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Περίληψη 

Η έννοια της ευφυούς υγείας (smart health) και του Διαδικτύου των Ιατρικών 

Πραγμάτων (Internet of Medical Things - IoMT) έχουν ανακύψει τα τελευταία χρόνια ως 

πιθανές λύσεις σε διάφορα ζητήματα των συστημάτων παροχής υγείας αφού επιτρέπουν, 

μεταξύ άλλων, την απομακρυσμένη παρακολούθηση ασθενών, την τήρηση ηλεκτρονικών 

φακέλων υγείας και την εφαρμογή εργαλείων τεχνητής νοημοσύνης σε ιατρικά δεδομένα. 

Σε αυτή την εργασία παρουσιάζονται τα εγγενή ζητήματα σε ένα οικοσύστημα IoMT, 

όπως η ασφάλεια και η εμπιστευτικότητα των δεδομένων, οι τεχνολογίες που στηρίζουν 

την υλοποίηση όπως το Blockchain και η μηχανική μάθηση αλλά και κάποιες 

ολοκληρωμένες προτάσεις που έχουν τεθεί από ερευνητές στο πεδίο. 

 

Λέξεις Κλειδιά: Διαδίκτυο των Ιατρικών Πραγμάτων, ευφυής υγεία, Blockchain, 

μηχανική μάθηση, ασφάλεια, εμπιστευτικότητα 
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Abstract 

Smart health and the Internet of Medical Things have lately emerged as potential 

solutions for issues plaguing health systems worldwide such as remote patient monitoring, 

switching to electronic health records and using artificial intelligence tools on large sets of 

medical data. This thesis presents the core issues in an Internet of Medical Things 

ecosystem such as data privacy, safety and security and enabling technologies such as 

Blockchain and machine learning, as well as selected integrated framework proposals by 

researchers in the field. 

 

Keywords: Internet of Medical Things, smart health, Blockchain, machine 

learning, privacy, security. 
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 1 Introduction 

 1.1  The issue of smart health/ smart hospitals 

The word smart is lately used in combination with many terms to identify devices 

or functions that possess what is perceived as a level of intelligence. Smart health is a term 

used to indicate a large set of devices and technologies that automate or enhance the 

provision of health services and the overall quality of care offered to patients. The Internet 

of Medical Things is a collection of diverse devices that have networking capabilities 

whose function is related to an aspect of health. Smart health as implemented in the Internet 

of Medical Things is the topic of this thesis. The related challenges, the core ecosystem 

issues, enabling technologies and tools as well as integrated framework proposals are 

presented. 

 

 1.2  Goals of the thesis 

This thesis aims to serve as a comprehensive reference for people that are looking 

to start studying on issues related to smart health and the Internet of Medical Things. By 

highlighting the core concepts and pinpointing the major issues at hand tackled by 

researchers, this thesis is ideal to set the theoretical foundations for further study. 

 

 1.3  Contribution 

The main contribution of the thesis is that it stands as a complete introduction to 

concepts related to smart health and the Internet of Medical Things without requiring 

previous knowledge of the field. Furthermore, the list of references is an excellent starting 

point for further study as they are recent publications, in well known journals and 

conferences with significant impact. 

 1.4  Structure of the thesis 

The structure of the thesis is as follows: Chapter 2 is a concise introduction to basic 

terminology and a brief description of the structure of the Internet of Medical Things. 

Following that, Chapter 3 delves into the core challenges of the ecosystem, namely privacy, 

safety and security of the medical data and the devices operation in general. The 
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confidential nature of health related information leaves no room for omissions when it 

comes to privacy and informed consent of the patient that can at any stage be revoked is 

the basic function that needs to be supported. It must be 100% clear to the patient which 

data is captured, where it is stored and who has access to it and what it is used for. 

Additionally, although security needs in the IoMT resemble those of traditional networks, 

there is another parameter/ mode of operation that requires extensive advanced planning 

that is unique in medical scenarios, namely emergency operation and this is also discussed.  

Chapter 4 presents the enabling technologies that can provide solutions in the 

implementation of the Internet of Medical Things. The two most important ones are 

Blockchain and machine/ deep learning. The inherent properties of Blockchain which 

make it a good solution are discussed, as well as the types of machine learning/ deep 

learning tools that can be used with medical data. 

Chapter 5 presents three types integrated framework proposals in the context of the 

Internet of Medical Things. The first one is a relatively generic framework for remote 

patient monitoring focusing while the second one is related to the Covid-19 pandemic. The 

final type of proposals presented is related to the combination of deep learning networks 

with a Blockchain storage infrastructure.  

Chapter  6 contains reference tables for the publications on the Internet of Medical 

Things included in the thesis bibliography. Tables are provided for each of the core topics 

discussed and additional information is provided per publication in order to enable 

researchers to locate publications of interest. Chapter 7 presents our integrated proposal 

for electronic health records management at a state level, while Chapter 8 compares this 

proposed platform with existing approaches and points where it is superior. Chapter 9 

discusses deep learning approaches to natural language processing and describes a code 

implementation in Python we undertook, whose performance can be estimated when data 

from electronic health records become available. 

Lastly, Chapter  10 presents a summary of the thesis and highlights future research 

directions while Chapter 11  11 includes all references. 
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 2 Background 

Predictions for the size of the market related to the Internet of Medical Things are 

not easy, especially during the last two years with the unexpected turn of events related to 

the Covid-19 pandemic. More specifically, 2015 predictions by Forbes predicted that at 

2020 the Internet of Things (IoT) will contribute $1.9 trillion to the global economy and 

$117 billion to the IoT-based healthcare industry [Hossain and Muhammad, 2016]. More 

recent figures by Deloitte [Forbes, 2022] estimate the 2022 IoMT market at 158.1 billion 

dollars. The precise monetary figures may vary but the number of sensors which is a good 

indicator of popularity is expected to rise to 22 billion when now it is estimated at 10 

billion.  

 

 

Figure 2.1: Examples of wearable devices 

 

Figure 2.1 includes examples of wearable devices that can be used for various types 

of applications, including smart health. “Smart” clothes or accessories can provide insights 
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into a person health status. Accuracy of measurements varies but wearables can definitely 

offer  helpful information. Figure 2.1 cites examples of smart health applications  

 

Figure 2.2: Examples of IoMT applications 

 

These include remote patient monitoring and telehealth, assisted living where 

devices help ageing individuals with everyday tasks, effective chronic disease management 

with fewer visits to professionals and hospitals but also applications related to facilities 

operation such as asset (equipment) and drug tracking and management. 

The covid-19 pandemic was an unprecedented turn of events and caused a massive 

healthcare crisis, testing the limits of traditional services. The benefits of remote patient 

monitoring became even more apparent and new tools and applications were developed to 

shield, especially those at a higher risk, i.e., the elderly and those with underlying 

conditions. The management of chronic disease consists not only of reacting to adverse 

events detected (for example, detecting an imminent heart attack based on the data from a 

pacemaker) by providing emergency services on location, but also by programmable 

devices that automatically intervene such as a defibrillator in the case described above. 

This device can jolt the patient’s heart with a jolt to restore its normal rhythm. Another 
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very interesting set of medical applications includes remote diagnostic services. The vast 

amounts of data generated by medical devices can be processed and combined to detect 

associations between conditions, new risk factors and, of course, monitor outcomes based 

on the given treatment plan. Machine learning tools have a pivotal role in such applications. 

Next generation telecommunication networks which combine fiber backbone 

networks with advanced mobile ones (5G) are combined with other new technologies such 

as big‐data analytics, artificial intelligence, as it is implemented by machine learning and 

blockchain. The vast number of interconnected devices of different types, devices which 

were not networked until recently form what is referred to as the Internet of Things (IoT). 

Among the several related applications, the Internet of Medical Things (IoMT) stands out, 

both for its significance for health monitoring given the present health crisis. 

The Internet of Medical Things (IoMT) is composed of heterogenous devices 

which are either worn or implanted in participating individuals. These devices have some 

form of networking abilities, typically via Bluetooth or similar protocols such as ZigBee, 

to enable short range communications with minimal power consumption. On the other 

communicating end, one can find mobile devices (phones), computers of specialized based 

stations which gather, store and upload the data to the Internet. These paired devices may 

also be used to issue commands to the medical device, for instance to dispense medication 

according to a doctor specified schedule. 
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Figure 2.3: A high level architecture of the Internet of Medical Things 

 

A high level architecture of the Internet of Medical Things is depicted in Figure 

2.3. Ιn this scenario, sensors and other medical devices monitor and record a host of vital 

signs that correspond to the current health status of the individual. Thus, a wireless body 

area network is formed around the patient. Data is collected via other devices like base 

stations and subsequently forwarded in servers, potentially located in the cloud. These sets 

of data can then be processed to mine information using big data analytics techniques and 

machine learning, to extract knowledge and support physicians in their decision-making 

processes.  

Furthermore, when a state of emergency is detected (for instance trouble in heart 

function or a fall), the connected devices can issue alarms in interconnected medical 

facilities in the vicinity of the patient. The volume of data recorded is obviously large given 

that the number of patients monitored is increasing. Apart from monitoring data obtained 

directly from devices, medical data may include images and videos from scans or past 

doctor visits, which further increases its volume. Besides volume, velocity and variety are 

also main concerns since the speed data is obtained increases as does the inherent 

heterogeneity in a complete medical history. It goes without saying, that data privacy and 

secure access are also paramount due to the sensitive nature of medical data. 
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In the remainder of the thesis, we explore the core issues that emerge in the Internet 

of Medical Things, the enabling technologies that provide solutions and present recent 

integrated framework proposals published by researchers in the field. 
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 3 Core ecosystem issues 

This chapter presents three issues that are pivotal for smart health. For the Internet 

of Medical Things is to be widely accepted, there need to be guarantees for privacy, safety 

and security. This chapter explains each principal and explores potential issues and 

solutions. 

 

 3.1  Privacy 

The transmission, management and storage of sensitive information related to 

people’s health has highlighted privacy and confidentiality as core issues in any smart 

healthcare implementation. This section summarizes relevant challenges and proposed 

solutions.  

From the very early days of e-healthcare, attempts to compromise privacy were observed. 

For instance, O’ Connor et al., in a 2017 paper describe a botnet found in an IoT scenario 

that was collecting personal information and monitoring user activities without the users 

being informed of such operations, fortunately not in a platform providing healthcare 

related services. A core privacy concept in any IoT context is informed consent. The user/ 

patient needs to be fully informed and have a clear understanding of how their data will be 

utilized, the goals of data storage and processing, what can be achieved by using their data 

and how they will benefit. They must also be aware of all related risks. These are 

challenges that exist in all types of networks but the ubiquitous nature of the Internet of 

Things exacerbates the situation. The person whose data is being collected in a healthcare 

IoT scenario (e.g. in a smart hospital) is often referred to as a digital health citizen. 

The General Data Protection Regulation (GDPR), which applies to citizens of 

countries in the European Union dictates that data controllers and processors are obliged 

to emphasize transparency, security and accountability during data handling or incur 

financial penalties. This, in essence, means that they must embrace the concept of “Privacy 

by Design” [O’ Connor et al., 2017]. In this direction, privacy concerns are addressed 

proactively on any new or upgraded healthcare IoT system or procedure which involves 

data, throughout the lifecycle, from conception, to planning, implementation and upgrade. 



 

13 

 

Digital citizens in general and digital health citizens in particular are envisaged in 

GDPR to be fully aware and having consented to data processing and usage. Giving 

informed consent requires adequate information (full disclosure) and is typically given 

with a signature. In an IoT scenario, however, physical signatures have been replaced by 

electronic signatures (or ticking boxes) which gives rise to the concept of electronic 

consent (eConsent), expected to displace other types of signatures/ permissions. 

As it was previously mentioned, informed consent requires adequate and accurate 

information. Additionally, GDPR explicitly specifies that consent may be modified or 

revoked at any time and this should also be supported by providers. Four distinct levels of 

consent have been identified and face different technical challenges in their 

implementation [O’Connor et al., 2017]. 

1. General Consent: full access to health data is granted by the digital health 

citizen. 

2. General Consent with specific conditions: there is general agreement to data 

processing but restrictions are specified. 

3. General Denial with specific conditions: complementary to type 2 where only 

what is allowed is specified. 

4. General Denial: no access to health data is granted. 

 

In a proposed practical approach [O’Connor et al., 2017], eConsent when 

registering for a Health Social Network was investigated and it was found that users had 

very little understanding of the Privacy Policy and Terms and Conditions of the website. 

Participants were clear that they welcome improvements on transparency and 

understandability and enhanced control on their data.  
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Figure 3.1: Leveraging privacy by design and usability in a healthcare IoT  

 

Figure 3.1 illustrates the basic principles of privacy by design and their relationship 

with eConsent in a healthcare IoT, where usability is also an important concern. In terms 

of the privacy by design principles, we have the following issues and proposed solutions: 

Proactive not reactive strategy: events need to be anticipated before they occur and 

the system needs to be prepared. A proposed solution is to have all installed software such 

as such as antivirus and antimalware up-to-date. 

Privacy is the default behavior: Data is automatically protected, access is 

monitored and only provided to authenticated entities. 

Privacy embedded into design: eConsent process is transparent, clearly defined and 

easy to locate for the user. 

Full functionality: all legitimate interests are accommodated, i.e., all “players” are 

granted appropriate permissions. 

End-to-end security: can be implemented using encryption for the entire data path. 

 

Privacy and consent need to be leveraged with usability. Relevant principles 

include: 

• Variety of technology: support for various devices in terms of hardware and 

software. 

• User diversity: user background, skills, knowledge vary. The process needs to 

be inclusive and accessible, adaptable for older users. 

• Gaps in user knowledge: the users may need to learn entirely new things. The 

language needs to be as simple as possible and initial knowledge of users may 

need to be assessed (e.g., via a short quiz). 
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The data protection authorities in several European countries have issued 

directives, clarifying the topic of digital consent and authentication via electronic means 

such as certificates. For example, the Greek Data Protection Authority issued directive 2 

in 2011, on the topic of digital consent in the context of Article 11 of 2006 Law 3471. In 

the directive it is clearly specified that any communication with an individual, even one 

using automated means (without human intervention) should be attempted only after 

explicit consent has been granted (opt-in system). This consent should be requested at the 

first contact, before the target individual is handed information. Exceptions to this 

regulation, also specified in the article, require the sender to include opt-out links and 

information is short messages or e-mails sent without prior consent. 

Per the directive, consent can be retracted at any point, without retroactive 

consequences for the individual. Consent is given in written form or via digital means. In 

the case of a digital communication, the provided contact information (e.g., e-mail address) 

need to be verified as belonging to the individual who gave consent for the communication. 

Furthermore, digital signatures based on trusted certification authorities are given the same 

legal basis as traditional signatures. 

 

 3.2  Safety 

In a scenario where medical devices (wearable or implanted) are used for health 

monitoring and, potentially, interventions, safety issues arise when a device malfunctions 

and interacts in an undesired way with the patient or fails to act when such a need arises. 

Under safety issues, we categorize adverse events that do not involve other entities apart 

from the patient and the device. Issues involving third parties (potentially malicious) are 

discussed in the security section.  
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Figure 3.2: Potential adverse events in implanted medical devices [Camara et al., 

2015]. 

 

Figure 3.2 illustrates potential adverse events for four popular types of implanted 

devices, a pacemaker/ defibrillator, a neurostimulator, a drug delivery system and a 

cochlear implant. Adverse events range from mild discomfort to severe impact to the 

patient's life and well-being.  

In general, safety related issues surrounding networked medical devices are related 

to wireless safety, namely the way wireless radiation interacts with body tissues, battery 

issues which may impact device performance, failure or subpar performance detection and 

interference with other devices. The last issue of devices coexistence is expected to become 

more critical as the number of devices rises and their popularity soars. An additional point 

that needs to be made concerning battery issues is that battery replacement in an implant 

typically requires surgery, which is invasive and unpleasant for the patient. 

 

 3.3  Security 

Security is a very important issue in all computer networks and in scenarios where 

there is any exchange of valuable information. When medical devices with networking 

capabilities are involved the stakes become even higher as security holes can even threaten 

human lives. Cyber physical systems are defined as electronic systems that are aware of 

their physical surroundings and can interact with them [AlTawy and Youssef, 2016]. 

Implanted medical with networking capabilities are popular examples of cyber physical 
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systems and they are vulnerable to both cyber and physical threats. As shown in Figure 

3.3, physical threats are mostly related to environmental and social factors, can 

compromise availability and safety but are mostly events of large scale and out of the 

patient’s or physician’s control. 

 

 

Figure 3.3: Types of security threats in cyber-physical systems 

 

Cyber threats on the other hand are types of threats against which manufacturers, 

facilities and practitioners need to take specific actions. Cyber security threats can be 

classified as passive or active. In passive threats, the attackers try to remain undetected 

while harvesting usable information about the patient and the device or track the device 

operation or the patient’s whereabouts and actions without interfering. In active threats, 

attackers attempt to either take over the device or compromise its operation while 

remaining undetected for as long as it takes to complete their task. While passive threats 

compromise confidentiality and can expose information that can be used in active attacks 

in the future, active threats also challenge the device availability first and foremost, i.e., 

may hinder the device normal operation and put the patient’s life at risk. 
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In general, implanted medical devices are vulnerable to the following types of 

active attacks [AlTawy and Youssef, 2016]: 

• Impersonation: if the wireless channel over which communication is conducted 

is not properly secured, an adversary may interject himself between the implant 

and its base station/ programmer and impersonate either end. The intruder can 

forward the communications eavesdropped to the legitimate receiver or feed 

false information to a physician, to hide, for example, an adverse event that 

requires immediate intervention. 

• Relaying: these attacks are a special type of impersonation attacks which 

exploit proximity to the medical device to trick it into believing the intruder is 

a legitimate programmer. Thus the device may carry out instructions that 

actually harm the patient. 

• Denial-of-service:  attacks in this category target device availability, i.e., their 

aim is to render the device working sub-optimally or not at all. For instance, an 

attacker can feed a device commands that drain its battery, interfere with 

communications using signal jammers or use magnetic fields near the patient 

to have sensitive devices turn themselves off. 

 

From the example of attacks cited above, the pivotal role of security in the Internet 

of Medical Things is very clear. Although research in network security has evolved 

significantly and strong cryptographic algorithms have been implemented, they are not 

always suitable for IoMT scenarios. Additional challenges that arise when discussing 

security of implanted medical devices are related to the critical physical environment 

(interaction with body tissues, size limitations), the constrained resources (tiny size of 

devices and constrains on power and processing abilities), the limitations in deploying 

updates or new software on previously implanted devices and, most importantly, the 

requirement for emergency authentication. Although, authenticated and controlled access 

to the device is required in patient monitoring scenarios, in the case of emergencies where 

a different doctor in a different hospital than the usual needs to access the device to treat 

the patient or even save his life. This means that security algorithms and authentical 

protocols need to have taken this case into account in their design. Potential solutions have 

been presented but each comes with inherent weaknesses. 
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Figure 3.4 summarizes the types of protection mechanisms that can be 

implemented in an implanted medical device as single measures or combined. Auditing 

refers to detailed logging of device actions and patient status and can be effective in 

detecting anomalies in operation and/ or security breeches. Given the constrains on device 

memory size, logging may be better implemented in an external device where the implant 

transmits its data periodically.  

 

 
Figure 3.4: Protection mechanisms for medical devices 

 

Cryptographic primitives are well known measures to protect a communications 

channel, but as mentioned above, restrictions regrading computational power and battery 

make complex schemes unsuitable and issues such as key management and secure storage 

arise, especially in emergency situations where the patient may be incapacitated. Access 

control mechanisms prevent unauthorized and inappropriate usage of the implant. Again, 

solutions that are widely employed in traditional networks are not suitable for e-health 

scenarios where emergency authentication is critical. 
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 4 Enabling technologies and tools for the Internet of Medical 

Things 

This chapter presents technologies and software related tools that are essential for 

the future, global and scalable Internet of Medical Things. 

 

 4.1  Sensors, actuators and connected devices 

This refers to the devices that actually perform medical data collection and through 

some form of networking capabilities (e.g., WiFi connection or Bluetoothe/ Zigbee etc.) 

forward them to storage servers or processing facilities. Apart from devices worn by people 

or implants in patients under observation, this type of infrastructure includes 

environmental monitoring tools (for example devices evaluating air quality in crowded 

places or temperature monitors) and their base stations. 

Devices performing data collection in an IoMT scenario are often required to be 

able to issue alerts and forward them to attending physicians or emergency responders. For 

example, a common use is a wearable device that can detect a fall, worn by elderly people 

under close monitoring. 

 

 

Figure 4.1: Architecture for a remote healthcare monitoring system 
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Figure 4.1 [Rodrigues et al., 2018] illustrates the architecture of a remote healthcare 

monitoring system that is based on a number of diverse sensors, implanted or wearable, 

monitoring bodily functions. Examples include, electrocardiogram sensors monitoring 

heart rate, airflow sensors monitoring respiration, temperature and perspiration sensors, 

accelerometers monitoring body position, checking for potential falls and many others. 

The technical details of operation of such devices are out of the scope of this thesis 

but it must be noted that their heterogeneity, lack of interoperability between 

manufacturers, lack of standards in the industry and network “pollution” caused by 

crowding and devices in close proximity that generate interference are significant 

challenges that need to be addressed in the effort for a safe and dependable Internet of 

Medical Things. Additionally, security, as detailed in the previous chapter is a huge 

concern, since a minor security flaw in a single component may be exploited by a 

knowledgeable intruder to jeopardize the entire system. 

 

 4.2  Blockchain 

As its name suggests, Blockchain is essentially a sequence of blocks (Figure 4.2). 

The first block is referred to as the Genesis block and every other block i is connected to 

the previous (i-1) and the next block (i+1), if it exists. 
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Figure 4.2: A generic Blockchain structure 

 

The connections between blocks (backward and forward references) are established 

using hash values. This means that each block contains hash values of the full contents of 

their neighboring blocks. This is very important as it prevents the modification of their 

contents, thus guaranteeing immutability. Immutability is a very important property of 

Blockchain and the basis of many of its inherent security and privacy features. Each block 

also contains a root hash of all the transactions, and a root hash of all the contracts. 

Modifying even one bit of this data alters the hash value and is thus detectable.  

Another important concept that can be implemented on top of a Blockchain 

infrastructure are smart contracts. These contracts automate the execution of tasks once 

certain conditions are met or disruptions occur (such as deadlines expiring or breach of a 

contract). Because of the inherent immutability, smart contacts greatly simplify the 

administration process, reduce workloads in business activities and alleviate certain risks. 

The key features of Blockchain as a technology that make it very attractive as a 

storage engine for the medical data in IoMT are as follows: 

Immutability: as mentioned above, this refers to the fact that data stored in a 

Blockchain cannot be modified and the modification goes unnoticed. Such probability is 

extremely low, due to the hash values used throughout the chain, so it is considered that 

none can tamper stored data without being caught. 
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Non-repudiation of transactions: entities performing transactions may be required 

to use digital signatures and transactions may be validated using a distributed consensus 

mechanisms. These features combined with strong cryptographic algorithms guarantee that 

no one can refute a recorded transaction (since multiple parties have confirmed it) and no 

one can deny having performed one since their digital signature was used, thus ensuring 

non-repudiation of transaction. 

Traceability: this concept referred to tracing the origin of data added to the 

blockchain by analyzing publicly available blockchain data. Interested parties can 

determine who performed a particular transaction and when. 

Decentralization: the distributed nature of blockchain means that there is no 

central authority (single point of failure/ workload) and enables the validation of 

transactions by a majority of peers distributed throughout the system. This enhancing 

reliability and availability. 

 

 

Figure 4.3: A blockchain enabled Internet of Medical Things 
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Dai et al. in their 2020 paper [Dai et al., 2020] describe the architecture of a 

blockchain enabled Internet of Medical Things depicted in Figure 4.3. In the proposed 

architecture, the following layers are identified: 

1. Device layer: this layer contains the devices actually capturing health related 

data  

2. Edge computing layer: this layer is the bridge between devices and edge 

computing facilities (located at base stations/ access points/ gateways) that 

gather and preprocess IoMT data). 

3. Blockchain network layer: this layer functions as the middleware between the 

lower layers and the data analytics layer and guarantees trustworthy 

management of resources, authentication and access control. 

4. Data analytics layer: this is the layer where artificial intelligence (machine 

learning and deep learning) tools are used to extract usable information from 

the massive volumes of data produced from the underlying layers. 

 

The advantages of the confluence of IoMT and Blockchain are listed in [Indumathi 

et al., 2020] as follows:  

• Affordability/ reductions in operational costs. 

• Uninterrupted real-time monitoring, e.g., for children and the elderly/ 

automatic alerts 

• Simplicity, ease of use and energy efficiency 

 

 

 4.3  Machine learning tools & Deep learning 

Massive data generated from medical sensors, wearable and implanted devices, and 

other Internet of Things technologies provide rich information about the health status and 

context of users/ patients. Such incredible volumes of data can be very useful in patient 

monitoring and assisting doctors to detect conditions and make accurate diagnoses but they 

require automated processing techniques such as those related to traditional machine 

learning (ML) and deep learning (DL). For instance, when processing chest X-rays or CT 

scans, a machine learning algorithm can classify them as infected or normal. The decision 
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requires several steps where, for example, features of input images are extracted during 

preprocessing and fed into a machine learning model to be used in the final decision. 

Another potential application for machine learning techniques, besides classification is to 

detect the start and evolution of a potential pandemic outbreak and detect possible future 

hot-zones [Alyasseri et al., 2021]. 

Machine learning is a powerful tool that facilitates the process of mining massive 

amount of data that have been collected from different sources and turn data into usable 

information. This is accomplished by applying a model that was previously learned from 

a set of observed data examples referred to as a training set.  

Machine learning techniques used in e-health applications include the following 

(Figure 4.4): 

1. Supervised learning: is based on a set of labeled training data, i.e., pairs of input 

and output data where the correct result is tagged. 

2. Unsupervised learning: in contrast to supervised learning, there are no 

previously tagged data to serve as the basis for learning.  

3. Semi-supervised learning: as its name suggests, this approach falls between 

supervised and unsupervised learning, utilizing a small set of labeled training 

data to improve learning accuracy and speed. 

4. Reinforcement learning: algorithms in this category were inspired by 

behavioral psychology. In such as scenario, intelligent software agents take 

actions aimed at maximizing a cumulative reward. Normally, there is no a priori 

knowledge and optimal policies have to be discovered from the training data 

[Qolomany et al., 2019]. 
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Figure 4.4: Types of machine learning 

 

In deep learning, a model attempts to learn the abstract representations of data. The 

most typical feature of deep learning models is that they contain a number of hidden layers 

(at least one hidden layer exists), as well as the standard input and output layers. The 

number of layers is referred to as the depth of the model. Each hidden layer may contain a 

number of neurons, and neurons with each neuron having multiple inputs and a single 

output, connecting to inputs of neurons in lower layers. Each neuron is associated with a 

weight and a bias whose values are determined and updated during the training. 

The way most deep learning models typical learn is via back-propagation. In this 

approach, there is a feed forward step and a back-propagation step. Initially, the outputs at 

each layer are calculated based on previous and current layer parameters. These 

intermediate results determine whether a neuron will be activated. Precise mathematical 

functions depend on the problem at hand. 

As it is clear, such a complex model with multiple layers requires massive 

computational resources in order to be accurately trained. In this direction, distributed deep 

learning training may split the load between many collaborating parties. Parallelism may 

be achieved either in the model (split the model) or the data (split the training data) 

direction.  In the data parallelism approach, which is more common, all parties maintain 

copies of the model training parameters derived from a centralized parameter server. The 

local machines then upload their own training gradients and collaboratively update the 

model which is then available to all. 
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Popular deep learning algorithms/ network categories include: 

1. Convolutional Neural Networks: best suited for analyzing images therefore 

used in scenarios where x-rays or other types of scans are the basis for 

diagnosis. Also suitable for computer vision applications. 

2. Deep Neural Networks: a subclass of artificial neural networks, i.e., networks 

that attempt to imitate the function of the human brain. 

3. Recurrent Neural Networks: suitable for natural language processing 

applications. 

4. Generative Adversarial Networks: as the name suggests, in these models there 

are two networks competing against one another with each opponent benefiting 

from the other one’s losses. 
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 5 Integrated framework proposals for Health IoT 

In this section, integrated proposals on implementations of smart healthcare that 

have been presented in literature are presented.  

 5.1  A high level proposal for multiple scenarios 

One of the first complete proposals for an integrated Health Internet of Things and 

smart healthcare was presented by Hossain and  Muhammad in 2016. In their seminal paper 

[Hossain and Muhammad, 2016], the authors present a scenario for a healthcare IoT 

ecosystem, discuss its structure and data flow in detail and discuss a specific application 

for electrocardiogram monitoring in detail. 

The conceptual illustration for the ecosystem is shown in Figure 5.1 where the 

participating players are involved devices are depicted. 

 

 

Figure 5.1: A healthcare Internet of Things illustration. 
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As shown in the figure, patients with IoT devices and sensors are connected with 

healthcare professionals, smart hospitals, drug stores and emergency responders. Other 

participants/ stakeholders include medical research centers and pharmaceutical industries. 

Family and friends may also be connected and kept in the loop, possibly via social media. 

In this ecosystem, patient information can be transferred seamlessly and securely among 

the interested parties, such that specific patient data are available only to a designated 

authorized healthcare team. For instance, prescribed drugs are automatically forwarded to 

the drug store selected and delivered to the patient. Additionally, big data analytics (and 

potentially artificial intelligence) enables analyzing, storing, closely monitoring, and 

securely sharing the data for further review and medical recommendations or medical 

research. 

 

 

Figure 5.2: The flow of data in an internet of medical things architecture. 

 

A very important issue in an internet of medical things architecture is the paths 

through which data flows. These paths for an application related to electrocardiogram 

signal monitoring are depicted in Figure 5.2. Mapping the paths is very important in order 

to identify potential points of signal interception and other security related issues. As 

mentioned above, the readings captured from the sensors are seamlessly transferred to 

cloud servers where they are processed and securely stored. This chain of collected data is 

either accessed by healthcare professionals, or delivered to external systems for further 

industry-specific specialized processing. The original signal processing consists of several 
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steps whose aim is to increase signal quality and remove errors that may trigger alarms. 

More specifically, signals are enhanced to remove physiological defects such as those due 

to muscular activity or motion as well as non-physiological defects commonly caused by 

electrical interference or electrode malfunction. These defects or combinations of them can 

result in ECG resembling cardiac abnormalities like ectopic rhythm. Other processing 

steps include the detection of peak amplitude (peak R) and watermarking to protect the 

signal from forgery. Selected features of interest are extracted from the signal and stored 

in the IoMT infrastructure to be later used as input to machine learning software such as a 

vector machine classifier. 

 

 5.2  Proposals related to the Covid-19 pandemic 

The coronavirus pandemic caught humanity by surprise, not because it was the first 

recorded pandemic or the one with the highest mortality rate, but because the very 

contagious virus tested the limits of healthcare systems and challenged assumptions 

regarding everyday life. Concepts such as distance learning and remote working became 

very popular to assist with limiting the spread of the virus and, of course, technology 

played a significant role. The fact that hospitals and other care facilities were swamped 

with potential and confirmed cases was also a powerful motive to adopt telemedicine, 

especially for vulnerable patients, so as to keep people at risk of severe disease as far away 

from outbreak epicenters as possible. It was only natural that researchers would explore 

solutions related to utilizing the Internet of Medical Things for applications related to the 

Covid-19 pandemic and this section summarizes relevant publications and highlights all 

the ways in which a smart hospital and smart health in general could provide solutions. 

In [Dai et al., 2020], researchers identify the following applications for IoMT as 

related to Covid-19: 

1. Tracing pandemic origin: this refers to the use of technology such as thermal 

cameras and sensors in places where there is crowding such as transportation 

media stations, in order to identify potential cases (via detecting elevated body 

temperature, for example) and follow the chain of transmission to people that 

were in close proximity to a Covid-19 positive person. In this scenario, the 

Blockchain enabled IoMT guarantees data privacy and traceability of 
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transactions. It must be noted that detection equipment does not have to be 

installed in fixed locations but can instead be mounted on unmanned arial 

vehicles (drones) to cover, for example, gatherings of large crowds in sports 

stadiums or concerts. 

2. Quarantine and social distancing: isolation from other people for a possible 

case during an outbreak has been proven to be the most effective measure to 

limit the Covid-19 pandemic. Social distancing has, likewise, been proven to 

limit transmission from asymptomatic individuals during the time between they 

contacted the disease and the time they became sick. Quarantine restrictions 

typically require dedicated facilities and staff for supervision but such solutions 

are not cost-effective or scalable during the worst phases of the pandemic. 

Technology such as wristbands allows people (for example travelers) to 

quarantine at home or at hotels while periodically reporting their exact 

locations. As far as social distancing is concerned, wristbands can issue alerts 

when distance is below a specified threshold or crowd density is unacceptable 

in a venue and/ or keep track of distances from other wristbands in close 

proximity. The role of Blockchain in such scenarios is mainly data privacy 

protection. 

3. Smart hospital: a Blockchain enabled Internet of Medical Things can support 

practically every function of a smart hospital. In such a medical facility, for 

instance, material resources/ assets in every scale and of every type (from beds 

and ambulances to imaging equipment and respirators) can be monitored for 

availability and proper operation by using RFID tags and smart sensors. The 

usage data and malfunction logs can be used for predictive cost analysis and 

procurements related decision making. Within a hospital building, IoMT 

devices can be used to monitor environmental conditions such as temperature 

and air quality, generate alerts or even take relevant actions. In the near future 

IoMT devices used may not be passive such as sensors but also include devices 

that perform actions such as cleaning or disinfecting thus reducing manual labor 

and cost. In all the scenarios described, Blockchain guarantees the privacy and 

immutability of data, protects the chain of transactions from tampering and thus 

ensures non repudiation of transactions. 
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4. Remote healthcare and telemedicine: the Covid-19 pandemic really 

highlighted virtually all shortcomings of traditional healthcare systems. 

Vulnerable people such as the elderly or the chronically ill were forced to stay 

away from hospitals overflowing with patients for fear of infection. A 

Blockchain enabled IoMT can enable remote monitoring of patients via 

wearable or implanted devices that securely share the data they record with 

physicians and issue alerts in case of emergencies. The most important concern 

in this process has traditionally been data privacy and security and this is 

exactly where Blockchain comes into play, ensuring data provenance and 

allowing data access only to authorized personnel and prohibiting its 

modification [Abdulkareem et al., 2021], [Shamsabadi et al., 2021]. 

 

 5.3  Proposals combining deep learning with Blockchain 

This section contains recent proposals by researchers that combine deep learning 

with Blockchain in applications related to the Internet of Medical Things that introduce 

innovations in Blockchain implementation and inherent mechanisms. 

 

 5.3.1 DeepChain 

DeepChain [Weng et al., 2019] was proposed as an approach to building a safe, 

distributed and fair deep learning framework in an IoMT ecosystem. The most novel aspect 

of DeepChain is its Blockchain based incentive mechanism that evaluates the contributions 

of participating parties and encourages them to adopt proper (honest) behaviors. 

DeepChain also guarantees data confidentiality and auditability of actions and transactions 

during the training process. 

Figure 5.3 illustrates the difference between traditional deep learning and 

DeepChain. In all types of collaborative deep learning, local parties generate intermediate 

or partial results (gradients) based on the training data they have available and upload them 

to a local parameter server to obtain updated model parameters. This mechanism, however, 

has serious security flaws (analyzed in subsequent paragraphs) and DeepChain resolves 

the issues by implementing Trading Contracts and Processing Contracts as smart contract 
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in the Blockchain, and with them guides the secure training process. In the figure, Tx refers 

to transaction. 

 

Figure 5.3: Traditional distributed deep learning vs. DeepChain 

 

Figure 5.4 illustrates the operation of the DeepChain novel incentive mechanism. 

Cooperative parties and workers (= entities that complete tasks) contribute to the training 

of a model and get rewarded with high quality results from the training. In the figure, 

contributions are denoted by ω and rewards by π.  

 

 

Figure 5.4: DeepChain incentive mechanism 

 

Parties with high volumes of data are encouraged to contribute their data for model 

training because the incentive mechanism values data quantity and offer substantial 

rewards for large data sets. If a party’s behavior is deemed to be dubious, the party gets a 
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penalty. The training of local models also needs to be accurate and workers who process 

and validate transactions also need to be honest. For example, two cooperating parties who 

want to obtain results pay a fee that is inversely proportional to the volume of data they 

contribute. An agreed upon reward for completion of processing is awarded to the party 

who will create a new block in the Blockchain, i.e., to the party that will finish processing 

their transactions first. 

Because of the nature of Blockchain, transaction auditability is guaranteed and 

fabrication of input data or intermediate results is dateable and punishable (via the 

incentive mechanism). It must be noted that data volume (quantity) is the single criterion 

used for contribution evaluation, hence there is room for improvement in the incentive 

mechanism if it is altered to take quality into account as well. 

Collaborative deep learning, which is the basis of DeepChain is faced with several 

challenges related to security due to its inherent data/ gradients disclosure. These 

challenges are addressed in DeepChain via specific mechanisms. The first threat has to do 

with the disclosure of local data and model when they are uploaded to the parameter server. 

Despite the fact that each party only uploads local gradients (intermediate results) to the 

parameter server, potential attackers may attempt to infer and steal the input data that led 

to these gradients, thus exposing private training data. Confidentiality of local gradients is 

achieved in DeepChain by requiring at least a number of participants collude to reveal local 

gradients. In other words, in DeepChain, participants encrypt their local gradients using 

their own private keys and upload them to the parameter server but decryption requires all 

participants to collaborate. It is considered highly unlikely that the number of participants 

that are required for decryption are all dishonest. Other challenges are related to potentially 

malicious behaviors by participants who either attempt to upload erroneous gradients or 

attempt to falsify their proof-of-work to save on processing time and get results. These are 

dealt via the auditability mechanisms mentioned above, which are again based on 

participant consensus. A final challenge is fairness guarantee for participants. This is 

achieved by setting strict time out deadlines and inflicting monetary penalties to members 

that were either not punctual or dishonest via smart contracts. The money from penalties 

incurred by dishonest members are transferred to honest parties, thus guaranteeing fairness. 
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 5.3.2 BinDaaS 

BinDaaS (Blockchain-Based Deep Learning as-a-Service) was proposed by 

Bhattacharya et al. in 2021 as a potential solution for security and privacy issues that 

emerge when storing Electronic Health Records [Bhattacharya et al., 2021]. As its full 

name suggests, BinDaaS integrates BlockchaiIN with deep learning as a Service. 

The BinDaaS system architecture is illustrated in Figure 5.5 and is composed of 4 

layers, numbered from 0 to 3, with data moving from the lowest index layer to the highest 

(from 0 to 3). The lowest layer (0) contains the network users/ players such as physicians 

and patients, but also administrative staff and third-parties, lab technicians and researchers. 

Data flowing in the network may be generated automatically by (bio)sensors monitoring 

vital patient signs such as blood glucose levels or manually, by recording for example test 

results, diagnoses, medications administered and others. It must be noted that the collected 

raw data undergoes homogenization and classification using Bayesian classifiers. Layer 1 

contains authorities (such as hospitals and laboratories) and companies (insurance and 

pharmaceutical). Data gathered in this Authoritative Organizational Layer is subsequently 

forwarded to Layer 2, which is the Analytics Layer via distributed network infrastructures 

to be processed for knowledge management purposes. This is the layer where deep learning 

as a service if offered to extract usable information from the data. The outcomes of the 

deep learning network is then fed as an input to layer 3 which contains the Electronic health 

record Servers (ES). 
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Figure 5.5: BinDaaS system architecture 

 

The ES layer actually determines the process via which blocks are added to the 

Blockchain and is responsible for guaranteeing security and integrity both for data and 

transactions. An important tool employed in this direction is lattice cryptography that 

improves resilience to several types of attacks (side channel attacks, quantum forgeries, 

collusion).  

Medical data stored in electronic health records in BinDaaS include symptoms, 

clinical observations, data captured from devices (monitored) and patient hospital visits or 

hospitalizations which may both be planned or emergency. Every piece of relevant 

information (date/ time of admission/ discharge, lab reports, diagnoses, etc) is contained 

in the patient’s file along with lifestyle choices that may affect health. This in-depth 

information can be used to predict future illness by feeding a prediction model. The 
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researchers behind BinDaas validate both the security scheme and the prediction model 

against existing state-of-the art infrastructures for comparison. 
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 6 Publications on the Internet of Medical Things – Current 

literature reference tables 

In this chapter we will attempt to organize recent papers on the general topic of the 

Internet of Medical Things in tables listing the main properties of each publication. These 

tables aim to serve as concise sources of information for researchers that wish to study the 

area in depth. 

The first table lists all papers contained in the list of references that were published 

during the last 5 years (since 2017), with the type of paper (overview, implementation 

prototype, integrated proposal), its main topic, and additional selected keywords. 

 

Table 1: Recent publications reference 

Reference 
Publication 

Type 
Main Topic Selected keywords 

Abdulkareem et 

al., 2021 

Software 

prototype 

COVID-19 diagnosis 

system 

Machine learning, smart 

hospital 

Ahad et al., 2019 Overview 
5G-based smart 

healthcare network 

Smart healthcare, 

device-to-device 

communication 

Ahmed et al., 

2021 

Software 

prototype 

Patient discomfort 

detection 

Deep learning, 

computer vision 

Albesher, 2019 Overview 

Smart cyber-physical 

ubiquitous 

environments 

Sensors, wearable 

devices 

Alqaralleh et al., 

2021 

Implementation 

model 

Secure image 

transmission and 

diagnosis model 

Blockchain, deep belief 

network 

Alyasseri et al., 

2022 
Overview 

COVID‐19 diagnosis 

models 

Machine learning, deep 

learning 

Ben Ida et al., 

2020 

Implementation 

model 

Early warning 

scoring system 

Smart hospital, self-

adaptative system, vital 

signs monitoring 

Bhattacharya et 

al., 2019 
Prototype 

BinDaaS: 

Blockchain-based 

deep-learning as-a-

service 

Electronic health 

records, disease 

prediction 

Bigini et al., 

2020 
Overview 

Blockchain for the 

internet of medical 

things 

Distributed Ledger 

Technology, 

Blockchain 
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Dai et al., 2020 
Integrated 

proposal 

Blockchain-enabled 

IoMT to combat 

COVID-19 

Blockchain, COVID-19 

Dilawar et al., 

2019 

Integrated 

proposal 
IoMT security 

Blockchain, proof of 

work 

Ellouze et al., 

2020 
Overview Blockchain for IoMT 

Security, proposed 

architectures 

Fang et al., 2020 
Integrated 

proposal 
Privacy protection 

Watermarking, data 

sharing, access control 

Guinard, 2006 Prototype 
Assets tracking 

system 

Smart hospital, RFID, 

workflow optimization 

Habibzadeh et 

al., 2019 
Overview 

IoT from a clinical 

perspective 

Health monitoring, 

healthcare analytics, 

medical decision 

support 

Hussain et al., 

2019 
Prototype 

Baby behavior 

monitoring 
Computer vision, alerts 

Indumathi et al., 

2020 

Integrated 

proposal 
Blockchain IoMT 

Real-time health 

monitoring 

Jamil et al., 2019 
Integrated 

proposal 

Drug supply chain 

integrity 

management 

Blockchain, smart 

contracts 

Jia et al., 2022 
Comparative 

analysis 

Hospital 

performance metrics 

prediction 

Machine learning 

Isravel & 

Silas,2020 
Overview 

IoT-cloud based 

technologies smart 

healthcare 

Health data, machine 

learning 

Khan et al., 2021 Overview Reliability in the IoT 

Machine learning, 6G 

communications, 

Blockchain based 

security 

Lakhan et al., 

2021 

Integrated 

proposal 

Sensor data 

aggregation and 

study 

Ethereum, smart 

contract, Blockchain 

Mansour et al., 

2021 
Prototype 

Diagnosis model for 

heart disease and 

diabetes using AI 

and IoT 

Machine learning, 

classification of the 

medical data 

Maxwell & 

Grupac, 2021 

Integrated 

proposal 

Virtual care 

technologies for 

Covid-19 patients 

Artificial intelligence, 

Covid screening and 

diagnosis 

Moro Visconti & 

Morea, 2020 

Integrated 

proposal 

Smart hospital 

project financing 

Healthcare 

digitalization,  pay-for-

performance incentives 
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Naresh et al., 

2020 
Overview The advent of IoMT 

Enabling technologies, 

key applications, 

proposed architecture 

O’Connor et al., 

2017 

Integrated 

proposal 
Privacy by design 

Informed consent, 

GDPR, digital consent 

Pan et al., 2019 Overview 

Intentions of medical 

practitioners towards 

smart technologies 

Technology transfer, 

subjective norm, 

perceived risk 

Połap et al., 2020 
Integrated 

proposal 

Blockchain and 

neural networks 

Patient monitoring, 

assisted diagnosis, 

federated learning 

Rayan et al., 

2019 
Overview 

Machine learning in 

smart health 
 

Rodrigues et al., 

2018 
Overview 

Enabling 

technologies for 

IoMT 

Assisted living, mobile 

health 

Said et al., 2020 Prototype 
Rank attack 

detection 

Machine learning, smart 

hospital, security, 

intrusion detection 

Samanta et al., 

2021 
Prototype 

Secure cloud 

services 

Support vector 

machines based 

cryptography 

Seliem & 

Elgazzar, 2019 
Proposal 

Blockchain based 

IoMT 

Lightweight security 

scheme, smart hospital, 

bolster 

Shamsabadi et 

al., 2022 
Overview 

Management of 

chronic diseases 
Covid-19 

Sharma et al., 

2020 

Integrated 

proposal 

Blockchain based 

smart contracts 
 

Stanley & 

Kucera, 2021 

Integrated 

proposal 

Real-Time Medical 

Data Analytics in the 

Covid-19 pandemic 

Detection, monitoring, 

response to treatment 

Sundaravadivel 

et al., 2017 
Overview Smart healthcare Products, cost analysis 

Taiwo & 

Ezugwu, 2020 
Proposal 

Remote patient 

monitoring 

Covid-19, sensors, 

mobile application 

Tian et al., 2019 Overview Smart healthcare Technologies 

Tokognon et al., 

2017 
Proposal 

Health monitoring 

framework 
Big Data, sensors 

Turner & Pera, 

2021 

Integrated 

proposal 

Real-Time Covid-19 

Detection 

Big Data, wearable 

devices 

Weng et al., 2019 Prototype 

Blockchain based 

collaborative deep 

learning 

Incentive mechanism, 

privacy, DeepChain 

Yamashita et al., 

2021 
Prototype 

Medical workers and 

objects tracking 

Smart hospital, 

geomagnetic 
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positioning algorithms, 

beacons 

Yaqoob et al., 

2019 
Overview 

Security 

vulnerabilities of 

networked medical 

devices 

Attacks, 

countermeasures, 

regulations 

Zeadally et al., 

2019 
Overview Smart healthcare Big Data analytics 

Zhang et al., 

2020 

Integrated 

proposal 

Diagnosis based on 

medical image 

analysis 

Deep learning, cardiac 

monitoring, Big Data 

analytics 

 

The second table lists selected references that entail the topics of privacy, safety 

and security. Its columns include the type of paper, the type of device/ network, the key 

issue(s) and core topics. 

 

Table 2: References on privacy, security or safety 

Reference Type Devices/ 

networks/  

Key 

Issue(s) 

Topics 

AlTawy & 

Youssef, 

2016 

Overview Cyber physical 

systems 

Security 

Safety 

Implantable devices, 

security tradeoffs 

Dilawar et 

al., 2019 

Integrated 

proposal 

IoMT Security 

Privacy 

Blockchain secured IoMT 

architecture 

Fang et al., 

2020 

Proposals Smart hospitals 

network 

Privacy Data-sharing framework 

and access control 

mechanism based on 

watermarking 

O’Connor et 

al., 2017 

Proposal General Privacy Informed consent and 

retraction/ modification of 

consent by digital citizens 

Said et al., 

2020 

Protype IoT in smart 

hospital 

Security Intrusion detection system 

based on support vector 

machines 

Samanta et 

al., 2021 

Prototype Secure cloud 

services for 

medical data 

Security Improvements in strength 

to support vector machines 

based cryptography 

 

The third classification includes selected papers in the area of machine or deep 

learning. 
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Table 3: Publications in the area of machine/ deep learning 

Reference Type Specific tool Mode of 

operation 

Results 

Abdulkareem 

et al., 2021 

ML Naive Bayes 

model 

Random Forest 

model 

Support vector 

machine model 

Covid-19 

diagnoses based on 

original and 

normalized 

datasets and 

feature selection 

SVM model 

performance 95% 

Ahmed et al., 

2021 

DL Deep 

convolutional 

neural networks 

Video analysis True-positive 94% 

False-positive 7%. 

Bhattacharya 

et al., 2019 

DL Deep long 

short-term 

memory model 

Analysis and 

classification of 

electronic health 

records 

Precision score: 

0.7244, recall: 

0.7078, obtained F1-

score: 0.7118 

Jia et al., 2022 DL Deep long 

short-term 

memory model 

Forecast multiple 

streams of 

healthcare 

timeseries data 

Outperforms similar 

models for predicting 

daily patient visits, 

number of daily 

medical examinations 

and prescriptions 

Mansour et 

al., 2021 

ML Cascaded Long 

Short Term 

Memory Model 

Classification of 

medical data 

Maximum accuracies 

of 96.16% and 

97.26% in diagnosing 

heart disease and 

diabetes 

Said et al., 

2020 

ML Support Vector 

Machines 

Intrusion detection/ 

rank attack 

High detection 

accuracy, low false 

positive rates 

Weng et al., 

2019 

DL Trading and 

processing 

contracts 

Collaborative deep 

learning 

Fair incentive 

mechanism that 

encourages honest 

participation 

 

 

The fourth table lists indicative proposals related to the Covid-19 pandemic. 

 

Table 4: Publications related to the Covid-19 pandemic 

Reference Type of tool Approach 

Abdulkareem et 

al., 2021 

Diagnosis system Clinical decision support system based on 

machine learning and IoMT devices 

Alyasseri et al., 

2022 

Overview of 

diagnosis models 

Publications classification, public datasets 
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Maxwell & 

Grupac, 2021 

Virtual care 

technologies 

Artificial intelligence-enabled wearable 

medical devices, virtualized care systems, 

and wireless biomedical sensing devices 

for COVID-19 screening, testing, and 

treatment 

Shamsabadi et al., 

2022 

Management of 

chronic disease 

Using sensors and the IoMT to obtain data 

from chronically ill patients in the context 

of the Covid-19 pandemic 

Stanley & Kucera, 

2021 

Integrated tool for 

detection, diagnosis 

and monitoring 

Management of healthcare, AI-based 

diagnostic algorithms, real-time medical 

data analytics 

Taiwo & Ezugwu, 

2020 

Remote smart home 

healthcare support 

system 

Android application for doctor-patient 

communication + sensors recording 

physiological data + smart home features 

Turner & Pera, 

2021 

Real-time detection 

and monitoring 

system 

Integration of wearable medical devices 

data with clinical data leads to increased 

informed diagnostics and treatment 

decisions 

 

 

The fifth and final table contains selected proposals that include Blockchain as 

storage or sharing mechanism. 

 

Table 5: Publications incorporating Blockchain in an IoMT environment 

Reference Other tools/ 

Implementation 

specific 

Use of Blockchain 

Bhattacharya et 

al., 2019 

Deep learning Storing electronic health records 

Indumathi et al., 

2020 

Encryption Health information data exchange between 

patients and doctors, drugs management, 

Personal Health Records management 

Jamil et al., 

2019 

Smart contracts Drug supply chain integrity management, 

counterfeit drugs detection 

Lakhan et al., 

2021 

Ethereum based 

proposal 

Using a Blockchain-Enabled Smart-

Contract Cost-Efficient Scheduling 

Algorithm Framework 

Seliem & 

Elgazzar, 2019 

Smart hospital Lightweight Blockchain scheme consisting 

of a cloud server, network cluster, medical 

facility, and smart medical devices 

Sharma et al., 

2020 

Smart contracts Proposed architecture for the use of smart 

contracts in Blockchain based e-healthcare 

Weng et al., 

2019 

Trading and 

processing contracts 

Novel incentive mechanism for 

collaborating parties 
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 7 Electronic health records management at a state level – A 

proposal 

This chapter presents an integrated proposal for electronic health records 

management at a state level, having Greece as an implementation example. Several 

inherent challenges are discussed, along with potential solutions. The proposal is generally 

presented at a functional requirements and design level, but several technological 

implementation details are discussed, in the context of the Internet of Medical Things. 

 

 7.1  Current status & inherent challenges 

A web application akin to an electronic health record manager was recently (in 

2022) launched by the Greek government. The main focus of this application is online drug 

prescriptions but there are also records of hospitalizations, doctors’ visits, diagnoses and 

future appointments. Authentication is based on accounts from the General Secretariat of 

Information Systems and additional one-time passwords sent via SMS in the prespecified 

and validated user mobile phone number. Data already in the application databases is 

limited both in the time domain (the exact time frame is not specified) and in terms of 

origin (generally from public sector health facilities), so its far from a complete Electronic 

Health Record (EHR). The major inherent challenges in the attempt to build and operate 

an EHR management platform at a state level are: 

• Security and privacy: the very sensitive nature of the information contained 

in an EHR means that security and privacy need to be guaranteed in the system. 

Apart from being impervious to any form of attack, the system needs to have a 

flexible e-consent mechanism that allows an individual to consent and retract 

consent for a number of functions at any time. 

• Scale: although Greece is a relatively small country, the scale of a platform at 

a state level is still daunting, especially if data from IoMT devices is to be 

included. Availability needs to be guaranteed, if health services are to rely on 

the platform for treatment, especially in emergency situations. 

• State of e-literacy of the population: although the Covid-19 pandemic has 

forced Greeks to use online platforms and e-banking for operations previously 
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performed in person, the population is still relatively illiterate in electronic 

services, trust levels in such platforms are low and many are susceptible to fraud 

attempts. 

 

 7.2  Stakeholders – requirements 

The EHR management platform will have several different types of users and there 

are many types of stakeholders. The main types of users will be: 

• Patients. Includes adults and minors who are not managing their accounts on 

their own. 

• Health professionals with varying levels of access (e.g. doctors are expected to 

have additional privileges compared to nursing staff). 

• Administrative employees of public and private health facilities (related to 

billing functions). 

• Researchers in various fields (medicine, biology, sensor devices, networks and 

many more). They need access mostly to anonymized data. 

• Policy makers: they need access to aggregate statistics for audit and resources 

dimensioning purposes. 

 

 7.3  Volume of data - input methods 

The volume of input data will naturally be very big and there are also issues related 

to time sensitivity, i.e., data needs to be updated, current and complete at all times in order 

to support medical decisions but these updates shouldn’t take much of the doctor’s time 

(for example). A potential solution for data input are speech to text tools and in particular 

deep learning tools in this category. Data dictated should be processed by specialized 

software to extract information for symptoms that correspond to diagnostic criteria 

according to international standards for classification of diseases (ICD), maintained by the 

World Health Organization. Additionally, lab and imaging results should also be 

incorporated into the EHR and potentially processed by other machine/ deep learning tools.  
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 7.4  Distributed storage – processing 

A centralized solution for the type of platform discussed in this chapter has many 

drawbacks. Having a single point of failure is a crucial vulnerability for the availability of 

the application as well as a target for malicious attackers. Therefore, a solution with 

distributed storage and control is preferable. Blockchain is a technology that offers many 

advantages in this direction that have been pointed out in preceding sections. The storage 

engine does not need to be in a single physical location and attention must be given to the 

backup policy as well. Replication and redundancy seem like natural solutions but they 

imply a high infrastructure cost. 

 

 7.5  Deep learning applications in EHR management 

Many potential machine learning/ deep learning applications are worth 

implementing in an EHR management platform. Having complete health data on an 

individual enables “automated” diagnoses based on specific criteria and classification 

tools. Drug-drug interactions can also be investigated as the complete prescriptions history 

is also included. Prediction tools based on input data can make accurate assessments about 

the patient prognosis but also suggest and monitor therapeutic schemas. 

When data from large numbers of patients is pooled together, it can drive research 

in several fields related to biology and medicine, especially after anonymization. 

Additionally, aggregate data can be used for administrative purposes and policy design, 

e.g., for dimensioning of resources (including human resources or staffing), automating 

processes and, of course, monitoring. Another very important potential application is fraud 

detection, where drugs, exams or procedures are prescribed to individuals that do not need 

them or could not possibly have them (for example, prostate exams on females). 

 

 7.6  Incentive mechanisms 

Our envisioned platform will have many parties collaborating in the processing of 

the data, either at the stage before they are added to the main database, or afterwards, for 

research purposes. Examples of such parties may include, for instance, Greek universities. 

These parties need to be rewarded for their participation which involves using their own 
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processing and storage resources or, conversely, to pay for using state resources. The 

commodity in our scenario is the intermediate deep learning results (gradients), much like 

it is described in the incentive mechanism implemented in the context of DeepChain, 

described in Chapter 5 . In that collaborative deep learning network, parties were reward 

on the basis of the volume of data they provided, i.e. on data quantity. In our platform, we 

propose that the incentive mechanism be extended to consider the quality of data as well. 

Quality of data can be assessed on the basis of several parameters, such as the rarity of data 

(data on population segments that are under represented in the data pool), the originating 

device (data from particular sensors or exams may be more valuable) or the past results of 

the given party (if their previous data yielded worthwhile findings).  

 

 7.7  A working scenario 

In a typical working scenario of our electronic health records management 

platform, a patient visits a regional state health care facility, such as the emergency section 

of a small hospital. The doctor, already having access to the platform via authentication 

when she started her shift, examines the patient and discusses his symptoms while having 

his detailed history available at a table provided by the hospital (the patient is identified 

via his social security number, which is unique). The patient is connected to a hearth 

monitor for an electrocardiogram, which is also recorded to be stored and processed by the 

system at a later time when the load is lighter. During the electrocardiogram, the doctor 

observes the signals and “takes notes” of patient condition and results by dictating on a 

recorder that converts speech to text. If there is an abnormality detected, the machine may 

also issue a warning. The doctor then prescribes some bloodwork via the tablet and the 

patient is forwarded to another department with his updated health record. The other 

department performs the tests and the original doctor sees the results on her tablet and 

prescribes medication for the patient who has left the hospital premises but receives 

notification of the prescription and instructions on his registered mobile phone.  

Some time later, when the system load is sufficiently low, the audio dictation is 

processed by the EHR management system and the patient record is updated with the visit, 

medication and diagnosis. An agent detects that the combination of drugs the patient is 

now on, along with its demographics, fits the criteria for a running trial conducted by a 



 

49 

 

collaborating party on a research facility and alerts the facility about the new data. The 

facility volunteers to facilitate the processing of the electrocardiogram in exchange for any 

data that may be entered in the system regarding the patients next doctor visit, his future 

drug prescriptions, etc. Results from deep learning software processing the ECG are 

subsequently uploaded to the platform and both the doctor and the patient are notified, 

along with any insurance companies involved. 
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 8 Comparison of proposed platform with existing approaches 

In this chapter, we are highlighting, mostly using tables, the novel features of our 

proposed integrated platform for electronic health records management. The comparison 

is based on two recently proposed architectures combining deep learning and Blockchain, 

namely DeepChain [Weng et al., 2019] and BinDaaS [Bhattacharya et al., 2021], as well 

as the current systems for electronic health records management in Greece. We provide 

separate tables for each pair of systems under comparison and then we conclude with a 

sum up of the comparison outcomes. 

Table 6 summarizes the comparison of DeepChain with our proposed platform. In 

essence, our platform includes all the features of DeepChain that enable collaborative deep 

learning while making improvements of the incentive mechanism which encourage 

participation of additional members and improve fairness. The scale of the two systems is 

also obviously different, ours being larger from the start. 

 

Table 6: Comparison of our proposal with DeepChain 

Feature DeepChain Integrated Proposal 

Implementation/ 

Purpose 
Collaborative deep learning 

Collaborative deep learning for 

given projects and general 

knowledge extraction 

Safety of data Guaranteed by Blockchain Guaranteed by Blockchain 

Performance 
Depends on collaborating 

parties 

Also includes state server 

infrastructures 

Collaboration 

Parties work on a given 

project and share computing 

burden and results 

Parties are free to collaborate 

as they please 

Fairness 

Members who contribute 

work obtain results depending 

on their contributions 

Member contributions are 

evaluated more fairly (quality 

is also weighed) 

Incentive 

mechanism 
Based solely on data quantity Also considers data quality 

Accuracy of 

results 

Validated by collaborative 

members 

Validated by collaborative 

members and dedicated servers 

 

Table 7 summarizes the comparison of BinDaaS with our proposed platform. 

Again, our platform includes all the features of BinDaaS that enable a deep learning 

application related to health data, such as the one described in the paper, but at a much 

larger scale and including actually creating the electronic health records. 
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Table 7: Comparison of our proposal with BinDaaS 

Feature BinDaaS Integrated Proposal 

Implementation/ 

Purpose 

Blockchain based storing 

and processing of 

electronic health records  

Collaborative deep learning for 

given projects and general 

knowledge extraction from health 

data 

Safety of data Guaranteed by Blockchain Guaranteed by Blockchain 

Security 
Lattices-based 

cryptography 

Can implement any selected 

method/ not restricted by 

processing power 

Performance 
Depends on the given 

infrastructure 

Also includes state server 

infrastructures and collaborating 

parties (not limited to healthcare 

providers) 

Collaboration 

Parties work on a given 

project and share 

computing burden and 

results 

Parties are free to collaborate as 

they please 

Incentive 

mechanism 

Members are working on 

the same project 

Incentive mechanism to promote 

collaboration from members in 

different projects 

Accuracy of 

results 

Validated by collaborative 

members 

Validated by collaborative 

members and dedicated servers 

 

Table 8 is an attempt for a comparison between our proposal and the newly 

launched state information system for storing medical data. Apart from this state system, 

numerous physicians use typically web-based software systems to store and share patient 

data, with dubious security and privacy features and no data post-processing for 

information extraction. 

 

Table 8: Comparison of our proposal with current state information system and 

privately used systems 

Feature Current systems Integrated Proposal 

Implementation/ 

Purpose 

Storing patient data to maintain 

history between examinations 

Collaborative deep learning 

for given projects and 

general knowledge 

extraction from health data 

Safety of data 

Depends on platform 

implementation, generally not 

guaranteed 

Guaranteed by Blockchain 
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Security 

State IS ids and two factor 

authentication for patients, 

separate registrations/ 

authentication for health 

professionals 

Can implement any selected 

method/ not restricted by 

processing power 

Performance 
Varies significantly according to 

load 

Uses additional servers 

(besides state ones) 

Collaboration 
Data is shared among health 

professionals 

Parties are free to 

collaborate as they please 

Types of data 

stored 
Limited, text based data 

Any form of data, including 

multimedia files 

Post-processing 
None, data validation is limited to 

input 
Deep learning applications 

 

To sum up the comparison, our proposed integrated platform essentially combines 

all the features of DeepChain and BinDaaS, while extending these proposals at the scale 

of a country, where both the infrastructure and the volume of data scale accordingly. 

Because of the proposed change in the incentive mechanism, even more parties are 

expected to collaborate. Current state information system for electronic health records 

mainly attempts to record basic data such as doctor’s visits, prescriptions, hospital stays 

and operations, generally for auditing and regulatory reason. It remains to be seen if it will 

be extended in some form, with AI features added, and how well it will scale. 
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 9 A deep learning implementation for natural language 

processing in electronic health records 

In this chapter, we describe the functionality and the Python libraries involved in a 

deep learning application that can work on electronic health data to extract information 

and predict the likelihood of future disease. Once relevant data becomes available and 

publicized after anonymization, a prototype of the proposed application can be used to test 

its predictive accuracy. 

Machine learning essentially involves solving a problem solving by instructing the 

computer how to learn from experience. This means that the software could reach a 

decision that could be right or wrong after performing a set of tasks and requires a dataset 

with potential for teaching and learning. Common tasks implemented by machine learning 

algorithms include classification and regression, ranking and clustering. Popular 

algorithms are typically based on statistics and regression, use decision trees, clustering 

and rule-based learning. Artificial neural networks (ANNs) are a distinctive class of 

machine learning algorithms with many applications in fields such as speech and audio 

(speech and music recognition and synthesis), image and video (image classification and 

object detection, visual similarity assessment, people recognition etc.). As it was outlined 

in our integrated proposal, several types of such applications could be integrated in the 

platform, for example, speech recognition ANNs for parsing dictations by doctors during 

patient examination, or image labelling for detecting abnormalities in ultrasounds or x-

rays. 

For a practical application, however, we chose to focus on the parsing of electronic 

health records using natural language processing artificial neural networks. Natural 

language processing (NLP) entails tasks such as text recognition and semantic parsing, 

machine translation, automatic text summarization, automatic paraphrasing, information 

retrieval and sentiment analysis (for example, in customer reviews). Popular indicative 

applications include text and document classification, e-mail classification and spam 

filtering, news filtering, native language identification and text or document similarity 

estimation. 

Natural language processing tools typically perform some standard tasks at the 

beginning, aimed to clean up the original text for better and quicker results. Preprocessing 
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and parsing are performed before the original (native) text is handed over for 

computational handling in order to transform the original sequence of characters to a 

cleaner form. Tokenization involves splitting the text into self-contained semantic units 

such as words or sentences. Normalization is the removal of morphological variations from 

words such as capitalization, plural number or tenses in order to detect similarities in 

meaning while lemmatization involves using a preconstructed dictionary. Parsing can be 

described as the morphological and syntactical analysis of tokens in order to identify their 

role within sentences, i.e., the part of speech (noun, verb, adjective). 

In natural language processing, word senses are the meanings of words, but many 

words have different meanings when used in different contexts and this is referrec as 

polysemy. Words and senses do not have a 1-1 matching as there are multiple words with 

the same meaning (synonyms). This implies that word-sense disambiguation may be 

required to identify the particular meaning of a word based on the way it is used in a 

sentence and its context. Another category of terms that require special treatment are 

named entities such as people names, organizations and geographical locations within the 

text. The basis of NLP are word embeddings which are mappings between words or 

phrases from the vocabulary and vectors of real numbers because they capture various 

linguistic properties of the text and enable feature extraction or feature encoding. 

Bag-of-words (BoW) is a simple and popular method of feature extraction. In this 

approach, documents are viewed as containers where (for simplicity) the order of items 

does not matter. In this context, documents are similar if they have similar content and the 

meaning of the document can be extrapolated from its content. The basic BoW 

implementation considers unigrams, i.e., single words or tokens. n-grams use multiple 

consecutive words as tokens and thus change the size of the vocabulary to capture more 

meaning. n-gram models can be used to calculate probabilities for words based on the 

words already encountered on the basis of the assumption that each word depends only on 

the last n-1 words. 

Another effective method of preprocessing involves using Term Frequency-Inverse 

Document Frequency (TF-IDF) to compute the importance of a gram for information 

retrieval. TF-IDF is the product of two factors Term Frequency and Inverse Document 

Frequency. Term Frequency refers to how often a given word appears in a document and 

is a measure of its importance. A very high frequency, though, in the entire corpus (set of 
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documents) means that it is a common word for the given topic therefore its score should 

be penalized. Inverse Document Frequency is calculated by counting the number of 

documents that contain a term and computing a ratio of the total number of documents 

divided by this value and then inverting. An important gram would have a high term 

frequency and a low document frequency of the term in the entire corpus (thus a high 

product). Common terms tend to have low weights and are filtered out. TF-IDF is often 

used for stop-words filtering for various applications such as text summarization and 

classification. Stop words are, for example, articles, propositions etc. 

A fundamental functional in natural language processing is the discovery of word 

embeddings. The objective is to obtain vector representations of words based on the 

observation that similar/ related words tend to be close to each other in vector 

representations and similarity of word representations goes beyond simple syntactic 

regularities. A well known example of algebraic operations on word vectors is that the 

formula vector(“King”) - vector(“Man”) + vector(“Woman”) results in a vector that is 

closest to vector(“Queen”). Word2vec is a very popular open source software created by 

researchers in Google that computes distributed vector representations of words from very 

large data sets. Output: vector space with each word corresponding to a vector positioned 

in such a way that words that share common contexts in the corpus are close to one another. 

Word2Vec includes efficient implementations of Continuous Bag-of-Words and 

Continuous Skip-gram Models and can be used to predict surrounding words (context) 

given the current word. 

Regarding programming tools with NLP capabilities, the Python programming 

language is the obvious choice, hence its popularity in the field. The Natural Language 

Toolkit (NLTK) is a Python set of libraries for symbolic and statistical natural language 

processing that also is Free and Open Source software  and has built-in functions for 

tokenization, part-of-speech tagging along with dictionaries, thesaurus, array of stop words 

for several languages as well as  visualization tools (parse trees). Gensim is free and open 

source vector space modeling and topic modeling toolkit implemented in Python that is 

widely used by researchers in related fields and companies. 

As part of the NLP functions implemented in this thesis, we wrote and tested 

Python scripts that read the text of an article (we conducted tests with publications on long 

Covid), preprocess it with the methods described in previous paragraphs and then use the 
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Gensim doc2vec and word2vec models to parse it. It can then either locate similar 

documents (if we construct a corpus consisting of many papers) or calculate the similarity 

between two terms (distance in the document). In a larger practical application of the 

concepts described in previous paragraphs, out deep learning tool could be used to filter 

patients whose electronic health records indicate they were diagnosed with long Covid and 

analyze their EHRs to pinpoint symptoms of their condition that led to the diagnosis. Since 

we are discussing information recorded in the past, the results from the linguistic analysis 

of the electronic health records leading up to the diagnosis can be stored on disk and reused 

in future models. In such models, we could construct a tool that will guide physicians in 

new diagnoses of the same condition. 
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 10 Summary and conclusions 

This chapter summarizes the topics discussed in the thesis and presents potential 

future directions of research. 

 10.1  Summary 

This thesis focuses on the Internet of Medical Things (IoMT) as the basis for 

implementing smart health. The IoMT is an environment where wearable or implanted 

medical devices with networking capabilities interact with base stations, mobile devices or 

other programmers to hand over their recorded data and receive instructions. The data 

captured is then stored in an appropriately protected storage infrastructure and used as a 

basis for treatment decisions or medical research. Following a concise introduction to basic 

terminology, we delved into the core challenges of the ecosystem, namely privacy, safety 

and security of the medical data and the devices operation in general. The confidential 

nature of health related information leaves no room for omissions when it comes to privacy 

and informed consent of the patient that can at any stage be revoked is the basic function 

that needs to be supported. It must be 100% clear to the patient which data is captured, 

where it is stored and who has access to it and what it is used for. Safety issues are related 

to how a medical device interacts with body tissues and are important concerns but mostly 

out of scope for this thesis while security involves such issues as attacks by malicious third 

parties which aim to compromise device availability, data confidentiality, normal 

operation and non-repudiation of transactions. Although security needs in the IoMT have 

a lot in common with traditional networks, there is an additional parameter/ mode of 

operation that requires extensive advanced planning that is unique in medical scenarios, 

namely emergency operation. In the case a medical emergency, all security features may 

need to be disabled so that physicians may have access to the device to treat the patient 

and such a feature needs to not only be in place beforehand, but not compromise the overall 

security of the implemented solution.  

After the core ecosystem issues discussed in Chapter 3 , Chapter  4 presents the 

enabling technologies that can provide solutions. The two most important ones are 

Blockchain and machine/ deep learning. The inherent properties of Blockchain, namely 

the consensus needed by multiple parties in order to add information guarantee the 
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immutability, non repudiation and integrity of the data, as multiple culprits have to form a 

malicious alliance and this is considered highly unlikely. Furthermore, artificial 

intelligence tools can process the massive amounts of data stored in a Blockchain (or cloud) 

infrastructure to acquire knowledge, for instance related to new treatments, diagnoses or 

interrelations between conditions and medications. In this direction, several machine 

learning and deep learning tools/ frameworks have been proposed and are discussed in this 

thesis. 

Chapter 5 presents three types integrated framework proposals in the context of the 

Internet of Medical Things. The first one is a relatively generic framework for remote 

patient monitoring focusing on the operation of the heart via an electrocardiogram signal. 

The second one is related to the Covid-19 pandemic and shows how technology can be 

used for functions such as cases and origin detection, quarantine monitoring and 

telemedicine. The final type of proposals presented is related to the combination of deep 

learning networks with a Blockchain storage infrastructure. The first solution is related to 

distributed deep learning to securely share the workload of training a model with large data 

sets while the second one presents a framework for storing electronic health records and 

provide authenticated access to all interested parties without compromising privacy and 

security. 

Chapter 6 contains reference tables for current publications related to the Internet 

of Medical Things, listed in the References chapter of this thesis. The first table is a 

reference of recent (post 2017) publications while the second table lists papers on privacy, 

security or safety. The third table contains publications in the area of machine and deep 

learning while the fourth one lists papers related to the Covid-19 pandemic  and the 5th 

and final one includes publications incorporating Blockchain in an IoMT environment. 

Relevant information is provided in columns of each table, so as a researcher interested in 

delving in a topic deeper can easily find suitable papers to study. 

Chapter 7 contains our approach at an integrated proposal for electronic health 

records management, at a country level, incorporating Blockchain and deep learning and 

providing an incentive mechanism for participants (health professionals and patients) 

which rewards contributions with results. This integrated proposal is then compared to 

existing deep learning over Blockchain proposals in Chapter 8, which also includes a 

comparison table with the current state information systems for electronic health records.  
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Lastly, Chapter 9 presents the functionality and the Python libraries involved in the 

implementation of a deep learning application that attempts to extract knowledge from 

patients’ electronic health records. A specific application regarding long Covid is 

described. 

 

 10.2  Future research directions 

Like every other new technology, the opportunities for further research in the field 

of smart health and the Internet of Medical Things are abundant. Virtually every issue 

discussed in this thesis is open for discussion, trials and, of course, standardization. In this 

section, we will attempt to highlight major issues whose resolution could give an extra 

boost to smart health applications. 

One of the issues first encountered in the field is related to the challenges of device 

diversification and the heterogeneity of the environments in which they have to adequately 

operate. The number of devices deployed is expected to rise rapidly as more and more 

patients adopt mobile lifestyles and are reluctant to pay regular visits to specific locations. 

Ageing of global population is also an important concern as well as the possibility to 

support multiple devices on the same body and they way the will operate and interact. 

Data security and privacy solutions are also fields for further research and 

standardization,  especially in the field of informed electronic consent. Emergency 

operation/ overrides built in the devices is another required feature and, of course, 

implementing solutions at an affordable cost is also worthy of research. 

Specialized machine learning/ deep learning tools designed specifically for medical 

data are another interesting research direction. Collaborative or distributed deep learning 

is a promising approach in this direction, as it seems very suitable for handling the large 

volumes of data. Incentive mechanisms inherent in such tools to encourage participating 

parties to contribute may also need to be studied and improved, for instance to not only 

consider quantity as a measure of a contribution (and thus reward), but also quality, as 

expressed by accuracy of captured data, rarity of demographic features of the patients and 

other factors. 
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