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Περίληψη 

Ο στόχος της παρούσας διπλωματικής εργασίας είναι να προτείνει ένα απλό αλλά ισχυρό μοντέλο 

το οποίο θα μπορεί να χρησιμοποιηθεί για την πρόβλεψη της παραγόμενης ηλιακής ενέργειας στα 

πλαίσια των αγορών ενέργειας. Χρησιμοποιώντας μετεωρολογικά δεδομένα και ιστορικά 

δεδομένα ηλιακής ενέργειας από 1/1/2018 έως και 31/12/2021, ένα Νευρωνικό Δίκτυο 

εκπαιδεύτηκε για να δημιουργεί επαναλαμβανόμενες ημερήσιες προβλέψεις ενός βήματος προς 

το μέλλον σχετικά με την ηλιακή ενέργεια που θα παραχθεί από ένα φωτοβολταϊκό πάρκο. Για να 

αξιολογηθεί το μοντέλο, η ακρίβεια των προβλέψεων του Νευρωνικού  Δικτύου συγκρίνεται με 

προβλέψεις που προκύπτουν από ένα μοντέλο τυχαίου περιπάτου, ένα μοντέλου κινητού μέσου 

όρου και ένα μοντέλο πολλαπλής γραμμικής παλινδρόμησης. Το Νευρωνικό Δίκτυο παρουσιάζει 

μεγαλύτερη ακρίβεια σε σχέση με το μοντέλο τυχαίου περιπάτου και το μοντέλο κινητού μέσου 

όρου και παρόμοια ακρίβεια σε σχέση με το μοντέλο γραμμικής παλινδρόμησης. Έπειτα, η 

ακρίβεια των μοντέλων αξιολογείται σε διαφορετικά πλαίσια αγορών ενέργειας. Τα μοντέλα 

αξιολογούνται ανάλογα με το εισόδημα που δημιουργούν για τους παραγωγούς ενέργειας 

βασιζόμενα στην ενέργεια η οποία δεσμεύεται στην Αγορά Επόμενης Μέρας και στα κόστη 

Εξισορρόπησης της Αγοράς Εξισορρόπησης. Παρατηρείται πως σε ένα πλαίσιο αγοράς με μία 

Τιμή Εξισορρόπησης, όπως η ελληνική αγορά ενέργειας, ένα λιγότερο ακριβές μοντέλο μπορεί να 

οδηγήσει σε μεγαλύτερα εισοδήματα για τους παραγωγούς, υπό συγκεκριμένες συνθήκες. 

Ωστόσο, όταν τα μοντέλα εξετάζονται σε ένα πλαίσιο αγοράς με δύο Τιμές Εξισορρόπησης, είναι 

εμφανές πως τα πιο ακριβή προβλεπτικά μοντέλα (στην προκειμένη περίπτωση το Νευρωνικό 

Δίκτυο και η γραμμική παλινδρόμηση) εξασφαλίζουν υψηλότερα κέρδη (ή χαμηλότερα κόστη 

εξισορρόπησης) για τους παραγωγούς ηλιακής ενέργειας.  

Λέξεις κλειδιά: Πρόβλεψη Ηλιακής Ενέργειας, Φωτοβολταϊκά, Αγορές Ενέργειας, Τιμή 

Εξισορρόπησης, Ανάλυση Σφάλματος.   
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Abstract 

The aim of this thesis is to propose a simple but robust forecasting model that can be used for solar 

power forecasting in the context of energy markets. Utilizing meteorological data and historical 

values of PV (photovoltaic) power spanning from 1/1/2018 to 31/12/2021, an ANN model was 

trained to generate recursive one step ahead daily predictions, on an expanding window, of the PV 

power that a solar power plan will generate. To evaluate the model, the forecasting accuracy of the 

ANN is then benchmarked against the Persistent Model, a three-day Moving Average and a 

Multiple Linear Regression model. The ANN is found to outperform the Persistent Model and the 

Moving Average and to perform similarly to the Linear Regression, as far as statistical evaluations 

are concerned. After that, the accuracy of these models is evaluated in different frameworks of 

energy markets. The models are evaluated based on the income they generate for the producers 

depending on the energy pledged on the Day Ahead Market and the Imbalance fees of the 

Imbalance Market.  Ιt is found that in a Single Imbalance Price energy market, like the Greek one, 

a less accurate forecasting model can lead to higher profits for the energy producers under certain 

circumstances. On the other hand, when the models are evaluated in a Dual Imbalance Price energy 

market framework, it is found that the most accurate forecasting models (in this case the ANN 

model and the Regression model) generate higher profits (or lower imbalance fees) for the energy 

producers.  

Keywords: Solar Power Forecasting, PV, Electricity Markets, Imbalance Price, Error Analysis. 
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Chapter 1 

Introduction 

 

Global warming and energy crises in recent decades have led to the rapid development of clean 

renewable energy sources (RES). It is now evident that if the usage of fossil fuels is maintained at 

the current rate, these sources of energy will be quickly depleted, and their continued usage will 

lead to even greater environmental deterioration. Moreover, fossil fuel sources are located in 

specific parts of the world with few countries controlling a significant portion of their production. 

Even though energy markets (mostly oil) were relatively stable for the so called “golden era” 

(Smith, 2009), the years from 1874 to 1974, recent geopolitical tension and conflicts have led to 

unstable prices with grave consequences for the countries heavily dependent on importing fossil 

fuels. Even more recently, with the Russian invasion of Ukraine, the issue of energy security for 

many fossil fuel importing countries has been raised (Prisecaru, 2022). All these factors have led 

to an increased interest in the research and development of renewable energy sources, with solar 

power being one of the most promising, mainly due to its potential and availability.  

Solar energy is the radiant energy of the sun. Sun generates enormous amounts of electromagnetic 

energy from the fusion of hydrogen gas that takes place in its surface. Solar power plants utilize 

this energy to produce electricity. Currently there are two types of solar power plants: solar thermal 

systems and photovoltaic plants. Solar thermal technology utilizes sunlight for heating water which 

produces steam. Then, the steam is used to rotate turbines in power plants. This technology has 

been implemented mostly in Spain and USA (Gonzalo et al., 2019). The great disadvantage of this 

technology is that it requires large facilities in order to be effective. On the other hand, 

photovoltaics (PV) utilize sunlight to activate free electrons in semiconductors embedded on 

panels in order to create electric charge. These panels can be installed in open spaces of all sizes, 

they can even be integrated into buildings, cars or create huge solar power plants. Over the last 

decades PVs have been widely adopted and their demand has increased substantially. One of the 

main reasons that has led to the significant growth of PV power in recent years, is the constant 

technological improvements. The state-of-the-art PV panels are cheaper and more efficient than 

the older models, while at the same time being more modular and versatile in their installation, 

requiring less maintenance, and having a longer service life (Raza et al, 2016).  



Malataras Konstantinos Forecasting solar power generation in energy markets. 
 

2 

 

Due to the constantly increasing popularity of PVs, PV generated power is reaching higher levels 

of penetration in the power grid. However, the generation of PV power depends on unpredictable 

meteorological factors such as solar irradiance, temperature, humidity etc. Furthermore, the output 

of a PV system constantly and dynamically changes due to the variability of climate factors. 

Therefore, the accurate forecast of the energy production of a PV system is inherently challenging. 

The unpredicted flow of PV power (either a surplus or a deficit)  into the power grid can adversely 

affect the stability and the scheduling of the power grid and cause significant economic losses 

(Ahmed & Khalid, 2019). On the other hand, an accurate forecast of the PV power generated will 

reduce the uncertainty and volatility that is introduced to the system, improve system stability, and 

power quality and possibly lead to greater adoption of PV systems. The above have led to an 

increased interest from researchers, in the past decade, in addressing this challenging task.  

Two other factors have recently intensified the need for accurate PV energy generation forecasting. 

One of them is the political commitments that have been made by different countries, according 

to global agreements, to address climate change. The most important of these agreements is the 

Paris Agreement, signed in 2015, where the signing parties pledged to a slower rate of temperature 

increase and a carbon neutral world by the second half of the century. One very efficient way to 

eliminate the carbon emissions of fossils fuels, leading to the slower increase of global temperature 

and carbon neutrality, would be to replace them with renewable energy sources, such as solar. 

However, for solar power to achieve greater penetration and adoption, it has to become more 

reliable and predictable, leading to an increased need for enhanced forecasting. 

The other factor that has led to a growing demand for accurate PV power forecasting is the 

liberalization of electricity markets. In modern electricity markets, energy producers are pledging 

their estimated energy production for the next day, in the Day-Ahead market, effectively locking 

in a price for the specified volume. If the prediction is significantly flawed the system operator has 

to utilize another energy source to immediately compensate for the deviation from the declared 

energy, resulting in increased cost for the system. In these cases, a penalty fee is often required 

from the producer to cover the increased costs of the system. This is a significant issue for solar 

energy producers since their estimated output is difficult to determine. This is one significant factor 

that has led to substantive research in optimizing PV power forecasting, with many researchers 
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supporting that increases in forecasting accuracy can have significant economic effects on the 

revenue of solar power producers (Zhang et al., 2015; De Giorgi et al., 2015). 

The scope of this thesis is twofold. Firstly, to propose a simple but accurate forecasting model 

which will attempt to predict the next day’s PV energy so that a PV power producer can utilize 

this prediction on their participation in energy markets. Secondly, to evaluate this predicting model 

in the context of energy markets and especially regarding the income of the PV producer that will 

be generated by the use of this model and the imbalance fees that the inaccuracy of this model will 

impose on the PV power producer’s income.  

The rest of this thesis is organized as follows. In Chapter 2 a review of the literature regarding the 

way the PV power forecasting has been developed is presented. This section deals with the 

different factors that affect the forecasts as well as with the different models that have been 

proposed. Afterwards, Chapter 3 presents and analyzes the data utilized in this research and the 

different data sources from which the data were derived.  In Chapter 4, the methodology followed 

throughout this research is presented outlining the ANN model proposed, the benchmarking 

process and the evaluation of the forecasting errors in the context of energy markets. In Chapter 5 

the results of the forecasting effort are presented and discussed. Finally, in Chapter 6 some general 

remarks are presented along with the limitations that hindered this research. 
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Chapter 2 

Literature Review 

 

As it is presented in the previous chapter, there is a growing interest in accurately forecasting PV 

generated power, which has led to rich literature. In this chapter, the most commonly used methods 

for PV power forecasting will be presented. The first section of this chapter follows the steps of 

the researchers creating forecasting PV power models. Firstly, the different input variables that 

have been used in literature are discussed. Secondly, the different forecasting horizons that 

researchers utilize in their forecasts are presented. Lastly, the ways they evaluate their models are 

introduced. In the second section of the chapter the different categories of models that have been 

used in literature are presented and the individual models are discussed.  

2.1. Input selection for the PV power forecasting models  

The data used as input to a forecasting model has a direct influence on its prediction accuracy. 

Improper input selection can lead to forecast errors, delays, costs, and computational complexity. 

Under these circumstances, low accuracy rates can appear even for highly capable forecasting 

models (Kilkenny & Robinson, 2018). 

As it is previously presented, solar energy is generated from the sun in the form of solar irradiance. 

The PV panels are comprised of semiconductors that convert solar radiance to electricity. Thus, 

the power that will be generated from the PV system is greatly dependent on solar radiance. 

Moreover, other meteorological observations, such as atmospheric temperature, solar panel 

temperature, humidity, wind speed and direction have been used as inputs for forecasting the PV 

power output.  

The combination of meteorological parameters that are used depends on the geographical location 

and the local climate, since the same meteorological observation can have different impact on 

different geographical locations. As a result, it can be safely assumed that the correlation of the 

different weather observations and the PV power output will vary across different locations. 

However, the correlation of the inputs and output is crucial for the performance of a forecasting 

model. In this case, the correlation of each input is calculated, and only the strongly (positively or 
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negatively) correlated input variables are used as input to the forecasting models, while the weakly 

correlated variables should be disregarded. 

Literature (De Giorgi et al., 2014; Chen et al., 2011) clearly supports the existence of a remarkably 

strong correlation between PV power output and solar radiance, compared to other meteorological 

variables. As far as the temperature is concerned, research findings are mixed. Some researchers 

(Chen et al., 2011) suggest that a strong correlation exists between ambient temperature and PV 

power output, while others (Das et al., 2018) indicate a weak correlation between them.  

Other meteorological inputs such as wind speed, have also been studied regarding their correlation 

the PV power output. The linkage between wind speed and PV output may not be so obvious. 

However, wind speed is important since it can mitigate the heat and reduce the PV cells 

temperatures. It is important to note that the efficiency of PV panels depends on the temperature 

of the panel (the correlation between them is negative) which rises during operation, due to the 

absorption of radiation. Thus, both the wind speed and the cell temperatures should be reviewed. 

Researchers (Raza et al., 2016; Ahmed et al., 2020) have studied the correlation between wind 

speed and PV power output and found it to be positive but weak. Regarding the temperature of PV 

panels Schwingshackl et al., (2013) and Ting-Chung & Hsiao-Tse (2011) have found it to be 

strongly correlated with PV power generation. 

During the design of a forecasting model of PV power generation, one could be tempted to use a 

large number of input vectors, in order to increase its accuracy and performance. However, at the 

same time, the computational cost and the model complexity will also be increased. Therefore, the 

utilization of correlation during the design of a forecasting model, in order to achieve an optimal 

number of inputs, is crucial, as it has been pointed out in literature (Ahmed et al., 2020). 
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2.2. Forecasting horizon 

The forecasting horizon can be defined as the time period between the actual time of prediction 

and the time that the prediction will take effect. Researchers have created three categories of the 

forecasting horizon for PV power forecasting: short-term, medium-term, long-term (Das et al., 

2018). 

i) Short term horizon  

This is the most popular and most researched forecasting horizon, since it is quite useful in 

different environments, such as the electricity markets (economic load dispatch and power system 

operation-balancing) and renewable energy integrated power systems management. Typically, the 

short-term horizon is between 30 and 360 minutes (Ren et al., 2015), however this range has been 

extended by some, to include ranges of one to several hours, one day or even up to one week as 

short-term forecast horizon (Das et al., 2018).  

ii) Medium term horizon 

Medium term horizon usually covers the span between 6 and 24 hours (Ren et al., 2015). However, 

a few researchers consider one day, one week and up to a month as part of this category. This 

horizon is used in the planning and maintenance scheduling of power systems. 

iii) Long term horizon 

The mark that distinguishes the long-term horizon from the medium-term one is the one day (Ren 

et al., 2015). Forecasts that predict outcomes more than 24 hours in advance are categorized as 

long-term. Similar to the cases presented above, different definitions of this horizon have been 

given, with some researchers categorizing periods from one month to one year as long-term (Das 

et al., 2018). These horizons are utilized in the planning of long-term power generation, 

transmission, and distribution, as well as for researching seasonal trends (Han et al., 2019). 

However, these forecasting models have reduced accuracy, since weather fluctuations, in such 

long time periods into the future, cannot be accurately predicted. 

There are a great number of studies that research the impact of the forecasting horizon on the 

models’ accuracy. Lipperheide et al. (2015) studied the performance of a PV power forecasting 

model by keeping the other parameters constant and altering the forecasting horizon. The RMSE 
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of the model fell to 3.2 % at 20 seconds forecasting, from 15.5% at 180 seconds. Lonji et al. (2013) 

also concluded that the accuracy of a PV forecasting model varied with the changes in the 

forecasting horizon. Therefore, the forecasting horizon must be taken into consideration before 

designing the appropriate forecasting model. 

2.3. Forecasting model performance evaluation 

In general, performance estimation is essential for evaluating a model’s forecasting ability. 

Specifically, since a great amount of power produced from PV power systems has been introduced 

to the grid, the balance and stability of the grid system is dependent on the ability of the PV 

producers to correctly forecast their output and commit it to the grid. The grid will face imbalances 

if the provided energy is either inadequate or more than the predicted amount. Consequently, the 

accuracy of PV power forecasting models is essential for ensuring grid stability and balance as 

well as the further adoption of PV power generation.  

The evaluation of the models’ accuracy presented in literature is based on various evaluation 

metrics. These standardized performance measures include Mean Square Error (MSE), Mean 

Absolute Error (MAE), Mean Absolute Percentage Error (MAPE) etc. and are presented in the 

following paragraphs. 

Mean square error (MSE) 

Mean square error is a measurement of the average of the squared errors of a forecasting procedure. 

Due to the errors being squared MSE is always greater or equal to zero, with the closer being to 

zero the better the accuracy of the predictive model. The MSE is calculated by: 

 
𝑀𝑆𝐸  = ∑

(𝑦̂𝑖   − 𝑦𝑖)2

𝑛

𝑛

𝑖=1

 (2.1) 

where 𝑦̂𝑖 the predicted solar energy on day i and 𝑦𝑖 the actual energy generated. 

Root Mean Square Error (RMSE) 

RMSE calculates the mean value of the error by considering the square root of the difference 

between the forecasted variable and the actual observation. RMSE is nothing more than the square 

root of MSE that was presented in the above paragraph. Same as MSE, RMSE is always non- 

negative, and the lower its value the better the accuracy of the model. However, RMSE can be 
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used to evaluate models utilizing the same dataset. It cannot be used to compare models that use 

different datasets as inputs because RMSE is scale dependent. RMSE is calculated by: 

 

𝑅𝑀𝑆𝐸  =  √∑
(𝑦̂𝑖   − 𝑦𝑖)2

𝑛

𝑛

𝑖=1

 (2.2) 

 

Normalized Root Mean Square Error  

In order to address the barrier of RMSE mentioned above, different methods of normalization are 

proposed in literature. The most popular are: 

 
𝑁𝑅𝑀𝑆𝐸 =  

𝑅𝑀𝑆𝐸

𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛
 (2.3) 

 

where 𝑦𝑚𝑎𝑥 and 𝑦𝑚𝑖𝑛 represent the range of the dataset. 

 
𝑁𝑅𝑀𝑆𝐸 =  

𝑅𝑀𝑆𝐸

𝑦̅
 (2.4) 

 

where 𝑦̅ is the mean of the variable y. 

Mean Absolute Percentage Error (MAPE) 

MAPE is used to evaluate the predicting models’ accuracy by calculating the deviation of the 

predicted value from the actual value as a percentage. MAPE can be calculated from the formula 

below:  

 
𝑀𝐴𝑃𝐸 =  

1

𝑛
∑ |

𝑦̂
𝑖

− 𝑦
𝑖

𝑦
𝑖

|

𝑛

𝑖=1

 (2.5) 

 

Even though these metrics have been widely used in literature some researchers have suggested 

that the exclusive use of these measures for the performance evaluation of models is not sufficient 

(Ahmed & Khalid, 2019). They propose that each model’s accuracy should be evaluated based on 
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the domain for which the forecast has been made. These domains include economic dispatch, 

optimal energy storage, profit maximization for energy market stakeholders and optimal reserve 

size. Since in these domains the forecasting error can have significant economic effects on 

stakeholders a simple statistical evaluation of a model is not enough, and other processes have to 

be used. In these cases, Monte Carlo simulations are often utilized in order to evaluate the models’ 

performance (Doga et al., 2016; Haessig et al., 2015; Ortega-Vasquez & Kirschen, 2008). In other 

cases, the forecasting errors are incorporated in new models that lead to improved economic results 

for stakeholders (Kaur et al., 2016; Howlader et al., 2015). 

2.4. Classification of Models 

Several modeling approaches have been utilized for PV power generation forecasts. These 

methods can be grouped and categorized into the five major categories that are presented below.  

2.4.1 Persistence model 

The persistence model is an elementary forecasting model, mainly used as a benchmark for other 

forecasting models. In this model, the forecasted output of the next day is assumed to remain the 

same as the day before. The forecast output for the next day can be described by the equation 

below: 

 𝑃̂𝑡   =  𝑃𝑡−1 (2.6) 

 

where 𝑃̂𝑡  is the forecasted generated power, and Pt-1 is the power generated on the previous day. 

This model is usually used for short-term forecasting, especially in the one-hour time horizon. The 

accuracy of this model depends greatly on the stability of the weather conditions. If the weather is 

stable enough, the output of the previous day is a reliable indicator of the power that will be 

generated on the next day. However, as the time horizon of the forecast increases, the 

unpredictability of the weather conditions increases as well, leading to a significant decrease of 

this model’s accuracy (Perez et al., 2018).  

2.4.2 Physical models 

Physical models involve meteorological observations of the lower atmosphere, creating a 

numerical weather prediction (NWP) model consisting of “discretized conservation equations of 
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mass, momentum, energy and other fundamental principles of physics” (Zhao et al., 2016). These 

models are usually used for long-term forecasting, in which case they usually outperform pure 

statistical forecasts (Cassola & Burlando, 2012). These models are further distributed into two 

subcategories based on their scale: mesoscale models and global models. Mesoscale models can 

process atmospheric observations for limited geographical areas such as regions, continents, or 

countries while global models can provide forecasts on a global scale. For the creation of such 

models, weather databases are needed. There are currently about 15 weather information providers 

that are active in data collection, which are usually managed by state organizations (US NOAA, 

ESMWF, etc.) (Ahmed at al., 2020). NWP models can accurately forecast weather conditions for 

more than 15 days ahead (Lorenz et al., 2012) using equations to capture the physical state and 

dynamic nature of the atmosphere. However, as is the case with the persistence model, NWP 

models produce better results when the weather conditions remain relatively stable (Soman et al., 

2010). When the weather conditions change abruptly, less accurate forecasts are more likely to 

occur.  

2.4.3 Statistical models  

Statistical forecasting models utilize historical and real time generated data. They require fewer 

inputs than Deep Learning models and show better accuracy in short-term forecasting compared 

to NWP models (Ahmed et al., 2020). These models utilize mathematical equations to interpret 

patterns and extract correlations from the historical data provided. Usually, the algorithms consist 

of curve fitting, moving averages and autoregressive models (Firat et al., 2010). The way these 

models minimize error is by estimating the difference between the actual observed past value and 

the predicted value of the forecasting model and trying to reduce it. Statistical models proposed in 

literature are exponential smoothing, regression method, autoregressive moving average (ARMA) 

and autoregressive integrated moving average (ARIMA).  

Exponential smoothing 

In the exponential smoothing method or exponentially weighted moving average (EWMA) 

weights are allocated to the historical data, which then are exponentially reduced from the most 

recent observation to the oldest. In this method greater importance is given to the most recent data 

compared to the older ones. This method was first proposed by Brown (1957) and was later 

modified by Holt in 1957 and Winter in 1960. Therefore, it is now called the Holt-Winter's method 
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(Tratar & Strmčnik, 2016). The most used equation to describe this model is the one presented 

below:  

 𝛶𝑡+1 = 𝑎𝑌𝑡 + (1 − 𝑎)𝑌̂𝑡 = 𝑌̂𝑡 + 𝑎(𝑌𝑡 − 𝑌̂𝑡) (2.7) 

 

where 𝑌𝑡 is the current observation, 𝑌̂𝑡 is the predicted value and 𝑎 is the smoothing constant which 

remains between 0 and 1. Therefore, the EWMA indicates that the forecasted output equals to the 

sum of the last forecasted value and the error adjusting factor. Similar to the simple moving 

average method, the EWMA method is not appropriate for time-series with trends, since if a trend 

exists the EWMA forecast would lag behind the trend. Gumus and Kilic (2018) used an EWMA 

process to accurately predict the solar radiance and sunlight duration of the coming years for a 

specific region in Turkey. 

Regression method 

The regression method is a statistical model used to estimate the relationship between explanatory 

and dependent variables. In this model the dependent variable is forecasted by a function that is 

calculated from the known explanatory variables. In the case of PV power forecasting the 

forecasted power is considered the dependent variable while the meteorological variables are 

considered the explanatory variables. Verna et al., (2016) forecasted the PV power generation, 

including three different regression models: linear, logarithmic, and polynomial regressions. The 

study found linear relationships between temperature, cloud coverage, elevation angle and 

azimuthal angle and the PV power output while for the wind speed and humidity no linear 

relationship was found. Moreover, the only variable which did not seem to have a logarithmic 

relationship with the generated power was cloud coverage. As presented in the study above, a 

complex non-linear mathematical model and a great number of explanatory variables are required 

to design a regression-based forecasting model, which constitutes the weakness of this method.  

Autoregressive moving average (ARMA) 

ARMA is a statistical model frequently used in forecasting. The model is a combination of the AR 

(autoregression) and MA (moving average) models, and it has been examined by many researchers 

(David et al., 2016; Huang et al., 2012; Mora-Lopez & Sidrach-de Cardona, 1998) in solar power 
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forecasting and it has consistently presented a high accuracy. The mathematical expression that is 

used to describe the model is as follows: 

 
𝑋(𝑡) = ∑ 𝛼𝑖

𝑝 

 𝑖=1

𝑋(𝑡 − 𝑖) + ∑ 𝛽𝑗

𝑞 

 𝑗=1

𝑒(𝑡 − 𝑗) (2.8) 

 

where the predicted power generation is depicted as the X(t) function which is a combination of 

the AR and MA models. Therefore, p and q indicate the order, αi and βj are the coefficients of the 

AR and MA models respectively and e(t) is the randomly generated white noise which is not 

corelated with the model's predictions. ARMA models are quite flexible and can be used to 

describe several different time series by adjusting the orders (p and q). The main reason ARMA 

models are so frequently used is their ability to extract the statistical properties of the data. 

However, this approach requires the time-series data to be static, thus creating a significant 

disadvantage. Huang et al. (2012) forecasted future solar power generation in California, based on 

solar radiance data, utilizing the ARMA model, which significantly outperformed the persistence 

model.  

Autoregressive integrated moving average (ARIMA) 

The ARIMA model is also known as Box-Jenkins model and was developed by George Box and 

Gwilym Jenkins in 1976 (Box & Jenkins, 1976). The ARIMA model is an extension of ARMA, 

and it is a popular and accurate model for forecasting in a short-term horizon. This model comes 

as an answer to the disadvantage of ARMA that is mentioned above. The ARIMA has the ability 

to remove any non-stationarity from the data. Its components are the same as ARMA with the 

addition of an integrated part. The general form of the ARIMA model is as follows: 

 Φ𝑝(𝐵)Δ𝑑𝑋𝑡 = Θ𝑞(𝐵)𝑎𝑡 

Φ𝑝(𝐵) = 1 − 𝜑1𝐵 − 𝜑2𝐵2 …  𝜑𝑝𝐵𝑝 

Θ𝑞 = 1 − 𝜃1𝐵 − 𝜃2𝐵2 … 𝜃𝑞𝐵𝑞 

(2.9) 

 

where B is the backward shift operator, Δ = 1-B and BXt=Xy-1 is the backward difference Φp and 

Θq are polynomial numbers of order p and q, respectively. Consequently, the ARIMA (p,q,d) 

model is a summarization of an autoregressive part (p), an integrating part (d) and a moving 
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average part (q). Das (2021) used an ARIMA model to forecast the PV power output in a short-

term horizon, comparing it with an analytical model, and found the ARIMA to be more accurate 

across all the different time horizons studied in the research (15 min, 30 min, 45 min and 75 min). 

Similarly, Cadenas et al. (2016) compared the ARIMA model to a multivariate neutral network for 

forecasting one step ahead wind speed, finding the accuracies of the two models to be remarkably 

close. In another approach, Haiges et al. (2017) used different ARIMA models to forecast the 

electricity generation capacity in Malaysia, with the ARIMA (0,2) proving to be the most accurate.  

2.4.4 Machine learning models 

These models are utilizing the advances of machine learning, which relies on the ability of artificial 

intelligence (AI) to extract patterns and correlations from historical data and improve its predictive 

abilities by a repetition of training runs. In recent years, energy research has been flooded with 

great volumes of data due to the extensive use of smart sensors both in energy production and 

consumption (Torabi et al., 2018). This increased volume of data led to an increase in machine 

learning models’ popularity, since they are the ones which can effectively manage big data and 

easily extract dependencies and correlations from these data (Mosavi et al., 2019). Machine 

learning approaches that are frequently used in PV power generation forecasting are: Artificial 

neural networks (ANNs), Extreme learning machine (ELA) and Support vector machine (SVM). 

Artificial neural networks 

ANNs have increased dramatically in popularity for forecasting purposes since they were first 

proposed. These methods have been used extensively in literature for forecasting PV power output 

with a very high level of accuracy (Gutierrez Corea, et al., 2016; Leva et al., 2015; Ding et al., 

2011; Pedro & Coimbra, 2012; Paoli et al., 2011). ANNs have been so popular because of the non-

linear complex relations that describe the meteorological data. ANNs are more suitable, compared 

to statistical methods, in processing non-linear and complex data.  

ANNs’ structure is based on the biological neurons of the human brain. In Figure 1 a simple ANN 

architecture is presented. ANNs consist of several interconnected cells (neurons), which can be 

divided into the three main components of an ANN: input, hidden and output layers. The input 

layers consist of neurons that receive the input information. The hidden layer, which can be 

composed of a single or several layers, processes the information from the input layer. While the 



Malataras Konstantinos Forecasting solar power generation in energy markets. 
 

14 

 

output layer receives the processed information and provides the output. Each of these layers is 

comprised of several neurons connected through certain weights to the other nodes in the next 

layer. Each neuron cell consists of two parts, as can be seen in Figure 2. The first part is the 

combination function which sums the weighted inputs. The second part is the activation function 

which transforms the output of the combination function into the output of the node (or the 

network). The most used activation functions are presented in Table 1. 

 

Figure 1. Basic ANN structure (Sobri et al., 2018). 

 

 

Figure 2. Mathematical model of an ANN neuron (Aminzadeh & De Groot, 2006). 

 

  



Malataras Konstantinos Forecasting solar power generation in energy markets. 
 

15 

 

In the literature the following models of neural networks have been used for PV output forecasting: 

• Recurrent neural networks (Qing & Niu, 2018; De Giorgi et al., 2014; Chupong & 

Plangklang, 2011) 

• Back propagation neural networks (B.M. Shah et al., 2015; Liu et al. 2015; Notton et al, 

2013) 

• Radial basis function neural networks (Lu & Chang, 2018; Mori & Takahashi, 2012)  

• Self-organizing neural networks (Chen et al., 2011; Yang et al., 2014) 

Table 1. Commonly used activation functions of ANNs (Raza et al., 2016). 

Function Formula 

Sigmoid 𝑓(𝑢)  =  
1

1 + 𝑒−𝑢
 

Hyperbolic tangent sigmoid (tanh-sig) 𝑓(𝑢)  =   𝑡𝑎𝑛ℎ(𝑢)   =  
𝑒𝑢 − 𝑒−𝑢

𝑒𝑢 + 𝑒−𝑢
 

Gaussian radial basis 𝑓(𝑢)  =   𝑒𝑥𝑝 (
−|𝑢 − 𝑚|2

2𝜎2
) 

Linear 𝑓(𝑢)  =  𝑢 

Unipolar step function 𝑓(𝑢) =  {
0, 𝑖𝑓 𝑢 < 0
1, 𝑖𝑓 𝑢 > 0

 

Bipolar step function 𝑓(𝑢) =  {

−1, 𝑖𝑓 𝑢 < 0
0, 𝑖𝑓 𝑢 = 0
1, 𝑖𝑓 𝑢 > 0

 

Unipolar linear function 𝑓(𝑢) =  {

1, 𝑖𝑓 𝑢 < 0
𝑦, 𝑖𝑓 𝑢 < 1
1, 𝑖𝑓 𝑢 > 1

 

Bipolar linear function 𝑓(𝑢) =  {

−1, 𝑖𝑓 𝑢 < −1

𝑦, 𝑖𝑓 |𝑢| < 1
1, 𝑖𝑓 𝑢 > 1
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Extreme learning machine (ELM) 

The ELM model is an advanced approach for a single layer feed forward network proposed by 

Huang et al. in 2006. In the ELM model the weights of the single hidden layer are randomly 

selected and never updated, while the output weights are extracted analytically through a least-

squares algorithm. The main advantage of this method is that, since the hidden layer weights will 

not be updated, the output layer weights are calculated in a single step, thus reducing the 

computational time needed dramatically. Therefore, the ELM can learn faster compared to 

standard ANNs and it also demonstrates an easier implementation since no decision about the 

architecture of the network is to be made. Consequently, it is preferred by researchers as a simple 

and effective algorithm with smaller training input requirements, and thus it has seen extensive 

use in PV power forecasting (Al-Dahidi, et al., 2018; Li et al., 2018; Behera & Nayak, 2019; 

Hossain, et al., 2017). 

Support vector machine (SVM) 

SVM is a supervised learning algorithm developed by Vapnik in 1995 as a classification algorithm. 

However, SVM has recently been used for regression problems too. The algorithm is based on 

statistical learning theory for structural risk minimization. The application of SVM in time series 

regression is called support vector regression (SVR). The SVR algorithm is a non-linear regression 

algorithm, where the input data is mapped into a high-dimensional space by a nonlinear mapping 

function. After that, a linear regression is performed in that space. The main advantage of SVM is 

that it produces one optimal solution, as opposed to ANNs which can converge to local minima 

and produce multiple solutions. In literature different approaches to SVM and SVR have been 

proposed (Alfadda et al., 2017; Yang et al., 2016; Shi et al., 2012; Wolff et al., 2016)  

2.4.5 Hybrid models 

Each single model approach to the PV power forecasting comes with the limitations of the 

standalone technique used. To address these limitations a hybrid model, the combination of two 

or more techniques, is proposed. These models can achieve greater accuracy by taking advantage 

of the strengths of each single approach and combining them. Hybrid models have performed 

better than the individual techniques in PV power forecasting. Specifically, Yona et al. (2013) 

combined a fuzzy interference model with a RNN for forecasting PV power. In this approach the 



Malataras Konstantinos Forecasting solar power generation in energy markets. 
 

17 

 

fuzzy interreference model was used to smoothen the meteorological that were used by the RNN 

to forecast the power generation. In another approach, Li et al. (2020) proposed a combination of 

wavelet packet decomposition (WPD) and long short memory network (LSTM) for short-term PV 

power forecasting. WPD decomposes the PV output time series data and then LSTM is used to 

predict the PV output using each subclass of the decomposed data and meteorological variables as 

inputs. This hybrid model achieved higher accuracy when compared to other single RNN methods. 

It should be noted that in literature, the combination of wavelet transform with neural networks is 

quite common (Zhang et al., 2020; Heydari et l., 2019; Zhu et al., 2015). In these cases, wavelet 

transformation is used for filtering and denoising the input data. The data are then passed as inputs 

to the neural network, which forecasts the PV power output with great accuracy.  

Even though there are advantages, hybrid models come with some disadvantages, too. They 

present high computational complexity, and their performance is greatly dependent on the 

performance of each individual model (Ramsami & Oree, 2015). Their accuracy is affected by the 

selection of each underlaying strategy (if one component performs poorly the whole model will 

too).   
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Chapter 3 

Data  

The data utilized for the creation of the predictive model are derived from three different sources. 

For the needs of this thesis, the dataset created consists of 1461 observations of 17 variables in a 

daily frequency, spanning the period between the 1st of January of 2018 and the 31st of December 

of 2021. This dataset consists of meteorological observations and one variable describing the 

generated power of a PV plant used as the dependent variable. The meteorological variables 

include 7 weather variables measured at a surface level and 9 atmospheric variables provided by 

satellite.  

The meteorological data were collected from two different meteorological agencies:  

• The Hellenic National Meteorological Service (HNMS) kindly provided the author with 

historical meteorological observations recorded from a meteorological station located in 

Tatoi, Attica, Greece at longitude 23.78, latitude 38.10 and at an altitude of 225 m. The list 

of variables provided by HNMS is presented on Table 2. 

• Copernicus Atmospheric Monitoring Service, a European atmospheric satellite 

surveillance system, provided historical, highly accurate, atmospheric observations 

regarding different measures of solar radiation. The collected atmospheric data are 

presented on Table 3.  

Table 2. Meteorological variables provided by HNMS. 

Variable  Scale  Description 

Max Temperature ℃ 

 

The maximum temperature recorded in 

each day. 

Min Temperature ℃ 

 

The minimum temperature recorded in 

each day.  

Average Temperature ℃ 

 

The average temperature of each day as 

a weighted average of the temperatures 

recorded each hour of the day. 

Cloud Coverage 8ths of covered sky Average daily cloud coverage. 
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Variable  Scale  Description 

Low Cloud Coverage 8ths of covered sky Average daily cloud coverage in the 

lower atmosphere. 

Wind Speed Knots Average daily wind speed, derived from 

the weighted average of the hourly wind 

speed.  

Rainfall  mms Average daily rainfall, derived from the 

weighted average of the hourly rainfall. 

 

Table 3. Meteorological provided by Copernicus Atmospheric Monitoring Service. 

Variable  Scale  Description 

TOA Wh/m2 Irradiation on horizontal plane at the top of the 

atmosphere. 

Clear sky GHI Wh/m2 Clear sky global irradiation on horizontal plane at 

ground level. 

Clear sky BHI 

 

Wh/m2 Clear sky beam irradiation on horizontal plane at 

ground level. 

Clear sky DHI Wh/m2 Clear sky defuse irradiation on horizontal plane at 

ground level. 

Clear sky BNI 

 

Wh/m2 

 

Clear sky beam irradiation on mobile plane 

following the sun at normal incidence. 

GHI Wh/m2 Global irradiation on horizontal plane at ground 

level.  

BHI Wh/m2 Beam irradiation on horizontal plane at ground 

level. 

DHI Wh/m2 Diffuse irradiation on horizontal plane at ground 

level. 

BNI Wh/m2 Beam irradiation on mobile plane following the sun 

at normal incidence. 

 

By utilizing weather variables measured both at a surface and an atmospheric level, the model is 

expected to perform better. Even though atmospheric data regarding solar irradiance are sufficient 

for training forecasting models which perform with satisfactory accuracy (Perez et al., 2021), the 

combination of these data with weather data provided by surface weather stations has been proven 
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to lead to forecasting models with enhanced accuracy (Agoua et al., 2021). This is mainly because 

variables measured at surface level (such as temperature, wind speed etc.) can impact the PV power 

generation, as already mentioned in the previous chapter.  

For the collection of PV generated power data, usually, the installation of special equipment – 

energy analyzers- is required in the PV parks’ substations. Energy analyzers are electric measuring 

devices that record and collect information regarding electric parameters such as current, voltage, 

frequency, power and quality of power (Yavor, 2009). However, due to not having access to a PV 

plant or to an electric analyzer, the data were collected using an alternative. The required data were 

aggregated from the website www.pvouput.com, where PV plant operators / owners upload data 

from their respective PV plants regarding power generated, efficiency etc. The only variable that 

will be used in the scope of this thesis will be the daily power generated. The data collected refers 

to a PV plant with a 10-kW capacity located in the area of Oropos in East Attica, Greece. The said 

plant consists of 40 PV panels, each one with a power of 250 Watts, installed with a 35o tilt and a 

South – Southeast orientation. Table 4 depicts the descriptive statistics of the meteorological and 

energy variables. 

Table 4. Descriptive statistics. 

Variables Mean Median Minimum Maximum Std. Dev. C.V.1 Skewness Kurtosis 

Max Temp 22.15 21.60 -0.30 42.60 7.90 0.36 -0.01 2.08 

Min Temp 12.07 11.60 -8.90 28.40 6.86 0.57 0.07 2.18 

Avg Temp 17.66 17.10 -2.50 37.45 7.66 0.43 0.07 1.94 

Cloud 

Coverage 

2.88 2.60 0.00 8.00 2.14 0.74 0.37 2.06 

Low Cloud 1.80 1.38 0.00 7.38 1.61 0.89 0.87 3.00 

Windspeed 5.43 4.25 0.00 25.50 4.12 0.76 1.34 4.97 

Rainfall 1.37 0.00 0.00 84.70 5.47 3.99 6.48 62.94 

TOA 8069.1 8314.7 4091.77 11580.96 2654.82 0.33 -0.14 1.52 

Clear-sky 

GHI 

5770.70 5954.49 2793.36 8989.88 1996.20 0.35 -0.11 1.53 

Clear-sky 

BHI 

4379.50 4381.08 1820.87 7847.02 1644.70 0.38 0.10 1.67 

 
1 Coefficient of Variance 
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Variables Mean Median Minimum Maximum Std. Dev. C.V.1 Skewness Kurtosis 

Clear-sky 

DHI 

1417.35 1324.85 366.26 3811.10 620.31 0.44 0.99 3.92 

Clear-sky 

BNI 

7564.83 7511.42 4376.68 11540.08 1569.88 0.21 0.05 2.12 

GHI 4827.38 4816.58 979.90 8781.33 2247.85 0.47 0.01 1.67 

BHI 3264.70 3098.40 16.88 7758.63 2144.82 0.66 0.17 1.80 

DHI 1569.02 1368.93 594.36 3778.25 695.76 0.44 0.88 2.98 

BNI 5363.83 5725.35 71.54 11215.38 2968.18 0.55 -0.20 1.87 

PV power 48.75 52.32 3.66 87.27 24.99 0.51 -0.29 1.72 

 

For all the variables the mean and median present small differences which means that the data tend 

to be symmetrically distributed. Exceptions to the above statement constitute the cases of rainfall 

and windspeed. This is corroborated from the skewness of each variable. For most of the variables, 

skewness is very close to 0, presenting a symmetrical distribution. The variables with the higher 

skewness are rainfall, with the highest skewness among all variables, and lower cloud coverage, 

windspeed, clear sky DHI and DHI all with a skewness close to 1. As far as the dispersion of each 

variable is concerned, windspeed, rainfall and clear sky DHI seem to have a leptokurtic distribution 

(more dispersed distribution with greater outliers) while the rest of the variables present a 

platykurtic distribution. Exemptions are the low cloud coverage and DHI with kurtosis similar to 

the normal distribution. It should be noted that the very high kurtosis of rainfall can be explained 

by many of the observations being equal to zero, due to the limited raining days in Greece.  

In Table 5. the Pearson correlation (Eq. 3.1) matrix of the variables is presented. Pearson 

correlation measures the strength of the linear relationship (either positive or negative)  between 

two variables. 

 
𝜌𝑋,𝑌 =

𝑐𝑜𝑣(𝑋, 𝑌)

𝜎𝑋𝜎𝑌
 (3.1) 

 

where cov(X,Y), the covariance of variables X and Y and σΧ  and σY  their standard deviation.  
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Table 5. Pearson correlation matrix of the variables. 

 

As expected, the different temperature measurements are highly correlated with each other. 

Furthermore, the cloud measurements have a negative correlation with all the solar radiance 

measurements except DHI. Windspeed presents very weak, almost non-existent correlation with 

all the variables. Similarly, rainfall presents weak correlation with the cloud measurements and the 

solar radiance variables. The solar radiance variables are strongly correlated with each other, with 

the only exception being the DHI measurements which present lower correlations with the other 

solar variables. This is because DHI represents solar radiation that is not transmitted directly by 

the sun but radiation that has been scattered and diffused by clouds or particles in the atmosphere 

and comes from different directions (Perez-Astudillo & Bachour, 2014). 

The variable with the weakest correlation regarding the power generated seems to be windspeed. 

This finding is in line with other studies (Liu et al., 2018), which also found that wind speed and 

direction have the lowest correlation with the produced energy among the variables examined. On 

the other hand, solar radiance variables show a very strong positive correlation with the energy 

produced, as expected. The variable with the highest correlation between the solar radiance 

measurements is GHI, this is reasonable since GHI represents the total amount of shortwave 

irradiation absorbed from a surface which is parallel to the ground (Lopes et al., 2018). On the 

other hand, DHI has the lowest correlation among the solar variables, as mentioned above this is 

because DHI represents the diffused solar radiance. 
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Furthermore, in order to examine whether historical observations of PV power generated have a 

predictive ability, the autocorrelation of the PV power was examined. The property of long 

memory is quite evident as presented in the correlograms below where the autocorrelation appears 

to be persistently strong. Regarding the partial autocorrelation, the first lag is the one that presents 

the most significant one even if the partial autocorrelation persists, although decreasing, until lag 

15.  

 

 

Figure 3. Autocorrelation of PV power generated. 
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Figure 4. Partial autocorrelation of PV power generated. 
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Chapter 4 

Methodology 

 

As previously stated, this research is structured on two pillars. The first one is the creation of a 

simple but robust forecasting model to accurately forecast one day ahead PV generated power. The 

second pillar is to evaluate the financial benefits that the utilization of this model can create for 

PV power producers who participate in the competitive electricity market. In this Chapter the 

methodology for the creation and evaluation of the forecasting model will be presented. The 

forecasting model proposed is an ANN trained with historical meteorological and power data. The 

model will, then, be benchmarked against a multiple linear regression and two persistent models 

to evaluate its performance. Lastly, it will be evaluated in an energy market framework based on 

the imbalance fees generated from the model’s inaccuracy.  

4.1 Data pre-processing 

After the meteorological and energy output data were collected, the process of data cleansing was 

initiated. Since the collected data were derived from three different providers, each with its own 

templates and standards, the data needed to be aggregated into a single dataset. The different 

inconsistencies in the uniformity of the dataset were addressed and then the data were properly 

timestamped. After that, the missing values of the dataset were filled in using linear interpolation 

(Eq. 4.1).  

 
𝑦′ = 𝑦1 + (𝑥′ − 𝑥1)

(𝑦2 − 𝑦1)

(𝑥2 − 𝑥1)
 (4.1) 

 

4.2 Feature selection 

As stated before, the selection of input variables that significantly affect the target-variable is one 

of the most important steps in the design of a forecasting model. The selection of the features that 

comprise the input vector greatly influences the performance of the forecasting model. A high 

number of input features, called forecasting parameters, makes the model complex and 

computationally expensive and especially in the case of neural networks, it can lead to poor 

generalization. On the other hand, too few forecasting parameters lead to an incomplete and 
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suboptimal forecasting model. Therefore, it is essential to find an adequate choice of input 

variables leading to the highest possible model performance, with the lowest complexity and costs. 

In this research this issue is approached by using Stepwise Regression to assess the influence of 

each meteorological variable to the power generated from the PV plant before introducing them to 

the model. Stepwise Regression is a method which iterates regression models, each with a 

combination of different explanatory variables. The model starts with no predictive variables and 

in each iteration, variables are added or removed based on their statistical significance (the 

thresholds for addition and removal are based on their p-values). In this way it is ensured that only 

the variables that significantly affect the PV output are selected as inputs and thus, the training of 

the model will require less time and computational power.  The stepwise regression algorithm led 

to the selection of 6 meteorological variables to be used as input to the ANN presented to the Table 

below (Table 6). 

It should be noted that feature selection with the use of stepwise regression is an automated 

process. Automated processes, in model building never come without disadvantages. Quite a few 

authors (Thompson, 1989; Harrell, 2001; Flom & Cassell, 2007) have suggested that statistical 

tests of stepwise regression may lead to too low p values which can, in their turn, lead to overfitting 

thus creating a false confidence in the final model. However, stepwise regression remains quite 

popular and has been used in feature selection of PV forecasting problems (Ramsami & Oree, 

2015). 

Table 6. ANN input meteorological variables produced from Stepwise Regression. 

Input variables 

Cloud coverage 

Low cloud coverage 

Rainfall 

Clear-sky GHI 

GHI 

BNI 
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4.3 Training of ANN 

The ANN used in this study consists of three layers: an input layer, a single hidden layer and an 

output layer. The input layer receives two input vectors: the vector of the 6 meteorological 

parameters on day t-1, and the power generated on day t-1. This lagged term is included in the 

network so as to capitalize on the predictive property of the past observations of the generated 

power which were presented above. The output layer produces the forecasted PV power on day t. 

Therefore, the problem is to describe the relationship between the inputs and the output based on 

the data included in the database described before. In other words, the problem can be stated as: Is 

it possible to find a formula which can be used to estimate the total PV power that will be generated 

one day ahead, based on the meteorological data observed and the power generated today? 

The dataset of 1461 daily observations were split into two subsets of 1200 (from 1/1/2018 to 

14/4/2021) and 261 observations (from 15/4/2021 to 31/12/2021). The first subset was used for 

the training of the ANN (80% was used for training and 20% for validation). This dataset is 

comprised of daily observations for the meteorological variables: cloud coverage, low cloud 

coverage, rainfall, Clear – sky GHI, GHI and BNI, as well as the PV power generated for the days 

from 1/1/2018 to 14/4/2021. The second subset which contained the observations for the same 

variables from 15/4/2021 to 31/12/2021, was used for evaluating the forecasting ability of the 

model. An expanding window approach was used for the recursive generation of one-step ahead 

forecasts, a method which introduces an ever-increasing training sample to the ANN and is 

expected to yield more accurate results. 

A set of input and output data is used to train the network during the training step. After the 

introduction of the input data the network calculates its output, which is then compared to the 

actual target. The difference between these two values produces an error (e). The performance 

function, which is usually used for training feed forward networks, and also used in this case, is 

the mean squared error with regularization performance function 𝐸 as: 

 

𝐸̅ =
1

𝑛
(𝛽 ∑ 𝑒𝑖

2

𝑛

𝑖=1

+ 𝛼 ∑ 𝑤𝑗
2

𝑛

𝑗=1

) (4.2) 
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where α, β are regularization parameters and wj the weight of each neuron.  

After a number of iterations (training epochs) the mean square error between the target and the 

network generated outputs settles to a minimum value.  

The learning algorithm of the ANN used in this study is the Bayesian Regularization algorithm. 

This approach is followed to avoid overfitting. Bayesian Regularization is used to automatically 

select regularization parameters during the training of the ANN, in order to produce a generalized 

network. The goal of ANN training is to produce a network with the lowest possible error, which 

is able to respond well to new data, different from the ones it was trained with. When this is the 

case, the network is said to be well generalized. Bayesian Regularization improves the 

generalization process by limiting the weights of the network. If the weights of the network are 

smaller, the network will respond more smoothly to new data (Kusuma et al., 2021). Equation 

(4.2) is used to update the weights of the ANN in order to reach a network with the lowest error. 

However, conventional training algorithms, face difficulties in determining the size of the 

regularization parameters α, β. Bayesian regularization optimizes these parameters as follows: 

 

{

𝛼 =
𝛾

2𝛦𝑤

𝛽 =  
𝑛 − 𝛾

2𝛦𝑒

 

(4.6) 

where 𝛾 = 𝑛 − 2𝑎𝑡𝑟(𝐻)−1, Η the Hessian matrix of function 𝐸̅, 𝐸𝑤 =  
1

𝑛
∑ 𝑤𝑗

2𝑛
𝑗=1  and 𝛦𝑒 =

 
1

𝑛
∑ 𝑒𝑖

2𝑛
𝑖=1 . 

For the network, the linear function (Eq. 4.3) is used as the transfer function of the output layer, 

while the sigmoid function (Eq. 4.4) is used as an activation function for the neurons of the hidden 

layer.  

 𝑓(𝑢) = 𝑢 (4.3) 

 

 
𝑓(𝑢)  =  

1

1 + 𝑒−𝑢
 (4.4) 
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Since the value of the sigmoid function is limited in the range of 0 to 1, the training data should be 

rescaled before being introduced to the ANN. The rescaling of the meteorological data and the PV 

output data is performed by the function below:  

 𝑥′𝑖 =
𝑥𝑖 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 (4.5) 

 

Where xi is the ith component of the original data, xmin and xmax are the minimum and maximum 

values of the input data respectively.   

The number of neurons that constitute the hidden layer was based on a simple “trial and error” 

process. It was concluded that a single hidden layer with 16 neurons was the optimal architecture 

of the network for this study. After repeatedly testing and evaluating the validation performance 

of the network with different combinations of numbers of hidden layers and neurons, this specific 

architecture was the one that presented the lowest error during these tests. 

It should be noted that for the training of the ANN the Neural Net Time Series tool of MatLab® 

(Ver. R2022a) was utilized.  

4.4 Benchmarking models 

After the training of the ANN three simple models were created, in order to compare the 

performance of the more complex and sophisticated ANN to more basic but robust predictive 

models that have been used in literature.   

Persistence model 

The model that will be used as a benchmark will be the persistence model (Eq. 4.7), which will be 

used as a floor in the benchmarking process. If the performance of any complex forecasting model 

falls below the performance of the naïve model, it should be instantly disregarded since it offers a 

worse performance at a much higher computational cost.  

 𝑃̂𝑡 = 𝑃𝑡−1 (4.7) 

where 𝑃̂𝑡 is the prediction of the next day’s power and 𝑃𝑡−1 is the power generated on the previous 

day.  
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Moving Average 

A simple moving average will be used as the second model. In this case the power that will be 

produced is assumed to be equal to the average of the three previous days:  

 
𝑃̂𝑡 =

(𝑃𝑡−1 + 𝑃𝑡−2 + 𝑃𝑡−3)

3
 (4.8) 

Linear Regression 

A multiple linear regression predictive model is constructed as an upper limit for the benchmarking 

process, due to its high accuracy presented in literature (Abuella & Chowdhury, 2015). The linear 

regression was trained with the same data used to train the ANN and the forecasting approach will 

also be recursive one step ahead forecasts on an expanding window. The predictive function can 

be presented as: 

𝑃̂𝑡 = 𝛽0 + 𝛽1𝑋𝑐𝑙𝑜𝑢𝑑𝑠 + 𝛽2𝑋𝑙𝑜𝑤𝑐𝑙𝑜𝑢𝑑𝑠 + 𝛽3𝑋𝑟𝑎𝑖𝑛𝑓𝑎𝑙𝑙 + 𝛽4𝑋𝐶𝑙𝑒𝑎𝑟𝐶𝐻𝐼 + 𝛽5𝑋𝐺𝐻𝐼 + 𝛽6𝑋𝐵𝑁𝐼 + 𝛽7𝑃𝑡−1 (4.9) 

  

where β0 to β7 the regression coefficients and Χclouds to ΧBNI the respective input variables 

and 𝑃𝑡−1 the power generated on day t-1. 

 

 

4.5 Evaluation of the forecasting model 

The ANN predictive model will be evaluated on two different levels. The model will be 

benchmarked against the models presented above to compare their performance and accuracy. For 

benchmarking, the evaluation metrics widely used in literature will be utilized. These measures 

describe the difference between the observed values of the dependent variable and their predicted 

values. Obviously, lower values of these metrics mean that the predictive model returns values for 

the dependent variable that is quite close to the actual, observed value and therefore the model 

presents higher predictive accuracy and lower predictive error. The evaluation metrics that will be 

used for benchmarking are presented in the table below: 
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Table 7. Error evaluation metrics. 

Metric Formula 

RMSE 𝑅𝑀𝑆𝐸  =  √∑
(𝑦̂𝑖   − 𝑦𝑖)2

𝑛

𝑛

𝑖=1

 

NRMSE 𝑁𝑅𝑀𝑆𝐸 =  
𝑅𝑀𝑆𝐸

𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛
 

MAE 𝑀𝐴𝐸 =  
1

𝑛
∑|𝑦̂

𝑖
  − 𝑦

𝑖
|

𝑛

𝑖=1

 

 

where, 𝑦̂𝑖  and 𝑦𝑖 respectively the predicted and actual values of the PV output generated and ymax 

and ymin the maximum and minimum recorded values of y. 

4.6 Economic analysis 

Lastly, an analysis will be carried out to evaluate the economic impact of the accuracy of the 

forecasting method, focusing the analysis on the PV energy that is introduced to the electric grid 

through the electricity markets.  

Greece is in a special place where not only its electricity market structure changes to a harmonized 

EU target model, but it is happening while there is a great penetration of RES to the market 

(Kontochristopoulos et al., 2021). Generally, in liberalized energy markets, it is assumed that 

electricity generation sources are utilized based on their marginal cost. Therefore, in most cases, 

the most expensive source of electricity in operation sets the electricity price for the whole market, 

which is the marginal price of the electricity market. This is a very logical pricing scheme for 

conventional energy sources (fossil fuels etc.). However, due to the massive adoption of RES, this 

assumption can become obsolete, since the most common RES technologies, such as PVs, have 

almost zero marginal costs (Kraan et al., 2018). The minimal marginal costs combined with 

special, risk-free RES subsidization schemes that act as incentives for the green energy transition, 

has led to distorted market prices and wrong economic signals to market actors (Ntomaris et al., 

2022).  To address these issues market policies have changed to ensure a level-playing field for all 

generating sources. According to the European Commission’s State Aid Guidelines (2014–2020), 

RES producers will be compensated based on market mechanisms and will be subject to imbalance 

costs.  
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To evaluate the effects of these imbalance costs on PV power producers a simple model was built 

based on two markets of the Greek wholesale electricity market: 

Day-Ahead Market (DAM): In this market a Day Ahead Scheduling (DAS) is performed by the 

electricity market operator (EnEx) to optimize the allocation of all the available energy resources. 

Market participants who represent generating resources, have to place a bid for their available 

generation capacity for the next day. Traders and energy suppliers also place their offers, 

demanding the available energy (EnEx, 2021). Taking the bids and the different system limitations 

into consideration, EnEx clears the electricity market, aiming to meet the forecasted demand, while 

at the same time minimizing the overall system costs (Dagoumas & Polemis, 2017). The output of 

the DAM is the timetable indicating where all the available electricity generating sources are 

committed, along with the system’s marginal price for the next day.  

Balancing Market: The Balancing Market deals with system imbalances in real-time which are 

settled by the Transmission System Operator (TSO). The imbalance price is the price of DAM plus 

a markup which is cost reflective of the expenses incurred by the System Operator to provide real 

time balancing energy to the system (Ntomaris, 2022). For example, if the system is undersupplied, 

parties with a shortage must pay the markup while parties with an energy surplus receive this 

markup in return for their contribution of energy to the system. On the other hand, if the system is 

oversupplied, parties with a surplus will have to accept a discounted price for their uncommitted 

generated energy.  

With respect to the above, a simple function is created to evaluate the economic effect of the 

predictive error of the ANN forecasting model. This function is intended for a solar power producer 

who commits all their available predicted next-day power output 𝑃̂ on the Day-Ahead Market at a 

spot price S. The profit of the producer can be calculated by the product of 𝑃̂ ∗ 𝑆. The next day, if 

the actual PV output (P) is different from the one pledged on the DAM, the difference of the output, 

which is equal to the predictive error (𝑒 = 𝑃 − 𝑃̂ ), is either bought from or sold to the System 

Operator settled by the imbalance price (I).  Thus, the profit function of the producer can be: 

 Π = 𝑃̂ ∗ 𝑆 + 𝑒 ∗ 𝐼  (4.10) 

However, when considering the state of the system (either oversupplied or undersupplied) the 

concept of opportunity cost arises. For example, let's consider a producer with a surplus of the 
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energy pledged on DAM, if the system is oversupplied the imbalance price will probably be lower 

than the DAM price, thus there is an opportunity cost for the producer (they could have pledged 

more energy at the higher DAM price, if they had forecasted accurately). Therefore, the profit 

function of the producer, incorporating opportunity costs, can be described as follows: 

 

 Π𝑜𝑝𝑝𝑜𝑟𝑡𝑢𝑛𝑖𝑡𝑦 = 𝑃 ∗ 𝑆 + 𝑒 ∗ (𝐼 − 𝑆) (4.11) 

   

It should be stressed that this model is not meant to realistically describe the imbalance clearing 

process in the Greek electricity market at the time of writing, but just to be used as a simple profit 

function for the scope of this research.   
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Chapter 5 

Results 

 

5.1 Statistical evaluation 

The ANN was trained to obtain a relationship between the input variables and the energy that will 

be produced in the next day by the PV system.  The regression plot for each model is presented in 

Figures 5 to 8. These figures depict the comparison between the predicted output energy of the PV 

generated by each model (vertical axis) and the actual measured values (horizontal axis) for the 

period ranging from 15 April 2021 to 31 December 2021. Table 8 summarizes the quantitative 

evaluation of the predictive model compared to the linear regression, moving average and 

persistence model in terms of the statistical parameters RMSE, NRMSE, MAE, R, and standard 

deviation.  

 

Figure 5. ANN regression results. 
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Figure 6. Linear regression results. 

 

Figure 7. Moving Average regression results. 
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Figure 8. Persistence Model regression results. 

Table 8. Evaluation of Models. 

Model RMSE NRMSE MAE R σ 

Regression 12.7265 15.31% 9.8256 0.8696 12.729 

ANN 13.0743 15.72% 9.7394 0.8608 13.076 

Moving Average 15.0330 18.08% 10.6407 0.8156 15.056 

Persistence 15.7189 18.90% 10.2998 0.8106 15.748 

 

Results are consistent with the literature that indicates that ANN outperforms the 

persistence and moving average models, even at short term horizons in which they are at 

the peak of their performance (Zhang et al., 2015). On the other hand, the linear regression 

outperforms the ANN regarding all evaluation metrics except MAE. RMSE is more 

penalizing for greater errors and outliers, while the MAE equally weights the errors. 

Therefore, according to the Table above, the ANN produces some greater outlier errors 

compared to the regression model, but it produces a lower average deviation from the target 

value. These findings are similar to other presented in literature (Sharma et al., 2018), 

where a simple ANN is found to outperform persistent models while being outperformed 

(by a small margin) by linear and polynomial regressions. 
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Another way that is worth examining the errors of each model, is the magnitude of the error that 

each model produces based on each season. The data were split into 3 seasons: data from 15/4/21 

- 30/6/21, were assigned to the season spring, while the data from 1/7/21 - 30/9/2021 were assigned 

to summer and the data from 1/10/2021 - 31/12/2021 were assigned to winter. The RMSE of errors 

of each model in each specific season are presented at the Table below, where the lowest RMSE 

per season is in bold. Furthermore, the standard deviation of the energy produced in each season 

is also presented in the Table below. 

Table 9. Model RMSE based on the season. 

Model Spring Summer Winter 

Regression 14.425 10.390 13.336 

ANN 14.673 11.423 13.200 

Moving 

Average 
18.137 11.928 14.960 

Persistence 18.746 11.288 16.716 

Variable Standard Deviation 

Energy  17.219 14.062 15.609 

 

The regression model presents the lowest error in spring and summer, while the ANN produces 

the lowest error in winter, although the errors of these two models in spring and winter are quite 

close. The ANN model produces a lower RMSE, compared to the persistence model and the 

moving average, during spring and winter, seasons that have a lot more volatile meteorological 

conditions compared to summer, as it is suggested by the standard deviation of the produced 

energy. On the other hand, the persistence model generates a lower RMSE compared to the ANN 

in the summer. This seems logical, since in the summer, where there are only small deviations in 

the daily weather (compared to the other two seasons), usually in the temperature, the past days 

can be sufficient predictors of the future ones. The results presented above agree with the results 

presented in Kardakos et al. (2012) where the persistent model also outperformed an ANN model 

in one day ahead forecasting during the summer. The authors of the abovementioned study 

conclude that “the persistence model (…) lead(s) to superior or comparable forecasts only during 

the summer months and September, where the favorable weather conditions in Greece eliminate 

the need to use a more sophisticated short-term forecasting model of PV power generation.”  
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5.2 Economic evaluation 

In order to get a tangible overview of the predictive performance of the ANN model an analysis 

has been carried out to evaluate the economic impact of the models. As previously presented, 

producers of renewable energy resources can participate in the wholesale electricity market 

through programmed transactions. In the Day Ahead Market producers declare the amount of 

energy they will provide to the energy grid the next day. However, imbalance charges are applied 

when there is a discrepancy between the volume declared and the volume actually provided. For 

this analysis the profit function that was presented in the previous chapter is used. Utilizing this 

function, the daily profits of the producer, adjusted for opportunity costs, will be calculated.  The 

actual data of the DAM price and imbalance price for the span of 15/4/2021 to 31/12/2021 will be 

used for this calculation. The data were acquired from HEnEx and IPTO respectively.  It should 

be noted that the original data were provided in 15-minute iterations, so a weighted average was 

used to calculate the daily average prices. In Figure 9 the daily average DAM and imbalance prices 

are presented. 

 

Figure 9. DAM and Imbalance prices for the Greek electricity market. 
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Finally, in Table 10 the total income of the producer, adjusted for opportunity costs (Eq. 4.11), 

that are generated with each predictive model are presented. 

Table 10. Producer incomes in the Greek electricity market. 

Model  Income (€) 

Regression 1,593.2 

ANN 1,592.9 

Moving Average 1,591.6 

Persistence  1,599.7 

 

Surprisingly, the persistence model, the least accurate one with respect to the statistical 

measurements, yields the most income for the producer. This is because the Single Price Imbalance 

system that is used in the Greek energy market allows the Balance Responsible Parties (BRPs), 

the producer in this case, to profit from being on the opposite direction of the grid (Ntomaris et al., 

2022). In this case, for the period that is examined, the mean daily difference between the 

Imbalance price and DAM price is –7.5751 €/MWh, as well as the Imbalance price was lower than 

the DAM price in 139 days of the 261 studied (53.26%), also the difference between the Imbalance 

price and DAM presents a skewness of 0.8739. The distribution of the daily difference is presented 

in Figure 10. 

 

Figure 10. Distribution of the daily difference between Imbalance and DAM price. 
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This means that the grid was usually oversupplied with energy and so the producers who had a 

surplus of energy should accept a discounted price for it and thus, leading to an Imbalance price 

lower than the DAM price. In this situation the producers who produce less than the energy pledged 

at DAM can acquire the energy they lack in the discounted Imbalance price leading to higher 

profits. For reference, a producer who generates a constant forecasting error of 𝑒 = 𝑃 − 𝑃̂ = −30 

kWh, will generate an income of 1,697.0 € for the period examined, an income far greater than the 

ones generated from the predictive models above.  This result is in line with the literature where it 

is pointed out that the Single Price Imbalance system “... may produce weak incentives to balance 

and motivate the BRPs to be imbalanced in the opposite direction from the system deviation.” 

(Ntomaris et al, 2022).  

However, if the models are evaluated in another framework, like the one used in De Giorgi et al. 

(2015) or in Matsumoto and Yamada (2018), the results can be different. In these studies, the 

economic impact of the forecasting errors is evaluated based on a Dual Price Imbalance market. If 

the energy that the producer injects to the grid surpasses the scheduled one, then the producer is 

compensated for the excess energy at a price DAM – c. On the other hand, if the producer generates 

less energy than the scheduled one, they must procure the missing energy at a price DAM + l. In 

this framework, no matter the system’s condition (oversupplied or undersupplied), deviations of 

any direction are penalized, thus, providing high incentives for the producers to be balanced at all 

times.  

Therefore, the profit functions below are generated: 

 𝛱𝑜𝑝𝑝𝑜𝑟𝑡𝑢𝑛𝑖𝑡𝑦 = {
𝑃 ∗ 𝑆 − 𝑐 ∗ 𝑒, 𝑤ℎ𝑒𝑛 𝑒 > 0
𝑃 ∗ 𝑆 + 𝑙 ∗ 𝑒, 𝑤ℎ𝑒𝑛 𝑒 < 0

 (5.1) 

   

The first factor of the function represents the income that the producer will receive when there is 

no prediction error (scheduled energy equals the energy generated), the second factor of the 

function which is always negative, represents the opportunity cost compared to the perfect 

prediction. On the Table 11, below, the incomes generated from each predictive model are 

presented as a sum of the daily incomes divided by the maximum income the producer can achieve 

in the period examined (income when there are no forecasting errors). For this calculation, c and l 

were set to 50% of the DAM price. 
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Table 11. Normalized incomes for a Dual Price Imbalance framework. 

Model 
Normalized 

Income (%) 

Regression 88.84 

ANN 88.86 

Moving Average 87.96 

Persistence 87.93 

 

In this market framework, the ANN model yields the greater income among the four models 

studied, although very close to the income generated by the regression model. For reference, the 

same producer used before as an example (stable forecasting error of -30 kWh) would achieve a 

normalized income of 71.57% in this case. These results are in line with both the statistical error 

measurements presented above as well as with the rationale of the Dual Price Imbalance Market. 

The predictive models with the lowest errors, both in terms of MAE and RMSE, are the ones that 

receive the least penalization from the market framework.  
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Chapter 6 

Conclusion 

 

In summary, this research attempts to create a simple and robust forecasting model which can be 

used by solar power producers in the context of electricity markets. The previous day’s weather 

conditions and PV output are provided as input and the model recursively, and utilizing an 

expanding window, forecasts the PV power that will be generated the next day. Using a dataset 

comprising of daily data of weather variables and PV power outputs of a specific solar park from 

1/1/2018 until 31/12/2021 an ANN was trained. Specifically, the data from 1/1/2018 to 14/4/2021 

were used to train the network while the rest of the data was used for its evaluation. The trained 

model was benchmarked against the persistent model, a three-day moving average and a multiple 

linear regression. The results of each model were compared via the use of standard evaluation 

metrics and in the context of two different energy market frameworks. The results of this 

evaluation indicate that the ANN model can predict the next day's generated PV energy with 

greater accuracy than the persistent model and the moving average. Compared to the regression 

model the ANN presents a lower MAE (9.74 compared to 9.82) but a higher RMSE (13.07 

compared to 12.73). Evaluating the models in a Single Price Imbalance market was not conclusive 

regarding their accuracy. On the other hand, as expected, the two more accurate predictive models 

lead to higher incomes for producers and lower imbalance fees in a Dual Price Imbalance market. 

These findings seem to agree with the existing literature which suggests that ANNs outperform 

simpler models even in short term forecasting horizons, in which the latter are most accurate, and 

perform similarly to regression models (e.g., Sharma et al., 2018; Raza et al., 2018).   

Although promising, it should be noted that this research and by extension its findings are hindered 

by the limitations imposed by data availability and quality issues. Thus, restricting the quality of 

the results that could have been produced from conducting forecasts with hourly data for a time 

horizon of 24 hours ahead. Most studies presented in literature regarding 24 hours ahead forecasts 

usually construct an ANN which receives as inputs weather forecasts of the next day and generates 

the forecasted PV energy, with the data being mostly in hourly iterations (Chupong & Plangklang, 

2011; De Giorgi et al., 2014; Leva et al., 2015; Liu et al., 2015). On the other hand, most of the 

few studies that have approached the forecasting effort from a time series point of view simply 
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utilize only historical PV data, again in hourly iterations (e.g., Kardakos et al., 2012), while the 

ones that use exogenous inputs also use the weather forecast of the next day as the Network’s input 

(e.g., Sharma et al., 2018). Another significant point is that most of these studies utilize PV data 

from PV panels set up specifically for research purposes which are accompanied by weather 

stations that provide accurate data and measurements. That being said, due to the lack of access to 

hourly PV data or next day hourly forecasts for weather variables, this research used, as an 

alternative, the methodology described in Chapter 4, which is based on daily observations and 

historical meteorological data. This is why the results of this study cannot be directly compared to 

other studies presented in literature. However, in Chapter 5 the results have been compared to 

some comparable results of specific studies. As it can be deduced from the above, access to 

specialized PV and weather data could lead to a more complete study with more accurate results 

comparable to the ones presented in literature.  

However, this must not take away from the purpose of this master’s thesis which is also to act as 

an advocate for the need of accurate PV power forecasting in the context of energy markets. Now, 

more than ever, this need is evident since energy markets are moving away from special 

subsidization regimes for RES and towards a competitive framework where renewable energy 

producers will have to deal with imbalance costs and fees just as the conventional energy 

producers. Therefore, improvements in RES power forecasting are needed in order to not only 

expedite the transition away from polluting fossil fuels but also lead to more stable electric grids 

and lower electricity prices.  
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