transaction attribute. By utilizing proper values of use attributes, the

policy administrator is able to define usage control rules with enhanced expressiveness. An

example of the transaction attribute utilization in the creation of the usage decision follows.

Example 3 In an accounting office the whole set of usages that update the files of a specific

customer are forming a transaction. All these usages can be performed by a number of

different employees and may concern a number of different files. However, because all

these usages belong to the same transaction, they should be covered with the same privacy

statement executed once by a single employee.

In the following policy rule that models example 3 in UseCON, the execution of a con-

sent action by any usage of the transaction is examined:

tr : U → T The name of the transaction where the usage belongs to

allowed(s,o,a)⇒| {u′ ∈U : status(u′) = “completed” ∧ tr(u′) = tr(u)∧

aid(u′) = “consent”} |≥ 1

Enhanced utilization of historical usage information.

Attribute mutability in UCON presents a number of limitations. For example, an attribute

update procedure is executed only after the allowance of a requested usage. Thus, the denied

5.2 Model characteristics 80

usage requests are not recorded and information regarding such facts is not utilized for

subsequent usage decisions. In addition, in an UCON ongoing rule, the same attribute

update procedures will be executed if either the usage has been terminated by the subject

or revoked by the usage control system, due to the ongoing rule violation. Consequently,

UCON is incapable to discriminate the usages terminated by the subject from those revoked

by the usage control system.

The UseCON model provides with comprehensive knowledge about the previous system

usages through the utilization of the use entity. More specifically, the state attribute of a

use entity provides the ability to discriminate between requested, active, denied, revoked

and terminated usages. Such information can be utilized for future usage decisions. An

example, where information about previously revoked usages is used for the creation of the

usage control decision follows.

Example 4 In a Digital Rights Management (DRM) system there is an upper bound limit

on the number of simultaneous usages of an object by subjects. Whenever the maximum

number of usages of an object is exceeded, several revocation strategies can be applied

(Park and Sandhu, 2004). However, as a mean of policy fairness, the execution of a usage

that has been previously revoked by the system is freely permitted without the evaluation of

additional policy rules.

The corresponding policy rule that implements the policy described in example 4 fol-

lows:

allowed(s,o,a)⇒| {u′ ∈U : status(u′) = "revoked" ∧ sid(u′) = sid(u)∧

aid(u′) = aid(u) ∧ oid(u′) = oid(u)} |≥ 1

5.3 Model properties 81

5.3 Model properties

The UseCON model is considered to be a general-purpose, policy-neutral usage control

model that is capable of supporting a wide range of policies. However, one of the distin-

guishing characteristics of UseCON is its capability to inherently support historical infor-

mation of usages during the usage decision making process through its internal use manage-

ment process. Therefore, in this section, we define a number of properties that must hold

in order to assure the correct operation of the use management process. Moreover, we also

define a number of properties for an example of a policy specification that was presented

in Section 4.4. In the latter case, we verify the correct operation of the UseCON model

regarding a defined high level policy.

5.3.1 Use management

One of the fundamental properties that can be verified in a system is that of type correctness.

Specifically, type correctness is considered to be an invariant which determines that all the

variables of the system are assigned with values originating only from a specific set of

values. The UseCON specification uses a single variable U which corresponds to the set of

system uses. The invariant property that defines type correctness in the UseCON model, is

defined as follows:

TypeCorrectness,U ⊆Uses

5.3 Model properties 82

where Uses is the set of all records that have the following form (i.e., all the record fields

are assigned with values originating from their domains):

Uses,[s.id : Sub jectIDS,o.id : Ob jectIDS,a.id : ActionIDS,st : USTAT E,att : AT T DOMAIN]

moreover, the definition of the domains Sub jectIDS,Ob jectIDs,ActionIDs and USTAT E

is:

Sub jectIDs, {s.id : s ∈ S}

Ob jectIDs, {o.id : o ∈ O}

ActionIDs, {a.id : a ∈ A}

USTAT E , {requested, activated, denied, stopped, completed}

A use is capable of recording detailed historical information about the operation of us-

ages in the system. Consequently, a valid implementation of the UseCON model, where

multiple usage processes are operating concurrently, depends on a proper management of

the use instances that represent these usages. Specifically, all use instances must adhere

only to the state transitions depicted in Figure 4.4 for pre-authorizations or Figure 4.5 for

ongoing authorizations. Based on the previous observation, a number of safety and liveness

properties can be defined. For example, a safety (nothing bad happens) property states that

if a use instance has at any given state the value of "completed" in the st attribute, then it

must be impossible for the same use instance to have the attribute value of "requested" in

the st attribute, in a subsequent state. The semantics, expressed in TLA+, which verify the

previous property for all the uses of a system are defined by the following temporal formula:

5.3 Model properties 83

Fig. 5.2 Violation of safety properties

Sa f ety, ∀u ∈U : u.st = "completed" u.st ̸= "requested"

Analogous safety properties can be defined for all the possible prohibited state transi-

tions. The complete set of prohibited state transitions is depicted in Table 5.1 under the

header "safety". Moreover, two examples that illustrate the violation of safety properties

are depicted in Figure 5.2. Specifically, the transition of the use instance u1 from the state

having in the st attribute the value of "completed" into the state having in the st attribute

the value of "requested" results in a violation of the a safety property. A similar violation is

considered during the transition of the use instance u2 from the state of "activated" into that

of "requested".

In addition, the definition of liveness properties in the UseCON model determine all the

valid state transitions regarding any use instance. For example, Figure 4.4 presents that a use

instance that has at any given state an st attribute value that is evaluated to "activated" must

be followed by an attribute value equal to "completed" in a subsequent state. The TLA+

5.3 Model properties 84

Table 5.1 Safety and liveness properties in UseCON

semantics for defining this property can be defined as follows:

Liveness, ∀u ∈U : u.st = "activated" u.st = "completed"

All the possible state transitions that are eligible to be performed are depicted in Table

5.1 under the header "Liveness".

5.3.2 An example policy

The high level policy described in the usage scenario in subsection 4.4 sets a limit to the per-

mitted maximum concurrent "activated" usages for every object in a system. Consequently,

this policy can be verified with an invariant in TLA+, as follows:

HighPolicy, ∀u ∈U : Numo f ActonOb ject(u)<= MAXLIMIT

5.3 Model properties 85

where NumofActonObject(u) returns the number of the usages that are activated on the same

object with usage u and it is defined as:

Numo f ActonOb ject(x),Cardinality({u ∈U : ∧u.oid = x.oid

∧ x.st = ”activated})

The aforementioned high level policy is implemented by two usage revoking methods.

The first usage-revoke method utilizes the attribute value of actions in order to categorize

usages. Specifically, between two usages the one with the highest action entity value is

characterized as "high" level and the other as "low" level. Consequently, in case that there is

a policy violation on an object, the usage with the "low" level should be stopped. However,

due to the non-determinism imposed by concurrent systems, whenever a "low" level usage

(v1) is activated on an object and a "high" level usage (v2) requests to operate on the same

object, it is impossible to know if the next action will be a completed action for v1 or an

activated action for v2. Therefore, in the first case v1 will be terminated by subject, while

in the second case v1 will be stopped by the usage control system. The previous property

can be defined in TLA+ using a temporal formula, as follows:

∀v1,v2 ∈U : ((∧ (v1.oid = v2.oid ∧Policy_Rule(v1,v2))

∧ (v1.st = ”activated”∧ v2.st = ”requested”))

(∨ (v1.st = ”completed”∧ v2.st = ”requested”)

∨ (v1.st = ”stopped”∧ v2.st = ”activated”)))

where Policy_Rule categorizes usages v1, v2 to "high" and "low" level, respectively. The

same property can be utilized for the verification of the second usage-revoke method. The

only difference between the two property definition is that the second usage-revoke method

5.4 Chapter summary 86

is the Policy_Rule which now should evaluate the number of activated usages as it is de-

scribed in subsection 4.4.

5.4 Chapter summary

In this chapter, we presented the unique characteristics of the UseCON model. Moreover,

having a formal specification of the UseCON model in TLA+, we defined a set of properties

that fall under the categories of type consistency, safety and liveness. These properties have

been defined for both the correct operation of use management performed by the internal

operations of UseCON, and therefore, can be checked for their correctness i.e, the adherence

to the initially defined requirements of the UseCON model. In addition, we defined a set

of properties in order to verify the correct enforcement of the policy example presented in

Chapter 4 according to the UseCON model.

Chapter 6

Formal verification

6.1 Introduction

The application of model checking as a formal verification method has as an advantage the

existence of a variety of model checking software tools that eliminates the requirement for

the development of a specialized tool for the verification of the defined properties. There-

fore, in this chapter, we provide information regarding the verification of the properties

defined in Chapter 5 using the TLA+ model checker (TLC) software, which is included in

the TLA+ Toolbox (toolbox). Toolbox is an Integrated Development Environment (IDE),

designed for the definition and verification of TLA+ specifications, which includes a set of

integrated TLA+ Tools (TLA, 2013). Thereafter, this chapter continues in Section 6.2 with

the presentation of toolbox fundamentals along with the implementation details for the veri-

fication of both the use management and of the policy example properties that were defined

in Chapter 5. Moreover, Section 6.3 elaborates on information regarding the verification

results provided by the TLC model checker.

6.2 Model checking with TLC 88

6.2 Model checking with TLC

Toolbox is an Integrated Development Environment (IDE), which is designed for the defi-

nition and verification of TLA+ specifications (TLA, 2013). Specifically, the toolbox editor

provides functionality for the definition and alteration of TLA+ specifications, and supports

syntax highlighting. Additionally, an automatic parser checks the defined specifications for

syntax errors and presents them accordingly by marking them in the used modules. The

toolbox IDE also supports printing of specifications in a pretty form via the pretty-printer

tool.

The tool responsible for the verification of a TLA+ specification in toolbox is the TLC

model checker. In particular, TLC explicitly generates and computes all the possible states

of a system. However, many times the specification of a system might contain an infinite

number of states. TLC handles such specifications, by choosing a finite model of the system

and in turn checks it thoroughly. Specifically, the creation of a system’s model in TLC

requires the definition of its specifications, properties and values of constant parameters

(TLA, 2014). A specification represents all the behaviors that have to be checked. Moreover,

the values assigned to constant parameters are utilized for the instantiation of a specification.

TLC can check a model for deadlocks, invariants and properties (TLA, 2014). A deadlock is

occurred when the model reaches to a state in which its next-state action allows no successor

states. However, a deadlock is not considered always to be an undesirable property since

in some systems is considered to be a desired termination property. An invariant is a state

predicate as it is described in Section 2.5. Invariants are evaluated to true if they are valid

for all the reachable states of the system. Properties are temporal formulas that must be

evaluated to true for all the behaviors of the model. TLC has some limitations regarding

the handling of a subclass of TLA+ specifications and properties that it can check like the

incapability to support the action composition operator (Lamport, 2002). A very helpful

6.2 Model checking with TLC 89

feature of TLC is the fact that for all cases it identifies an error during the verification

process, TLC provides an error trace viewer that allows the exploration in a structured view

of the debugging information. Moreover, TLC supports an arbitrary evaluation of states and

action formulas in each step of a trace.

6.2.1 Use management

The TLC model checker requires for the process of model checking defining the specifica-

tion of the model and the properties to be verified. However, in order to define a model in

TLC, e.g. the model of UseCON, it is required to declare the model’s specification along

with the values of constant parameters. The constant parameters of the UseCON model con-

sist of records assigned with values using a TLA+ specification. An example of the TLA+

specification that declares subject entities of the UseCON model follows:

s1, [id 7→ 1,att 7→ 10]

s2, [id 7→ 2,att 7→ 20]

s3, [id 7→ 3,att 7→ 30]

where, three subjects (s1,s2,s3) are declared to have each of them an identification attribute

(id), assigned with a unique value, and a single generic attribute (att) assigned with a con-

stant value. In a similar way, we can declare both action and object entities.

Another requirement for the complete specification of the UseCON model, is the def-

inition of the policy rules that govern the allowance of a usage request. The specification

contains three types of policy rules. The first policy rule allows the operation of any re-

quested usage. The second policy rule decides randomly the operation of a usage request

6.2 Model checking with TLC 90

based on the TLA+ function RandomElement. The third policy rule decides the operation

of a requested usage, only if the value of the subject attribute is less than the value of the

object attribute. The semantics of the aforementioned policy rules, follows:

1)Policy_Rule1(x,y), T RUE

2)Policy_Rule2(x,y), RandomElement({T RUE,FALSE})

3)Policy_Rule3(x,y), SelectSub ject(x).att < SelectOb ject(x).att

SelectSub ject ,CHOOSE s ∈ S : s.id = x

SelectOb ject ,CHOOSE o ∈ O : o.id = x

The last requirement for the operation of the model checking process with TLC is that

of defining the properties to be examined. The first property is that of the TypeCorrectness

invariant as it is described in subsection 5.3.1. Furthermore, all the safety and liveness

properties are declared, as these are presented in Table 5.1. Due to limitations of the TLC

model checker, the safety and liveness properties are declared for every usage separately,

(e.g., the usage 1 is related to object o1, subject s1 and action a1). The semantics of the

safety and liveness properties, of e.g. usage 1, follows:

Liveness1,(useRequested ∈U)

((useCompleted ∈U)∨ (useDenied ∈U))

Sa f ety1,(useCompleted ∈U) (useRequested /∈U)

6.2 Model checking with TLC 91

where useRequested denotes the usage request of the tuple < s1,a1,o1 > with semantics as

follows:

useRequested , createUse(<< s1,a1,o1 >>)

In an analogous manner the semantics of useDenied, useActivated, useStopped, useCom-

pleted, follows:

useActivated , preU pdate(useRequested)

useDenied , denU pdate(useRequested)

useCompleted , comU pdate(useRequested)

useStopped , stopU pdate(useRequested)

The declaration of the pre UseCON model in TLC is depicted in figure 6.1. The name

of the specification is Spec and there is no additional declaration of the constant parame-

ters since they have already been declared in the specification (see Appendix). The Type-

Correctness invariant is checked along with the Liveness and Safety properties for every

usage. Moreover, the specification is not checked for deadlock (the explanation for the

deadlock verification avoidance is explained in subsection 6.3). The declaration of the on-

going UseCON model in TLC is analogous since it utilizes the same constant parameters

and requires the declaration of analogous properties. The verification results of both pre and

ongoing UseCON model are presented in subsection 6.3

6.2.2 An example policy

Analogous definitions for the specification, constant parameters and verified properties are

required to perform the model checking process for the policy example presented in sub-

section 4.4. However, the constant parameters are the same as in the use management case,

6.2 Model checking with TLC 92

Fig. 6.1 Model declaration in TLC

6.2 Model checking with TLC 93

and therefore, they are not presented. Moreover, the Type Correctness invariant is also the

same as the use management since it is a generic property in any UseCON implementation.

Additionally, a new property that is valid for the policy example is that of High Policy prop-

erty, which verifies that every resource of the system has a maximum number of concurrent

"activated" usages with the following semantics:

HighPolicy, ∀u ∈U : Numo f ActonOb j ≤ 1

where the semantics of NumofActonObj are described in subsection 5.3. We adopt one as the

maximum number of usages due to the restriction imposed by the state explosion problem

as it is described in the following subsection 6.3.

Another property declared in the application example is the correct operation of the

usage revoking method as it is described in subsection 5.3. The semantics of this property

for the first usage revoke method, follows:

RevokePolicy,(useActivated(u1) ∈U ∧useRequested(u2) ∈U)

((useStopped(u1) ∈U ∧useActivated(u2) ∈U)∨

(useCompleted(u1) ∈U ∧useActivated(u2) ∈U))

since it is known a priori that usage u2 has a higher priority than that of usage u1. However,

the definition of the second usage revoke method requires the evaluation of the policy rule

to verify the priority among usages. Consequently, the semantics of the property related to

the second revoking method, is defined as follows:

6.3 Discussion 94

RevokePolicy,

(useActivated(u1) ∈U ∧useRequested(u2) ∈U ∧Policy_Rule(u1,u2))

((useStopped(u1) ∈U ∧useActivated(u2) ∈U)∨

(useCompleted(u1) ∈U ∧useActivated(u2) ∈U))

It is worth mentioning that the verification of the second revoke policy property can be

applied only on usages u1 and u2. The aforementioned restriction is implied due to the non-

determenistic nature of the model. Specifically, it is not ensured that, after the evaluation of

the first policy Rule, a new request of a third u3 usage would not be able to alter the outcome

of the Policy Rule in a future state.

6.3 Discussion

The model checking verification was conducted in a platform with the following techni-

cal characteristics: 3rd generation 2GHz Intel i7 CPU, 8 GByte of RAM, and using the

Windows 8.1 Professional (64bit version) operating system. TLC’s version was 2.05.

The first verification results conducted from testing the deadlock property in the UseCON

system. Specifically, for the pre authorization UseCON model, we considered all the usages

of the model to be requested, and therefore, be in the state of "activated" or "denied". The

usages being activated were finally completed. Therefore, the final state in every usage

must be "denied" or "completed". The TLC model checker evaluates all the behaviors of

the model and terminates when it reaches to a deadlock. Moreover, the actions of the dead-

locked behavior are presented together with the attribute values in each state. Figure 6.2

depicts the results of a deadlock behavior with the values of variable U in the bottom. No-

6.3 Discussion 95

Fig. 6.2 Deadlock violation results in TLC

tice that every usage state is "completed" or "denied".

Moreover, we performed a verification test on the same model but without checking the

deadlock property. The verification was finalized without presenting any errors. The same

process repeated for all the defined policy rules. The results are depicted in figure 6.3.

The analysis of the verification results require to know the internal procedures that TLC

is making use in order to compute all the possible behaviors of the model (i.e., creation

of the transition system). Initially, TLC computes the states that verifies the Init predicate

and inserts them into a set G. For every state s ∈ G TLC computes all the possible states

t that s 7→ t can be a step in a behavior. Specifically, TLC substitutes the values assigned

to variables by state s for the unprimed variables of the Next action, and then it computes

all the possible assignment of values to the primed variables that makes the Next action

6.3 Discussion 96

Fig. 6.3 Verification results in TLC

true. For every state t found by the former procedure it is added to set G if it is does not

already exists. The previous two actions are repeated until no new states can be added in G.

Therefore, the verification results produced by TLC, are the following:

• Diameter: The number of states in the longest path of G in which no state appears

twice

• States Found: The number of states examined.

• Distinct States: The number of distinct states examined.

The verification results produced by TLC for the pre and ongoing UseCON models are

presented in table 6.1. An additional column presents the actual running time of the TLC

model checker presented in seconds.

6.3 Discussion 97

Table 6.1 Verification results for UseCON models

The application of the model checking technique in this dissertation provided a formal

verification of the properties for both the use management of the UseCON model along

with the policy example. Even, the trace of the deadlock “error” verifies that the defined

specification of the system operates in a correct manner. One of the advantages of using

model checking techniques for the verification of models is that it is able to provide proofs

of correctness without requiring an implementation of the model. On the other side, a dis-

advantage of applying model checking is that it is prone to the state explosion problem.

Specifically, in our case, the verification of the defined properties is time consuming when

it is required to verify more than 8 usages in the UseCON model. This was also depicted

in Table 6.1. However since we have checked the correctness of the model for less than

8 usages in combination with the fact that an addition of a usage does not affect the spec-

ification of the model leads to the conclusion that the properties are also valid in models

using any number of usages. Moreover, problems were also originated by limitations of

the model checking software (e.g., it is impossible to define a property that includes both

the forall ∀ and a temporal operator). Another issue that we identified is the verification of

ongoing policy rules. Specifically, a usage request might lead to a violation of the policy

6.4 Chapter summary 98

rule in another usage. Consequently, any usage request should be followed by an evalua-

tion of the policy rules for all the usages in the system. Finally, we conclude that the area

of verifying ongoing models is challenging because of non-determinism regarding ongoing

system actions and might be an area for further examination.

6.4 Chapter summary

In this chapter, we shortly presented the TLA+ Toolbox that we used as an IDE for the

verification of the properties specified in Chapter 5 using the TLC model checker. In turn,

we provided information on the declaration of models in TLC as well as a series of perfor-

mance metrics. Furthermore, we elaborated in the internal procedures of the TCL model

checker. Therefore, we have proved the adherence of the defined model to the initially

defined requirements using an error-free model checking technique.

Chapter 7

Conclusions

In this dissertation, we have investigated access control in the context of ODCE. In par-

ticular, introductory information and related work are presented in Chapters 1-2. Chapter

3, provided an analysis of ODCE that eventually led as to the identification of the access

control requirements in that type of computing environments. In Chapter 4, we proposed

our new attribute based usage control approach for ODCE along with the definition of a pol-

icy example specification. An evaluation of the proposed model in terms of the presented

characteristics and properties are presented in Chapter 5. In Chapter 6, we elaborated on the

verification of the proposed model and the presented policy example using a model check-

ing technique, and a discussion of the results. In this last chapter, we shortly summarize the

contributions of this dissertation and we outline some topics left for future work.

7.1 Summary of the contributions

The summary of the contributions of this dissertation are the following:

A detailed study of the access control requirements of access control in ODCE is pre-

sented through motivating scenarios and related literature. Specifically, support of partially

7.1 Summary of the contributions 100

unknown users, cooperation among heterogeneous entities, utilization of contextual infor-

mation, protection of privacy, ease of administration, resource constrained operations and

adaptation on operational changes are recognized as essential access control requirements in

ODCE. Moreover, a number of challenging issues, which are faced when UCON is applied

in ODCE, are highlighted through the utilization of representative usage scenarios. The

results of this study are revealing various limitations in contextual information handling,

lack to support complicated usage modes of subjects on objects, and weaknesses in utilizing

information concerning previous or current usages of system resources. Moreover,

Based on the requirements recognized in the previous step, a new Use-based usage

CONtrol (UseCON) approach that supports recording of usages with the help of a new

entity, entitled use, is presented. The proposed approach provides enhanced contextual in-

formation modeling, support of complicated access modes and an alternative approach in

obligations modeling.

The UseCON model is characterized by extended expressiveness when compared with

existing approaches. Specifically, when it comes in decision making, the UseCON model

can use information from both direct and indirect entities. Furthermore, decision making in

UseCON can be based also on information regarding a subset of entities (i.e., cardinality or

sum of properties). Another design decision that enhances the expressiveness of UseCON

stems from the fact that it is able to use detailed historical information from usages (e.g.,

usages that have been rejected) in contrast with existing solutions (e.g., UCON). This results

in the description of policies that cannot be supported by current access control approaches.

Moreover, in UseCON the substitution of UCON rights with actions described with

attributes leads to the support of new capabilities as the ease of policy management and the

negotiation of action parameters (see subsection 5.2.1).

The utilization of historical usage information is inherently supported by UseCON and

not through an attribute mutability mechanism as in the UCON model. Consequently, the

7.2 Future work 101

policy administrator can use historical information for the decision making process without

requiring any further actions. This leads to the fact that the definition of policies in UseCON

is simpler that in other approaches and even closer to the natural language.

Finally, we presented a formal specification of the UseCON model in TLA+ and pro-

vided a sound and solid formal definition of the internal actions performed by the model.

The proposed formal model is characterized by remarkable clarity stemmed from its initial

design decisions. In addition, formal model of UseCON it is capable to support the concur-

rent operation of multiple usages along with the utilization of information originating from

indirect entities.

The presented UseCON model was evaluated not only in terms of the presented char-

acteristics but also with the definition of desired properties. Specifically, type consistency,

safety and liveness properties that verify the correct utilization of historical information by

the core model and its internal operations were verified for their correctness (i.e., adherence

of the defined model to the initially defined requirements) through the application of an

automated and error-free model checking technique.

7.2 Future work

The research described in this dissertation can be extended along several directions.

Prototype implementation. Our proposed attribute based usage control model has been

formally defined and verified for a set of properties. The same applies for some of the

models that were capable of enforcing usage control policies, and presented in Chapter

2. However, to the best of our knowledge, none of the usage control models has been

implemented. Usage control introduces a higher level of complexity compared with RBAC

and ABAC when it comes to its implementation because of the existence of continuity of

decision and of pre and post rules. Therefore, a challenging problem for future work might

7.3 Closing remarks 102

be the analysis of the complexities posed by usage control models and an implementation

of a mechanism able to enforce such policies.

Usage control in multi-domain systems. In most systems, access control decisions

are taken on a per domain basis. However, recent advances in distributed and collabo-

rative systems (e.g., Grid and cloud computing systems) require the collaboration among

several domains, where each one implements its own security policy. In the case of multi-

domain access control several problems arise as secure inter-operation (Gouglidis et al.,

2013). Therefore, it would be interesting also to examine the application and the security

issues that might exist in the case of applying a usage control model in such collaborative

environments.

Property verification. The proposed access control model has been formally verified

using an automated and error-free model checking technique. During the process of ver-

ifying properties, we have noted that when we apply a large number of usages we come

up against a combinatorial blow up of the state space, which is commonly known as the

state explosion problem. Therefore, it might be also interesting to check the correctness

of a model using other approaches as a formal proof management system. An example of

such a system is Coq, which provides a formal language to write mathematical definitions,

executable algorithms and theorems together with an environment for semi-interactive de-

velopment of machine-checked proofs (Coq, 2014).

7.3 Closing remarks

This work has appeared in varying forms of conferences (see appendix B). Particularly, a

set of new access control requirements were examined in (Grompanopoulos and Mavridis,

2010). Our proposed usage control model and critiques on existing approaches were pre-

sented in (Grompanopoulos and Mavridis, 2012a,b; Grompanopoulos et al., 2013). A for-

7.3 Closing remarks 103

mal representation of the UseCON along with the presentation of a verification technique

for both the internal operations of the proposed model and its policies were proposed in

(Grompanopoulos et al., 2013).

Appendix A

TLA+ source code

UseCON pre-authorization model

----------------------------- MODULE preUSECON -----------------------------

EXTENDS Integers, FiniteSets, TLC, Reals

VARIABLES U

* DECLARATION OF CONSTANT VALUES FOR S,A,O

* (***

s1== [id |-> 1, att |-> 10]

s2== [id |-> 2, att |-> 20]

s3== [id |-> 3, att |-> 30]

s4== [id |-> 4, att |-> 40]

s5== [id |-> 5, att |-> 50]

a1== [id |-> 1, att |-> 11]

105

a2== [id |-> 2, att |-> 21]

a3== [id |-> 3, att |-> 31]

o1== [id |-> 1, att |-> 12]

o2== [id |-> 2, att |-> 22]

o3== [id |-> 3, att |-> 32]

* THE SETS OF ENTITIES

S == {s1,s2}

A == {a1}

O == {o1,o2}

* POLICY RULES (RANDOM DOES NOT PRESENT TRACE TLC BUG)

* (***

SelectSubject(x) == CHOOSE s \in S : s.id=x

SelectObject(x) == CHOOSE o \in O: o.id=x

Policy_Rule(x,y) == SelectSubject(x).att < SelectObject(y).att

* Policy_Rule(x,y) == RandomElement({TRUE,FALSE})

* USE UPDATE ATTRIBUTES

* (***

createUse(x) == [sid|->x[1].id, aid|->x[2].id, oid|->x[3].id, st|->"requested",

att|->1]

106

preUpdate(x) == [x EXCEPT !.st="activated"]

onUpdate(x) == [x EXCEPT !.st="activated"]

denUpdate(x) == [x EXCEPT !.st="denied"]

termUpdate(x) == [x EXCEPT !.st="terminated"]

comUpdate(x) == [x EXCEPT !.st="completed"]

* PRE AUTHORIZATION MODEL (WITH USES # CONSTRAINT)

* (***

Init == U = {}

vars == <<U>>

Request == \E u \in (S \X A \X O):

/\ \forall x \in U : (x.sid#u[1].id \/

x.aid#u[2].id \/ x.oid#u[3].id)

/\ U' = U \cup {createUse(u)}

* UNION { U, {createUse(u)}})

preEvaluate == \E u \in U: (

/\ u.st="requested"

/\ IF (Policy_Rule(u.sid,u.oid)) THEN

U' = (U \ {u}) \cup {preUpdate(u)}

* UNION { (U\{u}) , {preUpdate(u)}}

ELSE

U' = UNION { (U\{u}) , {denUpdate(u)}})

107

Complete == \E u \in U: (

/\ u.st="activated"

/\ U' = UNION { (U\{u}) , {comUpdate(u)}})

Next == Request \/ preEvaluate \/ Complete

Spec == Init /\ [][Next]_vars /\ WF_vars(Next)

* TYPE CORRECTNESS

* (***

USTATE == {"requested","activated","denied","terminated","completed"}

SubjectIDs == { s.id : s \in S }

ActionIDs == { a.id : a \in A }

ObjectIDs == { o.id : o \in O }

Entities == [sid : SubjectIDs,

aid : ActionIDs,

oid : ObjectIDs,

st : USTATE,

att : {1}]

TypeCorrectness == U \subseteq Entities

* SAFETY - LIVENESS

* (***

108

entityRequested == createUse(<<s1,a1,o1>>)

entityActivated == preUpdate(entityRequested)

entityCompleted == comUpdate(entityRequested)

entityDenied == denUpdate(entityRequested)

Liveness1 == (entityRequested \in U) ~> ((entityActivated \in U) \/

(entityDenied \in U))

Liveness2 == (entityRequested \in U) ~> ((entityCompleted \in U) \/

(entityDenied \in U))

Liveness3 == (entityActivated \in U) ~> (entityCompleted \in U)

Safety1 == (entityCompleted \in U) ~> ((entityRequested \notin U)

/\ (entityActivated \notin U) /\ (entityDenied \notin U))

Safety2 == (entityActivated \in U) ~> ((entityRequested \notin U) /\

(entityDenied \notin U))

Safety3 == (entityDenied \in U) ~> ((entityRequested \notin U) /\

(entityActivated \notin U) /\ (entityCompleted \notin U))

===

* Modification History

* Last modified 2014 by groban

* Created 2014 by groban

109

UseCON ongoing authorization model

----------------------------- MODULE onUSECON1 -----------------------------

EXTENDS Integers, FiniteSets, TLC, Reals

VARIABLES U

* DECLARATION OF CONSTANT VALUES FOR S,A,O

* (***

s1== [id |-> 1, att |-> 10]

s2== [id |-> 2, att |-> 20]

s3== [id |-> 3, att |-> 30]

s4== [id |-> 4, att |-> 40]

s5== [id |-> 5, att |-> 50]

a1== [id |-> 1, att |-> 11]

a2== [id |-> 2, att |-> 21]

a3== [id |-> 3, att |-> 31]

o1== [id |-> 1, att |-> 12]

o2== [id |-> 2, att |-> 22]

o3== [id |-> 3, att |-> 32]

* THE SETS OF ENTITIES

S == {s1,s2,s3,s4}

A == {a1,a2}

O == {o1}

110

* POLICY RULES (RANDOM DOES NOT PRESENT TRACE TLC BUG)

* (***

SelectSubject(x) == CHOOSE s \in S : s.id=x

SelectObject(x) == CHOOSE o \in O: o.id=x

* Policy_Rule(x,y) == SelectSubject(x).att < SelectObject(y).att

Policy_Rule(x,y) == RandomElement({TRUE,FALSE})

* USE UPDATE ATTRIBUTES

* (***

createUse(x) == [sid|->x[1].id, aid|->x[2].id, oid|->x[3].id, st|->"requested",

att|->1]

preUpdate(x) == [x EXCEPT !.st="activated"]

onUpdate(x) == [x EXCEPT !.st="activated"]

denUpdate(x) == [x EXCEPT !.st="denied"]

termUpdate(x) == [x EXCEPT !.st="terminated"]

comUpdate(x) == [x EXCEPT !.st="completed"]

* ONGOING AUTHORIZATION MODEL (WITH USES # CONSTRAINT)

* (***

Init == U = {}

vars == <<U>>

111

Request == \E u \in (S \X A \X O):

/\ \forall x \in U : (x.sid#u[1].id \/

x.aid#u[2].id \/ x.oid#u[3].id)

/\ U' = U \cup {createUse(u)}

Activate == \E u \in U: (

/\ u.st="requested"

/\ U' = (U \ {u}) \cup {preUpdate(u)})

onEvaluate == \E u \in U: (

/\ u.st="activated"

/\ IF (Policy_Rule(u.sid,u.oid)) THEN

U' = (U \ {u}) \cup {preUpdate(u)}

ELSE

U' = (U \ {u}) \cup {termUpdate(u)})

Complete == \E u \in U: (

/\ u.st="activated"

/\ U' = (U \ {u}) \cup {comUpdate(u)})

Next == Request \/ Activate \/ onEvaluate \/ Complete

Spec == Init /\ [][Next]_vars /\ WF_vars(Next)

112

* TYPE CORRECTNESS

* (***

USTATE == {"requested","activated","denied","terminated","completed"}

SubjectIDs == { s.id : s \in S }

ActionIDs == { a.id : a \in A }

ObjectIDs == { o.id : o \in O }

Entities == [sid : SubjectIDs,

aid : ActionIDs,

oid : ObjectIDs,

st : USTATE,

att : {1}]

TypeCorrectness == U \subseteq Entities

* SAFETY - LIVENESS

* (***

entityRequested == createUse(<<s1, a1, o1>>)

entityCompleted == comUpdate(entityRequested)

entityActivated == preUpdate(entityRequested)

entityTerminated == termUpdate(entityRequested)

Liveness1 == (entityRequested \in U) ~> (entityActivated \in U)

Liveness2 == (entityRequested \in U) ~> ((entityCompleted \in U) \/

(entityTerminated \in U))

Liveness3 == (entityActivated \in U) ~> ((entityCompleted \in U) \/

(entityTerminated \in U))

113

Safety1 == (entityCompleted \in U) ~> ((entityRequested \notin U)

/\ (entityActivated \notin U) /\ (entityTerminated \notin U))

Safety2 == (entityActivated \in U) ~> (entityRequested \notin U)

Safety3 == (entityTerminated \in U) ~> ((entityRequested \notin U)

/\ (entityActivated \notin U) /\ (entityCompleted \notin U))

===

* Modification History

* Last modified 2014 by groban

* Created 2014 by groban

114

Policy example with revoke usage method 1

------------------------------ MODULE Policy1 ------------------------------

EXTENDS Integers, FiniteSets, TLC, Reals

VARIABLES U

* DECLARATION OF CONSTANT VALUES FOR S,A,O

* (***

s1== [id |-> 1, att |-> 10]

s2== [id |-> 2, att |-> 20]

s3== [id |-> 3, att |-> 30]

s4== [id |-> 4, att |-> 40]

s5== [id |-> 5, att |-> 50]

a1== [id |-> 1, att |-> 11]

a2== [id |-> 2, att |-> 21]

a3== [id |-> 3, att |-> 31]

a4== [id |-> 4, att |-> 41]

a5== [id |-> 5, att |-> 51]

o1== [id |-> 1, att |-> 12]

o2== [id |-> 2, att |-> 22]

o3== [id |-> 3, att |-> 32]

o4== [id |-> 4, att |-> 42]

o5== [id |-> 5, att |-> 52]

115

* THE SETS OF ENTITIES

S == {s1,s2}

A == {a1,a2}

O == {o1,o2}

* POLICY RULES (JUNIOR ACTION IN SAME OBJECT)

* (***

SelectAction(x) == CHOOSE a \in A: a.id=x.aid

Policy_Rule(x,y) == SelectAction(x).att > SelectAction(y).att

* Finds the # of activated uses with same object as u

SameObjectAct(x,y) == x.oid = y.oid /\ x.st="activated"

ActivatedOnObject(x) == {u \in U: SameObjectAct(u,x)}

NumOfActOnObject(x) == Cardinality(ActivatedOnObject(x))

* USE UPDATE ATTRIBUTES

* (***

createUse(x) == [sid|->x[1].id, aid|->x[2].id, oid|->x[3].id, st|->"requested",

att|->1]

preUpdate(x) == [x EXCEPT !.st="activated"]

onUpdate(x) == [x EXCEPT !.st="activated"]

denUpdate(x) == [x EXCEPT !.st="denied"]

termUpdate(x) == [x EXCEPT !.st="terminated"]

comUpdate(x) == [x EXCEPT !.st="completed"]

116

* POLICY IMPLEMENTATION

* (***

Init == U = {}

vars == <<U>>

Request == \E u \in (S \X A \X O):

/\ \forall x \in U : (x.sid#u[1].id \/ x.aid#u[2].id \/

x.oid#u[3].id)

/\ U' = U \cup {createUse(u)}

preEvaluate == \E u \in U: (

/\ u.st="requested"

/\ \/ (/\ NumOfActOnObject(u) < 1

/\ U' = (U \ {u}) \cup {preUpdate(u)}

)

\/ (/\ NumOfActOnObject(u) >= 1

/\ LET act==CHOOSE x \in U : SameObjectAct(x,u)

IN

IF (Policy_Rule(act,u))

THEN

U' = (U \ {u}) \cup {termUpdate(u)}

ELSE

U' = (U \ {u,act}) \cup {preUpdate(u),termUpdate(act)}

)

117

)

Complete == \E u \in U: (

/\ u.st="activated"

/\ U' = (U \ {u}) \cup {comUpdate(u)})

Next == Request \/ preEvaluate \/ Complete

Spec == /\ Init /\ [][Next]_vars /\ WF_vars(Next)

* TYPE CORRECTNESS

* (***

USTATE == {"requested","activated","denied","terminated","completed"}

SubjectIDs == { s.id : s \in S }

ActionIDs == { a.id : a \in A }

ObjectIDs == { o.id : o \in O }

Entities == [sid : SubjectIDs,

aid : ActionIDs,

oid : ObjectIDs,

st : USTATE,

att : {1}]

TypeCorrectness == U \subseteq Entities

118

* HIGH LEVEL PROPERTIES

* (***

u1 == createUse(<<s1, a1, o1>>)

u2 == createUse(<<s1, a2, o1>>)

test == Policy_Rule(u2,u1)

NewInt2 == \forall u \in U : NumOfActOnObject(u)<=1

NewInt3 == (preUpdate(u1) \in U /\ u2 \in U) ~>

((termUpdate(u1) \in U) /\ (preUpdate(u2) \in U)) \/

((comUpdate(u1) \in U) /\ (preUpdate(u2) \in U))

NewInt4 == (u1 \in U /\ u2 \in U /\ u1.st="activated"

/\ u2.st="requested") ~>

((u1 \in U /\ u2 \in U /\ u1.st="completed" /\ u2.st="activated") \/

(u1 \in U /\ u2 \in U /\ u1.st="terminated" /\ u2.st="activated"))

===

* Modification History

* Last modified 2014 by groban

* Created 2014 by groban

119

Policy example with revoke usage method 2

------------------------------ MODULE Policy2 ------------------------------

EXTENDS Integers, FiniteSets, TLC, Reals

VARIABLES U

* DECLARATION OF CONSTANT VALUES FOR S,A,O

* (***

s1== [id |-> 1, att |-> 10]

s2== [id |-> 2, att |-> 20]

s3== [id |-> 3, att |-> 30]

s4== [id |-> 4, att |-> 40]

s5== [id |-> 5, att |-> 50]

a1== [id |-> 1, att |-> 11]

a2== [id |-> 2, att |-> 21]

a3== [id |-> 3, att |-> 31]

a4== [id |-> 4, att |-> 41]

a5== [id |-> 5, att |-> 51]

o1== [id |-> 1, att |-> 12]

o2== [id |-> 2, att |-> 22]

o3== [id |-> 3, att |-> 32]

o4== [id |-> 4, att |-> 42]

o5== [id |-> 5, att |-> 52]

120

* THE SETS OF ENTITIES

S == {s1,s2,s3}

A == {a1}

O == {o1,o2,o3}

* POLICY RULES (WITH LEAST ACTIVATED USES)

* (***

SelectSubject(x) == CHOOSE s \in S : s.id=x.sid

UsesOfSubject(x) == {a \in U: a.sid=x.id /\ a.st="activated"}

NumOfUses(x) == Cardinality(UsesOfSubject(x))

Predicate(x,y) == /\ NumOfUses(SelectSubject(x))#1

/\ (NumOfUses(SelectSubject(x))>NumOfUses(SelectSubject(y)))

SameObjectAct(x,y) == x.oid = y.oid /\ x.st="activated"

ActivatedOnObject(x) == {u \in U: SameObjectAct(u,x)}

NumOfActOnObject(x) == Cardinality(ActivatedOnObject(x))

* USE UPDATE ATTRIBUTES

* (***

createUse(x) == [sid|->x[1].id, aid|->x[2].id, oid|->x[3].id, st|->"requested",

att|->1]

preUpdate(x) == [x EXCEPT !.st="activated"]

onUpdate(x) == [x EXCEPT !.st="activated"]

121

denUpdate(x) == [x EXCEPT !.st="denied"]

termUpdate(x) == [x EXCEPT !.st="terminated"]

comUpdate(x) == [x EXCEPT !.st="completed"]

* POLICY IMPLEMENTATION

* (***

Init == U = {}

vars == <<U>>

Request == \E u \in (S \X A \X O):

/\ \forall x \in U : (x.sid#u[1].id \/ x.aid#u[2].id \/

x.oid#u[3].id)

/\ U' = U \cup {createUse(u)}

preEvaluate == \E u \in U: (

/\ u.st="requested"

/\ \/ (/\ NumOfActOnObject(u) = 0

/\ U' = (U \ {u}) \cup {preUpdate(u)}

)

\/ (/\ NumOfActOnObject(u) = 1

/\ LET act==CHOOSE x \in U: SameObjectAct(x,u)

IN

IF (Predicate(act,u))

THEN

U' = (U \ {u}) \cup {termUpdate(u)}

122

ELSE

U' = (U \ {u,act}) \cup {preUpdate(u),termUpdate(act)}

)

)

Complete == \E u \in U: (

/\ u.st="activated"

/\ U' = (U \ {u}) \cup {comUpdate(u)})

Next == Request \/ preEvaluate \/ Complete

Spec == Init /\ [][Next]_vars /\ WF_vars(Next)

* TYPECORRECTNESS

* (***

USTATE == {"requested","activated","denied","terminated","completed"}

SubjectIDs == { s.id : s \in S }

ActionIDs == { a.id : a \in A }

ObjectIDs == { o.id : o \in O }

Entities == [sid : SubjectIDs,

aid : ActionIDs,

oid : ObjectIDs,

st : USTATE,

att : {1}]

123

TypeCorrectness == U \subseteq Entities

* HIGH LEVEL PROPERTIES

* (***

u1 == createUse(<<s1, a1, o1>>)

u2 == createUse(<<s2, a1, o1>>)

NewInt2 == \forall u \in U : NumOfActOnObject(u)<=1

NewInt3 == (preUpdate(u1) \in U /\ u2 \in U /\

Predicate(u2,u1)) ~> ((termUpdate(u1) \in U) /\ (preUpdate(u2) \in U))

\/ ((comUpdate(u1) \in U) /\ (preUpdate(u2) \in U))

NewInt4 == (u1 \in U /\ <> (u2 \in U)) => u1 \in U

===

* Modification History

* Last modified 2014 by groban

* Created 2014 by groban

Appendix B

Publications

Referred papers in proceeding of international conferences

and workshops

1. A Use-based Approach for Enhancing UCON

(co-authors: Antonios Gouglidis, Ioannis Mavridis)

Security and Trust Management (STM) 2013.

Abstract: The security related characteristics of entities, the contextual information

that describes them and the previous or concurrent usages exercised in the system are

the criteria that the Usage CONtrol (UCON) family of models utilizes in the usage

decision process. In this paper, a detailed classication of the aforementioned criteria

along with a representative usage scenario for each category is presented, unveiling

a number of UCON’s limitations. In turn, a Use-based Usage CONtrol (UseCON)

model is proposed that provides, for the creation of a usage decision, enhanced han-

dling of information regarding context and previ- ous or current usages exercised in

the system. The enhanced capabilities of the proposed approach are demonstrated and

125

discussed with the use of detailed application examples.

2. Challenging Issues of UCON in Modern Computing Environments

(co-authors: Ioannis Mavridis)

Proceedings of the fifth Balkan Conference in Informatics 2012.

Abstract: Usage CONtrol (UCON) is a next generation access control model en-

hanced with capabilities presented in trust and digital rights management. However,

modern computing environments are usually introducing complex usage scenarios.

Such a complexity results in involving a large number of entities and in utilizing

multi party contextual information during the decision making process of a particular

usage. Moreover, usage control is demanded to support novel access modes on single

or composite resources, while taking into account new socio-technical abstractions

and relations. In this paper, a number of challenging issues faced when UCON is

applied in modern computing environments are highlighted through the utilization of

representative usage scenarios. The results of this study are revealing various limita-

tions in contextual information handling, lack to support complicated usage modes of

subjects on objects, and weaknesses in utilizing information concerning previous or

current usages of system resources.

3. Towards Use-Based Usage Control

(co-authors: Ioannis Mavridis)

Proceedings of the 27th IFIP International Information Security and Privacy Confer-

ence (SEC 2012).

Abstract: In this paper, a new Use-based usage CONtrol (UseCON) approach that

supports recording of usages with the help of a new entity, named use, is presented.

Uses provide information for the latest state (requested, active, denied, completed

126

or terminated) of every usage and facilitate the fine-grained definition and proper

association of attributes to various system entities. The proposed approach provides

enhanced contextual information modeling, support of complicated access modes and

an alternative approach in obligations modeling. Moreover, UseCON is characterized

by high expressiveness and ability to define policy rules in almost natural language.

4. Towards Differentiated Utilization of Attribute Mutability for Access Control in

Ubiquitous Computing

(co-authors: Ioannis Mavridis)

Proceeding of the 14th Panhellenic Conference on Informatics (PCI 2010).

Abstract: The operational characteristics of ubiquitous computing environments

(UbiCom) generate new access control requirements which existing classical access

control models fail to support efficiently. However, the Usage Control (UCON) fam-

ily of models introduces components and mechanisms that seem to be able to partially

match the specific requirements imposed by UbiCom environments. In this paper, an

evaluation of current access control models based on a brief study of UbiCom access

control requirements is presented. Then, a new access control approach that extends

UCON towards a differentiated utilization of attribute mutability for easiness of ad-

ministration, better performance and lower operational cost in UbiCom environments

is proposed.

References

Tla+ tools, April 2013. URL http://research.microsoft.com/en-us/um/people/

lamport/tla/tools.html.

The coq proof assistant, May 2014. URL http://coq.inria.fr/.

Tla+ toolbox user’s guide, 2014. URL https://tla.msr-inria.inria.fr/tlatoolbox/

doc/contents.html.

Gregory D. Abowd and Elizabeth D. Mynatt. Charting past, present, and future research

in ubiquitous computing. ACM Trans. Comput.-Hum. Interact., 7(1):29–58, March 2000.

ISSN 1073-0516. doi: 10.1145/344949.344988. URL http://doi.acm.org/10.1145/

344949.344988.

Gregory D. Abowd, Anind K. Dey, Peter J. Brown, Nigel Davies, Mark Smith, and Pete

Steggles. Towards a better understanding of context and context-awareness. In Proceed-

ings of the 1st International Symposium on Handheld and Ubiquitous Computing, HUC

’99, pages 304–307, London, UK, UK, 1999. Springer-Verlag. ISBN 3-540-66550-1.

URL http://dl.acm.org/citation.cfm?id=647985.743843.

Abulgader Almutairi and François Siewe. Ca-ucon: A context-aware usage control model.

In Proceedings of the 5th ACM International Workshop on Context-Awareness for Self-

Managing Systems, CASEMANS ’11, pages 38–43, New York, NY, USA, 2011. ACM.

http://research.microsoft.com/en-us/um/people/lamport/tla/tools.html
http://research.microsoft.com/en-us/um/people/lamport/tla/tools.html
http://coq.inria.fr/
https://tla.msr-inria.inria.fr/tlatoolbox/doc/contents.html
https://tla.msr-inria.inria.fr/tlatoolbox/doc/contents.html
http://doi.acm.org/10.1145/344949.344988
http://doi.acm.org/10.1145/344949.344988
http://dl.acm.org/citation.cfm?id=647985.743843

References 128

ISBN 978-1-4503-0877-9. doi: 10.1145/2036146.2036153. URL http://doi.acm.org/

10.1145/2036146.2036153.

ANSI. ANSI INCITS 359-2004, role based access control, 2004.

Donovan Artz and Yolanda Gil. A survey of trust in computer science and the semantic web.

Web Semant., 5(2):58–71, June 2007. ISSN 1570-8268. doi: 10.1016/j.websem.2007.03.

002. URL http://dx.doi.org/10.1016/j.websem.2007.03.002.

Kevin Ashton. That "internet of things" thing. RFiD Journal, 22:97–114, 2009.

Luigi Atzori, Antonio Iera, and Giacomo Morabito. The internet of things: A survey. Com-

puter Networks, 54(15):2787–2805, 2010.

Jean Bacon, Ken Moody, and Walt Yao. A model of oasis role-based access control and its

support for active security. ACM Trans. Inf. Syst. Secur., 5(4):492–540, November 2002.

ISSN 1094-9224. doi: 10.1145/581271.581276. URL http://doi.acm.org/10.1145/

581271.581276.

Christel Baier and Joost-Pieter Katoen. Principles of Model Checking (Representation and

Mind Series). The MIT Press, 2008. ISBN 026202649X, 9780262026499.

Matthias Baldauf, Schahram Dustdar, and Florian Rosenberg. A survey on con-

text-aware systems. Int. J. Ad Hoc Ubiquitous Comput., 2(4):263–277, June 2007.

ISSN 1743-8225. doi: 10.1504/IJAHUC.2007.014070. URL http://dx.doi.org/10.

1504/IJAHUC.2007.014070.

M. Ben-Ari. Principles of Concurrent and Distributed Programming (2Nd Edition)

(Prentice-Hall International Series in Computer Science). Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA, 2006. ISBN 032131283X.

http://doi.acm.org/10.1145/2036146.2036153
http://doi.acm.org/10.1145/2036146.2036153
http://dx.doi.org/10.1016/j.websem.2007.03.002
http://doi.acm.org/10.1145/581271.581276
http://doi.acm.org/10.1145/581271.581276
http://dx.doi.org/10.1504/IJAHUC.2007.014070
http://dx.doi.org/10.1504/IJAHUC.2007.014070

References 129

Messaoud Benantar. Access Control Systems: Security, Identity Management and Trust

Models. Springer-Verlag New York, Inc., 2005.

Fran Berman, Geoffrey Fox, and Anthony J. G. Hey. Grid Computing: Making the Global

Infrastructure a Reality. John Wiley & Sons, Inc., New York, NY, USA, 2003. ISBN

0470853190.

Azzedine Boukerche and Yonglin Ren. A trust-based security system for ubiquitous and

pervasive computing environments. Comput. Commun., 31(18):4343–4351, December

2008. ISSN 0140-3664. doi: 10.1016/j.comcom.2008.05.007. URL http://dx.doi.

org/10.1016/j.comcom.2008.05.007.

Sabrina Capitani di Vimercati, Sara Foresti, and Pierangela Samarati. Authorization and

access control. In Milan Petkovic and Willem Jonker, editors, Security, Privacy, and

Trust in Modern Data Management, Data-Centric Systems and Applications, pages 39–

53. Springer Berlin Heidelberg, 2007. ISBN 978-3-540-69861-6. URL http://dx.doi.

org/10.1007/978-3-540-69861-6_4.

Guanling Chen, David Kotz, et al. A survey of context-aware mobile computing research.

Technical report, Technical Report TR2000-381, Dept. of Computer Science, Dartmouth

College, 2000.

H.S. Cheng, Daqing Zhang, and J.G. Tan. Protection of privacy in pervasive computing

environments. In Information Technology: Coding and Computing, 2005. ITCC 2005.

International Conference on, volume 2, pages 242–247 Vol. 2, April 2005. doi: 10.1109/

ITCC.2005.233.

Michael J. Covington, Wende Long, Srividhya Srinivasan, Anind K. Dev, Mustaque

Ahamad, and Gregory D. Abowd. Securing context-aware applications using environ-

ment roles. In Proceedings of the Sixth ACM Symposium on Access Control Models and

http://dx.doi.org/10.1016/j.comcom.2008.05.007
http://dx.doi.org/10.1016/j.comcom.2008.05.007
http://dx.doi.org/10.1007/978-3-540-69861-6_4
http://dx.doi.org/10.1007/978-3-540-69861-6_4

References 130

Technologies, SACMAT ’01, pages 10–20, New York, NY, USA, 2001. ACM. ISBN

1-58113-350-2. doi: 10.1145/373256.373258. URL http://doi.acm.org/10.1145/

373256.373258.

Jason Crampton and George Loizou. Administrative scope and role hierarchy operations. In

In Proceedings of Seventh ACM Symposium on Access Control Models and Technologies

(SACMAT 2002), pages 145–154, 2002.

Frédéric Cuppens and Nora Cuppens-Boulahia. Modeling contextual security policies. In-

ternational Journal of Information Security, 7(4):285–305, 2008. ISSN 1615-5262. doi:

10.1007/s10207-007-0051-9. URL http://dx.doi.org/10.1007/s10207-007-0051-9.

Ernesto Damiani, Sabrina De Capitani di Vimercati, and Pierangela Samarati. New

paradigms for access control in open environments. In SIGNAL PROCESSING AND

INFORMATION TECHNOLOGY, pages 540–545, 2005.

Pari Delir Haghighi, Shonali Krishnaswamy, Arkady Zaslavsky, and MohamedMedhat

Gaber. Reasoning about context in uncertain pervasive computing environments. In

Daniel Roggen, Clemens Lombriser, Gerhard Tröster, Gerd Kortuem, and Paul Havinga,

editors, Smart Sensing and Context, volume 5279 of Lecture Notes in Computer Science,

pages 112–125. Springer Berlin Heidelberg, 2008. ISBN 978-3-540-88792-8. doi: 10.

1007/978-3-540-88793-5_9. URL http://dx.doi.org/10.1007/978-3-540-88793-5_

9.

Stelios Dritsas, Dimitris Gritzalis, and Costas Lambrinoudakis. Protecting privacy and

anonymity in pervasive computing: Trends and perspectives. Telemat. Inf., 23(3):

196–210, August 2006. ISSN 0736-5853. doi: 10.1016/j.tele.2005.07.005. URL

http://dx.doi.org/10.1016/j.tele.2005.07.005.

http://doi.acm.org/10.1145/373256.373258
http://doi.acm.org/10.1145/373256.373258
http://dx.doi.org/10.1007/s10207-007-0051-9
http://dx.doi.org/10.1007/978-3-540-88793-5_9
http://dx.doi.org/10.1007/978-3-540-88793-5_9
http://dx.doi.org/10.1016/j.tele.2005.07.005

References 131

Yitao Duan and John Canny. Protecting user data in ubiquitous computing: Towards trust-

worthy environments. In David Martin and Andrei Serjantov, editors, Privacy Enhanc-

ing Technologies, volume 3424 of Lecture Notes in Computer Science, pages 167–185.

Springer Berlin Heidelberg, 2005. ISBN 978-3-540-26203-9. doi: 10.1007/11423409_

11. URL http://dx.doi.org/10.1007/11423409_11.

David F. Ferraiolo, D. Richard Kuhn, and Ramaswamy Chandramouli. Role-Based Access

Control. Artech House, Inc., 2003.

I. Foster, Zhao Yong, I. Raicu, and S. Lu. Cloud computing and grid computing 360-degree

compared. In Grid Computing Environments Workshop, 2008. GCE ’08, pages 1–10,

2008.

Ian Foster and Carl Kesselman. The Grid 2: Blueprint for a New Computing Infrastructure.

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2003. ISBN 1558609334.

Ian Foster, Carl Kesselman, and Steven Tuecke. The anatomy of the grid - enabling scalable

virtual organizations. International Journal of Supercomputer Applications, 15:2001,

2001.

Christos K. Georgiadis, Ioannis Mavridis, George Pangalos, and Roshan K. Thomas. Flex-

ible team-based access control using contexts. In Proceedings of the Sixth ACM Sym-

posium on Access Control Models and Technologies, SACMAT ’01, pages 21–27, New

York, NY, USA, 2001. ACM. ISBN 1-58113-350-2. doi: 10.1145/373256.373259. URL

http://doi.acm.org/10.1145/373256.373259.

Dieter Gollmann. Computer Security. John Wiley & Sons, Inc., New York, NY, USA, 1999.

ISBN 0-471-97844-2.

Antonios Gouglidis and Ioannis Mavridis. On the definition of access control require-

http://dx.doi.org/10.1007/11423409_11
http://doi.acm.org/10.1145/373256.373259

References 132

ments for grid and cloud computing systems. In Anastasios Doulamis, Joe Mam-

bretti, Ioannis Tomkos, and Theodora Varvarigou, editors, Networks for Grid Applica-

tions, volume 25 of Lecture Notes of the Institute for Computer Sciences, Social In-

formatics and Telecommunications Engineering, pages 19–26. Springer Berlin Heidel-

berg, 2010. ISBN 978-3-642-11732-9. doi: 10.1007/978-3-642-11733-6_3. URL

http://dx.doi.org/10.1007/978-3-642-11733-6_3.

Antonios Gouglidis, Ioannis Mavridis, and VincentC. Hu. Security policy verification for

multi-domains in cloud systems. International Journal of Information Security, pages

1–15, 2013. ISSN 1615-5262. doi: 10.1007/s10207-013-0205-x. URL http://dx.doi.

org/10.1007/s10207-013-0205-x.

Dimitris Gritzalis, M Kandias, V Stavrou, and L Mitrou. History of information: The case

of privacy and security in social media. Proc. of the History of Information Conference,

2014.

Christos Grompanopoulos and Ioannis Mavridis. Towards differentiated utilization of at-

tribute mutability for access control in ubiquitous computing. Informatics, Panhellenic

Conference on, 0:118–123, 2010. doi: http://doi.ieeecomputersociety.org/10.1109/PCI.

2010.45.

Christos Grompanopoulos and Ioannis Mavridis. Towards use-based usage control. In Dim-

itris Gritzalis, Steven Furnell, and Marianthi Theoharidou, editors, Information Security

and Privacy Research, volume 376 of IFIP Advances in Information and Communication

Technology, pages 585–590. Springer Boston, 2012a. ISBN 978-3-642-30435-4.

Christos Grompanopoulos and Ioannis Mavridis. Challenging issues of ucon in modern

computing environments. In Proceedings of the Fifth Balkan Conference in Informatics,

http://dx.doi.org/10.1007/978-3-642-11733-6_3
http://dx.doi.org/10.1007/s10207-013-0205-x
http://dx.doi.org/10.1007/s10207-013-0205-x

References 133

BCI ’12, pages 156–161, New York, NY, USA, 2012b. ACM. ISBN 978-1-4503-1240-0.

doi: 10.1145/2371316.2371346. URL http://doi.acm.org/10.1145/2371316.2371346.

Christos Grompanopoulos, Antonios Gouglidis, and Ioannis Mavridis. A use-based ap-

proach for enhancing ucon. In Security and Trust Management, pages 81–96. Springer

Berlin Heidelberg, 2013.

Jinsong Gui, Zhigang Chen, and Xiaoheng Deng. An improved ucona-based authoriza-

tion policy specification for ubiquitous systems. In Yuanxu Yu, Zhengtao Yu, and

Jingying Zhao, editors, Computer Science for Environmental Engineering and EcoIn-

formatics, volume 158 of Communications in Computer and Information Science, pages

151–158. Springer Berlin Heidelberg, 2011. ISBN 978-3-642-22693-9. doi: 10.1007/

978-3-642-22694-6_21. URL http://dx.doi.org/10.1007/978-3-642-22694-6_21.

Keijo Heljanko. Model checking based software verification, 2006. URL http://iplu.

vtt.fi/digitalo/modelchecking.pdf.

Chung Tong Hu, David F Ferraiolo, David R Kuhn, Adam Schnitzer, Kenneth Sandlin,

Robert Miller, and Karen Scarfone. Guide to attribute based access control (abac) defini-

tion and considerations. NIST SP - 800-162, 2014.

Vincent C Hu, David Ferraiolo, and D Richard Kuhn. Assessment of access control systems.

US Department of Commerce, National Institute of Standards and Technology, 2006.

Michael Huth and Mark Ryan. Logic in Computer Science: Modelling and Reasoning About

Systems. Cambridge University Press, New York, NY, USA, 2004. ISBN 052154310X.

ITU-T. X.812 recommendation, 1995.

Helge Janicke, Antonio Cau, and Hussein Zedan. A note on the formalisation of ucon. In

Proceedings of the 12th ACM symposium on Access control models and technologies,

http://doi.acm.org/10.1145/2371316.2371346
http://dx.doi.org/10.1007/978-3-642-22694-6_21
http://iplu.vtt.fi/digitalo/modelchecking.pdf
http://iplu.vtt.fi/digitalo/modelchecking.pdf

References 134

SACMAT ’07, pages 163–168, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-

745-2.

Xin Jin, Ram Krishnan, and Ravi Sandhu. A unified attribute-based access control model

covering dac, mac and rbac. In Nora Cuppens-Boulahia, Frédéric Cuppens, and Joaquin

Garcia-Alfaro, editors, Data and Applications Security and Privacy XXVI, volume 7371

of Lecture Notes in Computer Science, pages 41–55. Springer Berlin Heidelberg, 2012.

ISBN 978-3-642-31539-8. doi: 10.1007/978-3-642-31540-4_4. URL http://dx.doi.

org/10.1007/978-3-642-31540-4_4.

A Joshi, T Finin, L Kagal, J Parker, and A Patwardhan. Security policies and trust in ubiq-

uitous computing. Philos Trans A Math Phys Eng Sci, 366(1881):3769–3780–, October

2008. URL http://europepmc.org/abstract/MED/18672450.

L. Kagal, T. Finin, and A. Joshi. Trust-based security in pervasive computing environments.

Computer, 34(12):154–157, Dec 2001. ISSN 0018-9162. doi: 10.1109/2.970591.

L. Kagal, T. Finin, Anupam Joshi, and S. Greenspan. Security and privacy challenges in

open and dynamic environments. Computer, 39(6):89 –91, june 2006. ISSN 0018-9162.

doi: 10.1109/MC.2006.207.

Lalana Kagal, Tim Finin, and Anupam Joshi. A policy language for a pervasive computing

environment. In Proceedings of the 4th IEEE International Workshop on Policies for Dis-

tributed Systems and Networks, POLICY ’03, pages 63–, Washington, DC, USA, 2003.

IEEE Computer Society. ISBN 0-7695-1933-4. URL http://dl.acm.org/citation.

cfm?id=826036.826875.

Ekkart Kindler. Safety and liveness properties: A survey. Bulletin of the European Associ-

ation for Theoretical Computer Science, 53:268–272, 1994.

http://dx.doi.org/10.1007/978-3-642-31540-4_4
http://dx.doi.org/10.1007/978-3-642-31540-4_4
http://europepmc.org/abstract/MED/18672450
http://dl.acm.org/citation.cfm?id=826036.826875
http://dl.acm.org/citation.cfm?id=826036.826875

References 135

Leanid Krautsevich, Aliaksandr Lazouski, Fabio Martinelli, Paolo Mori, and Artsiom Yaut-

siukhin. Usage control, risk and trust. In Sokratis Katsikas, Javier Lopez, and Miguel

Soriano, editors, Trust, Privacy and Security in Digital Business, volume 6264 of Lecture

Notes in Computer Science, pages 1–12. Springer Berlin Heidelberg, 2010. ISBN 978-3-

642-15151-4. doi: 10.1007/978-3-642-15152-1_1. URL http://dx.doi.org/10.1007/

978-3-642-15152-1_1.

Devdatta Kulkarni and Anand Tripathi. Context-aware role-based access control in per-

vasive computing systems. In Proceedings of the 13th ACM Symposium on Access

Control Models and Technologies, SACMAT ’08, pages 113–122, New York, NY,

USA, 2008. ACM. ISBN 978-1-60558-129-3. doi: 10.1145/1377836.1377854. URL

http://doi.acm.org/10.1145/1377836.1377854.

Arun Kumar, Neeran Karnik, and Girish Chafle. Context sensitivity in role-based access

control. ACM SIGOPS Operating Systems Review, 36(3):53–66, 2002.

Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware and

Software Engineers. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,

2002. ISBN 032114306X.

Leslie Lamport, John Matthews, Mark Tuttle, and Yuan Yu. Specifying and verify-

ing systems with tla+. In Proceedings of the 10th workshop on ACM SIGOPS Eu-

ropean workshop, EW 10, pages 45–48, New York, NY, USA, 2002. ACM. doi:

10.1145/1133373.1133382. URL http://doi.acm.org/10.1145/1133373.1133382.

Butler W. Lampson. Protection. SIGOPS Oper. Syst. Rev., 8:18–24, January 1974. ISSN

0163-5980.

Bo Lang, Ian Foster, Frank Siebenlist, Rachana Ananthakrishnan, and Tim Freeman. A

flexible attribute based access control method for grid computing. Journal of Grid Com-

http://dx.doi.org/10.1007/978-3-642-15152-1_1
http://dx.doi.org/10.1007/978-3-642-15152-1_1
http://doi.acm.org/10.1145/1377836.1377854
http://doi.acm.org/10.1145/1133373.1133382

References 136

puting, 7(2):169–180, 2009. ISSN 1570-7873. doi: 10.1007/s10723-008-9112-1. URL

http://dx.doi.org/10.1007/s10723-008-9112-1.

Aliaksandr Lazouski, Fabio Martinelli, and Paolo Mori. Usage control in computer security:

A survey. Computer Science Review, 4(2):81 – 99, 2010. ISSN 1574-0137.

Ninghui Li, Ji-Won Byun, and Elisa Bertino. A critique of the ANSI standard on role-based

access control. IEEE Security and Privacy, 5(6):41–49, 2007.

Jianfeng Lu, Ruixuan Li, Jinwei Hu, and Dewu Xu. Static enforcement of static separation-

of-duty policies in usage control authorization models. IEICE Transactions, 95-B(5):

1508–1518, 2012.

Fabio Martinelli and Paolo Mori. On usage control for grid systems. Future Gener. Comput.

Syst., 26(7):1032–1042, July 2010. ISSN 0167-739X. doi: 10.1016/j.future.2009.12.005.

URL http://dx.doi.org/10.1016/j.future.2009.12.005.

Patrick McDaniel. On context in authorization policy. In Proceedings of the Eighth ACM

Symposium on Access Control Models and Technologies, SACMAT ’03, pages 80–89,

New York, NY, USA, 2003. ACM. ISBN 1-58113-681-1. doi: 10.1145/775412.775422.

URL http://doi.acm.org/10.1145/775412.775422.

Kazuhiro Minami and David Kotz. Secure context-sensitive authorization. In Proceedings of

the Third IEEE International Conference on Pervasive Computing and Communications,

PERCOM ’05, pages 257–268, Washington, DC, USA, 2005. IEEE Computer Society.

ISBN 0-7695-2299-8. doi: 10.1109/PERCOM.2005.37. URL http://dx.doi.org/10.

1109/PERCOM.2005.37.

Asmund Ahlmann Nyre. Usage control enforcement - a survey. In Proceedings of the

IFIP WG 8.4/8.9 International Cross Domain Conference on Availability, Reliability and

http://dx.doi.org/10.1007/s10723-008-9112-1
http://dx.doi.org/10.1016/j.future.2009.12.005
http://doi.acm.org/10.1145/775412.775422
http://dx.doi.org/10.1109/PERCOM.2005.37
http://dx.doi.org/10.1109/PERCOM.2005.37

References 137

Security for Business, Enterprise and Health Information Systems, ARES’11, pages 38–

49, Berlin, Heidelberg, 2011. Springer-Verlag. ISBN 978-3-642-23299-2. URL http:

//dl.acm.org/citation.cfm?id=2033973.2033978.

OASIS. Oasis extensible access control markup language (xacml) tc, 2011. URL http:

//www.oasis-open.org/.

Sejong Oh and Ravi Sandhu. A model for role administration using organization structure.

In Proceedings of the seventh ACM symposium on Access control models and technolo-

gies, pages 155–162. ACM, 2002.

Jaehong Park and Ravi Sandhu. The ucon abc usage control model. ACM Trans. Inf. Syst.

Secur., 7(1):128–174, 2004.

A. Pretschner, M. Hilty, F. Schutz, C. Schaefer, and T. Walter. Usage control enforcement:

Present and future. Security Privacy, IEEE, 6(4):44–53, July 2008. ISSN 1540-7993.

doi: 10.1109/MSP.2008.101.

A. Pretschner, J. Ruesch, C. Schaefer, and T. Walter. Formal analyses of usage control poli-

cies. In Availability, Reliability and Security, 2009. ARES ’09. International Conference

on, pages 98–105, 2009. doi: 10.1109/ARES.2009.100.

Lili Qiu, Yin Zhang, Feng Wang, Mi Kyung, and Han Ratul Mahajan. Trusted computer

system evaluation criteria. In National Computer Security Center, 1985.

P.V. Rajkumar, S.K. Ghosh, and P. Dasgupta. Concurrent usage control implementation

verification using the spin model checker. In Natarajan Meghanathan, Selma Boumer-

dassi, Nabendu Chaki, and Dhinaharan Nagamalai, editors, Recent Trends in Network

Security and Applications, volume 89 of Communications in Computer and Informa-

tion Science, pages 214–223. Springer Berlin Heidelberg, 2010. ISBN 978-3-642-

http://dl.acm.org/citation.cfm?id=2033973.2033978
http://dl.acm.org/citation.cfm?id=2033973.2033978
http://www.oasis-open.org/
http://www.oasis-open.org/

References 138

14477-6. doi: 10.1007/978-3-642-14478-3_22. URL http://dx.doi.org/10.1007/

978-3-642-14478-3_22.

A. Ranganathan, J. Al-Muhtadi, and R.H. Campbell. Reasoning about uncertain contexts in

pervasive computing environments. Pervasive Computing, IEEE, 3(2):62–70, April 2004.

ISSN 1536-1268. doi: 10.1109/MPRV.2004.1316821.

Kumar Ranganathan. Trustworthy pervasive computing: The hard security problems. In

Proceedings of the Second IEEE Annual Conference on Pervasive Computing and Com-

munications Workshops, PERCOMW ’04, pages 117–, Washington, DC, USA, 2004.

IEEE Computer Society. ISBN 0-7695-2106-1. URL http://dl.acm.org/citation.

cfm?id=977405.978635.

Silvio Ranise and Alessandro Armando. On the automated analysis of safety in usage

control: A new decidability result. In Li Xu, Elisa Bertino, and Yi Mu, editors, Net-

work and System Security, volume 7645 of Lecture Notes in Computer Science, pages

15–28. Springer Berlin Heidelberg, 2012. ISBN 978-3-642-34600-2. doi: 10.1007/

978-3-642-34601-9_2. URL http://dx.doi.org/10.1007/978-3-642-34601-9_2.

Debashis Saha and Amitava Mukherjee. Pervasive computing: A paradigm for the 21st

century. Computer, 36(3):25–31, March 2003. ISSN 0018-9162. doi: 10.1109/MC.2003.

1185214. URL http://dx.doi.org/10.1109/MC.2003.1185214.

Pierangela Samarati and Sabrina De Capitani di Vimercati. Access control: Policies, mod-

els, and mechanisms. In Revised versions of lectures given during the IFIP WG 1.7

International School on Foundations of Security Analysis and Design on Foundations of

Security Analysis and Design: Tutorial Lectures, FOSAD ’00, pages 137–196, London,

UK, UK, 2001a. Springer-Verlag. ISBN 3-540-42896-8.

http://dx.doi.org/10.1007/978-3-642-14478-3_22
http://dx.doi.org/10.1007/978-3-642-14478-3_22
http://dl.acm.org/citation.cfm?id=977405.978635
http://dl.acm.org/citation.cfm?id=977405.978635
http://dx.doi.org/10.1007/978-3-642-34601-9_2
http://dx.doi.org/10.1109/MC.2003.1185214

References 139

Pierangela Samarati and SabrinaCapitani Vimercati. Access control: Policies, models,

and mechanisms. In Riccardo Focardi and Roberto Gorrieri, editors, Foundations of

Security Analysis and Design, volume 2171 of Lecture Notes in Computer Science,

pages 137–196. Springer Berlin Heidelberg, 2001b. ISBN 978-3-540-42896-1. doi:

10.1007/3-540-45608-2_3. URL http://dx.doi.org/10.1007/3-540-45608-2_3.

R. Sandhu. The ascaa principles for access control interpreted for collaboration systems. In

Collaborative Technologies and Systems, 2008. CTS 2008. International Symposium on,

pages 532–532, May 2008. doi: 10.1109/CTS.2008.4543974.

Ravi Sandhu and Jaehong Park. Usage control: A vision for next generation access control.

In Computer Network Security, volume 2776, pages 17–31. Springer Berlin / Heidelberg,

2003.

Ravi Sandhu and Pierangela Samarati. Authentication, access control, and audit. ACM

Comput. Surv., 28(1):241–243, March 1996. ISSN 0360-0300. doi: 10.1145/234313.

234412. URL http://doi.acm.org/10.1145/234313.234412.

Ravi Sandhu, Venkata Bhamidipati, and Qamar Munawer. The arbac97 model for role-based

administration of roles. ACM Trans. Inf. Syst. Secur., 2(1):105–135, 1999.

Ravi S. Sandhu. Lattice-based access control models, 1993.

R.S. Sandhu and P. Samarati. Access control: principle and practice. Communications

Magazine, IEEE, 32(9):40–48, Sept 1994. ISSN 0163-6804. doi: 10.1109/35.312842.

R.S. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E. Youman. Role-based access control

models. Computer, 29(2):38 –47, feb 1996. ISSN 0018-9162. doi: 10.1109/2.485845.

Marianthi Theoharidou, Nick Papanikolaou, Siani Pearson, and Dimitris Gritzalis. Privacy

risk, security, accountability in the cloud. In Proceedings of the 2013 IEEE International

http://dx.doi.org/10.1007/3-540-45608-2_3
http://doi.acm.org/10.1145/234313.234412

References 140

Conference on Cloud Computing Technology and Science - Volume 01, CLOUDCOM

’13, pages 177–184, Washington, DC, USA, 2013. IEEE Computer Society. ISBN 978-

0-7695-5095-4. doi: 10.1109/CloudCom.2013.31. URL http://dx.doi.org/10.1109/

CloudCom.2013.31.

R.K. Thomas and R. Sandhu. Models, protocols, and architectures for secure pervasive

computing: challenges and research directions. In Pervasive Computing and Communi-

cations Workshops, 2004. Proceedings of the Second IEEE Annual Conference on, pages

164–168, March 2004. doi: 10.1109/PERCOMW.2004.1276925.

Alessandra Toninelli, R. Montanari, L. Kagal, and O. Lassila. Proteus: A semantic context-

aware adaptive policy model. In Policies for Distributed Systems and Networks, 2007.

POLICY ’07. Eighth IEEE International Workshop on, pages 129–140, June 2007. doi:

10.1109/POLICY.2007.40.

Lingyu Wang, Duminda Wijesekera, and Sushil Jajodia. A logic-based framework for

attribute based access control. In Proceedings of the 2004 ACM Workshop on For-

mal Methods in Security Engineering, FMSE ’04, pages 45–55, New York, NY, USA,

2004. ACM. ISBN 1-58113-971-3. doi: 10.1145/1029133.1029140. URL http:

//doi.acm.org/10.1145/1029133.1029140.

Mark Weiser. Ubiquitous computing. In ACM Conference on Computer Science, page 418,

1994.

Mark Weiser. The computer for the 21st century. SIGMOBILE Mob. Comput. Commun.

Rev., 3(3):3–11, July 1999. ISSN 1559-1662. doi: 10.1145/329124.329126. URL http:

//doi.acm.org/10.1145/329124.329126.

Jeannette M. Wing. A specifier’s introduction to formal methods. Computer, 23(9):8–23,

http://dx.doi.org/10.1109/CloudCom.2013.31
http://dx.doi.org/10.1109/CloudCom.2013.31
http://doi.acm.org/10.1145/1029133.1029140
http://doi.acm.org/10.1145/1029133.1029140
http://doi.acm.org/10.1145/329124.329126
http://doi.acm.org/10.1145/329124.329126

References 141

September 1990. ISSN 0018-9162. doi: 10.1109/2.58215. URL http://dx.doi.org/

10.1109/2.58215.

Ran Yang, Chuang Lin, and Fujun Feng. A time and mutable attribute-based access control

model. JCP, 4(6):510–518, 2009. URL http://dblp.uni-trier.de/db/journals/jcp/

jcp4.html#YangLF09.

Eric Yuan and Jin Tong. Attributed based access control (abac) for web services, 2005.

G. Zhang and M. Parashar. Dynamic context-aware access control for grid applications. In

Grid Computing, 2003. Proceedings. Fourth International Workshop on, pages 101–108.

IEEE, 2004. ISBN 076952026X.

Xinwen Zhang. Formal Model and Analysis of Usage Control. PhD thesis, Fairfax, VA,

USA, 2006. AAI3221391.

Xinwen Zhang, Francesco Parisi-Presicce, Ravi Sandhu, and Jaehong Park. Formal model

and policy specification of usage control. ACM Trans. Inf. Syst. Secur., 8:351–387,

November 2005. ISSN 1094-9224.

Xinwen Zhang, Ravi Sandhu, and Francesco Parisi-Presicce. Safety analysis of usage con-

trol authorization models. In Proceedings of the 2006 ACM Symposium on Information,

computer and communications security, ASIACCS ’06, pages 243–254, New York, NY,

USA, 2006. ACM. ISBN 1-59593-272-0.

Xinwen Zhang, Masayuki Nakae, Michael J. Covington, and Ravi Sandhu. Toward a usage-

based security framework for collaborative computing systems. ACM Trans. Inf. Syst.

Secur., 11(1):1–36, 2008.

http://dx.doi.org/10.1109/2.58215
http://dx.doi.org/10.1109/2.58215
http://dblp.uni-trier.de/db/journals/jcp/jcp4.html#YangLF09
http://dblp.uni-trier.de/db/journals/jcp/jcp4.html#YangLF09

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Research areas
	1.3.1 Requirement analysis
	1.3.2 Specifications modeling
	1.3.3 Formal verification

	1.4 Structure of the dissertation

	2 Background
	2.1 Introduction
	2.2 Open and Dynamic Computing Environments
	2.3 Access control models
	2.3.1 Role based access control (RBAC)
	2.3.2 Attribute based access control (ABAC)
	2.3.3 Usage control (UCON)

	2.4 Specification and verification of systems
	2.4.1 Specification fundamentals
	2.4.2 Verification techniques
	2.4.3 Model checking

	2.5 Specification and verification in TLA+
	2.6 Related work on the specification and verification of UCON
	2.7 Chapter summary

	3 Requirements analysis
	3.1 Introduction
	3.2 Access control requirements
	3.3 A critique on existing access control solutions
	3.3.1 Security characteristics of entities
	3.3.2 Contextual information
	3.3.3 Historical information of usages

	3.4 Chapter summary

	4 The proposed model
	4.1 Introduction
	4.2 A brief description
	4.3 Specification of UseCON in TLA+
	4.3.1 Basic elements
	4.3.2 Transition systems

	4.4 Example of a policy specification
	4.5 Chapter summary

	5 Evaluation
	5.1 Introduction
	5.2 Model characteristics
	5.2.1 Abstraction of actions
	5.2.2 Utilization of usage information

	5.3 Model properties
	5.3.1 Use management
	5.3.2 An example policy

	5.4 Chapter summary

	6 Formal verification
	6.1 Introduction
	6.2 Model checking with TLC
	6.2.1 Use management
	6.2.2 An example policy

	6.3 Discussion
	6.4 Chapter summary

	7 Conclusions
	7.1 Summary of the contributions
	7.2 Future work
	7.3 Closing remarks

	Appendix A TLA+ source code
	Appendix B Publications
	References

