ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ
ΣΤΑ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ

Διπλωματική Εργασία

ΣΥΓΧΡΟΝΕΣ ΜΕΘΟΔΟΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ

του

ΚΑΣΙΚΑ ΔΗΜΗΤΡΗ

Υποβλήθηκε ως απαιτούμενο για την απόκτηση του μεταπτυχιακού
dιπλώματος ειδίκευσης στα Πληροφοριακά Συστήματα

Φεβρουάριος 2013
Ευχαριστίες

Ευχαριστώ την οικογένειά μου για την υποστήριξη που μου παρείχε το τελευταίο εξάμηνο και την κατανόησή τους για το λιγοστό χρόνο που μπόρεσα να τους αφιερώσω. Επίσης θα ήθελα να ευχαριστήσω τον επιβλέποντα καθηγητή της διπλωματικής μου εργασίας, κύριο Ευθύμιο Ταμπούρη, για το ιδιαίτερα σύγχρονο και επίκαιρο θέμα που με παρότρυνε να επιλέξω.
Περίληψη

Η παρούσα εργασία παραθέτει αναλυτικά στοιχεία για τις μεθοδολογίες διαχείρισης έργων πληροφορικής, όπως αυτές τεκμηριώνονται στην σχετική επιστημονική βιβλιογραφία. Τα ευρήματα παρατίθενται με στόχο την κατανόηση και κριτική αξιολόγηση των διαφορετικών μεθόδων διαχείρισης έργων ανάπτυξης πληροφοριακών συστημάτων.

Η μελέτη ξεκινά από τις βασικές έννοιες της διαχείρισης έργων, οι οποίες αποτελούν τη βάση κατανόησης όλων των μοντέλων παρακολούθησης του κύκλου ζωής ενός έργου πληροφορικής. Στη συνέχεια, η μελέτη πραγματεύεται τις εναλλακτικές προσεγγίσεις διαχείρισης έργων και αιτιολογεί την ανάγκη μετάβασης από τα παραδοσιακά στα ευέλικτα μοντέλα, μέσα από την παράθεση συγκριτικών στοιχείων. Η επιλογή της κατάλληλης ευέλικτης μεθοδολογίας ακολουθεί ένα δομημένο πλαίσιο συγκριτικής μέτρησης της ευελιξίας των επιμέρους μεθόδων, για να καταλήξει στην εφαρμογή της Scrum στη μελέτη περίπτωσης.

Η μελέτη περίπτωσης πραγματοποιείται σε πραγματικές συνθήκες και σε επιλεγμένη εμπορική εταιρία ανάπτυξης πληροφοριακών συστημάτων, με αξιοποίηση των υποδομών και του στελεχιακού δυναμικού της. Η εφαρμογή της ευέλικτης μεθοδολογίας Scrum ακολουθείται για τρεις μήνες, κατά τους οποίους πραγματοποιείται αναλυτική καταγραφή των ευρημάτων.

Τα κύρια ευρήματα εστιάζουν σε αντιπροσωπευτικά τμήματα του κύκλου ζωής του έργου της μελέτης περίπτωσης, ώστε να καθίσταται ευκολή η μακροοποίηση και μικροσκοπική αξιολόγηση των ευέλικτων πρακτικών. Τα αποτελέσματα της αξιολόγησης επιχειρούν να τεκμηριώσουν την αναγκαιότητα για την υπέρβαση των παραδοσιακών πρακτικών, υπό το πρίσμα της παραγόμενης προστιθέμενης επιχειρηματικής αξίας αλλά και της εμπειρίας της ομάδας ανάπτυξης.
ΠΕΡΙΕΧΟΜΕΝΑ

- Ευχαριστίες ... 2
- Περίληψη .. 3
- Πίνακας των εικονογράφησεων .. 8
- Κατάλογος πινάκων ... 8
- Κατάλογος διαγραμμάτων .. 9
- Κατάλογος εικόνων .. 10

1 ΕΙΣΑΓΩΓΗ ... 12

1.1 Περιγραφή του προβλήματος ... 12

1.2 Αντικείμενο και στόχοι της μελέτης .. 13

1.3 Περιεχόμενα της μελέτης .. 13

2 ΜΕΘΟΔΟΛΟΓΙΑ ... 15

2.1 Μεθοδολογία Webster & Watson .. 15

2.2 Εφαρμογή Μεθοδολογίας .. 17

3 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ .. 20

3.1 Εισαγωγή .. 20

3.2 Οδηγός στον Κορμό Γνώσης Διαχείρισης Έργων .. 20

3.3 Ορισμός Έργου ... 20

3.4 Ορισμός Διαχείρισης Έργου ... 21

3.5 Ορισμός Απαίτησης ... 22

3.6 Επιχειρηματική Άξια ... 23

3.7 Ομάδες Διεργασιών Διαχείρισης Έργων .. 23

3.7.1 Ομάδα Αρχικοποίησης (Initializing Process Group) ... 24

3.7.2 Ομάδα Σχεδιασμού (Planning Process Group) ... 24

3.7.3 Ομάδα Εκτέλεσης (Executing Process Group) ... 25
3.7.4 Ομάδα Παρακολούθησης και Ελέγχου (Monitoring and Controlling Process Group) 26
3.7.5 Ομάδα Ολοκλήρωσης (Closing Process Group) .. 27
3.8 Περιοχές Γνώσης Διαχείρισης Έργων .. 28
3.8.1 Διαχείριση Ολοκλήρωσης (Integration Management) 28
3.8.2 Διαχείριση Στόχων (Scope Management) .. 28
3.8.3 Διαχείριση Χρόνου (Time Management) ... 29
3.8.4 Διαχείριση Κόστους (Cost Management) .. 29
3.8.5 Διαχείριση Ποιότητας (Quality Management) ... 29
3.8.6 Διαχείριση Ανθρώπινων Πόρων (Human Resource Management) 30
3.8.7 Διαχείριση Επικοινωνίας (Communication Management) 30
3.8.8 Διαχείριση Κινδύνων (Risk Management) .. 31
3.8.9 Διαχείριση Προμηθειών (Procurement Management) 32
3.8.10 Αντιστοίχηση Ομάδων Διεργασιών και Περιοχών Γνώσης 32
3.9 Μοντέλα Κύκλου Ζωής Διαχείρισης Έργων ... 33
3.10 Τρίγωνο Διαχείρισης Έργων ... 33
3.11 Συμπεράσματα .. 34
4 ΜΟΝΤΕΛΑ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ 35
4.1 Εισαγωγή ... 35
4.2 Επιλογή Μοντέλου Διαχείρισης Έργου ... 35
4.3 Παραδοσιακά Μοντέλα Διαχείρισης Έργων ... 39
4.3.1 Γραμμικό Μοντέλο Διαχείρισης Έργων .. 39
4.3.2 Αυξητικό Μοντέλο Διαχείρισης Έργων .. 42
4.4 Ευέλικτα Μοντέλα Διαχείρισης Έργων ... 45
4.4.1 Επαναληπτικό Μοντέλο Διαχείρισης Έργων ... 46
4.4.2 Προσαρμοστικό Μοντέλο Διαχείρισης Έργων .. 48
4.5 Extreme Μοντέλα Διαχείρισης Έργων ... 53
4.6 Σύγκριση Παραδοσιακών και Ευέλικτων Μοντέλων ... 54
4.7 Συμπεράσματα ... 57
5 ΕΥΕΛΙΚΤΗ ΔΙΑΧΕΙΡΙΣΗ ΕΡΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ .. 58
 5.1 Εισαγωγή .. 58
 5.2 Βασικές Αρχές Ευέλικτης Διαχείρισης Έργων ... 58
 5.2.1 Το Μανιφέστο της Ευελιξίας (Agile Manifesto) .. 59
 5.2.2 Οι Αρχές της Ευελιξίας (Agile Principles) ... 62
 5.3 Επιλογή Ευέλικτης Μεθοδολογίας ... 63
 5.4 Μεθοδολογία SCRUM ... 68
 5.4.1 Ορολογία SCRUM ... 69
 5.4.2 Διαμόρφωση Περιβάλλοντος ... 73
 5.4.3 Σχεδιασμός Έργου, Εκδόσεων και Sprints ... 76
 5.4.4 Δημοσίευση Έκδοσης (Release) ... 85
 5.5 Συμπεράσματα ... 86
6 ΑΞΙΟΛΟΓΗΣΗ ΕΥΕΛΙΚΤΩΝ ΕΡΓΩΝ ... 87
 6.1 Εισαγωγή .. 87
 6.2 Αξιολόγηση Απόδοσης Παραδοσιακών Έργων ... 87
 6.2.1 Ανάλυση Προστιθέμενης Αξίας – EVA ... 89
 6.3 Αξιολόγηση Ευέλικτων Έργων .. 92
 6.3.1 Ωρίμανση Πλαισίων Αξιολόγησης ... 93
 6.4 Δείκτες Παρακολούθησης Ευέλικτων Έργων ... 98
 6.4.1 Ταχύτητα ... 99
 6.4.2 Πρόβλεψη με Διάστημα Βεβαιότητας ... 100
 6.5 Συμπεράσματα ... 102
7 ΜΕΛΕΤΗ ΠΕΡΙΠΤΩΣΗΣ ... 103
<table>
<thead>
<tr>
<th>Τμήμα</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Εισαγωγή</td>
</tr>
<tr>
<td>7.2</td>
<td>Στοιχεία Έργου</td>
</tr>
<tr>
<td>7.3</td>
<td>Διαμόρφωση Περιβάλλοντος</td>
</tr>
<tr>
<td>7.4</td>
<td>Ανάθεση Ρόλων</td>
</tr>
<tr>
<td>7.5</td>
<td>Πληροφοριακό Σύστημα Διαχείρισης Ευέλικτης Διαχείρισης</td>
</tr>
<tr>
<td>7.6</td>
<td>Εφαρμογή Μεθοδολογίας Scrum</td>
</tr>
<tr>
<td>7.6.1</td>
<td>Όραμα - Στάδιο 1</td>
</tr>
<tr>
<td>7.6.2</td>
<td>Backlog Προϊόντος - Στάδιο 2</td>
</tr>
<tr>
<td>7.6.3</td>
<td>Προγραμματισμός Εκδόσεων - Στάδιο 3</td>
</tr>
<tr>
<td>7.6.4</td>
<td>Εκτέλεση Sprint Ανάπτυξης - Στάδια 4,5,6 και 7</td>
</tr>
<tr>
<td>7.7</td>
<td>Αξιολόγηση Ανάπτυξης</td>
</tr>
<tr>
<td>7.8</td>
<td>Συμπεράσματα</td>
</tr>
<tr>
<td>8.1</td>
<td>Συμπεράσματα</td>
</tr>
<tr>
<td>8.2</td>
<td>Προτάσεις</td>
</tr>
<tr>
<td>8.3</td>
<td>Συμπεράσματα και Μελλοντική Έρευνα</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Συμπεράσματα</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Προτάσεις</td>
</tr>
<tr>
<td>Κατάλογος Αναφορών – Παραπόμπων</td>
<td></td>
</tr>
</tbody>
</table>

103
103
104
107
107
109
110
111
112
115
147
152
153
153
156
163
Πίνακας των εικονογραφήσεων

Κατάλογος πινάκων

Πίνακας 1: Προσεγγίσεις Βιβλιογραφικής Επισκόπησης ... 16
Πίνακας 2: Μήτρα Εννοιών .. 16
Πίνακας 3: Επαυξημένη Μήτρα Εννοιών με Μονάδες Ανάλυσης .. 16
Πίνακας 4: Μήτρα Εννοιών Διπλωματικής Εργασίας .. 18
Πίνακας 5: Αντιστοίχηση Ομάδων Διεργασιών και Περιοχών Γνώσης (Wysocki, 2012, p. 100) 32
Πίνακας 6: Τεταρτημόρια Επιλογής Μοντέλου Κύκλου Ζωής Διαχείρισης Έργων (Wysocki, 2012) 35
Πίνακας 7: Σύγκριση Παραδοσιακών και Ευέλικτων Μοντέλων (Layton, 2012) 54
Πίνακας 8: Οι τέσσερις διαστάσεις του 4-DAT (Qumer & Henderson-Sellers, An evaluation of the degree of agility in six agile methods and its applicability for method engineering, 2007) 64
Πίνακας 9: 4-DAT Αξιολόγηση Ευελιξίας Μεθοδολογιών (Qumer & Henderson-Sellers, An evaluation of the degree of agility in six agile methods and its applicability for method engineering, 2007) .. 65
Πίνακας 10: 4-DAT Αξιολόγηση XP (Qumer & Henderson-Sellers, An evaluation of the degree of agility in six agile methods and its applicability for method engineering, 2007) 66
Πίνακας 11: 4-DAT Αξιολόγηση Scrum (Qumer & Henderson-Sellers, An evaluation of the degree of agility in six agile methods and its applicability for method engineering, 2007) 66
Πίνακας 12: Δήλωση Οράματος Προϊόντος (Geoffrey Moore, 1999) .. 78
Πίνακας 13: Παράδειγμα Δήλωσης Οράματος Προϊόντος ... 78
Πίνακας 14: Ιστορία Χρήστη - Εμπρόσθια όψη κάρτας ... 80
Πίνακας 15: Ιστορία Χρήστη – Οπίσθια όψη κάρτας ... 80
Πίνακας 16 – Πίνακας Αξιολόγησης Ευέλικτων Πρακτικών .. 95
Πίνακας 17: Πίνακας Αξιολόγησης Επαναληπτικών Πρακτικών .. 95
Πίνακας 18: Δείγμα Ταχυτήτων Sprints ... 101
Πίνακας 19: Προσδιορισμός διαστήματος 90% βεβαιότητας (Cohn, 2012) ... 101
Πίνακας 20: Διάγραμμα Ταχύτητας Έργου .. 145
Πίνακας 21: Μετρήσεις Ταχύτητας – Μελέτη Περιπτώσεως .. 145
Πίνακας 22: Συγκεντρωτικός Πίνακας Βαθμολόγησης Ευέλικτων Πρακτικών .. 147
Πίνακας 23: Συγκεντρωτικός Πίνακας Βαθμολόγησης Επαναληπτικών Πρακτικών 148
Κατάλογος διαγραμμάτων

Διάγραμμα 1 : Τρίγωνο Διαχείρισης Έργων ... 34
Διάγραμμα 2 : Κώνος της Αβεβαιότητας (Boehm, 1981) ... 37
Διάγραμμα 3: Γραμμικό Μοντέλο Διαχείρισης Έργων ... 40
Διάγραμμα 4 : Αυξητικό Μοντέλο Διαχείρισης Έργων .. 43
Διάγραμμα 5 : Επαναληπτικό Μοντέλο Διαχείρισης Έργων .. 46
Διάγραμμα 6 : Προσαρμοστικό Μοντέλο Διαχείρισης Έργων .. 48
Διάγραμμα 7 : Extreme Μοντέλο Διαχείρισης Έργων (Wysocki, 2012) 53
Διάγραμμα 8 : Νοητικό Μοντέλο extreme Έργων (DeCarlo, 2004) 54
Διάγραμμα 9 : Πλέγμα Αξιολόγησης Ολοκλήρωσης (Gupta, 2008) 61
Διάγραμμα 10 : Συγκριτική Αξιολόγηση Ευέλικτων Μεθοδολογιών (Qumer & Henderson - Sellers, A framework to support the evaluation, adoption and improvement of agile methods in practice, 2007) ... 66
Διάγραμμα 11 : Διείσδυση Ευέλικτων Μεθόδων (State Of Agile Survey, 2011) 68
Διάγραμμα 12 : Η μεθοδολογία SCRUM ... 69
Διάγραμμα 13 : Σχεδιασμός στη μεθοδολογία Scrum (Layton, 2012) 77
Διάγραμμα 14 : Διάγραμμα Gantt – Πακέτα Εργασίας και Σημεία Απόφασης.......... 88
Διάγραμμα 15 : Διάγραμμα Gantt – Αποκλίσεις από το Baseline Χρονοδιάγραμμα 89
Διάγραμμα 16 : Ανάλυση Προστιθέμενης Αξίας - EVA ... 91
Διάγραμμα 17 : Πλαίσιο Αξιολόγησης Extreme Programming (Williams, Krebs, & Layman, Extreme Programming Evaluation Framework for Object-Oriented Languages, 2004) 92
Διάγραμμα 18 : Agile Pulse – Ευέλικτες Πρακτικές (Krebs William & Kroll, 2008) 97
Διάγραμμα 19 : Agile Pulse – Επαναληπτικές Πρακτικές (Krebs William & Kroll, 2008) 98
Διάγραμμα 20 : Στάδια Scrum (Layton, 2012) ... 110
Διάγραμμα 21 : Μέτρηση ταχύτητας σε επίπεδο έκδοσης ... 133
Διάγραμμα 22 : Λογική οργάνωση GoEcosystem Marketplace 134
Διάγραμμα 23 : Ραβδόγραμμα μέσων τιμών ευέλικτων πρακτικών 148
Διάγραμμα 24 : Ιστόγραμμα μέσων τιμών ευέλικτων πρακτικών 149
Διάγραμμα 25 : Ραβδόγραμμα μέσων τιμών επαναληπτικών πρακτικών 151
Διάγραμμα 26: Ιστόγραμμα μέσων τιμών επαναληπτικών πρακτικών 151
Κατάλογος εικόνων

Εικόνα 1 : Κεντρική Οθόνη Διαχείρισης Συναντήσεων ... 75
Εικόνα 2 : Ηλεκτρονικός Χώρος Συνάντησης ... 75
Εικόνα 3 : Scrum Room ... 104
Εικόνα 4 : Το Manifesto της Ευελιξίας .. 105
Εικόνα 5 : Αρχές Ευελιξίας .. 105
Εικόνα 6 : Ψυχαγωγία στο Ευέλικτο Περιβάλλον ... 106
Εικόνα 7 : Πανοραμική Όψη Εναλλακτικού Χώρου Ευέλικτης Εργασίας 106
Εικόνα 8 : Οθόνη αυθεντικοποίησης χρηστών στα Team Foundation Services 108
Εικόνα 9 : Οθόνη δημιουργίας χρηστών στα Team Foundation Services 108
Εικόνα 10 : Το Release & Sprint Planning ... 112
Εικόνα 11 : Αρχές Ευελιξίας .. 113
Εικόνα 12 : Συμβατικά Ευέλικτα Μέσα .. 114
Εικόνα 13 : Sprint Backlog .. 116
Εικόνα 14 : Sprint Backlog and Task Allocation .. 117
Εικόνα 15 : Διαθεσιμότητα Μελών Ομάδας Έργου ... 117
Εικόνα 16 : Ηλεκτρονικός Πίνακας Kanban ... 118
Εικόνα 17 : Πρώτη σελίδα της εταιρικής πύλης .. 120
Εικόνα 18 : Υλοποίηση μενού πλοήγησης με tall menu στην περιοχή συνεργατών 121
Εικόνα 19 : Λίστα απαιτήσεων και εργασιών – Sprint 2.0.1 .. 124
Εικόνα 20 : Οθόνη Αναβάθμισης συνεργάτη σε Publisher .. 125
Εικόνα 21 : Οθόνη Σημαντική Στοιχείωσης Πλοήγησης ... 125
Εικόνα 22 : Λίστα απαιτήσεων και εργασιών – Sprint 2.0.2 .. 126
Εικόνα 23 : Οθόνη διαχείρισης υπηρεσιών και εργασιών .. 127
Εικόνα 24 : Οθόνη διαχείρισης υπηρεσιών και εργασιών .. 128
Εικόνα 25 : Οθόνη κατανομής κλειδιών αδειών χρήσης σε πελάτες 129
Εικόνα 26 : Λίστα απαιτήσεων και εργασιών – Sprint 2.0.3 .. 130
Εικόνα 27 : Ελκυστική πρώτη σελίδα marketplace ... 131
Εικόνα 28 : Αναλυτική σελίδα παρουσίασης εφαρμογών συνεργάτης (App Details) 132
Εικόνα 29 : Οθόνη πρόβλεψης ολοκλήρωσης έργου ... 133
Εικόνα 30: Προγραμματισμός διαθεσιμότητας και αδειών ομάδας έργου .. 136
Εικόνα 31: Συνοπτική απεικόνιση - 2η ημέρα Sprint ... 136
Εικόνα 32: Burndown chart – 2η ημέρα Sprint ... 137
Εικόνα 33: Kanban Board – 2η ημέρα Sprint ... 138
Εικόνα 34: Συνοπτική απεικόνιση – 3η ημέρα Sprint ... 138
Εικόνα 35: Burndown chart - 3η ημέρα Sprint ... 139
Εικόνα 36: Kanban Board – 3η ημέρα Sprint ... 140
Εικόνα 37: Συνοπτική απεικόνιση – 4η ημέρα Sprint ... 141
Εικόνα 38: Burndown chart - 4η ημέρα Sprint ... 142
Εικόνα 39: Kanban Board – 4η ημέρα Sprint ... 142
Εικόνα 40: Συνοπτική απεικόνιση – 5η ημέρα Sprint ... 143
Εικόνα 41: Burndown chart - 5η ημέρα Sprint ... 144
Εικόνα 42: Kanban Board – 5η ημέρα Sprint ... 144
1 ΕΙΣΑΓΩΓΗ

1.1 Περιγραφή του προβλήματος

Η παγκόσμια κοινότητα της πληροφορικής έχει εκφράσει επανειλημμένως την ανησυχία της για τις μέτριες έως κακές επιδόσεις του κλάδου, σε ότι αφορά την ανάπτυξη πληροφοριακών συστημάτων προστιθέμενης αξίας. Καταγραφές από διαφορετικούς φορείς στις Ηνωμένες Πολιτείες επισημαίνουν τα ακόλουθα (New York Times, 2002):

- $80 - $145 δις δαπανώνται ανά έτος σε ανεπιτυχή έργα ή έργα που ακυρώθηκαν (The Standish Group International)
- Υπάρχει σπατάλη της τάξης του 24 -40% σε εργασίες που επαναλαμβάνονται στα έργα πληροφορικής (Garnegie Mellon)
- Το 50% των έργων αποσύρονται από την παραγωγή (Gartner)
- Το 40% των προβλημάτων εποπτεύονται από τους τελικούς χρήστες (Gartner)
- Η παραγωγή ανεπαρκών εφαρμογών λογισμικού έχει οδηγήσει σε μια μόνιμη έλλειψη επικοινωνίας μεταξύ των επιχειρήσεων και του κλάδου της πληροφορικής. Το ποσοστό αποτυχίας αγγίζει το 66% για τις εφαρμογές αυτές, κοστίζοντας στις Ηνωμένες Πολιτείες τουλάχιστον $30 δις σε ετήσια βάση (Forrester Research)
- Το 60 – 80% των αποτυχημένων έργων αποδίδονται σε ανεπαρκή συλλογή και ανάλυση των απαιτήσεων καθώς και στον τρόπο διαχείρισης των έργων (Meta Group)
- Το 68% των έργων πληροφορικής που εκτελέστηκαν στις Ηνωμένες Πολιτείες το 2009, απέτυχαν είτε σε καθολική βάση είτε στην πλήρη επίτευξη των στόχων τους. (The Standish Group, The CHAOS Chronicles, 2006)

Η επισήμανση του φαινομένου αυτού, οδηγεί μια ομάδα ειδικών στη διαχείριση και ανάπτυξη λογισμικού, στη διαμόρφωση ενός καινοτόμου μοντέλου διαχείρισης έργων. Το αποτέλεσμα είναι η δημοσίευση του «Μανιφέστο της Ευέλικτης Ανάπτυξης Λογισμικού (Manifesto for Agile Software Development)» και η σύσταση της Agile Alliance.
1.2 Αντικείμενο και στόχοι της μελέτης

Ο βασικός στόχος της εργασίας είναι η τεκμηρίωση των σημείων υπεροχής και υστέρησης των ευέλικτων μεθόδων διαχείρισης έργων πληροφορικής, έναντι των παραδοσιακών μοντέλων, σε θεωρητικό και πρακτικό επίπεδο. Στη διαδικασία αυτή κρίθηκε απαραίτητη η πρακτική εφαρμογή της ευέλικτης μεθοδολογίας Scrum, σε παραγωγικό και όχι εικονικό περιβάλλον, με στόχο την καταγραφή των ευρημάτων και την εξαγωγή συμπερασμάτων. Η αξιολόγηση της πρακτικής εφαρμογής στη μελέτη περίπτωσης που περιγράφεται, επιχειρεί να ερμηνεύσει τα ευρήματα υπό διαφορετικές οπτικές γωνίες, όπως η εμπειρία του πελάτη, η εμπειρία της ομάδας έργου του αναδόχου, η επίτευξη των στόχων του έργου και η διατήρηση του ελέγχου στη διαχείριση χρόνου και κόστους.

1.3 Περιεχόμενα της μελέτης

Η παρούσα μελέτη οργανώνεται σε οκτώ διακριτά κεφάλαια, συμπεριλαμβανομένου και του πρώτου εισαγωγικού κεφάλαιου, όπου παρατίθεται η περιγραφή του προβλήματος, το εύρος και οι διακριτοί στόχοι.

Στο δεύτερο κεφάλαιο περιγράφεται η μεθοδολογία που ακολουθήθηκε για τη βιβλιογραφική επισκόπηση της παρούσας μελέτης καθώς και η προσαρμογή της μεθοδολογίας αυτής, στις ιδιαίτερες απαιτήσεις του γνωστικού πεδίου της διαχείρισης χρόνου και κόστους.

Στο τρίτο κεφάλαιο αποτελεί την αρχή του θεωρητικού τμήματος της διπλωματικής εργασίας. Στο κεφάλαιο αυτό παρατίθενται οι βασικές έννοιες του γνωστικού πεδίου της διαχείρισης των έργων πληροφορικής. Ο στόχος είναι η εξοικείωση του αναγνώστη με τις δομικές έννοιες της επιστήμης της διαχείρισης έργων πληροφορικής, μέσα από την παράθεση και επεξήγηση τόσο των καθιερωμένων όσο και των εναλλακτικών ορισμών. Οι έννοιες που περιγράφονται αποτελούν τη βάση για την ανάπτυξη όλων των μοντέλων διαχείρισης έργων ανεξαρτήτως.

Στο τέταρτο κεφάλαιο παρατίθεται μια συστηματική καταγραφή των μοντέλων διαχείρισης έργων πληροφορικής. Τα διάφορα μοντέλα κατηγοριοποιούνται σε παραδοσιακά, ευέλικτα και extreme, τα οποία με τη σειρά τους αναλύονται σε μεγαλύτερο βάθος. Το κεφάλαιο καταλήγει στην σύγκριση των παραδοσιακών και των ευέλικτων πρακτικών, ώστε να οδηγηθεί ο αναγνώστης στην επιλογή του πιο αποτελεσματικού μοντέλου.
Στο πέμπτο κεφάλαιο παρατίθεται το μανιφέστο και οι αρχές της ευελιξίας που αποτελούν το σημείο αναφοράς των ευέλικτων μοντέλων, στο σύνολό τους. Το ίδιο κεφάλαιο πραγματεύεται τη διαδικασία μέτρησης της ευελιξίας των επιμέρους μεθοδολογιών και τεκμηριώνει την επιλογή της Scrum, η οποία αποτελεί το πλέον διαδεδομένο ευέλικτο μοντέλο διαχείρισης έργων ανάπτυξης λογισμικού, σε παγκόσμιο επίπεδο (State Of Agile Survey, 2011). Στη συγκεκριμένη ενότητα, γίνεται αναλυτική περιγραφή των αντικειμένων, των γεγονότων και των βημάτων εφαρμογής της μεθοδολογίας Scrum.

Στο έκτο κεφάλαιο ολοκληρώνεται το θεωρητικό τμήμα της μελέτης, με την παράθεση των δομών και εργαλείων αξιολόγησης, ελέγχου και παρακολούθησης των ευέλικτων μεθοδολογιών. Στο ίδιο κεφάλαιο παρατίθενται αναφορές στις παραδοσιακές πρακτικές ελέγχου και παρακολούθησης έργων, ώστε να κατασταθεί σαφής ο μετασχηματισμός, η απλοποίηση και η αναπροσαρμογή των εργαλείων αυτών στα ευέλικτα μοντέλα.

Το έβδομο κεφάλαιο αποτελεί το πρακτικό μέρος της διπλωματικής εργασίας. Για το σκοπό αυτό εκτελείται και παράγεται για διάστημα τριών περίπου μηνών, η εφαρμογή της μεθοδολογίας Scrum, σε εμπορική εταιρία ανάπτυξης λογισμικού και για πραγματικό έργο πληροφορικής. Η μελέτη περιπτώσεως έχει ως στόχο την παρατήρηση, αποτύπωση και αξιολόγηση των ευρημάτων, κατά την πρακτική εφαρμογή της μεθοδολογίας Scrum.

Στο ογδόο κεφάλαιο, η μελέτη ολοκληρώνεται με την καταγραφή γενικών επισημάνσεων και συμπερασμάτων. Οι προτάσεις για μελλοντική έρευνα αποσκοπούν, αφενός στην συμπλήρωση του γνωστικού αντικειμένου της συγκεκριμένης εργασίας και αφετέρου στην παράθεση εναλλακτικών προοπτικών στον ευρύτερο χώρο της διαχείρισης ευέλικτων έργων πληροφορικής.
2 ΜΕΘΟΔΟΛΟΓΙΑ
Η συλλογή των κατάλληλων επιστημονικών πόρων από τη διεθνή βιβλιογραφία, με στόχο τον εντοπισμό και την καταγραφή έγκυρων δεδομένων στο γνωστικό πεδίο ενδιαφέροντος, αποτελεί παράγοντα μείζονος σημασίας για την ολοκλήρωση μιας μελέτης. Η μεθοδολογία που ακολουθείται για την εκπόνηση της παρούσας διπλωματικής εργασίας είναι αυτή που προτείνεται από τους Webster & Watson (Webster & Watson, Analyzing the Past to Prepare for the Future: Writing a Literature Review, 2002).

2.1 Μεθοδολογία Webster & Watson
Μια ολοκληρωμένη βιβλιογραφική επισκόπηση υψηλής ποιότητας, εστιάζει στις έννοιες. Η επισκόπηση κρίνεται ως ολοκληρωμένη, όταν καλύπτει το σύνολο της σχετικής βιβλιογραφίας και δεν περιορίζεται σε συγκεκριμένα επιστημονικά περιοδικά ή σε μεμονωμένες γεωγραφικές περιοχές.
Η δομημένη προσέγγιση του εντοπισμού των πόρων της βιβλιογραφικής επισκόπησης που προτείνει η συγκεκριμένη μεθοδολογία, ακολουθεί τα παρακάτω βήματα:

1. Αναζήτηση σχετικών καταχωρήσεων στα πλέον αναγνωρισμένα διεθνή περιοδικά (journals). Η αναζήτηση σε βιβλιογραφικές βάσεις επιταχύνει σημαντικά την εύρεση σχετικών άρθρων. Παράλληλα η γρήγορη ανάγνωση του πίνακα περιεχομένων ενός περιοδικού, ενδέχεται να οδηγήσει στον εντοπισμό άρθρων που δεν εμφανίστηκαν λόγω της επιλογής συγκεκριμένων λέξεων κλειδιών κατά την αναζήτηση. Επιπρόσθετα, κρίνεται σκόπιμη η εξέταση των πρακτικών συνεδρίων διεθνούς φήμης. Τέλος, δεδομένου ότι η επιστήμη της πληροφορικής αποτελεί διεπιστημονικό πεδίο, κρίνεται σκόπιμη η αναζήτηση σχετικών άρθρων σε πηγές εκτός του συγκεκριμένου χώρου.

2. Από τα άρθρα που θα επιλεγούν στο προηγούμενο βήμα, κρίνεται σκόπιμη η επισκόπηση των αναφορών τους, με στόχο τον προσδιορισμό προηγούμενων άρθρων.

3. Στη συνέχεια ενδείκνυται η χρήση του Web of Science, για τον εντοπισμό πηγών με αναφορά στα άρθρα που επιλέχθηκαν στο προηγούμενο βήμα .
Ο εντοπισμός νέων άρθρων πρέπει να σταματήσει, όταν ο ερευνητής δεν μπορεί να εντοπίσει νέες έννοιες στο γνωστικό πεδίο που εξετάζει.
Η βιβλιογραφική ανασκόπηση πρέπει να είναι εννοιο-κεντρική. Η εναλλακτική προσέγγιση της ανασκόπησης με βάση το συγγραφείς είναι αρκετά διαδεδομένη, αλλά αποτυγχάνει στην τελική σύνθεση της βιβλιογραφίας. Οι δυο προσεγγίσεις απεικονίζονται στον πίνακα που ακολουθεί.

Πίνακας 1: Προσεγγίσεις Βιβλιογραφικής Επισκόπησης

<table>
<thead>
<tr>
<th>Εννοιο-κεντρική</th>
<th>Συγγραφο-κεντρική</th>
</tr>
</thead>
<tbody>
<tr>
<td>Έννοια X... [Συγγραφέας A, Συγγραφέας B,...]</td>
<td>Συγγραφέας A...έννοια X, έννοια Ψ, ...</td>
</tr>
<tr>
<td>Έννοια Ψ... [Συγγραφέας A, Συγγραφέας Γ,...]</td>
<td>Συγγραφέας B...έννοια X, έννοια Z, ...</td>
</tr>
</tbody>
</table>

Για τη μετάβαση από το συγγραφο-κεντρικό στο εννοιο-κεντρικό μοντέλο, συνίσταται η συμπλήρωση της μήτρας εννοιών που ακολουθεί, κατά την ανάγνωση του κάθε άρθρου.

Πίνακας 2: Μήτρα Εννοιών

<table>
<thead>
<tr>
<th>Άρθρα</th>
<th>Έννοιες</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>1</td>
<td>√</td>
</tr>
<tr>
<td>2</td>
<td>√</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

Ο παραπάνω πίνακας μπορεί να επεκταθεί με τη χρήση μιας τέταρτης διάστασης που είναι η μονάδα της ανάλυσης και προσδιορίζει την οπτική γωνία προσδιορισμού της έννοιας.

Πίνακας 3: Επαυξημένη Μήτρα Εννοιών με Μονάδες Ανάλυσης

<table>
<thead>
<tr>
<th>Άρθρα</th>
<th>Έννοιες</th>
</tr>
</thead>
<tbody>
<tr>
<td>Α</td>
<td>Β</td>
</tr>
<tr>
<td>Μονάδα Ανάλυσης</td>
<td>E</td>
</tr>
<tr>
<td>1</td>
<td>√</td>
</tr>
<tr>
<td>2</td>
<td>√</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

E (Επιχείρηση), O (Όμάδα), A (Ατομό)
Η απεικόνιση των σημαντικών ευρημάτων και ιδεών με τη χρήση πινάκων, αποτελεί ιδιαίτερα αποτελεσματικό μέσο παρουσίασης. Η απλή παράθεση λίστας άρθρων δεν διευκολύνει τον προσδιορισμό του θέματος.

Συμπερασματικά, μια βιβλιογραφική επισκόπηση κρίνεται επιτυχημένη, όταν βοηθά στην κατανόηση του εύρους του γνωστικού πεδίου που πραγματεύεται η μελέτη.

Συνοπτικά μια ολοκληρωμένη βιβλιογραφική επισκόπηση, σύμφωνα με τη μεθοδολογία των Webster και Watson, επιτυγχάνει τα ακόλουθα:

- Δικαιολογεί την έρευνα στο επιλεγμένο θέμα και τη συνεισφορά της μελέτης
- Περιγράφει τις κεντρικές έννοιες
- Οριοθετεί την έρευνα
- Προχωρά στην επισκόπηση της σχετικής υφιστάμενης βιβλιογραφίας, στον τομέα των Πληροφοριακών Συστημάτων και των συναφών τομέων γνώσης
- Αναπτύσσει ένα μοντέλο το οποίο δύναται να καθοδηγήσει τις μελλοντικές έρευνες
- Τεκμηριώνει τις προτάσεις, με τη χρήση θεωρητικών επεξηγήσεων, υφιστάμενων εμπειρικών ευρημάτων και πρακτικών εφαρμογών
- Παρουσιάζει συμπερασματικά τυχόν επιπλοκές στους ερευνητές και λοιπούς ενδιαφερόμενους.

2.2 Εφαρμογή Μεθοδολογίας
Η συλλογή και επεξεργασία των βιβλιογραφικών πόρων ακολουθεί τις οδηγίες της προσέγγισης των Webster και Watson.

Η αναζήτηση στο γνωστικό αντικείμενο της μελέτης πραγματοποιείται σε πρώτη φάση στις βιβλιογραφικές βάσεις scholar.google.com και ieee xplor. Δεδομένου ότι το θέμα της διαχείρισης έργων πληροφορικής, απαντάται σε μεγαλύτερο βαθμό στις κοινότητες των επαγγελματιών του χώρου, από ότι στους ακαδημαϊκούς χώρους, κρίνεται απαραίτητη η αναζήτηση πηγών όπως blogs, forums, websites μέσω της μηχανής αναζήτησης google.

Οι βασικές λέξεις κλειδιά που χρησιμοποιούνται είναι:

- Contemporary Project Management
- Traditional Project Management
Καθώς το πλήθος των αποτελεσμάτων είναι της τάξης των χιλιάδων, επιλέγεται η προοδευτική σάρωση των περιλήψεων των σχετικών άρθρων με βάση την προτεινόμενη συνάφεια. Από τα αρχικά άρθρα επιλέγονται αυτά για τα οποία το πλήρες κείμενο είναι διαθέσιμο. Η επισκόπηση συνεχίζεται με την εύρεση πηγών που κάνουν αναφορά στα αρχικά άρθρα. Τα αποτελέσματα αναλήψεως αξιοπιστών βιβλιογραφικών πόρων, οδηγεί στην εύρεση τεσσάρων βιβλίων τα οποία, μεταξύ άλλων, μελετούνται διεξοδικά (PMI, 2008), (Layton, 2012), (Cohn, 2012), (Wysocki, 2012).

Η μελέτη των σχετικών πηγών οδήγησε στην εντοπισμό των βασικών εννοιών που παρουσιάζονται στην μήτρα εννοιών που ακολουθεί.

Πίνακας 4 : Μήτρα Εννοιών Διπλωματικής Εργασίας

<table>
<thead>
<tr>
<th>Άρθρα</th>
<th>Έννοιες</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Traditional Project Management</td>
</tr>
<tr>
<td>(PMI, 2008)</td>
<td>✓</td>
</tr>
<tr>
<td>(Layton, 2012)</td>
<td>✓</td>
</tr>
<tr>
<td>(Wysocki, 2012)</td>
<td>✓</td>
</tr>
<tr>
<td>(Cohn, 2012)</td>
<td>✓</td>
</tr>
<tr>
<td>(Agile: Learn how Agile methodologies can breathe new life into your project management programs, 2011)</td>
<td>✓</td>
</tr>
<tr>
<td>(Aroonvatanaporn, Hongsongkiat, & Boehm, 2012)</td>
<td>✓</td>
</tr>
<tr>
<td>Source</td>
<td>In Table</td>
</tr>
<tr>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>Williams, Krebs, & Layman, 2004</td>
<td>✓</td>
</tr>
<tr>
<td>Qumer & Henderson - Sellers, 2007</td>
<td></td>
</tr>
<tr>
<td>Williams, Krebs, Layman, & Antón, Toward a Framework for Evaluating Extreme Programming, 2004</td>
<td></td>
</tr>
<tr>
<td>Qumer & Henderson-Sellers, An evaluation of the degree of agility in six agile methods and its applicability for method engineering, 2007</td>
<td>✓</td>
</tr>
<tr>
<td>Schwaber & Sutherland, 2011</td>
<td></td>
</tr>
<tr>
<td>Pikkarainen, 2005</td>
<td>✓</td>
</tr>
<tr>
<td>Reagan, 2012</td>
<td></td>
</tr>
<tr>
<td>Hass, 2007</td>
<td>✓</td>
</tr>
<tr>
<td>Fernandez & Fernandez, 2009</td>
<td>✓</td>
</tr>
<tr>
<td>Calo, Estevez, & Fillottrani, 2010</td>
<td></td>
</tr>
<tr>
<td>State Of Agile Survey, 2011</td>
<td>✓</td>
</tr>
<tr>
<td>Sulaiman & Smits, 2007</td>
<td></td>
</tr>
<tr>
<td>www.implementingscrum.com</td>
<td></td>
</tr>
<tr>
<td>agiletortoise.wikidot.com</td>
<td>✓</td>
</tr>
<tr>
<td>Scrum Practitioners</td>
<td></td>
</tr>
<tr>
<td>Agile Project Managers</td>
<td></td>
</tr>
<tr>
<td>Wikipedia, 2012</td>
<td></td>
</tr>
<tr>
<td>Hartmann & Dymond, 2006</td>
<td></td>
</tr>
<tr>
<td>Krebs William & Kroll, 2008</td>
<td></td>
</tr>
</tbody>
</table>

Αξίζει να επισημανθεί ότι το γνωστικό αντικείμενο της διαχείρισης έργων πληροφορικής που αφορά στα εναλλακτικά μοντέλα και στις μεθοδολογίες εφαρμογής των μοντέλων αυτών, κινούνται σε σημαντικό βαθμό στους χώρους της πρακτικής. Κατά συνέπεια οι βασικές πηγές αναφοράς στην παρούσα μελέτη, προέρχονται από τα επιστημονικά βιβλία του χώρου και από αναφορές επιλεγμένων διαδικτυακών κόμβων, blogs και forums. Οι πηγές αναφοράς για την ενότητα της αξιολόγησης, προέρχονται από επιστημονικά άρθρα και μελέτες που έχουν δημοσιευτεί από έγκυρους ακαδημαϊκούς και επιστημονικούς φορείς, σε περιοδικά διεθνούς φήμης.
3 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ

3.1 Εισαγωγή

Στόχος του κεφαλαίου είναι η αποτύπωση των βασικών εννοιών που οριοθετούν το γνωστικό αντικείμενο της διαχείρισης των έργων πληροφορικής.

3.2 Οδηγός στον Κορμό Γνώσης Διαχείρισης Έργων

Πρόκειται για τον πιο αναγνωρισμένο οδηγό στον τομέα της διαχείρισης έργων, ο οποίος δημιουργήθηκε αρχικά από το Ινστιτούτο Διαχείρισης Έργων (PMI) σε επιστημονικό άρθρο το 1983, σε μια προσπάθεια να τεκμηριώσει και να τυποποιήσει ευρέως διαδεδομένες πληροφορίες και πρακτικές στο χώρο της διαχείρισης έργων. Ο Οδηγός στον Κορμό Γνώσης Διαχείρισης Έργων (Guide to the Project Management Body of Knowledge) βρίσκεται από το από το Δεκέμβριο του 2008 στην τέταρτη έκδοση, ενώ το Ινστιτούτο Διαχείρισης Έργων έχει διαθέσει από το Φεβρουάριο του 2012 το προσχέδιο (exposure draft) της πέμπτης έκδοσης. Ο συγκεκριμένος οδηγός, παρότι κατατάσσεται βιβλιογραφικά στις πηγές της Παραδοσιακής Διαχείρισης Έργων (Traditional Project Management), αποτελεί τη βάση ακόμη και για τα πιο σύγχρονα μοντέλα διαχείρισης έργων. Η βασική θεώρηση του οδηγού είναι ότι μια εργασία ολοκληρώνεται μέσα από επιμέρους διεργασίες και αποδέχεται συνολικά σαράντα (42) διεργασίες τις οποίες οργανώνει σε πέντε Ομάδες Διεργασιών (Process Groups) και εννέα Τομείς Γνώσεις (Knowledge Areas). Στα πλαίσια του ίδιου Οδηγού διατυπώνονται οι ορισμοί για τις βασικές έννοιες της διαχείρισης έργων που ακολουθούν στις επόμενες παραγράφους.

3.3 Ορισμός Έργου

Ο Οδηγός στον Κορμό Γνώσης Διαχείρισης Έργων ορίζει το έργο ως εξής:

“Όσο Έργο ορίζεται μια προσωρινή προσπάθεια με στόχο τη δημιουργία της μοναδικού προϊόντος, υπηρεσίας ή αποτελέσματος” (PMI, 2008, σ. 5).

Ο προσωρινός χαρακτήρας των έργων υποδεικνύει ότι κάθε έργο έχει καθορισμένη αρχή και τέλος. Το τέλος επέρχεται όταν είτε επιτυγχάνονται οι στόχοι του έργου είτε το έργο τερματίζεται εξαιτίας της αδυναμίας επίτευξης των στόχων είτε εξαντλούνται οι διαθέσιμοι πόροι χρηματοδότησης.
Δεδομένης της δυναμικής που προκύπτει κατά την υλοποίηση των έργων πληροφορικής, υπάρχει ένας εναλλακτικός ορισμός που διατυπώνεται στο βιβλίο Robert K. Wysocki «Effective Project Management» ο οποίος επικεντρώνεται στην προστιθέμενη επιχειρηματική αξία που παράγεται.

"Ως Έργο ορίζεται μια ακολουθία από πεπερασμένες αλληλοεξαρτώμενες διεργασίες, η ολοκλήρωση των οποίων οδηγεί στην παράδοση της αναμενόμενης προστιθέμενης επιχειρηματικής αξίας, όπως αυτή διαμορφώνεται κατά τη διάρκεια υλοποίησης του έργου". (Wysocki, 2012, σ. 9)

Ο συγκεκριμένος ορισμός είναι εύστοχος καθώς προσδιορίζει το έργο με βάση την επιχειρηματική αξία που παράγεται και όχι με τις διαδικασίες που οδηγούν στο παραγόμενο αποτέλεσμα. Οι σύγχρονες μεθοδολογίες έργων πληροφορικής εναρμονίζονται πλήρως με την λογική αυτή, καθώς έχουν ως άξονα αναφοράς την προστιθέμενη επιχειρηματική αξία του πελάτη και όχι στην στείρα πλήρωση των προδιαγραφών μιας τυπικής σύμβασης.

3.4 Ορισμός Διαχείρισης Έργου

Ο ορισμός που δίνεται από το Ινστιτούτο Διαχείρισης Έργων (PMI) έχει ως εξής:

"Ως διαχείριση έργου ορίζεται η εφαρμογή γνώσης, δεξιοτήτων, εργαλείων και τεχνικών στις δραστηριότητες του έργου, με στόχο την ικανοποίηση των προδιαγραφών ". (PMI, 2008, σ. 6)

Η αποδέσμευση της διαδικασίας της διαχείρισης ενός έργου με αποκλειστικό γνώμονα την πλήρωση των προδιαγραφών και η παράλληλη προσαρμογή του στην ικανοποίηση του πελάτη, μέσα από την απόδοση μέγιστης αξίας, οδηγεί στον εναλλακτικό ορισμό που ακολουθεί:

"Ως Διαχείριση Έργου ορίζεται μια οργανωμένη λογική προσέγγιση η οποία αξιοποιεί απαραίτητα τη συμμετοχή του πελάτη, με στόχο την υλοποίηση των απαιτήσεων / αναγκών του πελάτη και γνώμονα την επίτευξη της αναμενομένης προστιθέμενης επιχειρηματικής αξίας" (Wysocki, 2012, σ. 27)

Ωστόσο η διαχείριση έργου δύναται να εξεταστεί από εναλλακτικές οπτικές γωνίες. Όπως είναι αναμενόμενο οι περισσότεροι ορισμοί πραγματεύονται το θέμα της επίτευξης των στόχων σε σχέση με το τελικό προιόν και προφανώς τον πελάτη. Υπό αυτή την οπτική, η διαχείριση έργου πραγματεύεται τα ακόλουθα ερωτήματα:
Ποια επιχειρηματική κατάσταση αντιμετωπίζεται από το έργο;
Τι πρέπει να κάνουμε;
Τι θα κάνουμε;
Πως θα το κάνουμε;
Πως θα ξέρουμε ότι το κάναμε;
Πόσο καλά το κάναμε;

Τα συγκεκριμένα ερωτήματα διέπουν συνολικά τον κύκλο ζωής ενός έργου πληροφορικής, από τον προσδιορισμό και την οριοθέτηση του στόχου, μέχρι την τελική αξιολόγηση και αποτίμηση των αποτελεσμάτων του έργου.

Παρόλα αυτά, η διαχείριση των έργων πραγματεύεται και τους προβληματισμούς, αναφορικά με τη σχέση της διαδικασίας με την εταιρία ανάπτυξης και την ομάδα έργου του τελικού προϊόντος. Στην περίπτωση αυτή τα ερωτήματα προσαρμόζονται ως εξής (Cohn, 2012, p. 430):

- Άξιζε η επιλογή της συγκεκριμένης μεθόδου διαχείρισης του έργου ή των έργων;
- Τι πρέπει να διορθωθεί στις επόμενες υλοποιήσεις;
- Πρέπει να συνεχίσουμε με την εφαρμογή της συγκεκριμένης μεθόδου διαχείρισης;
- Λειτουργούμε καλύτερα ως ομάδα στην ανάπτυξη λογισμικού;
- Παράγουμε καλύτερο λογισμικό από πριν;
- Υπάρχει αναγνώριση της βελτίωσης από τους πελάτες;

3.5 Ορισμός Απαίτησης

Ο ορισμός που δίνεται στο πρότυπο IEEE 610 έχει ως εξής:

“Ως Απαίτηση ορίζεται:

1. Μια συνδήκη ή ικανότητα που χρειάζεται ο ενδιαφερόμενος – πελάτης για να λύσει ένα πρόβλημα ή να επιτύχει έναν στόχο
2. Μια συνδήκη ή ικανότητα που πρέπει να πληρείται ή να ενσωματώνεται σε μια λύση ή μια συνιστώσα της λύσης, έτσι ώστε να ικανοποιείται η σύμβαση, μια προδιαγραφή, ένα πρότυπο ή οποιοδήποτε άλλο επίσημο έγγραφο
3. Μια τεκμηριωμένη αναπαράσταση μιας συνθήκης ή ικανότητας των περιπτώσεων (1) και (2)”.

Δεδομένου ότι το συνηθέστερο μέγεθος προσδιορισμού της επιτυχίας του έργου, είναι η αξία που αποδόθηκε στον αποδέκτη – πελάτη και όχι η λειτουργία εντός των χρονικών και κοστολογικών περιορισμών, η έννοια της απαίτησης θα μπορούσε να προσεγγιστεί πελατοκεντρικά ως εξής:

“Ως προδιαγραφή ορίζεται η επιθυμητή τελική κατάσταση, η ενσωμάτωση της οποίας στην τελική λύση, οδηγεί στην παράδοση συγκεκριμένης, μετρήσιμης και αυξητικής επιχειρηματικής αξίας στον οργανισμό / επιχείρηση. Το σύνολο των προδιαγραφών διαμορφώνουν το απαραίτητο και επαρκές πλαίσιο για την επίτευξη της προστιθέμενης επιχειρηματικής αξίας”.

(Wysocki, 2012, σ. 29)

3.6 Επιχειρηματική Αξία

Είναι σαφές ότι στις πελατοκεντρικές προσεγγίσεις, η επιχειρηματική αξία αποτελεί την κεντρική έννοια. Αξίζει να επισημανθεί ότι η επιχειρηματική αξία δεν αποτελεί μονοδιάστατο μέγεθος καθώς αφορά σε:

- Αξία στον πελάτη
- Αξία στην ομάδα
- Αξία στις διαδικασίες
- Αξία στο χώρο εργασίας
- Αξία στο προϊόν

(Qumer & Henderson - Sellers, 2007, σ. 1902)

3.7 Ομάδες Διεργασιών Διαχείρισης Έργων

Ο “Οδηγός στον Κορμό Γνώσης Διαχείρισης Έργων” (PMI, 2008) ορίζει πέντε διακριτές Ομάδες Διεργασιών που αναλύονται στη συνέχεια. Οι Ομάδες Διεργασιών δεν ταυτίζονται σε καμία περίπτωση με τις φάσεις του έργου, καθώς δεν σχετίζονται με την παραγωγή συγκεκριμένων παραδοτέων. Η ομαδοποίηση των διεργασιών προκύπτει με βάση τη λογική στη διαδοχή τους, ανεξάρτητα από τη χρονική στιγμή κατά την οποία εκτελείται η κάθε διεργασία. Η συγκεκριμένη ομαδοποίηση των διεργασιών, επιτρέπει την ανάπτυξη των επιμέρους μοντέλων
διαχείρισης του κύκλου ζωής ενός έργου (Project Management Lifecycle Model). Στην εκφυλισμένη περίπτωση κάθε ομάδα διεργασίας μπορεί να ολοκληρωθεί στα πλαίσια ενός έργου πληροφορικής μια και μόνο φορά. Σε πιο σύνθετα έργα, οι Ομάδες Διεργασιών επαναλαμβάνονται μια ή περισσότερες φορές, σε μια ή περισσότερες φάσεις του έργου.

3.7.1 Ομάδα Αρχικοποίησης (Initializing Process Group)

Η ομάδα αρχικοποίησης απαρτίζεται από τις απαραίτητες διεργασίες που απαιτούνται για τον καθορισμό ενός νέου έργου ή μιας φάσης έργου.

Η συγκεκριμένη ομάδα διεργασιών πραγματεύεται την ανοιχτήμα & τον καθορισμό των βασικών στόχων και της έκτασης του έργου (scoping) και δεν περιλαμβάνει καμία απολύτως διεργασία που να υπάρχει με την εκτέλεση των εργασιών. Ο καθορισμός της έκτασης του έργου, περιλαμβάνει τον καθορισμό του αρχικού στόχου, του διαθέσιμου χρόνου και του διαθέσιμου προϋπολογισμού.

Ωστόσο είναι κρίσιμο να αναφέρθει ότι η συγκεκριμένη ομάδα περιλαμβάνει τη διαμόρφωση των κριτηρίων επιτυχίας, με βάση τα οποία θα γίνει η ολοκλήρωση του έργου. Η ενεργή εμπλοκή του πελάτη και των λοιπών ομάδων ενδιαφέρουν στις διεργασίες της Ομάδας Αρχικοποίησης, διαμορφώνουν ένα ασφαλές πλαίσιο κατανόησης των στόχων και των παραδοτέων του έργου (PMI, 2008, p. 44).

Η Ομάδα Αρχικοποίησης περιλαμβάνει τις ακόλουθες διεργασίες:

- Ορισμός ομάδας διαχείρισης έργου και προσδιορισμός ρόλων
- Εντοπισμός και τεκμηρίωση των αναγκών του πελάτη σε αρχικό επίπεδο
- Ανταλλαγή απόψεων με τον πελάτη για τον τρόπο πλήρωσης των αναγκών
- Συγγραφή της σύντομης περιγραφής του έργου (proposal / project idea)
- Κατάθεση της σύντομης περιγραφής για διαβούλευση
- Λήψη έγκρισης για τον σχεδιασμό του έργου

3.7.2 Ομάδα Σχεδιασμού (Planning Process Group)

Η Ομάδα Σχεδιασμού απαρτίζεται από τις διεργασίες που απαιτούνται για το σαφή προσδιορισμό του πεδίου εφαρμογής, τον ενδελεχή καθορισμό των αντικειμενικών στόχων και την ανάπτυξη του πλάνου δράσης για την επίτευξη των στόχων αυτών (PMI, 2008, pp. 46-48). Στη φάση αυτή, η καταγραφή αναγκών «μεταφράζεται» σε απαιτήσεις οι οποίες με τη σειρά
τους θα οδηγήσουν στις προδιαγραφές σε τεχνολογικό και επιχειρησιακό επίπεδο. Ανάλογα με το μοντέλο διαχείρισης του έργου, οι διεργασίες της Ομάδας Σχεδιασμού ενδέχεται να εκτελεστούν περισσότερες από μια φορές, με στόχο είτε την επίτευξη μεγαλύτερου βαθμού ανάλυσης στις απαιτήσεις, είτε στη διόρθωση των σφαλμάτων της προηγούμενης εκτέλεσής τους.

Οι διεργασίες που περιλαμβάνονται στη συγκεκριμένη ομάδα είναι:

- Ανάπτυξη αναλυτικού πλάνου διαχείρισης έργου
- Συλλογή προδιαγραφών
- Ανάλυση της έκτασης και των αναλυτικών στόχων του έργου
- Ανάπτυξη πλάνου εργασιών μέσα από την αποσύνθεση των απαιτήσεων
- Εκτίμηση και αναθεώρηση χρονοδιαγράμματος εκτέλεσης
- Εκτίμηση και αναθεώρηση των απαιτούμενων πόρων
- Εκτίμηση και αναθεώρηση συνολικού κόστους εργασιών
- Προσδιορισμός και αναθεώρηση του πλάνου εκτέλεσης
- Προσδιορισμός του πλάνου διαχείρισης ποιότητας
- Σύνταξη πλάνου διαχείρισης και αντιμετώπισης κινδύνων
- Σχεδιασμός προμηθειών, εφόσον απαιτούνται
- Κατάθεση προς διαβούλευση των σχετικών παραδοτέων στις ομάδες ενδιαφέροντος (stakeholders), με στόχο την έγκριση για την εκτέλεση του έργου ή της φάσης.

Οι διάφορες μεθοδολογίες διαχείρισης έργων πραγματεύονται τις διεργασίες της Ομάδας Σχεδιασμού με διαφορετικό τρόπο. Οι παραδοσιακές πρακτικές διαχείρισης έργων ορίζουν με ακρίβεια τα δεδομένα εισόδου και εξόδου για κάθε διεργασία χωριστά, ενώ οι σύγχρονες μέθοδοι αντιμετωπίζουν τις διεργασίες ως επαναλαμβανόμενες, με στόχο την τμηματική και σε βάθος χρόνου επίτευξη των στόχων.

3.7.3 Ομάδα Εκτέλεσης (Executing Process Group)

Η Ομάδα Εκτέλεσης περιλαμβάνει την υλοποίηση των εργασιών, όπως αυτές έχουν προσδιοριστεί στη μελέτη εφαρμογής κατά το σχεδιασμό του έργου. Απώτερος στόχος είναι η επιτυχής πλήρωση των προδιαγραφών του έργου. Παράλληλα, η συγκεκριμένη ομάδα διαχειρίζεται και το μοντέλο επικοινωνίας και ροής των πληροφοριών μεταξύ των μελών της.
ομάδας έργου, τόσο από τη μεριά του πελάτη, όσο και από τη μεριά του αναδόχου του έργου (PMI, 2008, pp. 55-56).

Οι διεργασίες που περιλαμβάνονται στη συγκεκριμένη ομάδα είναι:

- Διοίκηση και διαχείριση του πλάνου υλοποίησης
- Εκτέλεση του πλάνου διασφάλισης ποιότητας
- Ορισμός και διαχείριση της ομάδας εργασίας
- Διαμόρφωση κανόνων λειτουργίας
- Διαμόρφωση διαδικασιών διαχείρισης αλλαγών αρχικών στόχων
- Διαχείριση επικοινωνίας μεταξύ των μελών της ομάδας έργου
- Επικοινωνία με τον πελάτη
- Διενέργεια προμηθειών

3.7.4 Ομάδα Παρακολούθησης και Ελέγχου (Monitoring and Controlling Process Group)

Η Ομάδα Παρακολούθησης και Ελέγχου απαρτίζεται από τις διεργασίες που απαιτούνται για τη μέτρηση της προόδου του φυσικού και οικονομικού αντικειμένου του έργου. Αντικείμενο των διεργασιών της συγκεκριμένης ομάδας είναι ο τακτικός έλεγχος, η τροφοδότηση με αναφορές προόδου ή αποκλίσεων, η εφαρμογή και αναθεώρηση του πλάνου αντιμετώπισης κινδύνων κ.α. Στόχος της ομάδας είναι ο έγκαιρος εντοπισμός και εφαρμογή εκπλήξεων προγραμμάτων που δύναται να θέσουν το έργο εκτός προδιαγραφών, χρονοδιαγράμματος και προϋπολογισμού (PMI, 2008, pp. 59-60).

Οι πιο σύγχρονες μέθοδοι διασχέδιωσης αντιμετωπίζουν τον έλεγχο και την παρακολούθηση από διαφορετική οπτική γωνία που αφορά στην παραγωγή μέγιστου ωφέλιμου έργου και προστιθέμενης αξίας, χωρίς ωστόσο να αγνοούν τις παραδοσιακές προσεγγίσεις.

Οι διεργασίες που περιλαμβάνονται στη συγκεκριμένη ομάδα είναι:

- Εφαρμογή του συστήματος μέτρησης της απόδοσης του έργου
- Παρακολούθηση προόδου φυσικού αντικειμένου
- Παρακολούθηση εκτέλεσης του προϋπολογισμού
- Παρακολούθηση των κινδύνων
- Παροχή αναφορών προόδου
- Παροχή αναφορών αποκλίσεων
- Παροχή αναφορών επίπτωσης κινδύνων και παράθεση μέτρων καταστολής
Η Ομάδα Παρακολούθησης και Ελέγχου περιλαμβάνει τις πιο ουσιαστικές διεργασίες που εκτελούνται στα πλαίσια του έργου. Ο διαχειριστής του έργου καλείται να διαχειριστεί τόσο εσωτερικά θέματα της ομάδας υλοποίησης, όσο και εξωτερικά θέματα που αφορούν τον πελάτη, τον χρηματοδότη αλλά και την ανώτερη διοίκηση. Κατά τη διάρκεια παρακολούθησης και ελέγχου του έργου και καθώς τα προβλήματα και τα αιτήματα αλλαγών των αρχικών στόχων πολλαπλασιάζονται (scope change), η σχέση με τον πελάτη σηματοδοτεί σε μεγάλο βαθμό την επιτυχία ή αποτυχία του έργου. Στον παράγοντα αυτό επενδύουν σημαντικά οι σύγχρονες μέθοδοι διαχείρισης των έργων πληροφορικής.

3.7.5 Ομάδα Ολοκλήρωσης (Closing Process Group)

Η Ομάδα Ολοκλήρωσης περιλαμβάνει τις διεργασίες που σχετίζονται με την οριστική παράδοση του έργου και κατά συνέπεια την παραλαβή του από τον πελάτη (PMI, 2008, p. 64). Στις παραδοσιακές πρακτικές διαχείρισης έργων, η ολοκλήρωση του έργου προϋποθέτει την άρτια εκτέλεση του πλάνου υλοποίησης, την πιστοποίηση ολοκλήρωσης των επιμέρους φάσεων και σε κάθε περίπτωση την εκπλήρωση των συμβατικών υποχρεώσεων. Οι σύγχρονες πρακτικές υιοθετούν μια πιο ποιοτική προσέγγιση για την ολοκλήρωση του έργου, η οποία αναφέρεται στην επίτευξη των στόχων σε σχέση με το βαθμό ικανοποίησης του πελάτη, αλλά και της υπόλοιπης ομάδας ανάπτυξης.

Οι διεργασίες που περιλαμβάνονται στη συγκεκριμένη ομάδα είναι:

- Παραλαβή έργου με την υπογραφή του πελάτη
- Σύνταξη της τελικής αναφοράς έργου
- Διενέργεια ελέγχου των πεπραγμένων του έργου
- Αρχειοθέτηση του υλικού εκτέλεσης του έργου
- Κλείσιμο των προμηθειών.
3.8 Περιοχές Γνώσης Διαχείρισης Έργων

Ο “Οδηγός στον Κορμό Γνώσης Διαχείρισης Έργων” (PMI, 2008) ορίζει εννέα διακριτές Περιοχές Γνώσης. Οι Περιοχές Γνώσης οριοθετούν την εκτέλεση των διεργασιών διαχείρισης ενός έργου στα πλαίσια μιας ή περισσότερων Ομάδων Διεργασιών (Wysocki, 2012, p. 67). Η βασική θεωρία της διαχείρισης έργων, καταγράφει τα δεδομένα εισόδου και εξόδου για το σύνολο των διεργασιών των περιοχών γνώσης. Η αναλυτική παράθεση των δεδομένων εισόδου και εξόδου των διεργασιών, δεν αποτελεί στόχο της συγκεκριμένης διπλωματικής εργασίας.

3.8.1 Διαχείριση Ολοκλήρωσης (Integration Management)

Η Διαχείριση Ολοκλήρωσης σε ένα έργο συμπεριλαμβάνει το σύνολο των δραστηριοτήτων που απαιτούνται για τον εντοπισμό, τον καθορισμό, την εκτέλεση και τον συντονισμό των επιμέρους διεργασιών που εκτελούνται στα πλαίσια των εξειδικευμένων Ομάδων Διεργασιών (Process Groups). Επί της ουσίας, η ολοκλήρωση αποτελεί το συνδετικό κρίκο ανάμεσα στα παραδοτέα των επιμέρους Ομάδων Διεργασιών, ξεκινώντας από την περιγραφή του έργου και συνεχίζοντας στο σχεδιασμό και την εκτέλεση του έργου, συμπεριλαμβάνοντας την τήρηση και τον έλεγχο του πλάνου υλοποίησης, μέχρι την οριστική παραλαβή και το κλείσιμο του έργου (PMI, 2008, pp. 71-72).

3.8.2 Διαχείριση Στόχων (Scope Management)

Η Διαχείριση Στόχων περιλαμβάνει τις διεργασίες που διασφαλίζουν την οριοθέτηση των εργασιών που ουσιαστικά ολοκληρώνουν το φυσικό αντικείμενο του έργου, απομονώνοντας της περιττές ή εκτός προδιαγραφών δραστηριότητες. Ο κύριος σκοπός της Διαχείρισης Στόχων είναι ο καθορισμός των εργασιών που περιλαμβάνονται και αυτών που εξαιρούνται, μέσα από τον καθορισμό και την τεκμηρίωση των απαιτήσεων του πελάτη (PMI, 2008, p. 103). Η συγκεκριμένη περιοχή γνώσης απαντάται σε όλες τις μεθοδολογίες / μοντέλα διαχείρισης έργων, αλλά η εφαρμογή των διαδικασιών συλλογής και επεξεργασίας των απαιτήσεων διαφοροποιείται σημαντικά ανά μεθοδολογία. Η ανάπτυξη της Δομής Καταμερισμού των Εργασιών (Work Breakdown Structure), ανεξαρτήτως της μεθοδολογίας και του βάθους ανάλυσης, διαμορφώνει τις προϋποθέσεις για την εκτίμηση των απαιτούμενων πόρων, του χρόνου και του κόστους υλοποίησης του έργου.
3.8.3 Διαχείριση Χρόνου (Time Management)
Η Διαχείριση Χρόνου περιλαμβάνει τις διεργασίες που διασφαλίζουν την έγκαιρη ολοκλήρωση του έργου. Η Διαχείριση Χρόνου αποτελείται από ένα μέρος που αφορά στον σχεδιασμό και ένα μέρος που αφορά στον έλεγχο. Με το σχεδιασμό επιτυγχάνεται η εκτίμηση της ημερολογιακής διάρκειας των επιμέρους εργασιών αλλά και της προσπάθειας που απαιτείται για την ολοκλήρωσή τους (π.χ. ανθρωποημέρες, ανθρωπομήνες κ.ο.κ.). Ο έλεγχος που αποτελεί μέρος της Ομάδας Διεργασιών Παρακολούθησης και Ελέγχου, επιτυγχάνει τη διαχείριση των χρονικών και χρηματικών μεταβλητών του έργου και τον εντοπισμό των αποκλίσεων μεταξύ του πραγματικού και του εκτιμώμενου πλάνου υλοποίησης.

3.8.4 Διαχείριση Κόστους (Cost Management)
Η Διαχείριση Κόστους περιλαμβάνει τις διεργασίες εκτίμησης, κοστολόγησης και ελέγχου, με στόχο την ολοκλήρωση του έργου χωρίς υπέρβαση του προϋπολογισμού (PMI, 2008, p. 165). Η Διαχείριση Κόστους αποτελείται από ένα μέρος σχεδιαστικό και ένα μέρος που αφορά στον έλεγχο. Με τον σχεδιασμό επιτυγχάνεται η κατάρτιση του προϋπολογισμού και η σύνδεση των επιμέρους κέντρων κόστους με το πρόγραμμα εκτέλεσης του έργου. Ο έλεγχος ενσωματώνει διαδικασίες παρακολούθησης της εκτέλεσης του προϋπολογισμού, με τη χρήση χρηματοοικονομικών αναφορών κερδών και αποκλίσεων (Wysocki, 2012, p. 68).

3.8.5 Διαχείριση Ποιότητας (Quality Management)
Η Διαχείριση Ποιότητας περιλαμβάνει τις διεργασίες οι οποίες καθορίζουν την πολιτική ποιότητας, τους αντικειμενικούς στόχους, καθώς και τους τομείς ευθύνης που διασφαλίζουν την ιδανική πλήρωση των αναγκών του πελάτη. Ένα ολοκληρωμένο Πλάνο Διαχείρισης Ποιότητας περιλαμβάνει τις ακόλουθες διεργασίες:

- Σχεδιασμός Πλάνου Ποιότητας
- Εκτέλεση Πλάνου Διασφάλιση Ποιότητας
- Εκτέλεση Πλάνου Ελέγχου Ποιότητας

Επί της ουσίας, η Διαχείριση Ποιότητας διέπει τόσο τις διαδικασίες διοίκησης, όσο και το παραγόμενο προϊόν του έργου (PMI, 2008, p. 189). Παρότι στην πράξη η Διαχείριση Ποιότητας συχνά υποτιμάται από τους Διαχειριστές Έργων, η ορθή εφαρμογή και παρακολούθηση της, αποτελεί παράγοντα μείζονος σημασίας για την επίτευξη της προστιθέμενης επιχειρηματικής αξίας. Το τελικό προϊόν του έργου διαφοροποιεί τα μετρήσιμα μεγέθη και τις τεχνικές που
εφαρμόζονται στο εκάστοτε πλάνο, χωρίς ωστόσο να διαφοροποιεί σημαντικά το ίδιο το πλάνο.

Αξίζει να επισημανθεί ότι η Διαχείριση Ποιότητας έχει ως απόλυτο στόχο την ακριβή πλήρωση των προδιαγραφών και όχι την υπέρβασή τους (Wysocki, 2012, p. 69).

3.8.6 Διαχείριση Ανθρώπινων Πόρων (Human Resource Management)

Η Διαχείριση Ανθρώπινων Πόρων περιλαμβάνει τις διεργασίες οργάνωσης, διοίκησης και καθοδήγησης της ομάδας εργασίας (PMI, 2008, p. 215). Οι αρμοδιότητες του Διαχειριστή έργου δεν περιορίζονται στη διαχείριση των εργασιών που απαιτούνται για την ολοκλήρωση του έργου, αλλά επεκτείνονται στη διαχείριση των μελών της ομάδας και των μεταξύ τους σχέσεων (Wysocki, 2012, p. 70). Η Διαχείριση Ανθρώπινων Πόρων περιλαμβάνει την ανάθεση ρόλων και τομέων ευθύνης στα μέλη της ομάδας, αλλά και τη διασφάλιση της συμμετοχής των στελεχών στο σχεδιασμό του έργου και στη λήψη αποφάσεων. Η ενεργή συμμετοχή και εμπλοκή των μελών της ομάδας στο σχεδιασμό του έργου, λειτουργεί ευεργετικά, καθώς από τη μια συσσωρεύει την πολυσυλλεκτική εμπειρία και από την άλλη ενισχύει την αφοσίωσή τους στους αντικειμενικούς στόχους.

3.8.7 Διαχείριση Επικοινωνίας (Communication Management)

Η Διαχείριση Επικοινωνίας περιλαμβάνει τις διεργασίες που απαιτούνται για την έγκαιρη και ορθή ανάπτυξη, συλλογή, διανομή, αποθήκευση, ανάκτηση και διάθεση της πληροφορίας που διακινείται στα πλαίσια του έργου (PMI, 2008, p. 243). Δεδομένης της πολυσυλλεκτικότητας των εμπλεκομένων σε ένα έργο, η οποία μεταφράζεται σε διαφορετικές κουλτούρες, διαφορετικά επίπεδα γνώσεων και δεξιοτήτων, καθώς και διαφορετικές αποφάσεις, αποτελεί εξαιρετικά σύνθετο εγχείρημα της διαχείρισης της επικοινωνίας, καθώς από τη μια συσσωρεύει την πολυσυλλεκτική εμπειρία και από την άλλη ενισχύει την αφοσίωσή τους στους αντικειμενικούς στόχους.

Δεν είναι τυχαίο το γεγονός ότι η ελλιπής επικοινωνία αποτελεί καθοριστικό παράγοντα αποτυχίας υπεράνω το 70% (Wysocki, 2012, p. 74). Η πράξη καταδεικνύει ότι ο σχεδιασμός ενός αποτελεσματικού πλάνου επικοινωνίας είναι σχετικά απλός, σε αντίθεση με την εφαρμογή του πλάνου αυτού. Άλλωστε η διαχείριση των ανθρώπινων σχέσεων και των προσδοκιών αυτών, αποτελεί εξαιρετικά σύνθετο εγχείρημα το οποίο απασχολεί ευρύτερους επιστημονικούς τομείς από αυτόν της διαχείρισης έργων.
Ο εντοπισμός των εμπλεκομένων / ενδιαφερομένων (stakeholders), το βάθος γνώσης που απαιτείται ή χρειάζεται από τους ενδιαφερόμενους αναφορικά με το έργο και ο τρόπος με τον οποίο θα επιτευχθεί η πλήρωση των αναγκών της κάθε ομάδας, αποτελεί τη βάση ενός αποτελεσματικού πλάνου επικοινωνίας.

Οι διεργασίες της Διαχείρισης Επικοινωνίας διέπει αναπόφευκτα το σύνολο του κύκλου ζωής ενός έργου.

3.8.8 Διαχείριση Κινδύνων (Risk Management)
Η διαχείριση Κινδύνων ενσωματώνει τις διεργασίες που απαιτούνται για τη διεξαγωγή Πλάνου Διαχείρισης Κινδύνων, μέσα από τον εντοπισμό, την ανάλυση καθώς και την εφαρμογή αντιμέτρων καταστολής τους, στα πλαίσια της συνεχόμενης παρακολούθησης του έργου. Ο αντικειμενικός στόχος του Πλάνου Διαχείρισης Κινδύνων είναι η αύξηση της πιθανότητας των θετικών συμβάντων και του αντίκτυπου αυτών και η ελαχιστοποίηση της πιθανότητας και του αντίκτυπου των αρνητικών γεγονότων. Ο κίνδυνος τοποθετείται χρονικά στο μέλλον και αποτελεί ένα αβέβαιο γεγονός ή συνθήκη που αν συμβεί, έχει επίδραση σε ένα τουλάχιστον από τους στόχους του έργου. Στα πλαίσια του έργου απαντώνται οι «γνωστοί κίνδυνοι» οι οποίοι είναι αυτοί που έχουν εντοπιστεί και αναλυθεί καθώς και οι «άγνωστοι κίνδυνοι» για τους οποίους είναι προφανές ότι δεν μπορεί να υπάρχει πρόληψη και ως εκ τούτου απαιτείται εφαρμογή σχεδίου έκτακτης ανάγκης (continency planning) (PMI, 2008, pp. 273-275).

Η Ανάλυση και Διαχείριση Κινδύνων περιλαμβάνει συνοπτικά:

- Εντοπισμός κινδύνων με προσδιορισμό πιθανότητας εμφάνισης
- Αξιολόγηση επιπτώσεων σε χρηματοοικονομικό επίπεδο
- Αξιολόγηση επιπτώσεων σε ποιοτικό επίπεδο
- Αξιολόγηση επιπτώσεων σε επίπεδο χρονοδιαγράμματος
- Μεθοδολογία ελαχιστοποίησης της πιθανότητας εμφάνισης των κινδύνων
- Μεθοδολογία ελαχιστοποίησης της επίπτωσης από την εμφάνιση των κινδύνων
- Αποτύπωση εναλλακτικών λύσεων
- Εντοπισμός κινδύνων που ενδέχεται να προκύψουν κατά την εφαρμογή των εναλλακτικών ή των μεθοδολογιών περιορισμού του αντίκτυπου.
Οι διεργασίες της Διαχείρισης Κινδύνων αλληλεπιδρούν με τις διεργασίες από τις υπόλοιπες Περιοχές Γνώσης και διέπουν το σύνολο του κύκλου ζωής ενός έργου. Οι κίνδυνοι αποτελούν μια δυναμική οντότητα που θα προκύψει στα πλαίσια οποιαδήποτε μικρού ή μεγάλου έργου.

3.8.9 Διαχείριση Προμηθειών (Procurement Management)
Η Διαχείριση Προμηθειών περιλαμβάνει τις απαραίτητες διεργασίες για την αγορά ή την απόκτηση προϊόντων, υπηρεσιών ή αποτελεσμάτων που απαιτούνται, στα πλαίσια του έργου (PMI, 2008, p. 313).
Συνοπτικά η διαχείριση προμηθειών περιλαμβάνει διεργασίες που αφορούν στο σχεδιασμό, τη διεξαγωγή, τη διοίκηση και την ολοκλήρωση των διαδικασιών επιλογής προϊόντων ή υπηρεσιών από εξωτερικούς οργανισμούς / φορείς. Υπάρχουν διάφορες μεθοδολογίες διαχείρισης προμηθειών που προσαρμόζονται ιδανικά τόσο στα παραδοσιακά, όσο και στα σύγχρονα μοντέλα διαχείρισης έργων. Σε κάθε περίπτωση ο Διαχειριστής του Έργου θα πρέπει να είναι σε θέση να διαχειριστεί τις διεργασίες πρόσκλησης, αξιολόγησης και επιλογής προμηθευτών, παράλληλα με τη σύναψη, διαχείριση και διαπραγμάτευση των συμβάσεων, ανεξαρτήτως μοντέλου διαχείρισης έργων.

3.8.10 Αντιστοίχηση Ομάδων Διεργασιών και Περιοχών Γνώσης
Στον πίνακα που ακολουθεί παρουσιάζεται συνοπτικά η αντιστοίχηση των πέντε Ομάδων Διεργασιών (Process Groups) με τις εννέα Περιοχές Γνώσης (Knowledge Areas).

<table>
<thead>
<tr>
<th>Όμάδα</th>
<th>Ολοκλήρωση</th>
<th>Σχεδιασμό</th>
<th>Εκτέλεση</th>
<th>Παρακολούθηση</th>
<th>Ολοκλήρωση</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ολοκλήρωση</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Στοχοθεσία</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Χρόνος</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Κόστος</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ποιότητα</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Πόροι</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Προμήθειες</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
</tbody>
</table>

Πίνακας 5: Αντιστοίχηση Ομάδων Διεργασιών και Περιοχών Γνώσης (Wysocki, 2012, p. 100)
Ο παραπάνω πίνακας μπορεί να αποτελέσει ένα συνοπτικό οδηγό για τον Διαχειριστή ενός έργου, αναφορικά με την προσέγγιση και τη μεθοδολογία που θα επιλέξει. Για παράδειγμα, η Διαχείριση Στόχων (Στοχοθεσία) εμφανίζεται στις Ομάδες Σχεδιασμού και Παρακολούθησης, γεγονός που καταδεικνύει ότι ο Διαχειριστής θα πρέπει να προσαρμόσει το μοντέλο διαχείρισης του κύκλου ζωής του έργου, ώστε να συμπεριλάβει εργαλεία διαχείρισης αλλαγών (scope change procedures), τόσο στην Ομάδα Σχεδιασμού, όσο και στην Ομάδα Παρακολούθησης.

3.9 Μοντέλα Κύκλου Ζωής Διαχείρισης Έργων

Το Μοντέλο Διαχείρισης Κύκλου Ζωής ενός έργου αποτελεί στην ουσία τη μεθοδολογία που θα επιλεγεί από το Διαχειριστή για την υλοποίηση του έργου. Όλα τα μοντέλα διαχείρισης του κύκλου ζωής ενός έργου πληροφορικής, στηρίζονται στο θεωρητικό μοντέλο της εφαρμογής των Ομάδων Διεργασιών (Process Groups) και των επιμέρους Τομέων Γνώσης (Knowledge Areas). Η διαφοροποίηση εντοπίζεται στον τρόπο με τον οποίο γίνεται η διαδοχή των Ομάδων Διεργασιών (επαναληπτικά, αυξητικά, σειριακά κτλ), σε συνδυασμό με το πώς κάθε Ομάδα Διεργασιών πραγματεύεται τους Τομείς Γνώσεις. Σε κάθε περίπτωση και σε όλα τα μοντέλα, ο στόχος είναι η επίτευξη των αντικειμενικών σκοπών του έργου.

Αξίζει να επισημανθεί ότι ο Κύκλος Ζωής Ανάπτυξης Λογισμικού (Software Development Lifecycle) δεν ταυτίζεται σε καμία περίπτωση με τον Κύκλο Ζωής της Διαχείρισης ενός έργου πληροφορικής (Project Management Lifecycle). Παρότι οι δύο κύκλοι μοιράζονται κάποια κοινά δεδομένα εισόδου (input), όπως παράδειγμα το όραμα του έργου, είναι σαφές ότι οδηγούν στην παραγωγή διαφορετικών δεδομένων εξόδου (outputs) και παραδοτών (Karkukly, 2005). Είναι σαφές ότι στον κύκλο ζωής ενός έργου, εκτελούνται διεργασίες οι οποίες υποχρεωτικά δεν σχετίζονται με την ανάπτυξη λογισμικού.

3.10 Τρίγωνο Διαχείρισης Έργων

Το Τρίγωνο Διαχείρισης Έργων, ευρέως γνωστό το Σιδηρούν Τρίγωνο (Iron Triangle), αποτελεί ένα μοντέλο παρακολούθησης των τριών βασικών μεταβλητών ενός έργου που είναι (Atkinson, 1999):

- Ο Χρόνος (Time)
Το Κόστος (Cost)
Το Στόχο (Scope)

Η γραφική απεικόνιση του τρίγωνου διαχείρισης έργων παρουσιάζεται στο διπλανό διάγραμμα. Οι μεταβλητές κόστος, χρόνος και στόχος αποτελούν τις πλευρές του τριγώνου, οπότε οποιαδήποτε μεταβολή σε μια από τις πλευρές, προκαλεί αυτόματα μεταβολές και στις υπόλοιπες πλευρές, καθώς και στην ποιότητα που αποτελεί την τέταρτη μεταβλητή του συστήματος.

Τα διαφορετικά μοντέλα διαχείρισης του κύκλου ζωής των έργων πληροφορικής, διαχειρίζονται τις μεταβλητές του τριγώνου με διαφορετικό τρόπο, αλλά με στόχο πάντοτε την επίτευξη ισορροπίας. Η ανάπτυξη σύγχρονων μεθόδων διαχείρισης έργων έχει ωθήσει στην εξέλιξη του συγκεκριμένου μοντέλου και στην προσθήκη νέων μεταβλητών / περιορισμών, όπως οι κίνδυνοι (risks) και οι πόροι (resources).

3.11 Συμπεράσματα
Ο προσδιορισμός των βασικών εννοιών της διαχείρισης έργων πληροφορικής, μέσα από την παράθεση των παραδοσιακών ορισμών και παράλληλα τη διατύπωση των σύγχρονων εναλλακτικών ορισμών, οριοθετεί το σχετικό γνωστικό αντικείμενο. Οι έννοιες που παρατίθενται, αποτελούν τη βάση για το σύνολο των σύγχρονων μεθόδων διαχείρισης έργων πληροφορικής. Η μετάβαση από τις παραδοσιακές στις ευέλικτες πρακτικές, διαφοροποιεί στην ουσία την ερμηνεία και τη χρήση των θεμελιωδών αυτών εννοιών.
4 ΜΟΝΤΕΛΑ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ

4.1 Εισαγωγή

Σκοπός του κεφαλαίου είναι η αποτύπωση των διαφορετικών μοντέλων διαχείρισης έργων πληροφορικής και η παράθεση της μεθοδολογίας επιλογής του καταλληλότερου μοντέλου. Η περιγραφή εστιάζει στον τρόπο με τον οποίο κάθε μοντέλο διαχειρίζεται την ακολουθία και την επαναληπτικότητα των Ομάδων Διεργασιών. Για κάθε μοντέλο παρατίθενται τα δυνατά σημεία και οι αδυναμίες, σε σχέση πάντοτε με την απόδοση ή αφαίρεση των τομέων της επιχειρηματικής αξίας (βλ. 3.6 Επιχειρηματική Αξία). Το εύρος της ανάλυσης των μοντέλων καταλήγει στην κριτική αξιολόγηση των παραδοσιακών και των ευέλικτων προσεγγίσεων.

4.2 Επιλογή Μοντέλου Διαχείρισης Έργου

Η επιλογή του μοντέλου διαχείρισης ενός έργου, προσδιορίζει μονοσήμαντα τις διαδικασίες και τα εργαλεία που θα υιοθετηθούν από την ομάδα εργασίας, με στόχο την εκπλήρωση των στόχων. Είναι δεδομένο ότι όλα τα μοντέλα δεν μπορούν να εφαρμοστούν σε όλα τα είδη έργων.

Ο Wysocki (2012) στο βιβλίο του Effective Project Management παρουσιάζει μια θεωρητική προσέγγιση για την επιλογή του ιδανικού μοντέλου διαχείρισης του κύκλου ζωής έργου. Σύμφωνα με τη συγκεκριμένη προσέγγιση, η επιλογή εξαρτάται σε σημαντικό βαθμό από δύο μεταβλητές: το στόχο και τη λύση. Και οι δυο μεταβλητές μπορούν να πάρουν τις τιμές Σαφής και Ασαφής, σχηματίζοντας τον πίνακα που ακολουθεί.

Πίνακας 6: Τεταρτημόρια Επιλογής Μοντέλου Κύκλου Ζωής Διαχείρισης Έργων (Wysocki, 2012)

<table>
<thead>
<tr>
<th>ΛΥΣΗ</th>
<th>ΣΤΟΧΟΣ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ασαφής</td>
</tr>
<tr>
<td>Σαφής</td>
<td>MPx</td>
</tr>
<tr>
<td>Σαφής</td>
<td>TPM</td>
</tr>
</tbody>
</table>

όπου:
Στον παραπάνω πίνακα παρουσιάζεται μια ποιοτική απεικόνιση της επιλογής του μοντέλου διαχείριση έργων. Όταν ο στόχος και η λύση είναι σαφή, τότε τα παραδοσιακά μοντέλα διαχείρισης μπορούν να είναι αποτελεσματικά. Όταν ο στόχος είναι σαφής αλλά η λύση ασαφής, τότε είναι κατάλληλα τα Ευέλικτα Μοντέλα Διαχείρισης Έργων. Τα Extreme μοντέλα αποδίδουν όταν τόσο ο στόχος, όσο και η λύση είναι ασαφή. Τα Emertxe μοντέλα επιλέγονται στην ιδιαίτερη περίπτωση όπου η λύση είναι σαφής, αλλά ο στόχος ασαφής.

Είναι προφανές ότι η κατανομή των μοντέλων διαχείρισης έργων στα τεταρτημόρια δεν προσδιορίζεται από ποσοτικοποιημένα κριτήρια. Ο βαθμός σαφήνειας του στόχου ή της λύσης της έργου είναι εννοιολογικός και κατά συνέπεια υποκειμενικός. Για παράδειγμα, ας υποθέσουμε ότι ο στόχος του έργου είναι η ανάπτυξη ενός marketplace πώλησης εφαρμογών κινητών (mobile apps). Παρότι ο στόχος φαίνεται σαφής, υπάρχουν σημαντικές ασάφειες και ελλείψεις όπως:

- Θα υιοθετηθεί το μοντέλο του Android Market ή του App Store της Apple;
- Θα επιτρέπεται τη διάθεση Native εφαρμογών για όλα τα λειτουργικά συστήματα κινητών ή μόνο για κάποια;
- Θα διαθέτει τις εφαρμογές σε διαφορετικές γεωγραφικές ζώνες με διαφορετικά νομίσματα;

Αυτό που είναι αδιαμφισβήτητο, είναι ότι διαχρονικά όλα τα έργα έχουν υπάρξει τουλάχιστον σε ένα από τα τέσσερα τεταρτημόρια. Αυτό προφανώς συμβαίνει γιατί η σαφήνεια στο φυσικό αντικείμενο ενός έργου δεν αποτελεί σταθερό μέγεθος καθ’ όλη τη διάρκεια ενός έργου. Το τεταρτημόριο στο οποίο ανήκει ένα έργο στα αρχικά στάδια εγκατάστασης του, είναι πολύ πιθανό να μεταβληθεί έχοντας ως ενδεχόμενο ακόμη και την αλλαγή του μοντέλου διαχείρισης.

Κατά την προσωπική άποψη του συγγραφέα της παρούσας μελέτης, το ενδιαφέρον στο θεωρητικό μοντέλο του Wysocki (2012) είναι η αναγωγή της αξιοποίησης της αβεβαιότητας.
διαδικασία επιλογής του μοντέλου, σε αντίθεση με την παραδοσιακή διαχείριση της αβεβαιότητας κατά τη διάρκεια του έργου. Η διαχείριση της αβεβαιότητας παρουσιάζεται στο λογισμικό για πρώτη φορά στην παγκόσμια βιβλιογραφία από τον Boehm στο άρθρο Software Engineering Economcs (Boehm, 1981), όπου επιχειρείται – μεταξύ άλλων - η αξιοποίηση του Κώνου Αβεβαιότητας (Cone of Uncertainty) στην παρακολούθηση και τον έλεγχο του οικονομικού αντικειμένου των έργων πληροφορικής. Ο Κώνος της Αβεβαιότητας πραγματεύεται την απόσβεση της αβεβαιότητας κατά τη διάρκεια εκτέλεσης ενός έργου, όπως παρουσιάζεται στο διάγραμμα που ακολουθεί (Aroonvatanporn, Hongsongkiat, & Boehm, 2012).

Επί της ουσίας, o (Wysocki, 2012) επιλέγει να διαχειριστεί την αβεβαιότητα πριν την εκτέλεση του έργου, δηλαδή πριν να είναι πιθανώς αργά. Ο προσδιορισμός της αβεβαιότητας στις δυο βασικές διαστάσεις ενός έργου που είναι ο Στόχος και η Λύση, οδηγεί στην επιλογή του ιδανικού μοντέλου, με βάση το οποίο καθίσταται ιδανική και η διαχείριση της αβεβαιότητας στις επιμέρους φάσεις.

Ωστόσο, η επιλογή του μοντέλου διαχείρισης του έργου επηρεάζεται και από παράγοντες που δεν σχετίζονται με τη σαφήνεια του στόχου και της λύσης. Οι παράγοντες που έχουν άμεση επίδραση στην επιλογή του μοντέλου διαχείρισης είναι (Project Stmart, Executive Brief, 2008):
• Τελικοί Χρήστες Συστήματος. Ο προσδιορισμός της συνοχής της ομάδας των τελικών χρηστών και των λοιπών ενδιαφερόμενων (stakeholders), αποτελεί καθοριστικό παράγοντα για την επιλογή του μοντέλου διαχείρισης. Μια ελεγχόμενη και συμπαγής ομάδα τελικών χρηστών ευνοεί παραδοσιακές πρακτικές καθώς διαμορφώνει ένα ασφαλές περιβάλλον ανάλυσης απαιτήσεων

• Μέγεθος Έργου. Η αύξηση της διάρκειας ενός έργου συνεπάγεται τη δέσμευση ανθρώπινων πόρων ή και υλικών / εξοπλισμού. Η επιλογή του κατάλληλου μοντέλου σχετίζεται και με τη διαθεσιμότητα των πόρων αυτών, για το χρονικό διάστημα που απαιτείται, σε συνάρτηση με τον άμεσο των παραδοτέων

• Χωροθέτηση Ομάδας Έργου. Η διασπορά των μελών της ομάδας έργου σε διαφορετικές γεωγραφικές ζώνες απαιτεί την εκτέλεση διεργασιών συντονισμού. Στις περιπτώσεις αυτές ενδείκνυται η χρήση παραδοσιακών μοντέλων, χωρίς όμως να αποκλείονται και οι ευέλικτες μέθοδοι

• Δεξιότητες ομάδας έργου. Οι διαθέσιμοι ανθρώπινοι πόροι τόσο από τη μεριά του αναδόχου, όσο και από τη μεριά του οργανισμού / πελάτη, αποτελούν παράγοντα μείζονος σημασίας για την επιλογή του ιδανικού μοντέλου διαχείρισης. Ο βαθμός εμπλοκής των στελεχών του πελάτη στην υλοποίηση του έργου, μπορεί να αποκλείει τις μεθόδους που απαιτούν υψηλό ρυθμό συνεργασίας και συχνή λήψη αποφάσεων.

• Τεχνολογία. Η ενσωμάτωση υφιστάμενων ή νέων και πιθανώς λιγότερο ώριμων τεχνολογιών, προσδιορίζεται σε σημαντικό βαθμό από την ευελιξία του μοντέλου διαχείρισης που θα επιλεγεί.

• Σταθερότητα αγοράς. Η επένδυση σε ασταθείς αγορές εμπεριέχει αδιαμφισβήτητα υψηλό ρίσκο. Η επιλογή μοντέλων που επιτρέπουν την τμηματική παράδοση του φυσικού αντικειμένου του έργου, οδηγούν σε ταχύτατη παράδοση λογισμικού και κατά συνέπεια σε άμεση είσοδο στην επιθυμητή αγορά. Ωστόσο, τα ίδια μοντέλα ανταποκρίνονται άμεσα σε τυχόν αποτυχία, επιτυγχάνοντας τον πρώτο τερματισμό του έργου, με αποτέλεσμα την εξοικονόμηση χρόνου και χρήματος.
4.3 Παραδοσιακά Μοντέλα Διαχείρισης Έργων

Οι πρώτες αναφορές και εφαρμογές της παραδοσιακής διαχείρισης έργων απαντώνται στη δεκαετία του 1950 (Project management, 2013), οπότε για πρώτη φορά οργανισμοί αξιοποιούν συστηματικά εργαλεία διαχείριση σε σύνθετα κατασκευαστικά έργα. Ωστόσο, στις Ηνωμένες Πολιτείες υπάρχουν αναφορές στη διαχείριση έργων, πριν τη δεκαετία του 1950. Στις αναφορές αυτές τα βασικά εργαλεία είναι τα διαγράμματα Gantt και η μέθοδος PERT (Program Evaluation and Review Technique), τα οποία αργότερα θα αποτελέσουν σημείο αναφοράς για τη σύγχρονη διαχείριση έργων.

Τα παραδοσιακά μοντέλα βασίζονται σε ένα δεδομένο σύνολο τεχνικών και διαδικασιών, τα οποία βοηθούν το διαχειριστή έργου να καθορίσει και να διευθύνει τις εργασίες του έργου. Οι παραδοσιακές μέθοδοι επιτάχυναν στον καθορισμό της δομής των εργασιών, του προγραμματισμού και της εφαρμογής του προϋπολογισμού (Rodrigues, 1994).

Τα παραδοσιακά μοντέλα διαχείρισης έργων κατηγοριοποιούνται ως εξής (Wysocki, 2012, σσ. 42-43):

- Γραμμικό (Linear) μοντέλο διαχείρισης έργων
- Αυξητικό (Incremental) μοντέλο διαχείρισης έργων

4.3.1 Γραμμικό Μοντέλο Διαχείρισης Έργων

Το γραμμικό μοντέλο είναι το πιο απλό, καθώς προϋποθέτει την άριστη γνώση και οριοθέτηση τόσο του στόχου, όσο και της λύσης. Στη βιβλιογραφία απαντάται και ως σειριακό μοντέλο, λόγω της αυστηρής διαδοχής των επιμέρους φάσεων. Τα μοντέλα καταρράκτη (waterfall) αποτελούν τις πιο διαδεδομένες εφαρμογές της γραμμικής προσέγγισης, σε ότι αφορά στην ανάπτυξη λογισμικού.

Το γραμμικό μοντέλο είναι εξαιρετικά ανελαστικό. Οποιαδήποτε αλλαγή στους αρχικούς στόχους και στις προδιαγραφές, ενδέχεται να επιφέρει σημαντικά προβλήματα στο πρόγραμμα εκτέλεσης του έργου. Το διάγραμμα που ακολουθεί απεικονίζει τις Ομάδες Διεργασιών (Process Groups) στο γραμμικό μοντέλο.
Το γραμμικό μοντέλο αποτελείται από τις πέντε (5) Ομάδες Διεργασιών, οι οποίες εκτελούνται μια και μόνο φορά, στη σειρά και χωρίς καμία απολύτως ανάδραση. Στο συγκεκριμένο μοντέλο, η λύση δημοσιεύεται στην τελική φάση του έργου.

Το γραμμικό μοντέλο διαχείρισης έργων εφαρμόζεται αποτελεσματικά σε έργα με τα ακόλουθα χαρακτηριστικά (Fernandez & Fernandez, 2009):

- Αυστηρά και με σαφήνεια καθορισμένο στόχο και λύση.
 Η πλήρης καταγραφή και ανάλυση των απαιτήσεων του πελάτη, είναι πρακτικά αδύνατη. Ακόμη και στην περίπτωση που η πλήρης λίστα των προδιαγραφών έχει από κοινού συμφωνηθεί με τον πελάτη, θα υπάρχουν αιτήματα για αλλαγές. Ωστόσο, ο βαθμός αβεβαιότητας μειώνεται σημαντικά για έργα που δεν παρουσιάζουν σημαντικό βαθμό πολυπλοκότητας.

- Ελάχιστες αλλαγές στους αρχικούς στόχους.
 Το γραμμικό μοντέλο διαχείρισης δεν διαθέτει εγγενείς μηχανισμούς για την ελαχιστοποίηση του αντίκτυπου (impact) μιας αλλαγής κατά τη διάρκεια της υλοποίησης του έργου. Για το λόγο αυτό οι αλλαγές δεν είναι ευπρόσδεκτες. Ο τρόπος διαχείρισης των αλλαγών προϋποθέτει την εφαρμογή Πλάνου Επείγουσας Επέμβασης (Contingency Plan), το οποίο συνήθως επιφέρει πρόσθετο διαχειριστικό κόστος.

- Επαναλαμβανόμενα έργα
 Το γραμμικό μοντέλο ενδέχεται να είναι αποτελεσματικό σε έργα τα οποία είναι επαναλαμβανόμενα ή έργα ρουτίνας. Η αξιοποίηση έτοιμων προτύπων όπως η Αίτηση Προσφοράς (Request for Proposal), τα έντυπα Καταμερισμού Εργασιών (Work Breakdown Structure), σε συνδυασμό με τις οικονομίες μάθησης από την εκτέλεση του ίδιου ή παρόμοιων έργων στο παρελθόν, καθιστούν εφικτή την εφαρμογή του γραμμικού μοντέλου.
Χρήση υφιστάμενων προτύπων.
Η χρήση προτύπων σε όλα τα στάδια διαχείρισης του έργου, μπορεί να ελαττώσουν σημαντικά το χρόνο και την προσπάθεια που δαπανώνται στη φάση σχεδιασμού. Η ύπαρξη οργανωμένης βιβλιοθήκης προτύπων αναβαθμίζει την ίδια την ποιότητα της διαχείρισης, ενώ παράλληλα ελαχιστοποιεί τον κίνδυνο αποτυχίας του έργου.

Ακολουθεί η λίστα με τα δυνατά και αδύνατα σημεία του μοντέλου (Fernandez & Fernandez, 2009), με αναφορά στους τομείς της επιχειρηματικής αξίας (Qumer & Henderson - Sellers, 2007, σ. 1902) στους οποίους συμβάλλει θετικά ή αρνητικά, σύμφωνα με την προσωπική άποψη του συγγραφέα της παρούσας μελέτης.

<table>
<thead>
<tr>
<th>Περιγραφή / Άξια σε</th>
<th>Πελάτη</th>
<th>Ομάδα</th>
<th>Διαδικασία</th>
<th>Χώρο</th>
<th>Προϊόν</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δυνατά Σημεία</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ο προγραμματισμός του έργου πραγματοποιείται στην αρχή, ώστε να παρέχει ένα σταθερό πλαίσιο διαχείρισης και εκτέλεσης των εργασιών</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Οι απαιτήσεις σε πόρους είναι γνωστές από την αρχή. Οι τύποι των πόρων (στελέχη και εξοπλισμός), καθώς και τα χρονικά σημεία και η διάρκεια χρήσης τους, είναι εκ των προτέρων γνωστά, επιτρέποντας την ακριβή παρακολούθηση του χρονοδιαγράμματος και των δαπανών του έργου. Επιπρόσθετα επιτρέπει την συνδυαστική διαχείριση έργων (Portfolio Management), καθώς το συγκεκριμένο μοντέλο δεσμεύει συγκεκριμένους πόρους για συγκεκριμένα χρονικά διαστήματα</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δεν απαιτείται η εμπλοκή των πλέον έμπειρων στελεχών, καθώς η αναλυτική τεκμηρίωση και οργάνωση του έργου, επιτρέπει την ολοκλήρωση των εργασιών από λιγότερο εξειδικευμένα στελέχη, με ελάχιστη επίβλεψη</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Τα στελέχη της ομάδας εργασίας δεν χρειάζεται να βρίσκονται στον ίδιο χώρο. Το γεγονός αυτό αφενός επιτρέπει την εξωτερική ανάθεση εργασιών και αφετέρου την παράλληλη εκτέλεση εργασιών από στελέχη σε διαφορετικές ζώνες (Ευρώπη, Ασία κτλ). Το γραφικό μοντέλο, εξαιτίας της προϋπόθεσης για άρτια οργάνωση και τεκμηρίωση, στηρίζεται σε ένα λιγότερο δυναμικό μοντέλο επικοινωνίας, όπου η πρωτοβουλία των στελεχών δεν αποτελεί ζητούμενο.</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| **Αδύνατα Σημεία** | | | | | |
4.3.2 Αυξητικό Μοντέλο Διαχείρισης Έργων

Το αυξητικό μοντέλο ξεκίνησε από την ανάγκη να αντιμετωπιστεί το βασικότερο πρόβλημα του γραμμικού μοντέλου που είναι η σημαντική καθυστέρηση στη δημοσίευση των παραδοτέων. Το μοντέλο Spiral (Boehm, 1986, A spiral model of software development and enhancement) αποτελεί μια τυπική εφαρμογή της αυξητικής προσέγγισης, σε ότι αφορά στην ανάπτυξη λογισμικού σε τμήματα. Στο σχήμα που ακολουθεί παρουσιάζεται η ακολουθία εκτέλεσης των Ομάδων Διεργασιών, όπου είναι εμφανείς ότι οι ομάδες της Εκτέλεσης, Ελέγχου και
Παρακολούθησης και Ολοκλήρωσης εφαρμόζονται διαδοχικά, με στόχο τη σταδιακή παράδοση λειτουργικότητας (increments).

Διάγραμμα 4: Αυξητικό Μοντέλο Διαχείρισης Έργων

Το αυξητικό μοντέλο διαχείρισης έργων εφαρμόζεται αποτελεσματικά σε έργα στα οποία ο στόχος και η λύση είναι σαφής οριοθετημένα, αλλά είναι επιτακτική η ανάγκη δημοσιεύσης των παραδοτέων. βάσει ενός αυστηρού και στενού χρονοδιαγράμματος. Στα έργα αυτά η επιτάχυνση της παράδοσης της έκδοσης του πληροφοριακού συστήματος, ενδέχεται να συνεπάγεται την έγκαιρη διείσδυση σε νέες αγορές προϊόντων και υπηρεσιών.

| Περιγραφή / Άξια σε | Πελάτη | Ομάδα | Διαδικασία | Χώρος | Προϊόν
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Παραγωγή επιχειρηματικής αξίας από τα αρχικά στάδια του έργου, καθώς οι επιμέρους εκδόσεις (increments) ενδέχεται να είναι σε θέση να αποσβέσουν μέρος της αρχικής επένδυσης</td>
<td>√</td>
<td></td>
<td></td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>Διευκολύνει την οργάνωση του προγράμματος εκτέλεσης με περιορισμένους πόρους. Η δυνατότητα αξιοποίησης των πόρων στην ανάπτυξη των επιμέρους εκδόσεων και όχι σε ολόκληρες τις φάσεις του κύκλου ζωής του έργου, διαμορφώνει ένα πιο ελαστικό μοντέλο</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
χρονοπρογραμματισμού και μεγιστοποιεί τον χρόνο αξιοποίησης των πόρων

Παρουσιάζει ελαστικότητα στη διαχείριση μικρών αλλαγών μεταξύ των διαδοχικών εκδόσεων (increments). Η τμηματική παράδοση του προϊόντος στον πελάτη επιτρέπει τη λήψη πληροφοριών ανάδρασης, με στόχο την προσαρμογή στις ανάγκες του. Ωστόσο, οι αντοχές του μοντέλου αναφορικά με τη διαχείριση των αλλαγών είναι μικρές και αντιμετωπίζονται με παραδοσιακές τεχνικές χρήσης αποθεματικού (reserve tasks)	√
Δημιουργεί πρόσφορο έδαφος για τη βελτιστοποίηση του τελικού προϊόντος, καθώς η τμηματική παράδοση λειτουργιών και χαρακτηριστικών στον τελικό χρήστη επιτρέπει την κατάθεση της εμπειρίας της αλληλεπίδρασης με το σύστημα και κατά συνέπεια την βέλτιστη προσαρμογή του. Ασφαλώς ο χρόνος αντίδρασης των τελικών χρηστών / πελατών σχετίζεται άμεσα με τη διάρκεια μεταξύ των δημοσιευμένων εκδόσεων	√
Είναι πιο πελατοκεντρικό σε σχέση με το γραμμικό μοντέλο, καθώς εκ της φύσης του επισπεύδει την ενεργή συμμετοχή του πελάτη με το παραγόμενο προϊόν	√

| Αδύνατα Σημεία |

Ενδέχεται η ομάδα να μην παραμείνει ανέπαφη μεταξύ των διαδοχικών εκδόσεων. Η αξιοποίηση των ανθρώπινων πόρων στην ανάπτυξη επιμέρους εκδόσεων δημιουργεί μια λιγότερο συνεκτική ομάδα, σε σχέση με το γραμμικό μοντέλο, όπου οι μη επαναλαμβανόμενες φάσεις της εκτέλεσης και της παρακολούθησης, απαιτούν την αδιάλειπτη αφοσίωση των στελεχών καθ’ όλη τη διάρκεια	√	√	√
Το μοντέλο απαιτεί τη διαβίβαση της τεκμηρίωσης από την μια έκδοση στην επόμενη. Στην πραγματικότητα, την προσωπική τεχνική αξία μπορεί να αναπτυχθεί από ετερογενείς ομάδες εργασίες, κρίνεται απαραίτητη η τεκμηρίωση των αποτελεσμάτων της προηγούμενης έκδοσης, με στόχο την τροφοδότηση της επόμενης. Η διαδικασία αυτή προσθέτει σημαντικό διαχειριστικό κόστος	√		
Ακολουθεί μια άκαμπτη ακολουθία διεργασιών, όπως μια προορισμένη εκδοτική διαδικασία, με αποτέλεσμα να υπάρχουν ελάχιστα περιθώρια λήψης πληροφοριών ανάδρασης	√	√	
Ο προσδιορισμός των εκδόσεων γίνεται με βάση τις λειτουργίες και τα χαρακτηριστικά και όχι με βάση την προποθετέντα επιχειρηματική αξία. Δεδομένου ότι ο σχεδιασμός γίνεται συνολικά και χωρίς επανάληψη στην αρχή του έργου, η οργάνωση και ανάπτυξη των εκδόσεων, γίνεται	√		
βάσει του αρχικού πλάνου που περιλαμβάνει την αποσύνθεση των απαιτήσεων σε επίπεδο λειτουργικών. Το πλάνο αυτό πρέπει να ακολουθηθεί μέχρι να ολοκληρωθεί η ανάπτυξη όλων των προδιαγραμμένων λειτουργιών, ανεξάρτητα με το αν στην πορεία επισημανθούν νέες σημαντικές λειτουργίες ή υποβαθμισμένες κάποιες υφιστάμενες

Απαιτεί πιο ενεργή συμμετοχή του πελάτη από ότι το γραμμικό μοντέλο. Στο γραμμικό μοντέλο ο πελάτης θα λάβει γνώση του παραγόμενου προϊόντος με την ολοκλήρωση του έργου, ενώ στο αυξητικό η εμπλοκή του ξεκινά από την δημιουργία της πρώτης έκδοσης. Η εμπλοκή του πελάτη ενδέχεται να επιφέρει διαπραγματεύσεις για τροποποιήσεις και προσαρμογές, που πολλές φορές ενδέχεται να δημιουργούν εκτροπή από τους αρχικούς στόχους

Το αυξητικό μοντέλο διαρκεί περισσότερο από το γραμμικό μοντέλο. Η επαναληπτικότητα των ομάδων διεργασιών της κάθε έκδοσης (increment), η ανάγκη για μεταφορά τεχνογνωσίας μεταξύ των εκδόσεων, η μεγαλύτερη ελαστικότητα στις αλλαγές, η έλλειψη συνεκτικότητας στον συνολικό προϊόν του, οδηγούν φυσιολογικά σε μεγαλύτερους χρόνους παράδοσης του τελικού προϊόντος. Ο κατακερματισμός των λειτουργιών εγκυμονεί κινδύνους, καθώς ο πελάτης θα πρέπει να έχει κατανοήσει το συνολικό πλάνο παράδοσης των εκδόσεων, ώστε να μην αναμένει την επόμενη εκδοσή, από την οποία προγραμματιστεί σε επόμενες εκδόσεις

4.4 Ευέλικτα Μοντέλα Διαχείρισης Έργων
Τα ευέλικτα μοντέλα διαχείρισης έργων αποτελούν την υποδομή των αντίστοιχων παραδεχόμενων πρακτικών και τη μετάβαση από τη διαχείριση μεγάλων κατασκευαστικών έργων στη διαχείριση έργων πληροφορικής. Η πρώτη επίσημη αναφορά γίνεται το 1930 στη μελέτη «Plan-Do-Study-Act (PDSA)» του Walter Sherwart, όπου μέσα από μια προσέγγιση της τεκμηρίωσης της τεκμηρίωσης του ελέγχου ποιότητας, γίνονται σαφείς αναφορές σε δομικά στοιχεία της ευέλικτης διαχείρισης έργων. Στη συνέχεια το 1986 οι Hirotaka Takeuchi και Ikujiro Nonaka δημοσιεύουν το άρθρο «New New Product Development Game» στο επιστημονικό περιοδικό Harvard Business Review. Το συγκεκριμένο άρθρο αποτελεί την έμπνευση για τη δημιουργία της μεθόδου Scrum, η οποία εφαρμόζεται σε ποσοστό
μεγαλύτερο του 50%, από ομάδες ευέλικτης διαχείρισης έργων πληροφορικής, σε παγκόσμιο επίπεδο (State Of Agile Survey, 2011).

Τα ευέλικτα μοντέλα ενσωματώνουν ταχύτατους επαναληπτικούς κύκλους σχεδιασμού και ανάπτυξης λογισμικού, επιτρέποντας στην ομάδα έργου να αξιολογεί αδιάλειπτα την πρόοδο του έργου και να λαμβάνει άμεσα δεδομένα ανάδρασης (feedback), από τους χρήστες όλων των ομάδων ενδιαφέροντος (Hass, 2007).

Τα ευέλικτα μοντέλα διαχείρισης έργων κατηγοριοποιούνται ως εξής (Wysocki, 2012, σσ. 48-49):

- Επαναληπτικό (Iterative) μοντέλο διαχείρισης έργων
- Προσαρμοστικό (Adaptive) μοντέλο διαχείρισης έργων

4.4.1 Επαναληπτικό Μοντέλο Διαχείρισης Έργων

Η σημαντική διαφοροποίηση του επαναληπτικού μοντέλου από το αυξητικό είναι ότι η ανατροφοδότηση γίνεται από τη φάση του σχεδιασμού. Η επαναληπτική προσέγγιση χρησιμοποιείται όταν υπάρχει μια αρχική εικόνα της λύσης, αλλά από αυτή λείπουν σημαντικά χαρακτηριστικά ή ακόμη και λειτουργίες. Οι επαναλήψεις έχουν στόχο την συμπλήρωση και ολοκλήρωση των κενών της τελικής λύσης και την προοδευτική αποσύνθεση των απαιτήσεων.

Ακολουθεί η λίστα με τα δυνατά και αδύνατα σημεία του μοντέλου (Fernandez & Fernandez, 2009), με αναφορά στους τομείς της επιχειρηματικής αξίας (Qumer & Henderson - Sellers,
2007, σ. 1902) στους οποίους συμβάλλει θετικά ή αρνητικά, σύμφωνα με την προσωπική άποψη του συγγραφέα της παρούσας μελέτης.

<table>
<thead>
<tr>
<th>Περιγραφή / Αίθα σε</th>
<th>Πελάτη</th>
<th>Ομάδα</th>
<th>Διαδικασία</th>
<th>Χώρος</th>
<th>Προϊόν</th>
<th>Εργασία</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δυνατά Σημεία</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Παρέχεται στον πελάτη η δυνατότητα προεπισκόπησης της μερικής λύσης και συνεπώς κατάθεσης προτάσεων βελτίωσης. Είναι γεγονός ότι η ύπαρξη ενός πρωτότυπου συστήματος (prototype) με το οποίο ο πελάτης μπορεί να αλληλεπιδράσει, υπερέχει της καλύτερης δυνατής τεκμηρίωσης. Η επαναληπτική ανασκόπηση του συστήματος από τη μεριά του πελάτη, διατηρεί την επίτευξη των στόχων του έργου στην αντίστοιχη τροχιά</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Είναι εφικτή η επεξεργασία της αλλαγής στόχων / προδιαγραφών μεταξύ των επαναλήψεων. Η ενσωμάτωση των αλλαγών που θα προκύψουν από μια επανάληψη της ακτιβιότητας, αποτελεί ιδανική πρακτική, ώστε να ελαχιστοποιηθούν τα διαχειριστικά κόστη διατήρησης συσσωρευτικών μεταβολών στο έργο, με απρόβλεπτες συνέπειες</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Προσαρμόζεται σε τυχόν μεταβολές των επιχειρηματικών συνθηκών. Είναι γεγονός ότι ένα έργο πληροφορικής ενδέχεται να προσβληθεί από πολλούς και διαφορετικούς εξωγενείς παράγοντες. Κατά συνέπεια η επιλογή της ελαστικότερου μοντέλου διαχείρισης ελαχιστοποιεί τον κινδύνο και αυξάνει της πιθανότητας επιτυχίας του έργου</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Αδύνατα Σημεία</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Απαιτεί μεγαλύτερη εμπλοκή του πελάτη από ότι το Γραμμικό και το Αυξητικό Μοντέλο. Η πιθανότητα εμφάνισης αλλαγών αποτελεί μέγεθος που είναι ανάλογο με την εμπλοκή του πελάτη στο έργο και αντιστροφώς. Το γεγονός αυτό γίνεται επικίνδυνο, όταν στις αλλαγές των πελατών προτείνονται οι επιθυμίες του και όχι οι πραγματικές ανάγκες. Ο διαχειριστής του έργου θα πρέπει να είναι συγκεκριμένος στην επίτευξη της προστιθέμενης επιχειρηματικής αξίας</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Απαιτεί συστέγαση των ομάδων εργασίας. Η αύξηση της συχνότητας των αλλαγών απαιτεί τη σύντομη και προκλητική ανάγκη αποφάσεων σε πραγματικό χρόνο. Στην περίπτωση που η συστέγαση των ομάδων δεν είναι εφικτή, το επαναληπτικό μοντέλο προσθέτει διαχειριστικό κόστος που αφορά στον πελάτη</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.4.2 Προσαρμοστικό Μοντέλο Διαχείρισης Έργων

Το προσαρμοστικό μοντέλο διαχείρισης έργων αποτελεί ιδανική προσέγγιση για έργα με μεγαλύτερο βαθμό αβεβαιότητας και πολυπλοκότητας, σε σχέση με το επαναληπτικό μοντέλο. Η βασική διαφορά ανάμεσα στο προσαρμοστικό και το επαναληπτικό μοντέλο είναι ότι, σε κάθε επανάληψη του πρώτου μοντέλου, δεν παράγονται μόνο νέες λειτουργίες και χαρακτηριστικά, αλλά επιπρόσθετα αποσαφηνίζεται περαιτέρω η λύση μέσα από τη διερεύνηση και πιθανώς ανακάλυψη νέων λειτουργιών. Στην πράξη το γεγονός αυτό επιτυγχάνει την προοδευτική ευθυγράμμιση των εργασιών με την επιθυμητή λύση. Το προσαρμοστικό μοντέλο αποτελείται από ομάδες διεργασιών (process groups) οι οποίες επαναλαμβάνονται σε κύκλους. Στο διάγραμμα που ακολουθεί απεικονίζεται η ροή εκτέλεσης του προσαρμοστικού μοντέλου.

Διάγραμμα 6 : Προσαρμοστικό Μοντέλο Διαχείρισης Έργων

Τα βασικά χαρακτηριστικά του Προσαρμοστικού Μοντέλου είναι η αξιοποίηση της αλλαγής ως βασικού μοχλού ανάπτυξης και η απαίτηση για ενεργή και ουσιαστική εμπλοκή των πελατών σε όλα τα στάδια του κύκλου ζωής του έργου.
Ακολουθεί η λίστα με τα δυνατά και αδύνατα σημεία του μοντέλου (Fernandez & Fernandez, 2009), με αναφορά στους τομείς της επιχειρηματικής αξίας (Qumer & Henderson - Sellers, 2007, σ. 1902) στους οποίους συμβάλλει θετικά ή αρνητικά, σύμφωνα με την προσωπική άποψη του συγγραφέα της παρούσας μελέτης.

<table>
<thead>
<tr>
<th>Περιγραφή / Άξια σε</th>
<th>Πελάτη</th>
<th>Ομάδα</th>
<th>Διαδικασία</th>
<th>Χώρο</th>
<th>Προϊόν</th>
<th>Εργασίας</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δυνατά Σημεία</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δεν απαιτείται σπατάλη χρόνου σε μη παραγωγικές εργασίες. Ένα από τα σημαντικότερα προβλήματα του Γραμμικού και του Αυξητικού μοντέλου, είναι η ανάπτυξη και συντήρηση ενός εξαντλητικού πλάνου εργασίας. Στο προσαρμοστικό μοντέλο o Just-in-time σχεδιασμός αφορά μόνο στις γνωστές περιπτώσεις της λύσης, αποφεύγοντας το τεράστιο διαχειριστικό κόστος τήρησης μιας ανελαστικής διαδικασίας</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Η διαχείριση αλλαγών αποτελεί δομικό στοιχείο του μοντέλου, χωρίς να απαιτείται γραφειοκρατικός τρόπος παρακολούθησης. Η παραδοσιακή διαχείριση έργων αντιμετωπίζει τις τροποποιήσεις στα πλαίσια του έργου με δομημένο και τυπικό τρόπο. Η εξοικονόμηση χρόνου στα προσαρμοστικά μοντέλα καθώς η διαχείριση των αλλαγών, αποτελούν οργανικά κομμάτια σε κάθε επαναληπτικό κύκλο και βασικό στοιχείο ανατροφοδότησης για τον επόμενο κύκλο</td>
<td></td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δεν σπαταλάται χρόνος στον σχεδιασμό αβέβαιων καταστάσεων. Η εξαντλητική καταγραφή και τεκμηρίωση των λειτουργικών και χαρακτηριστικών ενός έργου είναι πρακτικά αδύνατη. Το προσαρμοστικό μοντέλο επιλέγει τον σχεδιασμό των επιλογών προβλεψιμότητας, επιλέγοντας να αποσαφηνίσει και να ταξινομήσει τις υπόλοιπες προδιαγραφές σε επόμενο χρόνο</td>
<td></td>
<td></td>
<td>√</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Αποδίδει τη μέγιστη επιχειρηματική αξία εντός χρόνου και κόστους. Με την ολοκλήρωση ενός κύκλου, είναι γνωστό στην ομάδα τι έχει ολοκληρωθεί και τι απομένει να σχεδιαστεί και να προγραμματιστεί. Οι ελλείψεις αυτές ταξινομούνται με σειρά προτεραιότητας με αποκλειστικό γνώμονα την επιχειρηματική αξία που παράγουν. Με αυτό τον τρόπο, μετά από κάθε κύκλο, υπάρχει μια πιο ολοκληρωμένη λίστα η οποία είναι στην απόδοση διάθεση του πελάτη προς έλεγχο και αξιολόγηση. Κατά συνέπεια ακόμη και μια πιθανή ακύρωση του έργου από τη μεριά του πελάτη, θα έχει γίνει</td>
<td></td>
<td></td>
<td></td>
<td>√</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
έγκαιρα, έτσι ώστε να εξοικονομηθούν ανθρώπινοι και χρηματικοί πόροι.

Αδύνατα Σημεία

Απαιτεί σημαντική εμπλοκή του πελάτη στο έργο. Η συμμετοχή του πελάτη σε έργα με χρήση του επαναληπτικού μοντέλου, θα μπορούσε να χαρακτηριστεί ως παθητική, υπό την έννοια ότι περιορίζεται πιθανώς στην έγκριση προτάσεων και παραδοτέων. Στο προσαρμοστικό μοντέλο ο πελάτης αποτελεί αναπόσπαστο και ομότιμο στέλεχος της ομάδας εργασίας. Η ευθύνη της βελτίωσης των χαρακτηριστικών του τελικού προϊόντος, αποτελεί συλλογική αλλά ισόποσα μοιρασμένη προσπάθεια των στελεχών του πελάτη και των στελεχών του αναδόχου του έργου. Στην περίπτωση που η ενεργή εμπλοκή του πελάτη στο έργο δεν είναι δεδομένη, τότε η επιλογή του προσαρμοστικού μοντέλου ενδέχεται να οδηγήσει σε αντίθετα αποτελέσματα.

Αδύνατεί να προσδιορίσει με ακρίβεια το παραγόμενο τελικό αποτέλεσμα. Για το λόγο αυτό τόσο η αγορά, όσο και τα στελεχή διαχείρισης έργων, είναι δύσκολα ως προς την υιοθέτηση των προσαρμοστικών μοντέλων. Οποιοδήποτε χρηματοδοτεί ένα έργο, επιθυμεί να γνωρίζει τι τελικά θα παραλάβει, έχοντας διαθέσιμο μια συγκεκριμένη προϋπόλογιση, για ένα συγκεκριμένο χρονικό διάστημα.

4.4.2.1 Εφαρμογές Προσαρμοστικών Μοντέλων

Δεδομένου ότι η συγκεκριμένη μελέτη εστιάζει στα Προσαρμοστικά Μοντέλα, κρίνεται σκόπιμη η αναφορά των πιο διαδεδομένων εφαρμογών.

- **Kanban.** Πρόκειται για μια ευέλικτη μεθοδολογία διαχείρισης έργων, η οποία δίνει έμφαση στην παράδοση just-in-time λογισμικού, χωρίς όμως να δημιουργεί μεγάλο φόρτο εργασίας στους προγραμματιστές. Η συγκεκριμένη μεθοδολογία παρουσιάζει μεγάλη δυναμική και τυχανά αυξανόμενης αποδοχής από τους επαγγελματίες της πληροφορικής. Σημειώνεται σε εξί βασικές πρακτικές (Wikipedia, 2013):
 - Ο **Οπτικοποίηση (Visualize).** Αφορά στη χρήση οπτικών εργαλείων, για την παρακολούθηση της εξέλιξης των εργασιών με εποπτικό τρόπο.
 - Περιορισμός **Work-In-Process (Limit WIP).** Αφορά στην απομόνωση των εργασιών που είναι σε εξέλιξη, από αυτές που οδηγούν σε νέες απαιτήσεις.
- Διαχείριση Ροής (Manage Flow). Η παρακολούθηση, η μέτρηση και η αναφορά της εξέλιξης των εργασιών, αποτελεί αναπόσπαστο τμήμα της μεθοδολογίας.

- Αποσαφήνιση Πολιτικών (Make Policies Explicit). Απαιτεί την πλήρη κατανόηση των διεργασιών, με στόχο την βελτίωση τους βάσει εμπειρικών και αντικειμενικών δεδομένων. Η μερική κατανόηση των διεργασιών οδηγεί σε υποκειμενικές υποθέσεις, οι οποίες δεν συνεισφέρουν στην πρόοδο του έργου.

- Εφαρμογή Βρόχων Ανάδρασης (Implement Feedback Loops). Οι βρόχοι ανάδρασης αφορούν κατά κύριο λόγο στην επισκόπηση της ροής των εργασιών και όχι στην παρακολούθηση κλασικών μεγεθών και δεικτών.

- Βελτίωση μέσω Συνεργασίας, Εξέλιξη μέσω Πειραματισμού (Improve Collaboratively). Η κοινή αντίληψη της ομάδας για τον τρόπο εργασίας, τη ροή των διεργασιών και τους κινδύνους του έργου, αποτελεί μοχλό προόδου και βάση για την άμεση επίλυση των προβλημάτων.

- Adaptive Software Development (ASD). Αποτελεί μια σύγχρονη μεθοδολογία ανάπτυξης λογισμικού η οποία αποτελεί προσαρμογή της μεθοδολογίας Rapid Application Development. Αποτελείται από τρεις φάσεις που είναι (Highsmith, 2000):
 - Υπόθεση (Speculate). Στη φάση αυτή κατατίθενται κάποιες αρχικές ιδέες για την τελική λύση, χωρίς να προκύπτουν δεσμευτικές προδιαγραφές. Ενσωματώνει λογικά τις ομάδες διεργασιών της Αρχικοποίησης και του Σχεδιασμού Κύκλου
 - Συνεργασία (Collaborate). Πρόκειται για τη φάση που ενσωματώνει τις ομάδες διεργασιών Εκτέλεσης και Παρακολούθησης και τα εργαλεία που συνεπάγονται οι συγκεκριμένες διεργασίες
 - Μάθηση (Learn). Ενσωματώνει τις διεργασίες Ολοκλήρωσης του επαναληπτικού κύκλου, μέσα από τον έλεγχο ποιότητας και την αποτύπωση των οικονομιών μάθησης.

- Dynamic System Development Method (DSDM). Αποτελεί ένα ευέλικτο πλαίσιο διαχείρισης έργων που δημοσιεύτηκε για πρώτη φορά το 1994 στο Ηνωμένο Βασίλειο. Αποτελεί μια μεθοδολογία που συνδυάζει το αυξητικό και το επαναληπτικό μοντέλο,
μέσα από την αδιάλειπτη συμμετοχή και εξέλιξή του πελάτη στη διάρκεια υλοποίησης του έργου (Wikipedia, 2013). Αποτελείται από τέσσερα στάδια ως εξής:

- Το πρώτο στάδιο περιλαμβάνει τη Μελέτη Σκοπιμότητας (Feasibility Study) και τη Μελέτη Επιχειρησιακών Αναγκών (Business Study). Στο συγκεκριμένο στάδιο εξετάζεται κατά πόσο το έργο μπορεί να υλοποιηθεί τους στόχους και στη συνέχεια καταστρώνεται το αναλυτικό πλάνο των αναγκών.

- Το δεύτερο στάδιο περιλαμβάνει τις επαναλήψεις του Μοντέλου Λειτουργικότητας (Functional Model Iteration). Οι καταγεγραμμένες ανάγκες από το προηγούμενο στάδιο μετασχηματίζονται στο λειτουργικό μοντέλο και οποίο βελτιώνεται σε κάθε κύκλο επανάληψης παράγοντας πρωτότυπα.

- Το τρίτο στάδιο περιλαμβάνει τις επαναλήψεις του Σχεδιασμού και της Ανάπτυξης (System Design and Build Iteration), όπου επιχειρείται επαναληπτικά η ολοκλήρωση των επιμέρους λειτουργικών μονάδων. Στο ίδιο στάδιο πραγματοποιούνται οι δοκιμές χρήσης καθώς και η τεκμηρίωσή των παραδοτέων.

- Το τέταρτο στάδιο είναι αυτό της Εφαρμογής (Implementation), όπου το δοκιμασμένο και τεκμηριωμένο πληροφοριακό σύστημα, παράδειγμα στην καθημερινή βάση, παραδίδεται στους πελάτες. Στο στάδιο αυτό, επιχειρείται η εκπαίδευση των χρηστών, η αποδοχή του συστήματος από τον πελάτη και τέλος, η αποτύπωση των αποτελεσμάτων του έργου σε σχέση πάντοτε με τους αρχικούς στόχους.

- **Scrum.** Πρόκειται για την πιο διαδεδομένη ευέλικτη μεθοδολογία διαχείρισης έργων πληροφορικής η οποία συνδυάζει το αυξητικό και το επαναληπτικό μοντέλο. Η συγκεκριμένη μεθοδολογία αναπτύχθηκε από τον Jeff Sutherland και τυποποιήθηκε από τον Ken Schwaber. Αποτελεί την πλέον πελατοκεντρική εφαρμογή του προσαρμοστικού μοντέλου, όπου η ομάδα ανάπτυξης είναι αυτοδιοικούμενη, λειτουργεί σε διαδοχικές επαναλήψεις μικρής διάρκειας, πραγματοποιεί συναντήσεις σε καθημερινή βάση, παραδίδει στον πελάτη συνεχόμενες εκδόσεις επίδειξης (demos) και αναπροσαρμόζει το πλάνο ανάπτυξής στο τέλος κάθε επανάληψης. Στα κεφάλαια που ακολουθούν παρατίθεται η αναλυτική περιγραφή της μεθοδολογίας scrum και επιχειρείται η εφαρμογή της σε πραγματική μελέτη περίπτωσης.
4.5 Extreme Μοντέλα Διαχείρισης Έργων

Τα extreme μοντέλα διαχείρισης έργων αποτελούν την προσαρμογή των ευέλικτων μεθόδων, σε περιβάλλοντα με μεγαλύτερη ασάφεια ως προς το Στόχο και τη Λύση καθώς και υψηλή πολυπλοκότητα. Στην βιβλιογραφία οι extreme μεθοδολογίες κατατάσσονται από αρκετές πηγές, στην κατηγορία των Ευέλικτων Προσεγγίσεων. Ωστόσο οι προκλήσεις που αντιμετωπίζονται από την Extreme Διαχείριση Έργων, δικαιολογούν την αντιμετώπιση των αντίστοιχων μοντέλων, με διαφορετική προσέγγιση σε σχέση με τα Ευέλικτα.

Ο DeCarlo στο βιβλίο του eXtreme Project Management (DeCarlo, 2004), αναφέρει χαρακτηριστικά:

- Η παραδοσιακή διαχείριση έργων διαχειρίζεται το «γνωστό», ενώ η extreme διαχειρίζεται το «άγνωστο»
- Δεν μπορείς διαχειριστείς το άγνωστο, με τον ίδιο τρόπο που διαχειρίζεσαι το γνωστό
- Όταν έπρεπε να αλλάξεις τις συνθήκες που περιβάλλουν τη νέα γενιά έργων. Η πραγματικότητα οδηγεί τις εξελίξεις
- Για να πετύχω, έπρεπε να προσαρμοστώ.

Το συμβατικό διάγραμμα διαχείρισης του κύκλου ζωής ενός Extreme έργου, απεικονίζεται στο διάγραμμα που ακολουθεί.

Διάγραμμα 7: Extreme Μοντέλο Διαχείρισης Έργων (Wysocki, 2012)

Στο διάγραμμα καθίσταται σαφές ότι και αυτό το μοντέλο αποτελείται από επαναληπτικούς κύκλους των Ομάδων Διεργασιών (Process Groups). Ωστόσο, το ανατρεπτικό στοιχείο του συγκεκριμένου μοντέλου, σε σχέση με τα ευέλικτα μοντέλα, είναι ότι η επανάληψη συμπεριλαμβάνει και τη φάση αρχικοποίησης. Το γεγονός αυτό από μόνο του, επιβεβαιώνει την εν δυνάμει ασάφεια του στόχου, καθώς στο μοντέλο αυτό κάθε επανάληψη ενδέχεται να οδηγήσει το έργο σε μια εντελώς νέα κατεύθυνση.

Το νοητικό μοντέλο του κύκλου ζωής ενός eXtreme έργου, έχει ως εξής:
Διάγραμμα 8: Νοητικό Μοντέλο eXtreme Έργων (DeCarlo, 2004)

Τα βασικά χαρακτηριστικά του Extreme Μοντέλου συνοψίζονται ως εξής:

- Υψηλή αβεβαιότητα και ασάφεια του στόχου και κατ’ επέκταση της λύσης
- Υψηλός ρυθμός μεταβολών στη στοχοθεσία του έργου και κατ’ επέκταση στην επιθυμητή λύση
- Υψηλός ρυθμός ταχύτητας ανάπτυξης ως αντισταθμιστικό μέτρο των συνεχών μεταβολών στο φυσικό αντικείμενο.

Η Extreme Διαχείριση Έργων εφαρμόζεται σε έργα υψηλού κινδύνου αλλά και υψηλών προσδοκιών ως προς το παραγόμενο αποτέλεσμα. Τα έργα αυτά κινούνται στο χώρο της Έρευνας και Τεχνολογίας (R & D), όπου ανάλογα με το αντικείμενο, το παραγόμενο αποτέλεσμα / προϊόν / λύση δύναται να είναι από μηδενικό, μέχρι μοναδικό σε παγκόσμιο επίπεδο. Λόγω της ιδιαιτερότητας των Extreme Μοντέλων, δεν κρίνεται σκόπιμη η περαιτέρω ανάλυσή τους στην παρούσα μελέτη.

4.6 Σύγκριση Παραδοσιακών και Ευέλικτων Μοντέλων

Η σύγκριση των παραδοσιακών και ευέλικτων μοντέλων παρατίθεται με βάση τις μεταβλητές του Τρίγωνου Διαχείρισης Έργων (βλ. 3.10 Τρίγωνο Διαχείρισης Έργων), δηλαδή τον Χρόνο, Το Κόστος, τη Στοχοθεσία (οριοθέτηση έργου) και την Ποιότητα. Στη σύγκριση δεν συμπεριλαμβάνονται τα extreme μοντέλα, καθώς η παρούσα εργασία εστιάζει στις ευέλικτες προσεγγίσεις.

Πίνακας 7: Σύγκριση Παραδοσιακών και Ευέλικτων Μοντέλων (Leyton, 2012)

<table>
<thead>
<tr>
<th>Παραδοσιακά Μοντέλα</th>
<th>Ευέλικτα Μοντέλα</th>
</tr>
</thead>
<tbody>
<tr>
<td>Στοχοθεσία – Οριοθέτηση Έργου (Scope)</td>
<td></td>
</tr>
<tr>
<td>Απαιτείται εξαντλητικός προσδιορισμός και τεκμηρίωση της έκτασης του φυσικού αντικειμένου, στην αρχή του έργου (Planning Phase)</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Απαιτείται η συλλογή απαιτήσεων σε υψηλό επίπεδο (high level). Η αποσύνθεση και βελτιστοποίηση των απαιτήσεων γίνεται καθ’ όλη τη διάρκεια του έργου (Product Backlog, Release Planning, Script Planning, Sprint Retrospective)</td>
<td></td>
</tr>
<tr>
<td>Ο διαχειριστής του έργου αποτρέπει οποιαδήποτε αλλαγή στις απαιτήσεις που έχουν συμφωνηθεί με τον πελάτη</td>
<td></td>
</tr>
<tr>
<td>Η προσθήκη νέων απαιτήσεων και η αλλαγή υφιστάμενων απαιτήσεων, είναι καλοδεχούμενα από τον ευέλικτο διαχειριστή έργου</td>
<td></td>
</tr>
<tr>
<td>Η αλλαγή στις απαιτήσεις αντιμετωπίζεται ως αρνητική εξέλιξη που εκτρέπει το χρονοδιάγραμμα και τον προϋπολογισμό του έργου</td>
<td></td>
</tr>
<tr>
<td>Η αλλαγή στις απαιτήσεις αποτελεί ζητούμενο στα ευέλικτα έργα και απαραίτητο συστατικό για τη μεγιστοποίηση της προστιθέμενης επιχειρηματικής αξίας του τελικού προϊόντος</td>
<td></td>
</tr>
<tr>
<td>Το κόστος εφαρμογής των αλλαγών αυξάνεται εκθετικά, ενώ η δυνατότητα για εφαρμογή άλλων αλλαγών μηδενίζεται, φτάνοντας προς την ολοκλήρωση του έργου</td>
<td></td>
</tr>
<tr>
<td>Οι αλλαγές ταξινομούνται με σειρά προτεραιότητας και εξαιρούνται από την υλοποίηση, χωρίς να προκαλούν υπέρβαση στο χρονοδιάγραμμα και τον προϋπολογισμό του έργου</td>
<td></td>
</tr>
<tr>
<td>Η εκτίμηση της προσπάθειας (effort) των επιμέρους απαιτήσεων, γίνεται αποκλειστικά από το διαχειριστή έργου</td>
<td></td>
</tr>
<tr>
<td>Η εκτίμηση της προσπάθειας (effort) των επιμέρους απαιτήσεων, γίνεται συλλογικά. Η άποψη όλων συνεκτιμάται</td>
<td></td>
</tr>
<tr>
<td>Η ομάδα ανάπτυξης δεν έχει σφαιρική άποψη της έκτασης του έργου. Κάθε μέλος γνωρίζει τις αναθέσεις του</td>
<td></td>
</tr>
<tr>
<td>Η ευέλικτη ομάδα ανάπτυξης μετέχει συνολικά σε όλο τον κύκλο ζωής του έργου. Κάθε στέλεχος γνωρίζει αναλυτικά τις προδιαγραφές του έργου</td>
<td></td>
</tr>
<tr>
<td>Χρόνος (Time)</td>
<td></td>
</tr>
<tr>
<td>Η διαχείριση του έργου γίνεται από το Διαχειριστή (Project Manager)</td>
<td></td>
</tr>
<tr>
<td>Η διαχείριση του έργου αφορά όλα τα μέλη της ευέλικτης ομάδας. Οι αποφάσεις που αφορούν στον χρόνο, λαμβάνονται συνεργατικά</td>
<td></td>
</tr>
</tbody>
</table>

55
<table>
<thead>
<tr>
<th>Ο χρόνος εφαρμόζεται σε σχέση με την αυστηρά καθορισμένη έκταση των προδιαγραφών του έργου</th>
<th>Ο χρόνος στα ευέλικτα έργα αποτελεί το διάστημα μέσα στο οποίο θα υλοποιηθούν οι πιο σημαντικές απαιτήσεις, από ένα σύνολο απαιτήσεων που συνεχώς αναθεωρείται</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ο χρόνος είναι ιδιαίτερα μεταβλητός σε ένα παραδοσιακό έργο, καθώς αφορά στο συνολικό χρονοδιάγραμμα του έργου</td>
<td>Η σταθερή διάρκεια των sprint στα ευέλικτα έργα, διευκολύνουν την παρακολούθηση του έργου</td>
</tr>
<tr>
<td>Ο διαχειριστής έργου προβλέπει το χρονοδιάγραμμα εκτέλεσης, χωρίς να έχει σαφή εικόνα των τελικών απαιτήσεων</td>
<td>Η ομάδα έργου προβλέπει το χρονοδιάγραμμα με βάση τη συνολική εκτιμώμενη προσπάθεια των απαιτήσεων που απομένουν</td>
</tr>
<tr>
<td>Η χρονική στιγμή εκκίνησης της ανάπτυξης εντάσσεται στη φάση εκτέλεσης (Execution Phase)</td>
<td>Στα ευέλικτα έργα η ανάπτυξη λογισμικού ξεκινά στο πρώτο μόλις sprint</td>
</tr>
<tr>
<td>Το χρονοδιάγραμμα εκτέλεσης παρακολουθείται και ελέγχεται από σύνθετα και πολυάριθμα εργαλεία (gantt chart, milestone trend charts, reports, contingency planning κτλ)</td>
<td>Το χρονοδιάγραμμα εκτέλεσης παρακολουθείται από την ταχύτητα ανάπτυξης της ομάδας έργου</td>
</tr>
</tbody>
</table>

Κόστος (Cost)

<table>
<thead>
<tr>
<th>Το κόστος είναι άρρητα συνδεδεμένο με την αυστηρή οριοθέτηση του έργου</th>
<th>Το κόστος προσδιορίζεται από το πόσες και ποιες απαιτήσεις μπορούν υλοποιηθούν, με σειρά προτεραιότητας. Οι λιγότερο σημαντικές απαιτήσεις δεν υλοποιούνται, όταν δεν είναι επιθυμητή η υπέρβαση του προϋπολογισμού</th>
</tr>
</thead>
<tbody>
<tr>
<td>Οι νέες απαιτήσεις οδηγούν σε υπέρβαση προϋπολογισμού</td>
<td>Οι νέες απαιτήσεις δεν επηρεάζουν τον προϋπολογισμό του έργου, καθώς πρόκειται να αντικαταστήσουν λιγότερο σημαντικές απαιτήσεις</td>
</tr>
<tr>
<td>Η εκτίμηση προϋπολογισμού γίνεται στην</td>
<td>Η εκτίμηση προϋπολογισμού γίνεται μετά το</td>
</tr>
</tbody>
</table>
αρχή του έργου

<table>
<thead>
<tr>
<th>Ποιότητα (Quality)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Η φάση δοκιμών εκτελείται πριν από την εγκατάσταση. Τα σφάλματα ενδέχεται να είναι πολυάριθμα</td>
</tr>
<tr>
<td>Ο εντοπισμός προβλημάτων ή αποκλίσεων από τις επιθυμίες γίνεται στο τέλος του έργου, όταν πιθανώς είναι πλέον αργά</td>
</tr>
<tr>
<td>Το προϊόν αναπτύσσεται για τον πελάτη χωρίς όμως την ενεργή συμμετοχή του. Ο πελάτης θα δει τη λειτουργικότητα του, λίγο πριν το τέλος του έργου</td>
</tr>
</tbody>
</table>

4.7 Συμπεράσματα

Τα παραδοσιακά και ευέλικτα μοντέλα διαχείρισης του κύκλου ζωής των έργων πληροφορικής, όπως αυτά έχουν διαμορφωθεί σε βάθος χρόνου και προσαρμοστεί στις ανάγκες της εποχής στην οποία αναφέρονται, αποτελούν στο σύνολό τους σύγχρονες μεθόδους διαχείρισης έργων. Δεν υπάρχει ιδανικό μοντέλο ή μοντέλο το οποίο να μπορεί να ανταποκριθεί επιτυχώς στις ανάγκες οποιαδήποτε έργου πληροφορικής. Τα δεδομένα του έργου αναφορικά με το βαθμό σαφήνειας του στόχου και της λύσης, σε συνδυασμό με εξωγενείς επιχειρηματικούς και εμπορικούς παράγοντες, οδηγούν στην επιλογή του κατάλληλου μοντέλου. Η επιλογή του ιδανικότερου μοντέλου από μόνης της, δεν είναι επαρκής για να εγγυηθεί την απρόσκοπτη εκτέλεση ενός έργου πληροφορικής. Ο διαχειριστής έργου οφείλει να είναι «ευέλικτος» ακόμη και όταν δεν επιλέγει ευέλικτα μοντέλα για την εκτέλεση των έργων που διοικεί.
5 ΕΥΕΛΙΚΤΗ ΔΙΑΧΕΙΡΙΣΗ ΕΡΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ

5.1 Εισαγωγή

Η Ευέλικτη Διαχείριση Έργων αποτελεί μια σχετικά σύγχρονη πρόταση η οποία εφαρμόζεται ευρέως στην ανάπτυξη έργων πληροφορικής σε παγκόσμιο επίπεδο. Τα αποτελέσματα της μελέτης «The CHAOS Chronicles» του Standish Group που αποτελεί ανεξάρτητο φορέα ερευνών στο χώρο της πληροφορικής, ανάδειξαν ένα σημαντικό στοιχείο αναφορικά με τα ποσοστά επιτυχίας των έργων ανάπτυξης λογισμικού. Σύμφωνα με τη συγκεκριμένη έρευνα για το 2009 στις Η.Π.Α. καταγράφηκαν τα ακόλουθα:

- 24% των έργων απέτυχαν εντελώς. Τα έργα αυτά ακυρώθηκαν πριν την ολοκλήρωσή τους και δεν οδήγησαν στην ανάπτυξη εκδόσεων προϊόντων ή λύσεων. Σε κάθε περίπτωση δεν προσέφεραν καμία απολύτως επιχειρηματική αξία
- 44% των έργων ήταν αμφισβητούμενα. Αφορά στα έργα που ολοκληρώθηκαν αλλά υπήρχε απόκλιση μεταξύ των αναμενόμενων και των αρχικών στόχων, αναφορικά με τη διάρκεια υλοποίησης, το κόστος, την ποιότητα ή και συνδυασμό αυτών.
- 32% των έργων ήταν επιτυχημένα. Αφορά στα έργα που ολοκληρώθηκαν και παρέδωσαν το αναμενόμενο προϊόν ή λύση εντός χρονοδιαγράμματος και προϋπολογισμού.

Το 2009 οι επιχειρήσεις και οι οργανισμοί δαπάνησαν στις Η.Π.Α. $491,2 δισεκατομμύρια στην ανάπτυξη εφαρμογών λογισμικού και από αυτά πάνω από $103 δισεκατομμύρια σπαταλήθηκαν σε έργα που απέτυχαν. (The Standish Group Blog, 2009)

Δεδομένου ότι η Ελλάδα αποτελεί μια χώρα σαφώς πιο ανώριμη και λιγότερο έμπειρη στο χώρο της Πληροφορικής, η αναγωγή στην μικροκλίμακα πιθανότατα να εμφανίζει ποσοστά πολύ χειρότερα από αυτά που καταγράφηκαν στις Η.Π.Α. Η παραπάνω στατιστική καταδεικνύει, μεταξύ άλλων, την ανάγκη για την υιοθέτηση σύγχρονων μοντέλων διαχείρισης έργων πληροφορικής.

5.2 Βασικές Αρχές Ευέλικτης Διαχείρισης Έργων

Η ανάγκη ανάπτυξης ενός καινοτόμου μοντέλου διαχείρισης έργων οδήγησε το Φεβρουάριο του 2001, μια ομάδα από ειδικούς στη διαχείριση και την ανάπτυξη λογισμικού, στην πραγματοποίηση συνάντησης στην πολιτεία Utah των Η.Π.Α. Το αποτέλεσμα ήταν η
δημοσίευση του «Μανιφέστο της Ευέλικτης Ανάπτυξης Λογισμικού (Manifesto for Agile Software Development)» και η σύσταση της Agile Alliance μιας μη κερδοσκοπικής οργάνωσης, αποσκοπώντας στη διάδοση και διάχυση των αρχών της ευέλικτης διαχείρισης.

5.2.1 Το Μανιφέστο της Ευελιξίας (Agile Manifesto)
Στο μανιφέστο της ευέλικτης ανάπτυξης λογισμικού διατυπώθηκαν τα ακόλουθα (agilemanifesto.org, 2001):

"Αποκαλύπτουμε καλύτερους τρόπους ανάπτυξης λογισμικού στην πράξη και βοηθούμε τους άλλους να κάνουν το ίδιο. Αυτή η δραστηριότητα μας έχει οδηγήσει στο να αξιολογούμε:

1. Τα άτομα και τις αλληλεπιδράσεις πάνω από τις διεργασίες και τα εργαλεία
2. Το λογισμικό που δουλεύει πάνω από την ολοκληρωμένη τεκμηρίωση
3. Τη συνεργασία με τον πελάτη πάνω από τη διαπραγμάτευση της σύμβασης
4. Την ανταπόκριση στην αλλαγή πάνω από την πιστή εκτέλεση ενός πλάνου

Παρόλο που τα στοιχεία στα δεξιά έχουν αξία, αξιολογούμε ως σημαντικότερα τα στοιχεία στα αριστερά".

Το Μανιφέστο της Ευελιξίας αποτελεί αδιαμφισβήτητα μια συνεπή και με ειδικό βάρος δήλωση. Τη στιγμή που τα παραδοσιακά μοντέλα δίνουν έμφαση στην υιοθέτηση άκαμπτων πλάνων, αποφεύγουν την αλλαγή και επιμένουν στην εξαντλητική τεκμηρίωση, οι ευέλικτες μέθοδοι εστιάζουν στα ακόλουθα:

- Ανθρώπινο δυναμικό
- Επικοινωνία
- Το προϊόν καθεαυτό
- Ελαστικότητα

5.2.1.1 Αξίωμα 1: Τα άτομα και οι αλληλεπιδράσεις είναι πάνω από τις διεργασίες και τα εργαλεία
Τα ευέλικτα μοντέλα δίνουν ιδιαίτερη έμφαση στον ανθρώπινο παράγοντα. Είναι γεγονός ότι όταν δοθούν οι κατάλληλες συνθήκες σε μια ομάδα εργασίας να πάρει πρωτοβουλία και να λειτουργήσει αυτόβουλα, τα αποτελέσματα είναι ευεργετικά, σε σχέση πάντοτε με την τυφλή εκτέλεση ενός άρτια οργανωμένου και αναλυτικού πλάνου υλοποίησης έργου. Επιπρόσθετα, η
επικοινωνία μεταξύ των μελών μιας ομάδας έργου, αποτελεί καθοριστικό παράγοντα επίλυσης θεμάτων. Είναι γεγονός ότι η τεκμηρίωση μιας συζήτησης μέσα από κάποιο εξελιγμένο σύστημα διαχείρισης εγγράφων (document management system) και με την πιθανή χρήση μερικών δεκάδων μηνυμάτων email, είναι σαφώς πιο αναπτυσσεματική από μια κατ’ ιδίαν συζήτηση ή μια online συζήτηση μέσω συστημάτων web conferencing.

5.2.1.2 Αξίωμα 2: Το λογισμικό που δουλεύει είναι πάνω από την ολοκληρωμένη τεκμηρίωση

Το απόλυτο μέγεθος για τη μέτρηση της επιτυχίας ενός έργου σχετίζεται άμεσα με το παραγόμενο προϊόν και με το πώς και κατά πόσο επιτυχθήκε ή υπερκαλύφθηκε η συμμόρφωση με τις απαιτήσεις του πελάτη. Κατά συνέπεια η ομάδα έργου οφείλει να εστιάζει στην παραγωγή προϊόντων που λειτουργούν και όχι σε παράπλευρες υποστηρικτικές διαδικασίες που δεν οδηγούν σε ωφέλιμο έργο.

Σε ότι αφορά στο χώρο της πληροφορικής, ως λογισμικό που δουλεύει (working software) νοείται αυτό που πληροί τον ορισμό του ολοκληρωμένου, δηλαδή έχει αναπτυχθεί (developed), δοκιμαστεί (tested), ενσωματωθεί σε ενιαίο περιβάλλον με τις υπόλοιπες λειτουργικές μονάδες (integration) και τεκμηριωθεί (documented). Δεδομένου ότι ο ορισμός του ολοκληρωμένου (Definition of Done), αποτελεί βασικό δομικό στοιχείο των ευέλικτων τεχνικών κρίνεται σκόπιμη η προσέγγιση του (Gupta, 2008) που δημοσιεύεται στο scrumalliance.org, όπου περιγράφεται ένα Πλέγμα Αξιολόγησης της Ολοκλήρωσης (Done Thinking Grid).
Αξίζει να επισημανθεί ότι οι ευέλικτες μέθοδοι δεν «αφορίζουν» σε καμία περίπτωση την τεκμηρίωση του παραγόμενου προϊόντος. Στην ουσία προτείνουν τόση τεκμηρίωση όση απαιτείται, χωρίς να σπαταλάται πολύτιμος χρόνος και προσπάθεια που δεν οδηγεί στην παραγωγή λογισμικού. Οι ευέλικτες ομάδες παράγουν λιγότερα έγγραφα, για τα οποία απαιτείται λιγότερος χρόνος για την ενημέρωσή τους και τα οποία παρέχουν ξεκάθαρη οπτική των θεμάτων που αφορούν.

5.2.1.3 Αξίωμα 3: Η συνεργασία με τον πελάτη είναι πάνω από τη διαπραγμάτευση της σύμβασης

Στην πράξη, δεν είναι λίγες οι φορές κατά τις οποίες ο πελάτης αντιμετωπίζεται ως εχθρός. Ο κύριος λόγος για τη θέωρησις αυτή προκύπτει από την έλλειψη ενεργής εμπλοκής του, σε όλα τα στάδια ανάπτυξης του προϊόντος. Στα παραδοσιακά μοντέλα διαχείρισης έργου, ο ρόλος του πελάτη συνήθως περιορίζεται στην έγκριση των παραδοτέων των επιμέρους φάσεων και ουσιαστικά ο ίδιος αποκτά εικόνα του προϊόντος, λίγο πριν την ολοκλήρωση του έργου. Επί της ουσίας, αυτό σημαίνει ότι αναπτύσσεται γι’ αυτόν ένα προϊόν, χωρίς αυτόν!
Όταν στα πλαίσια ενός έργου δεν είναι αναμενόμενη η αλλαγή, τότε οποιαδήποτε απόκλιση οδηγεί στη στείρα διαπραγμάτευση των όρων της σύμβασης. Το γεγονός αυτό από μόνο του, δυσχεραίνει το πλαίσιο συνεργασίας. Οι πρωτοπόροι των ευέλικτων μεθόδων συνειδητοποίησαν έγκαιρα ότι η συνεργασία οδηγεί στην ανάπτυξη καλύτερων προϊόντων (Layton, 2012).

5.2.1.4 Αξίωμα 4: Η ανταπόκριση στην αλλαγή είναι πάνω από την πιστή εκτέλεση ενός πλάνου

Η αλλαγή αποτελεί βασικό παράγοντα στα ευέλικτα έργα, καθώς αντιμετωπίζεται ως μοχλός βελτιστοποίησης. Η ευέλικτη προσέγγιση φιλοξενεί την αλλαγή ως αναπόσπαστο και απαραίτητο στοιχείο του έργου καθώς η αλλαγή αποτελεί βασικό παράγοντα στα ευέλικτα έργα, αντιμετωπίζεται ως μοχλός βελτιστοποίησης. Η ευέλικτη προσέγγιση φιλοξενεί την αλλαγή ως αναπόσπαστο και απαραίτητο στοιχείο του έργου και παρέχει διαδικασίες συστηματικής διαχείρισης. Η ελαστικότητα των ευέλικτων μεθόδων στο συγκεκριμένο τομέα, οδηγεί στην αύξηση της σταθερότητας του έργου καθώς η αλλαγή είναι πλέον προβλέψιμη και κατ’ επέκταση διαχειρίσιμη.

5.2.2 Οι Αρχές της Ευελιξίας (Agile Principles)

Σε συνέχεια των τεσσάρων αξιωμάτων της Agile Alliance προχώρησε στη δημοσίευση των ακόλουθων 12 αρχών (agilemanifesto.org, 2001):

1. Πρώτη προτεραιότητα αποτελεί η ικανοποίηση του πελάτη, μέσα από την γρήγορη και συνεχόμενη παράδοση πολύτιμου λογισμικού
2. Καλωσορίστε τις αλλαγές στις απαιτήσεις, ακόμη και όταν αυτές συμβαίνουν αργά στην ανάπτυξη. Οι ευέλικτες διεργασίες αξιοποιούν την αλλαγή προς ανταγωνιστικό όφελος του πελάτη
3. Παραδώστε λειτουργικό λογισμικό συχνά, με συχνότητα από δυο εβδομάδες έως τέσσερις μήνες, με προτίμηση στη μικρότερη συχνότητα
4. Τα στελέχη των επιχειρήσεων και οι προγραμματιστές πρέπει να συνεργάζονται καθημερινά καθ’ όλη τη διάρκεια του έργου
5. Κτίστε έργα γύρω από άτομα με κίνητρο. Προσπαθήστε να τους παρέχετε το περιβάλλον και την υποστήριξη που χρειάζονται και εμπιστευτείτε ότι θα φέρουν εις πέρας το έργο τους.

6. Η πιο αποδοτική και αποτελεσματική μέθοδος μεταφοράς πληροφοριών προς μια ομάδα ανάπτυξης και μεταξύ των μελών της, είναι η διαπροσωπική επαφή και η συζήτηση.

7. Το λογισμικό που «δουλεύει» αποτελεί το βασικό μέτρο αποτίμησης της προόδου.

8. Οι ευέλικτες διεργασίες προωθούν την ανάπτυξη από ένα σταθερό ρυθμό επ' αόριστον.

9. Η συνεχόμενη προσοχή στην τεχνική αριστεία και τον καλό σχεδιασμό ενισχύει την ευελιξία.

10. Η απλότητα – η τέχνη της μεγιστοποίησης της δουλειάς που δεν πρέπει να γίνει – είναι ουσιώδης.

11. Οι καλύτερες αρχιτεκτονικές, απαιτήσεις και σχέδια προκύπτουν από ομάδες που αυτό-οργανώνονται.

12. Σε τακτά χρονικά διαστήματα, η ομάδα αξιολογεί τους τρόπους με τους οποίους μπορεί να γίνει πιο αποτελεσματική και στη συνέχεια ρυθμίζει και προσαρμόζει τη συμπεριφορά της ανάλογα.

5.3 Επιλογή Ευέλικτης Μεθοδολογίας

Η υιοθέτηση κάποιας ευέλικτης μεθοδολογίας, αποτελεί λογική επιλογή για έργα τα οποία έχουν σαφή στόχο αλλά ασαφή λύση, δηλαδή για οποιαδήποτε τυπικό έργο πληροφορικής (Πίνακας 6 : Τεταρτημόρια Επιλογής Μοντέλου Κύκλου Ζωής Διαχείρισης Έργων). Ωστόσο η συγκεκριμένη προσέγγιση δεν απαντά στο ποια ευέλικτη μεθοδολογία πρέπει να επιλεγεί. Η απάντηση στο ερώτημα αυτό, προκύπτει στη συνέχεια μορφώντας τη συμπεριφορά της ανάλογα.

Το πλαίσιο εργασίας 4-DAT προσδιορίζει τις ακόλουθες διαστάσεις αξιολόγησης της ευελιξίας της κάθε μεθόδου.

Πίνακας 8: Οι τέσσερις διαστάσεις του 4-DAT (Qumer & Henderson-Sellers, An evaluation of the degree of agility in six agile methods and its applicability for method engineering, 2007)

<table>
<thead>
<tr>
<th>Διάσταση 1: Έκταση</th>
</tr>
</thead>
<tbody>
<tr>
<td>Μέγεθος Έργου</td>
</tr>
<tr>
<td>Μέγεθος Ομάδας</td>
</tr>
<tr>
<td>Στυλ Ανάπτυξης</td>
</tr>
<tr>
<td>Στυλ Προγραμματισμού</td>
</tr>
<tr>
<td>Τεχνολογικό Περιβάλλον</td>
</tr>
<tr>
<td>Φυσικό Περιβάλλον</td>
</tr>
<tr>
<td>Κουλτούρα Επιχείρησης</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Διάσταση 2: Χαρακτηρισμός Ευελιξίας</th>
</tr>
</thead>
<tbody>
<tr>
<td>Εύκαμπτες Διαδικασίες</td>
</tr>
<tr>
<td>Ταχύτητα</td>
</tr>
<tr>
<td>Λιτότητα / Ουσία</td>
</tr>
<tr>
<td>Μάθηση</td>
</tr>
<tr>
<td>Απόκριση</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Διάσταση 3: Χαρακτηρισμός Αξιών Ευελιξίας</th>
</tr>
</thead>
<tbody>
<tr>
<td>Τα άτομα και τις αλληλεπιδράσεις, πάνω από τις διεργασίες και τα εργαλεία</td>
</tr>
<tr>
<td>Το λογισμικό που δουλεύει, πάνω από την ολοκληρωμένη τεκμηρίωση</td>
</tr>
<tr>
<td>Η συνεργασία με τον πελάτη, πάνω από τη διαπραγμάτευση της σύμβασης</td>
</tr>
<tr>
<td>Η ανταπόκριση στην αλλαγή, πάνω από την πιστή εκτέλεση ενός πλάνου</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Διάσταση 4: Χαρακτηρισμός Ανάπτυξης Λογισμικού</th>
</tr>
</thead>
<tbody>
<tr>
<td>Διαδικασία Ανάπτυξης</td>
</tr>
<tr>
<td>Διαδικασία Διαχείρισης Έργων</td>
</tr>
<tr>
<td>Ρυθμίσεις λογισμικού, διαδικασία ελέγχου και υποστήριξης</td>
</tr>
<tr>
<td>Διαδικασία διαχείρισης διεργασιών</td>
</tr>
</tbody>
</table>
Η μοναδική ποσοτικοποιημένη διάσταση του παραπάνω πίνακα είναι η δεύτερη (Χαρακτηρισμός Ευελιξίας), η οποία επιτρέπει την αξιολόγηση της ευελιξίας, τόσο σε ευρεία κλίμακα (process level), όσο και σε μικρή κλίμακα (practices level). Για τον προσδιορισμό της ευελιξίας της κάθε μεθόδου, συμπληρώνεται ο πίνακας που ακολουθεί. Οι στήλες του πίνακα αποτελούνται από τα κριτήρια της δεύτερης διάστασης που είναι:

- Εύκαμπτες Διαδικασίες – Flexibility (FY)
- Ταχύτητα – Speed (SD)
- Λιτότητα / Ουσία – Leanness (LN)
- Μάθηση – Learning (LG)
- Απόκριση – Responsiveness (RS)

Οι στήλες συμπληρώνονται με τιμές 0 και 1 σε επίπεδο φάσης για την μακροσκοπική αξιολόγηση και σε επίπεδο μεμονωμένης πρακτικής για την μικροσκοπική αξιολόγηση.

Πίνακας 9 : 4-DAT Αξιολόγηση Ευελιξίας Μεθοδολογιών (Qumer & Henderson-Sellers, An evaluation of the degree of agility in six agile methods and its applicability for method engineering, 2007)

<table>
<thead>
<tr>
<th>(i) Phases</th>
<th>Agility features</th>
<th>SD</th>
<th>LS</th>
<th>LG</th>
<th>RS</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase 1</td>
<td>FY</td>
<td>0 1</td>
<td>0 1</td>
<td>0 1</td>
<td>0 1</td>
<td>0 1</td>
</tr>
<tr>
<td>Phase 2</td>
<td>FY</td>
<td>0 1</td>
<td>0 1</td>
<td>0 1</td>
<td>0 1</td>
<td>0 1</td>
</tr>
<tr>
<td>Phase 3</td>
<td>FY</td>
<td>0 1</td>
<td>0 1</td>
<td>0 1</td>
<td>0 1</td>
<td>0 1</td>
</tr>
<tr>
<td>etc.</td>
<td>FY</td>
<td>0 1</td>
<td>0 1</td>
<td>0 1</td>
<td>0 1</td>
<td>0 1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>(0 - x)</td>
</tr>
<tr>
<td>Degree of agility (high level)</td>
<td>(0 - x)/x</td>
<td></td>
</tr>
<tr>
<td>(ii) Practices</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>total divided by number of cells in table</td>
</tr>
</tbody>
</table>

Ακολουθούν ενδεικτικά οι συμπληρωμένοι πίνακες για τις μεθόδους Scrum και Extreme Programming.
Η συγκεκριμένη μελέτη προχωρά στην συγκριτική αξιολόγηση της ευελιξίας των μεθοδολογιών Extreme Programming (XP), Scrum, Feature Driven Development (FDD), Adaptive Software Development (ASD), Dynamic Software Development Method (DSDM) και Crystal. Τα αποτελέσματα παρατίθενται στο διάγραμμα που ακολουθεί:

Πίνακας 10 : 4-DAT Αξιολόγηση ΧΡ (Qumer & Henderson-Sellers, An evaluation of the degree of agility in six agile methods and its applicability for method engineering, 2007)

<table>
<thead>
<tr>
<th>Agility features</th>
<th>FY</th>
<th>SD</th>
<th>LS</th>
<th>LG</th>
<th>RS</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exploration</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Planning</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Iteration to release</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Proportionizing</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Maintenance</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Death</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>21</td>
</tr>
<tr>
<td>Degree of Agility</td>
<td>5/6</td>
<td>5/6</td>
<td>1/6</td>
<td>5/6</td>
<td>5/6</td>
<td>21(6*5)</td>
</tr>
<tr>
<td>Practice</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The planning game</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Short release</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Metaphor</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Simple design</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Testing</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Refactoring</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Pair programming</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Collective ownership</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Continuous integration</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>46th week</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>On-site customer</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Coding standards</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td>8</td>
<td>5</td>
<td>11</td>
<td>10</td>
<td>44</td>
</tr>
<tr>
<td>Degree of agility</td>
<td>10/12</td>
<td>8/12</td>
<td>5/12</td>
<td>11/12</td>
<td>10/12</td>
<td>44/12(5*)</td>
</tr>
</tbody>
</table>

Πίνακας 11 : 4-DAT Αξιολόγηση Scrum (Qumer & Henderson-Sellers, An evaluation of the degree of agility in six agile methods and its applicability for method engineering, 2007)

<table>
<thead>
<tr>
<th>Agility features</th>
<th>FY</th>
<th>SD</th>
<th>LS</th>
<th>LG</th>
<th>RS</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-Game</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Development</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Post-Game</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>Degree of agility</td>
<td>2/3</td>
<td>3/3</td>
<td>0/3</td>
<td>2/3</td>
<td>2/3</td>
<td>9(3*3)</td>
</tr>
<tr>
<td>Practice</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scrum master</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Scrum team</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Product backlog</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Sprint</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Sprint planning meeting</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Daily scrum meeting</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Sprint review</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>7</td>
<td>7</td>
<td>0</td>
<td>7</td>
<td>7</td>
<td>28</td>
</tr>
<tr>
<td>Degree of agility</td>
<td>7/7</td>
<td>7/7</td>
<td>0/7</td>
<td>7/7</td>
<td>7/7</td>
<td>28(7*4)</td>
</tr>
</tbody>
</table>

Διάγραμμα 10 : Συγκριτική Αξιολόγηση Ευέλικτων Μεθοδολογιών (Qumer & Henderson - Sellers, A framework to support the evaluation, adoption and improvement of agile methods in practice, 2007)
Στο διάγραμμα απεικονίζονται παράλληλα και δυο παραδοσιακές μεθόδους (Spiral και Waterfall), όπου καθίσταται εμφανής η ελάχιστη έως μηδενική ευελιξία τους (Qumer & Henderson - Sellers, A framework to support the evaluation, adoption and improvement of agile methods in practice, 2007, σ. 1905).

Προφανώς η μεθοδολογία που περιγράφηκε δεν αποτελεί μονόδρομο για την επιλογή της κατάλληλης ευέλικτης μεθόδου. Ωστόσο παρέχει ένα συμπαγές πλαίσιο στο οποίο παρατίθενται ασφαλή ευρήματα όπως:

- Η Scrum παρουσιάζει το μεγαλύτερο βαθμό ευελιξίας σε ότι αφορά τις πρακτικές που εφαρμόζει, καθώς και ικανοποιητικό βαθμό στις φάσεις που ενσωματώνει.
- Η Crystal έχει μέγιστη ευελιξία στις φάσεις που περιλαμβάνει και ανάλογη ευελιξία με την Scrum στις πρακτικές.
- Το Extreme Programming κατατάσσεται στη δεύτερη θέση και στις δυο κατηγορίες κριτηρίων.

Στην παρούσα εργασία επιλέγεται η αναλυτική περιγραφή και εφαρμογή της ευέλικτης μεθόδου Scrum, η οποία εμφανίζει εξαιρετική διείσδυση, σε ποσοστό μεγαλύτερο του 50% σύμφωνα με τη στατιστική ανάλυση “State of Agile Development” του 2011 (State Of Agile Survey, 2011).
Διάγραμμα 11: Διείσδυση Ευέλικτων Μεθόδων (State Of Agile Survey, 2011)

5.4 Μεθοδολογία SCRUM

Η μεθοδολογία Scrum είναι μια ευέλικτη προσέγγιση η οποία εστιάζει στην παράδοση της προστιθέμενης επιχειρηματικής αξίας βάσει προτεραιότητας και σε σύντομο χρονικό διάστημα. Η επιχειρησιακή λογική θέτει τις προτεραιότητες, ενώ η ομάδα λειτουργεί αυτόβουλα με στόχο την παράδοση των σημαντικότερων λειτουργικών (Kohn, 2009).

Η Scrum αποτελεί μια αυξητική και επαναληπτική προσέγγιση, τον πυρήνα της οποίας αποτελεί το λεγόμενο «sprint». Η συγκεκριμένη μεθοδολογία υποστηρίζεται από συγκεκριμένους ρόλους, αντικείμενα και γεγονότα.

Στο διάγραμμα που ακολουθεί απεικονίζεται η προσέγγιση scrum:
Διάγραμμα 12: Η μεθοδολογία SCRUM

5.4.1 Ορολογία SCRUM

5.4.1.1 Sprint
Το sprint αποτελεί τον επαναληπτικό κύκλο, κατά τη διάρκεια του οποίου, η ομάδα αναπτύσσει ένα ολοκληρωμένο τμήμα του τελικού προϊόντος. Το χαρακτηριστικό των sprints είναι ότι έχουν καθορισμένη διάρκεια, από μια εβδομάδα έως ένα μήνα για κάθε έργο. Συνοπτικά, κατά τη διάρκεια ενός sprint διενεργούνται τα ακόλουθα:

- Συνεχής επιθεώρηση, με στόχο την αξιολόγηση της προόδου, σε σχέση πάντοτε με τον στόχο του sprint
- Σύντομες συναντήσεις σε καθημερινή βάση, με στόχο την επισκόπηση των όσων έγιναν την προηγούμενη ημέρα καθώς και των όσων αναμένεται να υλοποιηθούν την τρέχουσα ημέρα
- Στο τέλος κάθε sprint, πραγματοποιείται η συνάντηση ανασκόπησης, με στόχο την αξιολόγηση της απόδοσης και τον σχεδιασμό τυχόν αναπροσαρμογών.

5.4.1.2 Ρόλοι
Η μεθοδολογία Scrum ενσωματώνει τρεις διακριτούς ρόλους ως εξής:
• **Κάτοχος Προϊόντος (Product Owner).** Αφορά στον εντοπισμό των επιχειρηματικών αναγκών που αποτυπώνονται στα πλαίσια του έργου. Ο Κάτοχος Προϊόντος καλείται να συντονίσει την επικοινωνία μεταξύ του πελάτη και της ομάδας ανάπτυξης σε επιχειρησιακό και τεχνολογικό επίπεδο. Για το ρόλο αυτό απαιτείται ο ορισμός ενός ατόμου με εκτεταμένη εμπειρία στη συλλογή και την ανάλυση των απαιτήσεων πληροφοριακών συστημάτων καθώς είναι αρμόδιος για τη λήψη αποφάσεων, αναφορικά με τις ακριβώς συμπεριλαμβάνονται στην ανάπτυξη και τι όχι. Συνοπτικά οι αρμοδιότητες του Κατόχου Προϊόντος είναι:

- Συλλογή, επεξεργασία και ταξινόμηση βάσει προτεραιότητας των απαιτήσεων, σε συνεργασία με την υπόλοιπη ομάδα έργου.
- Παρακολούθηση του προϋπολογισμού και την κερδοφορία.
- Λήψη αποφάσεων αναφορικά με τις ημερομηνίες δημοσίευσης των λειτουργικών τμημάτων του προϊόντος (product increments).
- Καθορισμός στρατηγικής, κατευθυντήριων γραμμών καθώς και βραχυπρόθεσμων και μακροπρόθεσμων στόχων.
- Αποδοχή ή απόρριψη εργασιών, κατά τη διάρκεια των sprints.
- Μετατροπή των αναγκών του πελάτη και των άλλων ομάδων ενδιαφέροντος, σε ανάγκες που είναι κατανοητές στην ομάδα ανάπτυξης.
- Παρουσίαση των στόχων που επιτεύχθηκαν στο τέλος κάθε sprint.

• **Ομάδα Ανάπτυξης (Development Team).** Εκτελεί τις εργασίες ανάπτυξης σε ημερήσια βάση. Η ομάδα είναι αφοσιωμένη σε ένα και μοναδικό έργο και απαρτίζεται από πολυσυλλεκτικές μονάδες που μπορούν να εκτελέσουν διαφορετικές εργασίες στη διάρκεια του έργου.

Η ομάδα ανάπτυξης έχει τις ακόλουθες αρμοδιότητες:

- Είναι αποκλειστικά υπεύθυνη για την ανάπτυξη των παραδοτέων του έργου.
- Διαθέτει εσωτερικούς μηχανισμούς οργάνωσης και διοίκησης, καθώς τόσο η ανάθεση των επιμέρους εργασιών, όσο και ο τρόπος υλοποίησης, γίνονται από την ίδια την ομάδα, κατόπιν συνεννόησης.
- Τα μέλη της ομάδας είναι πολυσυλλεκτικά και δεν περιορίζονται σε σταθερούς ρόλους. Τα στελέχη έχουν τις δεξιότητες να ανταποκρίθουν σε πληθώρα διαφορετικών εργασιών και να αλληλοσυμπληρωθούν στα πλαίσια του sprint.
ο Ιδανικά οι αναθέσεις αφορούν σε ένα και μοναδικό έργο, με στόχο τη συγκέντρωση στην επίτευξη των στόχων
ο Ιδανικά η ομάδα συστεγάζεται, ώστε να επιτυγχάνεται η ζητούμενη αμεσότητα και αποτελεσματικότητα στη συνεργασία.

- **Scrum master.** Διασφαλίζει την απρόσκοπτη εφαρμογή της μεθοδολογίας, προστατεύοντας τα μέλη από εξωτερικούς παράγοντες που τείνουν να διασπάσουν την προσοχή τους από τις εργασίες του έργου. O Scrum Master δεν ταυτίζεται, σε καμία περίπτωση, με την έννοια του παραδοσιακού διαχειριστή έργων. Στις παραδοσιακές τεχνικές διαχείρισης, η ομάδα αναφέρεται διαρκώς στο διαχειριστή του έργου. Ο ρόλος του Scrum Master είναι περισσότερο να ενθαρρύνεται την ομάδα έργου, από ότι να την επιτηρεί. Σε ένα ευέλικτο έργο o Scrum Master έχει τα εξής καθήκοντα:
 o Λειτουργεί ως προπονητής, αναφορικά με την ορθή εφαρμογή της μεθοδολογίας και την τήρηση των ευέλικτων πρακτικών
 o Αντιμετωπίζει τα εμπόδια που θέτουν σε κίνδυνο το έργο και θωρακίζει την ομάδα έργου από εξωτερικές παρεμβάσεις
 o Διασφαλίζει αγαστή συνεργασία μεταξύ των ομάδων ενδιαφέροντος (stakeholders) και της ομάδας έργου

5.4.1.3 **Αντικείμενα**
Η μεθοδολογία Scrum ενσωματώνει τρία διακριτά παραδοτέα ως εξής:

- **Backlog Προϊόντος (Product Backlog).** Πρόκειται για τη λίστα των απαιτήσεων με καταγεγραμμένη σειρά προτεραιότητας. Οι απαιτήσεις αυτές δεν είναι αναλυτικές (high-level requirements) και αναπροσαρμόζονται ή γίνονται πιο αναλυτικές κατά τη διάρκεια υλοποίησης του έργου

- **Sprint Backlog.** Πρόκειται για τη λίστα των εργασιών με καταγεγραμμένη σειρά προτεραιότητας που πρόκειται να υλοποιηθούν στη διάρκεια του sprint. Ο Κάτοχος Προϊόντος και η Ομάδα Ανάπτυξης αποφασίζουν τις απαιτήσεις που θα λάβουν μέρος στο sprint στο στάδιο σχεδιασμού του sprint

- **Λειτουργικό Τμήμα του Προϊόντος (Product Increment).** Πρόκειται για ένα τμήμα του τελικού προϊόντος, με δυνατότητα επίδειξης συγκεκριμένης λειτουργικότητας στον
πελάτη. Για ένα προϊόν λογισμικού οι εκδόσεις (alpha, beta, release candidates) μπορούν να θεωρηθούν λειτουργικά τμήματα του τελικού προϊόντος.

5.4.1.4 Γεγονότα

Η μεθοδολογία Scrum ενσωματώνει τέσσερις διακριτούς τύπους γεγονότων ως εξής:

- **Συνάντηση Σχεδιασμού Sprint (Sprint Planning Meeting).** Η έναρξη ενός sprint σηματοδοτείται από τη συγκεκριμένη συνάντηση, κατά την οποία η ομάδα έργου προετοιμάζει τον Sprint Backlog, δηλαδή τις εργασίες που πρόκειται να υλοποιηθούν με σειρά πρωτεραιότητας στα πλαίσια του sprint, από το σύνολο των εργασιών που αποτυπώνονται στο Product Backlog. Η διάρκεια της συνάντησης είναι από δυο έως οκτώ ώρες ανάλογα με τη διάρκεια του sprint σε εβδομάδες.

- **Καθημερινή Συνάντηση Scrum (Daily Scrum Meeting).** Πρόκειται για μια συνάντηση που πραγματοποιείται πρωινές ώρες σε ημερήσια βάση και διαρκεί μόλις 15 λεπτά. Κατά τη διάρκεια της συνάντησης τα μέλη της ομάδας συζητούν τα ακόλουθα θέματα:
 - Τις εργασίες που εκτελέστηκαν την προηγούμενη ημέρα
 - Τις εργασίες που πρόκειται να εκτελεστούν την τρέχουσα ημέρα
 - Τα εμπόδια που αντιμετωπίζουν τα μέλη της ομάδας

- **Συνάντηση Ανασκόπησης Sprint (Sprint Review Meeting).** Λαμβάνει χώρα στο τέλος κάθε sprint και αφορά στην ανασκόπηση των εργασιών που εκτελέστηκαν καθώς και αυτών που δεν ολοκληρώθηκαν. Κύριος στόχος της συνάντησης είναι η επίδειξη στον πελάτη των λειτουργιών και χαρακτηριστικών που αναπτύχθηκαν κατά τη διάρκεια του sprint. Η διάρκεια της συνάντησης είναι από μία έως τέσσερις ώρες, ανάλογα με τη διάρκεια σε εβδομάδες του sprint (1 έως 4 εβδομάδες).

- **Ανατροφοδότηση / Αποτίμηση Sprint (Sprint Retrospective).** Λαμβάνει χώρα στο τέλος κάθε sprint και αποτελεί εσωτερική συνάντηση αποτίμησης, κατά την οποία ο Κάτοχος Προϊόντος, ο Scrum Master και η Ομάδα Ανάπτυξης, απαντούν σε βασικά ερωτήματα:
 - Τι πήγε καλά στη διάρκεια του sprint;
 - Ποιές βελτιώσεις μπορούν να γίνουν στο επόμενο sprint;
Η διάρκεια της συνάντησης είναι από 45 λεπτά μέχρι τρεις ώρες, ανάλογα με τη
dιάρκεια του sprint σε εβδομάδες και συντονίζεται αποκλειστικά από τον Scrum
Master.

5.4.2 Διαμόρφωση Περιβάλλοντος
Η ορθή υιοθέτηση της μεθοδολογίας Scrum απαιτεί ένα ευέλικτο περιβάλλον εργασίας, με
στοιχεία τα οποία υποστηρίζουν και ενισχύουν τη λήψη πρωτοβουλίας και τα κίνητρα των
μελών της ομάδας έργου. Η στείρα εφαρμογή των βημάτων των επαναλήψεων, στην ανάπτυξη
tου προϊόντος, αποτελεί μονόδρομο προς την αποτυχία του έργου, εφόσον δεν συνδεύεται
από τις βασικές συνθήκες που περιγράφονται στις παραγράφους που ακολουθούν (Cohn,

5.4.2.1 Συστέγαση Ομάδας
Ιδανικά η μεθοδολογία Scrum απαιτεί την συνύπαρξη των μελών της ομάδας έργου στον ίδιο
φυσικό χώρο. Η συστέγαση της ομάδας έργου ευνοεί τα ακόλουθα:
• Κατ’ ιδίαν επικοινωνία
• Χρήση απλών μέσων επικοινωνίας
• Άμεση λήψη διευκρινίσεων μεταξύ των μελών της ομάδας
• Υποστήριξη μελών στην εκτέλεση εργασιών

5.4.2.2 Δημιουργία Χώρου Εργασίας
Εφόσον πληρείται η παραπάνω προϋπόθεση της συστέγασης, τότε η ομάδα πρέπει να
λειτουργεί σε ένα χώρο αποκλειστικής χρήσης. Ιδανικά η ύπαρξη μιας αίθουσας με τα
κατάλληλα εργαλεία όπως πίνακες σημειώσεων, προβολικά και τράπεζα συναντήσεων,
eυνοούν την άριστη και ευέλικτη συνεργασία.

5.4.2.3 Απομάκρυνση Εμπόδιων
Η συγκέντρωση της ομάδας έργου στην εκτέλεση των εργασιών ενός και μόνο έργου τη φορά,
apοτελεί καθοριστικό παράγοντα που προσδιορίζει σημαντικά την παραγωγικότητα. Η
πράξη δείχνει ότι μια ομάδα έργου εκτίθεται σε πληθώρα εσωτερικών και εξωτερικών
παραγόντων που αποσπούν τη συγκέντρωση των μελών της, κατά τη διάρκεια της ημέρας,
όπως στην κατοικία, η λήψη ερωτήσεων, η διάβαση και η υποκρίση επιλύσεων (system down situation), κ.ο.κ. Για το λόγο αυτό ο ρόλος του Scrum Master είναι να
απομακρύνει τα εμπόδια που αποσπούν την ομάδα έργου, με στόχο την επίτευξη μέγιστης
απόδοσης και τη διασφάλιση ορθής διοχέτευσης της ενέργειας.

5.4.2.4 Επικοινωνιακά Μέσα Χαμηλής Τεχνολογίας
Η συστέγαση της ομάδας έργου διευκολύνει τις διαπροσωπικές σχέσεις και την άμεση
επικοινωνία. Η επικοινωνία με συμβατικά εργαλεία διαμορφώνει ένα ευέλικτο μοντέλο
συνεργασίας, με λιγότερη γραφειοκρατία και χωρίς τυπικούς περιορισμούς. Η χρήση πινάκων,
pολύχρωμων μαρκαδόρων και αυτοκόλλητων σημειώσεων, μπορεί να αποδειχθεί πολύ πιο
αποτελεσματικός τρόπος οργάνωσης του έργου, σε σχέση με κάποιο ηλεκτρονικό μέσο υψηλής
τεχνολογίας.

5.4.2.5 Επικοινωνιακά Μέσα Υψηλής Τεχνολογίας
Στην περίπτωση που η συστέγαση όλων των μελών της ομάδας έργου δεν καθίσταται εφικτή, η
επικοινωνία θα πρέπει να υποστηριχθεί από τεχνολογικά μέσα. Η χρήση συστημάτων
tηλεδιάσκεψης και web καμερών υποκαθιστούν, κατά κάποιο τρόπο, την αμεσότητα στην
επικοινωνία που προϋποθέτει η μεθοδολογία Scrum. Ακολουθούν ενδεικτικές οθόνες από την
online υπηρεσία web conferencing WebEx της Cisco.
Εικόνα 1: Κεντρική Οθόνη Διαχείρισης Συναντήσεων

Εικόνα 2: Ηλεκτρονικός Χώρος Συνάντησης
Η συγκεκριμένη υπηρεσία αναφέρεται ενδεικτικά και αποτελεί μια από τις πλέον αξιόπιστες εμπορικές λύσεις σε παγκόσμιο επίπεδο. Οι υπηρεσίες web conferencing ενσωματώνουν τα ακόλουθα χαρακτηριστικά:

- Δυνατότητα διαμοιρασμού της επιφάνειας εργασίας, μέσω της οποίας καθίσταται αποτελεσματική η παρουσίαση του πληροφοριακού συστήματος εξ αποστάσεως
- Δυνατότητα βίντεο σε μορφή high definition, ώστε να υποκαθίσταται κατά κάποιο τρόπο η φυσική επαφή
- Δυνατότητα καταγραφής (record) της online συζήτησης, με αποτέλεσμα να υπάρχουν άμεσα διαθέσιμα τα ηλεκτρονικά πρακτικά της συνάντησης
- Δυνατότητα chat
- Δυνατότητα προγραμματισμού συνάντησης (scheduling)
- Δυνατότητα ανταλλαγής αρχείων
- Παροχή ηλεκτρονικού πίνακα σημειώσεων.

5.4.3 Σχεδιασμός Έργου, Εκδόσεων και Sprints

Οι ευέλικτες μέθοδοι έχουν συχνά κατηγορηθεί ότι δεν περιλαμβάνουν επαρκείς διαδικασίες σχεδιασμού. Η θεώρηση αυτή είναι λανθασμένη καθώς ο σχεδιασμός αποτελεί βασικό δομικό στοιχείο των ευέλικτων έργων. Για την ακρίβεια η μεθοδολογία Scrum περιλαμβάνει στάδια σχεδιασμού που διέπουν ολόκληρο τον κύκλο ζωής του έργου, χωρίς να περιορίζονται στο αρχικό στάδιο ανάλυσης των απαιτήσεων των παραδοσιακών τεχνικών. (Smits, 2006).

Ο (Layton, 2012) στο βιβλίο του Agile Project Management For Dummies, αποτυπώνει με ολοκληρωμένο τρόπο τον κύκλο ζωής ενός ευέλικτου έργου με τη χρήση της μεθόδου Scrum.
5.4.3.1 Στάδιο 1 – Όραμα

Το πρώτο στάδιο σε ένα ευέλικτο έργο είναι ο καθορισμός του οράματος. Πρόκειται ουσιαστικά για μια σύνοψη, με στόχο την αποτύπωση της προστιθέμενης επιχειρηματικής αξίας του προϊόντος. Στο όραμα θα πρέπει να γίνεται σαφής αναφορά των βασικών στόχων του τελικού προϊόντος.

Τη σύνταξη του Οράματος αναλαμβάνει ο Κάτοχος Προϊόντος (Product Owner) ο οποίος είναι αποκλειστικά υπεύθυνος για τις απαιτήσεις και τους στόχους του προϊόντος, καθ’ όλη τη διάρκεια του έργου.
Στα ευέλικτα έργα δεν υπάρχουν πρότυπα έγγραφα αποτύπωσης του οράματος. Ωστόσο η κατανόηση του κειμένου από όλους τους εμπλεκόμενους, αποτελεί ζητούμενο.

Στον πίνακα που ακολουθεί απεικονίζεται μια πρόταση για την συμπλήρωση του οράματος που στηρίζεται στο πρότυπο του Geoffrey Moore, όπως αυτό περιγράφεται στο βιβλίο του Crossing the Chasm.

Πίνακας 12: Δήλωση Οράματος Προϊόντος (Geoffrey Moore, 1999)

<table>
<thead>
<tr>
<th>ΔΗΛΩΣΗ ΟΡΑΜΑΤΟΣ ΓΙΑ ΤΟ ΠΡΟΙΟΝ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Για:</td>
</tr>
<tr>
<td>Ο οποίος</td>
</tr>
<tr>
<td>Το</td>
</tr>
<tr>
<td>Που είναι</td>
</tr>
<tr>
<td>Το οποίο</td>
</tr>
<tr>
<td>Σε αντίθεση με</td>
</tr>
<tr>
<td>Το προϊόν μας</td>
</tr>
</tbody>
</table>

Για παράδειγμα η δήλωση οράματος, για ένα πραγματικό ηλεκτρονικό κατάστημα πώλησης ειδών δώρων, έχει ως εξής:

Πίνακας 13: Παράδειγμα Δήλωσης Οράματος Προϊόντος

<table>
<thead>
<tr>
<th>ΔΗΛΩΣΗ ΟΡΑΜΑΤΟΣ ΓΙΑ ΤΟ ΠΡΟΙΟΝ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Για:</td>
</tr>
<tr>
<td>Ο οποίος</td>
</tr>
<tr>
<td>Το</td>
</tr>
<tr>
<td>Που είναι</td>
</tr>
<tr>
<td>Το οποίο</td>
</tr>
<tr>
<td>Σε αντίθεση με</td>
</tr>
<tr>
<td>Το προϊόν μας</td>
</tr>
</tbody>
</table>
5.4.3.2 Στάδιο 2 – Οδικός Χάρτης Προϊόντος

Ο Οδικός Χάρτης αποτελεί μια ολοκληρωμένη αποτύπωση των απαιτήσεων του έργου και ένα πολύτιμο εργαλείο για τον σχεδιασμό και την εκτέλεση της ανάπτυξης του προϊόντος. Ο Κάτοχος Προϊόντος (Product Owner) είναι αρμόδιος για τη σύνταξη του Οδικού Χάρτη, σε συνεργασία με την ομάδα ανάπτυξης.

Αξίζει να επισημανθεί ότι ο Οδικός Χάρτης δεν περιλαμβάνει αναλυτικές απαιτήσεις. Οι απαιτήσεις στη φάση αυτή δεν εξειδικεύονται σε καμία περίπτωση σε επίπεδο λειτουργιών ή χαρακτηριστικών, καθώς δεν είναι αυτό το ζητούμενο της φάσης.

Για την δημιουργία του οδικού χάρτη απαιτείται:

1. Ο εντοπισμός των απαιτήσεων και η προσθήκη τους στον χάρτη
2. Η οργάνωση των απαιτήσεων σε λογικές ομάδες
3. Η μακροσκοπική εκτίμηση της απαιτούμενης προσπάθειας και τη ταξινόμηση των απαιτήσεων με σειρά προτεραιότητας
4. Η αρχική εκτίμηση του χρονοδιαγράμματος υλοποίησης των απαιτήσεων

Σε αντίθεση με τις παραδοσιακές τεχνικές στις οποίες δαπανάται τεράστια προσπάθεια στην εξαντλητική καταγραφή των προδιαγραφών και την αποσύνθεσή τους σε επιμέρους λειτουργίες και χαρακτηριστικά, η μεθοδολογία Scrum απαιτεί στα αρχικά στάδια τον οδικό άξονα πάνω στον οποίο πρόκειται να κινηθεί το έργο. Στη μεθοδολογία Scrum η λίστα των απαιτήσεων, αφενός θα εξειδικεύεται σε επόμενα στάδια και αφετέρου θα αναθεωρηθεί πολλαπλές φορές καθώς ο πελάτης και η ομάδα έργου είναι φυσιολογικά να «ανακαλύπτουν» νέες ανάγκες κατά τη διάρκεια ανάπτυξης του προϊόντος.

Αναφορικά με την αποσύνθεση των απαιτήσεων και την εξειδίκευσή τους σε μικρότερα τμήματα, στην βιβλιογραφία καταγράφονται οι ακόλουθες έννοιες (Cohn, 2012, pp. 238-248):

- **Θέματα (Themes).** Το θέμα αποτελεί μια λογική ομάδα χαρακτηριστικών (features) και αποτελεί απαίτηση η οποία διατυπώνεται σε πολύ υψηλό επίπεδο
- **Επικές Ιστορίες Χρηστών (Epic User Stories).** Αποτελούν σύνθετες απαιτήσεις οι οποίες υποστηρίζουν ένα χαρακτηριστικό και περιλαμβάνουν πολλαπλές ενέργειες. Απαιτείται η περαιτέρω αποσύνθεση τους, με στόχο τη δημιουργία απαιτήσεων για το προϊόν
• Ιστορίες Χρηστών (User Stories). Αποτελούν προδιαγράφες που περιλαμβάνουν μια και μόνο ενέργεια, με αποτέλεσμα να καθίσταται εφικτή η υλοποίησή τους.

5.4.3.3 Στάδιο 3 – Σχεδιασμός Εκδόσεων

Παράδοσιακά στο χώρο του λογισμικού, ως έκδοση νοείται μια ομάδα από λειτουργικά χαρακτηριστικά του προϊόντος που διατίθενται σε παραγωγικό περιβάλλον. Κλασικό παράδειγμα αποτελούν οι λεγόμενες εκδόσεις alpha στις οποίες δεν έχουν ενσωματωθεί όλα τα χαρακτηριστικά του προϊόντος, ακολουθούμενες από τις εκδόσεις beta οι οποίες χαρακτηρίζονται από πλήρη λειτουργικότητα αλλά με πιθανές δυσλειτουργίες.

Στο στάδιο του σχεδιασμού των εκδόσεων, οι απαιτήσεις του Οδικού Χάρτη που έχουν αποτυπωθεί σε επίπεδο Θεμάτων (Themes), εξειδικεύονται σε επίπεδο Ιστοριών Χρήστη (User Stories).

Οι ιστορίες χρηστών αποτελούν στην ουσία περιγραφικά κείμενα που αποτυπώνουν μια αλληλεπίδραση του χρήστη με το σύστημα και εστιάζουν στην αξία που λαμβάνει ο χρήστης από το σύστημα. Μια πραγματική ιστορία χρήστη αποτελεί μεταφορική διατύπωση των εργασιών που πρέπει να γίνουν (Nazzaro, 2010).

Η Ιστορία Χρήστη μπορεί να αποτυπωθεί σε κάρτες διπλής όψης ως εξής:

Πίνακας 14: Ιστορία Χρήστη - Εμπρόσθια όψη κάρτας

<table>
<thead>
<tr>
<th>Εμπρόσθια όψη κάρτας</th>
</tr>
</thead>
<tbody>
<tr>
<td>Τίτλος</td>
</tr>
<tr>
<td>Όπως</td>
</tr>
<tr>
<td>Επιθυμώ να</td>
</tr>
<tr>
<td>Έτσι ώστε</td>
</tr>
</tbody>
</table>

Πίνακας 15: Ιστορία Χρήστη – Οπίσθια όψη κάρτας

<table>
<thead>
<tr>
<th>Οπίσθια όψη κάρτας</th>
</tr>
</thead>
<tbody>
<tr>
<td>Όταν</td>
</tr>
<tr>
<td>Όταν</td>
</tr>
</tbody>
</table>
παραγγελία σε εξέλιξη, εμφανίζεται πρώτη η τρέχουσα παραγγελία με ενημέρωση για την κατάστασή της και την πιθανή ημερομηνία παραλαβής των αγαθών

Ο σχεδιασμός των εκδόσεων περιλαμβάνει δυο βασικές δραστηριότητες (Layton, 2012, σ. 139):

- Την αναθεώρηση του Backlog Προϊόντος, ώστε να συμπεριλάβει τις εξειδικευμένες απαιτήσεις. Το Backlog του προϊόντος είναι μοναδικό και παραμένει μοναδικό σε όλη τη διάρκεια υλοποίησης του έργου.
- Τον σχεδιασμό της έκδοσης κατά την οποία καταγράφεται ο στόχος της έκδοσης, η ημερομηνία δημοσίευσης καθώς και η ταξινομημένη λίστα των ιστοριών χρηστών που θα απασχολήσουν την ομάδα στα πλαίσια της συγκεκριμένης έκδοσης.

5.4.3.4 Στάδιο 4 – Σχεδιασμός Sprint

Ο σχεδιασμός του Sprint πραγματοποιείται με τη συμμετοχή όλων των μελών της ομάδας έργου και αφορά στις εργασίες που πρόκειται να εκτελεστούν στο συγκεκριμένο κύκλο. Η συνάντηση σχεδιασμού του Sprint αποτελείται από δυο διακριτά μέρη.

Στο πρώτο μέρος η ομάδα ανάπτυξης αποφασίζει για την λειτουργικότητα που θα ενσωματωθεί στο σύστημα, κατά τη διάρκεια του Sprint. Τα δεδομένα εισόδου για το σχεδιασμό είναι

- το Backlog του προϊόντος
- η τελευταία έκδοση του συστήματος, όπως διαμορφώθηκε στο προηγούμενο sprint
- η διαθεσιμότητα της ομάδας ανάπτυξης
- οι μετρήσεις απόδοσης της ομάδας ανάπτυξης

Στο δεύτερο μέρος, η ομάδα ανάπτυξης αποφασίζει τον τρόπο με τον οποίο θα ενσωματωθούν στο σύστημα οι λειτουργίες που επιλέχθηκαν από το Backlog του προϊόντος. Η κατανομή των εργασιών και ο τρόπος εργασίας (π.χ. pair programming) είναι αποφάσεις που λαμβάνονται σε αυτό το μέρος της συνάντησης σχεδιασμού του Sprint (Schwaber & Sutherland, The Scrum Guide, 2011).
Ο σχεδιασμός του sprint περιλαμβάνει τις ακόλουθες ενέργειες:

- Καθορισμός στόχου του sprint
- Επιλογή των ιστοριών χρηστών που εξυπηρετούν τον στόχο
- Αποσύνθεση των ιστοριών χρηστών σε εργασίες ανάπτυξης (tasks)
- Δημιουργία του sprint backlog το οποίο περιλαμβάνει, αφενός τις ταξινομημένες ιστορίες χρηστών και αφετέρου την εκτίμηση της προσπάθειας σε ώρες που απαιτείται για την υλοποίηση των αντίστοιχων εργασιών. Η εκτίμηση των ανθρωπωρών που απαιτούνται για την ανάπτυξη των επιμέρους εργασιών, απαντάται αποκλειστικά στο στάδιο σχεδιασμού των sprint και δεν απασχολεί σε προηγούμενα στάδια.
- Παρακολούθηση της προόδου των εργασιών με τη χρήση ειδικών διαγραμμάτων (burndown charts).

Ο σχεδιασμός του sprint γίνεται την πρώτη ημέρα κάθε sprint και διαρκεί από δυο ώρες, για sprint διάρκειας μιας εβδομάδας, έως οκτώ ώρες για sprint διάρκειας τεσσάρων εβδομάδων. Η τήρηση της διάρκειας των συναντήσεων αποτελεί βασική θεώρηση της μεθοδολογίας scrum καθώς είναι σαφής η έμφαση στην προοπτική του παραγωγικού χρόνου, δηλαδή του χρόνου στον οποίο η ομάδα αναπτύσσει τις επιμέρους λειτουργίες του τελικού προϊόντος.

5.4.3.5 Στάδιο 5 – Καθημερινή Συνάντηση

Η πραγματοποίηση καθημερινής συνάντησης αποτελεί βασική συνιστώσα της επιτυχίας της μεθοδολογίας Scrum και αποτελεί χαρακτηριστικό παράδειγμα της γενικότερης φιλοσοφίας των ευέλικτων μεθόδων, στις οποίες η συχνή και διαπροσωπική επικοινωνία αποτελεί την πλέον απαραίτητη συνιστώσα. Στην καθημερινή συνάντηση scrum, κάθε μέλος της ομάδας αναφέρει τα ακόλουθα (Schwaber & Sutherland, The Scrum Guide, 2011):

- Τις εργασίες που ολοκλήρωσε την προηγούμενη ημέρα
- Τις εργασίες που πρόκειται να ολοκληρώσει μέσα στην τρέχουσα ημέρα
- Τους παράγοντες που παρεμπόδισαν την ανάπτυξη

Αξίζει να επισημανθεί ότι οι καθημερινές συναντήσεις scrum έχουν ως κύριο στόχο το συντονισμό των εργασιών και όχι την επίλυση τυχόν προβλημάτων. Τον στόχο αυτό εξυπηρετεί και η μικρή του διάρκεια, της τάξης των δεκατέντε λεπτών, κατά τη διάρκεια των οποίων
υπάρχει χρόνος μόνο για την αποτύπωση της προόδου και τον έγκαιρο εντοπισμό τυχόν επισφαλειών.

5.4.3.6 Στάδιο 6 – Ανασκόπηση Scrum

Στο τέλος κάθε sprint λαμβάνει χώρα η συνάντηση ανασκόπησης, κατά την οποία ο Κάτοχος Προϊόντος και η Ομάδα Ανάπτυξης παρουσιάζουν στον πελάτη τις ιστορίες χρηστών που αναπτύχθηκαν. Πρόκειται για μια ανεπίσημη συνάντηση στην οποία η παρουσίαση της νέας λειτουργικότητας του συστήματος αποσκοπεί στη λήψη στοιχείων ανάδρασης και την ενίσχυση της συνεργατικότητας (Schwaber & Sutherland, The Scrum Guide, 2011).

Η επίδειξη περιλαμβάνει λειτουργικές ενότητες που έχουν ολοκληρωθεί και πληρούν τις ακόλουθες συνθήκες:

- Αναπτυγμένες (Developed)
- Δοκιμασμένες (Tested)
- Ολοκληρωμένες με άλλες λειτουργικές ενότητες (Integrated)
- Τεκμηριωμένες (Documented)

Μια συχνή παρανόηση των στελεχών της ομάδας ανάπτυξης που παρατηρείται στην πράξη είναι ότι μια ενότητα λογισμικού θεωρείται ολοκληρωμένη, μόλις ολοκληρωθεί η συγγραφή του κώδικα. Οι ευέλικτες μέθοδοι απαιτούν αυστηρά την πλήρωση και των τεσσάρων παραπάνω κριτηρίων, ώστε να ελαχιστοποιηθεί η ανάγκη για την υλοποίηση πρόσθετων κύκλων (sprints) διορθώσεων.

Η συνάντηση ανασκόπησης του sprint περιλαμβάνει τις ακόλουθες ενέργειες:

- Την επίδειξη των εργασιών που έχουν ολοκληρωθεί στα πλαίσια του sprint από την ομάδα ανάπτυξης
- Τον εντοπισμό των εργασιών που δεν ολοκληρώθηκαν στα πλαίσια του sprint και που είχαν προγραμματιστεί
- Τη συζήτηση του υφιστάμενου Backlog προϊόντος, καθώς και την παρουσίαση από τον Κάτοχο Προϊόντος των προβλεπόμενων ημερομηνιών ολοκλήρωσης των εργασιών στα επόμενα sprints
- Τη δυνατότητα παραγωγής παρατηρήσεων από τους ενδιαφερόμενους, με στόχο τη βελτιστοποίηση του τελικού προϊόντος στα επόμενα sprints.
Αξίζει να επισημανθεί ότι η επίδειξη του λογισμικού στις ευέλικτες μεθόδους, αφορά στην live παρουσίαση των λειτουργικών μονάδων προς κάθε ενδιαφερόμενο. Η παρουσίαση powerpoint slides δεν έχει θέση στη μεθοδολογία Scrum καθώς η βασική της θεώρηση είναι το λογισμικό που δουλεύει (working software) (Layton, 2012, σ. 272).

Στη συνάντηση ανασκόπησης είναι εξαιρετικά σημαντική η λήψη στοιχείων ανάδρασης από τον πελάτη, με στόχο την ενσωμάτωση της μέγιστης επιχειρηματικής αξίας στο τελικό προϊόν. Από τις παρατηρήσεις του πελάτη ενδέχεται να προκύψουν νέες απαιτήσεις οι οποίες, σε συνεννόηση με την ομάδα έργου, μπορούν να μετασχηματιστούν σε υποθέσεις χρηστών (user stories) και να ταξινομηθούν με σειρά προτεραιότητας στο Backlog του προϊόντος, για υλοποίηση σε επόμενα sprint και με πρόσθετη ή μη χρηματοδότηση.

5.4.3.7 Στάδιο 7 – Ανατροφοδότηση / Αποτίμηση Scrum

Πρόκειται για το στάδιο το οποίο περιλαμβάνει μια «κλειστή» συνάντηση κατά την οποία ο Scrum Master, ο Κάτοχος Προϊόντος και η Ομάδα Ανάπτυξης ανταλλάσσουν απόψεις για την υλοποίηση του sprint καθώς και για τυχόν βέλτιστες πρακτικές που πρέπει να υιοθετηθούν στα επόμενα sprints. Στόχος του σταδίου είναι η διαρκής διόρθωση και ευθυγράμμιση των ευέλικτων πρακτικών με τους στόχους του έργου.

Τα κύρια θέματα που πραγματεύεται συνάντηση ανατροφοδότησης και αποτίμησης του sprint είναι (Schweber & Sutherland, The Scrum Guide, 2011):

- Επιθεώρηση των ευρεμάτων του sprint αναφορικά με τους ανθρώπους, τις σχέσεις, τις διαδικασίες και τα εργαλεία
- Εντοπισμός των σημαντικότερων θεμάτων που εκτελέστηκαν σύμφωνα με το πλάνο και προτάσεις για πιθανές βελτιώσεις
- Δημιουργία πλάνου εφαρμογής των βελτιώσεων στον τρόπο λειτουργίας της ομάδας έργου.

Η ευέλικτη προσέγγιση έχει την ιδιότητα να επιτρέπει τον άμεσο εντοπισμό των κινδύνων στα πλαίσια του έργου, καθώς έχει εξαιρετικά εξωστρεφή χαρακτήρα. Οι συχνές συναντήσεις με δομημένη θεματολογία και περιορισμένο χρόνο, επιτρέπουν την βελτιστοποίηση του τελικού προϊόντος μέσα από τη συνεχή αυτό-διόρθωση της ιδιαίς της διαδικασίας διαχείρισης του έργου.
5.4.4 Δημοσίευση Έκδοσης (Release)

Η εκτέλεση των επαναληπτικών κύκλων ανάπτυξης (sprints) οδηγεί στη δημοσίευση συγκεκριμένης έκδοσης του λογισμικού, σύμφωνα πάντα με το Στάδιο 3 του Σχεδιασμού Εκδόσεων. Η έκδοση διαφέρει από το τμήμα λογισμικού που παραδίδεται στον πελάτη στα πλαίσια ενός sprint ανάπτυξης, υπό την έννοια ότι συνήθως η έκδοση σηματοδοτεί πιθανότατα την διάθεση του πληροφοριακού συστήματος στους τελικούς χρήστες ή την εμπορική διάθεση του τελικού προϊόντος. Σε κάθε περίπτωση, η δημοσίευση μιας έκδοσης του λογισμικού, σηματοδοτεί τη χρήση του από τον πελάτη η οποία προϋποθέτει την εκπαίδευση του προσωπικού στη διαχείριση του συστήματος.

Η δημοσίευση της έκδοσης γίνεται με την εκτέλεση ενός ακόμη sprint το οποίο ονομάζεται Sprint Έκδοσης (Release Sprint) και περιλαμβάνει διαφορετικές ενέργειες από αυτές των Sprint Ανάπτυξης (Development Sprints).

Στο Sprint Έκδοσης περιλαμβάνονται οι ακόλουθες ενέργειες (Layton, 2012, σ. 180):

✔ Συγγραφή υλικού τεκμηρίωσης των λειτουργιών και χαρακτηριστικών της έκδοσης
✔ Εκτέλεση δοκιμών απόκρισης συστήματος με αυξημένο φορτίο (load testing)
✔ Εκτέλεση δοκιμών ασφάλειας (security & penetration testing)
✔ Ολοκλήρωση έκδοσης με άλλα επιχειρησιακά συστήματα, εφόσον απαιτείται (integration)
✔ Προετοιμασία του πακέτου εγκατάστασης της έκδοσης
✔ Εγκατάσταση της έκδοσης σε περιβάλλον παραγωγής.

Το Sprint Έκδοσης διαφοροποιείται από το Sprint Ανάπτυξης ως εξής (Layton, 2012, σ. 181):

✔ Δεν περιλαμβάνει την ανάπτυξη απαιτήσεων από το Backlog του προϊόντος
✔ Η διάρκεια του sprint μπορεί να διαφέρει από τη σταθερή διάρκεια των sprint ανάπτυξης
✔ Περιλαμβάνει καθολικούς και συνδυαστικούς ελέγχους οι οποίοι δεν έχει νόημα να υλοποιηθούν στα πλαίσια ενός sprint ανάπτυξης.

Κατά τα λοιπά το Sprint Έκδοσης ακολουθεί τη ίδια δομή με το Sprint Ανάπτυξης, αναφορικά με το σχεδιασμό (sprint planning), την καθημερινή συνάντηση της ομάδας έργου (daily scrum),
την καταγραφή ανθρωπωρών υλοποίησης εργασιών (burndown charts), την πραγματοποίηση
ανασκόπησης του Scrum και τέλος την αποτίμηση του.

5.5 Συμπεράσματα

Η μεθοδολογία Scrum αποτελεί μια πλήρως τεκμηριωμένη και οργανωμένη ευέλικτη
προσέγγιση, η οποία εστιάζει στην παραγωγή ωφέλιμου έργου και στην ελαχιστοποίηση των
εργασιών που δεν συνεισφέρουν στην ανάπτυξη λειτουργικού λογισμικού. Βασική της
θεώρηση είναι η διατήρηση ενός σταθερού ρυθμού στην ανάπτυξη του λογισμικού, η
υλοποίηση με βάση μια διαρκώς εξελισσόμενη λίστα απαιτήσεων, η ενεργή και ουσιαστική
εμπλοκή του πελάτη και των λοιπών ομάδων ενδιαφέροντος και η επαναληπτικότητα, με στόχο
την παραγωγή βελτιωμένων εκδόσεων σε σύντομα χρονικά διαστήματα.
6 ΑΞΙΟΛΟΓΗΣΗ ΕΥΕΛΙΚΤΩΝ ΕΡΓΩΝ

6.1 Εισαγωγή
Η αξιολόγηση αποτελεί την αποτύπωση της προστιθέμενης επιχειρηματικής αξίας η οποία προκύπτει από την εκτέλεση ενός έργου, με ποιοτικά και ποσοτικά μεγέθη, σε διαφορετικές χρονικές στιγμές του έργου. Η αξιολόγηση ενδέχεται να αφορά τόσο στην μέτρηση της επίτευξης των στόχων του έργου, όσο και στην συγκέντρωση δεδομένων τα οποία δικαιολογούν την επιλογή μιας συγκεκριμένης μεθοδολογίας.

Η μέτρηση της επίτευξης των στόχων του έργου, υπό το πρίσμα της αξίας που αποδίδεται στον πελάτη, αποτελεί αντικείμενο του επιχειρησιακού πλάνου του πελάτη (business plan). Για παράδειγμα ο σχεδιασμός δεικτών επίτευξης οικονομικών στόχων τύπου ROI (Return on Investment), NPV (Net Present Value), IRR (Internal Rate of Return), αφορά στην μακροσκοπική αξιολόγηση των αποτελεσμάτων ενός έργου πληροφορικής, υπό την προϋπόθεση ότι το έργο εκτελέστηκε άρτια. Οι συγκεκριμένες μεθοδολογίες αξιολόγησης δεν αποτελούν μέρος της παρούσας εργασίας, καθώς αφορούν σε χώρους εκτός της πληροφορικής, όπως η συμβουλευτική και η διοίκηση των επιχειρήσεων.

Στόχος του παρόντος κεφαλαίου είναι ο εντοπισμός του πλαισίου, με βάση το οποίο καθίσταται μετρήσιμη η επιτυχία των ευέλικτων μεθοδολογιών. Στο ίδιο κεφάλαιο κρίνεται σκόπιμη η αναφορά των παραδοσιακών μοντέλων πρακτικών αξιολόγησης, με στόχο την αιτιολόγηση της μετάβασης στα ευέλικτα μοντέλα διαχείρισης έργων.

6.2 Αξιολόγηση Απόδοσης Παραδοσιακών Έργων
Τα παραδοσιακά μοντέλα χαρακτηρίζονται από τη διάθεση για εξαντλητικό σχεδιασμό, αναλυτική τεκμηρίωση και πιστότητα στην εκτέλεση του αρχικού πλάνου υλοποίησης. Κατά συνέπεια οποιαδήποτε απόκλιση από τους αρχικούς στόχους, είτε αυτή αφορά στο χρονοδιάγραμμα είτε στο κόστος, πρέπει να εντοπιστεί και να αναλυθεί με στόχο την αντιμετώπιση και αντιστάθμιση των πιθανών κινδύνων.

Δεδομένης της ωριμότητας των παραδοσιακών μοντέλων, καθώς αυτά εφαρμόζονται περισσότερο από μισό αιώνα σε παγκόσμια κλίμακα, τα εργαλεία ελέγχου και παρακολούθησης των έργων είναι πολυάριθμα.
Στη συνέχεια παρατίθενται ενδεικτικά εργαλεία ελέγχου και παρακολούθησης των παραδοσιακών μοντέλων διαχείρισης έργων:

- Διαγράμματα Gantt
- Διαγράμματα Burndown
- Αναφορές Τρέχουσας Περιόδου
- Αναφορές Αποκλίσεων
- Απολογιστικές Αναφορές
- Ανάλυση Προστιθέμενης Αξίας (Earned Value Analysis - EVA)
- Διαγράμματα Τάσεων Σημείων Απόφασης (Milestone trend Charts)
- Πλάνο Αντιμετώπισης Κινδύνων

Διάγραμμα 14: Διάγραμμα Gantt – Πακέτα Εργασίας και Σημεία Απόφασης
6.2.1 Ανάλυση Προστιθέμενης Αξίας – EVA

Η Ανάλυση Προστιθέμενης Αξίας αποτελεί ένα από τα πλέον διαδεδομένα πλαίσια παρακολούθησης της απόδοσης και της προόδου ενός έργου, με αντικειμενικό τρόπο. Ως παραδοσιακή τεχνική χρησιμοποιεί μονάδες κόστους (ευρώ, δολάριο), για την παρακολούθηση της προόδου των εργασιών σε ένα έργο.

Η Ανάλυση Προστιθέμενης Αξίας παρακολουθεί συνδυαστικά τα ακόλουθα (Διάγραμμα 1: Τρίγωνο Διαχείρισης Έργων):

- Εύρος Στόχων (Scope)
- Πλάνο (Schedule)
- Κόστος (Cost)
Οι παράμετροι που αξιοποιεί η ανάλυση είναι (PMI, 2008):

- Προγραμματισμένη Αξία - Planned Value (PV)
- Εκτελεσθείσα Αξία – Earned Value (EV)
- Πραγματικό Κόστος – Actual Cost (AC)

Διασπορά Χρονοδιαγράμματος SV (Schedule Variance)

\[SV = EV - PV \]

Το συγκεκριμένο μέγεθος απεικονίζει την απόκλιση της Εκτελεσθείσας από την Προγραμματισμένη αξία. Όταν οι τιμές είναι μεγαλύτερες του μηδενός, τότε το έργο εξελίσσεται καλύτερα από ότι σχεδιάστηκε.

Δείκτης Απόδοσης Χρονοδιαγράμματος SPI (Schedule Performance Index)

\[SPI = \frac{EV}{PV} \]

Το συγκεκριμένο μέγεθος απεικονίζει το ποσοστό της Προγραμματισμένης Αξίας που έχει εκτελεστεί. Οι επιθυμητές τιμές είναι μεγαλύτερες ή ίσες της μονάδας.

Διασπορά Κόστους CV (Cost Variance)

\[CV = EV - AC \]

Το συγκεκριμένο μέγεθος απεικονίζει την απόκλιση της Εκτελεσθείσας Αξίας από το Πραγματικό Κόστος. Τιμές μικρότερες του μηδενός δείχνουν υπέρβαση προϋπολογισμού.

Δείκτης Απόδοσης Κόστους CPI (Cost Performance Index)

\[CPI = \frac{EV}{AC} \]

Το συγκεκριμένο μέγεθος απεικονίζει το ποσοστό του κόστους της Εκτελεσθείσας Αξίας (με αναγωγή μονάδων κόστους σύμφωνα με την Προγραμματισμένη Αξία), ως προς τις
πραγματικές δαπάνες. Τιμές μεγαλύτερες της μονάδας δείχνουν ότι το κόστος ολοκλήρωσης των εργασιών, τη δεδομένη χρονική στιγμή, είναι λιγότερο από όσο είχε σχεδιαστεί. Ωστόσο πολύ μεγάλες τιμές, υποδεικνύουν πολύ κακό αρχικό σχεδιασμό.

Προϋπολογισμός στην Ολοκλήρωση BAC (Budget at Completion)

Αποτελεί την τελική Προγραμματισμένη Αξία στο τέλος ενός έργου.

Εκτίμηση στην Ολοκλήρωση EAC (Estimate At Completion)

\[
EAC = AC + \frac{(BAC - EV)}{CPI} = \frac{BAC}{CPI}
\]

Αποτελεί την πρόβλεψη του συνολικού κόστους με την ολοκλήρωση του έργου.

Εκτίμηση έως την Ολοκλήρωση ETC (Estimate to Complete)

\[
ETC = EAC - AC
\]

Αποτελεί το εκτιμώμενο κόστος που απομένει μέχρι την ολοκλήρωση του έργου.

Διάγραμμα 16: Ανάλυση Προστιθέμενης Αξίας - EVA
6.3 Αξιολόγηση Ευέλικτων Έργων

Το αρχικό πλαίσιο αποτελείται από τρία μέρη που είναι οι Περιβαλλοντολογικοί Παράγοντες (Context factors), οι Δείκτες Παρακολούθησης (indicators) και οι Δείκτες Αποτελέσματος (outcome measures).

Διάγραμμα 17: Πλαίσιο Αξιολόγησης Extreme Programming (Williams, Krebs, & Layman, Extreme Programming Evaluation Framework for Object-Oriented Languages, 2004)

Οι περιβαλλοντολογικοί παράγοντες επιχειρούν να αποτυπώσουν τις συνθήκες μέσα στις οποίες εκτελείται το έργο, όπως για παράδειγμα:

- Κοινωνιολογικοί Παράγοντες που αποτυπώνουν τα χαρακτηριστικά της ομάδας και των μελών της. Ενδεικτικοί τέτοιοι δείκτες είναι το μέγεθος της ομάδας, το ακαδημαϊκό επίπεδο των στελέχων της ομάδας, η εμπειρία του διαχειριστή έργου, κ.α.
- Εργονομικοί Παράγοντες που αποτυπώνουν την επικοινωνία μεταξύ των μελών της ομάδας έργου και μεταξύ της ομάδας έργου και του πελάτη. Ενδεικτικοί δείκτες είναι η
φυσική χωροθέτηση της ομάδας, ο βαθμός απόσπασης της συγκέντρωσης στον εργασιακό χώρο κ.α.

- Τεχνολογικοί Παράγοντες που αποτυπώνουν τις μεθοδολογίες και τα εργαλεία εκτέλεσης των έργων, όπως η μεθοδολογία διαχείρισης (scrum, xp, crystal) και η γλώσσα προγραμματισμού

Οι δείκτες παρακολούθησης χωρίζονται σε αντικειμενικούς, ποιοτικούς και υποκειμενικούς και επιχειρούν να αποτυπώσουν συγκεκριμένα μεγέθη κατά τη διάρκεια εκτέλεσης ενός έργου. Οι αντικειμενικοί δείκτες παρακολουθούν μεγέθη όπως η συχνότητα προγραμματισμού σε ζεύγη (pair programming), η χρονική διάρκεια για τη δημοσίευση εκδόσεων, ο αριθμός των γραμμών του κώδικα που ελέγχεται με αυτόματα τεστ κτλ. Οι ποιοτικοί δείκτες αξιοποιούνται για την επεξήγηση των ευρημάτων των ποιοτικών δεικτών μέσα από συνεντεύξεις, με στόχο τη διασύνδεση των μετρήσεων με την ανθρώπινη συμπεριφορά. Οι υποκειμενικοί δείκτες αφορούν στην καταγραφή δεδομένων που σχετίζονται με το βαθμό συμμόρφωσης της ομάδας έργου με τις πρακτικές της επιλεγμένης μεθοδολογίας ανάπτυξης λογισμικού. Το πιο διαδεδομένο εργαλείο είναι το ερωτηματολόγιο Shodan (Shodan Adherence Survey) και συμπληρώνεται αποκλειστικά από τους προγραμματιστές.

Οι δείκτες αποτελέσματος αφορούν στη μέτρηση της παραγωγικότητας και του ελέγχου ποιότητας της ομάδας έργου. Η αποτύπωση γίνεται με δείκτες όπως ο αριθμός των δυσλειτουργιών που εντόπισε ο πελάτης μετά τη δημοσίευση μιας έκδοσης, ο αριθμός των ιστοριών χρηστών ανά προγραμματιστή, ο αριθμός των γραμμών κώδικα ανά προγραμματιστή κ.α. Στους ίδιους δείκτες καταγράφονται και τα συμπεράσματα από τα συμπληρωμένα ερωτηματολόγια Shodan.

6.3.1 Ωρίμανση Πλαισίων Αξιολόγησης

Στη συγκεκριμένη δημοσίευση διατυπώνεται η άποψη ότι η εφαρμογή μετρήσεων από μόνη της δεν είναι αρκετή. Προτείνεται, λοιπόν, η αξιοποίηση κάποιων βασικών δεικτών παρακολούθησης, σε συνδυασμό με τη συμπλήρωση ενός σύντομου και περιεκτικού ερωτηματολόγιου, που απαντάται στη βιβλιογραφία ως Agile Pulse Questionnaire. Ο στόχος της συμπλήρωσης του ερωτηματολόγιου, από όλα τα μέλη της ομάδας έργου, είναι η αυτό-αξιολόγηση της ομάδας, μέσα από τις εναλλακτικές οπτικές γωνίες των εμπλεκόμενων.

Χαρακτηριστικά αναφέρεται ότι:

- Οι μηχανικοί επιθυμούν
 - Να μάθουν και να θυμόμαστε τις καλύτερες πρακτικές
 - Να έχουν λόγο στο τρόπο λειτουργίας της ομάδας
 - Να βελτιώνουμε τη διαδικασία, αξιοποιώντας αμπελοκόπτρικα δεδομένα

- Οι Managers επιθυμούν
 - Να αντληθούν επικείμενη τη βελτίωση της διαδικασίας σε επιχειρησιακό επίπεδο
 - Να διαπιστώσουμε ότι η επιχείρηση βελτιώνεται συνεχώς
 - Να εμπλέξουμε τα μέλη της ομάδας στην προσπάθεια βελτίωσης

- Οι Προπονητές (Coaches) επιθυμούν
 - Να εκπαιδεύουμε την ομάδα στις βέλτιστες πρακτικές
 - Να ενισχύουμε την παραγωγή νέων ιδεών
 - Να καταστήσουμε τη διαδικασία λήψης στοιχείων ανάδρασης αποτελεσματική, ώστε να πείσουμε την ομάδα για την αναγκαιότητά της.

Στην ίδια δημοσίευση τεκμηριώνεται η ανάγκη για την αποκλειστική παρακολούθηση των δεικτών που συνεισφέρουν στην προστιθέμενη επιχειρησιακή αξία. Η διόγκωση των μεγεθών παρακολούθησης, εγκυμονεί τον κίνδυνο της αποθάρρυσης της ομάδας έργου. Χαρακτηριστικό παράδειγμα αποτελεί η μέτρηση του αριθμού των γραμμών κώδικα ανά προγραμματιστή σε κάποιο γενικότερο scorecard. Η διαδικασία συμπλήρωσης scorecards για κάθε προγραμματιστή, παραβιάζει γενικά μια βασική ευέλικτη αρχή που απαιτεί την συγκέντρωση της προσπάθειας στην παραγωγή ωφέλιμου έργου (λογισμικό).

6.3.1.1 Ερωτηματολόγιο Agile Pulse

Το ερωτηματολόγιο αυτό-αξιολόγησης περιλαμβάνει δυο διακριτές ομάδες ερωτήσεων.
Πίνακας 16 – Πίνακας Αξιολόγησης Ευέλικτων Πρακτικών

<table>
<thead>
<tr>
<th>Πρακτική</th>
<th>Επεξήγηση</th>
<th>Επίπεδο (1-10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ιστορίες Χρηστών</td>
<td>Αναπτύσσονται στα πλαίσια ανάπτυξης, ιστορίες χρηστών, με βάση τις οποίες γίνεται η ανταλλαγή αποφάσεων με τον πελάτη για τις απαιτήσεις και διαμορφώνονται οι δοκιμές αποδοχής?</td>
<td></td>
</tr>
<tr>
<td>Αυτόματες Δοκιμές</td>
<td>Πόσο συχνά εκτελούν οι προγραμματιστές αυτόματες δοκιμές των μονάδων λογισμικού?</td>
<td></td>
</tr>
<tr>
<td>Ανάπτυξη σε Επαναληπτικούς Κύκλους</td>
<td>Γίνεται επίδειξη πραγματικού λογισμικού στο τέλος κάθε επανάληψης?</td>
<td></td>
</tr>
<tr>
<td>Συνεχής Ολοκλήρωση</td>
<td>Γίνονται συχνά builds?</td>
<td></td>
</tr>
<tr>
<td>Αυτό-διοικούμενες Ομάδες</td>
<td>Διαχειρίζονται τα μέλη της ομάδας ανάπτυξης μόνα τους τις εργασίες που τους ανατίθενται, ώστε να επιτρέπουν στους διαχειριστές την εκτέλεση διοικητικών καθηκόντων?</td>
<td></td>
</tr>
<tr>
<td>Σταθερός Ρυθμός</td>
<td>Ο ρυθμός ανάπτυξης παραμένει σταθερός καθ’ όλη τη διάρκεια του έργου?</td>
<td></td>
</tr>
<tr>
<td>Τρόπος Ανάπτυξης</td>
<td>Η συνεργασία γίνεται βάσει επίσημων επιθεωρήσεων, ανεπισήμων reviews ή με τη χρήση pair programming?</td>
<td></td>
</tr>
<tr>
<td>Αντανακλαστικά</td>
<td>Γίνονται τακτικές συναντήσεις με στόχο την καταγραφή των οικονομιών μάθησης που οδηγεί στη βελτιστοποίηση των διαδικασιών και την ελαχιστοποίηση των κακώς κείμενων?</td>
<td></td>
</tr>
</tbody>
</table>

Η πρώτη ομάδα ερωτήσεων πραγματεύεται το βαθμό συμμόρφωσης της ομάδας με τις ευέλικτες πρακτικές (Πίνακας 16 – Πίνακας Αξιολόγησης Ευέλικτων Πρακτικών).

Πίνακας 17 : Πίνακας Αξιολόγησης Επαναληπτικών Πρακτικών

<table>
<thead>
<tr>
<th>Πρακτική</th>
<th>Επεξήγηση</th>
<th>Επίπεδο (1-10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Σταθερές Χρονικά</td>
<td>Στις επαναλήψεις κρατούνται σταθερές οι</td>
<td></td>
</tr>
</tbody>
</table>
Η δεύτερη ομάδα ερωτήσεων πραγματεύεται το βαθμό συμμόρφωσης της ομάδας με τις επαναληπτικές πρακτικές (Πίνακας 17: Πίνακας Αξιολόγησης Επαναληπτικών Πρακτικών).

Τα επίπεδα συμπληρώνονται με τιμές από 1 έως 10 ως εξής:

- 1 σημαίνει ότι η πρακτική δεν χρησιμοποιείται καθόλου
- 5 σημαίνει ότι η πρακτική χρησιμοποιείται σε ποσοστό 50%
- 10 σημαίνει ότι η πρακτική εφαρμόζεται αδιάλειπτα

Η συμπλήρωση των συγκεκριμένων ερωτήσεων από τα μέλη της ομάδας έργου, αποτυπώνεται στη ενδεικτική γραφική παράσταση που ακολουθεί.
Στο παραπάνω ενδεικτικό διάγραμμα απεικονίζεται ο μέσος βαθμός που δίνουν τα μέλη της ομάδας, αναφορικά με τη συμμόρφωση στα επιμέρους κριτήρια. Το εύρος των βαθμών (μικρότερο - μεγαλύτερο) ή η τυπική απόκλιση (για μεγαλύτερες ομάδες), αποτυπώνει το βαθμό συμφωνίας μεταξύ των μελών της ομάδας. Για παράδειγμα, ο χαμηλός μέσος όρος στη χρήση Αυτόμων Δοκιμών, αφενός δείχνει τη χαμηλή υιοθέτηση της πρακτικής από την ομάδα και αφετέρου την διαφορετική αντίληψη των μελών επί του θέματος.

Ακολουθεί μια εναλλακτική γραφική απεικόνιση (Διάγραμμα 19: Agile Pulse – Επαναληπτικές Πρακτικές) των κριτηρίων επαναληπτικότητας, όπου καθίσταται σαφές ότι η ομάδα έργου υστερεί σημαντικά στην παραγωγή Λειτουργικού Λογισμικού (Working Software) καθώς και στην αξιοποίηση στοιχείων ανάδρασης (Feedback Used).
Τα κριτήρια που παρατίθενται στη συγκεκριμένη δημοσίευση δεν είναι ούτε δεσμευτικά, ούτε περιοριστικά. Οι συγγραφείς μάλιστα προτείνουν την προσαρμογή και επαύξηση των κριτηρίων, καθώς και τον συνδυασμό τους με ευέλικτους δείκτες παρακολούθησης και αποτελέσματος.

Η δημοσίευση καταλήγει στο συμπέρασμα ότι το συγκεκριμένο εργαλείο αυτό-αξιολόγησης, αποτελεί αφετηρία συζήτησης για την ομάδα έργου, με στόχο τη βελτίωση των σημείων υστέρησης. Τα συμπεράσματα είναι συλλογικά, δεν εξαιρούν κανένα μέλος και συνεπώς προάγουν την ευέλικτη λογική.

6.4 Δείκτες Παρακολούθησης Ευέλικτων Έργων

Η προσαρμογή της Ανάλυσης Προστιθέμενης Αξίας (EVA), στην πελατοκεντρική προσέγγιση, αποτελεί ένα ευέλικτο σύνολο δεικτών παρακολούθησης, αποτελεσμάτων και πρόβλεψης.

Η προσαρμογή της Ανάλυσης Προστιθέμενης Αξίας στη μεθοδολογία Scrum υιοθετεί τα ακόλουθα:

- Η Εκτελεσθείσα Αξία EV (Earned Value) αθροίζεται στο τέλος κάθε Sprint
- Τα μεγέθη της Προγραμματισμένης και Εκτελεσθείσας Αξίας αποτυπώνονται σε Burndown Charts, σε επίπεδο Sprint, Έκδοσης αλλά και έργου συνολικά
Η Προγραμματισμένη Αξία PV (Planned Value) είναι μια φθίνουσα γραμμική συνάρτηση καθώς η εκτέλεση των εργασιών προγραμματίζεται σε επαναληπτικούς κύκλους σταθερής διάρκειας (Sprints).

Η Εκτελεσθείσα Αξία EV (Earned Value) είναι η ταχύτητα (velocity) της ομάδας έργου που αναλύεται στην παράγραφο που ακολουθεί.

6.4.1 Ταχύτητα

Η ταχύτητα (velocity) αποτελεί το βασικό μέγεθος της μεθοδολογίας Scrum, για τον έλεγχο και την παρακολούθηση της εξέλιξης ενός ευελικτού έργου. Η μέτρηση της ταχύτητας γίνεται σε επίπεδο Sprint, με έναν από τους ακόλουθους τρόπους:

✔ Με την άθροιση των πόντων των Ιστοριών Χρηστών (User Story Points) που εκτελούνται στα πλαίσια του Sprint. Σε κάθε ιστορία είναι λογικό να αποδίδονται πόντοι, ώστε να αποτυπώνεται η διαφοροποίηση στην πολυπλοκότητά τους.

✔ Με την άθροιση των πραγματικών ανθρωποωρών που εκτελούνται από την ομάδα εργασίας στα πλαίσια του Sprint.

Η ταχύτητα αποτελεί ένα ιδιαίτερα απλό αλλά εξαιρετικό μέγεθος, για την εκτίμηση του χρονοδιαγράμματος εκτέλεσης ενός έργου. Για την πρόβλεψη αυτή απαιτούνται τα ακόλουθα βήματα (Layton, 2012, σ. 212):

1. Άθροιση των εκτιμώμενων ανθρωποωρών (ή story points) για τις απαιτήσεις που απομένουν στο Backlog του προϊόντος
2. Διαίρεση του παραπάνω αθροίσματος με τη μέση ταχύτητα, για τον προσδιορισμό των sprint που απομένουν για την ολοκλήρωση του έργου. Εναλλακτικά, μπορεί να χρησιμοποιηθεί η ελάχιστη και η μέγιστη ταχύτητα, για προβλέψεις χειρότερου και καλύτερου σεναρίου (best and worst case scenario).
3. Πολλαπλασιασμός του αριθμού των sprint που προκύπτουν από την προηγούμενη πράξη, με τη διάρκεια σε εβδομάδες του sprint, για τον προσδιορισμό των εβδομάδων που απομένουν, μέχρι την ολοκλήρωση των προδιαγραφών που υπάρχουν στο Backlog του προϊόντος (τη δεδομένη χρονική στιγμή).

Με βάση τα παραπάνω, καθίσταται σαφές ότι η ομάδα έργου έχει τη δυνατότητα να ρυθμίσει την ταχύτητα της, ώστε να μπορέσει να επιταχύνει τον ημερολογιακό χρόνο
υλοποίησης των απαιτήσεων που απομένουν. Η διατήρηση ή και η αύξηση της ταχύτητας επηρεάζεται από εξωτερικούς παράγοντες, όπως τα εμπόδια κατά την εκτέλεση συγκεκριμένων εργασιών, η απόσπαση της αφοσίωσης της ομάδας έργου καθώς και απλούστατοι παράγοντες, όπως οι απουσίες των μελών λόγω αδειών ή ασθενειών.

Η ταχύτητα αποτελεί αξιόπιστο μέγεθος πρόβλεψης του χρονοδιαγράμματος εκτέλεσης, υπό τις εξής προϋποθέσεις (Cohn, 2012, σ. 276):

- **Σταθερή διάρκεια sprint.** Η διάρκεια των sprint σε εβδομάδες πρέπει να παραμένει σταθερή καθ’ όλη τη διάρκεια του έργου, ώστε να καθίσταται συγκρίσιμος ο όγκος των εργασιών που περαιώνεται μεταξύ των διαφορετικών sprint.

- **Σταθερός ανθρωποχρόνος sprint.** Ο συνολικός χρόνος σε ώρες των μελών της ομάδας έργου, πρέπει να παραμένει σταθερός στα διαφορετικά sprint, στην περίπτωση μέτρησης της ταχύτητας με πόντους ιστοριών χρήση (story points). Στην πράξη το γεγονός αυτό είναι ανέφικτο καθώς ο προγραμματισμός των sprint γίνεται με βάση τις απαιτήσεις με τη μεγαλύτερη προτεραιότητα και όχι με βάση το συνολικό ανθρωποχρόνο.

- **Σταθερή ομάδα ανάπτυξης.** Η χρήση διαφορετικών στελεχών για την ανάπτυξη λογισμικού μεταξύ των διαφορετικών sprint, εισάγει υποκειμενικούς παράγοντες μέτρησης της ταχύτητας και κατά συνέπεια καθιστά την πρόβλεψη αναξιόπιστη. Ωστόσο στην πράξη, η διατήρηση σταθερής ομάδας είναι ανέφικτη, καθώς δεν είναι πιθανό να είναι πάντοτε διαθέσιμα τα ίδια στελέχη.

6.4.2 Πρόβλεψη με Διάστημα Βεβαιότητας

Η πρόβλεψη του χρόνου υλοποίησης με βάση την ελάχιστη, μέγιστη ή μέση ταχύτητα της ομάδας, δεν αποτελεί ιδιαίτερα αξιόπιστο στατιστικό μέγεθος. Ο Mike Cohn στο βιβλίο του Succeeding with Agile (Cohn, 2012, p. 299) προτείνει για την βελτιστοποίηση της πρόβλεψης, τη χρήση του Διαστήματος Βεβαιότητας (Confidence Interval). Ο στόχος είναι ο εντοπισμός ενός εύρους ταχυτήτων που θα οδηγήσει στην πρόβλεψη του χρόνου υλοποίησης, με βεβαιότητα τουλάχιστον 90%.

Για την εφαρμογή της μεθόδου απαιτούνται στοιχεία από τουλάχιστον πέντε sprint. Από το δείγμα των sprint, μπορούν να εξακριβωθούν οι τιμές της ταχύτητας των sprint που δεν
θεωρούνται αξιόπιστα. Για παράδειγμα, αν σε κάποιο sprint ενισχύθηκε η ομάδα ανάπτυξης με δύο μέλη, για να εξυπηρετηθούν ειδικοί στόχοι, τότε είναι σωστό να μην συμπεριληφθεί η ταχύτητα του συγκεκριμένου sprint στο δείγμα.

Έστω λοιπόν ότι έχουμε το ακόλουθο δείγμα ταχυτήτων από δώδεκα sprints:

Πίνακας 18 : Δείγμα Ταχυτήτων Sprints

<table>
<thead>
<tr>
<th>Αριθμός Σπριντ</th>
<th>Ταχύτητα</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>28</td>
</tr>
<tr>
<td>2</td>
<td>35</td>
</tr>
<tr>
<td>3</td>
<td>32</td>
</tr>
<tr>
<td>4</td>
<td>45</td>
</tr>
<tr>
<td>5</td>
<td>40</td>
</tr>
<tr>
<td>6</td>
<td>50</td>
</tr>
<tr>
<td>7</td>
<td>44</td>
</tr>
<tr>
<td>8</td>
<td>37</td>
</tr>
<tr>
<td>9</td>
<td>32</td>
</tr>
<tr>
<td>10</td>
<td>55</td>
</tr>
<tr>
<td>11</td>
<td>33</td>
</tr>
<tr>
<td>12</td>
<td>39</td>
</tr>
</tbody>
</table>

Προχωρούμε σε αύξουσα ταξινόμηση των τιμών της καταγεγραμμένης ταχύτητας, οπότε προκύπτει η ακόλουθη σειρά:

28, 32, 33, 35, 37, 39, 40, 44, 45, 50, 55

Για τον προσδιορισμό του εύρους ταχυτήτων για το οποίο υπάρχει 90% βεβαιότητα ότι θα περιλάβει τις ταχύτητες ανάπτυξης των μελλοντικών sprints, χρησιμοποιείται ο ακόλουθος πίνακας:

Πίνακας 19 : Προσδιορισμός διαστήματος 90% βεβαιότητας (Cohn, 2012)

<table>
<thead>
<tr>
<th>Αριθμός Καταγεγραμμένων Ταχυτήτων</th>
<th>Αύξον Αριθμός Καταγραφής</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>32</td>
</tr>
<tr>
<td>32</td>
<td>33</td>
</tr>
<tr>
<td>35</td>
<td>37</td>
</tr>
<tr>
<td>39</td>
<td>40</td>
</tr>
<tr>
<td>44</td>
<td>44</td>
</tr>
<tr>
<td>45</td>
<td>50</td>
</tr>
<tr>
<td>50</td>
<td>55</td>
</tr>
<tr>
<td>55</td>
<td>55</td>
</tr>
</tbody>
</table>
Δεδομένου ότι υπάρχουν δώδεκα καταγεγραμμένες ταχύτητες από ισάριθμα sprint, παρατηρούμε ότι ο αριθμός 12 είναι μεταξύ των τιμών 11 και 13 στην πρώτη στήλη του πίνακα. Επιλέγουμε τη χαμηλότερη τιμή μεταξύ των δυο, δηλαδή την τιμή 11 που αντιστοιχεί στον αύξοντα αριθμό 3 από τη δεξιά στήλη του πίνακα. Αυτό σημαίνει ότι το Διάστημα Βεβαιότητας προσδιορίζεται από την τρίτη μικρότερη και τρίτη μεγαλύτερη μέτρηση ταχύτητας που στη συγκεκριμένη περίπτωση είναι οι αριθμοί 32 και 45.

Κατά συνέπεια υπάρχει 90% βεβαιότητα ότι η μέση ταχύτητα της ομάδας ανάπτυξης θα είναι μεταξύ 32 και 45. Επιπρόσθετα, με βάση τις δυο αυτές μετρήσεις της ταχύτητας, προσδιορίζεται το εύρος των καταληκτικών ημερομηνιών ολοκλήρωσης των απαιτήσεων που απομένουν, με βεβαιότητα 90%.

6.5 Συμπεράσματα
Η απλούστευση των διαδικασιών ανάπτυξης ενός έργου πληροφορικής με τη χρήση ευέλικτων μοντέλων, αποτυπώνεται και στη μεθοδολογία και τα εργαλεία ελέγχου, παρακολούθησης και αξιολόγησης. Οι πολλαπλές γραφειοκρατικές αναφορές και τα ανελαστικά εργαλεία παρακολούθησης στα παραδοσιακά μοντέλα, αντικαθίστανται από απλά μεγέθη και δείκτες, στις ευέλικτες μεθόδους. Βασική θεώρηση των ευέλικτων μοντέλων, είναι η ελαχιστοποίηση των εργασιών που δεν συνεισφέρουν στην παραγωγή λειτουργικού λογισμικού.
7 ΜΕΛΕΤΗ ΠΕΡΙΠΤΩΣΗΣ

7.1 Εισαγωγή

Στόχος του παρόντος κεφαλαίου είναι η παράθεση των ευρημάτων και η κριτική αξιολόγηση της εφαρμογής της μεθοδολογίας Scrum σε πραγματικές συνθήκες. Για το σκοπό αυτό επιχειρείται η ακριβής εφαρμογή των τεχνικών της μεθοδολογίας Scrum, όπως αυτές έχουν καταγραφεί στο θεωρητικό μοντέλο της παρούσας εργασίας, και η παρατήρηση των αποκλίσεων, των δυσκολιών και των αστοχιών που εντοπίζονται σε πρακτικό επίπεδο.

7.2 Στοιχεία Έργου

Ο συγγραφέας της παρούσας εργασίας επικοινώνησε στην εταιρία Altanet A.E., την προστιθέμενη αξία των ευέλικτων πρακτικών. Το έργο που επιλέχθηκε αφορά στην ανάπτυξη ενός ολοκληρωμένου πληροφοριακού συστήματος που αναμένεται να λειτουργήσει σε διεθνές επίπεδο. Στην παρούσα μελέτη αποτυπώθηκε η αποτύπωση της εκτέλεσης συγκεκριμένων sprints του έργου, ώστε να καθίσταται εφικτή η ασφαλής λήψη συμπερασμάτων και η δυνατότητα αξιολόγησης των αποτελεσμάτων αυτής.

Το έργο της μελέτης περίπτωσης αφορά στην ανάπτυξη ενός ολοκληρωμένου διαδικτυακού πληροφοριακού συστήματος που αποτελείται από τρία διακριτά υποσυστήματα:

1. Corporate Portal. Την επιχειρηματική πύλη προβολής των προϊόντων και λύσεων
2. GO! Ecosystem Marketplace. Το διαδικτυακό κόμβο Προβολής και Πώλησης εφαρμογών (applications) του δικτύου συνεργατών
3. GO! Ecosystem Support. Το διαδικτυακό κόμβο Υποστήριξης του δικτύου συνεργατών

Ο πελάτης / αποδέκτης του πληροφοριακού συστήματος είναι η εταιρία Globo Plc η οποία είναι εισηγμένη στην αγορά AIM του χρηματιστηρίου του Λονδίνου και διαθέτει γραφεία σε Λονδίνο, Νέα Υόρκη, Ντουμπάι, Αθήνα, Σιγκαπούρη, Λευκωσία και Βουκουρέστι.

Για λόγους κατανόησης του φυσικού αντικειμένου του έργου, αξίζει να επισημανθεί ότι το βασικό προϊόν της εταιρίας Globo Plc είναι o GoEnterprise Server που αποτελεί μια καινοτόμα πλατφόρμα η οποία επιτρέπει τη μεταφορά των διεργασιών και εφαρμογών των επιχειρήσεων σε κινητές συσκευές. Στην διεθνή ορολογία η δυνατότητα αυτή αναφέρεται ως mobilization. Το επενδυτικό πλάνο της Globo περιλαμβάνει τη διάθεση της πλατφόρμας και την ανάπτυξη
δικτύου συνεργατών σε διεθνές επίπεδο. Η Altanet Α.Ε. επιλέξθηκε ως ανάδοχος υλοποίησης
tου συστήματος, αποσκοπώντας στην τμηματική παράδοση ενδιάμεσων εκδόσεων του
λογισμικού σε σύντομο χρονικό διάστημα.

Στις παραγράφους που ακολουθούν καταγράφεται αναλυτικά η εφαρμογή των επιμέρους
σταδίων της μεθοδολογίας scrum. Τα πρόσωπα της ομάδας έργου και οι απαιτήσεις ανάπτυξης
evίαι πραγματικά.

7.3 Διαμόρφωση Περιβάλλοντος

Η μεθοδολογία Scrum απαιτεί, εκτός από την εφαρμογή συγκεκριμένων βημάτων, την
dιαμόρφωση ιδανικών συνθηκών εργασίας και συνεργασίας της ομάδας έργου.

Ακολουθούν φωτογραφίες από τον εργασιακό χώρο της Altanet Α.Ε. όπως αυτός
diαμορφώθηκε, με στόχο τη βέλτιστη εφαρμογή των ευέλικτων πρακτικών.

Η αίθουσα συναντήσεων μετατρέπεται
σε Scrum Room, ώστε να υπάρχει
αποκλειστικός χώρος συνάντησης των
μελών της ομάδας έργου.

Εικόνα 3: Scrum Room
Στα γυάλινα πλαίσια του Scrum Room αναγράφεται το Μανιφέστο της Ευελιξίας, ώστε να υπενθυμίζει στην ομάδα τη φιλοσофία των ευέλικτων πρακτικών.

Εικόνα 4: Το Manifesto της Ευελιξίας

Στα γυάλινα πλαίσια του Scrum Room αναγράφονται οι 12 βασικές αρχές της ευελιξίας στην ανάπτυξη λογισμικού. Η συνεχής επισκόπηση των αρχών, βοηθά την ομάδα να κατανοεί πόσο ευέλικτη είναι πραγματικά.

Εικόνα 5: Αρχές Ευελιξίας
Η δυνατότητα ψυχαγωγίας αποτελεί καθοριστικό παράγοντα διαμόρφωσης συνεκτικών ομάδων εργασίας, με δυνατότητα επικοινωνίας σε πολλαπλά επίπεδα, ξεφεύγοντας από τα στενά πλαίσια της επαγγελματικής σχέσης.

Τα μέλη της Ομάδας Ανάπτυξης είναι ελεύθερα να επιλέξουν τον χώρο εργασίας, για την υλοποίηση των εργασιών τους. Ο χώρος μπορεί να είναι είτε το γραφείο τους, είτε το μπαλκόνι της εταιρίας. Η παραγωγικότητα αποτελεί ζητούμενο μείζονος σημασίας στις ευέλικτες μεθόδους.
7.4 Ανάθεση Ρόλων

Πριν την εκκίνηση του έργου, με βάση τη μεθοδολογία Scrum πραγματοποιούνται, εντός της
etαιρίας, διαδοχικές παρουσιάσεις των ευέλικτων πρακτικών, με στόχο την κατανόηση του
tρόπου ανάπτυξης και συνεργασίας.

Με βάση τις ειδικότητες και δεξιότητες της εταιρίας, επιλέγονται οι ακόλουθοι συνεργάτες:

- Για το ρόλο του Scrum Master επιλέγεται η Εύα η οποία έχει αναλάβει καθήκοντα
 senior project manager στην εταιρία. Η συγκεκριμένη συνεργάτης έχει την ικανότητα να
 συγκεντρώνει στις εργασίες που της έχουν ανατεθεί και αποτελεί ιδανική επιλογή για
 τη διασφάλιση της τήρησης της διαδικασίας και την απομάκρυνση τυχόν εμποδίων
- Για το ρόλο του Κατόχου Προϊόντος (Product Owner) επιλέγεται ο συγγραφέας της
 παρούσας μελέτης, ο οποίος εξειδικεύεται στην καταγραφή και την ανάλυση των
 αναγκών των πελατών
- Στην Ομάδα Ανάπτυξης εντάσσονται οι προγραμματιστές Γιώργος, Άκης, Λογοθέτης και
 Ηλίας.

7.5 Πληροφοριακό Σύστημα Διαχείρισης Ευέλικτης Διαχείρισης

Για την εφαρμογή και παρακολούθηση της μεθοδολογίας Scrum επιλέγεται η online υπηρεσία
νέφους Microsoft Team Foundation Service (http://tfs.visualstudio.com) η οποία διατίθεται
για πρώτη φορά τον Οκτώβριο του 2012. Για τις ανάγκες του έργου δημιουργείται ο
επιχειρησιακός χώρος http://altanet.visualstudio.com, όπου καταχωρείται το έργο Globo
Ecosystem.
Εικόνα 8: Οθόνη αυθεντικοποίησης χρηστών στα Team Foundation Services

Το γεγονός ότι μια εταιρία όπως η Microsoft, επιλέγει για πρώτη φορά την ενσωμάτωση ευέλικτων εργαλείων διαχείρισης έργων, στην τελευταία έκδοση του Visual Studio 2012, αποτελεί σημαντικό αποδεικτικό στοιχείο του χώρου που έχουν κερδίσει οι ευέλικτες πρακτικές τα τελευταία χρόνια, έναντι των παραδοσιακών μοντέλων.

Εικόνα 9: Οθόνη δημιουργίας έργου στα Team Foundation Services
Η συγκεκριμένη υπηρεσία παρέχει στις ευέλικτες ομάδες ανάπτυξης τα ακόλουθα χαρακτηριστικά:

- Δυνατότητα διαχείρισης backlog προϊόντων
- Δυνατότητα προγραμματισμού εκδόσεων και sprints (release & sprint planning)
- Πίνακα Kanban για εύκολη παρακολούθηση της εξέλιξης στην ανάπτυξη των απαιτήσεων
- Δυνατότητα story boarding, δηλαδή σύνταξης ιστοριών χρηστών
- Δυνατότητα διαχείρισης επιμέρους εργασιών (tasks)
- Διαχείριση διαθεσιμότητας στελεχών ομάδας έργων (capacity)
- Παρακολούθηση της εξέλιξης των ανθρωπωρών, με χρήση burndown charts
- Διαχείριση πηγαίου κώδικα μέσω cloud (source code management)
- Πρόβλεψη υλοποίησης έργου βάσει της ταχύτητας ανάπτυξης (velocity)

Στις παραγράφους που ακολουθούν παρατίθενται οι σχετικές οθόνες από την cloud υπηρεσία Team Foundation Services.

7.6 Εφαρμογή Μεθοδολογίας Scrum

Η εφαρμογή της μεθοδολογίας ακολουθεί τα στάδια όπως ακριβώς περιγράφηκαν στο κεφάλαιο 5.3 Επιλογή Ευέλικτης Μεθοδολογίας και επαναλαμβάνεται στο διάγραμμα που ακολουθεί.
7.6.1 Όραμα - Στάδιο 1

Η παρακάτω δήλωση οράματος συντάσσεται από τον Κάτοχο Προϊόντος και εγκρίνεται με μικρές τροποποιήσεις από τον πελάτη.

ΔΗΛΩΣΗ ΟΡΑΜΑΤΟΣ ΓΙΑ ΤΟ ΕΡΓΟ GLOBO ECOSYSTEM

Για:
O οποίος
GLOBO PLC
Επιθυμεί
- την ανάπτυξη νέας διαδικτυακής ταυτότητας
- την ανάπτυξη marketplace προβολής και πώλησης εφαρμογών και υπηρεσιών του GoEnterprise Server
- την ανάπτυξη support center για τη στήριξη του δικτύου
συνεργατών

Η Ολοκληρωμένη διαδικτυακή πύλη

Που είναι

Ένα σύνθετο πληροφοριακό σύστημα παροχής ηλεκτρονικών υπηρεσιών προστιθέμενης αξίας

Το σενάριο

Επιτρέπει

- την αποτελεσματική προβολή της επιχείρησης στο internet
- την αναζήτηση, ανάκτηση και πώληση εφαρμογών του GOEnterprise Server σε 24ωρη βάση με αυτόματες διαδικασίες
- την άμεση υποστήριξη διαφορετικών επιπέδων συνεργατών σε 24ωρη βάση

Σε αντίθεση με

Το προϊόν μας

Διαθέτει αυτοματοποιημένες διαδικασίες έκδοσης των αδειών χρήσης και αγοράς αυτών καθώς και των αντίστοιχων εφαρμογών (apps) μέσα από το οικοσύστημα της επιχείρησης (Globo Ecosystem)

7.6.2 Backlog Προϊόντος - Στάδιο 2

Το Backlog του πληροφοριακού συστήματος αρχικά περιλαμβάνει απαιτήσεις πολύ χαμηλής ανάλυσης (themes) όπως για παράδειγμα:

1. Ελκυστικό εικαστικό βασισμένο σε σύγχρονα πρότυπα για το Corporate Portal
2. Δυναμική Παρουσίαση GoEnterprise Server στο Corporate Portal
3. Προβολή του Marketplace και εύκολη πρόσβαση από πολλαπλά σημεία στο Corporate Portal
4. Περιοχή αναζήτησης και ανάκτησης Επιχειρήσεων, Προϊόντων και Υπηρεσιών στο Marketplace
5. Περιοχή Συνεργατών με διαβάθμιση λειτουργιών στο Marketplace
6. Δυνατότητα Καταχώρισης Εφαρμογών και Υπηρεσιών και δημοσίευση με διαδικασίες έγκρισης στο Marketplace
7. Υποστήριξη για Διαχειριστές, Συνεργάτες και Προγραμματιστές στο Support Center
Στην οθόνη που ακολουθεί εμφανίζεται η φόρμα διαχείρισης των απαιτήσεων, όπου σε αρχικό επίπεδο η ομάδα εργασίας καλείται να συμπληρώσει την εκτιμώμενη προσπάθεια (effort), την επιχειρηματική αξία (business value) και την προτεραιότητα της απαίτησης. Η χρήση της τεχνικής Poker Estimation κρίνεται χρονοβόρα και δεν αξιοποιείται για την εκτίμηση του ανθρωποχρόνου.

Εικόνα 10: Οθόνη διαχείρισης απαίτησης (Backlog Item)

Το backlog εξειδικεύεται κατά τη διάρκεια υλοποίησης του έργου, μέσα από τη διαδικασία της επαναλαμβανόμενης αποσύνθεσης των απαιτήσεων.

7.6.3 Προγραμματισμός Εκδόσεων - Στάδιο 3

Με βάση το αρχικό Backlog του προϊόντος και την εκτίμηση του απαιτούμενου ανθρωποχρόνου, η ομάδα έγραψε προχωρά στον προγραμματισμό των εκδόσεων του πληροφοριακού συστήματος καθώς και των επαναλήψεων στα πλαίσια κάθε έκδοσης.
Ο αρχικός προγραμματισμός έργου περιλαμβάνει:
1. Την έκδοση 1.0 του πληροφοριακού συστήματος στην οποία προγραμματίζεται η υλοποίηση της εταιρικής πύλης (Corporate Portal), με ανάπτυξη σε τρεις επαναλήψεις (sprints), διάρκειας μιας εβδομάδας.

2. Την έκδοση 2.0 του πληροφοριακού συστήματος στην οποία προγραμματίζεται η ανάπτυξη των χαρακτηριστικών του marketplace με τη μεγαλύτερη προτεραιότητα, χωρίς τη δυνατότητα online αγορών εφαρμογών. Οι συνεχείς αναθεωρήσεις στο εμπορικό μοντέλο του πελάτη (κίνδυνος), οδηγεί στην ανάπτυξη των απαιτήσεων ecommerce σε επόμενη έκδοση.

3. Την έκδοση 2.1 του πληροφοριακού συστήματος στην οποία προγραμματίζεται η ανάπτυξη του App Store του marketplace, με στόχο την δυνατότητα πώλησης τόσο των εφαρμογών όσων και των αδειών χρήσης του GoEnterprise Server σε διαφορετικές γεωγραφικές / εμπορικές ζώνες.

4. Την έκδοση 3.0 του πληροφοριακού συστήματος στην οποία προγραμματίζεται η ανάπτυξη του Support Center.

Η χρήση παραδοσιακών μέσων, όπως οι πίνακες σημειώσεων, αποτελούν πολύτιμα εργαλεία για τον σχεδιασμό και τον προγραμματισμό του έργου.
7.6.4 Εκτέλεση Sprint Ανάπτυξης - Στάδια 4,5,6 και 7
Στα πλαίσια της παρούσας μελέτης επιλέγεται η παρουσίαση συγκεκριμένων sprints σε σύνολο δώδεκα που έχουν προγραμματιστεί, καθώς το συγκεκριμένο έργο αναμένεται να ολοκληρωθεί τον Μάρτιο του 2013, σύμφωνα με τον ισχύον προγραμματισμό.

1. Version 1.0 – Corporate Portal

 Πρόκειται για το πρώτο sprint που εκτελείται από την ομάδα έργου και από το οποίο προκύπτουν χρήσιμα αρχικά συμπεράσματα αναφορικά με την αντίδραση της ομάδας έργου και την επίτευξη των στόχων.

2. Version 2.0 – Marketplace App Center
 a. Sprint 2.0.1 με διάρκεια από 25/11/2012 έως 30/11/2012
 b. Sprint 2.0.2 με διάρκεια από 3/12/2012 έως 7/12/2012
 c. Sprint 2.0.3 με διάρκεια από 10/12/2012 έως 14/12/2012

 Πρόκειται για μια σειρά από τρία διαδοχικά sprints, τα οποία ολοκληρώνουν την έκδοση 2.0 του marketplace. Στόχος της ανάλυσης των συγκεκριμένων sprints είναι η παρακολούθηση της εκτέλεσης συνεχόμενων sprints και της επίτευξης των στόχων σε επίπεδο έκδοσης. Στο τέλος της ίδια σειράς στους sprints, επιχειρείται η εφαρμογή της αξιολόγησης της διαδικασίας, με βάση το ερωτηματολόγιο Agile Pulse.

 a. Sprint 2.1.1 με διάρκεια από 7/1/2012 έως 8/2/2012

 Πρόκειται για το Sprint το οποίο αναλύεται σε επίπεδο σχεδιασμού, επίτευξης και παρακολούθησης της προώθηση των εργασιών, καθώς και εντοπισμού ευρημάτων σε ημερήσια βάση (daily scrum). Ο στόχος είναι η επίδειξη της μικροσκοπικής παρακολούθησης της scrum, σε ημερήσια βάση καθώς και η αξιοποίηση των δεικτών για την πρόβλεψη ολοκλήρωσης του έργου.

7.6.4.1 Το πρώτο Sprint - Sprint 1.0.1
Το sprint 1.0.1 αφορά στην ανάπτυξη της πρώτης έκδοσης του πληροφοριακού συστήματος, στην όποια περιλαμβάνεται η εταιρική πύλη του πελάτη. Η αρχική εκτίμηση είναι ότι η εταιρική πύλη θα ολοκληρωθεί σε τρία συνολικά sprints και ίσως χρειαστεί και ένα τέταρτο Sprint.
Έκδοσης (Release Sprint), αν κι εφόσον απαιτηθεί η διάθεση του website online. Ο στόχος του συγκεκριμένου sprint είναι η ολοκλήρωση του εικαστικού και της παραμετροποίησης του website καθώς και η ανάπτυξη των πρώτων προσαρμοσμένων ενστήτων λογισμικού (custom modules).

7.6.4.1.1 Σχεδιασμός Sprint

Κατά τον σχεδιασμό του sprint η ομάδα έργου, με συντονιστή τον Κάτοχο Προϊόντος, προχωρά στην πρώτη αποσύνθεση του Backlog προϊόντος.

Εικόνα 13 : Sprint Backlog

Οι απαιτήσεις που αναμένεται να αναπτυχθούν στα πλαίσια του sprint, αναλύονται σε επιμέρους εργασίες tasks οι οποίες ανατίθενται στα μέλη της ομάδας ανάπτυξης, όπως φαίνεται στην οθόνη που ακολουθεί:
Εικόνα 14: Sprint Backlog and Task Allocation

Επιπρόσθετα, στα πλαίσια του σχεδιασμού του sprint καταχωρούνται οι πληροφορίες για τη διαθεσιμότητα των στελεχών της ομάδας έργου, έτσι ώστε οι αναθέσεις να λάβουν υπόψη τόσο τις ανθρωποώρες που θα μπορεί να διαθέσει το κάθε μέλος καθ’ όλη τη διάρκεια του sprint, όσο και τυχόν άδειες.

Εικόνα 15: Διαθεσιμότητα Μελών Ομάδας Έργου
7.6.4.1.2 Καθημερινές Συναντήσεις

Για τις επόμενες τέσσερις ημέρες της εβδομάδας η ομάδα εργασίας διενεργεί καθημερινή συνάντηση για 15 λεπτά ακριβώς με στόχο την παρακολούθηση της εξέλιξης των εργασιών και τον εντοπισμό εμποδίων.

Η εποπτική παρακολούθηση της εξέλιξης των απαιτήσεων του Sprint, γίνεται με τη χρήση του ηλεκτρονικού πίνακα Kanban.

Εικόνα 16: Ηλεκτρονικός Πίνακας Kanban

Στην παραπάνω οθόνη εμφανίζεται ο πίνακας με τις απαιτήσεις του backlog στο sprint και την τρέχουσα κατάσταση των εργασιών, για κάθε απαίτηση χωριστά.

Στα πλαίσια των καθημερινών συναντήσεων οι απαιτήσεις εμφανίζονται στο backlog στο sprint και την τρέχουσα κατάσταση των εργασιών, για κάθε απαίτηση χωριστά.

Στις απαίτησεις των καθημερινών συναντήσεων η ομάδα έργου αναφέρει τα ακόλουθα εμπόδια:

- ο χάρτης πλοήγησης (sitemap) δεν είναι ολοκληρωμένος από τη μεριά του πελάτη, με αποτέλεσμα να καθίσταται ανέφικτη η ολοκλήρωση της παραμετροποίησης. Η ομάδα
έργου αποφασίζει να ολοκληρώσει την ανάπτυξη και να ζητήσει feedback από τον πελάτη στο τέλος του sprint (sprint review).

- ο προσαρμοσμένος slider της πρώτης σελίδας έχει αναπτυχθεί με Jquery Plugin και δεν λειτουργεί σωστά στον Chrome. Η ομάδα έργου αποφασίζει την προσθήκη στο backlog της απαίτησης ελέγχου λειτουργίας του slider σε όλους τους browsers.

7.6.4.1.3 Ανασκόπηση Sprint

Η ανασκόπηση του Sprint λαμβάνει χώρα την τελευταία ημέρα του Sprint και διαρκεί περίπου δυο ώρες, υπερβαίνοντας τον προβλεπόμενο χρόνο. Δεδομένου ότι τα στελέχη του πελάτη βρίσκονται στην Αθήνα, δεν υπάρχει δυνατότητα κατ’ ιδίαν συνάντησης, οπότε επιλέγεται η υπηρεσία web conference webex της Cisco, για την επίδειξη του τμήματος του πληροφοριακού συστήματος που έχει αναπτυχθεί στα πλαίσια του Sprint.

Η ομάδα έργου παρουσιάζει αναλυτικά όλες τις εργασίες που εκτελέστηκαν, σε πραγματικό χρόνο στη διεύθυνση http://dev.altanet.gr/globoplc, περιλαμβάνοντας ενδεικτικά τα ακόλουθα:

1. Επισημαίνονται οι βασικοί στόχοι και οι απαιτήσεις που αναμένεται να αναπτυχθούν στα επόμενα sprints που αφορούν στην υλοποίηση της εταιρικής πύλης.
2. Επίδειξη πρώτης σελίδας της εταιρικής πύλης. Παρουσιάζονται οι βασικές αρχές της εικαστικής προσέγγισης καθώς η επιλογή του χρωματολογίου και της γραμματοσειράς.
Εικόνα 17: Πρώτη σελίδα εταιρικής πύλης

3. Επίσης, το slider component της πρώτης σελίδας και του αντίστοιχου διαχειριστικού. Στο σημείο αυτό ζητούνται από τον πελάτη οι φωτογραφίες (banners) που θα εναλλάσσονται στον slider. Οι φωτογραφίες θα προέλθουν από εξωτερική διαφημιστική εταιρία, εμπλέκοντας και τρίτο φορέα στην ανάπτυξη του έργου.

4. Πλοήγηση σε όλες τις σελίδες της πύλης. Στο σημείο αυτό ζητούνται κείμενα και λοιπά δεδομένα για την καταχώριση στο Σύστημα Διαχείρισης Περιεχομένου, σε όλες τις διαθέσιμες γλώσσες.
Κατά τη διάρκεια του sprint ο πελάτης αναφέρεται στη χρήση tall menu κατά την πλοήγηση που ακολουθεί ο ανταγωνιστής τους RIM στον επίσημο διαδικτυακό κόμβο blackberry.com. Η ομάδα εργασίας καταχωρεί στο Product backlog τη νέα απαίτηση. Η νέα απαίτηση θα αξιολογηθεί από την ομάδα έργου και θα εγκριθεί προς υλοποίηση κατά το σχεδιασμό των επόμενων sprints.

Εικόνα 18 : Υλοποίηση μενού πλοήγησης με tall menu σε επόμενα sprints

7.6.4.1.4 Ανατροφοδότηση / Αποτίμηση Scrum
Η εσωτερική συνάντηση του πρώτου sprint λαμβάνει χώρα την τελευταία μέρα του sprint και διαρκεί δύο ώρες.

Στα πλαίσια της συνάντησης καταγράφονται τα ακόλουθα:

- Τι πήγε καλά στο sprint
 - Η ανάπτυξη του εικαστικού και η επιλογή του χρωματολογίου και της δομής
 - Η ανάπτυξη του slider component
- Τι πρέπει να διορθωθεί
Η ταχύτητα της ομάδας καθώς η ολοκλήρωση μόλις τεσσάρων απαιτήσεων από το backlog και η προσθήκη δυο νέων από τη μεριά του πελάτη, καθιστούν επικίνδυνη την επιμήκυνση του εκτιμώμενου χρονοδιαγράμματος καθώς και του εκτιμώμενου προϋπολογισμού υλοποίησης.

Η ομάδα απασχολείται εμβόλιμα με θέματα υποστήριξης άλλων πελατών κι έργων, με αποτέλεσμα να μην επιτυγχάνεται η συγκέντρωση στις ανάγκες του ευέλικτου έργου (distraction).

Πώς πρέπει να γίνει η εφαρμογή των διορθώσεων?

- Μέσω της βελτίωσης της ταχύτητας ανάπτυξης. Ωστόσο επισημαίνεται ότι δεν μπορεί να γίνει άμεση διόρθωση της ταχύτητας (velocity) της ομάδας καθώς η τήρηση της διαδικασίας γίνεται για πρώτη φορά. Σε επόμενα sprint θα καταστεί εφικτή η ακριβέστερη εκτίμηση της μέσης ταχύτητας της ομάδας και κατ’ επέκταση η πρόβλεψη του χρόνου και κόστους υλοποίησης.
- Οι αλλαγές που προτάθηκαν από τον πελάτη θα υλοποιηθούν σε επόμενα sprints.
- Ο Scrum Master είναι υπεύθυνος για τη διασφάλιση της συνοχής της ομάδας και την απομάκρυνση των εμποδίων και λοιπών στοιχείων που αποσπούν τη συγκέντρωση των μελών.

7.6.4.1.5 Ευρήματα Εκτέλεσης Πρώτου Sprint

Το πρώτο sprint στην ανάπτυξη ενός έργου και μάλιστα από μια εταιρία που εφαρμόζει για πρώτη φορά μια ευέλικτη μεθοδολογία, δεν ενδείκνυται για την εξαγωγή συμπερασμάτων και τη λήψη αποφάσεων. Στη φάση αυτή, η ομάδα προσπαθεί να εμπεδώσει την επαναληπτική διαδικασία στην πράξη. Η ταχύτητα της ομάδας στο πρώτο sprint του έργου είναι 36 και αποτελεί τη βασική ταχύτητα (baseline velocity). Δεδομένου ότι ο συνολικός εκτιμώμενος ανθρωποχρόνος των καταγεγραμμένων απαιτήσεων είναι 900, προκύπτει ότι το έργο αναμένεται να ολοκληρωθεί σε 25 εβδομάδες (900 / 36), υπερβαίνοντας το αρχικό χρονοδιάγραμμα, κατά περίπου 4 εβδομάδες. Στο συγκεκριμένο sprint δεν επιλέγεται η συμπλήρωση του ερωτηματολογίου Agile Pulse, καθώς κρίνεται ότι η ομάδα δεν διαθέτει την ωριμότητα για την αντικειμενική βαθμολόγηση των κριτηρίων ευελιξίας και επαναληπτικότητας (6.3.1.1 Ερωτηματολόγιο Agile Pulse).
7.6.4.2 Σprints Έκδοσης - Sprint 2.0.1, 2.0.2 και 2.0.3

Τα συγκεκριμένα Sprint οδηγούν στην πλήρη ανάπτυξη της έκδοσης 2.0 του πληροφοριακού συστήματος, με ενσωματωμένες τις λειτουργίες παρουσίασης, αναζήτησης και ανάκτησης των συνεργατών καθώς και των εφαρμογών και υπηρεσιών αυτών. Στην έκδοση αυτή δεν περιλαμβάνονται οι δυνατότητες πώλησης των εφαρμογών και των αδειών χρήσης online.

Στόχος της παράθεσης των συγκεκριμένων αυτών Sprint, είναι η επίδειξη της μακροσκοπικής παρακολούθησης της εξέλιξης και η αξιολόγηση του έργου σε επίπεδο έκδοσης.

Ακολουθούν οι οθόνες με τις λίστες των απαιτήσεων από το πληροφοριακό σύστημα παρακολούθησης Team Foundation Services και το παραγόμενο αποτέλεσμα, με ενδεικτικά screenshots από το GoEcosystem Marketplace.

Μέσα από την εκτέλεση των διαδοχικών sprints, παρουσιάζεται η παρακολούθηση της εξέλιξης του έργου, με βάση την ταχύτητα ανάπτυξης (velocity), καθώς και η δυνατότητα πρόβλεψης της ολοκλήρωσης των εργασιών του έργου. Στο τέλος των διαδοχικών sprints, συμπληρώνεται για πρώτη φορά από την ομάδα έργου, το ερωτηματολόγιο Agile Pulse, ώστε να ανιχνευθεί η αντίληψη της ομάδας, σε ότι αφορά στην υιοθέτηση των πρακτικών της Scrum (7.7 Αξιολόγηση).

7.6.4.2.1 Επαναληπτική Εκτέλεση Sprint

Η ανάπτυξη της έκδοσης 2.0 ξεκινά με τις απαιτήσεις του Sprint 2.0.1 που ενσωματώνουν τη λειτουργικότητα που παρέχει το πληροφοριακό σύστημα στους Registered Partners. Οι απαιτήσεις του sprint περιλαμβάνουν:

- Εγγραφή συνεργατών στο marketplace
- Μηχανισμός αναβάθμισης συνεργάτη σε επίπεδο Publisher
- Ανάπτυξη επιφάνειας εργασίας και κέντρου ελέγχου για τους συνεργάτες
Εικόνα 19: Λίστα απαιτήσεων και εργασιών – Sprint 2.0.1

Οι απαιτήσεις του Sprint 2.0.1 οδηγούν στην ανάπτυξη των ακόλουθων ενδεικτικών οθόνων από το Online demo του πληροφοριακού συστήματος. Ο αναγνώστης μπορεί να πλοήγησε στις σχετικές οθόνες στη διεύθυνση http://dev.altanet.gr/globoplc/default.aspx?lang=en-GB&page=71
Εικόνα 20: Οθόνη Sign in στην περιοχή συνεργατών

Εικόνα 21: Οθόνη Sign Up για Registered User
Η ανάπτυξη συνεχίζεται με τις απαιτήσεις του Sprint 2.0.2 που οδηγούν στην ανάπτυξη των απαιτήσεων:

- Διαχείριση Προφίλ για συνεργάτες τύπου Publisher
- Διαχείριση Εφαρμογών και Υπηρεσιών για συνεργάτες τύπου Publisher
- Ανάπτυξη μηχανισμών μαζικής ανάκτησης αδειών χρήσης (volume licensing) και κατανομής στους πελάτες του συνεργάτη.

Εικόνα 22: Λίστα απαιτήσεων και εργασιών – Sprint 2.0.2

Ακολουθούν ενδεικτικές οθόνες από το Online demo του πληροφοριακού συστήματος, σε αντιστοιχία με τις απαιτήσεις του συγκεκριμένου sprint.
Εικόνα 23 : Οθόνη αναβάθμισης συνεργάτη σε Publisher
Εικόνα 24: Οθόνη διαχείρισης υπηρεσίας συνεργάτη
Εικόνα 25: Οθόνη κατανομής κλειδιών αδειών χρήσης σε πελάτες

Η ανάπτυξη της έκδοσης 2.0 του πληροφοριακού συστήματος, ολοκληρώνεται με τις απαιτήσεις του Sprint 2.0.3 που αφορούν στην ανάπτυξη του περιβάλλοντος αναζήτησης, ανάκτησης και προβολής των εφαρμογών και των υπηρεσιών του δικτύου συνεργατών. Οι ενδεικτικές απαιτήσεις περιλαμβάνουν:

- Διαμόρφωση ελκυστικής πρώτης σελίδας marketplace
- Λίστες προβολής προφίλ συνεργατών
- Λίστες προβολής και αναλυτικές οθόνες εφαρμογών και υπηρεσιών συνεργατών
Εικόνα 26: Λίστα απαιτήσεων και εργασιών – Sprint 2.0.3

Ακολουθούν ενδεικτικές οθόνες από το Online demo του πληροφοριακού συστήματος, σε αντιστοιχία με τις απαιτήσεις του συγκεκριμένου sprint. Ο αναγνώστης μπορεί να πλοηγηθεί στο online demo στη διεύθυνση http://dev.altanet.gr/globoplcl/default.aspx?lang=en-GB&page=81
Εικόνα 27: Ελκυστική πρώτη σελίδα marketplace
7.6.4.2.2 Ευρήματα Εκτέλεσης Διαδοχικών Sprints

Η εκτέλεση των διαδοχικών sprints δείχνει μια ιδιαίτερα ενθαρρυντική εικόνα της ανάπτυξης του συστήματος, με βάση την ταχύτητα ανάπτυξης ανά sprint (Διάγραμμα 21: Μέτρηση ταχύτητας σε επίπεδο έκδοσης).

Το σύστημα παρακολούθησης Team Foundation Services παρέχει στο διαχειριστή του έργου ένα πρόσθετο εργαλείο πρόβλεψης αναφορικά με το χρόνο και κατ’ επέκταση το κόστος για την ολοκλήρωση του έργου. Με βάση το μέσο όρο της ταχύτητας, το σύστημα επιτρέπει την αυτόματη κατανομή των απαιτήσεων στα sprints που έχουν προγραμματιστεί στο αρχικό χρονοδιάγραμμα (Εικόνα 29: Οθόνη πρόβλεψης ολοκλήρωσης έργου).
Στο δεξιό διάγραμμα εμφανίζεται η βελτίωση της ταχύτητας της ομάδας, αναφορικά με τον όγκο εργασίας που εκτελείται σε κάθε sprint. Τα νούμερα της ταχύτητας αφορούν στις συνολικές ανθρωποώρες που διατέθηκαν στην ανάπτυξη των απαιτήσεων του κάθε sprint.

Εικόνα 29: Θόνη πρόβλεψης ολοκλήρωσης έργου
Στην παραπάνω οθόνη και με βάση μια μέση ταχύτητα 40 ανθρωπωρών, το σύστημα κατανέμει τις απαιτήσεις στα εναπομείναντα sprint. Η παραπάνω κατανομή είναι πολύ πιθανό να είναι άστοχη καθώς δεν γίνεται με λογικά κριτήρια. Ωστόσο, η εκτίμηση του χρόνου ολοκλήρωσης του έργου, με βάση την προβλεπόμενη προσπάθεια (Planned Value), αποτελεί σημαντικό εργαλείο για την ομάδα έργου, αναφορικά με τον εντοπισμό των κινδύνων εκτροχιασμού του χρονοδιαγράμματος και κατ’ επέκταση του προϋπολογισμού του έργου.

Τα συμπεράσματα από τη συμπλήρωση του ερωτηματολογίου Agile Pulse, αναλύονται σε ξεχωριστή παράγραφο (7.7 Αξιολόγηση).

7.6.4.3 Καθημερινό Scrum - Sprint 2.1.1

Το συγκεκριμένο sprint είναι το πρώτο στην ανάπτυξη της έκδοσης 2.1 του πληροφοριακού συστήματος που αφορά στην ολοκλήρωση των διαδικτυακών κόμβων πώλησης αδειών χρήσης (GoEnterprise Mobilizer Licenses) και εφαρμογών συνεργατών (App Store). Με την καταγραφή του συγκεκριμένου sprint ολοκληρώνεται η καταγραφή της μελέτης περίπτωσης, με στόχο την αξιοποίηση των ευρημάτων στην εξαγωγή συμπερασμάτων. Η τελευταία ενημέρωση από τον πελάτη σηματοδοτεί μια σημαντική προσαρμογή στα πλαίσια του έργου καθώς στα τέλη του 2012 επιτυγχάνεται εμπορική συμφωνία με μεγάλο distributor λογισμικού στις Ηνωμένες Πολιτείες. Το γεγονός αυτό επιφέρει νέες απαιτήσεις με υψηλή προτεραιότητα στο Backlog του πληροφοριακού συστήματος. Η λογική οργάνωση των διαδικτυακών κόμβων πώλησης απεικονίζεται στο διάγραμμα που ακολουθεί.

Διάγραμμα 22: Λογική οργάνωση GoEcosystem Marketplace
7.6.4.3.1 Σχεδιασμός Sprint – Δευτέρα 8 Ιανουαρίου 2013

Κατά τον σχεδιασμό του sprint η ομάδα έργου με συντονιστή τον Κάτοχο Προϊόντος προχωρά σε νέα αποσύνθεση του Backlog των απαιτήσεων και προγραμματίζει συνολική διαθεσιμότητα 80 ωρών (total capacity) από τα μέλη της ομάδας έργου. Για κάθε απαίτηση πραγματοποιείται ανάθεση επιμέρους εργασιών.

Το backlog του sprint αποσυντίθεται στη λίστα που ακολουθεί, όπου στο πρώτο επίπεδο εμφανίζονται οι απαιτήσεις και στο δεύτερο οι επιμέρους εργασίες / αναθέσεις:

1. Ανάπτυξη license distribution store για USA
 a. Παραμετροποίηση sites & locales στο Σύστημα Διαχείρισης Περιεχομένου
 b. Παραμετροποίηση distributor store για USA
2. Πώληση mobilizer licenses μέσω PayPal με recurring payments
 a. Ανάπτυξη πληρωμής μέσω PayPal με recurring (ή μη) payments
 b. Δυνατότητα διακοπής πληρωμών από πελάτη (Paypal profile cancelation)
3. Σύνδεση κάθε διακριτού license distribution store με χώρες
 a. Ανάπτυξη μηχανισμού σύνδεσης των χωρών με τα locales στο διαχειριστικό του CMS
 b. Ανάπτυξη οθόνης επιλογής χώρας στην αρχική σελίδα στο marketplace
4. Διασύνδεση με GoEnterprise Licensing Server
 a. Ανάκτηση αδειών χρήσης από τον Licensing Server της Globo
 b. Δοκιμές web services επικοινωνίας με Licensing Server της Globo
 c. Integration των web services στο μηχανισμό ανάκτησης αδειών χρήσης

Κατά τον σχεδιασμό του sprint (sprint planning) καθορίζεται η διαθεσιμότητα σε ώρες, για κάθε μέλος της ομάδας έργου χωριστά.
Εικόνα 30: Προγραμματισμός διαθεσιμότητας και αδειών ομάδας έργου

7.6.4.3.2 Καθημερινές Συναντήσεις – Τρίτη 8 Ιανουαρίου 2013

Η καθημερινή συνάντηση πραγματοποιείται πρωινές ώρες και αφορά στην ανασκόπηση των εργασιών της προηγούμενης ημέρας.

Η εποπτική εικόνα του sprint εμφανίζεται στην οθόνη που ακολουθεί.

Εικόνα 31: Συνοπτική απεικόνιση – 2η ημέρα Sprint
Η παραπάνω οθόνη αποτελεί την απεικόνιση της δεύτερης ημέρα εκτέλεσης του Sprint (Τρίτη 8 Ιανουαρίου) από την οποία προκύπτουν οι εξής πληροφορίες:

- Στα πλαίσια του sprint απομένουν 45 ώρες ανατεθειμένων εργασιών, έναντι 64 ωρών που είναι η συνολική διαθεσιμότητα των μελών της ομάδας έργου που απομένει μέχρι την ολοκλήρωση του sprint
- Έχουν ξεκινήσει δύο απαιτήσεις του backlog ενώ άλλες δυο είναι σε κατάσταση ToDo
- Με το τέλος της 1η ημέρας (προηγούμενη ημέρα) του sprint, η πορεία ανάπτυξης παρουσιάζει μικρή αρνητική απόκλιση από την ιδανική εκτέλεση, όπως απεικονίζεται στο ημερήσιο burndown chart. Η αρνητική απόκλιση σημαίνει ότι απομένουν περισσότερες ώρες εργασίας, σε σχέση με την ιδανική εκτέλεση που εμφανίζεται στο γραμμικό διάγραμμα. Στη λογική της Ανάλυσης Προστιθέμενης Αξίας (Earned Value Analysis), το διάγραμμα burndown δείχνει ότι η Εκτελεσθείσα Αξία (Earned Value), είναι μικρότερη από την Προγραμματισμένη Αξία (Planned Value).

Εικόνα 32: Burndown chart – 2η ημέρα Sprint
Στο πρωινό daily scrum meeting ο πίνακας Kanban ενημερώνεται σύμφωνα με την εξέλιξη του φυσικού αντικειμένου της προηγούμενης ημέρας.
Εικόνα 33: Kanban Board – 2η ημέρα Sprint

7.6.4.3.3 Καθημερινές Συναντήσεις – Τετάρτη 9 Ιανουαρίου 2013

Η τρίτη ημέρα εκτέλεσης του sprint ξεκινά με την καθημερινή προγραμματισμένη συνάντηση, όπου πραγματοποιείται η ενημέρωση της εξέλιξης των εργασιών.

Εικόνα 34: Συνοπτική απεικόνιση – 3η ημέρα Sprint
Από την εποπτική εικόνα του συστήματος παρακολούθησης, τα νέα δεδομένα διαμορφώνονται ως εξής:

- Στα πλαίσια του sprint απομένουν 31 ώρες εργασίας προς υλοποίηση, έναντι 48 ωρών που είναι η συνολική εναπομείνασα διαθεσιμότητα των μελών της ομάδας έργου, μέχρι το τέλος του Sprint
- Τρεις απαιτήσεις του backlog είναι πλέον σε εξέλιξη, ενώ μια απαίτηση παραμένει σε κατάσταση ToDo
- Στο τέλος της 2ης ημέρας του sprint το burndown chart εμφανίζει μεγαλύτερη αρνητική απόκλιση από την προηγούμενη ημέρα. Με βάση την Ανάλυση Προστιθέμενης Αξίας (Earned Value Analysis), η Διασπορά Χρονοδιαγράμματος (SV), εμφανίζει μεγαλύτερη αρνητική τιμή, σε σχέση με το προηγούμενο sprint. Το ίδιο παρατηρείται και για το Δείκτη Απόδοσης Χρονοδιαγράμματος SPI, καθώς η τιμή του είναι μικρότερη της μονάδος και χαμηλότερη από αυτή του προηγούμενου sprint. Οι δείκτες επισημαίνουν ότι η απόδοση της εκτέλεσης του έργου είναι φθίνουσα.
- Η βασική ανησυχία της ομάδας εστιάζει στο γεγονός ότι δεν έχουν ξεκινήσει οι εργασίες διασύνδεσης με τον Licensing Server της globo, καθώς δεν έχουν κοινοποιηθεί ακόμη στην ομάδα έργου οι ακριβείς παράμετροι των web services επικοινωνίας.

Εικόνα 35 : Burndown chart - 3η ημέρα Sprint
Στο πρωινό daily scrum meeting ο πίνακας Kanban απεικονίζεται στην οθόνη που ακολουθεί, όπου μια εργασία πλέον έχει ολοκληρωθεί (DONE), έξι βρίσκονται σε εξέλιξη (IN PROGRESS), ενώ άλλες δυο βρίσκονται ακόμη σε κατάσταση TO DO.

Εικόνα 36: Kanban Board – 3η ημέρα Sprint

7.6.4.3.4 Καθημερινές Συναντήσεις – Πέμπτη 9 Ιανουαρίου 2013

Η τέταρτη ημέρα του sprint ολοκληρώνει την ανάπτυξη του λογισμικού, ώστε να υπάρχει χρόνος για τη διενέργεια δοκιμών ελέγχου στο σύνολο των λειτουργικών ενοτήτων που ολοκληρώθηκαν στο sprint. Η εποπτική εικόνα του sprint εμφανίζεται στην οθόνη που ακολουθεί.
Η συνοπτική απεικόνιση του sprint οδηγεί στα ακόλουθα ευρήματα:

- Στα πλαίσια του sprint απομένουν 15 ώρες εργασίας, έναντι 32 ωρών που είναι η συνολική διαθεσιμότητα των μελών της ομάδας έργου που απομένει μέχρι την ολοκλήρωση του Sprint
- Οι απαιτήσεις που είχαν καθυστέρηση βρίσκονται πλέον σε εξέλιξη, ενώ άλλες δυο έχουν ολοκληρωθεί πλήρως
- Στο τέλος της 3ης ημέρας του sprint το burndown chart εμφανίζει διόρθωση της απόκλισης που είχε επισημανθεί την προηγούμενη ημέρα. Η πορεία ανάπτυξης προσεγγίζει την ιδανική εκτέλεση. Παρόλα αυτά, το πρόβλημα στις εργασίες διασύνδεσης παραμένει, καθώς η ομάδα έργου δεν έχει ακόμη λάβει τις τελικές παραμέτρους των web services επικοινωνίας με τον Licensing Server της Globo.
Εικόνα 38: Burndown chart - 4η ημέρα Sprint

Στο πρωινό daily scrum meeting ο πίνακας Kanban αποτυπώνει την πρόοδο των εργασιών μέχρι και το τέλος της προηγούμενης ημέρας.

Εικόνα 39: Kanban Board – 4η ημέρα Sprint
7.6.4.3.5 Καθημερινές Συναντήσεις – Παρασκευή 9 Ιανουαρίου 2013

Πρόκειται για την τελευταία ημέρα υλοποίησης του sprint, όπου η εποπτική οθόνη του συστήματος παρακολούθησης εμφανίζει την πρόοδο των εργασιών, μέχρι το τέλος της προηγούμενης ημέρας και οδηγεί σε νέες επισημάνσεις.

Εικόνα 40: Συνοπτική απεικόνιση – 5η ημέρα Sprint

- Στα πλαίσια του sprint απομένουν 10 ώρες εργασίας σύμφωνα με τις ανατεθειμένες εργασίες, έναντι 16 ωρών που είναι η συνολική διαθεσιμότητα των μελών της ομάδας έργου που απομένει μέχρι την ολοκλήρωση του Sprint (δηλαδή στο τέλος της ίδιας ημέρας). Αυτό σημαίνει ότι έχει προγραμματιστεί η χρήση εργασιών από μέλη της ομάδας, χωρίς να απαιτείται.
- Μια απαίτηση του backlog παραμένει σε εξέλιξη, ενώ οι υπόλοιπες τρεις έχουν ολοκληρωθεί.
- Στο τέλος της 4ης ημέρας (προηγούμενη ημέρα) του sprint το burndown chart εμφανίζει πολύ μικρή πρόοδο εργασιών. Ο εσωτερικός licensing server της Globo αναπτύσσεται παράλληλα, με αποτέλεσμα να παρατηρούνται αλλαγές στις προδιαγραφές των web services σε καθημερινή βάση. Το συγκεκριμένο εμπόδιο δεν μπορεί να ξεπεραστεί στα πλαίσια του παρόντος sprint. Η αξιολόγηση του συμβάντος γίνεται στις συναντήσεις ανασκόπησης και ανατροφοδότησης / αποτίμησης, στο τέλος της ίδιας ημέρας.
Εικόνα 41 : Burndown chart - 5η ημέρα Sprint

Στο πρωινό daily scrum meeting ο πίνακας Kanban απεικονίζεται στην οθόνη που ακολουθεί, όπου οι εργασίες τριών απαιτήσεων έχουν ολοκληρωθεί ενώ οι εργασίες της τελευταίας απαίτησης είναι ακόμη σε εξέλιξη.

Εικόνα 42 : Kanban Board – 5η ημέρα Sprint
7.6.4.3.6 Ευρήματα Καθημερινού Scrum

Η τελευταία ημέρα του Sprint ολοκληρώνεται με τις συναντήσεις της ανασκόπησης και της αποτίμησης. Στο εσωτερικό sprint αποτίμησης παρατηρείται δραματική πτώση της ταχύτητας ανάπτυξης σε σχέση με το προηγούμενο Sprint (Πίνακας 20: Διάγραμμα Ταχύτητας Έργου).

Πίνακας 20: Διάγραμμα Ταχύτητας Έργου

![Diagram](image.png)

Στο παραπάνω διάγραμμα καθίσταται προφανής η πτώση στην ταχύτητα ανάπτυξης σε 48 ανθρωποώρες, έναντι 96 στο προηγούμενο sprint.

Με τη μεθοδολογία πρόβλεψης βάσει του Διάστήματος Βεβαιότητας (6.4.2 Πρόβλεψη με Διάστημα Βεβαιότητας) (Cohn, 2012, σ. 299), δημιουργείται ο πίνακας με τις καταγεγραμμένες ταχύτητες.

Πίνακας 21: Μετρήσεις Ταχύτητας – Μελέτη Περίπτωσης

<table>
<thead>
<tr>
<th>Αριθμός Sprint</th>
<th>Ταχύτητα</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0.1</td>
<td>36</td>
</tr>
<tr>
<td>1.0.2</td>
<td>32</td>
</tr>
<tr>
<td>1.0.3</td>
<td>41</td>
</tr>
</tbody>
</table>
Στη συνέχεια οι μετρήσεις της ταχύτητας ταξινομούνται με αύξουσα σειρά ως εξής:

32, 36, 41, 48, 48, 66, 96

Για τον προσδιορισμό του εύρους ταχυτήτων για το οποίο υπάρχει 90% βεβαιότητα ότι θα περιλάβει τις ταχύτητες ανάπτυξης των μελλοντικών sprints, χρησιμοποιείται ο ακόλουθος πίνακας:

<table>
<thead>
<tr>
<th>Αριθμός Καταγραμμένων Ταχυτήτων</th>
<th>Αύξον Αριθμός Καταγραφής</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>4</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Δεδομένου ότι υπάρχουν επτά καταγεγραμμένες ταχύτητες από ισόριθμα sprint, παρατηρούμε ότι ο αριθμός 7 είναι μεταξύ των τιμών 5 και 8 στην πρώτη στήλη του παραπάνω πίνακα. Επιλέγουμε την πλησιέστερη τιμή, δηλ. την τιμή 8 που αντιστοιχεί στον αύξονα αριθμό 2 από τη δεξιά στήλη του πίνακα. Αυτό σημαίνει ότι το Διάστημα Βεβαιότητας προσδιορίζεται από τη δεύτερη μικρότερη και δεύτερη μεγαλύτερη μέτρηση ταχύτητας, που στη συγκεκριμένη περίπτωση είναι οι αριθμοί 36 και 66.

Κατά συνέπεια, η ομάδα έργου γνωρίζει πλέον ότι με βεβαιότητα 90%, η μέση ταχύτητα της ομάδας ανάπτυξης στα επόμενα sprints, θα είναι μεταξύ 36 και 66. Τη συγκεκριμένη χρονική στιγμή, υπάρχουν στο Backlog του Προϊόντος, καταχωρημένες απαιτήσεις συνολικής εκτιμώμενης προσπάθειας 450 ωρών, μέχρι την ολοκλήρωση της έκδοσης 2.1 του
πληροφοριακού συστήματος. Κατά συνέπεια η ομάδα έργου είναι 90% σίγουρη ότι η ολοκλήρωση της έκδοσης 2.1 του συστήματος, θα γίνει από 6,8 (45 / 66) έως 12,5 (45 / 36) εβδομάδες. Με δεδομένο ότι κάθε sprint διαρκεί μια εβδομάδα, η εκτίμηση της ολοκλήρωσης στρογγυλοποιείται μεταξύ 7 και 13 εβδομάδων.

Το εύρος των εβδομάδων είναι αρκετά μεγάλο και οφείλεται στη σημαντική διαφοροποίηση των ταχυτήτων ανάπτυξης. Για την ακρίβεια, προδιαγράφει πιθανή καθυστέρηση του χρονοδιαγράμματος συστήματος του έργου, εφόσον Δεν δεσμεύθει η ταχύτητα ανάπτυξης της ομάδας. Πρακτικά το γεγονός αυτό είναι απολύτως δικαιολογημένο, καθώς οι τροποποιήσεις στο φυσικό αντικείμενο και ειδικά στις απαιτήσεις της έκδοσης 2.1 του πληροφοριακού συστήματος είναι πολλαπλές και ανατρεπτικές.

7.7 Αξιολόγηση

Η αξιολόγηση του έργου ολοκληρώνεται με βάση το προτεινόμενο Πλαίσιο Αξιολόγησης των Ευέλικτων Μεθόδων (6.3.1 Ωρίμανση Πλαισίων Αξιολόγησης). Η συμπλήρωση του ερωτηματολογίου Agile Pulse γίνεται από όλα τα μέλη της ομάδας έργου. Η μεθοδολογία προτείνει τη συμπλήρωση του ερωτηματολογίου στο τέλος κάθε sprint ή έκδοσης. Η μελέτη περίπτωση υιοθετεί τη συγκεκριμένη προσέγγιση σε επίπεδο έκδοσης (release), με στόχο την εξαγωγή συμπερασμάτων σε ευρύτερη κλίμακα. Η συμπλήρωση του ερωτηματολογίου γίνεται από τον Scrum Master, από τον Κάτοχο Προϊόντος και από τα μέλη ανάπτυξης (βλ. 7.4 Ανάθεση Ρόλων). Ακολουθούν οι συγκεντρωτικοί πίνακες των αποτελεσμάτων.

Πίνακας 22 : Συγκεκριμένοι Πίνακες Βαθμολόγησης Ευέλικτων Πρακτικών

<table>
<thead>
<tr>
<th>Ευέλικτες Πρακτικές</th>
<th>Ε</th>
<th>Δ</th>
<th>Γ</th>
<th>Α</th>
<th>Λ</th>
<th>Η</th>
<th>Μ.Ο.</th>
<th>Τυπική Απόκλιση</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ιστορίες Χρηστών</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1,2</td>
<td>0,37</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Αυτόματες Δοκιμές</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>12</td>
<td>6</td>
<td>3,5</td>
<td>1,98</td>
<td>1</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Ανάπτυξη σε Επαναληπτικούς Κύκλους</td>
<td>8</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>10</td>
<td>9</td>
<td>9,0</td>
<td>0,82</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>Συνεχής Ολοκλήρωση</td>
<td>8</td>
<td>10</td>
<td>9</td>
<td>7</td>
<td>10</td>
<td>8</td>
<td>8,8</td>
<td>1,07</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>Αυτό-διοικουμένες Ομάδες</td>
<td>5</td>
<td>3</td>
<td>7</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6,5</td>
<td>1,98</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>Σταθερός Ρυθμός</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>8,2</td>
<td>0,69</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>Τρόπος Ανάπτυξης</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>4</td>
<td>4,5</td>
<td>1,50</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Αντανακλαστικά</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>2</td>
<td>5</td>
<td>6</td>
<td>4,5</td>
<td>1,50</td>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>
Πίνακας 23: Συγκεντρωτικός Πίνακας Βαθμολόγησης Επαναληπτικών Πρακτικών

<table>
<thead>
<tr>
<th>Επαναληπτικές Πρακτικές</th>
<th>Ε</th>
<th>Δ</th>
<th>Γ</th>
<th>Α</th>
<th>Λ</th>
<th>Η</th>
<th>Μ.Ο.</th>
<th>Τυπική Απόκλιση</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Σταθερές Χρονικά Επανάληψεις</td>
<td>9</td>
<td>10</td>
<td>9</td>
<td>10</td>
<td>9</td>
<td>9</td>
<td>9,3</td>
<td>0,47</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>Λειτουργικό Λογισμικό</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>8</td>
<td>8,0</td>
<td>1,29</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>Χρήση Στοιχείων Ανάδρασης</td>
<td>6</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>7,7</td>
<td>0,94</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>Εκτίμηση</td>
<td>8</td>
<td>10</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>7</td>
<td>8,0</td>
<td>1,00</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>Ταξινομημένο Backlog</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>6</td>
<td>9</td>
<td>9,3</td>
<td>0,47</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>Καθημερινές Συναντήσεις</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>9</td>
<td>10</td>
<td>9</td>
<td>9,3</td>
<td>0,47</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

Στις στήλες των παραπάνω πινάκων εμφανίζονται οι βαθμοί των ατόμων της ομάδας έργου (το αρχικό γράμμα από κάθε άτομο της ομάδας), η τυπική απόκλιση (standard deviation) καθώς και η ελάχιστη και μέγιστη τιμή για κάθε κριτήριο.

Η γραφική απεικόνιση των αποτελεσμάτων των βαθμών των κριτηρίων, γίνεται με τη χρήση ραβδογραμμάτων και ιστογραμμάτων.

Διάγραμμα 23: Ραβδόγραμμα μέσων τιμών ευέλικτων πρακτικών
Οι παραπάνω γραφικές παραστάσεις οδηγούν στην εξαγωγή των ακόλουθων συμπερασμάτων, αναφορικά με την προσαρμογή της ομάδας στις ευέλικτες πρακτικές:

1. Η ομάδα επιτυγχάνει τον υψηλότερο μέσο όρο, στο κριτήριο της «Ανάπτυξης σε Επαναληπτικούς Κύκλους». Η μικρή διαφορά ανάμεσα στη μικρότερη και μεγαλύτερη βαθμολογία, καθώς και το χαμηλό νούμερο της τυπικής απόκλισης, καταδεικνύουν τη συμφωνία της ομάδας.

2. Η ομάδα επιτυγχάνει εξίσου μεγάλο μέσο όρο στα κριτήρια του «Σταθερού Ρυθμού» και της «Συνεχούς Ολοκλήρωση», με διασπορά απόψεων που δεν προβληματίζει. Η διατήρηση Σταθερού Ρυθμού είναι κάτι που έχει τηρηθεί ευλαβικά στη διαδικασία ανάπτυξης, ενώ η Συνεχής Ολοκλήρωση διασφαλίζεται με τα πολλαπλά, σε ημερήσια βάση, check-in του κώδικα από τους προγραμματιστές στο Source Safe και τη διενέργεια rebuild σε κάθε check-in.

3. Τα κριτήρια των «Αντανακλαστικών» και του «Τρόπου Ανάπτυξης» συγκεντρώνουν χαμηλό μέσο όρο και με σημαντική απόκλιση και εύρος στη βαθμολογία από τα μέλη της ομάδας έργου. Η ασυμφωνία οδηγεί στο συμπέρασμα ότι είτε τα μέλη δεν έχουν κατανοήσει τα συγκεκριμένα κριτήρια, είτε έχουν εντελώς διαφορετική αντίληψη για την εφαρμογή τους στην ευέλικτη διαδικασία. Σε κάθε περίπτωση, η ασυμφωνία...
αποτελεί αντικείμενο προς διερεύνηση και επίλυση στις επόμενες συναντήσεις αποτίμησης (sprint retrospective). Επιπρόσθετα, ο χαμηλός μέσος όρος υποδεικνύει την ανάγκη βελτίωσης των συγκεκριμένων πρακτικών, μέσα από την υιοθέτηση τεχνικών pair programming και την απαλοιφή των επαναλαμβανόμενων εμποδίων στη διαδικασία.

4. Ο χαμηλός μέσος όρος στο κριτήριο των «Αυτόματων Δοκιμών» επισημαίνει την ανάγκη ενσωμάτωσης των δοκιμών αυτών, στη διαδικασία ανάπτυξης, από τους προγραμματιστές. Η ασυμφωνία της ομάδας (τυπική απόκλιση 1,98) επισημαίνει την πιθανής λανθασμένη αντίληψη των μελών της ομάδας όργου, στον τρόπο δημιουργίας και εφαρμογής των αυτόματων δοκιμών. Επισημαίνεται ότι το προγραμματιστικό εργαλείο Microsoft Visual Studio 2012 επιτρέπει τη δημιουργία Automated Tests τα οποία αποτελούν βασική ευέλικτη πρακτική.

5. Η ομάδα συγκεντρώνει το χαμηλότερο μέσο όρο για το κριτήριο «Ιστορίες Χρηστών» και μάλιστα με απόλυτη συμφωνία (τυπική απόκλιση μόλις 0,37). Είναι γεγονός ότι η αποσύνθεση των απαιτήσεων δεν έφτασε στο επίπεδο των ιστοριών χρήστη και για το λόγο αυτό η μέτρηση της ταχύτητας γίνεται με βάση τις ανθρωποώρες και όχι με τους πόντους των ιστοριών χρηστών (story points). Το σημείο αυτό πρέπει να προσευχηθεί ιδιαιτέρως από τους Scrum Master και Product Owner και να διορθωθεί στα επόμενα ευέλικτα έργα.

Oi επόμενες γραφικές παραστάσεις οδηγούν στην εξαγωγή των ακόλουθων συμπερασμάτων, αναφορικά με την προσαρμογή της ομάδας στις επαναληπτικές πρακτικές.
Τα συμπεράσματα που προκύπτουν έχουν ως εξής:
1. Η ομάδα έργου επιτυγχάνει ικανοποιητικούς μέσους όρους στο σύνολο των κριτηρίων. Αυτό σημαίνει ότι τα μέλη της ομάδας έργου κατανοούν και υιοθετούν τις πρακτικές της επαναληπτικότητας, πολύ πιο αποτελεσματικά από ό,τι τις ευέλικτες πρακτικές.

2. Το μόνο σημείο που χρειάζεται συζήτησης είναι το κριτήριο του «Λειτουργικού Λογισμικού», λόγω της υψηλής τυπικής απόκλισης. Από την επιμέρους βαθμολογία προκύπτει ότι οι προγραμματιστές θεωρούν ότι παράγουν λειτουργικό λογισμικό, ενώ οι Scrum Master και Product Owner δίνουν χαμηλότερη βαθμολογία. Το γεγονός αυτό οφείλεται στην αδυναμία εκπλήρωσης του ευέλικτου ορίσμου ολοκλήρωσης λογισμικού (definition of done – code complete, unit tests written, integrated, performance tested, documented). Το γεγονός αυτό θα απασχολήσει την ομάδα έργου στα επόμενα sprints και releases, καθώς το λειτουργικό λογισμικό αποτελεί θεμελιώδη ευέλικτη πρακτική.

7.8 Συμπεράσματα

Η εφαρμογή της μεθοδολογίας Scrum σε παραγωγικό περιβάλλον, εγκυμονεί κινδύνους αλλά όχι δυσάρεστες εκπλήξεις, τόσο για την ομάδα έργου όσο και για τον πελάτη. Η προσπάθεια για διατήρηση σταθερού ρυθμού και η ουσιαστική συμμετοχή όλων των μελών της ομάδας έργου, συμπεριλαμβανομένων των στελεχών του πελάτη, στις δραστηριότητες και εξελίξεις του έργου, οδηγεί αναμενόμενα σε λύσεις υψηλής λειτουργικότητας και ποιότητας. Η εφαρμογή ενός συμπαγούς πλαισίου αξιολόγησης και η συγκριτική αξιολόγηση των αποτελεσμάτων, σε επίπεδο διαχείρισης χαρτοφυλακίου έργων, αποτελεί τη βάση για την ουσιαστική μετάβαση μιας επιχείρησης στον κόσμο της ευέλικτης διαχείρισης έργων.
8 ΣΥΜΠΕΡΑΣΜΑΤΑ ΚΑΙ ΜΕΛΛΟΝΤΙΚΗ ΕΡΕΥΝΑ

8.1 Συμπεράσματα

Ο στόχος της παρούσας μελέτης δεν είναι η αποθέωση των ευέλικτων μοντέλων διαχείρισης έργων πληροφορικής και η απαξίωση των παραδοσιακών πρακτικών. Είναι γεγονός ότι τα παραδοσιακά μοντέλα, αποτελούν εξαιρετική επιλογή σε έργα ρουτίνα, χωρίς σημαντική πολυπλοκότητα ή έργα που εκτελούνται επαναλαμβανόμενα, όπως για παράδειγμα έργα προμήθειας εξοπλισμού και βασικού λογισμικού. Οι ευέλικτες μέθοδοι αναπτύχθηκαν από την ίδια την ανάγκη της ανάπτυξης λογισμικού και των υποστηρικτικών υπηρεσιών που συνοδεύονται από αυτή, όπως η διεξαγωγή δοκιμών, η διαρκής τεκμηρίωση, η ολοκλήρωση επιμέρους τμημάτων, κ.ά. Ο κόσμος της ανάπτυξης λογισμικού απαιτεί ένα δυναμικό περιβάλλον, όπου η διαρκής αναπροσαρμογή της λειτουργικότητας αποτελεί ζητούμενο και όχι απρόβλεπτο συμβάν στο πλάνο υλοποίησης του έργου. Στην πράξη είναι πραγματικά απίθανο να προκύψουν τροποποιήσεις στις προδιαγραφές (scope changes) τόσο για τον πελάτη, όσο και για την ομάδα ανάπτυξης λογισμικού, να είναι σε θέση να αποτυπώσει με απόλυτη ακρίβεια τις προδιαγραφές ενός πληροφοριακού συστήματος. Ωστόσο, ακόμη και αν η καταγραφή των απαιτήσεων έχει θεωρηθεί αρχικά πλήρης, είναι και πάλι απίθανο να μην προκύψουν τροποποιήσεις στις προδιαγραφές (scope changes).

Η εμπειρία του συγγραφέα της παρούσας μελέτης στη διαχείριση περισσότερων από 100 έργων ανάπτυξης λογισμικού σε δημόσιους και ιδιωτικούς φορείς, με τη χρήση παραδοσιακών πρακτικών, έχει οδηγήσει στα ακόλουθα συμπεράσματα:

- Σε κανένα από αυτά τα έργα δεν επιτεύχθηκε καταγραφή των απαιτήσεων σε τέτοιο βαθμό, ώστε να μην προκύψουν τροποποιήσεις κατά τη διάρκεια υλοποίησής τους. Η επισήμανση αυτή ισχύει ακόμα και για μικρά έργα, χαμηλής πολυπλοκότητας και προϋπολογισμού, όπως για παράδειγμα η ανάπτυξη ενός εταιρικού website.
- Σε όλα τα έργα η αρχική καταγραφή των απαιτήσεων, αντιμετωπίστηκε από τον διαχειριστή του έργου, ως βίβλος η οποία πρέπει να τηρηθεί ευλαβικά. Η δογματική αυτή αντιμετώπιση, προσδιόριζε τον πελάτη ως εχθρό του έργου και την οποιαδήποτε αλλαγή ως απειλή.
- Στα περισσότερα έργα υπήρχαν μεταβέσεις του χρονοδιαγράμματος μία ή περισσότερες φορές.
Η ανατροπή των ευέλικτων μεθόδων στο γνωστικό αντικείμενο της διαχείρισης έργων, αποτυπώνεται καθολικά και περιεκτικά στο Μανιφέστο της Ευελιξίας.

1. Τα άτομα και τις αλληλεπιδράσεις πάνω από τις διεργασίες και τα εργαλεία
2. Το λογισμικό που δουλεύει πάνω από την ολοκληρωμένη τεκμηρίωση
3. Την συνεργασία με τον πελάτη πάνω από τη διαπραγμάτευση της σύμβασης
4. Την ανταπόκριση στην αλλαγή πάνω από την πιστή εκτέλεση ενός πλάνου.

Στη διάρκεια ανάπτυξης των έργων, εξειδικευμένη προσοχή πρέπει να διατηρείται στη διαχείριση της εργασίας μεθόδων. Οι επιμέρους ευέλικτες μεθοδολογίες αποτελούν πρακτικές
προσαρμογές του θεωρητικού πλαισίου, οι οποίες αντιμετωπίζουν με διαφορετικό τρόπο τη δομή και την παρακολούθηση της εκτέλεσης των έργων πληροφορικής.

Αναφορικά με την τεκμηρίωση της επιλογής της μεθοδολογίας Scrum, με βάση τα ευρήματα κατά την εφαρμογή της στη Μελέτη Περίπτωσης, κρίνεται σκόπιμη η παράθεση ποιοτικών κυρίως στοιχείων, που απαντούν στους βασικούς προβληματισμούς που παρατέθηκαν στην παράγραφο 3.4 Ορισμός Διαχείρισης Έργου.

1. Αξίζει η επιλογή της συγκεκριμένης μεθόδου διαχείρισης του έργου ή των έργων;
Η εφαρμογή μιας ευέλικτης μεθοδολογίας σε ένα και μόνο έργο, δεν αρκεί για την εξαγωγή ασφαλών συμπερασμάτων. Παρότι η Scrum οριοθετείται από διακριτά και σαφή βήματα, η πρακτική εφαρμογή της είναι επίπονη, καθώς αποτελεί ριζική αλλαγή στον τρόπο λειτουργίας της ομάδας έργου. Κατά συνέπεια, η καταφατική ή αρνητική απάντηση στο ερώτημα, δύναται να διαμορφωθεί σε βάθος χρόνου, με βάση τα δεδομένα ανάδρασης από πολλαπλά έργα.

2. Τι πρέπει να διορθωθεί στις επόμενες υλοποιήσεις;
Το ευέλικτο πλαίσιο αξιολόγησης που εφαρμόστηκε στη μελέτη περίπτωσης, κατέδειξε τα σημεία στα οποία υστερεί η ομάδα έργου, σε ότι αφορά την εξαγωγή των ευέλικτων και των επαναληπτικών πρακτικών. Ο σχεδιασμός και η εκτέλεση των ευέλικτων έργων με βάση Ιστορίες Χρηστών καθώς και η χρήση Αυτόματων Δοκιμών, είναι προφανές ότι χρίζουν διορθώσεων στις επόμενες υλοποιήσεις.

3. Πρέπει να συνεχίσουμε με την εφαρμογή της συγκεκριμένης μεθόδου διαχείρισης;
Η απάντηση στο προβληματισμό δεν μπορεί να είναι διευκρινισμένη, με βάση τα ελάχιστα εμπειρικά δεδομένα που συλλέχθηκαν στη μελέτη περίπτωσης. Παρόλα αυτά, τα ποιοτικά ευρήματα που αφορούν στον τρόπο λειτουργίας και στη συνεργασία των μελών της ομάδας, σε συνάρτηση με την αντιλήψη του πελάτη για τη διαδικασία, διαμορφώνουν μια εξαιρετική δυναμική, που αποτελεί σε αρχικό επίπεδο τη μετάβαση στην ευελιξία.

4. Λειτουργούμε καλύτερα ως ομάδα στην ανάπτυξη λογισμικού;
Η εμπειρία της ομάδας ανάπτυξης κρίνεται εξαιρετική, καθώς η έλλειψη του συνηθισμένου κλίματος «τρομοκρατίας» αναφορικά με την αντιμετώπιση των αλλαγών στις απαιτήσεις (scope change) του έργου, διαμορφώνει ένα πλαίσιο συνεργατικής δημιουργικότητας και ηρεμίας. Η καθημερινή ανταλλαγή απόψεων και η αναθεώρηση της παραδοσιακής πρακτικής που θέλει τον πελάτη εξωτερικό παρατηρητή, δημιουργεί μια συμπαγή πολυσυλλεκτική ομάδα η οποία εστιάζει στην ανάπτυξη άρτιων πληροφοριακών συστημάτων.

5. Παράγουμε καλύτερο λογισμικό από πριν;
Δεδομένου ότι το ίδιο έργο δεν μπορεί να εκτελεστεί περισσότερες από μια φορά με τη χρήση διαφορετικών παραδοσιακών ή ευέλικτων μεθοδολογιών, δεν υπάρχει αντικειμενικός τρόπος για να τεκμηριώσει κάποιος την απάντηση. Ωστόσο, η αδιάλειπτη λήψη στοιχείων ανάδρασης καθ’ όλη τη διάρκεια του έργου και η ιδιαίτερη επαναληπτική φύση των ευέλικτων μεθοδολογιών, είναι αναπόφευκτη. Η παραγωγή καλύτερου λογισμικού από απόψη επιχειρηματικής αξίας (για τον πελάτη). Η παραγωγή καλύτερου λογισμικού από τεχνολογική άποψη, καθίσταται εφικτή με την ανακοίνωση συγκεκριμένων ποσοτικών δεικτών, στο ευρύτερο πλαίσιο αξιολόγησης των έργων (δυσλειτουργίες, bugs, δείκτες απόδοσης, αποτελέσματα stress tests, κτλ).

6. Υπάρχει αναγνώριση της βελτίωσης από τους πελάτες;
Η απαραίτητη προϋπόθεση της ενεργής και ουσιαστικής εμπλοκής του πελάτη στα ευέλικτα έργα, τον καθιστούν κοινωνό της διαδικασίας εξέλιξης του πληροφοριακού συστήματος. Η αναγνώριση της βελτίωσης από τον πελάτη, ισοδυναμεί με την αναγνώριση της συνεισφοράς του στο έργο, οπότε είναι δεδομένη.

8.2 Προτάσεις
Η τεχνική και πρακτική φύση του γνωστικού αντικειμένου της διπλωματικής εργασίας, οδήγησε στην αποτύπωση και παρακολούθηση των δομημένων και ποσοτικών στοιχείων των σύγχρονων μεθόδων διαχείρισης έργων πληροφορικής. Τα ποιοτικά στοιχεία που άπτονται άλλων επιστημονικών τομέων ενδιαφέροντος, όπως η ενθάρρυνση, η παροχή κινήτρων και
διαμόρφωση κατάλληλων ψυχολογικών προϋποθέσεων στα μέλη της ομάδας έργου ή στη βελτίωση των σχέσεων πελάτη και προμηθευτή, αποτυπώνονται εν μέρει αλλά δεν παρακολουθούνται συστηματικά στην παρούσα μελέτη.

Η έρευνα των αναγνωστών συνήστατα να επεκταθεί στους ακόλουθους τομείς:

- Διαχείριση πολλαπλών και κατανεμημένων ομάδων ανάπτυξης στις ευέλικτες μεθοδολογίες
- Διαχείριση Χαρτοφυλακίου Ευέλικτων Έργων Πληροφορικής (Agile Portfolio Management)
- Διερεύνηση της Extreme Διαχείρισης Έργων και των εφαρμογών της
- Πολυπλεξία παραδοσιακών και ευέλικτων πρακτικών που αφορά στην συνδυαστική εκτέλεση έργων με παραδοσιακές και ευέλικτες πρακτικές
- Επέκταση ευέλικτων πρακτικών στην παροχή υπηρεσιών, πλέον της ανάπτυξης λογισμικού, σε υποστηρικτικούς τομείς όπως για παράδειγμα το marketing. Ενδεικτικά αναφέρεται η δυνατότητα εκτέλεσης καμπάνιας βελτιστοποίησης διαδικτυακών εφαρμογών στις μηχανές αναζήτησης (SEO Campaign) και η παρακολούθηση της βελτίωσης της κατάταξης σε επαναλαμβανόμενους κύκλους πιθανώς μεταβλητής διάρκειας.

Τέλος, δεδομένης της αποδεδειγμένης διείσδυση των ευέλικτων πρακτικών σε παγκόσμιο επίπεδο (State Of Agile Survey, 2011), προτείνεται η εισήγηση της χρήσης τους σε έργα πληροφορικής που εκτελούνται σήμερα στα πλαίσια του Επιχειρησιακού Προγράμματος Ψηφιακή Σύγκλιση, σε σχετικές δράσεις και κοινωνικές πρωτοβουλίες, καθώς και στα έργα που χρηματοδοτούνται αποτελέσματα από την Ευρωπαϊκή Ένωση. Η ακαδημαϊκή κοινότητα θα πρέπει να επισημάνει στους αρμόδιους φορείς, το παράδοξο των συγκεκριμένων έργων, καθώς παρότρυνει αυτά αποτελούν είτε έργα αιχμής, είτε ερευνητικά έργα υψηλού προϋπολογισμού και πολυπλοκότητας, η πρόταση για χρηματοδότηση, η κοστολόγηση και η εκτέλεσή τους, απαιτούν τη χρήση παραδοσιακών μοντέλων διαχείρισης. Οι ευέλικτες μέθοδοι είναι σχεδιασμένες για να παράγουν μέγιστη επιχειρηματική αξία και κυρίως πληροφοριακά συστήματα υψηλής λειτουργικότητας. Κατά συνέπεια, θα πρέπει τουλάχιστον να αποτελούν εναλλακτική επιλογή στα πλαίσια των διαδικασιών προμηθειών οποιουδήποτε έργου πληροφορικής.
Ελπίζω η παρούσα διπλωματική εργασία να έχει συμπεριλάβει επαρκή ερεθίσματα, ώστε να ωθήσει αρκετούς επαγγελματίες του κλάδου της πληροφορικής, στην προοδευτική υιοθέτηση των ευέλικτων πρακτικών και μεθοδολογιών. Η παραγωγή άρτων και λειτουργικών πληροφοριακών συστημάτων, αποτελεί επιτακτική ανάγκη στον ιδιωτικό και το δημόσιο τομέα της χώρας.
ΚΑΤΑΛΟΓΟΣ ΑΝΑΦΟΡΩΝ – ΠΑΡΑΠΟΜΠΩΝ

(ν.δ.). Ανάκτηση από agiletortoise.wikidot.com.

(ν.δ.). Ανάκτηση από Scrum Alliance: scrumalliance.org

Agile Project Managers. (ν.δ.). Ανάκτηση από Linked In: www.linkedin.com/groups/Agile-Project-Managers-81065?trk=myg_ugrp_ovr

Scrum Practitioners. (n.d.). Ανάκτηση από LinkedIn: www.linkedin.com/groups?gid=52030&trk=myg_ugrp_ovr

