
UNIVERSITY OF MACEDONIA
UNDERGRADUATE PROGRAM OF STUDIES
DEPARTMENT OF APPLIED INFORMATICS

A ROADMAP TARGETED TO NOVICES FOR 2D GAME ENGINE
DEVELOPMENT UTILIZING OPEN-SOURCE LIBRARIES AND APIS

Thesis of

Konstantinidis Konstantinos
Kostidis Ioannis

Thessaloniki, June 2023

A ROADMAP TARGETED TO NOVICES FOR 2D GAME ENGINE
DEVELOPMENT UTILIZING OPEN-SOURCE LIBRARIES AND APIS

Konstantinidis Konstantinos
Kostidis Ioannis

Thesis

submitted for the partial fulfillment of its requirements

Undergraduate Degree In Applied Informatics

Supervising Professor:
Xinogalos Stylianos

Approved by the three-member examination board on 23/06/2023

Xinogalos Stylianos Chatzigeorgiou Alexandros Ampatzoglou Apostolos

...................................

Enter your full name here

Konstantinidis Konstantinos Kostidis Ioannis

...................................

3

Abstract
In an age defined by rapid technological advancements, gaming has evolved remarkably

with better consoles, immersive virtual reality (VR) experiences, enhanced graphics, captivating
audio and advanced game mechanics. This change has encouraged companies worldwide to
develop their own game engines for creating and releasing unique games. This paper proposes a
roadmap on creating a functional 2D game engine, using programming languages like C++ and
C#, technologies like OpenGL and YAML, and various open source libraries and APIs. This
roadmap aims to answer questions like: What are the essential subsystems needed to make a
game engine function? How can they be coded? What open source libraries can be used? Our
results indicate that the development of a game engine requires significant dedication and effort
as well as knowledge in various fields like programming, mathematics, physics and more.
However, building a game engine is expedited by the use of excellent open source libraries for
implementing core subsystems. The roadmap presented in this paper can support ambitious
developers without prior experience in game engine development to start building their own
engine, as well as instructors teaching courses on software engineering and game programming
on designing relevant team projects that can both motivate students and support them in acquiring
relevant knowledge and skills through a rewarding experience.

Keywords: Game engine development, 2D Game engine, Software, Game engine subsystems,

C++, OpenGL, Game architecture, Video Games, Gaming

4

Contents
1 Introduction 1

1.1 Problem - Importance of the issue 1
1.2 Purpose - Objectives 3
1.3 Contribution 3
1.4 Basic Terminology 4
1.5 Structure of the study 6

2 Related Work 7
2.1 Literature and Research Papers 7
2.2 Open Source Game Engine Projects 7
2.3 Educational Video Tutorials 8
2.4 Building Individual Subsystems 8

3 Methods and Materials 10
3.1 Data Collection 10
3.2 Method 10

3.2.1 Programming Language Selection 10
3.2.2 Game Engines 11
3.2.3 OpenGL 11
3.2.4 Technologies 11

4 Game Engine Design and Development 12
4.1 Game Engine Subsystems 12
4.2 Game Engine Overview 13

4.2.1 Introduction - General Engine Overview 13
4.2.2 Game Engine Subsystems 14

4.2.2.1 Rendering Engine 14
4.2.2.1.1 Introduction 14
4.2.2.1.2 OpenGL API 15
4.2.2.1.3 Renderer Initialization 16
4.2.2.1.4 Scene Rendering 17
4.2.2.1.5 Graphical User Interface Rendering 19

4.2.2.2 Physics Engine 21
4.2.2.2.1 Introduction 21
4.2.2.2.2 Box2D 22
4.2.2.2.3 Update Physics 22

4.2.2.3 MathEngine 23
4.2.2.4 Entity Component System 24

4.2.2.4.1 Introduction 24
4.2.2.4.2 Entt 24

4.2.2.5 Frame Timing Control 26
4.2.2.6 Event Subsystem 27
4.2.2.7 Input Subsystem 28
4.2.2.8 Scripting Engine 28

4.2.2.8.1 Introduction 28

5

4.2.2.8.2 Mono - C# 29
4.2.2.8.3 Scripting Engine Implementation 30

4.2.2.9 Assets Management System 32
4.2.2.10 Serialization 33

4.2.3 Implementation 34
5 Classes 36
6 Our Projects 40

6.1 Introduction 40
6.2 2D Top-Down Dungeon 40

6.2.1 Background 40
6.2.2 Walls 41
6.2.3 Camera 43
6.2.4 Player 45
6.2.5 Enemies 48
6.2.6 Victory 49

6.3 Alpha Testing - Other Projects 50
6.3.1 Pong 51
6.3.2 Football 51
6.3.3 Platform - Fighting Game 52
6.3.4 Top-Down Race 52

6.4 Bugs and Improvements 53
6.5 Future Expansions and Extensions 54

7 Limitations 54
8 Conclusion 56
9 References 57

6

List of figures
Figure 1. Some of the most used game engines. Figure by: Unity vs Unreal 1
Figure 2. A diagram showing how to draw a triangle using OpenGL 15
Figure 3. Graphics pipeline stages. Figure by: LearnOpenGL 17
Figure 4. A simplified version of all the steps needed in our engine to render the scene 19
Figure 5. Assets Panel 20
Figure 6. Hierarchy Panel 20
Figure 7. Properties Panel 20
Figure 8. UI Buttons 21
Figure 9. Gizmos rendered around a gameobject of the scene 21
Figure 10. Core panel, used to show some game engine statistics 21
Figure 11. Collision between entities 23
Figure 12. Visualization of components 26
Figure 13. Open a scene through the assets management subsystem 32
Figure 14. Choose a Scene to open in the editor 33
Figure 15. Our game engine subsystems. 35
Figure 16. The way the lines of code written for the engine have been separated 35
Figure 17. 2D Top-Down dungeon game 40
Figure 18. Create a game entity 41
Figure 19. Add component to an entity 41
Figure 20. Background entity transform 41
Figure 21. Background entity texture 41
Figure 22. Game walls 42
Figure 23. Game wall components 43
Figure 24. Orthographic camera components 43
Figure 25. Perspective camera components 44
Figure 26. Camera script 44
Figure 27. Player components 45
Figure 28. Enemy components 48
Figure 29. Goal components 50
Figure 30. End of game 50
Figure 31. Pong game 51
Figure 32. Football game 52
Figure 33. Platform game 52
Figure 34. Racing game 53
Figure 35. Trying to cap the frames of the Platform - Fighting game at 60fps 53

7

List of tables
Table 1: Terms and Terminology 4
Table 2: Graphics APIs, Developers and Platforms 14
Table 3: Classes 36

8

List of code snippets
Code 1. A simple game loop 13
Code 2. OpenGL API methods 16
Code 3. Scene state rendering 18
Code 4. Example of a component 26
Code 5. Mouse Moved Event 28
Code 6. Example of a key event 28
Code 7. C# & C++ method 30
Code 8. C# internal call. Code by: Embedding Mono 30
Code 9. C# & C++ interaction 31
Code 10. C# OnCreate() method 31
Code 11. C# OnUpdate() method 31
Code 12. C# OnCollisionBegin() method 32
Code 13. Entity component serialization 34
Code 14. Camera script 45
Code 15. Player script initialization 46
Code 16. Player OnCreate() method 46
Code 17. Player OnUpdate() method 47
Code 18. Player OnCollisionBegin() method 47
Code 19. Enemy script initialization 48
Code 20. Enemy OnUpdate() method 49
Code 21. Enemy OnCollisionBegin() method 49

9

1 Introduction

1.1 Problem - Importance of the issue

What is a Game Engine? A game engine is a software framework that provides the
necessary tools and functionality to design, develop and publish video games [1–5]. It serves as
the foundation for game developers to build their games on top of, offering resources and features
to handle many of the complex technical aspects of game development, such as graphics
rendering, physics simulation, and sound processing. By separating game-specific logic (such as
level design and character behavior) from the generalizable logic and other technical details (such
as the rendering process), game developers can focus on creating an engaging game experience,
while leaving the technical details to the game engine [1–10].

It is worth noting that not all the game engines provide the same functionality for the end
user. Powerful engines (e.g. Unity, Unreal Engine) offer such a huge variety of tools and assets,
including marketplaces where developers can find 3D models, textures and plugins. They also
provide visual scripting for creating game logic without coding and tools like shader graphs to
create stunning visual effects. With these resources, developers can fully develop and publish
games without writing a single line of code. In comparison, other smaller game engines or ones
with a specific purpose could even be as simple as just a platform which will display the
graphics. Some of the most commonly used game engines are presented in Figure 1.

Figure 1. Some of the most used game engines. Figure by: Unity vs Unreal

Why would anyone want to make their own game engine? Why would someone not
prefer to create a game rather than an engine? Well, for novice game developers curiosity is the
number one reason [4]. Creating a custom engine is a valuable learning experience. Building a
game engine can be a good way to gain a deeper understanding of the technical aspects of game
development, and it will definitely help any developer improve their programming skills. On the
other hand, for experienced programmers working for large development companies, the most
common reason would be that the already existing game engines provide limited tools, and the
tools needed to create their games, may not be supported by the existing options [1,4]. The best
thing to do in that case would probably be to create their own game engine, which will be
specifically built in order to make the games they have in mind, by providing the basic layer of
functionalities. Some game studios also choose to create their own engines to avoid the license
costs of the existing game engines [1].

After finding the reasons for wanting to create a game engine either with a team or alone,
1

https://mainleaf.com/unity-vs-unreal-which-is-the-best/

the first question that comes to mind is “How can someone develop a game engine?”. First and
foremost, building an engine from scratch is a daunting task, which requires a lot of time, and a
very good knowledge in programming, computer graphics, mathematics and other technical
fields. As stated before, game engines often provide a variety of built-in features and tools that
can be customized and extended to fit the specific needs of a game developer. Some of the
subsystems a game engine should provide are the following [5,8]:

1. A Rendering Engine to communicate with the GPU, create graphics and visualize every
element of a game.

2. A Math Engine to handle linear algebra, geometric and other complex operations.
3. An Entity Component System (ECS) to create entities in a game, give them components

and keep track of them.
4. A Physics Engine to simulate real-world physics for the entities of a game.
5. An Audio System to support music and sound effects.
6. An Animation System to animate the entities of a game.
7. A Frame Timing Control System to control when the updates and rendering happens.
8. An Event System to efficiently dispatch and route events, ensuring accurate and effective

handling.
9. An Input System to respond to mouse clicks, keyboard key presses etc.
10. A Scripting Engine to create game logic and behavior.
11. An Assets Management System to import and export models, textures and other game

assets.
12. A Networking System to make it possible to create online multiplayer games.
13. Platform Support for various platforms and devices, such as PCs, consoles, mobile

devices, and VR/AR devices.
There are actually a lot more subsystems a game engine could have to provide further

tools and functionalities like: Serialization, Particle, Profiling, Text Rendering,
Universally/Globally Unique Identifiers (UUID/GUID), User Interface (UI), Logging, Scene
Management, Post Processing and many more.

But with what order and how should the aforementioned subsystems be implemented?
How should someone approach this? These are questions that have not been adequately
investigated and this paper tries to contribute to this field by providing a roadmap for a hands-on
implementation of a 2D game engine. To start with, an engine does not need to have all these
features, and it’s best to only create them as needed rather than upfront. Based on our experience,
the best way to build a game engine is to create it while making the game. We decided to begin
by getting the basics in like the rendering, the math and the physics engines and then start
creating our first game. We chose this approach to make sure that the engine will provide to us or
another developer only the features that our game will need. Additionally, through
experimentation we found out that creating a second game right after finishing the first one
makes it possible to figure out what was already implemented in the previous game, and then turn
it into a general library or framework, instead of coding it again from scratch.

Before making any steps though, we advise everyone to spend some time researching and
doing some reading sessions to find valuable information. A key consideration is deciding
whether to code every single thing from scratch, or if it would be better to use existing libraries.
We can assure anyone that there are some outstanding libraries out there making it unnecessary to
code everything from the beginning.

Overall, game engines are a crucial tool in modern game development, providing
developers with the necessary resources to bring their game ideas to life. However, the decision

2

to develop a custom game engine should not be taken lightly and developers should weigh the
advantages and disadvantages very carefully before starting such a project. Before beginning, it is
advisable to determine the specific games the engine will support, find out which engine
subsystems to develop, and most importantly, never give up.

1.2 Purpose - Objectives

The purpose of this paper is first and foremost educational and then practical. The main
objective is to provide people with a better understanding of what a game engine is, how it works,
what are the necessary subsystems of it, how each of the subsystems work and how can someone
implement them. We thought that the best way to solve these questions was to try and develop
our own 2D game engine from scratch. By giving greater details over the technical aspects, we
are also hoping to inspire more developers to start building their own game engine, as well as
provide valuable material for instructors in terms of designing game development courses and/or
team projects for game development and advanced software engineering courses.

1.3 Contribution

Developing a game engine is a valuable experience that can benefit both researchers and
game developers. Here are some potential implications of this paper that can prove to be
beneficial:

1. Enhanced knowledge: Both researchers and practitioners can find insights,
methodologies and other technical details that may be valuable for understanding the
structure of a game engine and the way it works. The technical details and design
decisions discussed in this article could prove to be useful for different kinds of software,
making the knowledge gained worth attaining.

2. Inspiration: This article can inspire researchers to explore new approaches related to
game engine development. This is important since a lot of companies in the game
industry wish to have their own custom game engine, as it is the most effective way of
developing their games according to their needs.

3. Deeper understanding: This paper can serve as an educational resource to both a
researcher/developer who already has prior knowledge on how to develop a game engine
and an aspiring one.

4. Increase interest: Our work can suggest new directions to future research and hopefully
increase the interest on the subject of game engine development.

5. Educational aspect: This paper could support instructors teaching software engineering
and game programming courses, to create team projects that can both motivate students
and assist them in acquiring the necessary knowledge and skills.

6. Guidance and tools: This paper can prove to be beneficial to practitioners who do not
have basic knowledge about game engine implementation. It offers guidance and
practical tips that could help them navigate through the first challenges of developing a
new custom game engine.

7. Skill enhancement: Our paper can contribute to the professional growth of game
developers by enhancing their knowledge of game engine architecture. By offering
educational materials, multiple examples of building the components of a game engine
and a variety of APIs and libraries that can be used to serve a specific purpose,
practitioners can enhance their knowledge.

3

1.4 Basic Terminology

In Table 1, we present some key terms and their corresponding definitions, which will be
used throughout this paper. If there is something you do not understand, you should refer back to
this table for help.

Table 1: Terms and Terminology

Term Terminology

2D 2 Dimensional

3D 3 Dimensional

UI User Interface

ECS Entity Component System

UUID - GUID Universally - Globally Unique Identifiers

CPU Central Processing Unit

GPU Graphics Processing Unit

AR Augmented Reality

VR Virtual Reality

OpenGL Open Graphics Library

GUI Graphical User Interface

VAO Vertex Array Object

VBO Vertex Buffer Object

IBO Index Buffer Object

FBO Frame Buffer Object

UBO Uniform Buffer Object

Vertex Array Object An object that stores information about the index buffer object
(IBO), and the vertex buffer objects (VBOs), including the
buffer layout and data types, as well as any associated vertex
attribute data.

Vertex Buffer Object A buffer object which contains information about the vertices
that make up a 2D/3D model e.g. color, position, texture,
custom data used by a shader.

4

Index Buffer Object A buffer object which contains information about which
vertices will be drawn and in what order. It uses the index of
each vertex in the VBO as a value.

Uniform Buffer Object A buffer object which contains uniform data for a shader
program. It is used to share uniforms between different shader
programs, as well as quickly change between sets of uniforms
for the same program object.

Frame Buffer Object A buffer object which is used to manage rendering operations
and facilitate off-screen rendering. It provides a mechanism for
creating and managing an alternative rendering target such as a
texture, instead of the default framebuffer (which is typically
the main screen).

Render pipeline The sequence of steps a graphics system needs to perform to
render a 3D/2D scene to a 2D screen.

Shader A program designed to run on some stage of a graphics
processor. They provide the code for certain programmable
stages of the rendering pipeline. They are used to render
different pixels and detail shadows, lighting, texture gradients,
and more.

Draw Call A draw call is a command issued by a rendering engine or
graphics API that tells the renderer what to render and how to
render it.

Uniform A uniform is a global shader variable which acts as a
parameter that the user of a shader program can pass to that
program. Uniforms are accessible at all the stages of the
graphics pipeline.

Entity An entity is a real time object that is different from others. It
can be defined using its attributes. Every object in a game
scene is considered an entity.

FOV Field Of View

Field Of View The field of view is the extent of the observable world that is
seen at any given time. It also describes the angle through
which one can see that observable world.

5

1.5 Structure of the study

The rest of the paper is organized as follows. The work of other developers and the
relevant sources and literature are introduced in Section 2, while the methodology we followed
during the development of our engine, is described as detailed as possible in Section 3. In Section
4 we delve deeper into our engine, by showcasing the subsystems we implemented and
suggesting different APIs and libraries someone could consider, when implementing their own
one. Section 5, presents a table showcasing all the classes used in order to develop the game
engine. Section 6, serves as a guide, to show how we made one of our games using the engine.
We also use this section to showcase some of our projects, talk about the testing and evaluation of
our engine while also mentioning our future plans for improving the engine. In Section 7 we
present the limitations and constraints we encountered during the development of our game
engine. Finally Section 8 offers a summary of our thesis, including our final thoughts on the
project.

6

2 Related Work

2.1 Literature and Research Papers

Even though more and more games are brought to life each day by both development
companies (Electronic Arts, Ubisoft, Activision, etc.) and independent game developers, the
literature focused on the game engine development field remains limited. So, after thorough
research we discovered some noteworthy books and articles.

Gregory [11] authored a book entitled “Game Engine Architecture” which presents both
the theoretical and practical concepts of a game engine. By also explaining in great detail most of
the low-level technical subsystems within game engines and how the gameplay works, it has
become a definitive guide to professional game development.

Thorn [12] has also written a book specifying how to design and develop a game engine.
Offering a step-by-step journey from selecting the development environment to implementing all
the core engine subsystems, he has managed to create a book for both aspiring and professional
developers.

Bishop et al. [13] back in 1998 introduced a 3D game engine called “NetImmerse”,
arguing that a high-level programming interface does not necessarily compromise performance.
In their paper they describe the components of the engine providing insights into the design and
implementation of a game engine. Through a detailed examination and experiments, they learned
some lessons such as the distinction between game content and the game engine, the importance
of creating an engine for a particular content style and the critical role the graphics engine plays.

Guana et al. [14] presented an innovative approach in their paper focusing on the design
and implementation of PhyDSL2, a 2D physics-based game engine. By using modern
model-driven engineering techniques, they made a specialized domain-specific language (DSL)
hoping to benefit game designers in translating gameplay models into implementation. After
successfully building and experimenting with the engine they validated that model-driven
technologies can be effectively used in the construction of game engines.

2.2 Open Source Game Engine Projects

As technology advances, fortunately, developers are increasingly contributing to
open-source projects more than ever. There are actually thousands of free and open-source game
engines available on GitHub where anyone can easily browse around the code and see how the
engine got implemented and how it works. Below we provide a list with some game engines that
started as a small project and have ended up with thousands of users actively using and
supporting them. The selection criteria for these engines include the number of stars on GitHub,
the quantity of commits, and the engine's ongoing activity:

● Godot Engine: A 2D and 3D cross-platform game engine [15].
● Bevy Engine: A data-driven game engine built in Rust [16].
● OpenRA Engine: A strategy game engine for early Westwood games [17].
● Pyxel Engine: A retro game engine for Python [18].
● Minetest Engine: A voxel game engine [19].
● Ebitengine Engine: A 2D game engine written for Go [20].
● PlayCanvas Engine: A WebGL based engine to run games on browsers [21].
● Flame Engine: A 2D game engine based on Flutter [22].
● GDevelop Engine: A no-code 2D and 3D game engine [23].
● Stride Engine: A 2D, 3D and VR game engine written in C# [24].

7

2.3 Educational Video Tutorials

There is not as much relevant literature available in this field compared to other tech
areas. What caught our attention though, was some instructive YouTube educational video series,
where the creators took it upon themselves to share their journey of developing game engines in
an educational style while also offering their insights and expertise.

Khatami [25], runs a YouTube channel by the name of “Game Engine Series”. He has
created a video series which started in 2020 and consists of more than 57 hours of content (as of
August 12, 2023). In this series, Khatami showcases the process of building a game engine using
both the C++ and C# programming languages. In each video, he writes, shows and explains the
code, to ensure that everyone can both implement and understand everything.

Similarly, Chernikov [26], a former game engine developer of Electronic Arts (EA),
thought that it would be a great idea to build his own 3D game engine for his game studio, while
also develop a 2D game engine and showcase this journey with an educational aspect on
YouTube, in order to help everyone interested to build their own engine. The series started in
2018 and consists of more than 105 hours of available content (as of August 12, 2023).
Chernikov's tutorials carefully explain each line of code, while he also teaches what each of the
game engine subsystems does, how it works and how can someone both implement and connect
it with the rest to make a functional end product.

On the other hand, Ambrosio [27] chose to create a tutorial series to help developers
create their own 2D game engine using the Java programming language. His tutorial series
launched in 2020 and concluded in 2021. The main objective of the series was to create a fully
functional game engine and afterwards use it to create and distribute the classic Nintendo
Entertainment System (NES) Super Mario Bros game, while also having an educational aspect
hoping to inspire and help other developers to do the same.

Pouhela [28], in 2020 uploaded a small video series where most of the videos are under
20-30 minutes, showcasing how someone can build a 2D game engine from scratch using the
C++ programming language and the Simple DirectMedia Layer (SDL) library. Even though the
videos do not last long, they offer an effective resource to help any developer understand and
build a basic functional engine.

In 2021, Prog [29] decided to record and upload his personal game engine journey. He
made a small educational series by the name of “Let's make an engine!” using the C++
programming language. Prog managed to make a fully functional cross-platform engine while
also explaining each step needed to achieve this result.

2.4 Building Individual Subsystems

What’s really fascinating about a game engine is the fact that each of its subsystems
constitutes a whole project by itself. Large tech companies dedicate lots of resources to small
teams, with each team focusing on developing a specific subsystem rather than the entire engine.
This approach of breaking things down into smaller parts eventually leads to smoothly combining
multiple top-quality subsystems to create a great game engine.

So even if there are not many related projects available for the public, there are lots of
literature, guides and tutorials available for creating each of the necessary subsystems
independently. Eberly [30], has authored an instructive book talking about computer graphics and
rendering. In his book he explains in depth how a rendering engine works, while also offering
explanations on scene graphs, shader-based effects, animation, physics simulation, collision
between objects and even memory management.

8

Bauchinger [31], wrote a master's thesis explaining what a rendering engine is, how it
works and how someone can design and implement a modern one. Meanwhile, Ambrosio [32],
chose to create and upload a YouTube video series about coding a fully functional 2D physics
engine from scratch using the Java programming language. Within this series Ambrosio
addresses 2D implementation, collision handling, rotations, raycasting, gravity and other force
interactions, constraints, impulses and more.

Other interesting examples are the work of Gutekanst [33] and Colson [34], where both
have written some articles where they showcase the construction of an entity component system
(ECS). By giving coding snippets and practical examples, their work serves as a stepping stone,
helping developers create their own relatively solid ECS. By following these guides and getting
more and more knowledge about each of the subsystems, while also creating them independently,
at the end by trying to connect them all together, the final product known as the game engine will
be built.

9

3 Methods and Materials

3.1 Data Collection

In order to develop a game engine, we needed to understand how they work. So, to start
with, the research methodology we followed to develop the engine, began with a literature review
to gain a deeper understanding of what a game engine is and how it works. This involved reading
various books, articles and scholarly publications to find the fundamental concepts and principles
involved in the game engine development. Additionally, we extensively searched through forums,
blogs and online videos to find out how people created their game engine, how difficult it was,
how much time it took them and also to gain guidance and learn some tips and tricks.

Once we had established a solid foundation of knowledge, we proceeded with the
practical aspects of game engine development. This involved studying guides, following tutorials,
watching lots of educational videos, using popular game engines such as “Unity” and “Godot”,
and studying the code of existing open source engines we found available on “GitHub”. By using
these resources, we were able to develop a clear understanding of the various technical and
design considerations involved in building a game engine, and we managed to find out the
strategies used by other developers in the field. This approach helped us ensure the validity of our
research, and it was enough to lay the groundwork for the development of our own game engine.

3.2 Method

3.2.1 Programming Language Selection

In order to develop a game engine, the choice of which programming language or
languages someone might want to use must be made. After reading some articles, blogs and
forums we found out that “C++” is a common choice when it comes to choosing a language for
coding game engines. Many popular game engines like Unity, Unreal Engine, Godot and
CryEngine have been written in C++ [152-156]. C++ is an object-oriented language and it also
supports manual memory allocation and deallocation through features like pointers. Such a
feature is essential to a game engine and it was the main reason we decided to use C++ as our
coding language in this project.

To gain as much proficiency as we could in C++, we decided to follow both beginner and
advanced tutorials. Fortunately, there are a lot of high-quality tutorials and educational series
available for free online. Based on our own experience, we highly recommend the following
resources:

● LearnCpp.com [35]: This free website has been teaching C++ programming since 2007.
With three main authors and an active community of readers providing constant feedback
and support, it offers reliable instructions.

● Learn-cpp.org [36]: A free interactive tutorials website that has tutorials for more than 10
different programming languages. There is also an accompanying “GitHub” repository
which has over 3000 stars and 2000 forks, indicating its popularity.

● freeCodeCamp.org YouTube Channel [37]: This channel offers a 31-hour video course on
modern C++ programming. This free course covers both beginner and advanced
concepts, ensuring an extensive learning experience.

● Code Beauty YouTube Channel [38]: This channel offers a 10-hour video which is
designed to take anyone from a beginner to an advanced C++ developer.

10

● Bro Code YouTube Channel [39]: This channel provides a 6-hour video that serves as an
effective introduction to the C++ programming language. BroCode channel is dedicated
to offering free education.
Overall, our study of C++ was a very important part of our research methodology as it

helped us develop the technical skills required to build a game engine.

3.2.2 Game Engines

Understanding the significance of practical skills and the need to gain more experience
before starting a complex project like this one, we made the decision to use a game engine and
create additional applications and games. This approach helped us gain a deeper understanding of
the inner workings of game engines. To gain more practical experience, we followed a series of
tutorials focused on developing primarily 2D games using the “Unity” game engine. By creating
those games, we managed to improve our understanding of how a game engine works and how
difficult it is to develop a quality game, while we also improved our skills in writing code using
the C# language. We also got more inspiration on how the user interface of an engine should look
like, and what tools and features should be provided to the end user in order to help them create
their games.

3.2.3 OpenGL

To display graphics on the screen, it is necessary to have a system that helps the Central
Processing Unit (CPU) and Graphics Processing Unit (GPU) communicate with each other. We
should note that considerable time was invested in selecting the appropriate Application
Programming Interface (API) for this task. After careful consideration, we chose the “OpenGL
API”, which is a widely used technology in this field and also the easiest to learn to use and
integrate in a project. To discover more about the “OpenGL API” we followed a series of
carefully selected tutorials. The aim of the tutorials was to provide us with an understanding of its
essential features and functionalities.

3.2.4 Technologies

The environments used to develop the project were “Visual Studio 2019 Community
Edition” and “Visual Studio Code”. We also used “GitHub” to create a repository and make it
possible to track and save our changes. Finally, we used “GitHub Desktop” as the main way to
communicate with our repository.

11

4 Game Engine Design and Development

4.1 Game Engine Subsystems

Game engines typically provide a range of built-in features and functionalities to help as
much as possible the game developers. There are lots of subsystems an engine could have, and of
course not all of them must be created to call the engine a complete and functional one. The basic
subsystems a game engine should have to provide developers the necessary tools to create a
simple game include:

● A rendering system, to create graphics and visualize every element of a game.
● A math system, to handle all mathematical operations.
● A physics system, to simulate real-world physics between scene entities.
● A frame timing control system, to control when the updates and rendering happens.
● An event system, to handle events effectively.
● An input system, to respond to mouse clicks, keyboard key presses etc.

Assuming that all these subsystems are implemented correctly and provide enough
features, the game developers who are going to use the engine should be able to create a simple
game and publish it with ease. However, in today's era, aspiring to develop a "AAA Game"
typically needs a high budget, and an engine with far more subsystems than just the ones already
mentioned [41]. Other subsystems a game engine should provide to the end user are:

● An entity component system, to create entities in a scene, give them components and
keep track of them.

● An animation system, to animate the scene entities.
● A physics system, to simulate real-world physics between scene entities.
● A scripting system, to be able to create game logic and entity behavior through scripting.
● An assets management system, to import and export game assets.
● A networking system, to develop multiplayer games.
● A platform support system, to publish the final game for different platforms.
● A serialization system, to convert the game data into a format that can be easily read,

stored and reconstructed.
● A particle system, to simulate visually appealing effects like fire, smoke etc.
● A profiling system, to analyze the performance of both the game engine and the game.
● A text rendering system, to handle the rendering of text within a game.
● A universally/globally unique identifiers system, to generate and manage unique

identifiers for game assets, objects, or entities.
● A user interface system, to display and manage the graphical elements of the game

engine.
● A logging system, to record events, errors, and debug information.
● A scene management system, to organize and manage different game scenes.
● A post processing system, to improve the game’s visual quality by having effects like

depth of field, motion blur, color grading etc.
● A multithreading system, to take advantage of multiple processor cores to perform tasks

simultaneously.
● A build system to ensure that the game engine is ready to be used. This system is used for

tasks like integrating external libraries, generating project files, simplifying the process of
packaging the engine and all of its associated assets, and also building the final project in
order to make it possible to publish it.

12

Most of these subsystems are complementary to the engine, so there is no need to
implement them. It should also be mentioned that there are pre-existing free and open-source
APIs and libraries which anyone can read and integrate to their code, instead of implementing
each of the subsystems on their own.

4.2 Game Engine Overview

4.2.1 Introduction - General Engine Overview

Our aim was to learn how an engine works, how the subsystems of it work and are tied
together, as well as how to code them or at least some of them. Our intention was not to create yet
another 2D game engine for commercial purposes. First and foremost, we thought that we should
start by creating the main game loop. This loop is designed to continuously repeat a defined set of
instructions e.g. rendering and updating, until the user chooses to exit the application. Code 1, is
used to show how a main loop could look like. However, before entering the main loop, certain
initialization processes need to be carried out.

Code 1. A simple game loop

To begin our setup process, we first set a fixed directory for the assets, which is used to
display all the project files and folders. Subsequently, we initialized the libraries needed to be
able to use “OpenGL” methods and create the main user window. We continued with setting the
event callbacks our engine supports, in order to be able to handle events like user input, window
resizing, mouse movement etc. Moving forward, our attention turned on initializing the renderer,
so we could use the “OpenGL API” to its fullest. We then set up a system to establish a definite
order for the updates, events and rendering. Lastly, we focused on setting up the “DearImGui”
library, which plays a vital role in rendering and providing a fully functional user interface.

With everything in place, we proceeded to create a new blank scene for the user to begin
their project. Necessary variables and fields are initialized and configured, including the setup of
the camera which will be used while editing a scene. Having completed all the necessary
configurations and preparations, our game engine loop begins running, marking the start of the
engine’s execution.

The game loop is used to keep track of each frame, by updating the scripts and physics of
the scene entities in order to change their behavior, rendering the User Interface (UI) panels and
processing all pending events. Using the help of an Entity Component System (ECS), we
efficiently update and render each frame of the game scene. Also, we integrated an existing
physics library which is used for all the physics calculations like gravity, mass, friction, and

13

collision detection between entities. We then used the “Mono” project to connect the core game
engine with the scripting engine, providing the option of creating entities and updating their
behavior through C# scripts. Ultimately, the game loop ends by rendering the scene and the UI
each frame while also handling all pending events.

For all the math calculations inside the game engine a math engine is used. More
specifically we integrated the “OpenGL Mathematics (GLM)” library. Furthermore, to render the
entities on the screen, we have both implemented and used existing shaders. Our engine also
provides users the ability to open, save, and create scenes. To ensure that everything executes
smoothly we used “YAML Ain't Markup Language (YAML)”, a data serialization language
which is also used by Unity [40]. Finally, to tie everything together and make it possible to
integrate all those libraries in our project, generate the project files and build the project we relied
on “Premake” even though a good choice would have also been “CMake”.

Once all the necessary subsystems were implemented and everything was running
smoothly, we started making some games. Through this game development process, we were able
to identify and resolve issues, add more functionality and support more features. This approach
ensured that everything worked properly in order to be able to create a 2D game.

4.2.2 Game Engine Subsystems

4.2.2.1 Rendering Engine

4.2.2.1.1 Introduction

The rendering engine is arguably the most critical subsystem of a game engine. If it lacks
quality, flexibility, and speed, the game’s performance and overall experience can be negatively
impacted. In a game engine, the renderer serves as a bridge between the CPU and the GPU,
making it possible to display visual elements on the screen. Without a renderer, even a single
pixel cannot be drawn on the screen. To be able to communicate between the two processing
units, an existing API should probably be used. There are numerous APIs available, each with its
own strengths and weaknesses. In Table 2, we present the most used graphics APIs, along with
their respective developers and some of the platforms on which they are used.

Table 2: Graphics APIs, Developers and Platforms

API Developers Platform

DirectX Microsoft Windows[42-46] , Xbox[42-46]

Metal Apple iOS [42][47-49], macOS [42][47-49],
iPadOS [42][47-49], tvOS [42,47,49]

Vulkan Khronos Group Windows [42][50-53], Linux [42][50-53], Android [50-53],
iOS [50,52], macOS [42,50,52],

Nintendo Switch [50,51][54-56], Raspberry Pi [50]

OpenGL Khronos Group Windows [42][57-59], Linux [42,57,58], Android [61,62],
macOS [42,57,58,60], Nintendo Switch [54-56]

WebGL Khronos Group Google Chrome [63,65], Mozilla Firefox [63-65],
Opera [65], Safari [63,65], Microsoft Edge [63,65]

14

4.2.2.1.2 OpenGL API

After spending a considerable amount of time before making the final decision, we chose
to use “OpenGL”. As novice game engine developers, we thought that using OpenGL as our
graphics API was the best fit due to its relatively user-friendly nature, as it is easier to learn than
the other APIs, primarily because it has a simpler and more intuitive API [66-68]. It also offers
cross-platform support, has extensive documentation and is flexible enough to create a variety of
graphical effects [66-68]. Even though it has its limitations such as its lack of built-in support for
multithreading, limited debugging tools, and relatively limited support for advanced features like
ray tracing, motion blur and anti-aliasing, we found it to be a great starting for gaining insight
into building a rendering engine for our game engine [66-68]. So, after spending quite some time
reading and watching tutorials created by Joey de Vries [69], Alexander Overvoorde [70], Yan
Chernikov [71], Mike Shah [72] and reading the documentation provided by Jorge Rodríguez
[73], we started building our own renderer.

To ensure that OpenGL was properly configured in our project, we attempted to draw a
triangle. First of all, we generated and bound a “Vertex Array” and then we did the same for the
“Vertex Buffer”. Next, we created some vertices for the 3 corners of the triangle and used the
“glBufferData()” function to send them from the CPU to the GPU. Afterwards we generated and
bound the “Index Buffer”. Then, we created some indices and sent them to the GPU. Finally, we
were ready to draw the triangle. We cleared the buffers using the “glClearColor()” and
“glClear()” methods, and by invoking the “glDrawElements()” function we successfully drew our
first triangle. Figure 2, depicts a diagram with all the steps needed to draw a simple triangle using
OpenGL.

Figure 2. A diagram showing how to draw a triangle using OpenGL

After ensuring that everything was properly set up, we proceeded to expand the renderer.
Throughout the process, we discovered that the renderer optimization is an ongoing endeavor.
There is always room for improvement or new additions. Creating a simple and functional
renderer is not overly challenging. The real difficulty lies in making it fast and flexible. When
developing a renderer, several key considerations come into play. It becomes crucial to consider
how things such as triangles, lines, and textures will be rendered. Also, creating the illusion of a

15

camera, determining the rendering order for each entity, minimizing draw calls, and numerous
other factors all demand attention.

4.2.2.1.3 Renderer Initialization

So, to start with, upon creating our application, we proceed to initialize our renderer. This
involves creating and initializing variables and invoking all the necessary functions. First of all,
we call all the required OpenGL methods as Code 2 shows:

Code 2. OpenGL API methods

Then we continue by creating all the “Vertex Array Objects” (VAO) needed to store the
corresponding “Vertex” and “Index Buffer Objects” (VBO/IBO). After that, we initialize the
different VBOs. We initialize the first one to render lines, the second one to render quads and the
last one to render circles. As both circles and quads are made up of triangles, we need to create
only 1 IBO. Also, a line is made up of only 2 vertices, so there is no need to create an IBO for it.
Having created and set the layout of each VBO, we link the quad and circle VBOs with the IBO.

As we have completed the setup of the buffer and array objects, we continue with the
creation of our shaders. Shaders play a vital role in the rendering process, offering a range of
functionalities to manipulate the appearance and behavior of objects. While there are various
types of shaders available, two of the most used ones are the “Vertex Shader” and the “Pixel
(Fragment) Shader”.

The “Vertex Shader” primarily handles the processing of individual vertices. It runs for
as many vertices as we have. For example, if we want to draw a triangle, the shader will run 3
times, once for each vertex. Its purpose is to receive a single vertex from the vertex stream and
generate a single vertex to the output vertex stream. Its main responsibility lies in transforming
and manipulating vertex attributes, such as position, color, and texture coordinates [74].

On the other hand, the “Pixel Shader” operates at the pixel level during rendering. It runs
for each pixel being rendered on the screen. The pixel shader receives specific information
associated with each pixel such as its position, color, texture coordinates, and other relevant data.
One of the primary uses of the pixel shader is to calculate the final color for each pixel. It often
performs other tasks like image processing and lighting calculations [75-77]. Figure 3, depicts the
graphics pipeline stages.

16

Figure 3. Graphics pipeline stages. Figure by: LearnOpenGL

Using “GLSL” (OpenGL Shading Language), we wrote the shaders needed for our
engine and initialized them. To create a shader program for each shader, we followed the example
provided by “Khronos Group” [78] with slight modifications. Our shaders support the following
functionalities:

1. Line rendering, with the options to pass the position of the line vertices, the color of the
line and the line ID.

2. Quad rendering, with the options to pass the position of the quad vertices, the color of the
quad, a texture and the quad ID.

3. Circle rendering, with the options to pass the position of the circle vertices, the color of
the circle, the thickness of the circle and the circle ID.
After creating all the shaders, the next step involves setting up and initializing a “Frame

Buffer Object” (FBO). We configure the FBO with specific dimensions, such as a chosen width
and height of 1920x1080, which corresponds to a 16:9 aspect ratio. Additionally, necessary
attachments, including texture color format and texture depth format, are specified. Subsequently,
we create OpenGL textures for the FBO, we bind the textures and based on the specified format
of the pixel data, we attach to them their corresponding color and depth attachments [79].

Once the FBO setup is complete, the focus shifts to creating and rendering a camera,
which serves as the editor camera. We set the “field of view”, the “aspect ratio”, the “near clip”
and the “far clip” of the camera. Then, we calculate the orientation and translation of the camera
and render it by giving the visual illusion of a dynamic viewpoint. Finally, we create a default
texture and we initialize a “Uniform Buffer Object” (UBO) to store the projection view of the
cameras that will be created later for the game scenes. This UBO acts as a container to hold the
necessary data related to projection and view matrices of the cameras for efficient rendering.
With these final steps done, the initialization process of our renderer is complete.

4.2.2.1.4 Scene Rendering

As depicted in Code 1, the main game loop is an endless loop that repeats a set of
instructions e.g. rendering and updating, and will stop only when the user quits the application.
Our game engine also follows a sequence of steps to update and render each frame. Using an
“Update()” method, we update and render the new state of the scene, and then by calling the
“UIRender()” method each panel of the User Interface (UI) gets rendered. To make something
like that possible, first and foremost we clear the buffers. Subsequently, we bind the FBO we
initialized before and we clear the texture which will be used to render the scene on top of.

17

https://learnopengl.com/Getting-started/Hello-Triangle

Depending on the state of the scene we call the appropriate methods. Code 3 shows how we
choose which method to call:

Code 3. Scene state rendering

If we are in the “Edit” state, our first step is to update the editor camera. By rendering the
camera each frame, we give the optical illusion of zooming, moving around and rotating the
scene. Once we have updated the camera, we proceed to render the scene itself. To begin, we get
the camera view projection and store it in the UBO mentioned earlier. Then, we initialize the
necessary parameters to prepare our renderer. We used the concept of “Batch Rendering” to
improve the performance. Rather than rendering each scene object individually, which can be
inefficient and slow, batch rendering groups similar objects together and renders them as a single
batch [80]. After everything is set up, we start by rendering all the entities with a quad shape.
These entities have a sprite associated with them which is used to give them a color, a texture or
both. If an entity lacks a texture, it just has a color.

For quads without a texture, we generate 4 vertices, and for each vertex, we store the
position, the color, and the entity ID. These values are later used in the VBO when rendering the
batch. Additionally, we have an indices counter which is used to divide the batches. Each quad
needs 6 indices to be drawn (3 for each triangle it is made of). After incrementing the counter, we
move on to the next entity.

On the other hand, for quads with a texture, we still follow a similar process. We generate
4 vertices and for each one of them, we store the position, color, texture coordinates, texture ID,
texture tile amount and entity ID. Again, we increment the indices counter by 6 and proceed to
the next entity.

In both cases, before setting all those values, we check the indices counter. If the amount
of indices has exceeded a predetermined maximum number, we render that batch and begin a new
one. Otherwise, we continue adding indices to the one currently being used. If the entity has a
texture, we also verify if the texture has already been added to an array used for storing texture
slots. If it has not been added before, we check if the maximum texture slots count has been
reached. If so, we render that batch and start a new one, otherwise, we submit the texture to the
array.

After rendering all the quads, we proceed to render all the entities with a circle shape.
These entities do not need to have a sprite. For the circle entities, we still generate 4 vertices, as a
circle is essentially a quad with disabled fragments, meaning certain fragments within the quad
do not contribute to the final color of the corresponding pixels. For each vertex, we store the
position, the color, the circle thickness and the entity ID. Similarly, we increment the indices
counter by 6 and move on to the next entity. Prior to configuring everything, we once again check
the index amount.

18

Lastly, there may be lines needed to be rendered on the scene. To render the lines, we
calculate the position of 2 vertices each time and for each one of them we store the position, color
and entity ID. Unlike quads or circles, lines do not need an IBO. Instead, we increment a vertex
counter to keep track of the batch. Figure 4, is used to show all the steps described above.

Figure 4. A simplified version of all the steps needed in our engine to render the scene

What does rendering each batch mean? First, we check if there are quads, circles and
lines that require rendering. If there are, we retrieve the data we previously set for each vertex.
We then initialize and bind a VBO with that data and we also bind the appropriate shader. If there
are textures to be rendered, we bind each texture slot stored in the array. Once all the necessary
configurations are in place, we bind the VAO and proceed to draw the elements by calling the
appropriate OpenGL methods.

The “Play” scene state performs similar rendering tasks, with the key distinction lying in
an extra step. We search through the scene to find the entity which is designated as the game
camera in order to use it as the main camera. In the “Play” state, we also need to update the
scripts attached to each entity and calculate their physics behavior.

4.2.2.1.5 Graphical User Interface Rendering

As we have finished rendering our scene, we move on to render the UI. For the UI, we
use “Dear ImGui” [81]. Dear ImGui is an outstanding bloat-free graphical user interface for C++
[81]. This remarkable tool sponsored by technology giants, such as “Ubisoft”, “Blizzard
Entertainment”, “Google”, “Nvidia” and more [81], stands out as a preferred choice for UI
implementation. After setting the flags and the styles we want for the UI using Dear ImGui, we
start rendering each of our panels.

First, we start a new “Gui” frame and we continue by rendering the “Assets” panel. The
assets panel is the window which can be used by the end user in order to iterate through the
directories and see the files and folders of the project. As we want all of the project files and

19

folders to be together, using the “std::filesystem” library [82], we made a predetermined “assets”
directory. Then, depending on if there is a file or a folder inside the directory, we created and
rendered the corresponding texture. Figure 5 is used to show how an assets panel could look like.

Figure 5. Assets Panel

After making sure the assets panel is fully functional, we continue on rendering the
“Hierarchy” and “Properties” panels. The hierarchy panel is used to render all the entities that are
currently in the scene. The user can create, delete, select and see the entities of the scene. On the
other hand, the properties panel is used to render all the components of a selected entity and their
corresponding values. The user can create, delete, select and see the components of a selected
entity. It is also used to change the values of some of the parameters of each component. Figures
6 and 7 depict the hierarchy and the properties panels.

Figure 6. Hierarchy Panel Figure 7. Properties Panel

Then, we render the “Scene” panel which is responsible for displaying our scene. To
achieve this, we retrieve the color format that was previously stored in the FBO. This information
is essential in order to create a “Gui Image”, which serves as the underlying canvas for rendering
on top of our scene. Finally, we proceed to render the buttons responsible for changing the state
of the scene. These buttons provide functionality for switching between the two scene states. We
also utilize “ImGuizmo” by Cedric Guillemet [83] to render gizmos on the scene entities in the
“Edit” state. The “ImGuizmo” library is based on the “DearImGui” library and is a powerful tool
that enables interactive manipulation and transformation of objects within the scene, offering
enhanced editing capabilities [83,84].

We should note that the UI of our game engine has been heavily influenced by other
engines such as “Unity”, “Unreal Engine”, “Hazel”, “Cocoa”, “Cryengine” and “Erhe”. In Figure
8 we depict some of the buttons used for the UI, while in Figure 9 we depict how a gizmo is
rendered around a scene entity in order to make it possible to rotate the entity.

20

Figure 8. UI Buttons

Figure 9. Gizmos rendered around a gameobject of the scene

As we have finished rendering all the main panels, we thought that we should also
provide a panel for some core statistics like the frames per second (FPS), the amount of draw
calls, the cursor position inside the scene, if VSync is on or not etc. Figure 10 is used to show the
Core panel.

Figure 10. Core panel, used to show some game engine statistics

4.2.2.2 Physics Engine

4.2.2.2.1 Introduction

The physics engine is the subsystem responsible for calculating and handling the physical
interactions and behaviors of entities within a game world. It is used to simulate things such as
gravity, rigid body dynamics, soft body dynamics, fluid dynamics, collision between entities,
realistic movements and more [85]. The physics engine typically has two main components: a
collision detection system and a dynamics simulation component responsible for calculating the
forces affecting the simulated objects [85-87].

In a physics engine, various algorithms and mathematical models are used to calculate
and approximate the behavior of objects based on principles, such as Newton’s laws of motion.
These calculations determine how objects move, respond to forces, collide with each other, and
interact in general with the virtual environment. Overall, a physics engine adds realism and

21

immersion to games by simulating the physical behavior of objects, allowing for more interactive
and dynamic gameplay experiences.

4.2.2.2.2 Box2D

Writing a physics engine for a game engine can offer several benefits such as the ability
to fully customize the physics, increased flexibility, easier integration with game logic and most
importantly, a deep understanding of the underlying principles. However, it is important to note
that developing a physics engine can be a complex and time-consuming task. It requires a strong
understanding of physics, mathematics, and programming, as well as expertise in performance
optimization. However, there is always a possibility to use a pre-existing library for the physics
engine. There are several good choices out there such as “Jolt Physics” [88] which have been
used by well-known companies and has also been the main physics engine used by “Guerrilla
Games” to create the impressive “Horizon Forbidden West” game. Other great choices are
“Bullet Physics SDK” [89], “LiquidFun” [90] which is an open source physics engine for 2D
games developed by “Google”, and “Box2D” [91].

After careful consideration, we chose to use Box2D, a widely adopted physics engine
used by renowned game engines, frameworks and libraries such as “Unity”, “GameMaker”,
“LÖVE”, “libGDX” and many others [91]. The team behind Box2D, provides an exceptional
documentation resource [92] that covers everything someone might need in order to both
integrate the library in their project and also utilize it correctly. Their documentation not only
guides someone through the process of integrating Box2D but also offers a tutorial-style “Hello
Box2D” project, serving as a guide to help beginners get started with using Box2D.

4.2.2.2.3 Update Physics

Both of our scene states invoke a method in order to update scripts, physics and render
the scene. It should be noted that in the “Edit” state no physics calculations and script updating is
done. On the other hand, in the “Play” scene state we calculate the physics and create collision
callbacks for the scene entities while we also update the scripts. To change a scene state, the user
must press the play button. After the button gets pressed, a function by the name of
“PhysicsStart()” gets invoked, which has the role of creating and initializing every single variable
needed by both the game engine and Box2D physics engine to start doing physics calculations.

To be more specific, this method starts by initializing a Box2D physics world and
specifying the world gravity value which is typically around 9.8 [93]. Then, for all the entities in
the scene with a “RigidBody Component” it creates a “Box2D body definition” to store
everything needed in order to create a Box2D rigid body, like the body type, entity position,
entity ID etc. Using this body definition, it initializes and stores a new Box2D rigid body.

Following the creation of the Box2D rigid body, we continue by checking if the same
entity has a collider component. Depending on the collider shape, such as a polygon or a circle,
we create the corresponding “b2PolygonShape” or a “b2CircleShape” that will be used as the
entity’s collider in the Box2D world. To enable collision detection, we construct a “Box2D
Fixture Definition” which contains relevant information for collision handling, such as collider
shape, entity’s mass, entity’s friction etc. Finally, we use this fixture definition in order to create a
fixture for the Box2D rigid body we made before.

As the Box2D initialization has finished, the “UpdateState()” method mentioned earlier
is called during each frame to calculate and update the physics based on the current scene state.
As previously explained, the physics calculations occur only when the engine is in the “Play”

22

state. This scene state invokes a function called “UpdatePhysics()”. First and foremost, inside that
function we use the “Step()” method provided by Box2D. This method does all the necessary
calculations to handle collision detection, integration and constraint solutions. Next, for each
entity with a rigid body component, we first retrieve the newly calculated position and angle of
the Box2D rigid body from the “Step()” method. Then, we apply these values to the entity
translation and rotation, effectively completing the physics calculations for every frame. Figure
11, depicts the collision between 5 different entities in a game scene.

Figure 11. Collision between entities

We should also mention that in the “Play” state, as we also need to update the scripts, we
must somehow send the collisions that happened in the scene from the physics engine to the
scripting engine. To accomplish this, we utilize the “SetContactListener()” method provided by
Box2D. To use this method, we need to create and use a contact listener. Hence, we made a new
class named “MyContactListener”, that implements the Box2D “b2ContactListener” class, in
order to be able to obtain contact information. Within the “MyContactListener” class, we
overridden a function called “BeginContact()” which gets called when two Box2D fixtures begin
to touch. The role of this method is to find out which two fixtures were involved in the collision.
It then retrieves the entities’ IDs from their rigid bodies and sends them to the scripting engine for
further processing.

4.2.2.3 MathEngine

A mathematical engine is an essential subsystem of a game engine. It performs math
calculations required for game development. It is responsible for handling complex mathematical
operations such as linear algebra, applied mathematics, calculus, numerical methods,
trigonometry, and discrete mathematics. The purpose of a math engine in a game engine is to
provide the necessary mathematical tools to create game mechanics, physics simulations and
graphics rendering [94,95].

Mathematics is an essential part of game development, and game developers need to
have a good understanding of mathematical concepts in order to create engaging and immersive
games. A math engine provides developers with the necessary tools to perform complex
mathematical operations without having to write the code from scratch. Some of the areas where
a math engine is used in a game engine include:

● Entity position, orientation, scale and transformation
● Collision detection
● Physics calculations
● Lighting calculations
● Procedural generation

23

● Animation
● Game engine statistics

Overall, a math engine is an essential component of a game engine that enables game
developers to create complex game mechanics, physics simulations, and graphics rendering,
contributing to the overall functionality and realism of the game. Even though we plan on
creating our own 2D math engine for our game engine in the future, building one from scratch is
a time-consuming task. It requires a lot of mathematical knowledge. For example we would need
to implement vertex operations, matrix operations, quaternions, functions for rotation, translation,
scaling, normalizing vectors, (spherical) linear interpolation, projection, length, clamp and a lot
more [7, 95].

As we were not familiar with everything, to free our hands, we decided to use “OpenGL
Mathematics” (GLM) [96]. GLM is a C++ mathematics library based on GLSL which we have
already used to create our shaders. It provides classes and functions designed and implemented
with the same naming conventions and functionality as GLSL and it pretty much includes
everything someone might need for their game engine [96]. Another noteworthy choice is
MathFu [97]. MathFu is also a C++ open source math library developed by Google primarily for
gaming [97].

4.2.2.4 Entity Component System

4.2.2.4.1 Introduction

An Entity Component System (ECS), is a software architectural pattern mostly used in
game development for the representation of game world objects [98,99]. The ECS is used for
organizing and managing game entities, their behavior, and their data. ECS follows the
composition over inheritance principle, which offers better flexibility and helps identify entities,
where all objects in a game scene are considered an entity [98].

In the ECS architecture, a game entity is typically represented as an empty container or
identifier called an “entity”. The entity itself does not contain any behavior or data, instead it
serves as a unique identifier for grouping components together. In a game engine, components
represent a piece of functionality that can be added to an entity to give it specific behavior or
attributes. For example, a game character entity may have components such as transform,
velocity, sprite and health. Each component holds specific data related to its property or behavior
[98-103].

Components are usually simple and contain only the necessary data and logic for their
specific role. They can be used for a wide range of functionality, such as rendering, physics,
animation and sound. They are designed to be reusable and modular, allowing game developers
to create complex game mechanics by combining different components [98-100][103]. The ECS
is responsible for the behavior and functionality of the game. It allows game developers to create
shorter and less complicated code and offers a clean design using decoupling, encapsulation,
modularization, and reusability methods. Overall, ECS is a powerful tool for game developers
that offers a flexible and efficient approach to game development by organizing entities and their
components leading to improved code. It provides a clean design and better flexibility when
defining objects.

4.2.2.4.2 Entt

Entity Component Systems are crucial for achieving high-performance in game
development. They require constant maintenance and the ability to produce reusable code,

24

making them very challenging to write. Fortunately, there are some free and open source libraries
that anyone can use as their ECS. Among these libraries, “entt” [104] stands out as a header-only,
lightweight, and user-friendly option written in modern C++. Notably, “entt” has been
successfully used in renowned projects like “Minecraft” by Mojang Studios and “Ragdoll
Dynamics” [105]. Another notable library is “flecks” [106], which provides a fast and lightweight
ECS framework capable of handling millions of entities. It has found practical use in projects
such as “Equilibrium Engine”, “The Forge”, and “Territory Control” [106].

For our project, we chose to go with “entt”. Entt uses “registries” which serve as
containers for entity IDs and associated data. Also, by utilizing “views” and “groups”, it gives
developers the option of searching in their scene for entities with a specific component or
multiple components. After creating a new scene, the user has the freedom to create an entity.
When an entity gets created, a UUID gets added to it, to differentiate it from other entities. Also,
we assign a name to the entity and a “Transform Component” to manipulate the entity’s position,
rotation and scale. For each entity, we can check if it exists in the scene, if it has a specific
component or a combination of components and we can also add and remove a component. Here
is a list of the components currently supported by our engine:

● UUID Component: Used for identifying an entity.
● Name Component: Used for giving an entity a name.
● Transform Component: Used to store the position, rotation and scale of an entity.
● Camera Component: Used to create the illusion of a camera.
● Sprite Renderer Component: Used to render an entity with a sprite, either quad or circle.

If the entity does not have a texture, it just has a color.
● Circle Renderer Component: Used to render a circle entity without a texture.
● Rigid Body Component: Used to add a Box2D physics body in an entity. This way we

can check the entity body type (static, dynamic, kinematic), restrict rotation, freeze
position and enable/disable gravity.

● Box Collider Component: Used to enable collision for quad entities.
● Circle Collider Component: Used to enable collision for circle entities.
● Script Component: Used to add a C# script to an entity.

We should note that the components used in the core of the game engine are not the same
ones as the ones used in the core of the scripting engine. Within the scripting engine’s core, we
create pseudo components that are used in order to set or get the actual entity component values.
Through the use of internal calls, we pass values between the corresponding entity components.
Code 4 is an example of how the code of a component looks like.

25

Code 4. Example of a component

We should note that the components used in the core of the game engine are not the same
ones as the ones used in the core of the scripting engine. Within the scripting engine’s core, we
create pseudo components that are used in order to set or get the actual entity component values.
Through the use of internal calls, we pass values between the corresponding entity components.
Figure 12 shows an example of how the properties panel renders the components of an entity.

Figure 12. Visualization of components

4.2.2.5 Frame Timing Control

Another important subsystem is the frame timing control subsystem. It is used to
establish a definite order for events, physics and script updates and rendering each frame. This
way we have a coherent and predictable sequence of events within the engine. This subsystem
provides a structured framework for organizing and managing the updates order and rendering
process by separating different areas of the game engine into layers. Whenever a new layer gets
created, it gets pushed at the back of an array which is used to store them. Following that, a
method is invoked to initialize that layer. This method plays a crucial role in initializing and

26

configuring the layer with the necessary parameters to ensure its functionality. On the other hand,
there is another method that gets called either when the layer destructor is invoked or when we
intend to remove a layer from the array.

The “Update()” and “UIRender()” methods, used in the main game loop, get called for all
the game engine layers, one by one. In the “Update()” method, the engine updates the physics,
scripts, camera and other entities in general. This includes performing necessary calculations,
applying changes, and preparing the scene for rendering. Once the updates are done, it proceeds
to render the scene. On the other hand, the “UIRender()” method is responsible for rendering all
the UI panels. Regarding the event handling, the layers are processed in reverse order, starting
from the highest priority layer, moving towards the lowest priority one. This approach allows for
proper event propagation and ensures that higher priority layers have precedence in responding to
events. Additionally, we have implemented a simple overlay system that complements the layer
system. The layer system consists of a contiguous list of layers, whereas the overlays are always
positioned at the end of this list. Overlays must be rendered last to ensure they are displayed on
top of other graphical elements and get prioritized in event handling.

4.2.2.6 Event Subsystem

An event subsystem in a game engine is crucial. It enables communication and
interaction between all the other engine subsystems. It helps to decouple multiple subsystems and
makes it possible to compile them independently. The event subsystem operates on the concept of
events, which are messages or signals representing specific occurrences or actions within the
engine. These events can include user input, window size change, game state changes and more.
When an event occurs, it is dispatched by the sender object and propagated through the event
subsystem [107-110].

The event subsystem acts as a dispatcher, responsible for routing events to the
appropriate event handlers. It processes events that are triggered and places them into a queue.
The events are only called when polled. Subsystems interested in specific events register
themselves as listeners or subscribers to those events. When an event is dispatched, the event
subsystem notifies all registered listeners, allowing them to respond accordingly [107-109].
Additionally, the event subsystem can support event prioritization, allowing certain events to take
precedence over others or certain subsystems to handle events before others. Overall, the event
subsystem is an efficient way for engine subsystems to communicate with each other. It helps to
decouple many subsystems providing flexibility and communication and interaction between the
subsystems [108,109].

Our game engine uses an event subsystem to check for window, keyboard, and mouse
events. We set “GLFW” event callbacks for each of the events our engine supports and we chose
to separate the events into types e.g. WindowResize, MouseMoved, KeyPressed etc. Each frame
the engine polls the events using the “glfwPollEvents()” method given by “GLFW”. This way all
pending events get processed. Using an event dispatcher for every layer and overlay in the
engine, comparisons between event types happen and if a match is found, the dispatcher directs
the event to the appropriate method for handling.

If someone prefers not to use “GLFW” and wants to avoid writing their own dispatcher,
event types etc., there is of course the option of using an existing library. A good choice would be
“libevent” [111]. Libevent is an event notification library with approximately 10,000 stars on
GitHub and it can be compiled on Windows, Mac and Linux. Notably, Libevent is used by “Tor”
[112] and “Chromium” [113] among many others [111]. Code 5 provides a visual representation
of the code written to create an event when the mouse moves.

27

Code 5.Mouse Moved Event

4.2.2.7 Input Subsystem

The Input subsystem is responsible for handling and processing user input. It allows the
engine to receive input from various sources, such as the keyboard, the mouse, a controller, a
touchscreen, or other input devices, and translates those input data into actions. It translates
low-level input into high-level logical events that the game logic can understand [114-116]. The
input subsystem typically works by monitoring the state of input devices and notifying the game
engine or relevant game objects about any changes or events. For example, when a user presses a
key on the keyboard, the input subsystem detects the key press event and sends that information
to the game engine. The game engine can then interpret the input and trigger appropriate actions,
such as creating a new scene, saving the current scene, interacting with objects in the scene game
or other events like moving a player in a game or shooting a gun.

In our game engine, we have implemented an input subsystem that utilizes a polling
mechanism alongside event notifications. Instead of waiting to be notified when an input event
occurs, this subsystem allows us to actively inquire about the current state of specific inputs. For
example, we can check whether a particular key, such as the “K” key, is currently pressed, or if a
mouse button is being held down. This polling-based approach provides flexibility and allows us
to incorporate complex input behaviors. For instance, we may want to move the camera around
by moving the mouse while also holding the “Alt” key down or press both the “Left Control” and
“S” keys together to save the current state of the scene. By regularly polling the state of the keys
and mouse buttons, we can determine if both are held down during a mouse movement event or a
key pressed event and perform the desired action. For our Input subsystem, we chose to use the
exact same IDs for the keys and mouse buttons as the ones used by the “GLFW” library, for
compatibility with OpenGL inputs [117]. Code 6 shows an example of a key pressed event.

Code 6. Example of a key event

4.2.2.8 Scripting Engine

4.2.2.8.1 Introduction

Game developers use the scripting engine to control game aspects via written code. The
scripting engine provides the ability to modify the game logic and behavior without the need of
modifying or recompiling the core game engine code [118,121,122]. It is integrated into game
engines for languages used for game development like C#, Lua, GameMonkey, Python etc. These

28

languages give developers the freedom to create script game systems and interact with game
assets and game entities [118,119,121,122]. The scripting engine of each game engine is
different, as it depends on the game needs and developer preferences. These differences include
the choice of programming language for game scripting (e.g. Lua, C# etc), the range of features it
may support (such as Built-In methods and keywords) and even the type of scripting methods
available, such as traditional coding or visual scripting.

Through the implementation of scripts, developers can easily define game object
behavior, like character movement, enemy interactions, world creation, item utilization,
animations, collisions and a lot more. Additionally, scripts are also used to handle in-game
events, including keyboard, controller and mouse inputs, timers, collisions, and system events.
Furthermore, they can be used to control the game interface allowing developers to define UI
elements, update UI states, and manage UI animations. Moreover, scripts have also found their
place in numerous other areas such as level design, particle effect creation, sound management,
support for custom assets and many more [118-122].

In recent years, game engines have introduced a revolutionary feature known as Visual
Scripting, which makes the implementation of game logic and entity behavior a lot simpler.
Using a visual interface, developers can now create scripts for game entities and environments
without the need of writing code in programming languages. Instead of writing lines of code,
users can drag and connect nodes and blocks that represent game elements and actions. These
nodes typically represent functions, conditions, variables, and events that can be combined to
define the desired behavior of the game [119][123-126].

4.2.2.8.2 Mono - C#

The programming scripting language we chose to support for our game engine was C#.
C# is a general-purpose high-level language which supports static typing, object orientation and
offers advanced capabilities and fast performance [127]. The C# programming language provides
features that align with our scripting engine needs for desired functionality and flexibility, as it
offers tools and resources for both further developing the scripting engine and integrating it
smoothly with the game engine.

To include C# in our game engine and make it possible to communicate between C++
and C#, we had two choices. Either use the “.Net Core” version provided by Microsoft or use the
“Mono” project sponsored by Microsoft. The “.Net” is a free, cross-platform, open-source
developer platform for building many kinds of applications and it is built on a high-performance
runtime that is used in production by many high-scale apps [128,129]. The GitHub repository has
around 20.000 stars and is actively maintained [130]. On the other hand, the “Mono” project is an
open source implementation of Microsoft’s “.NET Framework” as part of the “.NET Foundation”
and based on the ECMA standards for C# and the Common Language Runtime [131]. Its aim is
to become the leading choice for development of cross platform applications [131,132]. The
GitHub repository has more than 10.000 stars and more than 122.000 commits and of course it is
actively maintained [133].

So, for our scripting engine and to basically make it possible to integrate C# in the
engine, we chose to go with Mono. The main reasons for our choice were that Unity uses Mono,
it is also designed to be cross-platform and the most important part is that it supports assembly
reloading. Assembly reloading, also known as hot reloading, is the process of updating and
reloading code during runtime without the need of restarting the application or game. It makes it
possible for developers to see the effects of the changes they made to the scripts immediately,
without having to go through the entire compilation and deployment process [134,135]. To

29

download and integrate Mono efficiently in our engine we followed the guide provided by
Nilsson [136] and the ones provided by the Mono team in their documentation [137,138].

4.2.2.8.3 Scripting Engine Implementation

Whenever we start the application, one of the steps we do is initialize the scripting
engine. First and foremost, we must create and set some paths and variables for Mono. After we
have finished creating the Mono root and app domains, we continue with loading the C#
assembly. As we have loaded the assembly, we can now read it and find all the C# classes the
user may have created and all the parameters of each one of them. Then, for each C# class we
create a Mono class and store it with its corresponding fields. We have now successfully read the
C# assembly and the classes inside it. Our next step involves finding and getting the “Core” class
from the C# assembly, which will be used as the base class from which all the game scripts will
be inheriting the scripting engine methods. It is the same thing as the “MonoBehaviour” class
used by Unity or the “AActor” class used by Unreal Engine.

Finally, we have to set up all the functions and C++ components which will be used
internally to allow communication between C++ and C#. To create and utilize functions by both
the scripting engine and the core game engine, we had to create “Internal Calls”, as it is requested
by mono for each one of them. Internal calls act as a bridge that allows C# scripts to access and
invoke particular methods present in the C++ code. Code 7 shows an example of a method which
is processed in the C++ part of the scripting engine, even though it got called from a C# script,
while Code 8 shows how to create an internal call in C#.

Code 7. C# & C++ method

Code 8. C# internal call. Code by: Embedding Mono

Then, for each entity of the scene with a script component, we check in the core scripting
engine which other components it has and store them. This makes it possible to inquire about the
components an entity may have, in the C# scripts. In more details, we retrieve the component’s
name from the script, we convert the C# component into a mono type component, and through a
map we compare the C# component with the ones in C++. We should note that the C#
components do not contain the real entity fields like the C++ components do. They only contain
internal functions and fields which are mapped to the correct C++ functions and fields and they
are used to retrieve or send entity data. Code 9 shows an example of how we get a C++
component in C#, and how we use that component to invoke a C++ method:

30

https://www.mono-project.com/docs/advanced/embedding

Code 9. C# & C++ interaction

As we have finished with the initialization of the scripting engine, we will now proceed
to see how it works in general. First and foremost, whenever the scene starts playing, for each
entity with a script component we need to call the C# constructor to initialize it and then search
through the class to find and invoke the corresponding “OnCreate()” method (if there is one).
Code 10 shows a script which utilizes the “OnCreate()” function:

Code 10. C# OnCreate() method

Then, every frame we need to update the scripts in order to change the behavior of the
scene entities. This means that for each entity with a script component we need to search through
the class to find and invoke the corresponding “OnUpdate()” method (if there is one). This
method is invoked every frame and its primary function is to update the fields and, more broadly,
the data associated with an entity. Code 11 shows a script which utilizes the “OnUpdate()”
method:

Code 11. C# OnUpdate() method

Finally, using the “MyContactListener” class, we retrieve from the physics engine the
collisions that happened and we process them in the scripting engine. For each entity with a script
component, we again search through the class to find and invoke the corresponding
“OnCollisionBegin()” or “OnCollisionEnd()” method (if there is one). These methods get called

31

when a collision starts or ends and get as input the two entities that collided. Code 12 shows a
script which utilizes the “OnCollisionBegin()” method:

Code 12. C# OnCollisionBegin() method

In conclusion, a scripting engine within a game engine is a valuable and helpful
subsystem for developers. Even though it is not really necessary, it makes the implementation of
game logic easier and it also makes it possible to customize gameplay mechanics, and
dynamically create content. It promotes flexibility and with the hot reloading feature it makes the
overall user experience a lot better.

4.2.2.9 Assets Management System

To improve the management of our files, scenes, and assets, we recognized the necessity
to develop an “Assets” panel. The primary objective of this window panel is to organize all the
project assets more effectively. With this addition, we aim to optimize the user experience and
make it possible to navigate and access project folders and files within the engine. To achieve this
feature, we used the “std::filesystem” library [82] in order to create a predetermined “assets”
directory. Then, depending on the asset, we show the corresponding texture.

With the help of the “Dear ImGui” library, we managed to implement a drag and drop
functionality. This makes it possible for the user to open scenes by dropping them in the scene
panel or add textures and scripts to entities by dropping them on top of the scene game object.
Currently our engine supports textures with the following extensions: “.png”, “.jpg”, “.jpeg”,
“.raw”, “.webp”, “.svg”. Another feature the assets management subsystem provides is creating,
saving and opening scenes through the traditional way, which is by navigating through folders
and files. Figure 13 and 14 are used to depict the navigation method.

Figure 13. Open a scene through the assets management subsystem

32

Figure 14. Choose a Scene to open in the editor

4.2.2.10 Serialization

The objective of this subsystem is to facilitate the serialization and deserialization of
scenes and projects within a game engine. This functionality makes it possible to store and
retrieve scenes, other assets and entities into a format that can be easily saved, loaded and edited.
The approach we chose to go with to serialize the scenes within our game engine involves
utilizing a text format scene serialization, which creates human-readable text files. The choice to
avoid binary serialization in this scenario is primarily driven by the desire for human readability
and the ease of both editing the files and merging any changes made to them.

For the serialization language, we chose to go with “YAML” [139]. YAML is a
human-readable data-serialization language which is preferred due to its inherent readability and
superior merging capabilities. YAML offers a straightforward and minimal syntax, utilizing
key-value pairs and arrays. In contrast, “JSON” [140], while widely used, is a lot more
challenging to read and merge due to its reliance on curly brackets and potential formatting
issues. On the other hand, a great choice is to use an existing library instead of a serialization
language like “Cereal” [141]. Cereal is a header-only “C++11” library created for serialization
[141]. In the end, we chose to go with YAML as our text file format language, as it is very
popular within the game engine industry, including its use by the Unity game engine [40].

Whenever we try to save or open a scene, we must serialize or deserialize the entities
inside of it. Let’s start with the serialization process. When the user chooses to save a scene, the
engine goes through all the entities in the scene and stores them in a file. This process gets the
data of each entity and its corresponding components, converts them into human readable values
and stores them inside a YAML map structure. As all the scene entities and their components
have been serialized, using a YAML emitter they get outputted into the scene file. This makes it
possible to store scenes and save the project progress, as the serialized YAML file can be later
deserialized, making it possible to continue working from the saved state. In Code 13 is an
example of how a component of an entity gets serialized.

33

Code 13. Entity component serialization

On the other hand, when the user chooses to open a scene, the engine performs scene
deserialization. First of all, we try to load the YAML scene file. If everything goes correctly, we
start iterating through the data to find and deserialize all the entities of the scene. To deserialize
the entities, for each one of them a new entity gets created and depending on the components
stored in the YAML file, they get added to the entity with their corresponding values. After we
have created all the new entities, we add them to the scene, so that they become part of the
opened scene.

4.2.3 Implementation

As we had limited experience in the area of game engine development, we thought that it
would be best if we followed a more hybrid approach. We intentionally pursued knowledge
across all subsystems and since we did not have enough time and knowledge to create all the
subsystems that we needed from scratch we both implemented some of them and integrated
existing ones for others. In Figure 15, we depict with a green color all the subsystems we have
included so far in our engine, with a yellow color the ones we aim to redesign in the near future
in order to add more functionality and finally with a red color the ones we plan to integrate.
Moreover, underneath each of the subsystems we thought that it would be a great idea to mention
some of the technologies that can be used to implement or integrate each of the subsystems.

Even though all these subsystems collectively contribute to the game engine, there is no
need to implement all of them to achieve a fully functional game engine. The build subsystem
plays a crucial role in simplifying the integration of essential APIs and libraries required for most
subsystems. Moreover, without the event subsystem it would have been very difficult to connect
the various subsystems and effectively dispatch events to them. Certain subsystems share a very
close relationship. For instance, the math engine serves as a fundamental component for nearly
every other subsystem. The frame timing control subsystem determines when the physics,
rendering, scripting engines, scene management, assets management subsystems, user interface,
and the entity component system come into play. Another close relationship exists between the
serialization and the scene management subsystems, as there is the need to serialize and
deserialize each scene. Similarly, a close association is observed between the input and the event
subsystems, as every input triggers a notification to the event dispatcher in order to take the
appropriate action.

34

Figure 15. Our game engine subsystems.

After having finished implementing the first functional version of our engine, we
calculated some statistics. The engine consists of 65 classes, while there are 12.768 lines of code
written. There are also around 475.000 lines of code integrated in our project, by the use of APIs
and libraries. Figure 16 shows a graph used in order to depict the way the 12.768 lines of code
have been distributed. Within the breakdown, the “Core Engine” refers to the code dedicated to
creating engine subsystems, connecting them and making sure the whole engine is functional. We
exclude pre-existing API code used for most of the subsystems, and the code written to develop
the scripting engine. The “Scripting Engine” refers to the code responsible for developing the
scripting engine, establishing communication with the Core Engine and creating build-in classes,
methods, and other features. The “C# Scripts” refers to all the scripts written in C#, in order to
update the behavior of the entities during gameplay. Finally, the “Scenes - YAML” refers to the
code that is automatically generated in YAML format whenever a scene is created or modified.

Figure 16. The way the lines of code written for the engine have been separated

35

5 Classes
In Table 3, we present a table showcasing all the classes used till now in order to develop

our game engine. The left column contains the class names, while the right column provides a
brief explanation of the class core function and purpose.

Table 3: Classes

Class Name Brief Explanation

Application The main project application. Initializes all the required systems
and variables at the start of the project, processes the command
line arguments and starts the main game loop.

Assets This class is used to represent the Assets panel of the Assets
Management System.

BodyType Used to store the body type of an entity with a rigid body
component.

Camera It is used to create a camera and store its projection. Gets
implemented by the EditorCamera and SceneCamera classes.

Component The component part of the Entity Component System. Used to
hold each of the supported components.

Components A C# class to represent the C# entity components.

Core A C# class used as the base class from which all the game scripts
will be inheriting the scripting engine methods.

Editor The main project editor. It is used to create the editor layer of the
game engine.

EditorCamera It is used to initialize and store all the necessary values for the
editor camera. It is also used to render the camera each frame and
handle events related to it.

EditorLayer A layer of the frame timing control system. It is used to update
the editor window, camera and scene for each frame. Moreover,
it is used to render the scene and the UI panels. Finally, it
provides the functionality of opening and creating a project,
opening, creating and saving a scene, playing and stopping a
scene and it also handles all the events related to the game engine
editor.

Entity The entity part of the Entity Component System. Used to create
entities and store their corresponding data. For example give
them names, add components, remove components etc.

Event Used to store events and iterate through them.

EventDispatcher Used to dispatch events for correct event handling.

EventTypes Used to store the types of the events.

36

Files Used to open, save and read a file.

FrameBuffer Used by the OpenGL API for rendering. Its purpose is to store
and choose the color format and depth format of each texture.

GameCamera It is used to initialize and store all the necessary values for the
camera the scene uses when the play button gets clicked. It also
handles rendering the camera each frame while the scene is being
played.

Hierarchy This class is used to represent the Hierarchy panel. The hierarchy
is used to render all the entities of the scene.

ImGuiFont Used by DearImGui to render the font of the panels.

ImGuiLayer A layer of the frame timing control system. Used to initialize the
ImGui library, render the ImGui user interface (UI) and process
all the UI events.

IndexBuffer Used by the OpenGL API for rendering. Its purpose is to create a
buffer which contains the necessary indices and their
corresponding data to render an entity.

Input Used to process keyboard and mouse input events.

InternalCalls A C# class to store all the internal calls to make it possible to
communicate between the core game engine and the scripting
engine.

Key Used to store and return the code of each key.

KeyPressed Checks if a key has been pressed.

KeyReleased Checks if a key has been released.

KeyTyped Checks if a key has been typed.

Layer Used for the frame timing control system. Its purpose is to
establish a definite order for the events, physics update, scripts
update and rendering each frame. It also supports a list to store
all the layers, keep track of them and iterate through them with
ease.

Log Used to create our own logging macros instead of using
“std::cout” or “std::printf”.

MouseButton Used to store and return the code of each mouse button.

MouseButtonPressed Checks if a mouse button has been pressed.

MouseButtonReleased Checks if a mouse button has been released.

MouseMoved Checks if the mouse has been moved.

MouseScrolled Checks if the mouse has been scrolled.

37

MyContactListener Implements the “b2ContactListener”. It is used to detect
collisions between scene entities, stores the IDs of entities that
collided and sends them to the scripting engine for further
processing. It supports functions for when two fixtures begin to
touch and cease to touch.

Project It is used to create different projects inside the game engine.

ProjectSerialization It is used to serialize and deserialize the game engine projects.

Renderer The renderer class. Calls the appropriate renderer initialization
and shutdown methods.

Renderer2D This class makes rendering possible. It initializes the Vertex
Arrays, Vertex Buffers and Index buffers. It also initializes the
Uniform Buffer, Textures and Shaders. Its main purpose is to
start a new scene every frame, collect all the necessary data, and
start rendering the scene entities in batches.

RendererOpenGL Used to initialize all the OpenGL API necessary methods and
variables.

Scene The class that represents the game scene. It is used to create
different scenes. It supports creating, deleting, duplicating and
finding entities. But its main purpose is to update physics and
scripts and render the correct scene depending on its state.

SceneSerialization It is used to serialize and deserialize a scene.

ScriptClass Used to store the C# classes as Mono classes. Supports invoking
and retrieving functions belonging to the C# classes through C++
such as “OnCreate()” and “OnUpdate()”.

ScriptConnector Connects the scripting engine with the game engine core. It
allows communication between C# scripts and the C++ core.

ScriptingEngine It is used for the scripting engine initialization. Furthermore, it is
used to shutdown the engine, load and unload the C# assembly. It
also provides the ability to add scripts to entities and makes it
possible to change their behavior through them.

Settings This class is used to initialize essential settings for the core
engine.

Shader Used by the OpenGL API for rendering. Its purpose is to read
GLSL shader files, create a shader program and upload uniforms
to the correct shader.

Texture Used by the OpenGL API for rendering. Its purpose is to create
and store textures from file paths. It also makes it possible to add
textures to UI buttons, folders, files and to entities.

38

Timer It is used in order to create a timer. It is also used as the timestep,
which is needed for the updates. It supports returning the elapsed
time and resetting the timer.

UniformBuffer Used by the OpenGL API for rendering. Its purpose is to create a
container which holds the necessary data related to camera
projection and view matrices for a shader program.

UUID It is used to create a universal unique identification (uuid) for
each entity in the scene.

VertexArray Used by the OpenGL API for rendering. It supports creating a
vertex array object, binding and unbinding it and linking vertex
buffer objects and index buffer objects to it.

VertexBuffer Used by the OpenGL API for rendering. Its purpose is to create a
buffer which contains the necessary vertices and their
corresponding data to render an entity.

Window The main application window. Also used to store the main
GLFW window and set the GLFW event callbacks.

WindowClose It is used to check if the window has been closed.

WindowResize It is used to check if the window has been resized.

39

6 Our Projects

6.1 Introduction

In this section, we thought that we should showcase and give a small explanation of some
of the games we have created using our game engine. We also thought that it would be a good
idea to start by showing the process of developing a game, focusing specifically on the creation
of a basic 2D Top-Down Dungeon game. With this guide we aim to cover everything about
making a simple 2D game using our engine and show how a straightforward yet highly
entertaining game can be developed with remarkable ease and efficiency. Figure 17 shows what
the end game will look like.

Figure 17. 2D Top-Down dungeon game

6.2 2D Top-Down Dungeon

The objective of the game is to stand on top of all three colorful rectangles while evading
potential threats from enemies. To win the game and survive, the player needs to navigate the
game environment skillfully and avoid getting attacked by more than five enemies. Failure to do
so will result in the player’s defeat and subsequent loss of the game.

6.2.1 Background

Immersive backgrounds are integral components of 2D games, including our top-down
dungeon game. In this section, we will discuss the simple process involved in creating a
captivating background for a game. To create the game floor, which serves as both the game
background and the platform on which the player and enemies will walk, we begin by creating a
game entity. We adjust the entity’s ‘X’ and ‘Y’ scale, and modify the ‘Z’ translation value to
make sure it renders behind other game objects. Figure 18 shows the entity creation, Figure 19
shows how to add a component to an entity, and Figure 20 the entity’s transform values.

40

Figure 18. Create a game entity

Figure 19. Add component to an entity

Figure 20. Background entity transform

As we have created our background, the next step is to add a texture to it to make it look
like a floor. To achieve this, we need to add a sprite renderer component to the entity. After
adding the component, we drag and drop a texture from the assets panel on top of the entity and
we give the texture a red-purple color to make the floor more dungeon realistic. The final step is
to increase the tile amount to a number that will make the background image more realistic.
Figure 21 shows the sprite renderer component of the background entity.

Figure 21. Background entity texture

6.2.2 Walls

The game world has multiple walls. There are 4 main exterior walls, which serve as a
boundary and encapsulate the game’s environment and then a lot more inside the game world to
confuse the player. For each wall of the game, we need to create a new entity in the hierarchy and
modify it according to our needs so it will look like Figure 22.

41

Figure 22. Game walls

After adjusting the entity transform we need to add the essential components with the
“Add Component” button. Those include:

● Sprite Renderer: To add the wall texture and the texture tile amount to the entity.
● RigidBody: To give the wall a physical body and make it possible to react to real-time

physics.
○ Type: Static, so the entity will stay still at all times.
○ Fixed Rotation: Unchecked, the entity is static so it will not rotate.
○ Fixed X/Y Axis: Unchecked, the entity is static so it will not move.
○ Use Gravity: Unchecked, the entity should not react to gravity forces.

● Box Collider: To give the wall a collider and make it possible to collide with the player
else the player would just pass through it.
○ Offset: Modify the position of the collider relative to the entity.
○ Size: Modify the entity’s collider size.
○ Density: Set the mass of a body. Higher density means a heavier body.
○ Friction: Determines the amount of resistance to motion between colliding objects.

Higher value means higher friction.
○ Bounciness: How much a body will bounce after a collision.
Figure 23 shows the final components of the game walls.

42

Figure 23. Game wall components

Subsequently, we follow the same steps to create and position the remaining outer and
inner walls of the game world.

6.2.3 Camera

To make it possible to play the game and visualize our progress, we must implement a
game camera. We chose to create 2 different cameras and give the user the ability to choose
which one they want to use while playing the game. The first camera is an orthographic camera.
It is used in order to capture the entirety of the game scene as shown in Figure 17, which allows a
comprehensive view of the game world. Figure 24 is used to show the orthographic camera
components.

Figure 24. Orthographic camera components

On the other hand, we have implemented a perspective camera for our second game
camera. This camera is locked on to the player and moves when the player moves. It is used in

43

order to make the game more difficult, as the user now will not be able to see the whole game
map. Figure 25 shows the perspective camera components.

Figure 25. Perspective camera components

For the camera component, we have the following values:
● Main: Checked, so the game will use this camera while being played.
● Camera: A menu to decide the camera type.
● Orthographic Camera:

○ Size: Size of the camera.
○ Near: The distance of the near clipping plane from the camera. The camera cannot

see entities closer than this distance.
○ Far: The distance of the far clipping plane from the camera. The camera cannot see

entities further than this distance.
● Perspective Camera:

○ FOV: The extent of the observable world that is seen at any given time.
○ Near: It determines how close the camera is to the scene.
○ Far: It determines how further the camera is from the scene.

● Fixed Aspect Ratio: Checked, so there is a consistent width-to-height ratio for the
camera’s viewport.
As it can be seen in the perspective camera components, to make it possible for the

camera to lock on the player and move with him, we had to write a script. We added a script
component, created a C# script and then searched through the list to find our script class and add
it to the entity. Figure 26 shows searching for the correct script.

Figure 26. Camera script

44

After finding the script, we need to write some code. We create a “PlayerDistance”
variable which will be used as the camera translation ‘Z’ value, so that the camera is always
“PlayerDistance” far from the player and we set it on the editor as already shown in Figure 25.
On the “OnCreate()” function when the camera gets created, we search for the player game
object. Then, every frame using the “OnUpdate()” method, if we have successfully found the
player entity, we set its ‘X’ and ‘Y’ translation values to the camera, so that the camera always
tracks the player. Code 14 shows the script written for the perspective camera while Figure 22 has
already depicted how the perspective camera will look like inside the game.

Code 14. Camera script

6.2.4 Player

To create the player entity, the majority of the steps remain consistent with the previous
instructions. However, certain modifications are necessary. These include:

● A script, so the player can move and change behavior when colliding with entities.
● The player’s texture to the sprite renderer component.
● The rigidbody type is dynamic so the player can move.

Figure 27 is used to show the player components.

Figure 27. Player components
45

As it can be seen in the figure 27, the player has a script in order to be able to move
around the game world. When initializing the player entity, we create some variables needed for
both the game and the player, like the player speed and lives. Then, in the “OnCreate()” method,
we retrieve the player transform and rigid body components, we also retrieve the transform of the
images and we search through the scene to find other needed game objects. More about the
images in Section 6.2.6. Code 15 is used to show the script written to initialize the player and
Code 16 shows the player “OnCreate()” function.

Code 15. Player script initialization

Code 16. Player OnCreate() method

Moreover, each frame we need to update the player’s behavior. In the “OnUpdate()”
method, the following functionalities are performed:

● Move the player:
○ Move the player using WASD by applying linear impulse to the entity.
○ Flip the player to always look at the correct direction

● Check for the player’s win or loss condition:
○ Make sure the player loses a life when gets hit.
○ Verify if the player has not yet achieved victory or suffered a loss.

● Display the appropriate win or loss image:
○ If the player has achieved victory or encountered a loss, present the corresponding

image by changing its translation and placing it at the middle of the game world.
● Halt player movement:

○ When the game is won or lost, cease the player’s movement.
46

○ Prevent further input or actions from affecting the player.

Code 17 shows the script written inside the “OnUpdate()” method to change the player
and game world behavior.

Code 17. Player OnUpdate() method

Finally, we need to check every frame for player collisions. If the player has collided
with one of the three winning rectangles, we need to store a value to represent the collision with
that rectangle, so we can use it in the “OnUpdate()” method to check if the player has won the
game or not. On the other hand, if the player has collided with an enemy, we again need to store
the collision in a variable, so we can use it in the “OnUpdate()” method to remove a life from the
player. Code 18 is used to show the script written inside the “OnCollisionBegin()” method.

Code 18. Player OnCollisionBegin() method
47

6.2.5 Enemies

To create the enemies entities, we follow the same steps as creating the player. The only
difference lies in the script and the texture of the enemy. Figure 28 is used to show the enemy
components.

Figure 28. Enemy components

The enemies have their own C# script. We again start by initializing some variables
needed for the enemy entities and then we invoke the “OnCreate()” method. Inside this method,
we retrieve and store the enemy’s transform and rigid body components as well as the player’s.
Code 19 shows the enemy initialization.

Code 19. Enemy script initialization

Then, each frame we need to update the enemy’s behavior. In the “OnUpdate()” method,
the following functionalities are performed:

48

● Move the enemy:
○ Make the enemy look at the player direction at all times
○ Calculate the enemy position relevant to the player position.
○ If their distance is lower than a fixed distance, move the enemy towards the player to

attack him.
● Kill the enemy:

○ If the player collides with an enemy, remove the enemy from the game world and
push the player backwards with a negative force.

Code 20 shows the script written inside the “OnUpdate()” method.

Code 20. Enemy OnUpdate() method

Finally, we need to check every frame for enemy collisions. If the enemy has collided
with the player, we need to store the collision in a variable, so we can use it in the “OnUpdate()”
method to kill the enemy and push the player. Code 21 is used to show the script written inside
the “OnCollisionBegin()” method.

Code 21. Enemy OnCollisionBegin() method

6.2.6 Victory

As we have made everything, the only thing left to do is to create the 3 colorful
rectangles, which are used as the places the player has to visit in order to win the game. For each
of the rectangle entities, we position them somewhere in the map and then we add a sprite
renderer component to give them a specific color. Figure 29 shows the components of one of the
end goals.

49

Figure 29. Goal components

Finally, somewhere outside of the camera view, we create and place 2 entities that are
used as our win or lose images. As the engine does not currently support showing and hiding a
game object, we will just place these entities outside the camera view, and when the game ends,
depending on the state (win or lose) we will move the corresponding entity to the middle of the
game world. Figure 30 is used to show what happens if the player manages to visit all the colorful
goals and win the game.

Figure 30. End of game

To make the game more fascinating we could add a script to each of the goals and when
the game starts, position both the goals, the player and the enemies to random locations inside the
map. To do that we just need to make sure that there is no wall in that position and then we can
set the entities transform.

We should note that the assets used for the player and enemy models as well as the wall
texture were all downloaded from the “Craftpix” website [147]. On the other hand, the “You
Win” image was downloaded from the “VHV.RS” website.

6.3 Alpha Testing - Other Projects

Following the development of each engine component, we conducted tests to ensure
optimal functionality and identify any potential issues. After most of the game engine parts were
developed, we carried out alpha testing by creating some scenes and games with it. So, to ensure
our game engine functions properly, we developed a variety of games and scenes designed as test
cases rather than products to publish. This approach is likely the most effective to find and

50

resolve bugs and issues, while also identifying potential features that might need to be
implemented and added to the engine. A good way to start is by creating a simple first game and
afterwards continue with more advanced tests like stress testing. Our strategy involved creating
games targeted at specific subsystems and features, such as testing the assets management
subsystem, testing if entity batch rendering works, and even if physics features work like
applying impulses to entities. To further motivate us, we gave ourselves a time limitation of just
one month to build as many games and scenes as we could while also solving issues, adding new
features, and improving the overall performance of the engine. The results of this alpha testing
served as critical feedback for us and our game engine. The next subsections are used to
showcase some of the projects, tests and improvements we did during the alpha testing.

6.3.1 Pong

We will start with the simplest game we developed, which was also the first game we
made, and it is none other than the classic game released by Atari: “Pong” [142]. Pong is as
simple as a 2D table tennis themed game could be. There are two players, four walls and one ball.
The objective of the game is to be the first one to score 11 points by hitting the back wall of the
opponent's paddle. To add our touch, we chose to implement it vertically instead of horizontally
as it can be seen in Figure 31.

Figure 31. Pong game

6.3.2 Football

The second game we made, was created to test the world gravity, as well as if the textures
given on entities worked as expected. With that goal in mind, we chose to create a fun two-player
game by the name of: “Sports Heads Football” [143]. This football themed game is very simple
as there are only two players and one ball. The objective is to be the first one to score 5 goals, but
this time, compared to Pong, the ball can bounce around the field and the players can both jump
and kick the ball, instead of just colliding with it and moving it around. The assets used for the
players and the ball were downloaded from “Vecteezy” [144] while the background is a texture
created by Qureshi and has been uploaded to the “Behance” website [145]. Figure 32 is used to
depict the football game.

51

Figure 32. Football game

6.3.3 Platform - Fighting Game

Our next game was inspired by the “Super Smash Bros” game series which were
published by Nintendo [146]. It is a basic platform fighting game which consists of multiple
platforms and two players. The objective of the game is to push the opponent outside of the game
screen so that they cannot return to the platforms. When the two players collide, they get pushed
back with a negative force, but each player can also attack the other and push them even further
back when hitting them. All the assets used in this game were downloaded from “Craftpix” [147].
In Figure 33 we present the platform game.

Figure 33. Platform game

6.3.4 Top-Down Race

Another thought we had was to test our collision system, some other physics forces like
the linear and angular velocity, and some of the features provided by the scripts of the scripting
engine. We chose to build a simple game with multiple colliders. To make it entertaining, we
thought that we should make a racing game. Its objective is to drive the car using the arrow keys,
from the start to the finish line without touching any of the walls. Every time the car collides with
a wall, the car position resets to the starting position. All assets used for this game were
downloaded from OpenGameArt [148]. Figure 34 shows a snapshot of the racing game we
developed.

52

Figure 34. Racing game

6.4 Bugs and Improvements

While testing the engine by creating the games mentioned above and some other scenes,
we made the following improvements and additions to our game engine:

● Physics features: While we did not add many features during the creation of our game
engine, we found most of them essential for our game development. By making use of
the functionality of our physics engine (Box2D), we were able to add gravity, entity
position and rotation freezing, entity forces and many more necessary features, enhancing
the realism and physics-based interactions within the games.

● Script features: By adding more features to the scripting engine, we managed to create a
dynamic and interactive menu in the user interface of the engine, where the developers
can now change the transform and other entity fields during both the development and
the playtime of the scene.

● Optimizing our editor: The editor interface underwent a significant revamp to improve
usability and make the game development process smoother. This includes changes such
as a more intuitive layout, improved navigation, and additional features to enable
efficient game development, editing and testing.
These optimizations were added to make our game engine more efficient and flexible. As

this paper is intended for someone who wishes to create their own custom engine, it is crucial not
to overlook this step, as it is essential to further improve the game engine and the products
developed by it. In Figure 35, we present an example of how the engine behaves when we tested
it by playing the “Platform - Fighting” game while also trying to cap the scene frames at 60 fps.

Figure 35. Trying to cap the frames of the Platform - Fighting game at 60fps

53

During the testing phase, we identified some issues and certain anomalies such as crashes
or non-desirable results. For example, the scene would crash if the end-user attempted to pause
the game while multiple physics calculations were occurring simultaneously, resulting in a
complete failure of the engine. Moreover, certain features would not work as expected, such as
physics collisions failing to calculate correctly causing errors to appear, and lines not rendering in
the correct layer. We have worked on fixing these problems and many more, but it is essential for
the end-users to further test the engine for any future improvements. Our future plans also
involve adding more subsystems and features to the engine, hoping to expand it and improve it
even more.

6.5 Future Expansions and Extensions

One crucial addition we want our engine to support is Audio. We plan on integrating
OpenAL Soft [149] which would make the overall game experience more immersive and
enjoyable. Additionally, we aspire to integrate one of the most important subsystems, an
“Animation” subsystem. Animated scenes, assets and characters can truly transform a game.
Furthermore, we plan on redesigning our “Assets Management” subsystem to improve it and
make it possible to import models from well-known graphics softwares like “Blender” and
“Autodesk Maya”. This expansion will provide game developers with greater flexibility when
including custom models into their games.

Moreover, we recognize the importance of “Text Rendering” in a game engine. Allowing
game developers to create game menus and other user interface elements like hearts for the
players’ lives or numbers for a game score, will enhance the overall user experience. We plan on
including a MSDF generator [150] to make text rendering possible. To further improve the
gaming experience, we are thinking of implementing a “Particle” subsystem. This subsystem will
make it possible to create effects like smoke, explosions, sparks and more, making the games we
will create more enjoyable. We also plan on redesigning our “Scene Management” subsystem.
Even though we currently can create, save and open a scene there are necessary features missing,
with the most important the scene transitions. Right now, it is not possible to transition between
different scenes or levels inside a game.

Finally, another important subsystem we want to integrate to the engine is the “Profiling”
subsystem. Profiling makes it possible to analyze both the performance of the engine and a
standalone game. This way we will be able to identify performance bottlenecks, optimize
resource usage, and improve the overall efficiency of the engine. We are thinking of integrating a
lightweight profiler library such as “Easy_Profiler” [151].

7 Limitations
The game engine presented was implemented by the first two authors in the context of

their Bachelor thesis under the supervision of the third author. The developers were finishing
their studies in Applied Informatics, but they had no prior experience in the field of game
programming and game engine development.

In addition to the aforementioned limitations, there is also a lack of extensive literature
and tutorials dedicated to building complete game engines from scratch. Even though there are
limited resources available, for those interested in learning more in-depth about game engine
development, we highly recommend exploring the ones we have presented in the related work
and throughout the presentation of the various subsystems of the game engine implemented. As
already mentioned in Section 2, these resources played a crucial role in expanding our knowledge

54

and providing guidance throughout the development of our engine. Without the information,
instructions and directions provided by these sources, we would have faced major obstacles in
our progress and the end product would not have been the same. Although the game engine
presented does not implement all the potential subsystems of a game engine, it is a functional
engine and the roadmap proposed for implementing it can be easily replicated by interested
readers.

It should also be noted that as outlined in Section 6, only the functionality of the engine
was checked through the development of applications designed as test cases. There has not been
any comprehensive metric testing, such as evaluations of code quality, coverage, or even
qualitative metrics. Even though we recognize the necessity of these assessments and we are
committed to conducting further testing in the future, by adding a profiling subsystem, to make it
possible to analyze both the performance of the engine as well as standalone games, we should
note that the main goal we had in mind while creating the game engine, was not to implement a
more efficient engine in comparison to others, but to provide a method of developing a game
engine and to validate the proposed methodology by leveraging free software.

Finally, as our engine supports physics calculations, and game scripting, making it
possible to real-time update entity behavior, which means that a wide range of 2D games could
be developed. We should mention though, that certain limitations affect the scope and features of
the games that can be created. Notably, the absence of an Audio subsystem results in a dull game
experience. Furthermore, without an Animation subsystem, we cannot create animated scenes
and assets, and as a Particle subsystem has not been implemented yet we also cannot create
special effects. Moreover, we cannot develop games with multiple levels as we do not have a
Scene management subsystem to make it possible to smoothly transition between scenes. Lastly,
the lack of a Text Rendering subsystem prevents the development of game menus and other
essential user interface elements.

55

8 Conclusion
In this paper, we have documented the development process of our own 2D game engine

and how it is possible for anyone else interested in the subject to create a custom one according to
their needs. Game engines are a topic that holds significant interest for game developers. Whether
driven by curiosity, dissatisfaction with existing engines, or a desire to avoid licensing costs, we
firmly believe that if someone is a game developer or aspires to become one, learning how the
subsystems of a game engine work and how they are tied together, can greatly benefit them in the
future.

Throughout this educational journey, we gained valuable and unique knowledge which
we hope to pass forward. We managed to understand what a game engine is, what are the
essential subsystems it requires to become fully functional, and which other additional
subsystems it could have, to offer further useful features and tools. Although we did not focus on
a specific subsystem for in-depth implementation, for example the rendering engine, we
intentionally pursued knowledge across all subsystems even if it meant using existing APIs and
libraries instead of implementing them ourselves. However, this approach will not be proved to
be any less educational and useful for someone who is interested in the subject and wishes to
create a similar or a completely different engine.

We have come to the conclusion that, even though developing a game engine from
scratch is a challenging and time-consuming project, it has proven to be a remarkable learning
experience. To anyone considering starting their own game engine development journey, we
encourage pursuing it. The knowledge and personal growth attained will create a rewarding
experience.

56

9 References
1. What is a Game Engine?. Available online: https://usv.edu/blog/what-is-a-game-engine

(accessed on 01 March 2023).
2. What is a Game Engine?. Available online: https://fullscale.io/blog/what-is-game-engine

(accessed on 10 March 2023).
3. Chernikov Y. What is a GAME ENGINE?. Available online: https://www.youtube.com/watch?v=vtWdgtMo1T4

(accessed on10 March 2023).
4. Making Your Own Video Game Engine: The Beginners Guide. Available online:

https://www.gamedesigning.org/learn/make-a-game-engine (accessed on 10 March 2023).
5. What is a Game Engine?. Available online: https://gamescrye.com/blog/what-is-a-game-engine

(accessed on 10 March 2023).
6. Waikar T. How I made a game engine from scratch?. Available online:

https://medium.com/the-virtual-diary/how-i-made-a-game-engine-from-scratch-bcacb2df0503
(accessed on 10 March 2023).

7. Serrano H. How does a Game Engine work? An Overview. Available online:
https://www.haroldserrano.com/blog/how-do-i-build-a-game-engine (accessed on 10 March 2023).

8. Halpern J. The What and Why of Game Engines. Available online:
https://medium.com/@jaredehalpern/the-what-and-why-of-game-engines-f2b89a46d01f
(accessed on 10 March 2023).

9. Violini R. What Is A Game Engine And How Does It Work?. Available online:
https://gamedevelopertips.com/what-is-a-game-engine-and-how-does-it-work (accessed on 10 March 2023).

10. The Complete Game Engine Overview. Available online:
https://www.perforce.com/resources/vcs/game-engine-overview (accessed on 10 March 2023).

11. Gregory, J. Game Engine Architecture, 3rd ed.; CRC Press: London, UK, 2018; 1240.
12. Thorn, A. Game Engine Design and Implementation, 1st ed.; Jones & Bartlett Learning: MA, USA, 2010; 594.
13. Bishop, L.; Eberly, D.; Whitted, T.; Finch, M.; Shantz, M. Designing a PC game engine. IEEE Computer

Graphics and Applications 1998, vol. 18, pp. 46-53.
14. Guana, V.; Stroulia, E.; Nguyen, V. Building a Game Engine: A Tale of Modern Model-Driven Engineering.

IEEE/ACM 4th International Workshop on Games and Software Engineering 2015, pp. 15-21.
15. Godot Engine. Available online: https://godotengine.org (accessed on 11 March 2023).
16. Bevy Engine. Available online: https://bevyengine.org (accessed on 11 March 2023).
17. OpenRA Engine. Available online: https://www.openra.net (accessed on 11 March 2023).
18. Pyxel Engine. Available online: https://github.com/kitao/pyxel (accessed on 11 March 2023).
19. Minetest Engine. Available online: https://www.minetest.net (accessed on 11 March 2023).
20. Ebitengine Engine. Available online: https://ebitengine.org (accessed on 11 March 2023)
21. PlayCanvas Engine. Available online: https://playcanvas.com (accessed on 11 March 2023).
22. Flame Engine. Available online: https://flame-engine.org (accessed on 11 March 2023).
23. GDevelop Engine. Available online: https://gdevelop.io (accessed on 11 March 2023).
24. Stride Engine. Available online: https://www.stride3d.net (accessed on 11 March 2023).
25. Game Engine Programming. Available online:

https://www.youtube.com/playlist?list=PLU2nPsAdxKWQYxkmQ3TdbLsyc1l2j25XM
(accessed on 12 July 2023).

26. Game Engine. Available online:
https://www.youtube.com/playlist?list=PLlrATfBNZ98dC-V-N3m0Go4deliWHPFwT
(accessed on 12 July 2023).

27. Coding a 2D Game Engine in Java. Available online:
https://www.youtube.com/playlist?list=PLtrSb4XxIVbp8AKuEAlwNXDxr99e3woGE
(accessed on 12 July 2023).

28. Tutorial: Create 2D Game Engine using C++ and SDL. Available online:
https://www.youtube.com/playlist?list=PL-K0viiuJ2RctP5nlJlqmHGeh66-GOZR_ (accessed on 12 July 2023).

29. Let's make an engine!. Available online:
https://www.youtube.com/playlist?list=PL7lh9ryRNHSIzqKzEdYPG94B0uvfqhHpb
(accessed on 12 July 2023).

30. Eberly, D. H. 3D Game Engine Design: A Practical Approach to Real-Time Computer Graphics, 2nd ed.; CRC
Press: London, UK, 2006; 1040.

57

https://usv.edu/blog/what-is-a-game-engine
https://fullscale.io/blog/what-is-game-engine
https://www.youtube.com/watch?v=vtWdgtMo1T4
https://www.gamedesigning.org/learn/make-a-game-engine/
https://gamescrye.com/blog/what-is-a-game-engine
https://medium.com/the-virtual-diary/how-i-made-a-game-engine-from-scratch-bcacb2df0503
https://www.haroldserrano.com/blog/how-do-i-build-a-game-engine
https://medium.com/@jaredehalpern/the-what-and-why-of-game-engines-f2b89a46d01f
https://gamedevelopertips.com/what-is-a-game-engine-and-how-does-it-work
https://www.perforce.com/resources/vcs/game-engine-overview
https://godotengine.org/
https://bevyengine.org/
https://www.openra.net/
https://github.com/kitao/pyxel
https://www.minetest.net/
https://ebitengine.org/
https://playcanvas.com/
https://flame-engine.org/
https://gdevelop.io/
https://www.stride3d.net/
https://www.youtube.com/playlist?list=PLU2nPsAdxKWQYxkmQ3TdbLsyc1l2j25XM
https://www.youtube.com/playlist?list=PLlrATfBNZ98dC-V-N3m0Go4deliWHPFwT
https://www.youtube.com/playlist?list=PLtrSb4XxIVbp8AKuEAlwNXDxr99e3woGE
https://www.youtube.com/playlist?list=PL-K0viiuJ2RctP5nlJlqmHGeh66-GOZR_
https://www.youtube.com/playlist?list=PL7lh9ryRNHSIzqKzEdYPG94B0uvfqhHpb

31. Bauchinger, M. Designing a Modern Rendering Engine. Master's Thesis, Vienna University of Technology,
Vienna, Austria, 2007.

32. Coding a 2D Physics Engine. Available online:
https://www.youtube.com/playlist?list=PLtrSb4XxIVbpZpV65kk73OoUcIrBzoSiO (accessed on 13 July 2023).

33. Gutekanst S. Let's build an Entity Component System from scratch. Available online:
https://devlog.hexops.com/2022/lets-build-ecs-part-1/ (accessed on 13 July 2023).

34. Colson D. How to make a simple entity-component-system in C++. Available online:
https://www.david-colson.com/2020/02/09/making-a-simple-ecs.html (accessed on 13 July 2023).

35. Learn C++. Available online: https://www.learncpp.com/ (accessed on 01 September 2022).
36. Learn-cpp.org. Available online: https://www.learn-cpp.org/ (accessed on 01 September 2022).
37. C++ Programming Course - Beginner to Advanced. Available online:

https://www.youtube.com/watch?v=8jLOx1hD3_o (accessed on 07 September 2022).
38. C++ FULL COURSE For Beginners (Learn C++ in 10 hours). Available online:

https://www.youtube.com/watch?v=GQp1zzTwrIg (accessed on 08 September 2022).
39. C++ Full Course for free. Available online: https://www.youtube.com/watch?v=-TkoO8Z07hI

(accessed on 09 September 2022).
40. UnityYAML. Available online: https://docs.unity3d.com/2023.2/Documentation/Manual/UnityYAML.html

(accessed on 14 April 2023).
41. What are AAA Games?. Available online: https://www.arm.com/glossary/aaa-games

(accessed on 17 April 2023).
42. What are the best cross-platform 3D graphics APIs?. Available online:

https://www.slant.co/topics/5346/cross-platform-3d-graphics-apis (accessed on 17 April 2023).
43. DirectX. Available online: https://en.wikipedia.org/wiki/DirectX (accessed on 17 April 2023).
44. White S., Hickey S., Bridge K., McClister C., Wojciakowski M. Windows game development guide. Available

online: https://learn.microsoft.com/en-us/windows/uwp/gaming/e2e (accessed on 28 April 2023).
45. White S., Jahiu D., Coulter D., Batchelor D., Jacobs M., Satran M. Graphics APIs in Windows. Available

online: https://learn.microsoft.com/windows/direct3darticles/graphics-apis-in-windows
(accessed on 28 April 2023).

46. Tuttle W. Defining the Next Generation: An Xbox Series X|S Technology Glossary. Available online:
https://news.xbox.com/en-us/2020/03/16/xbox-series-x-glossary (accessed on 28 April 2023).

47. Metal. Available online: https://developer.apple.com/metal (accessed on 17 May 2023).
48. Galvan A. Raw Metal. Available online: https://alaingalvan.medium.com/raw-metal-a64b861bcdeb

(accessed on 17 May 2023).
49. Metal (API). Available online: https://en.wikipedia.org/wiki/Metal_(API) (accessed on 17 May 2023).
50. Vulkan. Available online: https://en.wikipedia.org/wiki/Vulkan (accessed on 17 May 2023).
51. Vulkan. Available online: https://www.vulkan.org (accessed on 17 May 2023).
52. Vulkan. Available online: https://vulkan.lunarg.com/sdk/home (accessed on 17 May 2023).
53. Vulkan Driver Support. Available online: https://developer.nvidia.com/vulkan-driver

(accessed on 17 May 2023).
54. Seedhouse A. Nintendo Switch Supports Vulkan, OpenGL 4.5 And OpenGL ES 3.2. Available online:

https://www.nintendo-insider.com/nintendo-supports-vulkan-opengl-4-5 (accessed on 20 May 2023).
55. Strickland D. Nintendo Switch certified for Vulkan and OpenGL 4.5. Available online:

https://www.tweaktown.com/news/55537/nintendo-certified-vulkan-opengl-4-5 (accessed on 20 May 2023).
56. Palumbo A. Nintendo Switch Officially Supports Vulkan, OpenGL 4.5 & OpenGL ES. Available online:

https://wccftech.com/nintendo-switch-supports-vulkan (accessed on 20 May 2023).
57. OpenGL. Available online: https://www.opengl.org (accessed on 20 May 2023).
58. Platform Specific. Available online: https://www.khronos.org/opengl/wiki/Platform_Specific

(accessed on 20 May 2023).
59. White S., Coulter D., Batchelor D., Jacobs M., Satran M. OpenGL. Available online:

https://learn.microsoft.com/en-us/windows/win32/opengl/opengl (accessed on 20 May 2023).
60. About OpenGL for OS X. Available online:

https://developer.apple.com/documentation/GraphicsImaging/OpenGL (accessed on 20 May 2023).
61. Displaying graphics with OpenGL ES. Available online:

https://developer.android.com/develop/ui/views/graphics/opengl (accessed on 20 May 2023).
62. The Standard for Embedded Accelerated 3D Graphics. Available online: https://www.khronos.org/opengles

(accessed on 20 May 2023).

58

https://www.youtube.com/playlist?list=PLtrSb4XxIVbpZpV65kk73OoUcIrBzoSiO
https://devlog.hexops.com/2022/lets-build-ecs-part-1/
https://www.david-colson.com/2020/02/09/making-a-simple-ecs.html
https://www.learncpp.com/
https://www.learn-cpp.org/
https://www.youtube.com/watch?v=8jLOx1hD3_o
https://www.youtube.com/watch?v=GQp1zzTwrIg
https://www.youtube.com/watch?v=-TkoO8Z07hI
https://docs.unity3d.com/2023.2/Documentation/Manual/UnityYAML.html
https://www.arm.com/glossary/aaa-games
https://www.slant.co/topics/5346/cross-platform-3d-graphics-apis
https://en.wikipedia.org/wiki/DirectX
https://learn.microsoft.com/en-us/windows/uwp/gaming/e2e
https://learn.microsoft.com/windows/direct3darticles/graphics-apis-in-windows
https://news.xbox.com/en-us/2020/03/16/xbox-series-x-glossary
https://developer.apple.com/metal
https://alaingalvan.medium.com/raw-metal-a64b861bcdeb
https://en.wikipedia.org/wiki/Metal_(API)
https://en.wikipedia.org/wiki/Vulkan
https://www.vulkan.org
https://vulkan.lunarg.com/sdk/home
https://developer.nvidia.com/vulkan-driver
https://www.nintendo-insider.com/nintendo-supports-vulkan-opengl-4-5
https://www.tweaktown.com/news/55537/nintendo-certified-vulkan-opengl-4-5
https://wccftech.com/nintendo-switch-supports-vulkan
https://www.opengl.org
https://www.khronos.org/opengl/wiki/Platform_Specific
https://learn.microsoft.com/en-us/windows/win32/opengl/opengl
https://developer.apple.com/documentation/GraphicsImaging/OpenGL
https://developer.android.com/develop/ui/views/graphics/opengl
https://www.khronos.org/opengles

63. LOW-LEVEL 3D GRAPHICS API BASED ON OPENGL ES. Available online:
https://www.khronos.org/webgl (accessed on 20 May 2023).

64. WebGL: 2D and 3D graphics for the web. Available online:
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API (accessed on 20 May 2023).

65. Deveria A. WebGL - 3D Canvas graphics. Available online: https://caniuse.com/webgl
(accessed on 20 May 2023).

66. Iliev H. OpenGL vs Vulkan. Available online: https://thatonegamedev.com/cpp/opengl-vs-vulkan
(accessed on 26 May 2023).

67. Ullevig E. OpenGL vs Vulkan: What are the Key Differences?. Available online:
https://history-computer.com/opengl-vs-vulkan-what-are-the-key-differences (accessed on 26 May 2023).

68. Wenger K. Clearing Up Vulkan Misconceptions – Why Is It a Step Above OpenGL? Available online:
https://coreavi.com/clearing-vulkan-misconceptions-why-is-it-above-opengl (accessed on 26 May 2023).

69. Vries J. D. Learn OpenGL. Available online: https://learnopengl.com (accessed on 12 July 2023).
70. Overvoorde A. OpenGL - Introduction. Available online: https://open.gl (accessed on 12 July 2023).
71. Chernikov Y. Welcome to OpenGL. Available online:

https://www.youtube.com/playlist?list=PLlrATfBNZ98foTJPJ_Ev03o2oq3-GGOS2 (accessed on 12 July 2023).
72. Shah M. docs.GL. Available online: https://docs.gl (accessed on 12 July 2023).
73. Jorge Rodríguez. Docg.gl, Available online: https://docs.gl (accessed on 12 July 2023).
74. Vertex Shader. Available online: https://www.khronos.org/opengl/wiki/Vertex_Shader

(accessed on 29 May 2023).
75. Rendering Pipeline Overview. Available online:

https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview (accessed on 29 May 2023).
76. Fragment Shader. Available online: https://www.khronos.org/opengl/wiki/Fragment_Shader

(accessed on 29 May 2023).
77. Tukalo A. Introduction to Shaders. Available online: https://lightningchart.com/blog/introduction-to-shaders

(accessed on 29 May 2023).
78. Shader Compilation. Available online: https://www.khronos.org/opengl/wiki/Shader_Compilation

(accessed on 29 May 2023).
79. GlTexImage2D. Available online: https://registry.khronos.org/OpenGL-Refpages/es3.0/html/glTexImage2D

(accessed on 29 May 2023).
80. Krzeminski M. OpenGL Batch Rendering. Available online:

https://www.gamedev.net/tutorials/programming/graphics/opengl-batch-rendering (accessed on 29 May 2023).
81. Dear ImGui. Available online: https://github.com/ocornut/imgui (accessed on 25 August 2023).
82. Filesystem library. Available online: https://en.cppreference.com/w/cpp/filesystem

(accessed on 25 August 2023).
83. ImGuizmo. Available online: https://github.com/CedricGuillemet/ImGuizmo (accessed on 25 August 2023).
84. ImGui Extension Plus Imguizmo, Implot, Imnodes. Available online:

https://evergine.com/imgui-extension-imguizmo-implot-imnodes (accessed on 29 August 2023).
85. Physics engine. Available online: https://en.wikipedia.org/wiki/Physics_engine (accessed on 07 June 2023).
86. Physics engine. Available online: https://www.computerhope.com/jargon/p/physics-engine

(accessed on 07 June 2023).
87. Mousa H. 16 Open-source Physics Simulation Engine. Available online: https://medevel.com/os-physics-engine

(accessed on 07 June 2023).
88. Jolt Physics. Available online: https://github.com/jrouwe/JoltPhysics (accessed on 07 June 2023).
89. Bullet Real-Time Physics Simulation. Available online: https://pybullet.org/wordpress

(accessed on 07 June 2023).
90. Welcome to LiquidFun!. Available online: https://github.com/google/liquidfun (accessed on 07 June 2023).
91. Box2D. Available online: https://box2d.org (accessed on 07 June 2023).
92. Box2D Overview. Available online: https://box2d.org/documentation/index.html (accessed on 07 June 2023).
93. Hogan R. Local Gravity: How to Calculate Yours in 3 Minutes. Available online:

https://www.isobudgets.com/how-to-calculate-local-gravity (accessed on 02 September 2023).
94. Martin D. M. Mathematics for Game Development: What to Learn (And Why!). Available online:

https://www.matecdev.com/posts/math-for-game-development (accessed on 02 September 2023).
95. Goodman D. The Use of Mathematics in Computer Games. Available online: https://nrich.maths.org/1374

(accessed on 02 September 2023).
96. GLM. Available online: https://github.com/g-truc/glm (accessed on 02 September 2023).
97. MathFu. Available online: https://github.com/google/mathfu (accessed on 02 September 2023).

59

https://www.khronos.org/webgl
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API
https://caniuse.com/webgl
https://thatonegamedev.com/cpp/opengl-vs-vulkan
https://history-computer.com/opengl-vs-vulkan-what-are-the-key-differences
https://coreavi.com/clearing-vulkan-misconceptions-why-is-it-above-opengl
https://learnopengl.com
https://open.gl
https://www.youtube.com/playlist?list=PLlrATfBNZ98foTJPJ_Ev03o2oq3-GGOS2
https://docs.gl
https://docs.gl
https://www.khronos.org/opengl/wiki/Vertex_Shader
https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview
https://www.khronos.org/opengl/wiki/Fragment_Shader
https://lightningchart.com/blog/introduction-to-shaders
https://www.khronos.org/opengl/wiki/Shader_Compilation
https://registry.khronos.org/OpenGL-Refpages/es3.0/html/glTexImage2D
https://www.gamedev.net/tutorials/programming/graphics/opengl-batch-rendering
https://github.com/ocornut/imgui
https://en.cppreference.com/w/cpp/filesystem
https://github.com/CedricGuillemet/ImGuizmo
https://evergine.com/imgui-extension-imguizmo-implot-imnodes
https://en.wikipedia.org/wiki/Physics_engine
https://www.computerhope.com/jargon/p/physics-engine
https://medevel.com/os-physics-engine
https://github.com/jrouwe/JoltPhysics
https://pybullet.org/wordpress
https://github.com/google/liquidfun
https://box2d.org
https://box2d.org/documentation/index.html
https://www.isobudgets.com/how-to-calculate-local-gravity
https://www.matecdev.com/posts/math-for-game-development
https://nrich.maths.org/1374
https://github.com/g-truc/glm
https://github.com/google/mathfu

98. Rungta K. Entity Component System. Available online: https://www.guru99.com/entity-component-system
(accessed on 02 September 2023).

99. Entity component system. Available online: https://en.wikipedia.org/wiki/Entity_component_system
(accessed on 02 September 2023).

100.Newton C. Main Principles for Using ECS in Game Development. Available online:
https://bagogames.com/main-principles-for-using-ecs-in-game-development (accessed on 02 September 2023).

101.Mertens S. Building Games in ECS with Entity Relationships. Available online:
https://ajmmertens.medium.com/building-games-in-ecs (accessed on 02 September 2023).

102. Fox M. Game Engines 101: The Entity/Component Model. Available online:
https://www.gamedeveloper.com/programming/game-engines-ECS (accessed on 02 September 2023).

103. Chernikov Y. Entity Component System | Game Engine series. Available online:
https://www.youtube.com/watch?v=Z-CILn2w9K0 (accessed on 02 September 2023).

104. Entt. Available online: https://github.com/skypjack/entt (accessed on 02 September 2023).
105. Ragdoll Dynamics. Available online: https://ragdolldynamics.com/ (accessed on 02 September 2023).
106. Flecs. Available online: https://github.com/SanderMertens/flecs (accessed on 02 September 2023).
107. Patel M. A Guide to Event-Driven Architecture Pros and Cons. Available online:

https://solace.com/blog/event-driven-architecture-pros-and-cons (accessed on 05 September 2023).
108.Matthew R. A Student’s Take: Implementing Event Systems in Games and Using the Preprocessor. Available

online: https://www.linkedin.com/pulse/implementing-event-systems-games (accessed on 05 September 2023).
109.Nystrim R. Event Queue. Available online: http://gameprogrammingpatterns.com/event-queue

(accessed on 05 September 2023).
110. Kryvytskyi D. Event System [Game engine]. Available online: https://denyskryvytskyi.github.io/event-system

(accessed on 05September 2023).
111. Mathewson N., Khuzhin A., Provos N. libevent – an event notification library. Available online:

https://libevent.org (accessed on 05 September 2023).
112. Tor. Available online: https://www.torproject.org/ (accessed on 05 September 2023).
113. Chromium. Available online: https://www.chromium.org/Home/ (accessed on 05 September 2023).
114. Input System. Available online: https://docs.unity3d.com/Packages/inputsystem@1.5/manual

(accessed on 01 April 2023).
115. Input System. Available online: https://ezengine.net/pages/docs/input/input-overview

(accessed on 05 April 2023).
116. Input. Available online: https://topdown-engine-docs.moremountains.com/input (accessed on 05 April 2023).
117. GLFW. Available online: https://github.com/glfw/glfw/blob/master/include/GLFW/glfw3.h

(accessed on 05 April 2023).
118. Scripting. Available online: https://docs.unity3d.com/2023.2/Documentation/Manual/ScriptingSection

(accessed on 08 September 2023).
119. Blueprints Visual Scripting. Available online:

https://docs.unrealengine.com/5.2/blueprints-visual-scripting-in-unreal-engine
(accessed on 08 September 2023).

120.How to Start Learning Programming for Game Development. Available online:
https://intogames.org/news/getting-started-with--game-development (accessed on 08 September 2023).

121.Huebner R. Adding Languages to Game Engines. Available online:
https://www.gamedeveloper.com/programming/add-languages-to-game-engine
(accessed on 08 September 2023).

122.Anderson E. F. A Classification of Scripting Systems for Entertainment and Serious Computer Games.
Available online: https://core.ac.uk/download/pdf/9599349.pdf (accessed on 08 September 2023).

123.Visual Scripting - How Noodl was inspired by the world of game engines. Available online:
https://www.noodl.net/visual-scripting-world-of-game-engines (accessed on 08 September 2023).

124. Bay W. J. What is visual scripting, and how is it used to make video games?. Available online:
https://www.gameindustrycareerguide.com/how-is-visual-scripting-used (accessed on 08 September 2023).

125.What Is Visual Scripting & How It Works. Available online:
https://www.tabnine.com/blog/what-is-visual-scripting (accessed on 08 September 2023).

126.Unity Visual Scripting. Available online: https://unity.com/features/unity-visual-scripting
(accessed on 08 September 2023).

127. C Sharp (programming language). Available online:
https://en.wikipedia.org/wiki/C_Sharp_(programming_language) (accessed on 10 September 2023).

60

https://www.guru99.com/entity-component-system
https://en.wikipedia.org/wiki/Entity_component_system
https://bagogames.com/main-principles-for-using-ecs-in-game-development
https://ajmmertens.medium.com/building-games-in-ecs
https://www.gamedeveloper.com/programming/game-engines-ECS
https://www.youtube.com/watch?v=Z-CILn2w9K0
https://github.com/skypjack/entt
https://ragdolldynamics.com/
https://github.com/SanderMertens/flecs
https://solace.com/blog/event-driven-architecture-pros-and-cons
https://www.linkedin.com/pulse/implementing-event-systems-games
http://gameprogrammingpatterns.com/event-queue
https://denyskryvytskyi.github.io/event-system
https://libevent.org
https://www.torproject.org/
https://www.chromium.org/Home/
https://docs.unity3d.com/Packages/inputsystem@1.5/manual
https://ezengine.net/pages/docs/input/input-overview
https://topdown-engine-docs.moremountains.com/input
https://github.com/glfw/glfw/blob/master/include/GLFW/glfw3.h
https://docs.unity3d.com/2023.2/Documentation/Manual/ScriptingSection
https://docs.unrealengine.com/5.2/blueprints-visual-scripting-in-unreal-engine
https://intogames.org/news/getting-started-with--game-development
https://www.gamedeveloper.com/programming/add-languages-to-game-engine
https://core.ac.uk/download/pdf/9599349.pdf
https://www.noodl.net/visual-scripting-world-of-game-engines
https://www.gameindustrycareerguide.com/how-is-visual-scripting-used
https://www.tabnine.com/blog/what-is-visual-scripting
https://unity.com/features/unity-visual-scripting
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)

128.Warren G., Klonowski B., Pine D., Wagner B., Dykstra T., Lander R., Killeen S., Abraham I., Jawahar T.,
Sharkey K., Victor Y., Wenzel M., Pierce T., Coulter D., Chowdhury A.R., Card J. What is .NET? Introduction
and overview. Available online: https://learn.microsoft.com/en-us/dotnet/core/introduction
(accessed on 10 September 2023).

129. .Net. Available online: https://en.wikipedia.org/wiki/.NET (accessed on 10 September 2023).
130.Home repository for .NET Core. Available online: https://github.com/dotnet/core

(accessed on 10 September 2023).
131.Mono Project. Available online: https://www.mono-project.com (accessed on 10 September 2023).
132.Mono (software). Available online: https://en.wikipedia.org/wiki/Mono_(software)

(accessed on 10 September 2023).
133.Mono. Available online: https://github.com/mono/mono (accessed on 10 September 2023).
134.De George A. S., Schonning N., Coulter D., Bargaoanu L., Lee D., Wenzel M., Aymeric A., Dev A., Jones M.,

Hoffman M., Latham L., Shengjin Y., Pratt T., 2021. Best Practices for Assembly Loading. Available online:
https://learn.microsoft.com/dotnet/framework/deployment/assembly-loading (accessed on 10 September 2023).

135. Shpilt M. Understanding How Assemblies Load in C# .NET. Available online:
https://michaelscodingspot.com/assemblies-load-in-dotnet (accessed on 10 September 2023).

136.Nilsson P. Mono Embedding for Game Engines. Available online: https://nilssondev.com/mono-guide/book
(accessed on 13 September 2023).

137.Documentation. Available online: https://www.mono-project.com/docs (accessed on 13 September 2023).
138.Mono Documentation. Available online: http://docs.go-mono.com (accessed on 13 September 2023).
139.YAML. Available online: https://yaml.org (accessed on 13 September 2023).
140. JSON, Available online: https://www.json.org/json-en.html (accessed on 13 September 2023).
141. Cereal - A C++11 library for serialization. Available online: https://github.com/USCiLab/cereal

(accessed on 13 September 2023).
142. Pong. Available online: https://en.wikipedia.org/wiki/Pong (accessed 26 September 2023)
143. Sports Heads Football. Available online: https://www.twoplayergames.org/game/sports-heads-football

(accessed 26 September 2023)
144. Football PNG. Available online: https://www.vecteezy.com/free-png/football (accessed 26 September 2023)
145.Qureshi R.A. Soccer, football game ui/ux, stadium 2d design. Available online:

https://www.behance.net/gallery/76998715/soccer-football-game-uiux-stadium-2d-design/modules/447207145
(accessed 26 September 2023)

146. Super Smash Bros. Available online: https://en.wikipedia.org/wiki/Super_Smash_Bros.
(accessed 26 September 2023)

147. CraftPix. Available online: https://craftpix.net (accessed 26 September 2023)
148.Open Game Art. Available online: https://opengameart.org (accessed 26 September 2023)
149.OpenAl. Available online: https://github.com/kcat/openal-soft (accessed 26 September 2023)
150.Msdfgen. Available online: https://github.com/Chlumsky/msdfgen (accessed 26 September 2023)
151. Easy_Profiler. Available online: https://github.com/yse/easy_profiler (accessed 26 September 2023)
152. CRYENGINE 5.7 Long Term Support is here!. Available online:

https://www.cryengine.com/news/view/cryengine-5-7-long-term-support-is-here (accessed 07 November 2023)
153. CryEngine. Available online: https://en.wikipedia.org/wiki/CryEngine (accessed 07 November 2023)
154.Godot Engine. Available online: https://github.com/godotengine/godot (accessed 07 November 2023)
155.Unreal Engine. Available online: https://en.wikipedia.org/wiki/Unreal_Engine (accessed 07 November 2023)
156. Brodkin J. How Unity3D Became a Game-Development Beast. Available online:

https://www.dice.com/career-advice/how-unity3d-become-a-game-development-beast
(accessed 07 November 2023)

61

https://learn.microsoft.com/en-us/dotnet/core/introduction
https://en.wikipedia.org/wiki/.NET
https://github.com/dotnet/core
https://www.mono-project.com
https://en.wikipedia.org/wiki/Mono_(software)
https://github.com/mono/mono
https://learn.microsoft.com/dotnet/framework/deployment/assembly-loading
https://michaelscodingspot.com/assemblies-load-in-dotnet
https://nilssondev.com/mono-guide/book
https://www.mono-project.com/docs
http://docs.go-mono.com
https://yaml.org
https://www.json.org/json-en.html
https://github.com/USCiLab/cereal
https://en.wikipedia.org/wiki/Pong
https://www.twoplayergames.org/game/sports-heads-football
https://www.vecteezy.com/free-png/football
https://www.behance.net/gallery/76998715/soccer-football-game-uiux-stadium-2d-design/modules/447207145
https://en.wikipedia.org/wiki/Super_Smash_Bros
https://craftpix.net
https://opengameart.org
https://github.com/kcat/openal-soft
https://github.com/Chlumsky/msdfgen
https://github.com/yse/easy_profiler
https://www.cryengine.com/news/view/cryengine-5-7-long-term-support-is-here
https://en.wikipedia.org/wiki/CryEngine
https://github.com/godotengine/godot
https://en.wikipedia.org/wiki/Unreal_Engine
https://www.dice.com/career-advice/how-unity3d-become-a-game-development-beast

