
UNIVERSITY OF MACEDONIA

SCHOOL OF INFORMATION SCIENCES

DEPARTMENT OF APPLIED INFORMATICS

LIGHTWEIGHT VIRTUALIZATION

AND THE NETWORK EDGE

Ph.D. Dissertation

of

Polychronis Valsamas

Supervisor: Assoc. Prof. Lefteris Mamatas

Thessaloniki, June 2022

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ∆ΟΝΙΑΣ

ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΠΛΗΡΟΦΟΡΙΑΣ

ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΕΛΑΦΡΙΑ ΕΙΚΟΝΙΚΟΠΟΙΗΣΗ

ΚΑΙ ΠΑΡΥΦΕΣ ∆ΙΚΤΥΟΥ

∆ιδακτορική ∆ιατριβή

του

Πολυχρόνη Βαλσαµά

Επιβλέπων: Ελευθέριος Μαµάτας, Αναπληρωτής Καθηγητής

Θεσσαλονίκη, Ιουνίου 2022

Abstract

The evolution of the fifth generation of networks (5G Networks) brought upon a set

of new technology solutions that aim to address the increased demands of users (i.e.,

high data rates, ultra-low latency and reliability) as well as support diverse require-

ments of next-generation applications. Communication systems are going through

radical transformations, incorporating emerging technologies, such as Network Func-

tion Virtualization (NFV), Software-Defined Networks (SDNs), and Cloud orchestration

systems.

At the same time, micro-data centers are being deployed to the corresponding uni-

fied environments, bringing virtualized services closer to the users (i.e., improving

service performance and reliability, as well as reducing the communication latency).

This new research area is defined as edge computing. However, legacy cloud deploy-

ments usually employ traditional virtual machines (VMs), which are resource-costly,

face slow time for deployment or scaling up of virtual resources. Given the limited-

resource availability as well as the dynamic characteristics of user demands or appli-

cation requirements in edge clouds, the traditional virtual machines are not suitable

in these environments. In this respect, the adoption of alternative lightweight virtual-

ization approaches for edge cloud seek to fulfill such demands, given their particular

features e.g. rapid manipulation of virtual resources. Thus, it is essential to seek

new flexible orchestration and management solutions that utilize more efficiently the

available resources i.e., compared to traditional cloud deployments. In other words,

there is a need for systemic adaptations of 5G and Beyond ecosystems towards these

goals.

The main challenge of the dissertation is to propose novel flexible, adaptable and

efficient edge-cloud orchestration solutions utilizing lightweight virtualization tech-

nologies, such as containers and Lightweight Virtual Machines (LVM). The latter tech-

nologies bring significant adaptability advantages to dynamic changes in network

conditions and service requirements, along with fast responsiveness, being crucial for

edge cloud deployments in 5G networks. This dissertation addresses crucial issues

iii

associated with 5G networks (i.e., elasticity, scalability, heterogeneity and resource

efficiency), identifies the associated trade-offs of utilizing lightweight virtualization

technologies, implements and investigates lightweight cloud orchestration platforms

with orchestration mechanisms (e.g., efficient resource allocation and service elas-

ticity), as well as proposes a new cloud orchestration strategy (i.e., Virtualization

Technology Shifting) that takes into account the performance and resource demands

of alternative virtualization technologies to address challenging application and re-

source requirements.

Keywords:5G Networks and Beyond, Containers, Unikernels, Comparative

Evaluation, Edge Cloud Orchestration

iv

Περίληψη

Η εξέλιξη των ∆ικτύων πέµπτης γενιάς (5G etworks) επέφερε ένα σύνολο νέων τεχνο-

λογικών λύσεων, οι οποίες έρχονται α) να καλύψουν αυξηµένες απαιτήσεις/ανάγκες των

χρηστών (υψηλούς ϱυθµούς µετάδοσης δεδοµένων, µείωση της καθυστέρησης επικοινω-

νίας και αξιοπιστία), ϐ) να υποστηρίξουν τις ποικιλόµορφες απαιτήσεις των αναδυόµενων

επόµενης γενιάς εφαρµογών. Τα συστήµατα επικοινωνίας µετασχηµατίζονται ϱιζικά εν-

σωµατώνοντας αναδυόµενες ετερογενείς τεχνολογίες, όπως η Εικονικοποίηση ∆ικτυακών

Λειτουργιών (NFV), τα Προγραµµατιζόµενα ∆ίκτυα (SDN) και τα συστήµατα ενορχήστρω-

σης του Υπολογιστικού Νέφους (ΥΝ).

Ταυτόχρονα, στα αντίστοιχα ενοποιηµένα περιβάλλοντα αναπτύσσονται τα µικρά νέφη,

τα οποία ϐρίσκονται κοντά στους χρήστες και προσφέρουν εικονικοποιηµένες υπηρεσίες

υπολογιστικού νέφους, (π.χ. ϐελτιώνουν την απόδοση, την αξιοπιστία της υπηρεσίας, µει-

ώνουν την καθυστέρηση της επικοινωνίας). Αυτή η νέα ερευνητική περιοχή ορίζεται ως

νεφοϋπολογιστική στις παρυφές του δικτύου (Edge Computing). Ωστόσο, τα παραδοσια-

κά περιβάλλοντα νεφοϋπολογιστικής χρησιµοποιούν συνήθως παραδοσιακά λειτουργικά

συστήµατα πλήρους κλίµακας (VMs), τα οποία είναι δαπανηρά σε πόρους, αντιµετω-

πίζουν πολύ αργό χρόνο εκκίνηση ή κλιµάκωσης των εικονικών πόρων. ∆εδοµένης της

περιορισµένης διαθεσιµότητας των πόρων, καθώς και των ποικίλων δυναµικών χαρακτη-

ϱιστικών των απαιτήσεων των χρηστών ή των απαιτήσεων των εφαρµογών στις παρυφές

της νεφοϋπολογιστικής, οι παραδοσιακές εικονικές µηχανές δεν είναι κατάλληλες σε αυ-

τά τα περιβάλλοντα. Από την άποψη αυτή, η υιοθέτηση εναλλακτικών προσεγγίσεων

ελαφριάς εικονικοποίησης στις παρυφές του δικτύου επιδιώκει να ικανοποιήσει αυτές τις

απαιτήσεις αξιοποιώντας τα ιδιαίτερα χαρακτηριστικά τους, όπως η ταχεία διαχείριση των

εικονικών πόρων. Συνεπώς, είναι απαραίτητο να αναζητηθούν νέες ευέλικτες λύσεις ε-

νορχήστρωσης και διαχείρισης που να αξιοποιούν αποτελεσµατικότερα τους διαθέσιµους

πόρους, σε σύγκριση µε τα παραδοσιακά περιβάλλοντα νεφοϋπολογιστικής. Με άλλα

λόγια, υπάρχει ανάγκη για συστηµικές προσαρµογές των οικοσυστηµάτων πέµπτης και

των επόµενων γενιών δικτύων (5G and Beyond) προς την κατεύθυνση αυτών των στόχων.

Η κύρια πρόκληση της διατριβής είναι να προταθούν νέες ευέλικτες και προσαρ-

v

µόσιµες αποδοτικές λύσεις ενορχήστρωσης του νέφους στις παρυφές του δικτύου χρη-

σιµοποιώντας τεχνολογίες ελαφριάς εικονικοποίησης, όπως οι τεχνολογίες υποδοχέων

(Containers) και ελαφριών εικονικών µηχανών (LVM). Οι τελευταίες τεχνολογίες επι-

ϕέρουν σηµαντικά πλεονεκτήµατα προσαρµοστικότητας στις δυναµικές αλλαγές των συν-

ϑηκών του δικτύου και των απαιτήσεων των υπηρεσιών, προσφέροντας γρήγορη απόκρι-

ση, που είναι Ϲωτικής σηµασίας για την λειτουργία των νεφών στις παρυφές της νεφοϋπο-

λογιστικής στα δίκτυα πέµπτης γενιάς. Η παρούσα διατριβή εστιάζει σε κρίσιµα Ϲητήµατα

που σχετίζονται µε τα δίκτυα πέµπτης γενιάς (δηλ., ελαστικότητα, επεκτασιµότητα, ετερο-

γένεια και αποδοτικότερη χρήση των πόρων) και προσδιορίζει σχετικά εναλλακτικά οφέλη

της χρήσης διαφορετικών ελαφριών µηχανών εικονικοποίησης. Γιάυτό το σκοπό υλοποιεί

και διερευνά πλατφόρµες ενορχήστρωσης των νεφών στις παρυφές του δικτύου µε µη-

χανισµούς ενορχήστρωσης (π.χ. αποτελεσµατική κατανοµή των πόρων και ελαστικότητα

των υπηρεσιών), και προτείνει µια νέα στρατηγική ενορχήστρωσης νέφους (εναλλαγή των

τεχνολογιών εικονοποίησης) λαµβάνοντας υπόψη το αντίκτυπο της απόδοσης και κατα-

νάλωσης των πόρων των εναλλακτικών τεχνολογιών εικονικοποίησης για την αντιµετώπιση

των απαιτήσεων των εφαρµογών και πόρων.

Λέξεις κλειδία: ∆ίκτυα πέµπτης γενιάς, Υποδοχέων, Εικονικές µηχανές ενός

σκοπού, Ενορχήστρωσης

vi

Acknowledgements

First and foremost I am extremely grateful to my supervisor, Assoc. Prof. Lefteris Ma-

matas for his invaluable advice, continuous support, and patience during my Ph.D.

study. His immense knowledge and plentiful experience have encouraged me in all the

time of my academic research and daily life. Finally, I would like to express my grati-

tude to my parents that without their tremendous understanding and encouragement

in the past few years, it would be impossible for me to complete my study.

vii

Contents

1 Introduction 1

1.1 Context . 1

1.2 Objectives & Research Contributions 4

1.2.1 Objectives . 4

1.2.2 Research Contributions . 5

1.3 Structure of Dissertation . 8

1.4 Published Work . 9

1.4.1 Scientific Journals . 9

1.4.2 International Scientific Conferences 9

1.4.3 Awards . 10

2 Platform solutions for 5G Networks 11

2.1 Introduction . 11

2.2 Contributions and Chapter Organization 12

2.2.1 Contributions . 12

2.2.1.1 Unikernel-based lightweight cloud technologies and Change-

Point Analysis in CDN environments 12

2.2.1.2 Multi-homing with Unikernel-based lightweight cloud

technologies in mobile environments 13

2.2.1.3 A Multi-domain Experimentation Environment for 5G

Media Verticals . 14

2.2.2 Chapter Organization . 15

2.3 Related Works . 16

2.3.1 Relevant CDN Architectures for Resource-Efficient Allocation driven

by CPD mechanisms with unikernels technologies. 16

2.3.2 Relevant federated infrastructures for E2E Network Slicing . . . 18

2.4 Content Distribution Networks (CDNs) for 5G Networks 18

2.5 Implementing elasticity CDN based on Unikernels 19

2.5.1 The UNIC Platform Architecture 19

2.5.1.1 Content Popularity Changes Detection 21

2.5.1.2 Modular VM Placement 24

2.6 Experimental Methodology . 25

2.7 Experimental Results . 26

2.7.1 Scenario 1: Impact of change-point detection mechanisms . . . 28

2.7.2 Scenario 2: Impact of VM placement algorithms 30

2.8 Extended UNIC platform capabilities for mobile IoT environments . . . 32

2.8.1 Experimental results of multi-homed network utilizing lightweight

cloud resources . 34

2.8.2 Synergy of multi-homing capabilities along with adaptable net-

work protocols in IoT environments 36

2.9 The 5G-CDN Platform solution for heterogeneous distributed infrastruc-

tures . 37

viii

2.10 Design and Implementation of 5G-CDN Platform 37

2.10.1 Multi-Domain Experiment Engine 39

2.10.2 Management and Orchestration 40

2.11 Evaluation Results . 42

2.11.1 Performance and scalability of 5G-CDN platform 42

2.11.1.1 Experimentation Setup 43

2.11.1.2 Experimental Results 44

2.11.2 Dynamic resource discovery for scalable CDNs 47

2.11.2.1 Experimental Results 48

2.11.3 Heterogeneity on E2E slicing . 53

2.11.3.1 Experimentation Setup 53

2.11.3.2 Experimental Results 54

2.11.4 Modular service orchestration 58

2.12 Conclusions . 59

3 A Comparative Evaluation of Edge Cloud Virtualization Technologies 60

3.1 Introduction . 60

3.2 Contributions and Chapter Organization 62

3.2.1 Contributions . 62

3.2.2 Chapter Organization . 62

3.3 Related Works . 63

3.4 Edge Cloud Experimentation Environment 66

3.5 Methodology and Assumptions . 71

3.6 Experimentation Results . 74

3.6.1 Scenario 1: Deployment and Demobilization 75

3.6.2 Scenario 2: Service Operation 79

3.6.3 Scenario 3: Elasticity . 83

3.7 Design Guidelines for Edge Cloud Systems 88

3.8 Conclusions . 90

4 Virtualization Technology Shifting for Resource-Efficient Edge Clouds 91

4.1 Introduction . 91

4.2 Contributions and Chapter Organization 93

4.2.1 Contributions . 93

4.2.2 Chapter Organization . 94

4.3 Related Works . 94

4.4 System Model . 98

4.5 Optimization model for resource allocation 102

4.6 Methodology & Empirical Complexity Analysis 105

4.6.1 Empirical Complexity Analysis 109

4.7 Evaluation Simulation Results . 110

4.7.1 Scenario 1: Impact of Adopting VTS 111

4.7.2 Scenario 2: Assessing VTS . 114

4.8 Example Integration of VTS . 120

4.9 Conclusions . 121

ix

5 Conclusions and Further Work Discussion 122

5.1 Summary and Conclusions . 122

5.2 Further Work Discussion . 124

References 126

Appendices 140

Appendix A Funding 140

x

List of Figures

1 The Architecture of UNIC Platform . 20

2 Platform’s orchestration & management features implemented as Node-

RED nodes . 21

3 Content-views per minute of a particular youtube video and detected

change-points for different α and γ values. Red lines symbolize the

upward and downward change. 27

4 The servers’ CPU utilization with the change-point detection mecha-

nisms disabled, using the Objective Weight Function placement algorithm 28

5 The servers’ memory allocation with the change-point detection mecha-

nisms disabled, using the Objective Weight Function placement algorithm 28

6 The servers’ CPU utilization with the change-point detection mecha-

nisms enabled, using the Objective Weight Function placement algorithm 29

7 The servers’ memory allocation with the change-point detection mecha-

nisms enabled, using the Objective Weight Function placement algorithm 29

8 The servers’ CPU utilization with the change-point detection mecha-

nisms enabled, using the Random placement algorithm 31

9 The servers’ memory allocation with the change-point detection mecha-

nisms enabled, using the Random placement algorithm 31

10 The extended Architecture of UNIC Platform 33

11 Unikernel-based web server caching real IoT measurements 35

12 Multi-homing for mobile users . 35

13 The architecture of proposed 5G-CDN platform 38

14 Content distribution service . 43

15 Deployment time of CDN service. 45

16 Network stitching time. 46

17 Resource discovery results in different testbeds 50

18 Number of alternative solutions with different resource requirement per

VEs. 51

xi

19 Abstract view of the E2E slicing in our experiment 54

20 Communication performance with different Unikernel technologies in

E2E slices . 56

21 CPU utilization with different Unikernel technologies and node types. . 57

22 The different unikernel technologies are evaluated in line with the con-

tent size (MB) . 57

23 The placement algorithms’ performance 58

24 Experimentation environment . 67

25 Elasticity workflow . 70

26 Service fulfillment of alternative virtualized services - vertical involve-

ment of cloud resources . 76

27 Service fulfillment of alternative virtualized services - horizontal involve-

ment of cloud resources . 77

28 Communication performance - Total Delivery Time as Response (light

colored) plus Download Time (dark colored) 80

29 Communication performance - Throughput 81

30 Service assurance - CPU Peak . 82

31 Horizontal elasticity with 100Mbps bandwidth for service orchestration 84

32 Horizontal elasticity with 10Mbps bandwidth for service orchestration . 86

33 Conceptual edge cloud orchestration platform 89

34 System Model . 99

35 Execution Time of increasing request demands 110

36 Impact of Virtualization Technology Shifting for a best-effort service . . 112

37 Impact of Virtualization Technology Shifting for a service under a per-

formance goal (i.e., λ = 3.5) . 113

38 Assignment of client requests (high bandwidth capacity) 117

39 Overall CPU utilization per PoP (high bandwidth capacity) 117

40 Overall network throughput per PoP (high bandwidth capacity) 118

41 Assignment of client requests (moderate bandwidth capacity) 118

42 Overall CPU utilization per PoP (moderate bandwidth capacity) 119

xii

43 Overall network throughput per PoP (moderate bandwidth capacity) . . 119

44 Example workflow of a Kubernetes-based system integrating VTS (VTS

extensions in red) . 121

xiii

List of Tables

1 Standard deviation of deployment time for core cloud nodes 47

2 Standard deviation of deployment time for edge cloud nodes 47

3 Resource requirements for a test-bed to host a core server 52

4 Resource requirements for a test-bed to host an edge server 52

5 Alternative solutions . 53

6 Related works comparing alternative virtualization technologies that are

suitable for edge cloud environments 64

7 Image sizes of different virtualized services 72

8 Association of considered metrics with related works’ categorization cri-

teria . 73

9 Model Notations . 102

10 CPU resource requirements of a content request (RCr,s,v) 108

11 Memory resource requirements of a content request (RMr,s,v) 108

12 Network throughput demands of a content request assigned to a partic-

ular virtualized service (tdr,v) . 108

13 Total Delivery Time (sec) with alternative virtualization options (Tr,v) . . 109

14 The setup of empirical complexity analysis 109

15 Bandwidth capacity (bcp,c) of link (p, c) in Mbps, i.e., between Edge Cloud

(EC) or Core Cloud (CC) PoPs and user cluster c 115

xiv

1 Introduction

1.1 Context

The fifth-generation (5G) of mobile networks is envisioned to support a huge vari-

ety of vertical applications, such as augmented/ virtual reality (AR/VR), autonomous

driving, tactile Internet, smart city, smart factories, video-streaming, eHealthcare,

media and entertainment services. All these applications have diverse stringent re-

quirements in terms of low latency, high throughput, and high reliability in order to

achieve adequate Quality of Experience (QoE).

The requirements of the new 5G applications can be grouped into three main use

case categories as identified by the international telecommunication union (ITU) [1]

and the 5G infrastructure Public Private Partnership (5G-PPP) [2], in particular: (i)

Enhancing Mobile Broadband (eMBB), demanding increased network throughput and

bandwidth capacity; (ii) Ultra-reliable low-latency communications (URLLC) target-

ing, ultra-low latency and high availability; (iii) Massive machine-type communica-

tions (mMTC) supporting extremely high numbers of devices, typically being energy-

constrained and communicating low-volume data. Therefore, it becomes clear that

these use cases have a set of heterogeneous requirements that cannot be satisfied

by the fourth-generation (4G) networks and are partially satisfied by early 5G deploy-

ments. In other words, the one-size-fits-all approach to network infrastructure is

no longer sufficient for the evolution of 5G networks, which is expected to meet the

requirements of diverse use-cases.

Furthermore, currently, the end-user of next-generation applications not only con-

sumes data (i.e., video) but also produces a large amount of data transmissions (i.e,

uploading posts, photos and videos to the social network sites), thus stresses the

network resources, which may create a bottleneck towards the cloud hosting the ap-

plication. In this context, Edge computing [3] is an important enabling technology in

5G ecosystems, which brings computing, storage and network resources deployed at

the edge of the Internet, referred to as micro data-centers, i.e., reducing the physical

1

and logical distance between the hosts and the edge devices. For example, Over The

Top (OTT) providers (i.e., YouTube, Netflix and Amazon) are pushing their services

from the cloud to the edge, since it is more resource-efficient to handle the data pro-

duced for the services in the edge, which improves service performance, reliability and

responsiveness.

The 5G network landscape is gradually shifting in the edge, in terms of new use

case requirements, end-user augmented demands and a general deployment of com-

puting facilities. However, this transition requires holistic and fundamental changes

in the network architecture. Furthermore, there is a major concern for network opera-

tors and service providers on how to properly exploit the available computing substrate

regarding the overall network and service management. Hence, 5G and beyond (5GB)

ecosystems need to adopt new architectural approaches that are more adaptable,

flexible, programmable and scalable towards addressing the stringent requirements

of diverse services associated with the foreseen 5G use cases.

In this context, several research projects targeting 5G in the academic and indus-

trial area have proposed new architecture and technology enablers. To this extent, the

main key pillars supporting the key 5G requirements are Software-Defined Networking

(SDN) [4] / Network Function Virtualization (NFV) [5], [6], end-to-end network slicing

[7], Edge Cloud Orchestration and other enabling technologies [8].

SDN and NFV are complementary technologies aiming to handle the dynamic ap-

plications or users’ demands and the limitations of cloud resources, in a flexible and

adaptable manner. SDN enables a flexible programmable network environment while

NFV virtualizes the network functions running on commercial-off-the-shelf (COTS)

infrastructure through virtualization technologies that bring on-demand flexible pro-

visioning (i.e., scale up/down) and fast deployments [9]. The use of SDN/NFV can

enable Network slicing [7], which is defined as the support of logical on-demand

networks, relying on a common underlying infrastructure, comprising of physical

and/or virtual resources, with independent control, management and orchestration.

These self-contained networks must be mutually isolated from each other, and flexible

enough to accommodate different business-related use cases from different tenants,

2

on a shared infrastructure [10].

However, to fully exploit the potential of the above key enablers, while being inte-

grated with edge computing, a novel software architecture is required, that is aligned

to the evolution of 5GB ecosystems. In this context, microservices architecture targets

overcoming the limitation of centralized, monolithic architecture, as well as offering

modularity, continuous and fast delivery, improved scalability and autonomy features.

In practice, the microservices paradigm [11] breaks down traditional software archi-

tectures to minimal, single-purpose, communicating service functions, scaled towards

bespoke resource allocation and fault-tolerance.

Such microservices could exploit light virtualization (LV) approaches. There is

an on-going effort towards adopting LV for edge clouds, i.e., from European 5G-PPP

[12], including containers [13] and unikernels [14]. Specifically, containers are stan-

dardized units implementing application packaging with all of its dependencies and

unikernels are single-purpose appliances specialized at compile-time into standalone

kernels, acting as individual software components and sealed against modification

when deployed in the cloud. Both virtualization options can be adopted, even in the

same edge cloud deployment, since they offer diverse performance capabilities. For

example, containers can provide a robust performance, while unikernels have rapid

manipulation capabilities, e.g., they can boot up just in ms, even with a TCP SYN or

DNS lookup request packet [15].

Besides network services, Internet application services benefit from microservices,

as well. For example, the microservices paradigm provides new opportunities for

Content Delivery Networks (CDNs) solutions. CDNs are usually based on proprietary

software tightly coupled to particular data centers and have difficulty exploiting edge

clouds, unlike next-generation 5G applications. Hence, CDNs need to embrace the

new emergings network architecture paradigm to tackle challenging aspects, such as

elasticity, scalability, heterogeneity, resource-efficiency and adaptability to dynamic

content consumer requirements, in resource-constraint conditions.

Without a doubt, the microservices architecture, combined with the emerging tech-

nologies (i.e., NFV/SDN, NS, edge computing) brings many advantages regarding scal-

3

ability and flexibility. However, orchestrating edge cloud resources is a complex and

non-trivial task introducing new challenging issues on their management, control

and operation. For instance, large-scale service deployments usually serve a vast

amount of users spread throughout the globe, which require the involvement of edge

cloud resources in many different places. However, it is challenging to deploy net-

work and application services near every user, considering that edge cloud resources

may be associated with unfeasible or limited resource availability and incompatible

virtualization technologies. Furthermore, user demands, application requirements

or network conditions may be dynamic, therefore edge clouds should also support a

quick deployment or removal of virtual resources, implementing horizontal and verti-

cal elasticity processes, i.e., adapting the service deployment and cloud resources to

these requirements [16], respectively.

Consequently, an edge cloud orchestrator should take into consideration a com-

bination of criteria regarding the decision on where to deploy the virtualized network

or application service. It should consider the optimization of cloud resources to ac-

commodate particular application performance requirements, mitigate a potentially

limited resource availability, consider the heterogeneity of infrastructures, support

responsive elasticity capabilities and utilize light virtualization approaches. However,

we suggest to consider an additional aspect: the selection of the most appropriate

virtualization solution that can be put in place, as an alternative resource control

optimization strategy. In the next section, we present the goals and contributions of

this thesis.

1.2 Objectives & Research Contributions

1.2.1 Objectives

The thesis investigates the following key research question: "How can the resource-

efficiency and rapid deployment capabilities of various lightweight virtualization tech-

nologies (i.e., containers and multiple unikernel flavors) contribute in the resource

allocation efficiency and elasticity of edge cloud deployments?". In this context, we in-

troduce edge cloud orchestration systems, mechanisms and related experimentation

4

environments. We set the following main objectives:

• Investigate novel edge cloud architectures with corresponding components and

abstractions, as well as implement mechanisms exploiting the benefits of diverse

lightweight virtualization flavors, in terms of elasticity, scalability, resource effi-

ciency and service performance.

• Propose experimentation environments and methodologies for assessing edge

cloud solutions employing lightweight virtualization.

• Analyze performance trade-offs and resource-utilization characteristics of light

virtualization (LV) technologies. Build up on these results towards introducing

combined virtualization strategies for edge clouds, selecting the most appropriate

virtualization technologies to given application requirements or network or cloud

resource conditions.

• In parallel to above investigations, we suggest further improvements and key de-

sign guidelines that future cloud-native architectures can exploit, in the context

of 5GB networks.

1.2.2 Research Contributions

Here, we enlist the main contributions of this dissertation:

• Developed and investigated novel edge cloud orchestration platforms and corre-

sponding mechanisms, enabling new lightweight edge cloud paradigms targeting

crucial aspects in the emerging 5G Networks, i.e., elasticity, scalability, hetero-

geneity, E2E network slicing and adaptability. These facilities include:

1. UNIC, an elastic CDN platform that efficiently detects viral content and

rapidly deploys tiny Unikernel-based VMs, in response to significant changes

in the users’ demand. UNIC combines: (i) modular orchestration features

(i.e. efficient LVs placement considering recent server resource utilization

and a dynamic load-balancer); and (ii) applied content-popularity change-

point detection driving VM orchestration to scale the resources. In compar-

5

ison to traditional CDN solutions, our approach provides significant elastic-

ity capabilities (i.e., flexible on-demand content provisioning) through uti-

lizing tiny Unikernel-based VMs. Our experimental results demonstrated

improvements in terms of system responsiveness and resource efficiency.

2. An extended UNIC platform orchestration with additional network features

(i.e., multi-homing connectivity control), improving the mobile end-users’

experience through utilizing lightweight virtualization technologies in high-

mobile environments with operational Mobile Broadband (MBB) connectiv-

ity. Our results show that orchestrating network resources with lightweight

clouds improve the QoE of mobile users.

3. 5G-CDN, a novel experimentation environment for large-scale, multi-domain

E2E slicing, addressing the scalability and heterogeneity aspects of both

physical and virtual resources. 5G-CDN supports: (i) appropriate abstrac-

tions and interfaces, that handle and hide the complexity of heterogeneous

physical and virtual resources; (ii) a Graphical User Interface (GUI) that

serves as the platform interface based on YAML schema to allow defining

the service specifications and relations among service components; (ii) sup-

ports all the required functionality for slice instantiation, such as resource

discovery, slice embedding, resource provisioning, slice stitching (intra and

inter-Domain network configuration) and service deployment of alternative

virtualization flavors; (iv) real-time monitoring for physical and virtual re-

sources; and (v) a bespoke visualization tool.

4. A novel edge cloud experimentation environment that: (i) supports all basic

edge cloud operations, including the deployment, removal and operation of

virtualized web-based service; (ii) realizes web load prediction and balanc-

ing, as well as both horizontal and vertical elasticity actions; and (iii) sup-

ports common abstractions and APIs over heterogeneous virtual resources.

• Evaluated the performance dynamics of alternative edge cloud technologies.

More specifically:

6

1. We provided an extensive experimentation analysis study, which was miss-

ing for the literature, investigating the performance trade-offs of alterna-

tive edge cloud technologies, including different container builds and al-

ternative unikernel flavors with respect to all basic edge cloud operations

(i.e., resource allocation, removal, service operation, horizontal and vertical

elasticity actions). We experimented from both service and infrastructure

viewpoints, in terms of service fulfillment, service assurance and commu-

nication performance. Our extensive experimental results provided useful

insights showing that each virtualization option is characterized by partic-

ular performance trade-offs.

2. We consolidated the gained insights from our realistic experiments and

provided essential key design guidelines of a conceptual edge cloud orches-

tration platform for 5G and beyond networks.

• Exploited the performance trade-offs of alternative virtualization options through

novel cloud orchestration features, i.e., facilities targeting adaptability to dy-

namic network, service and cloud resource conditions. Along these lines:

1. We introduced a new cloud orchestration strategy, called Virtualization

Technology Shifting (VTS). VTS exploits the performance particularities of

alternative virtualization options, including unikernels and containers, which

can be dynamically switched between each other, aiming to increase the

availability of edge cloud resources, improve adaptability (i.e., dynamic net-

work and cloud resource condition) and handle cases with challenging re-

source requirements.

2. To assess the benefits and validate the feasibility of our solution, we pro-

vided a first VTS cloud resource optimization framework, including an op-

timization model as well as a relevant system model.

3. Our extensive simulation results showed the benefits of adopting VTS as

well as the adaptability of the proposed system under different conditions

(i.e., service performance goal, server configuration and network capacity)

7

towards maximizing the number of accommodated users and minimizing

the utilization of server and network resources.

1.3 Structure of Dissertation

The remainder of this dissertation is organized as follows:

• Chapter 2 presents in detail two novel edge cloud orchestration facilities, namely

UNIC and 5G-CDN, including their main components, functionalities and novel

mechanisms towards bridging the gap between Unikernel-based technologies

and 5G Networks (i.e., Multi-Access Edge Computing), tackling associated re-

search aspects, such as elasticity, heterogeneity, performance optimization and

scalability.

• Chapter 3 investigates the diverse performance trade-offs regarding different

unikernel flavors, container builds, and implementations of the same service.

We conduct an extensive experimental evaluation of the alternative options con-

sidering all basic edge cloud processes (i.e., resource allocation, removal, service

operation, horizontal and vertical elasticity actions). Finally, we provide key

design guidelines for conceptual edge cloud systems build-up on our research

results.

• Chapter 4 introduces and elaborates a new cloud orchestration strategy, called

Virtualization Technology Shifting (VTS), backed by a cloud resource optimiza-

tion framework. We conduct extensive simulation evaluations, investigating the

benefits and validating the feasibility of our solution under different network,

service and cloud resource conditions.

• Chapter 5 concludes the dissertation and summarizes our research results,

discussing also further improvements and future research directions derived

from this research work.

8

1.4 Published Work

The scientific findings of this thesis have been published in the following journals and

conference papers.

1.4.1 Scientific Journals

J.1 T. Theodorou, G. Violettas, P. Valsamas, S. Petridou, Lefteris Mamatas, ‘‘A Multi-

Protocol Software Defined Networking Solution for the Internet of Things’’, IEEE

Communications Magazine, vol. 57, no. 10, pp. 4248, Oct. 2019;

J.2 P. Valsamas, L. Mamatas, and L. M. Contreras, ‘‘A Comparative Evaluation

of Edge Cloud Virtualization Technologies’’, IEEE Transactions on Network and

Service Management, Accepted, Nov. 2021, ISSN: 1932-4537, doi: 10.1109/

TNSM.2021.3130792;

J.3 P. Valsamas, L. Mamatas, and L. M. Contreras, ‘‘Virtualization Technology Shift-

ing for Resource-Efficient Edge Clouds’’, IEEE Access, Submitted, 2022.

1.4.2 International Scientific Conferences

C.1 P. Valsamas, S. Skaperas and L. Mamatas, ‘‘Elastic Content Distribution Based

on Unikernels and Change-Point Analysis’’, in Proc. 24th Eur. Wireless Conf.

(EW), Catania, Italy, 2-4 May, 2018, pp. 1-7;

C.2 P. Valsamas, S. Skaperas, G. Violettas, T. Theodorou, S. Petridou, D. Vardalis, A.

Tsioukas and L. Mamatas, ‘‘Experimenting with Cloud and Network Orchestration

for Multi-Access Edge Computing’’, Demo Paper, IEEE Wireless Commun. Netw.

Conf. (WCNC), Marrakech, Morocco, April 2019;

C.3 P. Valsamas, I. Sakellariou, S. Petridou, and L. Mamatas, ‘‘A Multi-domain Exper-

imentation Environment for 5G Media Verticals’’, in IEEE INFOCOM Workshop on

Computer and Networking Experimental Research using Testbeds (CNERT), Apr

2019, pp. 461-466;

9

C.4 P. D. Maciel, F. L. Verdi, P. Valsamas, I. Sakellariou, L. Mamatas, S. Petridou, and

S. Clayman, ‘‘A Marketplace-based Approach to Cloud Network Slice Composition

Across Multiple Domains’’, in 2nd Workshop on Advances in Slicing for Softwarized

Infrastructures (S4SI), co-hosted at the 5th IEEE NetSoft, Paris, June 2019;

C.5 P. Valsamas, P. Papadimitriou, I. Sakellariou, S. Petridou, L. Mamatas, S. Clay-

man, F. Tusa, and A. Galis, ‘‘Multi-PoP network slice deployment: A feasibility

study’’, in Proc. IEEE 8th Int. Conf. Cloud Netw. (CloudNet), Nov. 2019, pp. 1-6;

C.6 Kalafatidis, V. Demiroglou, S. Skaperas, G. Tsoulouhas, P. Valsamas, L. Ma-

matas, and V. Tsaoussidis, ‘‘Experiments with SDN-based Adaptable Non-IP Pro-

tocol Stacks in Smart-City Environments’’, Demo Paper, in 27th IEEE Symposium

on Computers and Communications (ISCC), Rhodes, Greece, June 2022.

1.4.3 Awards

• In the scope of UNIC project, we developed and implemented a novel elastic CDN

paradigm deployed over the Fed4FIRE+ infrastructure. Our solution utilized

lightweight Unikernel-based Virtual Machines (VMs) and employed content pop-

ularity detection mechanisms that drive the deployment of the content delivery

service. We participated in the 5th Fed4FIRE+ Engineering Conference, Apr. 19,

Copenhagen, Denmark, where UNIC received the Best Demo Award.

10

2 Platform solutions for 5G Networks

2.1 Introduction

The exponential growth of Internet content, in size, quantity and network traffic de-

mands, along with the wide adoption of powerful end-devices (e.g., smart-phones,

tablets, end-nodes, wireless sensors) are driving forces for changing the way of de-

velopment and deployment of new services. 5G networks are considered as the main

enabler for new services (e.g., Media Entertainment verticals), allowing ultra-low

delays, high numbers of mobile clients, resource-demanding operations, and large-

scale ultra-high definition streaming. To boost this evolution is essential to enable

new low-complexity and flexible network architectures that include advanced service

orchestration and management mechanisms (e.g., efficient load balancing, AI/ML,

optimal content caching, service elasticity, e.t.c) over multi-domain 5G ecosystems.

Traditional solutions, especially in CDNs clouds, are characterized by inflexible and

monolithic infrastructures unable to support heterogeneous and high-mobility envi-

ronments, facing a number of difficulties including: (i) lack of common abstractions

or APIs handling heterogeneity spanning from hardware to virtualization technology,

operating system, and application; (ii) inefficient virtualization technologies used, in-

cluding traditional virtual machines (VMs), that face slow times for deployment, down-

loading or scaling up of virtual resources; and (iii) software applications that are based

on proprietary software tightly coupled to particular data centers, hardware, operating

systems or virtualization technologies. Since such approaches are becoming inefficient

for 5G networks, we suggest targeting ultra-low latency services through lightweight

edge clouds that host (or cache) the content near the end-users.

In this context, network slicing is a central concept to the 5G success, since it

declares a shift from existing monolithic cellular network architectures to the creation

of virtual networks tailored to the performance requirements of each particular service.

A 5G slice integrates core/mobile edge cloud and network resources in an isolated,

guaranteed, in terms of performance, end-to-end (E2E) virtual network, with fast

11

deployment, advanced network management and support for diverse service classes.

Such slices should be E2E, involve heterogeneous cloud deployments in terms of

physical and virtual resources, i.e., to utilize available edge-cloud options close to the

users. For example, a CDN service may involve both edge and core clouds and deliver

content through containers and OpenStack Virtual Machines (VMs), respectively. In

such a setting, advanced resource orchestration capabilities, e.g., dynamic resource

discovery, are necessary for deploying and operating multi-domain slices.

A main challenge of 5G networks is to demonstrate the opportunities they bring

to vertical sectors, such as M&E. In this context, there is a need for flexible, realistic

and holistic experimentation of CDN services, involving both resource and service

orchestration aspects. It should be noted that content delivery, a key service for M&E,

is also of high relevance to applications in other vertical markets, including the e-

health, educational and advertising sectors.

2.2 Contributions and Chapter Organization

2.2.1 Contributions

In this chapter, we propose novel edge cloud orchestration facilities, namely UNIC and

5G-CDN, investigating different aspects such as elasticity, scalability, performance

optimization, heterogeneity as well as novel mechanisms, that utilize lightweight

Unikernel-based Virtual Machines (VMs) in edge cloud environments.

2.2.1.1 Unikernel-based lightweight cloud technologies and Change-Point Anal-

ysis in CDN environments

Here, we propose a novel CDN platform, called Unikernel-Based CDN (UNIC), which

provides efficient content caching through placing Micro Content-Proxies (MCPs) with

popular content near the users. In comparison to traditional CDN solutions, UNIC

provides the following advantages: (i) it can operate over heterogeneous hardware

devices with diverse capabilities, including lightweight edge clouds; (ii) it provides sig-

nificant elasticity capabilities through tiny VMs orchestration; (iii) it supports modular

12

extensibility with new mechanisms; and (iv) it defines new research problems emerg-

ing from bringing together the content-caching approaches (e.g., [17],[18]) with the

VM orchestration proposals.

Furthermore, UNIC supports the following novel features:

• modular orchestration of Unikernel-based VMs hosting replicas of Internet con-

tent (i.e., the MCPs), such as for configurable VM placement;

• content popularity changes detection mechanisms that drive the MCPs deploy-

ment based on a novel Change-Point Detection (CPD) methodology tailored to

the specific problem;

• dynamic load balancing using a bespoke DNS service attached to the VM orches-

tration; and

• real-time monitoring of server resource utilization and end-user performance.

We designed and implemented UNIC towards focusing on its two core features:

(i) the modular VM orchestration (e.g., placement); and (ii) the detection of content

popularity changes. We tested our CPD methodology and experimented with UNIC

using real youtube popularity measurements [19] to drive end-user content demands,

as an approach to early detect changes in traffic and server resource utilization.

2.2.1.2 Multi-homing with Unikernel-based lightweight cloud technologies in

mobile environments

Next, we extended the UNIC platform towards integrating high-mobile environ-

ments with real operational Mobile Broadband (MBB) connectivity, investigating addi-

tional network orchestration aspects (i.e., multi-homing connectivity control and IoT

routing protocol adjustments) to improve the mobile end-users’ QoE through utilizing

lightweight virtualization technologies. In summary, we extended the UNIC solution

towards the following novel aspects:

13

• realized intelligent and modular orchestration for both cloud (e.g., efficient vir-

tual machine placement) and network aspects (e.g., dynamic load balancing and

multi-homing connectivity control);

• supported heterogeneous lightweight virtualization in the network edge;

• exploited mobile clients that reside at real moving buses; and

• performed multi-homing capabilities and protocol adjustments for the mobile

nodes and IoT devices, respectively.

The UNIC platform realizes and supports such features through exploiting the ca-

pabilities of the unique Experimentation-As-a-Service facilities provided by the MON-

ROE platform [20], which enables highly-mobile environments (i.e. moving bus, trains

and tracks), access to real multiple Mobile Broadband (MBB) networks and extracts

mobile node measurements with particular characteristics, e.g., from actively moving

nodes.

2.2.1.3 A Multi-domain Experimentation Environment for 5G Media Verticals

Furthermore, we proposed the 5G-CDN platform, a novel experimentation facility

for large-scale, multi-domain E2E slicing for media content delivery. It is built on top

of the Fed4FIRE+ to exploit its assets of large-scale experimentation with heteroge-

neous hardware, resource-facing slicing, as well as enables relevant automation (e.g.,

dynamic resource discovery and service-aware E2E slice establishment), covering both

service and virtualization aspects. It also abstracts multiple virtualization technolo-

gies and resource specifications (i.e., applying uniform representation of resources).

Finally, the proposed platform refines a high-level service definition to lower-level slice

specifications, while supporting modular CDN service orchestration.

In a nutshell, the 5G-CDN platform supports the following technical enablers:

• A GUI and YAML [21] schema realizing a high-level definition of CDN experiments

and modular extensibility of resource and content-delivery service orchestration

algorithms through the NodeRED tool [22].

14

• A novel architecture, appropriate abstractions and interfaces that: (i) bridge the

gap between CDN-based services, important 5G features, and general-purpose

test-bed federations through a holistic approach; (ii) handle and hide the com-

plexity of heterogeneous physical and virtual resources; and (iii) perform scalable

dynamic resource allocation and discovery over both federated and local test-bed

resources.

• Its novel architecture, through utilizing Fed4FIRE+ facilities [23], enables: (i)

a representation of the multi-domain infrastructure providers through the fed-

erated Fed4FIRE+ test-beds providing hardware resources around the globe,

including physical servers and 5G networking equipment; (ii) a basis for 5G

network slicing through the Fed4FIRE+ experimenters’ slicing, in the sense of

putting together physical resources from different test-beds, called slivers, to

implement a particular service for experimentation; (iii) automations in the re-

source discovery and allocation through the Fed4FIRE+ test-bed control tools

(e.g., jFed CLI).

We conducted a number of experiments with the 5G-CDN platform. Our experi-

mental results highlight the capabilities of the 5G-CDN to: (i) realize large-scale ex-

perimentation involving regular and lightweight clouds; (ii) dynamically discover and

allocate resources for the CDN service deployment; (iii) implement E2E slices over

geographical distributed heterogeneous physical and virtual resources utilizing al-

ternative Unikernel technologies; (iv) define, in a flexible and modular manner, new

experiments with alternative resource and service orchestration algorithms for CDNs.

2.2.2 Chapter Organization

The remainder of the Chapter is organized as follows. Section 2.3 provides an overview

of the related topics. Section 2.5 details the UNIC platform’s architecture and high-

lights its core mechanisms. Section 2.6 elaborates on our experimentation methodol-

ogy regarding the UNIC platform and Section 2.7 presents our experimental results,

demonstrating the full UNIC system operation. Section 2.8 elaborates the extended

features of the UNIC platform, along with the relevant experimental results. Next, Sec-

15

tion 2.10 discusses the design and implementation details of the proposed 5G-CDN

platform, while section 2.11 presents our evaluation results for each independent

experimental scenario. Finally, section 2.12 concludes the chapter.

2.3 Related Works

In this subsection, we contrast our proposed facilities (i.e., UNIC and 5G-CDN) to

related works mainly focused on relevant CDN platforms implementing: (i) resource-

efficient operation utilizing unikernels; and (ii) E2E slicing over novel federated dis-

trubuted infrastructures and experimentation for vertical services, especially media-

related.

2.3.1 Relevant CDN Architectures for Resource-Efficient Allocation driven by

CPD mechanisms with unikernels technologies.

A massive amount of the Internet traffic consists of content distributed by major

providers such as YouTube, Netflix and Amazon. This bulky traffic is usually delivered

to users through a Content Delivery Network (CDN) [24] [25], which is estimated to

scale up to 71% of the Internet traffic by 2023 [26]. Furthermore, a crucial issue is on

how 5G emerging opportunities would affect CDNs.

However, CDNs are usually tightly coupled with cloud providers (e.g., Akamai [27],

Microsoft Azure [28], Amazon [29]) that use their own hardware, sometimes cus-

tomized (e.g., NetApp’s FlexCase). The CDN software may be proprietary, costly for

SMEs and with specific hardware or OS requirements. Such approaches deliver trans-

parently and efficiently content to the end-users. However, traditional CDN servers

are typically far away from the content consumers and are unsuitable for the ultra

delay-sensitive applications envisaged by the 5G networking initiatives [30]. Hence,

we argue that there is a need for open, flexible, extensible, hardware-independent and

resource-efficient CDN solutions hosting the content near to the users, and we suggest

lightweight virtualization as an enabling technology for such unique features.

The main candidates for lightweight virtualization are the Containers and the

Unikernels. The Containers (e.g., Docker [31] or LXC [32]) are standardized units im-

16

plementing application packaging with all of its dependencies. Unikernels [14] (e.g.,

Mirage0S [33], Click OS [34], Rump Kernel[35], OSv[36]) are single-purpose VMs with

only the essential part of the OS for the particular service, specialized at compile-time

and sealed against modification when deployed in the cloud. The Unikernels have

fewer MBs in size, boot up quicker and are more secure than Containers (e.g., the

latter use shared kernel space). A Unikernel-based web server can even boot trans-

parently in milliseconds with the reception of a DNS request packet [15]. A relevant

thorough comparison between Unikernels and Containers can be found in [37].

The efficient VM placement is a challenging issue in cloud computing. However,

existing relevant proposals do not consider the high-dynamicity of Unikernels. For

example, the survey paper [38] studies and categorizes a large number of existing VM

placement approaches, but none of them consider the high-dynamicity of Unikernels.

Furthermore, our approach applies CPD mechanisms [39, 40, 41] to provide an

early signal of content popularity changes and deploy new MCPs. CPD is used exten-

sively in network anomaly detection [42, 43], e.g., for intrusions detection [44, 45].

We proposed a theoretical CPD methodology suitable for content popularity change

estimation, aligned to the CDNs context.

In our understanding, the only relevant CDN platforms to ours (i.e., UNIC) are

[46],[47]. The MOSTO platform [46] deploys Unikernels as TCP proxies (i.e., to improve

TCP’s slow-start algorithm performance). An interesting CDN solution with impres-

sive performance is [47], which provides content through Click OS Unikernels [34] and

is evaluated with a CDN simulator [48]. In contrast to [47], which focuses on perfor-

mance aspects, our apporace: (i) considers heterogeneity in terms of virtualization and

Unikernel technology; (ii) conducts real experimentation; and (iii) achieves flexibility

through Unikernel-oriented VM placement driven by novel early content popularity

change detection. However, the two approaches could be potentially synchronized

(i.e., support Click OS in our solution).

17

2.3.2 Relevant federated infrastructures for E2E Network Slicing

Relevant experimentation environments exploiting Fed4FIRE+ or GENI capabilities as

5G-CDN are: (i) FUTEBOL [49] integrating wireless and optical domains over European

and Brazilian test-beds; (ii) SoftFIRE
1

an SDN/NFV test-bed supporting high-level

service definition based on TOSCA [50] and resource discovery; and (iii) 5GinFIRE [51]

a 5G test-bed targeting multiple vertical industries (one of the 5GinFIRE test-beds,

the TNO 5G Media Vertical, focuses on the Media Vertical industry).

5G platforms with inherent 5G E2E slicing capabilities include: (i) the 5G-VINNI
2

targeting particular 5G KPIs and multiple verticals; (ii) the 5G-PAGODA [52] investigat-

ing NFV-based E2E slicing over two test-beds in Europe and Japan; and (iii) 5G-EVE

3
which is an experimentation-oriented platform for multiple verticals, supporting a

cross-facility 5G catalogue and multi-domain orchestration. Other proposals focus

on RAN slicing aspects (e.g., [53]). The 5G-MEDIA [54] project and platform targets

the Media Verticals through multiple use-cases, focus on SDN/NFV aspects and sup-

ports a DevOps environment for media applications, hiding the complexity of service

development and deployment over 5G infrastructures.

To the best of our knowledge, 5G-CDN, in contrast to the relevant approaches, is

the first 5G platform, tailored for CDN services, exploiting the novel Fed4FIRE+ ex-

perimentation capabilities, while addressing multi-domain operation, modular service

and resource orchestration, scalability and heterogeneity aspects. Our approach does

not focus on RAN slicing, but it can incorporate relevant capabilities offered by existing

Fed4FIRE+ test-beds, such as the LTE slicing feature of the NITOS test-bed [55].

2.4 Content Distribution Networks (CDNs) for 5G Networks

The emerging 5G networks call for new approaches to CDNs through addressing chal-

lenging issues, such as: (i) scalable and holistic resource management, spanning from

large data centers to the user device, including edge clouds; (ii) incorporation of hetero-

geneous physical and virtual resources; (iii) extensibility to support new capabilities

1
http://www.softfire.eu

2
http://5g-vinni.eu

3
http://5g-eve.eu

18

or mechanisms; and (iv) adaptability to dynamic user requirements, server resources

and network capacity constraints. User-generated content is the driving force for new

services, while edge cloud solutions are being proposed to host (or cache) content

locally. However, it is costly to deploy traditional clouds near end-users and such vir-

tual machines (VMs) are inefficient for dynamic network conditions (i.e., may boot-up

in minutes).

2.5 Implementing elasticity CDN based on Unikernels

In the following subsection, we propose an elastic content distribution platform, that

serves the Internet content using tiny Unikernel-based VMs. We named the latter

Micro Content-Proxies (MCPs). Such VMs host one or a few videos, that can appear

rapidly in nearby cloud deployments, serve users and then disappear. In other words,

the studied environment provides content dissemination through very dynamic, al-

most "fluid" VM placement, since the content is packaged with the server software

with just a minor increase in size. So, we reposition the content caching and provi-

sioning as a VM orchestration problem. We demonstrate the complete implementation

of the proposed platform with proof-of-concept experimental results.

2.5.1 The UNIC Platform Architecture

UNIC is an intelligent lightweight cloud orchestration platform, that provides efficient

content distribution to the end-users through MCPs scattered to a cloud hierarchy

(i.e., with both regular and lightweight clouds). The UNIC platform realizes flexible

and scalable content distribution over heterogeneous virtual and physical resources.

We focus on two main UNIC aspects here: (i) the modular VM placement algorithms

considering real-time server resource utilization and content provisioning require-

ments; and (ii) a novel approach to early content popularity change detection driving

VM orchestration, based on our CPD methodology, i.e., Cumulative Sum (CUSUM)

procedures efficiently combining off-line and on-line CPD, mechanisms revealing the

direction of changes and an improved time-series segmentation algorithm, to detect

multiple changes.

19

Here, we give a bottom-up description of the UNIC platform architecture (i.e., Fig-

ure 1), which consists of the following three main layers:

Figure 1: The Architecture of UNIC Platform

a) The Physical Layer utilizes federated hardware, providing the required heterogeneity

and scalability aspects. More precisely, we use our own SWN test-beds [56]. The SWN

test-bed provides the regular and lightweight cloud facilities and hosts the end-users.

b) The Virtualization Layer supports lightweight cloud capabilities and multiple Uniker-

nel technologies (e.g., Mirage OS, Rump Kernel or Click OS). The UNIC architecture is

independent from the virtualization technologies used; hence, carefully designed ab-

stractions hide the virtualization heterogeneity (i.e., the Resource Abstraction Sublayer

exports a uniform interface for VM control).

c) The Management and Orchestration Layer controls and orchestrates the UNIC plat-

form and test-beds, including providing the efficient VM placement through the Place-

ment Engine, the traffic control through the Data Flow Controller and network analyt-

ics, that enable intelligent network configuration decisions through the Data Analyzer

and the Decision Engine, respectively.

As shown in Figure 1, the UNIC dashboard provides the experimentation input, re-

20

sults visualization and modular extensibility of the evaluated mechanisms through the

Node-RED tool [22]. An important UNIC aspect is the ability to implement VM orches-

Figure 2: Platform’s orchestration & management features implemented as Node-

RED nodes

tration processes in the form of Node-RED work-flows, in a plug-and-play fashion. As

shown in Fig. 2, all the UNIC Management and Orchestration Layer components have

been implemented in the form of Node-RED nodes, such as: (i) the content popularity

detection for the Decision Engine; (ii) the VM placement functions for the Placement

Engine; (iii) the content popularity and web client performance monitoring for the Net-

work Analytics; and (iv) the traffic load balancing (i.e., our own dynamic DNS server

matching content replicas with web clients) for the Data Flow Controller. These nodes

are standalone components that can be manipulated / configured independently of

each other and be connected to form complete VM orchestration processes.

To further analyze the UNIC platform, we describe two of its core features in the

following subsections, i.e., the content popularity changes detection and the modular

VM placement mechanisms.

2.5.1.1 Content Popularity Changes Detection

The UNIC platform detects early changes in the content popularity and signals new

MCP placements, in case of an upward qualitative change in the content popularity or

a removal of MCPs in case of a downward change (i.e., handled from the VM placement

algorithms of subsection 2.5.1.2). Such decisions are being communicated to a dy-

21

namic DNS server assigning end-users to the active content caches, in a round-robin

fashion.

We apply a novel statistical change point analysis methodology to approach the

content popularity detection problem introduced in [57]. Such mechanisms target

the following requirements: (i) low-complexity and quick estimations to match the

dynamic and resource-constraint nature of Unikernels; (ii) to rely on a non-parametric

framework to avoid restrictive assumptions (i.e., no particular model or distribution

can fit a ’mixed content’ provisioning and a large number of model parameters may

lead to high convergence times); and (iii) to operate in an on-line manner and be able

to estimate the existence, the direction and magnitude of changes.

To address the above requirements, we detect the existence of a change in the

historical sequence of content views’ observations using a retrospective test statis-

tic for the unknown time of change in the mean [58]. Such procedure consists of a

CUSUM based detector and the Newey-West long-run variance estimator [59] to cap-

ture the serial dependence between observations. We combine the method [58] with a

new heuristic, incorporating the two binary segmentation algorithms [60], [61], to be

able to detect multiple change points (i.e., through a segmentation of the time-series).

We apply the Moving Average Convergence/Divergence (MACD) trend indicator [62] to

estimate the direction of detected changes.

Regarding our on-line CPD mechanism, we implement a stopping-time procedure

[63], based on a mean CUSUM detector. The stopping rule depends on a sensitivity

parameter γ ∈ [0, 1
2). For example, a γ � 0.25 allows slower but more accurate detec-

tions, in terms of type I errors (i.e., incorrect rejection of the null hypothesis of no

change) and γ � 0.25 leads to quicker but more sensitive to false alarms detections.

We outline our main content change-point detection algorithm, assuming that the

monitoring period starts at the arbitrary time t = m.s, as follows:

• Step 0: Define a priori a finite monitoring window l > 0, and denote the moni-

toring horizon as m.h = m.s+ l.

• Step 1: Apply the segmentation algorithm supplied by the retrospective statistic

22

Rh for the whole historical period h = [1,m.s], or for the bounded interval (i.e., to

experiment with smaller monitoring periods):

h = [w,m.s], w > 0,

- if no changes are detected, the training sample of the sequential procedure

becomes m = h,

- else the training sample becomes m = [cplast ,m.s], where cplast is the detected

time of change.

• Step 2: Apply the sequential procedure S(m,k), k ≥ m.s,

- if a change is detected for some m.s≤ kcp ≤ m.h, the procedure stops,

- else if no change is occurred after m.h observations set kcp = 0 and the moni-

toring terminates, i.e., proceed to Step 4.

• Step 3: If kcp 6= 0, define kcp as a change-point and apply the trend indicator at

the time of change T I(kcp),

- if T I(kcp)> 0 then deploy a Unikernel (i.e., upward change),

- else, displace a Unikernel (i.e., downward change).

• Step 4: Set a new starting point for the monitoring period,

- if kcp > 0, set m.s = kcp + d, where d is a constant value defining a period

assuming no change,

- else, set m.s = m.h.

We maintain two parallel change-point detection processes with different signif-

icance level α and parameter γ values. We place one more Unikernel, in case the

change is detected from both processes, otherwise, we may remove one or two, in a

similar way. The MCP placements and removals are being handled from the algorithms

described in the following subsection.

23

2.5.1.2 Modular VM Placement

As discussed above, UNIC supports modular extensibility of VM orchestration func-

tionalities in the form of independent software entities, called Node-RED nodes. We

exploit such capability to implement three alternative VM placement mechanisms: (i) a

Random Placement algorithm, choosing randomly one of the available physical nodes

and providing reference measurements; (ii) a Quantity-Based, choosing the physical

node each time hosting the lower number of VMs; and (iii) an Objective Weight Function

(OWF) approach, considering the real-time CPU, RAM and network utilization mea-

surements of each node, weighted by particular coefficients (i.e., tuning the involved

performance trade-offs).

Since the first two algorithms are self-explanatory, we only detail the OWF algo-

rithm only. We consider as PN = {pn1, ..., pni} the set of available physical nodes

(PN) to host MCPs, where i is the PN number. The variables cpunpi, memnpi, ttnpi and

rtnpi represent the percentage of CPU utilization (i.e., the average values of available

CPU cores), memory allocation(MEM), outgoing(T T) and incoming(RT) link utilization,

respectively.

Furthermore, the assignment of MCPs to a particular PN cannot lead to exceeding

the available capacity resource (i.e., they have available resources to host one more

VM). Consequently, we define the following constraint:

0≤ cpupni,mempni, ttpni,rtpni < 1 (1)

The OWF executes periodically and triggers MPCs deployment or removals in

the event that content popularity changes detection mechanisms detect a qualita-

tive change in the content popularity. The OWF place the MPCs on the ith Physical

node PN that provides the minimum resource utilization, given by:

min
pni∈PN

αcpupni +βmempni + γttpni +δ rtpni (2)

s.t. (1)

24

The coefficients α, β , γ, δ ≥ 0 weight the importance of each resource type, e.g., to

match particular application-level requirements.

2.6 Experimental Methodology

In this subsection, we describe our experimental methodology, including the details

and configurations of main platform implementation aspects along with the test-bed

we utilized to carry out our experiments.

We conduct real experiments that require the implementation and configuration

of separate technical features, such as: (i) the VM orchestration; (ii) the content

popularity detection mechanisms; (iii) the end-user traffic emulation and control; and

(iv) the physical server resource utilization and end-user performance monitoring.

We briefly outline each technical aspect below, i.e., configuration parameters, basic

implementation details or open-source tools we used.

The VM Orchestration: We create lightweight web-servers delivering content with

Mirage OS Unikernels. Such tiny VMs are being orchestrated according to a work-flow

diagram created through the Node-RED tool. Such work-flow defines the communi-

cation of independent software entities, i.e., the Node-RED nodes. We create one

node per VM orchestration process (e.g., the VM deployment, the placement decision

making, etc). An experimenter can introduce new nodes (e.g., placement algorithms)

or connect them in alternative ways (e.g., to create new orchestration work-flows).

All processes communicate with the hypervisor through the Resource Abstraction

Sublayer (RAS), exposing a unified north interface to the orchestration features but

virtualization-technology specific south interfaces. The latter communicates through

ansible scripts [64]. RAS allows us to introduce heterogeneous virtualization tech-

nologies, in the near future.

The Content Popularity Detection Mechanism: We implement the CPD mecha-

nisms in Matlab. To ensure an online operation, we create at a separate host a Matlab

TCP server application that receives periodic content popularity measurements and

returns a notification for each detected change-point and an estimation of its basic

characteristics (i.e., direction and rough magnitude). The other end is a Node-RED

25

node that triggers VM deployments or removals.

The end-user traffic emulation and control: We emulate the web-clients using

the httperf open-source tool [65]. We create and deploy web-clients based on real

content popularity measurements extracted from youtube with the tool [19]. In Figure

3, we show the content requests per minute that we use as an input for the emulation

of web clients in these experiments. The duration of the particular measurements

matches the duration of the experiments, i.e., 310 minutes for each run. We create

a DNS-based load-balancing Node-RED node that keeps track and redirects the web

requests to particular content caches (i.e., Unikernel VMs), in a round-robin fashion.

The physical server resource utilization and end-user performance moni-

toring: We are monitoring the servers’ resource utilization, in terms of CPU, me-

mory, incoming / outgoing traffic and the performance of web-clients using the open-

source tool CollectD [66]. We store the measurements in InfluxDB [67], a time-series

database, and visualize them with the Grafana tool [68]. The measurements reach to

the orchestration processes that take informed decisions for the context environment,

e.g., to the VM placement algorithms. The monitoring takes place at regular time

intervals (i.e., every 10 secs).

We use our own SWN test-bed to conduct the experiments. More precisely, we

use: (i) seven physical servers, five to host the MCPs, one as a Management and

Orchestration server and one to host the CPD mechanisms; (ii) ten Raspberry PIs

to emulate the web-clients requesting web content from the MCPs; and (iii) one L3

100Mbps switch.

2.7 Experimental Results

We group our experimental runs into two scenarios. The first scenario investigates the

impact of early content popularity change detection driving by VM orchestration, while

the second investigates the impact of placement algorithm utilizing real-time server

resource utilization measurements. For both scenarios: (i) we assume a running

operation of UNIC with three MCPs hosting particular web content; and (ii) we allocate

web-clients based on the real content popularity traces illustrated in Figure 3. We see

26

Figure 3: Content-views per minute of a particular youtube video and detected

change-points for different α and γ values. Red lines symbolize the upward and

downward change.

there is a small change (i.e., reduction) in the end-user demand to watch the particular

video at around the 150 minute of the experiment and a significant change after the

220.

We apply two CPD processes in parallel with variable sensitivity, i.e., a more sen-

sitive with parameters γ = 0.25, α = 0.95 and a less sensitive with parameters γ = 0,

α = 0.99, as shown in Figure 3. In case both of them estimate a change point at the

same time interval, we deploy two VMs, assuming a larger magnitude of change. In

the typical case the sensitive approach detects a change but not the less sensitive one,

we deploy one VM.

We set the OWF algorithm’s coefficients α, β , γ, δ ≥ 0 to the values 60%, 30%,

5%, 5%, respectively. In the following figures (i.e., 4 to 9), the different colors represent

measurements from different physical machines.

27

2.7.1 Scenario 1: Impact of change-point detection mechanisms

To evaluate the impact of the change-point detection mechanisms, we run the experi-

ment twice, one with the CPD mechanisms enabled and one with them disabled.

Figure 4: The servers’ CPU utilization with the change-point detection mechanisms

disabled, using the Objective Weight Function placement algorithm

The Figures 4 and 6 contrast the percentage of CPU utilization and Figures 5

and 7 the percentage of memory allocation per physical server, with the change-point

Figure 5: The servers’ memory allocation with the change-point detection mecha-

nisms disabled, using the Objective Weight Function placement algorithm

28

Figure 6: The servers’ CPU utilization with the change-point detection mechanisms

enabled, using the Objective Weight Function placement algorithm

Figure 7: The servers’ memory allocation with the change-point detection mecha-

nisms enabled, using the Objective Weight Function placement algorithm

29

detection mechanisms disabled and enabled, respectively. According to these figures,

we have the following observations:

• for the first time period (i.e., 0 to 220 minutes), the CPU and memory allocation

are similar for both cases.

• for the second time period (i.e., 220 to 310 minutes), the maximum CPU uti-

lization is reduced around 10%, while there is a 0.5% increase in the memory

allocation.

Such outcome can be explained as follows. In the second experimental run, the

change-point detection mechanisms take the decision to boot two more MCPs due

to the abrupt increase of content views (i.e., both CPD processes detect the change,

as shown in Figure 3). This decision reduces the CPU utilization, but has a minor

impact on the memory allocation (i.e., due to the additional VM deployment). This

is consistent with the content popularity traces used for the web-clients deployment,

dictated by the real measurements, where there is a change-point at the same time-

period (i.e., see Figure 3). We note that the smaller change-point, detected from the

sensitive CPD process only, leads to the removal of an MCP, without significant impact

on both CPU utilization and Memory.

2.7.2 Scenario 2: Impact of VM placement algorithms

To evaluate the impact of the placement algorithms, we execute a representative ex-

periment three times, one for each placement algorithm discussed in Section 2.5.1.2.

Due to the homogeneous nature of our SWN test-bed, we omit the results of the

Quantity-based algorithm since it often produced similar results with OWF algorithm.

The OWF mechanism considers the real-time measurements of all available physical

machines. In all cases the change point detection mechanisms are enabled.

Figures 6 and 8 highlight the impact of the placement algorithm on the CPU uti-

lization, while Figures 7 and 9 highlight the same impact on the memory allocation of

physical servers. According to these four figures, we observe the following:

30

Figure 8: The servers’ CPU utilization with the change-point detection mechanisms

enabled, using the Random placement algorithm

Figure 9: The servers’ memory allocation with the change-point detection mecha-

nisms enabled, using the Random placement algorithm

31

• for the first time period (i.e., 0 to 220 minutes), the CPU and memory measure-

ments scale at the same low-levels, for both placement algorithms (i.e., there are

not very many content requests, as shown in Figure 3).

• for the second time period (i.e., 220 to 310 minutes), the OWF placement algo-

rithm causes the consumption of at least 10% less maximum CPU allocation,

which even reaches the 30% at some points. This without significant changes

in the memory allocation.

The above outcome can be justified by the choice of the Random placement algo-

rithm to boot one additional MCP in a server that hosts other VMs as well. This result

calls for further investigations in the sophistication of the placement algorithms.

Our results show that orchestrating network resources with lightweight clouds

brings advantages in users’ QoE.

2.8 Extended UNIC platform capabilities for mobile IoT environ-

ments

In the context of the MEC research project, we investigated and extended the UNIC

capabilities towards integrating and optimizing together a real mobile environment

with lightweight cloud virtualization resources (e.g., Unikernels). More precisely, the

extended UNIC platform brings together: (i) heterogeneous lightweight cloud tech-

nologies hosting the content and IoT data; (ii) multi-homing capabilities in the mobile

nodes, that select the best connectivity option based on the service requirements re-

lated to the service used e.g., for low latency or high throughput; and (iv) IoT routing

protocol adjustments, that reduce the delays of measurements’ collection.

Fig. 10 illustrates a high-level overview of the extended UNIC architecture. We

briefly elaborate on the three-layer structure as well as the corresponding components

(i.e., as a detailed description has been discussed in section 2.5.1). In a bottom-up

approach, we highlight the following three layers: (i) the Physical Layer consisting of

the lightweight edge clouds, IoT devices (i.e., federated infrastructure facilities utilizing

Monroe and our SWN test-bed), that collect measurements, and mobile clients with

32

Figure 10: The extended Architecture of UNIC Platform

multi-homing capabilities; (ii) the Virtualization Layer enabling lightweight cloud ca-

pabilities through Virtual Machines (VMs) with ‘‘tiny’’ operating systems, such as the

Mirage OS and Rump Kernel Unikernel technologies. A Resource Abstraction Sublayer

(RAS) hides virtualization heterogeneity and exports a uniform interface for VM control;

and (iii) the Orchestration Layer with the following features: a Data analyzer, which

performs CP detection to early ‘‘track’’ changes in the content evolution, a Decision

engine, which specifies either to deploy or remove lightweight VMs, accommodating

content and IoT data near the end-users, a Data flow controller, that balances the

traffic load among active VMs, and a Placement engine, which determines the optimal

location of the VMs. The UNIC dashboard takes the experimentation input through

the Node-RED tool and provides the corresponding visualization results.

In practice, the novel new feature in the extended UNIC platform is the Multi-homing

mechanism which is an independent software entity deployed on real movies vehicles

(i.e., Physical Layer). To realize the Multi-homing mechanism features, we implemented

a multi-threaded measurement tool that is constantly measuring all interfaces (i.e.,

alternative connectivity options) in terms of delay and bandwidth (e.g. by periodic

33

‘‘ping’’ and HTTP downloading), and it is equipped with a decision mechanism, that

dynamically and transparently switches to the most appropriate provider to improve

the mobile broadband (MBB) connectivity of mobile users. The selection is based on

the recent average measurement and according to application requirements.

2.8.1 Experimental results of multi-homed network utilizing lightweight cloud

resources

In this section, we evaluate the new novel multi-homing features as well as the

lightweight capabilities, that UNIC platform brings through assuming the following

IoT application scenario.

We assume that a medical doctor (i.e, mobile user) accesses up-to-date IoT vital-

signs of his patients (i.e. fixed IoT devices) using his smartphone. The mobile user(s)

(i.e., medical doctor) resides in MONROE mobile bus node equipped with our Multi-

homing mechanism features. The latter mobile node may suffer from MBB connection

inefficiencies and delays due to the overloaded cloud. To further reduce the involved

delays and assist the network communication between users and IoT devices, we

utilize nearby edge clouds with real caching IoT measurements (e.g., temperature,

pressure, vital-signs, etc.). The latter in form of Unikernel-based VMs act as data

collectors, that store measurements in a lightweight DB (i.e., Fig. 11 shows an example

Unikernel caching real IoT measurements). In practice, the fog and edge cloud is

dwelling in our facility involving five Low-end PCs, hosting the Unikernel-based VMs

and five Zolertia RE-Mote 2 motes (i.e., IoT nodes produce real IoT measurements). The

Unikernel based VMs are being deployed at the most appropriate physical host utilizing

the management and orchestration layer through using the Placement Engine.

In such emergency service it is essential that the up-to-date measurements’ are col-

lected with ultra low-latency (i.e., crucial application requirement). With that perspec-

tive the multi-homing mechanism is switched to the best of the available MBB providers

based on dealy measurements (i.e., ping measurements) rather than throughput (i.e.,

the throughput measurements will be ideal with an elastic content-distribute network

case as described in section 2.7).

34

Figure 11: Unikernel-based web server caching real IoT measurements

Figure 12: Multi-homing for mobile users

35

In practice, the mechanism periodically collects ping measurements and compares

the average value of the ten recent ping measurements of the available MBB connec-

tivities and selects dynamically the provider, that performs better in terms of delay.

As we show in Fig. 12, the green and the pink curves show the periodic ping measure-

ments of the ‘3’ and ‘Telia’ Swedish providers, respectively. The mobile node starts

communicating using the ‘3’ provider and as soon as the average ping measurements

of the ‘3’ provider are higher than those of the ‘Telia’ provider, the mechanism switches

to the latter. As the blue curve shows, this dynamic behavior achieves constantly the

best performance. Using one provider for the whole communication (i.e., red curve),

is not the most efficient choice.

As a bottom line, our results show that our proposed platform brings advantages

to mobile users’ QoE by exploiting multi-homing capabilities along with lightweight

virtualization resources. A live demo, highlighting the novel aspects of the extended

UNIC platform, can be found here
4
.

2.8.2 Synergy of multi-homing capabilities along with adaptable network pro-

tocols in IoT environments

Our experiment results show that multi-homing capabilities improve the connectivity

of mobile users. In the context of the MEC project, our research team initiates an

early investigation study involving mobile IoT devices in our IoT application scenario.

However such networks topologies (i.e., with fixed and mobile IoT devices) may suffer

from delays, reliability and resource constraints. Since reliability and overhead have

a direct impact on the delay, we focus on relevant performance aspects involving a

more logically-centralized approach influenced by the SDN approach. The idea is to

have a flexible network that adapts the communication protocols as well as multi-

homing capabilities in diverse network conditions. Initial results investigating the

previous research aspect, i.e., the extended UNIC Platform adapts on-the-fly important

parameters of the IoT routing protocol (i.e., RPL) as well as utilizes the multi-homing

capabilities, are reported in the final deliverable on MEC project
5
.

4
https://bit.ly/2KSO6HF

5
https://www.monroe-project.eu/mec/

36

Our initial investigation in the MEC project regarding the multi-homing capabilities

as well as the adoption of IoT protocols was the precursor, in cooperative work involv-

ing the developing, designing and implementing an advanced SDN Platform, namely

MINOS [69]. MINOS is a multi-protocol SDN platform for IoT, that implements service

awareness utilizing appropriate SDN abstractions and interfaces for logically central-

ized network control of diverse and resource-constrained IoT environments involving

two network protocols that are deployable and configurable on demand.

2.9 The 5G-CDN Platform solution for heterogeneous distributed

infrastructures

In the previous subsections, we elaborate on a novel elastic CDN paradigm and a

relevant change point mechanism utilizing lightweight Unikernels based VMs. Al-

though the first experimental results extracted from our relevant UNIC platform have

been promising, we faced difficulties to conduct experimentation resembling real CDN

deployments in order to tackle aspects such as scalability, performance efficiency, het-

erogeneity of physical / virtual resources, and flexibility. To bridge the gap between

CDN-based services and tackle essential 5G features, we built a relevant experimenta-

tion environment, namely 5G-CDN platform on top of the Fed4FIRE+ facilities, which

leverages the UNIC solution introduced in section 2.5.1. Our new novel platform: (i)

covers the service and virtualization aspects and enables relevant automation (e.g.,

dynamic resource allocation and discovery); (ii) abstracts test-bed control approaches,

multiple virtualization technologies and resource specifications (i.e., through applying

a uniform representation of resources); and (iii) refines a high-level service definition

to lower-level slice specifications while supporting modular CDN service orchestration.

2.10 Design and Implementation of 5G-CDN Platform

The architecture adopted by the platform, depicted in Fig. 13, consists of two planes,

the Management and Orchestration and the Multi-Domain Experiment Engine. The for-

mer provides all the necessary experimenter GUI, experiment definition and specifica-

tion refinement, slice creation, control and management features, including advanced

37

Figure 13: The architecture of proposed 5G-CDN platform

38

monitoring and results aggregation functionalities. The Engine’s role is to provide

uniform access to the federated test-bed resources, alleviating the need for low level,

technology specific code provisioning on the experimenters’ side. These two planes

are explained in detail in the following subsections.

2.10.1 Multi-Domain Experiment Engine

The Multi-Domain Experiment Engine consists of two layers, namely:

• The bottom layer of the Multi-Domain Experiment Engine accommodates the

physical resources located either on remote federated test-beds (i.e., currently

Fed4FIRE+ and GENI [70]) or on our local infrastructure through custom rele-

vant libraries. Accessing local resources through a federated experiment is im-

portant, since many important pilot 5G deployments are not part of large-scale

federated test-beds (e.g., 5TONIC [71]).

• The Resource Abstraction Layer (RAL) hides the resource and test-bed hetero-

geneity from the top architectural plane. RAL offers a technology agnostic uni-

form North interface to the upper Management and Orchestration plane, while

translating incoming ‘‘north’’ operations to test-bed specific commands via its

technology specific South interfaces, i.e., one for each diverse test-bed control

approach. Moreover, RAL serves as a resource catalogue/provisioning layer for

the experiments to be conducted, where resources are accessed by their corre-

sponding test-bed control interface (e.g., jFed CLI or geni-lib). In practice, we

maintain a local representation of the resources (in json format). This happens

because both Fed4FIRE+ and GENI represent their resources through Resource

Specifications (called RSPECs [70]), but not in a uniform manner between the

test-beds, e.g., the resources may have incomplete details or present different

attributes.

The Virtual Entities (VEs), i.e, VMs and containers, are treated similarly to phy-

sical ones and are also accessible via the RAL. We support services operating over

multiple Virtual Infrastructure Managers (VIMs), since it is common for edge and

39

core clouds to use different virtualization technologies (e.g., OpenStack for core and

Docker/Kubernetes for edge clouds). Finally, the RAL provides abstractions for diverse

monitoring technologies for both slice resource and content delivery aspects, as well

as SDN network control operations.

In short, the Engine provides a ‘‘universal’’ (i.e., physical & virtual), uniform (i.e.,

technology agnostic) and flexible (i.e., extendable to include new classes of resources)

North interface to the high-level management and orchestration components. Due to

these features, this plane enables experiments on dynamically discovered, heteroge-

neous resources.

2.10.2 Management and Orchestration

The Management and Orchestration plane follows a modular architecture that consists

of the components depicted in Fig. 13 and detailed below.

• The Experiment Dashboard is the platform’s interface to the experimenter. It

includes a GUI and along with the Service Entity Repository allow defining the

service specifications and the details of each experiment (e.g., slice geographic

constraints, KPIs, monitoring technology). In particular, the repository: (i) pro-

vides a set of visual components (for instance a Content Server VM), that can

be added (drag-n-drop) to the service graph description, and (ii) assists the con-

version of the service graph to a slice graph based on initial slice configura-

tion details, that include but are not limited to the VIM requirements of the

selected service entities, their resource requirements and network connectiv-

ity constraints. For example, a service graph represents the relations among

service components, e.g., a load-balancer and a number of content servers are

connected with ‘‘edges’’ that are annotated with requirements regarding service

hosting components (e.g., VIM) or geographical and connectivity constraints. In

the same example, the slice graph is the allocation of service components to slice

parts, along with any network connectivity or physical/virtual resource require-

ments (e.g., number of physical machines, CPU / RAM demands), that will be

populated during the slice creation phase. Graphs’ representation is based on

40

a custom YAML schema, inspired by TOSCA [50] and the ESpec
6
. The Dash-

board also supports visualization of results and a bespoke visualization tool for

large-scale CDN deployments

• The Resource Orchestrator (RO) component handles the population of the ex-

periment definition (i.e., represented as a CDN service graph) with physical re-

sources. This slice building process involves the selection of appropriate re-

sources among those available, requesting the allocation of resources and the

necessary test-bed stitching from the Slice Resource Controller. Operations in-

volving slice resource elasticity, i.e., addition / removal of resources to existing

slice parts (or test-bed-level) and new slice part (or test-bed) allocation along with

the necessary stitching, also fall under the responsibility of the RO, that decides

the new slice configuration.

• The Service Orchestrator (SO) offers service Virtual Entity (VE) deployment (i.e.,

Unikernel-based VM or a container) on the allocated slice resources, based on

configurable placement algorithms, VE termination and operations involving ser-

vice elasticity, e.g., VE migration or deployment, as a response to service request

events. The service request events are detected via the corresponding compo-

nent (MED - see below) in situations that require a graceful service elasticity

operation. The two sub-components that handle this kind of events are the Net-

work Optimizer, that deals with placement of VEs related to load balancing and

traffic redirection in the slice, and the Caching Optimizer, that decides on the

deployment of new VEs to respond to increased service requests. Finally, the

SO handles the experiment scenario execution, i.e., starts/stops VEs emulating

service clients’ requests for video offered by a CDN service running on the slice.

To perform these tasks the SO interacts directly with the RAL.

• The Slice Resource Controller (SRC) discovers available resources with particular

specifications through the RAL and handles the requests for physical resource

allocation in the supported test-beds. In general, the RO takes the slice-level

6
http://jfed.ilabt.imec.be/espec

41

configuration decisions, while the SRC the slice-part-level (or test-bed-level) de-

cisions. The RO and SRC are considered to be the main enablers for the E2E

slice creation.

• The Monitor and Event Detection (MED) module accesses monitoring data for

physical and virtual resources via the RAL and detects traffic and other network

events that one or both of the orchestrators should respond to. For instance,

we carry out experiments on content popularity detection employing change

point analysis [72, 73] triggering the Caching Optimizer component of the SO to

deploy additional content-serving VEs. This component is also responsible for

the results aggregation presented at the Experiment Dashboard.

All the above components besides the RO have been implemented through the

NodeRED tool and according to the microservices paradigm [74]. NodeRED is a

browser-based flow editor wiring together independent software entities. Each en-

tity is represented as a NodeRED node, i.e., a standalone Node.js component. For

example, the addition of a new VE placement algorithm requires only a simple GUI

task and minor changes in the placement decision mechanism through the embedded

code editor.

2.11 Evaluation Results

In this section, we demonstrate the functionality of the proposed 5G-CDN platform

through experiments on different aspects of the studied large-scale CDN deployment

of Unikernel-based content provisioning over heterogeneous resources. In particular,

we investigate the following aspects:

2.11.1 Performance and scalability of 5G-CDN platform

Here, we evaluate our experimentation facility realizing large-scale Unikernel-based

content provisioning over heterogeneous (i.e., virtual and physical) Fed4FIRE+ re-

sources.

42

Figure 14: Content distribution service

2.11.1.1 Experimentation Setup

We validate the prototype implementation of our 5G-CDN architecture, acting both as

our main experimentation facility built on top of Fed4FIRE+ and as a novel proposal

for large-scale orchestration of CDN services. For our experiments, we consider a

particular CDN service geographically spanning over Europe and USA. We configure

the experiment through a YAML-based schema, that represents a high-level definition

of a CDN experimental setup. This setup consists of the following services: (i) a clus-

ter of Web servers; (ii) a load balancer (LB), which distributes (i.e., in a round robin

fashion) the Web traffic of request content from clients; and (iii) benchmarking tools

(BT) emulating the clients’ behaviour. The same input of the experimenter specifies

each service to be allocated in a particular geographic location, and thus the whole

experiment spans in two different segment (test-beds) as depicted in Fig. 14. In par-

ticular, the East-end segment contains physical resources located in the Fed4FIRE+

test-beds, whereas the West-end segment consists of physical resources located at

our own UOM test-bed. Furthermore, we deploy an additional physical machine at

each side, acting as an edge router. In practice, we deploy GRE or VXLAN tunneling

between the test-beds. To secure intra-connectivity, we configure each physical node’s

routing table to allow the communication with the edge router of the other side. For

inter-domain connectivity, we assume a star topology, where each physical node is

connected to the edge router (central node) and through the edge router to the remote

test-bed segment (physical remote nodes).

To proceed with the CDN service deployment, we define the service and resource

43

requirements as a YAML-based input that defines two CDN segments. More specifi-

cally, the west-end CDN segment at the UOM test-bed consists of six physical nodes

hosting: (i) a service load balancer, which distributes (i.e., in a round robin fashion)

the Web traffic of a number of clients to the Web servers located at a remote CDN

segment (i.e., the east-end); and (ii) the benchmarking tools emulating the clients’

behaviour. The east-end segment acting as a Web servers’ cluster is physically lo-

cated in the USA (i.e., at the CloudLab Utah test-bed) and is accessed through the

Fed4FIRE+ facility. The number of physical machines in this segment is expressed by

the parameter Nodes of our experiment, which is in the range of [5 . . .30]. We use two

classes of test-beds nodes, i.e., the pc3000 class with 3.0 GHz processor, 2 GB DDR2

RAM and 300 GB storage, and the d430 class with two 2.4 GHz 8−core processors, 64

GB DDR4 RAM and 2.2 TB storage (a detailed description of hardware specifications

can be found here
7
). The first class represents a server deployed at an edge cloud and

the latter at a core cloud. In this particular east-end segment, we assume that each

physical node hosts one Web server, supports a particular virtualization technology

(i.e., ClickOS) and is assigned with specific service resource flavour (i.e., CPU, RAM

utilization and storage usage).

To monitor the behavior of the CDN deployment, we use the CollectD open-source

monitoring tool, as well as the InfluxDB and the Grafana tool. For the allocated

physical resources, we enable the following KPIs: (i) CPU and RAM usage; and (ii)

incoming/outgoing traffic. The tool collects the KPI metrics every 20 sec (time interval).

2.11.1.2 Experimental Results

Our evaluation results show the different delays involved in the deployment of the

CDN service, while considering both edge and core cloud nodes. Fig. 15 provides both

a general view of the total delay incurred for the whole instantiation, as well as the time

spent for each individual step, i.e., Service Embedding, Physical Resource Allocation,

Test-bed Stitching, Service Deployment, and Monitoring Activation. Delay is expressed

7
https://wiki.emulab.net/wiki/UtahHardware

44

as a function of the number of the physical Nodes deployed at the CloudLab Utah

testbed. We report the results across five runs.

(a) Core cloud nodes (b) Edge cloud nodes

Figure 15: Deployment time of CDN service.

Fig. 15(a) and 15(b) indicate that the less time-consuming steps are Service Embed-

ding, Test-bed Stitching and Monitoring Activation. Service Embedding, in particular, is

almost fixed at around 30 secs in the case of core cloud nodes, and at around 35−40

secs in edge clouds. We discern that this step does not yield any scalability limitation,

at least in the scale of our experimental setup, since it refines the experiment input to

further details regarding the requested physical resources and the service deployment.

The Test-bed Stitching step ranges from almost 20− 120 secs and 25− 130 secs, for

core and edge cloud nodes, respectively. This step along with the monitoring increase

linearly with the number of nodes. The Monitoring Activation starts at 16 sec and

reaches almost 100 secs (Fig. 15(a)), whilst it ranges from 21 to 133 secs in Fig. 15(b).

These results show slightly higher delays when edge cloud nodes are allocated for the

east-end segment.

On the other hand, the Physical Resource Allocation and the Service Deployment

steps are the most time-consuming. Resource allocation involves the servers’ boot-up

time, which entails the prolongation of the total deployment time. However, in case of

the core cloud nodes, the resource allocation requires as much as 74% of deployment

time when Nodes = 5, which significantly decreases at 30% when Nodes = 30. The

45

(a) Core cloud nodes (b) Edge cloud nodes

Figure 16: Network stitching time.

corresponding percentages range from 69− 37% in case of edge cloud nodes. This

decrease is due to the fact that the time remains almost stable with the increase of the

nodes. In contrast to this observation, the delay incurred for Service Deployment in-

creases with the number of nodes. As a result, service deployment attributes 14−40%

and 16−38% (in respect to the number of nodes) of the total experiment deployment

time when core and edge cloud nodes are employed, respectively.

In Figs. 16(a) and 16(b), we further elaborate on the time required for Test-bed

Stitching. As described in subsection 2.11.1.1, the 5G-CDN platform configures con-

nectivity both inside the segments, and between the two geographically remote seg-

ments, as well. In these figures, the light dark and grey areas correspond to the intra-

and inter-domain network configuration, respectively. According to these plots, intra-

domain network setup incurs longer delays compared to the inter-domain network

configuration, irrespective of the type of cloud nodes. This stems from the fact that

in Test-bed stitching, physical node configuration takes place sequentially, whereas in

the intra-domain case configurations are applied to a larger number of nodes (com-

pared to inter-domain).

Finally, the exact delay values along with the standard deviations are reported for

clarity reasons in Tables 1 and 2.

46

Table 1: Standard deviation of deployment time for core cloud nodes

Step SD (σ) in sec
Nodes

5 10 15 20 25 30

Monitoring Activation
Time 16.07 31.83 43.25 57.48 82.44 102.34

SD 1.51 2.87 0.06 0.11 5.92 1.02

Service Deployment
Time 80.56 158.19 235.86 312.97 391.61 469.95

SD 0.24 0.93 1.19 1.65 1.33 0.76

Intra-domain network configuration
Time 12.01 24.06 31.04 41.22 62.32 78.59

SD 1.54 3.18 0.09 0.04 6.06 0.97

Inter-domain network configuration
Time 8.84 13.28 10.67 13.05 30.15 39.64

SD 2.75 4.54 0.14 0.43 8.34 0.24

Physical Resource Allocation
Time 426.91 434.49 428.50 419.09 442.61 453.93

SD 5.04 10.88 0.52 28.84 4.44 17.18

Service Embedding
Time 31.31 37.79 30.02 32.83 29.17 32.56

SD 3.06 10.08 2.28 3.90 1.51 1.96

Table 2: Standard deviation of deployment time for edge cloud nodes

Step SD (σ) in sec
Nodes

5 10 15 20 25 30

Monitoring Activation
Time 21.57 44.91 69.43 86.74 111.19 133.74

SD 1.9 2.43 2.22 2.37 1.98 5.84

Service Deployment
Time 89.41 178.49 262.38 346.66 420.19 508.21

SD 3.18 4.92 10.77 11.12 3.01 7.81

Intra-domain network configuration
Time 15.24 29.91 45.04 62.72 74.99 90.85

SD 2.63 0.66 0.35 2.36 1.17 2.44

Inter-domain network configuration
Time 9.07 17.07 23.23 28.72 34.96 41.03

SD 2.81 0.59 0.72 0.85 0.22 0.55

Physical Resource Allocation
Time 379.73 406.53 488.59 512.8 508.44 497.95

SD 26.83 35.22 29.65 10.99 1.36 30.13

Service Embedding
Time 34.36 30.33 32.4 36.19 39.54 45.44

SD 5.05 4.54 4.66 10.36 8.44 19.66

2.11.2 Dynamic resource discovery for scalable CDNs

In this experiment, we validate the capabilities of our dynamic resource discovery

mechanism to discover and allocate the appropriate resources for large-scale CDN de-

ployments, over six different test-beds participating in the Fed4FIRE+ federation [23]:

(i) w-iLab2, Virtual Wall 1 (VWall1), Virtual Wall 2 (VWall2) and Grid5000 test-beds,

which are located in Europe; (ii) CloudLab test-beds in Utah (ClabUtah) and Wisconsin

(CLabWisconsin), i.e., located in the USA and (iii) our local test-bed resources. This

is particularly essential, since for example, when clients’ interest for media content

47

suddenly increases, new VMs should be deployed to deliver the content; however, the

decision for their placement should be tailored to the available resources.

Practically, the Slice Resource Controller component of the 5G-CDN platform dy-

namically discovers the appropriate resources and exposes their specifications in re-

spect to the search criteria related to the memory, number of cores, disk storage and

NIC bandwidth information. To retrieve in real-time the status of resources, e.g., the

available RAM, the Resource Abstraction Layer (RAL) is equipped with a Python Trans-

lator, which is responsible to directly communicate with the corresponding test-bed

control interface (e.g., jFed CLI) and translate the response message into a uniform

format. In practice, we maintain a local representation of the resources in JSON

format. This treatment of the resources’ features is critical because Fed4FIRE+ rep-

resents their resources through Resource Specifications (called RSPECs), but not in

a uniform manner throughout the test-beds, e.g., the resources may have incomplete

details or present different attributes.

We organize our experimental evaluation in three series of trials (i.e., the first two

with quantitative and the third with qualitative results) to evaluate the feasibility of

conducting scalable CDNs experiments on the aforementioned infrastructure. We

gradually increase the specifications of the resources demanding in each series of

trials.

2.11.2.1 Experimental Results

In the first set of results, we illustrate the span of the available resources that can

be utilized once the resource discovery process has been completed. Fig. 17 presents

the outcome of the SRC discovery process, for physical resources, satisfying specific

memory, CPU, disk storage and NIC bandwidth criteria, on the different aforemen-

tioned test-beds. Hardware that simply matches these criteria and resources that

are actually available during the discovery process is depicted in different color. The

data plotted in Fig. 17(a)-17(d) provide information necessary for SO VM placement

decisions. Additionally, such information also assists in experiment setup, indicating

test-beds that can act as core clouds, since they contain high-end resources, and

48

(a) Memory

(b) Number of cores

(c) Disk storage

low-end resource test-beds that could operate as edge-clouds.

In the second set of results, we further validate the overall functionality of our

dynamic resource discovery mechanism. We utilize coarse-grained queries, where we

49

(d) NIC specifications

Figure 17: Resource discovery results in different testbeds

adjust the resources’ request by increasing the number of physical nodes within a

VE, the latter annotated with a single resource specification, i.e., the memory size

(RAM). In addition, we carry out fine-grained queries for alternative solutions, which

are differentiated not only according to the number of the requested test-beds (T=[2,4])

and the VEs number per test-bed (VEs/T=[1,3]), but also in respect to the ability to

define multiple resource specification per VEs (i.e., RAM, disk storage and bandwidth

capabilities).

Coarse-grained queries provide the results of Fig. 18(a), where the number of alter-

native solutions decreases as the requested nodes per VEs increases. Such behaviour

is expected, as the number of providers (i.e., test beds), that can accommodate the

VEs decreases. Note that the number of VEs plays a significant role in the solutions,

since it allows for more combinations of providers (i.e., alternatives) to be generated.

Similar results deduce from fine-grained queries as depicted in Fig. 18(b). It is notable

that resource requests with a high number of VEs and an increased set of resource

requirements lead to a sharp decrease in the number of alternative solutions. This is

attributed to the fact that very few test-beds can accommodate resource-demanding

VEs.

It is important to emphasize again that, the curves in both graphs of Fig. 18 exhibit

similar trend in the sense that the number of alternative solutions decreases as the

50

(a) One resource requirement (b) Three resource requirement

Figure 18: Number of alternative solutions with different resource requirement per

VEs.

demand for requested nodes increases. Even with the increase in the number of the

test-beds to be involved in the experiment setup, which theoretically provides more

alternative combinations, the number of possible solutions drops significantly from

20 requested nodes per VEs onwards. Finally, as also expected, strict requirements

for resources (three specifications instead of one) further decrease the number of

alternative solutions.

A final experiment in relevance to the dynamic resource discovery aims to demon-

strate the allocation of a CDNs experiment setup across multiple test-beds, where the

test-beds act either as core or edge cloud providers. We generate a resource request

that demands any four available different geographically test-beds, each hosting two

VEs. Each VEs has diverse resource demands, reflecting their role in the whole CDN

setup, i.e., higher demands for the core cloud resources and lower demands for the

edge cloud resources. Tables 3 and 4 summarize the different resource requirements

according to the test-bed role as a core or edge cloud provider. Obviously, the resource

requirements for an edge cloud test-bed are less demanding compared to that of a core

cloud.

The outcome of this experiment provides the nine alternative solutions depicted in

Table 5. Since the request did not define any geographic constraints regarding the VEs,

51

Table 3: Resource requirements for a test-bed to host a core server

Core Servers have higher resource demands

Test-bed(location:’undefined’,

[’VE_1’([

’available-nodes’>=2,’memory-gb’>64,

’min-storage-gb’> 250,’nics-bw’> 2]),

’VE_2’([

’available-nodes’>=1,’memory-gb’>=128,

’min-storage-gb’>=500,’nics-bw’>=5])

])

Table 4: Resource requirements for a test-bed to host an edge server

Edge Servers have low resource demands

Test-bed(location:’undefined’,

[’VE_1’([

’available-nodes’>=1,’memory-gb’>=8,

’min-storage-gb’>= 80,’nics-bw’>= 1]),

’VE_2’([

’available-nodes’>=1,’memory-gb’>=8,

’min-storage-gb’>=80,’nics-bw’>=1])

])

52

Table 5: Alternative solutions

Test-bed 1 Test-bed 2 Test-bed 3 Test-bed 4

Grid5000 CLabUtah CLabWisconsin VWall2

Grid5000 CLabUtah VWall1 VWall2

Grid5000 CLabUtah w-iLab2 VWall2

Grid5000 CLabWisconsin CLabUtah VWall2

Grid5000 CLabWisconsin VWall1 VWall2

Grid5000 CLabWisconsin w-iLab2 VWall2

Grid5000 VWall1 CLabUtah VWall2

Grid5000 VWall1 CLabWisconsin VWall2

Grid5000 VWall1 w-iLab2 VWall2

the resource discovery mechanism generated all possible combinations, distributing

VEs between Europe (Grid5000, w-iLab2, VWall1 VWall2) and USA (CLabUtah CLab-

Wisconsin). This demonstrates that such a loosely coupled resource discovery model

can manage a diverse set of geographically distributed test-beds (i.e., infrastructure

providers).

2.11.3 Heterogeneity on E2E slicing

In this class of results, we demonstrate the functionality of the 5G-CDN platform

in the 5G multi-domain E2E slicing context, while focusing on the exploitation of

the Unikernel technology as a means of implementing lightweight VMs, which are

called Micro-Content Proxies (MCP), and highlight flexibility, scalability, and content

provision under virtualization and hardware heterogeneity.

2.11.3.1 Experimentation Setup

Three different test-beds are utilized through the bottom layer of the Multi Domain

Experiment Engine, namely: (i) the Virtual Wall 2 (VWall2) test-bed which is part of the

Fed4FIRE+ federation and located in Europe; (ii) the Cloudlab Utah (CLUtah) test-bed,

in Utah, USA; and, (iii) our local UOM test-bed in Greece, Europe. We build multi-

domain E2E slices on top of these pieces of hardware considering two clusters of

nodes, as illustrated in Fig. 19. The first east-end cluster contains six physical nodes

53

Figure 19: Abstract view of the E2E slicing in our experiment

– always part of the UOM test-bed – which five out of the six nodes emulate the clients’

behaviour initiating media service requests. The second west-end cluster consists of

six physical servers, five to host the MCPs. In both clusters, the extra physical node

(i.e., 6th) serves as an edge router. By allocating the west-end cluster in different

test-beds, we obtain experimental results for geographically distributed slices, e.g.,

UOM-UOM, UOM-VWall2 and UOM-CLUtah slices. To make the above infrastructure

available for our experiments, the SRC performs dynamic resource discovery and

exposes specifications, such as the memory, number of cores, disk storage and NIC

information of hardware found.

Apart from hardware, heterogeneity in our experimental setup is also reflected in

the RAL, where different lightweight virtualization technologies are offered, namely

ClickOS [34], Rump Kernel [35] and MirageOS [33]. Fig. 19 depicts an instant of such

VMs placement in the MCPs’ side (west-end cluster) orchestrated by the SO Caching

Optimizer mechanism.

2.11.3.2 Experimental Results

We organize our experiment in two scenarios to demonstrate different aspects of

heterogeneity: (i) the diversity in hardware types (i.e., nodes) as well as on test-beds’

54

geographic location; and (ii) the diversity in lightweight virtualization technology and

the content size being delivered as a response to the Web clients’ requests.

In the first set of results (i.e., Fig. 20 and Fig. 21), we evaluate the performance

of MCPs hosting and launching data of 8 MB size, in terms of clients’ connection

time (i.e., the time elapsed between sending a media service request and receiving

the first response byte), download time (i.e., the time required for downloading to be

completed), network throughput (i.e., the ratio of the amount of data downloaded to the

download time) and CPU utilization. We conducted the same experiment three times

assigning the west-end cluster to different, gradually geographic isolated test-bed, i.e.,

UOM, VWall2 and CLUtah, while each running uses either ClickOS or Rump Kernel

as virtualization technology.

Fig. 20(a) and 20(b), we validate the communication performance, as expected the

geographically remote test-beds deteriorates users’ experience. Indicatively, clients’

connection time is roughly 10 msec for requests being served locally, 75 msec in the

Greece-to-Europe slice and 200 msec in the Greece-to-USA slice. The ‘‘geographical’’

distance is also reflected in the data download time which ranges from 0.1 sec to 32 sec.

Obviously, for a fixed data size of 8 MB, lower download time entails higher network

throughput, which is illustrated in Fig. 20(c). Regarding the Unikernels’ technology,

we observe deviation in the performance due to differential implementation approach

for each unikernel. We notice that Rump Kernel outperforms ClickOS in download

time and network throughput, while they exhibit similar performance in respect to the

clients’ connection time.

Clients’ connection time is influenced among others by the CPU utilization in phys-

ical servers which is evaluated with respect to the virtualization technology used in the

MPCs. Results of Fig. 21, in particular, show that Rump Kernel technology utilizes

more CPU resources than ClickOS, especially in the case that the end-device has a low

resource pool. In detail, the CPU usage for low (i.e., Mpc), medium (i.e., pcgen03-p1)

and high (i.e., d430) resource pool for ClickOS is 0.89%, 0.03% and 0.01%, respec-

tively, while in case of Rump Kernel is 1,11%, 0.03% and 0,02%, correspondingly.

Such results provide us with insights that could nourish our estimations regarding

55

UOM VWall2 CLUtah

Testbeds

0

50

100

150

200

250

C
on

ne
ct

io
n

Ti
m

e
(m

se
c)

Rump Kernel

ClickOS

(a) Clients’ connection time

UOM VWall2 CLUtah

Testbeds

10-1

100

101

102

D
ow

nl
oa

d
Ti

m
e

(s
ec

)

Rump Kernel

ClickOS

(b) Clients’ download time

UOM VWall2 CLUtah

Testbeds

10-1

100

101

102

N
et

w
or

k
Th

ro
ug

hp
ut

 (M
B

/s
)

Rump Kernel

ClickOS

(c) Network throughput

Figure 20: Communication performance with different Unikernel technologies in E2E

slices

56

Figure 21: CPU utilization with different Unikernel technologies and node types.

1MB 2MB 4MB 8MB

Data size

0

50

100

150

200

250

300

D
o

w
n

lo
a

d
 T

im
e

 (
m

se
c)

ClickOS

Rump Kernel

MirageOS

(a) Clients’ download time

1MB 2MB 4MB 8MB

Data size

0

1

2

3

4

5

N
e

tw
o

rk
 T

h
ro

u
g

h
p

u
t

(B
yt

e
s/

s)

×107

ClickOS

Rump Kernel

MirageOS

(b) Network throughput

Figure 22: The different unikernel technologies are evaluated in line with the content

size (MB)

the CPU usage percentage being consumed by each client.

In the second set of results, we further elaborate on VMs technology in Fig. 22,

where we test the performance of ClickOS, Rump Kernel and MirageOS technologies

assuming that both MCPs and clients reside on the UOM test-bed and the MCPs serve

data of 1,2,4 and 8 MB. Our results show that the download time (Fig. 22(a)) and net-

work throughput (Fig. 22(b)) are straightly associated with the data size, independently

57

0 10 20 30 40 50 60

Time (min)

0

100

200

300

400

500

600

700

800

900

1000

D
ow

nl
oa

d
T

im
e

(m
se

c)

OWF
Quantity
Random

Figure 23: The placement algorithms’ performance

of the Unikernel technology used, while Rump Kernel outperforms other technologies

in respect to both metrics, especially for high data volumes. This outcome could lead

to a VM placement strategy selecting the Rump Kernel technology, when data size is

augmented. However, such behavior requires further investigation as we assess more

thoroughly in chapter 3.

2.11.4 Modular service orchestration

Our last outcome demonstrates in real-time an example of a modular service orches-

tration mechanism available in our platform. We consider a similar experimentation

setup as described 2.11.3.1 and deploy RumpKernel technology. More precisely, it

is a preliminary result depicting the performance of three placement algorithms the

OWF (i.e., as described in subsection 2.5.1.2), quantity and random, in respect to the

download time experienced by the end-users.

Once the RO informs the SO for a pool of available resources, a placement algo-

rithm (part of the Caching Optimizer) should decide to deploy additional MCPs on the

allocated resources. Obviously, the random and quantity choice cannot perform better

compared to one that takes into account real-time CPU, RAM and network utilization

measurements (i.e., RT and TT) already running on the candidate resources (Fig. 23).

However, it is required to extend our experiment analysis to define and consider fur-

58

ther realistic parameters in order to formulate a more sophisticated optimization al-

gorithm for the resource allocation problem, including investigating it under stress

conditions and multiple infrastructure providers, as we present in chapter 4.

2.12 Conclusions

In this chapter, we introduce two relevant edge cloud orchestration facilities, namely

the UNIC and 5G-CDN, along with relevant experimental results highlighting the ben-

efits of utilizing virtualization technologies, motivated by the unique requirements of

the 5G networks evolution.

The UNIC is a novel experimentation platform, that orchestrates both cloud and

network aspects and supports heterogeneous lightweight virtualization in the network

edge. Our use case scenarios of elastic content distribution and IoT measurements’

collection as well as the experimental results demonstrate the above two aspects and

its full system operation. Furthermore, the 5G-CDN platform, a novel experimenta-

tion facility for large-scale, multi-domain E2E slicing, focuses on the next-generation

Content Delivery Networks (CDNs), a paradigm for hosting and launching M&E ser-

vices. It is an evolution of UNIC solution and built on top of the Fed4FIRE+, to enable

aspects such as: (i) large-scale experimentation with unikernel-based technologies,

utilizing multiple geographically distant facilities focus on the feasibility of multi-

domain slice deployment; (ii) dynamic resource discovery and allocation for flexible

CDN experimentation, while validating the proposed facility and highlight the mag-

nitude of the solution space for the complete slice offerings; (iii) end-to-end network

slicing over multiple infrastructure providers utilizing heterogeneous hardware and

virtualization resources; and (iv) novel media service orchestration mechanisms for

content-popularity detection, resource allocation and load balancing.

59

3 A Comparative Evaluation of Edge Cloud Virtualiza-

tion Technologies

3.1 Introduction

5G networks and beyond (5GB) [75] are being characterized by significant network

performance and capacity advantages, especially at the radio level. They devised a

promising agenda targeting new applications that enable a radical transformation of

vertical sectors, including manufacture, media & entertainment, health, energy and

automotive industry. Such services should adhere to stringent requirements, e.g.,

ultra-low delay or high throughput, scalable operation, and increased adaptability to

dynamic contexts, in terms of service needs or resource availability. In other words,

there is a need for systemic adaptations of 5GB ecosystems towards these goals.

For example, virtual resources contribute significantly to end-to-end (E2E) service

performance. Indicatively, for a 50ms E2E delay documented in paper [76] on 5G

networks, radio and transport aspects caused the 17% of delay, while cloud dimension

the 83%.

Along these lines, edge cloud computing is an important enabling technology for

5GB ecosystems, bringing computation close to end-users to improve service per-

formance, reliability and data privacy of users. Thus, how to properly exploit the

available computing substrate is a major concern for network operators with respect

to the overall network and service management. Several aspects can be considered

to take informed decisions for the usage of this infrastructure. Clearly, the perfor-

mance improvement that can be obtained from using distinct compute facilities, the

availability of resources as the services become deployed, the need for elasticity to

accommodate a variety of application requirements (as anticipated in 5G), as well as

the particular virtualization solutions that can be put in place to account for all of

this.

For instance, large-scale service deployments usually serve a vast amount of users

spread throughout the globe, which require the involvement of edge cloud resources in

60

many different places. However, it is challenging to deploy resources near every user,

consequently, there is a need for optimized cloud facilities not only towards particular

performance requirements, but also mitigating a potential limited resource availability.

Such infrastructures should be able to mobilize any available deployment, even with

alternative server configurations, as well as network or virtualization technologies.

Given the fact that user demands or application requirements may be dynamic,

edge clouds should also support a quick deployment or removal of virtual resources,

implementing horizontal and vertical elasticity processes, i.e., adapting the service

deployment and cloud resources to these requirements [16], respectively. For ex-

ample, legacy cloud deployments may be using inefficient virtualization technologies,

including traditional virtual machines (VMs), that face slow times for deployment,

downloading or scaling up of virtual resources.

There is an on-going effort towards adopting lightweight virtualization approaches

for edge clouds, such as containers [13] and unikernels [14]. For example, the Eu-

ropean 5G-PPP initiative investigates alternative container and unikernel approaches

to be used for edge computing [12]. In our experience, different container builds or

unikernel flavors exhibit diverse performance capabilities. For example, containers

can achieve a robust operation, while unikernels have rapid manipulation capabili-

ties, e.g., they can boot up just in ms, even with a TCP SYN or DNS lookup request

packet [15].

We argue that there is no single best virtualization solution for edge clouds, but

the choice depends on the particular requirements, suggesting that the selection of

the most appropriate approach should become an important overall management and

operation task. Furthermore, a number of papers (e.g., [77], [78]) perform comparative

evaluations of different virtualization technologies, but, in our understanding, none

considers all basic tasks of edge cloud deployments, including the elasticity of service

nodes and physical resources, as well as a service operation.

61

3.2 Contributions and Chapter Organization

3.2.1 Contributions

In this chapter, we conduct a systematic experimental evaluation of alternative con-

tainer and unikernel builds of exemplary web services towards improving performance

and adaptability of edge clouds. We bring a number of novelties, including on:

• introducing a novel edge cloud experimentation environment, supporting load

prediction and balancing, horizontal and vertical elasticity, as well as common

abstractions and APIs over heterogeneous virtual resources;

• providing an extensive experimentation analysis of different lightweight virtual-

ization options for edge clouds, considering all basic edge cloud processes (i.e.,

resource allocation, removal, service operation, horizontal and vertical elasticity

actions).

• presenting basic design guidelines of edge cloud orchestration systems, backed by

our results and highlighted through a relevant conceptual facility that supports

container and unikernel-based virtualization technologies as well as alternative

service node implementations, while exploiting their diverse performance char-

acteristics.

Our experimentation exercise was challenging, since it required the implemen-

tation of a complete edge cloud orchestration solution that supports heterogeneous

virtualization choices, including the production-ready containers and alternative ex-

perimental implementations of unikernel flavors, often with bugs and instabilities.

We require coding in many environments, i.e., C, Python, NodeJS, OCaml, the imple-

mentation of a bespoke DNS server, as well as a number of non-trivial OS, network,

hypervisor and test-bed configurations.

3.2.2 Chapter Organization

The remainder of the Chapter is organized as follows. Section 3.3 provides an overview

of the related investigations. Section 3.4 details our experimentation environment.

62

Section 3.5 elaborates on our methodological approach and its relevant assumptions.

Section 3.6 provides our experimentation analysis and produced insights, focusing

on the deployment, removal, operation and elasticity of edge cloud resources and ser-

vices. Section 3.7 provides basic design guidelines for a novel edge cloud orchestration

system that benefits from our findings. Finally, Section 3.8 concludes the chapter.

3.3 Related Works

Next-generation services call for network and cloud paradigms that enable ultra-low

latency or high-throughput communication and bring elasticity in the service opera-

tion. For example, a number of approaches particularly focus on speeding-up packet

processing, including the novel in-kernel proposals of extended Berkeley Packet Filter

(eBPF) and Xpress Data Path (XDP) [79]. Furthermore, the edge cloud infrastructure

StarlingX
8

targets at achieving ultra-low latency of network services through opera-

ting on top of real-time linux, employing Time-Sensitive Networking [80] capabilities.

Regarding the cloud viewpoint, 5G networks are gradually employing virtualization

[81] and edge cloud technologies [82], as well as the microservice paradigm [83].

However, edge clouds may be associated with limited resource availability or dynamic

service demands or network conditions, highlighting the need for flexible, lightweight

virtualization technologies [12] at the edge, being efficiently orchestrated.

The main candidates for lightweight virtualization in edge clouds are containers

and unikernels. Containers (e.g., Docker [31] or LXC [32]) are standardized units

implementing application packaging with all of its dependencies, providing robust

performance and adaptability to dynamic application requirements. Unikernels [14]

(e.g., MirageOS [33], ClickOS [34], RumpKernel [35], or OSv [36]) are single-purpose

appliances specialized at compile-time into standalone kernels, characterized by very

low resource usage and rapid deployment capabilities, even at the range of ms [15].

Several studies conduct performance comparisons of alternative lightweight vir-

tualization options, being suitable for edge cloud deployments. An overview of such

works is shown in Table 6, highlighting the aspects being evaluated (i.e., on service

8
http://www.starlingx.io/

63

Table 6: Related works comparing alternative virtualization technologies that are

suitable for edge cloud environments

Edge Cloud Aspects Service

Type

Number

of con-

sidered

con-

tainer

tech-

nologies

Number

of con-

sidered

uniker-

nel tech-

nologies

Alternative

flavors of

the same

applica-

tion

Service Operation Elasticity or Fault-tolerance

Server

Resource-

efficiency

Service

Perfor-

mance

Resource

Allocation

Time

Resource

Removal

Time

Server

Resource-

efficiency

Impact

Service

perfor-

mance

Impact

[84] X Web-

service &

Database

2 2

[77]
X X Web-

service &

Database

1 1

[85] X X Firewall 1 1

[86] X X DNS &

Web-

service

2

[87] X X HPC 1 1 3

[78] X X Web-

service &

Database

1 4 2

[88] X Virtual

Entity

Instanti-

ation

1 1

[89] X Network

Memory

Server

2 1

[90] X X X Firewall 1 1

[91] X X X Web-

service

2 1

Ours X X X X X X Web-

service

1 3 2

operation and elasticity / fault-tolerance behavior), the considered services, as well as

the numbers and types of contrasted virtualization options.

As enlisted in the Table 6, a number of considered works (i.e., [77] -[87]) assess

the performance of alternative lightweight virtualization technologies and focus on in-

vestigating service operation aspects only. For example, the comparative analysis [84]

focuses mainly on server resource-efficiency aspects (i.e., memory footprint and net-

work latency) and contrasts alternative unikernel flavors with containers hosting an

Nginx web-server or a Redis database. Most unikernel flavors perform at least equally

or better than containers, especially in cases that require the transfer of unikernel or

container images.

64

Other proposals consider both server resource-efficiency and service performance.

Paper [77] compares KVM VMs, RumpKernel unikernels and docker containers host-

ing an Apache web-server or a Redis database with different numbers and sizes of

requests. According to their results, containers achieve the best performance, in

terms of communication delay and server resource utilization. Proposal [85] evaluates

the performance of a unikernel-based firewall service against corresponding container

and Linux-based solutions, concluding that the first option achieves a higher number

of TCP requests served per second and a lower network latency. Similarly, paper [86]

compares the network performance (i.e., requests served per second and latency) of

unikernels against linux-based solutions offering both DNS and web-based services.

Furthermore, paper [87] evaluates the performance of unikernels versus contai-

ners for the same REST service, implemented in Java, Go, and Python. This study

measures memory consumption and execution / response times and concludes that

unikernels perform at least equally or outmatch the corresponding containers, how-

ever, the former consumes significantly more memory compared to the latter. Along

the same lines, the authors of [78] compare the HTTP and database access perfor-

mance of OSv, RumpKernel, MirageOS, and IncludeOS unikernels as well as docker

containers, reporting a higher request rate in the case of containers, but a lower

latency when employing unikernels.

A number of proposals consider aspects of elasticity or fault-tolerance processes.

In [88], the authors compare KVM-based VMs, Docker containers and OSv-based

unikernels in an OpenStack cloud platform, documenting that OSv outperforms the

other virtualization technologies in terms of service provisioning time. A Vehicle Ad-

Hoc Network realizing a service migration scenario and utilizing KVM-based VMs, both

LXD and docker containers, as well as OSv-based unikernels is considered in [89]. The

same work assesses the alternative virtualization options in terms of allocation time

of a simple Network Memory Server and demonstrate the lower service allocation time

of the unikernel option.

In our understanding, two of the related works consider both service operation

and elasticity, however taking into account only the resource allocation aspect of the

65

latter. In [90], the authors conduct a performance comparison between unikernel and

container based implementations of a firewall, in the context of a fault-tolerance sce-

nario, reporting that containers exhibit the best network performance (i.e., in terms

of latency and throughput) and service instantiation time. Paper [91] compares a

traditional VM with alternative container technologies and a unikernel-based imple-

mentation, all hosting a web-service. The last option achieves the lower boot-up times

and higher network throughput, while the container option the best CPU and memory

consumption efficiency.

As we see in Table 6, all the aforementioned studies consider one or two virtua-

lized network services (or application functions) with the web-service being the most

commonly used, since it may represent a number of REST-based services. We also

observe that almost all of them investigate containers, mostly docker, while three of

them (i.e., [84], [89] and [91]) consider alternative container virtualization technologies.

Furthermore, papers [78], [86] and [84] assess different unikernel flavors, while works

[78] and [87] consider multiple implementations of the same application.

In summary, the relevant papers provide comparative evaluations of alternative

lightweight virtualization technologies with respect to service operation and/or as-

surance aspects. However, our approach is the only one that considers all of these

aspects, including virtualized service deployment and removal times, as well as the

impact of elasticity processes on server resource-efficiency and service performance.

In contrast to the related works, our analysis (i) clearly targets the specific context

of edge clouds; (ii) focuses on all basic relevant service and cloud operations; (iii)

considers containers, multiple unikernel flavors and implementations of the same

service; and (iv) targets to identify the performance trade-offs of alternative lightweight

virtualization options, so they can be appropriately tuned, even by mixing multiple

technologies.

3.4 Edge Cloud Experimentation Environment

Here, we detail our experimentation infrastructure, including its basic components

and interactions.

66

Client Node

Benchmarking
tools

Client Node

Benchmarking
tools

Client Node

Benchmarking
tools

Client Node

Benchmarking
tools

Client Node

Benchmarking
tools

Edge Node

Client Node

URL Request and IP
Response

Content Request and
Response

Centralized Node Centralized
Node

Service
Repository

Caching
Optimizer

Service O
rch

e
strato

r

API

Orchestration and
Experiment Control

DNS-based
Load Balancer

Prediction
Mechanism

Experiment
Controller

. . .

Ed
ge Service O

p
erato

r

Uniform Abstraction Layer

Monitoring

Ed
ge

 N
o

d
e

API

Virtualization
technology Specific
Operations

Virtualization
technology Specific
Operations

Virtualization
technology Specific
Operations

Virtualization
technology Specific
Operations

Heterogeneous Edge Cloud Resources

Ed
ge Service O

p
erato

r

Uniform Abstraction Layer

Monitoring

Ed
ge

 N
o

d
e

API

Virtualization
technology Specific
Operations

Virtualization
technology Specific
Operations

Virtualization
technology Specific
Operations

Virtualization
technology Specific
Operations

Heterogeneous Edge Cloud Resources

Figure 24: Experimentation environment

Our edge cloud experimentation environment is investigating the proposed edge

cloud paradigm and its core design requirements, while demonstrating the following

novelties: (i) implements all basic edge cloud operations, including the deployment, re-

moval and operation of virtualized web-based services; (ii) realizes web load prediction

and balancing, as well as both horizontal and vertical elasticity; (iii) employs hetero-

geneous lightweight virtualization technologies as well as different implementations of

particular applications to realize adaptability of real deployments in various circum-

stances, e.g., rapid changes in users requesting content or resource availability; and

(iv) is extendable to support new services, virtualization technologies, orchestration

workflows and corresponding mechanisms.

Our experimentation facility (i.e., Fig. 24) comprises of three node clusters: the

centralized (i.e., purple colored), the edge (i.e., blue colored), and the client nodes (i.e.,

green colored), all residing at our SWN test-bed [56]. We detail the three parts of our

infrastructure and their basic components below, as well as their basic interactions.

The centralized node accommodates the Service Orchestrator, the Experiment Con-

troller and the Service Repository. The Service Orchestrator is implemented in Node-

67

RED [22], a modular programmable environment utilizing a browser-based flow editor.

As shown in the top of Fig. 24, it comprises of three standalone components: (i) the

DNS-based Load Balancer; (ii) the Prediction Mechanism; and (iii) the Caching Opti-

mizer. A brief presentation of these components follows:

• The DNS-based Load Balancer realizes load balancing over heterogeneous vir-

tual resources, i.e., assigns client requests to particular servers, in a round-robin

fashion. It supports heterogeneous virtual resources through different IP sub-

nets. For simplicity, the URL indicates the content requested and the type of

virtual resource. It maintains a list of active nodes serving content in coop-

eration with the Caching Optimizer, i.e., the latter provides notifications on all

additions or removals of virtual resources. DNS-based Load Balancer is also

tracking the content requests over fixed time intervals, i.e., 30 sec, in our case.

Such information is the input of the Prediction Mechanism.

• The Prediction Mechanism utilizes the client requests’ status from the previous

component to predict the forthcoming load, based on historical information it

maintains. Currently, we support two alternative load prediction mechanisms,

the Exponential Moving Average (EMA) and the Seasonal Autoregressive Inte-

grated Moving Average (SARIMA) [92]. EMA considers the recent measurements

as more significant and its formula is: EMAt =
2

n+1 ∗ Rt + (n−1
n+1) ∗ EMAt−1 (Rt

expresses the current requests’ value). SARIMA extends ARIMA to consider sea-

sonal trends, defined as SARIMA(p,d,q)(P,D,Q)m, where the parameters in the

first (i.e., p, d, q) and the second set of brackets (i.e., P, D, Q) indicate the trend

and seasonal parameters (i.e., autoregression, difference, and moving average

orders), respectively. The mechanisms are implemented as NodeRED modules,

so it is straightforward to introduce new models, however this work is not focus-

ing on prediction aspects.

• The Caching Optimizer is responsible for controlling the virtual resources, in-

cluding determining the quantity and location of resources to be deployed or

removed, depending on the input of Prediction Mechanism. In our experimental

68

analysis, we assume that each VM or container can serve up to a fixed number of

requests. Consequently, the number of resources to be deployed or removed is

calculated from the Caching Optimizer based on the estimation of the upcoming

content requests and the total existing capability of the edge nodes to handle

the web load, i.e., by subtracting the latter from the former and then dividing

the result by the above fixed number. In case the result is negative or positive, a

scale up or down event is triggered, respectively. The Caching Optimizer decides

to deploy new service entities to the servers with the lowest number or remove

existing ones from the nodes with the maximum number of entities, i.e., due

to the homogeneous hardware of our test-bed servers. However, the Caching

Optimizer receives not only the status of virtual entities but also recent resource

allocation monitoring information from all nodes, which could be the basis for

more sophisticated placement mechanisms. In case of a new deployment, it first

confirms that the new virtual resource is up and running (i.e., through the Edge

Service Operator) and then communicates the new IP address to the DNS-based

Load Balancer. Whenever it removes an existing resource, it first notifies the

latter, so no new users request content, waits for existing communication to

complete, and then removes the particular virtual entity.

The centralized node also accommodates the Experiment Controller and the Service

Repository. The former component utilizes custom scripts specifying the configuration

of experiments (i.e., initiates cloud resources and client requests) and collecting the

results from both client and edge nodes through the API interface. The latter stores,

locates and communicates both unikernel and container images based on a common

Service Repository API for heterogeneous virtual resources. It is built on top of a private

Docker repository and a custom script handling unikernel images. The repository is

utilized whenever a horizontal elasticity event is triggered, i.e., virtual resources are

being deployed in new edge nodes, otherwise images are already hosted by the latter.

The second part of our facility contains the edge nodes’ cluster. Each edge node

is equipped with an Edge Service Operator and a Monitoring component. The former

is a standalone software entity being responsible for the manipulation and configu-

69

Elasticity Workflow

Client Node

Centralized Node

Service Orchestrator Edge Node

User Device DNS-based Load Balancer Prediction Mechanism Caching Optimizer Service Repository Edge Service Operator Monitoring

Client requests

Status of client requests

Load prediction

Estimate resource demands

Decision

Scale up

 Check image availability

Request service image

Download service image

Execute and verify resource allocation process

Update system and new resource configurations

Scale down

Execute and verify resource removal process

Update system configuration for resource removal

Update status of resources

loop

loop

alt [Under-provisioned resources]

[Over-provisioned resources]

alt [Image not detected locally]

[Image detected locally]

loop

Figure 25: Elasticity workflow

ration of edge cloud resources. It uses a uniform abstraction layer that hides the

heterogeneity of virtualization resources. For example, the Service Orchestrator com-

municates general requests to deploy virtual resources to the Edge Service Operator,

which in turn performs the following tasks: (i) locates corresponding virtualization-

technology-specific APIs; (ii) identifies the location, i.e., being local or remote, and the

details of required images; (iii) allocates the particular resources and assigns IPs to

them; (iv) confirms the completion of deployment through a frequent polling process

by requesting a tiny-sized content (i.e., every 0.1 sec); and (v) notifies the DNS-based

Load Balancer upon the completion of the operational task through the API. Finally,

the Monitoring component collects real-time data information about the physical and

virtual resources in terms of resource availability and the status of edge cloud virtual

resources.

The last part of our experimentation environment consists of the client nodes ho-

sting our benchmarking tools, a custom multi-threaded workload generator tool being

responsible for emulating the clients’ behavior as well as assessing their performance

with different metrics.

70

In Fig. 24, we also highlight the basic connectivity among the components of

the experimentation facility. The centralized node communicates with both edge and

client nodes through the API interface for orchestration, monitoring information and

experimentation control processes, e.g., the implementation of elasticity events or

changes in the configuration of the experiment.

For example, message exchange sequence diagram of Fig. 25 illustrates the inter-

actions between the platform components for the realization of an elasticity process.

In this workflow, DNS-based Load Balancer keeps track and notifies the Prediction

Mechanism for the status of content requests, which in turn may request a scale up

or down event from the Caching Optimizer, i.e., through an Edge Service Operator. The

latter component downloads the required service image from the Service Repository,

in the case it is not available locally, and then boots up and verifies a correspond-

ing resource allocation or removal process. The elasticity event completes with the

necessary configurations. Lastly, the Monitoring component informs periodically the

Caching Optimizer for the status of cloud resources.

In the next section, we proceed describing our methodological approach.

3.5 Methodology and Assumptions

Here, we detail our methodological approach and provide the relevant assumptions,

including on the considered service and virtualization technologies, networking as-

pects, as well as on the metrics used and the statistical evaluation of our results.

In our investigation, we consider a service that resembles a content delivery plat-

form (e.g., distributing videos, music or other content) or a microservice / network

service that hosts a local database and transmits messages via a REST interface. For

simplicity, we deploy web servers able to transmit content or messages of different

sizes. We also assume that content is embedded in the VMs or containers, so content

size impacts relevant image sizes. Web servers are typically used from microservices

and are also supported by all virtualization approaches, e.g., even from unikernel fla-

vors at their early implementation stages, consequently serving as a good basis for

our comparisons.

71

Table 7: Image sizes of different virtualized services

Content C_Nginx C_Flask ClickOS RumpKernel MirageOS

1MB 22.5MB 85.2MB 6.2MB 34MB 13.4MB

5MB 26.5MB 89.2MB 9.4MB 37.8MB 16.7MB

10MB 31.5MB 94.2MB 14.6MB 42.6MB 20.6MB

20MB 41.5MB 104MB 24.5MB 52.1MB 26MB

Currently, the edge nodes support three common unikernel options, i.e., ClickOS,

RumpKernel, and MirageOS. We integrate Nginx web servers to the first two, due to its

relative simplicity, high-performance and minimalistic size. We use a simple OCaml-

based web server for MirageOS, since it does not support Nginx. Furthermore, we build

two lightweight Docker container images, the one hosting an Nginx web server and the

other the Flask Python web framework, i.e., to be able to assess also the impact of web

server type, marked as C_Nginx and C_Flask, respectively. Table 7 illustrates the VMs

and containers’ image sizes we utilize in our experiments, concerning the particular

content cache sizes. In our experiments, all unikernel and container technologies are

resource-limited to one vCPU and 256MB of RAM. We also set the maximum number

of content requests served by all virtualization technologies as 20.

We are currently assuming content requests equally spread among client nodes

based on particular patterns and organized in periodic batches. Due to space con-

straints, we leave a more thorough study on the impact of different user patterns

on the performance of the proposed paradigm as a future work, since the current

assumption suffices to highlight the particular novelties identified in this chapter.

We implement E2E communication between client and edge nodes, which spans

over both physical and virtual networks. Each client retrieves content after looking up

the particular URL through the DNS-based Load Balancer, which connects the client

to an appropriate virtual server node. The E2E path is configured through static

routes generated by a bespoke script and the virtual network is implemented through

both XEN and Docker bridging. For better performance, we disable the Spanning Tree

Protocol (STP) in the virtual network bridges. We also configure all network interfaces

with the traffic control (tc) tool to align the network configuration with the scale of our

72

Table 8: Association of considered metrics with related works’ categorization criteria

Edge Cloud Aspects

Service Operation Elasticity or Fault-tolerance

Metrics Server

Resource-

efficiency

Service Per-

formance

Resource

Allocation

Resource

Removal

Server

Impact

Service

Impact

Resource Allo-

cation Time

X

Resource Re-

moval Time

X

CPU Service

and Infrastruc-

ture Utilization

X

CPU Peak X X
Response Time X X
Download Time X X
Total Delivery

Time

X X

Network

Throughput

X

experiments.

Furthermore, we extract measurements from both client and edge nodes on ser-

vice fulfillment, service assurance and communication performance, as summarized

below:

• service fulfillment with the following metrics: (i) Resource Allocation Time is the

total duration, in seconds, required for the deployment of a VM or a container,

i.e., the amount of time from the Service Orchestrator triggering its deployment

until it is ready to serve content; and (ii) Resource Removal Time expressing the

time in seconds to remove a VM or container.

• the service assurance metrics apply here are: (i) CPU Service and Infrastructure

Utilization measuring the CPU utilization of VM or container providing the service

and of the edge node, respectively; and (ii) CPU Peak quantifying the highest

point in CPU utilization in the life-span of the corresponding task, i.e., focusing

on worst-case CPU utilization.

• communication performance with the metrics: (i) Response Time expressing the

time, in seconds, pass from the client request to the receipt of the first byte

73

of the response; (ii) Download Time representing the total duration, in seconds,

required for the transfer of content to the client; (iii) Total Delivery Time reflecting

the aggregation of Response with Download Time; and (iv) Network Throughput

which is the ratio of transmitted data to download time, in MB/s;

Service fulfillment and assurance performance metrics are tightly associate with

the service lifecycle that ensures utilizing the necessary resources and maintaining

service quality, i.e., also reflected in the communication performance, focusing on the

content delivery aspect, in our case. We use a different categorization for the metrics

from the considered edge cloud operations, since some metrics are used to assess

more than one operation. For clarity, in Table 8 we associate the considered metrics

with the categorization criteria of our related works investigation, as presented in

Table 6.

Finally, we evaluate our results’ statistical accuracy by executing each experiment

for an indicated number of times that produces low standard deviations between the

replicated runs. All provided figures represent the average values over these runs

as histogram plots. For simplicity, we provide the upper bounds of the associated

standard deviations, whilst in particular cases, i.e., further supporting the statistical

accuracy of our findings, we illustrate our results as box plots that provide supple-

mentary statistical information, such as mean, median, outliers, lower and upper

quartiles.

Next section provides our experimental analysis that is based on the presented

experimentation platform and the discussed methodology.

3.6 Experimentation Results

In this section, we validate the main concepts behind the proposed edge cloud paradigm,

including the utilization of lightweight and heterogeneous virtual resources, as well

as identify strategies for efficient resource allocation and service performance. Our

analysis is organized into three scenarios covering essential edge cloud processes: (i)

the Deployment and Demobilization scenario assessing the deployment and removal

of diverse virtualized service entities; (ii) the Service Operation scenario quantifying

74

the content delivery performance of alternative unikernel flavors, containers and web

server technologies; and (iii) the Elasticity scenario considering a complete elasticity

workflow that involves the prediction of client demands and a proactive strategy de-

ploying content at the edge cloud. We measure service assurance in all scenarios,

service fulfillment in the first one and communication performance in the other two.

Our results and produced insights follow.

3.6.1 Scenario 1: Deployment and Demobilization

In the first scenario, we assess the individual performance characteristics of diverse

virtualization and web server technologies during their deployment or removal, while

ranging content size from 1 to 20MB, i.e., impacting VM or container image sizes.

We deploy and remove one virtual resource at a time and wait for 3 minutes between

different deployments, i.e., to cool off the CPU. We validate the statistical accuracy of

our results by replicating each experiment 30 times.

The scenario includes the following two groups of results on (i) vertical involvement

of cloud resources, assuming the existence of unikernel or container images for the

service provisioning, at allocated physical servers; and (ii) horizontal involvement of

cloud resources, representing the outcome of a horizontal elasticity process allocating

new physical resources that should also download service images from the Service

Repository, residing at the centralized node, i.e., assuming that new resources are

available instantly. The resource allocation and removal processes concern the booting

up or removal of both corresponding virtual entities and web servers.

In the case of vertical involvement of cloud resources (i.e., Fig. 26), ClickOS outper-

forms other approaches in terms of Resource Allocation Time, succeeded by C_Nginx

(i.e., Fig. 26(a)). For example, ClickOS, in the best case (i.e., of 1MB), can be de-

ployed 4.6 times faster than MirageOS, while in the worst case (i.e., of 20MB) achieves

around 15% lower Resource Allocation Time from C_Nginx. The improvement ratio of

ClickOS is slightly canceled as the content size increases, besides the comparison with

RumpKernel. In all circumstances, MirageOS faces the worst performance, however,

associated with the most efficient CPU utilization (i.e, Fig. 26(b)). We also notice that

75

1.11 1.23
1.43

1.65

2.06
2.44

2.93

3.62

5.11 5.11 5.13 5.14

1.84 1.82 1.80 1.90

2.74 2.79 2.89 2.94

1MB 5MB 10MB 20MB
0

1

2

3

4

5

6

7

8
ClickOS RumpKernel MirageOS C_Nginx C_Flask

Size (MB)

R
es

ou
rc

e
A

llo
ca

tio
n

Ti
m

e
(s

ec
)

(a) Resource Allocation Time

7.82

8.82
9.46 9.54

8.07 8.08 7.83

10.44

4.61 4.92
5.66 5.73

12.55 12.40 12.43
12.97

10.69
10.27

10.98 11.18

1MB 5MB 10MB 20MB
0

2

4

6

8

10

12

14

16

18
ClickOS RumpKernel MirageOS C_Nginx C_Flask

Size (MB)

C
P

U
 P

ea
k

(%
)

(b) CPU Peak during resource allocation

0.01 0.01 0.01 0.010.01 0.01 0.01 0.010.01 0.01 0.01 0.01

1.02 1.02 1.02 1.02

11.07 11.07 11.07 11.07

1MB 5MB 10MB 20MB
0

2

4

6

8

10

12

14
ClickOS RumpKernel MirageOS C_Nginx C_Flask

Size (MB)

R
es

ou
rc

e
R

em
ov

al
 T

im
e

(s
ec

)

(c) Resource Removal Time

1MB 5MB 10MB 20MB
0

1

2

3

4

5

6

7

8

9

10
ClickOS RumpKernel MirageOS C_Nginx C_Flask

Size (MB)

C
P

U
 P

ea
k

(%
)

(d) CPU Peak during resource removal

Figure 26: Service fulfillment of alternative virtualized services - vertical involvement

of cloud resources

Resource Allocation Time of MirageOS is not affected by content size. The lowest CPU

Peak value of MirageOS can be justified from its prolonged boot time. We also see in

Fig. 26(b) a CPU Peak difference between unikernels and containers ranging between

1% and 8%, in favor of unikernels. MirageOS and ClickOS have an almost steady

increase of CPU Peak per content size increment, while in the other options appears

a more fluctuated behavior. The standard deviation between the runs regarding the

Resource Allocation Time and CPU Peak does not exceed the value of 0.19 and 0.36,

respectively in all cases.

In Fig. 26(c), we depict the Resource Removal Time with an equivalent experiment

to the above. We see that such metric is not influenced by the content size, in all vir-

tualization and web server options. Furthermore, all unikernel flavors can be removed

at almost zero time, highlighting their significant performance advantages in scaling

down processes. Fig. 26(d) illustrates as a box plot the associated CPU Peak values

76

with the resource removal process. We observe a few outlier values, mostly in the case

of ClickOS, and mean / median values that are roughly similar. The results appear

symmetrically distributed in all virtualization options, where MirageOS prevails with

lower CPU Peak values for 5 to 20MB content sizes. Complementary, we observe that

unikernels are approximately characterized by 1% to 4% lower mean CPU Peak values,

compared to container options, mainly caused by their more lightweight processes.

1MB 5MB 10MB 20MB
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14
ClickOS RumpKernel MirageOS C_Nginx C_Flask

Size (MB)

R
es

ou
rc

e
A

llo
ca

tio
n

Ti
m

e
(s

ec
)

(a) Resource Allocation Time

9.33 10.71 11.79
14.2315.50 16.89 16.42

21.21

8.46 8.82 9.80 10.30

39.96 40.92 42.19
44.54

67.55
69.56 70.94 71.72

1MB 5MB 10MB 20MB
0

10

20

30

40

50

60

70

80

90
ClickOS RumpKernel MirageOS C_Nginx C_Flask

Size (MB)

C
P

U
 P

ea
k

(%
)

(b) CPU Peak during resource allocation

0.01 0.01 0.01 0.010.01 0.01 0.01 0.010.01 0.01 0.01 0.01

1.59 1.60 1.59 1.60

11.84 11.84 11.84 11.82

1MB 5MB 10MB 20MB
0

2

4

6

8

10

12

14
ClickOS RumpKernel MirageOS C_Nginx C_Flask

Size (MB)

R
es

ou
rc

e
R

em
ov

al
 T

im
e

(s
ec

)

(c) Resource Removal Time

4.65 4.61 4.53 4.554.33 4.34 4.52 4.634.47 4.56 4.48 4.38

10.38 10.37 10.27

10.85

8.11

7.37
7.82

8.96

1MB 5MB 10MB 20MB
0

2

4

6

8

10

12

14
ClickOS RumpKernel MirageOS C_Nginx C_Flask

Size (MB)

C
P

U
 P

ea
k

(%
)

(d) CPU Peak during resource removal

Figure 27: Service fulfillment of alternative virtualized services - horizontal involve-

ment of cloud resources

Regarding the horizontal involvement of cloud resources, we observe that ClickOS

achieves overally the best performance for all content sizes, in terms of Resource

Allocation Time (Fig. 27(a)). For example, ClickOS is characterized by a 3.7 times

lower boot-up time compared to C_Flask, in the best case (i.e., with 1MB content),

while RumpKernel attains close results (i.e., the 91%) with a 10MB content size. We

also notice a symmetrical distribution of results with ClickOS being associated with

a higher variability (i.e., with 1 and 5 MB content), i.e., reflected in a inter-quartile

77

range around 2. We also notice a steady improvement ratio reduction with the gradual

increase of content size, i.e., when comparing ClickOS with all other solutions besides

Rumpkernel. The standard deviations of results on Resource Allocation Time do not

exceed value 0.92.

Furthermore, as shown in Fig 27(b), MirageOS contributes to a lower CPU Peak, in

each case. This can be justified again due to the prolonged booting up time of Mira-

geOS. Additionally, the high CPU Peak of C_Flask may be attributed to its large image

size. We also observe that unikernels are more resource-efficient than containers in

terms of CPU utilization, as reflected in their at least 20% lower CPU Peak values. This

difference is much higher than the case of vertical involvement of resources and is at-

tributed to the CPU consumption required for the image downloading process. We also

notice an almost steady increase in CPU Peak with content size, for all virtualization

cases. The standard deviation of CPU Peak values ranges from 0.6 to 1.5.

Here, we see that VM or container image download time impacts these results,

gradually canceling the advantages of tiny VM sizes (or virtualization solutions with

rapid boot up times) as content size increases, i.e., with content that is either embed-

ded or downloaded together with the images.

As we show in Fig. 27, the Resource Removal Time has an almost identical behav-

ior as in Fig. 26(c), highlighting once more the significant performance advantages of

unikernels in scaling down processes. Furthermore, RumpKernel is characterized by

the lowest CPU Peak value (i.e., Fig. 27(d)) for removing resources with lower-sized

content, while MirageOS slightly outperforms RumpKernel for larger-sized content.

We also note that all unikernel options have equivalent CPU Peak values, which are

independent of the content size, while CPU Peak in containers marginally oscillates.

Complementary, we observe that unikernels achieve up to 6% lower CPU Peak val-

ues compared to containers. This could be attributed to the different shutting down

processes between Docker and XEN, rather than to the content size. In overall, the

standard deviations of Resource Removal Time and CPU Peak do not exceed the values

of 0.01 and 1.1, respectively.

Here, we summarize our findings from the first scenario: (i) both unikernel and

78

container-based options can be quickly manipulated in the context of a vertical in-

volvement of cloud resources, with ClickOS achieving the best resource allocation time

(i.e., at least 15% lower in contrast to C_Nginx); (ii) unikernel options consume around

1% to 8% less CPU resources during their deployment compared to containers, with

MirageOS consuming at least 3% and 6% lower CPU resources in contrast to other

unikernel flavors and containers, respectively; (iii) for horizontal elasticity allocation

processes, the required image downloading brings further advantages to unikernels

with respect to containers, in terms of CPU Peak and Resource Allocation Time, due

to their tiny sizes, e.g., MirageOS achieves an at least 31% lower CPU Peak value

and ClickOS boots-up at least 1.35 times faster from C_Nginx, respectively, however

these are gradually canceled with the content size; (iv) in both vertical and horizontal

involvement of cloud resources all unikernel options can be instantly removed, i.e., in

0.01 sec, independently of the content size, while achieve up to 6% lower CPU Peak

values compared to containers.

3.6.2 Scenario 2: Service Operation

In the second scenario, we evaluate the operation of the assumed content delivery ser-

vice in terms of resource efficiency and performance with all considered virtualization

and web server options, despite MirageOS. We omit the latter for two reasons: it did

not perform well in the previous scenario and it faced stability issues. We also range

the content sizes from 1 to 20MB. 10 replications of the runs sufficed for statistically

accurate results. In the case of Response and Download Times, we calculate their

standard deviation among different batches rather than of individual client requests,

since they exhibit relatively high fluctuations due to the network. All metrics have an

equivalent behavior for 5MB, 10MB and 20MB content.

In Fig. 28, we observe that, in general, C_Flask outperforms other approaches

in terms of Total Delivery Time, succeeding by ClickOS, RumpKernel, and C_Nginx.

The same performance order is detected in the majority of cases, i.e., between 10 to

30 clients and for content sizes 5, 10 and 20MB. In the same figure, we notice an

almost steady increase of Total Delivery Time with the number of client requests. For

79

File Edit View Object Shape Tools Panels Help Install xro

1 5 10 15 20 25 30
Number of Clients

0

5

10

15

20

25

30

35

40

45

0.12 0.21 0.09 0.11 0.11 0.49 0.15 0.15 0.17 0.74 0.28 0.21 0.55 0.89 0.48 0.30 0.80 1.08 0.51 0.31 0.95 1.12 0.50 0.35 1.06 1.20 0.65 0.40

ClickOS
RumpKernel
C_Nginx
C_Flask

To
ta

l D
el

iv
er

y
Ti

m
e

(s
ec

)

Elements

SVG Group Group

(a) Clients’ Total Delivery Time with content size

1MB

File Edit View Object Shape Tools Panels Help Install xro

1 5 10 15 20 25 30
Number of Clients

0

5

10

15

20

25

30

35

40

45

To
ta

l D
el

iv
er

y
Ti

m
e

(s
ec

)

0.44
1.29

2.68
3.89

5.63
7.03

8.71

0.74
1.65

2.65
4.18

5.59
7.21

8.769.18

0.42 1.15
2.64

4.53
6.02

7.69

0.45 0.89 1.67
2.70

3.74
4.69

5.60

ClickOS
RumpKernel
C_Nginx
C_Flask

Elements

SVG Group Group

(b) Clients’ Total Delivery Time with content size

5MB

File Edit View Object Shape Tools Panels Help Install xro

1 5 10 15 20 25 30
Number of Clients

0

5

10

15

20

25

30

35

40

45

To
ta

l D
el

iv
er

y
Ti

m
e

(s
ec

)

2.79

5.64

9.02

12.2

15.3

18.2

2.65

5.87

9.14

12.6

16.0

19.1

2.67

6.26

9.87

13.2

16.4

19.6

1.99
3.98

6.01
8.02

10.0
12.0

0.861.06 0.84 0.88

ClickOS
RumpKernel
C_Nginx
C_Flask

Elements

SVG Group Group

(c) Clients’ Total Delivery Time with content size

10MB

File Edit View Object Shape Tools Panels Help Install xro

1 5 10 15 20 25 30
Number of Clients

0

5

10

15

20

25

30

35

40

45

2.79

5.64

9.02

12.2

15.3

18.2

2.65

5.87

9.14

12.6

16.0

19.1

2.67

6.26

9.87

13.2

16.4

19.6

3.98
6.01

8.02
10.0

12.0

0.861.06 0.84 0.88

ClickOS
RumpKernel
C_Nginx
C_Flask

1 5 10 15 20 25 30
Number of Clients

0

5

10

15

20

25

30

35

40

45

To
ta

l D
el

iv
er

y
Ti

m
e

(s
ec

)

37.8

1.71

12.5

19.2

25.4

31.7

1.80

6.41

13.0

20.0

26.8

33.5

1.68

6.65

13.5

20.7

27.2

33.9

1.71

4.50

8.60

12.6

16.6

20.7

24.8

6.31

40.5 40.6

ClickOS
RumpKernel
C_Nginx
C_Flask

Elements

SVG Group Group Group

(d) Clients’ Total Delivery Time with content size

20MB

Figure 28: Communication performance - Total Delivery Time as Response (light

colored) plus Download Time (dark colored)

example, such increments for 5MB to 10MB or 10MB to 20MB range from 1.4 to 2.4

times, for all approaches.

From an analysis of Total Delivery Time and its constituting Response and Down-

load Times, we see that: (i) Response Time is independent of content size and the

number of client requests for ClickOS, RumpKernel and C_Nginx, which does not ex-

ceed value 0.06 sec; and (ii) C_Flask Response Time increases with content size and

the number of client requests, but with an almost non-fluctuating behavior regarding

Download Time, which is not the case in the other solutions. This attitude can be

justified by the different approaches of Nginx and Flask web servers in terms of re-

quests’ handling. Practically, we use the simplistic web server integrated with Flask,

which struggles to handle all client requests (i.e., also reflected a high CPU Peak value,

as shown in Fig. 30), however leading to a better Download Time because it desyn-

chronizes the parallel web requests. The standard deviation values for Download and

80

1 5 10 15 20 25 30
0

2

4

6

8

10

12

14
ClickOS RumpKernel C_Nginx C_Flask

Number of Clients

N
et

w
or

k
Th

ro
ug

hp
ut

 (M
B

/s
)

(a) Clients’ Network Throughput with content size

1MB

1 5 10 15 20 25 30

Number of Clients

0

2

4

6

8

10

12

N
e
tw

o
rk

T
h
ro

u
g

h
p

u
t
(M

B
/s

)

11.18

 5.33

 2.61

 1.81

 1.24
 0.94

 0.71

8.99

4.57

2.63

1.59
1.15

0.86 0.68

11.68

 5.46

 2.17

 1.20
 0.89 0.71 0.58

11.02

 7.00

 4.00

 2.76

 2.17
 1.85

 1.63

ClickOS

RumpKernel

C_Nginx

C_Flask

(b) Clients’ Network Throughput with content size 5MB

1 5 10 15 20 25 30

Number of Clients

0

2

4

6

8

10

12

N
e
tw

o
rk

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

11.55

 4.55

 2.10

 1.29
 0.94

 0.73 0.62

10.36

4.98

 2.11

 1.22
 0.86

 0.66 0.55

11.79

 4.22

 1.69

 1.05
 0.78 0.63 0.53

11.33

 6.06

 3.59

 2.67

 2.18
 1.84

 1.63

ClickOS

RumpKernel

C_Nginx

C_Flask

(c) Clients’ Network Throughput with content size

10MB

11.68

3.58

1.76

1.12
0.84 0.68 0.56

11.30

3.40

1.64

1.06
0.78 0.62 0.51

11.87

3.15

1.52

0.99
0.75 0.61 0.51

11.65

5.61

3.52

2.67
2.18

1.86
1.61

1 5 10 15 20 25 30
0

2

4

6

8

10

12

14
ClickOS RumpKernel C_Nginx C_Flask

Number of Clients

N
et

w
or

k
Th

ro
ug

hp
ut

 (M
B

/s
)

(d) Clients’ Network Throughput with content size

20MB

Figure 29: Communication performance - Throughput

Response Time range from 0.004 to 1.65 and 0.003 to 0.21, respectively, i.e., causing

borderline differences between the third and fourth-placed approaches only.

As depicted in Fig. 29, in the majority of runs, C_Flask achieves the higher Net-

work Throughput per client. We identify an almost resembled performance pattern

among Total Delivery time and Network Throughput, i.e., due to the significance of the

networking aspect in the considered application. The figure also indicates a decline

of Network Throughput with client requests’ number, but with higher fluctuations,

compared to Total Delivery Time’s, i.e., around 6% to 73% and 9% to 69%, for C_Nginx

and ClickOS, respectively. The standard deviation of Network Throughput ranges from

0.07 to 3.83, but without impacting the above arguments.

In Fig. 30(a) and 30(d), we see that in most cases C_Nginx outmatches the other

solutions in terms of lowest CPU Peak, i.e., at least by 8% to 10%. However, in all

circumstances C_Flask faces the highest CPU Peak value and the greatest variability,

81

1 5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

45

50

55

60
ClickOS RumpKernel C_Nginx C_Flask

Number of Clients

C
P

U
 U

til
iz

at
io

n
(%

)

(a) CPU Peak utilization with content size 1MB

1 5 10 15 20 25 30

Number of Clients

0

5

10

15

20

25

30

35

40

45

50

C
P

U
U

ti
liz

a
ti
o
n

(%
)

1.80

9.89

16.9

19.1

22.7

24.8

31.3

4.79

13.9

23.3 23.4

25.4 24.9

27.8

1.42

5.89
7.14 7.43 7.48 7.29 6.88

13.5

34.0

48.2 48.6

51.2

48.9 48.9
ClickOS

RumpKernel

C_Nginx

C_Flask

(b) CPU Peak utilization with content size 5MB

1 5 10 15 20 25 30

Number of Clients

0

5

10

15

20

25

30

35

40

45

50

C
P

U
U

ti
liz

a
ti
o
n

(%
)

3.32

16.6

21.3

24.7

30.2 30.8

35.6

 6.80

24.6 24.4
26.2 26.7

29.2
30.1

2.27

6.48 6.98 7.39 7.15 7.05 7.32

25.3

44.4

48.8
47.8

48.8
50.2 50.3ClickOS

RumpKernel

C_Nginx

C_Flask

(c) CPU Peak utilization with content size 10MB

7.45

17.70

26.90

36.10

33.50

37.70

42.50

12.70

25.50 25.90

28.90

33.80 33.90

35.90

3.40

6.00
7.83 7.89 7.60 7.46 7.33

36.10

46.20

48.90 48.70
49.80

50.70 50.90

1 5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

45

50

55

60
ClickOS RumpKernel C_Nginx C_Flask

Number of Clients

C
P

U
 U

til
iz

at
io

n
(%

)

(d) CPU Peak utilization with content size 20MB

Figure 30: Service assurance - CPU Peak

highlighting that web service technology mattered more for CPU Peak than the vir-

tualization technology, since both C_Nginx and C_Flask use containers. We also see

a diverging behavior between unikernels and containers. For containers, CPU Peak

values are increased until a particular value and then fluctuate, approximately, 48%

to 50% and 7% to 8% for C_Flask and C_Nginx, respectively. Moreover, we see that

CPU Peak increases more rapidly with a lower number of requests, as content size

increases. Such attitude of C_Flask relates to its struggle to cope with high loads.

Regarding unikernels, there is an increasing trend in CPU Peak, i.e., its increase ratio

is gradually being reduced with the number of requests. The standard deviation of

CPU Peak fluctuates from 0.04 to 9.34, without affecting the performance differences

in each individual case.

We now summarize our findings as follows: (i) C_Flask achieves the best perfor-

mance in terms of Total Delivery Time by distributing the content up to 3.4 times faster

and consuming 3.18 times more Network Throughput, compared to RumpKernel, but

82

it faces up to 40.7% higher CPU Peak values, in contrast to ClickOS, which aspect is

important, especially for resource-constraint edge cloud deployments; (ii) ClickOS and

C_Nginx are descent options for the operation of considered content delivery service,

with the former being, in general, characterized by the best Total Delivery Time and

Network Throughput, while the latter by the lower CPU Peak values; (iii) unikernels,

compared to containers, have a more stable increasing of CPU utilization with clients’

number, e.g., offering better conditions for a relevant prediction algorithm; and (iv) the

web service technology used matters, especially for CPU resource consumption, with

a CPU Peak difference between C_Nginx and C_Flask reaching up to 43%, in favor of

the former.

3.6.3 Scenario 3: Elasticity

After evaluating the behavior of heterogeneous virtualized web-based service enti-

ties on the basic edge cloud processes of resource allocation, removal and opera-

tion, we now assess their performance in a complete cloud environment, i.e., in-

volving both core and cloud resources as well as scale up and scale down events

triggered from predicted demands. We reproduce a cycled user pattern in the form of

{100,100,100,100,100,100,100,20,20,20, ...}, assuming a periodic rapid shift on client

demands, alternating between high and low numbers of requests. Since the first

two scenarios revealed that C_Flask achieves the lower Total Delivery Time in service

operation but with a high CPU Peak and ClickOS very low Resource Allocation Time

and CPU Peak, it comes natural to utilize the former technology at the core cloud

and the latter at the edge. To evaluate the efficiency of this strategy, we contrast the

performance of this setting against an equivalent one with C_Flask instead of ClickOS.

In practical terms, the core cloud solely serves the users up to points with rapid

demand shifts. At these particular times, there is a rapid deployment of service nodes

at the edge cloud, which are removed when the demand drops. Such elasticity events

are guided from the assumption that each involved web server handles up to 20

requests, i.e., resources are being deployed for every 20 requests. For example, 100

clients should ideally utilize a C_Flask container at the core cloud and four edge nodes,

83

i.e., either with ClickOS or C_Flask. However, this depends on the accuracy of the

load prediction. The content size for the elasticity experiments is 5MB.

Our test environment assumes both an accurate and a moderate prediction me-

chanism, i.e., based on Seasonal Autoregressive Integrated Moving Average (SARIMA)

and Exponential Moving Average (EMA), respectively, so we also investigate the impact

of demand prediction accuracy on both service fulfillment and assurance.

Here, we do not focus on the prediction technology, rather than on its importance

in the studied context. For the same reason, SARIMA is selected as a model that

perfectly predicts the considered user pattern. According to our stepwise validation

scheme based on the root mean squared error (RMSE), the obtained parameters are

SARIMA(0,1,0)(0,1,0)10. The first user pattern cycle does not produce a response of

the system, since it is used for the training of prediction mechanisms. Finally, we

set parameter n equal to 3 in the EMA formula, i.e., takes into account the last three

inputs.

100 100 100 100 100 100 100 20 20 20

Number of Clients

0

2

4

6

8

10

12

T
o

ta
l
D

e
liv

e
ry

T
im

e
(s

e
c
)

9.39 9.45 9.38 9.37 9.42 9.40 9.38

1.84 1.83 1.91

9.32
9.10

2.44

1.12 1.09 1.14 1.13

0.31
0.47

0.78

9.36

2.42

1.82 1.77 1.72 1.79
1.65

0.40

0.78
1.08

Without Horizontal Elasticity

Core Cloud:C_Flask, Edge Cloud:C_Flask EMA

Core Cloud:C_Flask, Edge Cloud:ClickOS EMA

(a) Total Delivery Time with EMA-based load predic-

tion

100 100 100 100 100 100 100 20 20 20

Number of Clients

0

2

4

6

8

10

12

T
o

ta
l
D

e
liv

e
ry

T
im

e
(s

e
c
)

9.38 9.37 9.42 9.40 9.38

1.84 1.83 1.91

9.39 9.45

1.13 1.15 1.13 1.17 1.18

1.87 1.79 1.82

9.39

1.13

1.73 1.68 1.60
1.74 1.69 1.68

1.84 1.85 1.761.68

Without Horizontal Elasticity

Core Cloud:C_Flask, Edge Cloud:C_Flask Sarima

Core Cloud:C_Flask, Edge Cloud:ClickOS Sarima

(b) Total Delivery Time with SARIMA-based load pre-

diction

0

20

40

60

80

100

C
P

U
 U

ti
liz

a
ti
o

n
 (

%
)

Core Cloud:C_Flask

Edge Cloud:C_Flask

0 30 60 90 120 150 180 210 240 270 300

Time (sec)

0

20

40

60

80

100

C
P

U
 U

ti
liz

a
ti
o

n
 (

%
)

Core Cloud:C_Flask

Edge Cloud:ClickOS

100 100 100 100 100

Number of Clients

100 100 20 20 20

CPU Peak during resource allocation

CPU Peak during resource allocation

CPU Peak during resource removal

CPU Peak during resource removal

(c) CPU Infrastructure Utilization with EMA-based

load prediction

0

20

40

60

80

100

C
P

U
 U

ti
liz

a
ti
o

n
 (

%
)

Core Cloud:C_Flask

Edge Cloud:C_Flask

0 30 60 90 120 150 180 210 240 270

Time (sec)

0

20

40

60

80

100

C
P

U
 U

ti
liz

a
ti
o

n
 (

%
)

Core Cloud:C_Flask

Edge Cloud:ClickOS

20 100 100

CPU Peak during resource allocation

100 100

Number of Clients

100 100 100 20 20

CPU Peak during resource removal

CPU Peak during resource removal

CPU Peak during resource allocation

(d) CPU Infrastructure Utilization with SARIMA-

based load prediction

Figure 31: Horizontal elasticity with 100Mbps bandwidth for service orchestration

84

We have two sets of results, assuming both high (i.e., 100Mbps) and low (i.e.,

10Mbps) bandwidth between edge nodes and centralized node, i.e., to evaluate the

impact of network capabilities for service orchestration. Our goal is to assess both

adequate and limited network resources, for the scale of our experiment, so we can

get an indication whether the evolution of networking technology suffices (e.g., im-

proving bandwidth) or strategies like the proposed should complement the latter, for

the best outcome. In both cases, users request and download content over 200Mbps

connections.

For clarity purposes, we depict the CPU Infrastructure Utilization figures with (i)

indicative core and edge cloud nodes, since the visualization of all nodes produces a

complex outcome, because the orchestration processes are not perfectly synchronized

among the nodes; (ii) top and down subplots presenting the performance outcomes

when using C_Flask and ClickOS at the edge nodes, respectively; and (iii) the cycled

user pattern is visualized for one user batch sooner for SARIMA only (i.e., in Fig. 31(d)

and 32(d)), so the impact of accurate prediction on CPU Infrastructure Utilization can

be illustrated more clearly.

We start with the cluster of results assuming a high-bandwidth service orchestra-

tion. As expected, the involvement of edge cloud resources improves significantly the

Total Delivery Time, i.e., as shown in Fig. 31(a) and 31(b). In the same figures, we

observe that, independently of the load prediction strategy, ClickOS overally responds

more rapidly compared to C_Flask, however C_Flask outmatches ClickOS in terms of

Total Delivery Time, once the new edge cloud resources have been deployed. We also

notice that EMA, compared to SARIMA, leads to further delays in the response of the

system to the initial increased number of requests (switching from the 20 users of the

training cycle to the 100 users of the regular cycle), i.e., takes one more round of users

to respond. This first round is characterized by an equivalently high Total Delivery

Time for the three approaches, indicating zero deployed edge cloud resources. The

combination of accurate load prediction of SARIMA and rapid allocation capabilities

of ClickOS leads to a very low Total Delivery Time, for all cases. It takes for C_Flask

and SARIMA one round to respond to the high load, due to the less rapid resource

85

allocation of the former, compared to ClickOS. Fig. 31(a) also highlights that EMA

needs more rounds to predict load, leading to over-provisioning of resources in the

last three user rounds, due to the associated gradual demobilization of resources.

In Fig. 31(c) and 31(d), we notice the following: (i) ClickOS consumes less CPU

resources compared to C_Flask for both allocation (i.e., about 30% and 35% less

in EMA and SARIMA, respectively) and removal (i.e, 20% and 35% less in EMA and

SARIMA, respectively) of new resources, both in terms of CPU Peak and duration

of CPU involvement; (ii) EMA leads to a gradual response to the load changes, due

to its slow prediction, while SARIMA responds rapidly, i.e., the latter allocates and

removes resources almost 25 and 30 seconds sooner, corresponding to the first round

of responses in the system, respectively; and (iii) the over-provisioning of resources

due to inaccurate prediction from EMA is reflected to the lower CPU Infrastructure

Utilization of core cloud towards the end of the corresponding figure curve, i.e., after

the 210 sec of Fig. 31(c).

100 100 100 100 100 100 100 20 20 20

Number of Clients

0

2

4

6

8

10

12

T
o

ta
l
D

e
liv

e
ry

T
im

e
(s

e
c
)

9.39

1.91

9.29

0.45
0.76

9.26

0.54

1.04

9.45 9.35 9.33 9.38 9.35

2.40

9.37 9.32

1.67

9.42

3.52

1.67

9.40

1.10

1.66

9.38

1.09

1.66
1.84

0.28 0.31

1.83

Without Horizontal Elasticity

Core Cloud:C_Flask, Edge Cloud:C_Flask EMA

Core Cloud:C_Flask, Edge Cloud:ClickOS EMA

(a) Total Delivery Time with EMA-based load predic-

tion

100 100 100 100 100 100 100 20 20 20

Number of Clients

0

2

4

6

8

10

12

T
o

ta
l
D

e
liv

e
ry

T
im

e
(s

e
c
)

9.39 9.45 9.38 9.37 9.42 9.40 9.38

1.84 1.83 1.91

9.33 9.31 9.38 9.31

1.17 1.13 1.15

1.84 1.79 1.83

9.32

8.65

1.72 1.64
1.49 1.61 1.62

1.76 1.76 1.70

Without Horizontal Elasticity

Core Cloud:C_Flask, Edge Cloud:C_Flask Sarima

Core Cloud:C_Flask, Edge Cloud:ClickOS Sarima

(b) Total Delivery Time with SARIMA-based load pre-

diction

0

20

40

60

80

100

C
P

U
 U

ti
liz

a
ti
o

n
 (

%
)

Core Cloud:C_Flask

Edge Cloud:C_Flask

0 30 60 90 120 150 180 210 240 270 300

Time (sec)

0

20

40

60

80

100

C
P

U
 U

ti
liz

a
ti
o

n
 (

%
)

Core Cloud:C_Flask

Edge Cloud:ClickOS

100 100 100 100 100

Number of Clients

100 100 20 20 20

CPU Peak during resource allocation

CPU Peak during resource allocation

CPU Peak during resource removal

CPU Peak during resource removal

(c) CPU Infrastructure Utilization with EMA-based

load prediction

0

20

40

60

80

100

C
P

U
 U

ti
liz

a
ti
o

n
 (

%
)

Core Cloud:C_Flask

Edge Cloud:C_Flask

0 30 60 90 120 150 180 210 240 270

Time (sec)

0

20

40

60

80

100

C
P

U
 U

ti
liz

a
ti
o

n
 (

%
)

Core Cloud:C_Flask

Edge Cloud:ClickOS

20 100 100 100 100

Number of Clients

100 100 100 20 20

CPU Peak during resource removal

CPU Peak during resource allocation

CPU Peak during resource allocation

CPU Peak during resource removal

(d) CPU Infrastructure Utilization with SARIMA-

based load prediction

Figure 32: Horizontal elasticity with 10Mbps bandwidth for service orchestration

86

In the case of low bandwidth in service orchestration, there is an extension in image

downloading time for the allocation of new virtual resources during the required ver-

tical elasticity events, which is expected to impact the larger virtual entity sizes more.

This behavior is manifested in the content delivery, since ClickOS is now allocated

for the third user batch and C_Flask for the fifth, in the case of EMA (i.e., Fig. 32(a)).

However, the accurate load prediction of SARIMA impacts marginally ClickOS, since it

is ready to serve some users from the 2nd user batch (i.e., Fig. 32(b)). Consequently,

the rapid booting up and small image size of ClickOS lead to a partial mitigation of

performance issues caused by limited network resources in service orchestration.

An equivalent behavior can be seen in the CPU Infrastructure Utilization (i.e.,

Fig. 32(c) and 32(d)), where it takes more time for C_Flask to appear at the edge

cloud and serve users, i.e., boots up almost 75 and 65 sec after ClickOS is up, for EMA

and SARIMA, respectively. Such delay leads to an impact of around 30% to 40% on the

core cloud’s CPU Utilization, since resources are offloaded to the edge at a later stage.

Things are better for resource removal, since there is no need to download images.

Contrasting the impact of the two load prediction approaches on CPU Infrastructure

Utilization, SARIMA leads to both sooner resource allocation and removal.

We now summarize our findings from the third scenario: (i) unikernels bring signi-

ficant benefits in terms of responsiveness to rapid changes in the web load, e.g.,

ClickOS appears at the edge cloud and starts serving users up to 75 sec sooner

than C_Flask; (ii) ClickOS is characterized by up to 40% and 35% lower CPU Peak

values with respect to C_Flask, i.e., corresponding to the resource allocation and

removal processes, respectively; (iii) inaccurate load prediction may lead to both over-

provisioning or under-provisioning of resources, with SARIMA responding up to 25

and 30 sec earlier, in the respective instances of resource allocation and removal,

compared to EMA, but such issues are more severe with containers, i.e., the system

re-adjusts itself in a slower manner.

87

3.7 Design Guidelines for Edge Cloud Systems

The general deployment of computing facilities in telecom networks is introducing new

challenges on their management, control and operation. Apart from interaction and

integration with the underlying transport network [93], or the proper selection of the

compute environment for deploying a given service [94], there are additional aspects

of relevance to take into consideration, especially the possible virtualization approach

[12] to follow, according to the network and service circumstances. This is even more

evident with the general adoption of cloud-native approaches by different technological

paradigms, in support of virtualized services [81] - [83].

In this context, we build-up on our research results towards providing design

directions for 5G and beyond edge cloud infrastructures, which are aligned to the

conceptual edge cloud platform illustrated in Fig. 33. The latter operates over mul-

tiple edge cloud Points of Presences (Edge PoPs), as well as a core cloud deployment

(i.e., a next-generation central office - NGCO). A centralized orchestrator manages all

network, compute and storage resources as well as service nodes, through Edge PoP

managers that are deployed in every edge cloud. The traffic load is balanced between

the Edge PoPs through a load balancer controlled from the same orchestrator. The

platform supports alternative virtualization approaches and relevant packet process-

ing optimization mechanisms, as well as implementations of particular application

functions (AF) and virtual network functions (VNFs), i.e., exhibiting diverse perfor-

mance trade-offs. The orchestrator receives service requirements through a Northern

Interface (e.g., like in NECOS platform [95]), selects and configures the most appro-

priate virtualization technologies, mechanisms and service nodes, i.e., to deliver the

service with the expressed performance requirements.

As a bottom line, we envisage the following capabilities for our conceptual platform

and other relevant systems: (i) a virtual resource abstraction layer that supports mul-

tiple virtualization technologies and relevant features (e.g., containers and unikernels,

eBPF, XDP [79], etc.); (ii) abstract well-design APIs translating uniform primitives to

technology-specific compute and network control processes; (iii) intelligent optimiza-

tion mechanisms selecting and configuring the most suitable virtualization technolo-

88

U
n

ifo
rm

 A
P

I

Edge PoP Manager

NGCO

Heterogeneous Infrastructure

Edge PoP

Compute Storage Network

Edge PoP

Edge PoP

M
o

n
ito

rin
g

Service
Catalog

Technology-specific Interfaces

Uniform API

Virtual Resource Abstraction Layer
Local VNF/AF

Repository

Service Specification

Network Configuration
& Management

Service Management

Orchestrator

Load Balancer Global Picture

AI/ML Mechanisms

Figure 33: Conceptual edge cloud orchestration platform

gies and service nodes to particular service requirements and network conditions,

e.g., targeting ultra-low latency; (iv) novel Artificial Intelligence and Machine Learning

(AI/ML) capabilities enabling automation processes, including for fluid elasticity [72]

and efficient resource allocation, scaling, load balancing / workload assignment; (v)

a monitoring abstraction that provides a global picture to a centralized orchestrator,

i.e., of virtual resources, network conditions and client behavior, backed by accu-

rate prediction or rapid detection mechanisms; (vi) lightweight and high-performing

service orchestration processes and interactions of involved components, adaptable

to expressed service requirements; (vii) edge PoP managers being responsible for the

control of virtualized network and application functions in the edge infrastructures,

coordinated by the centralized orchestrator; (viii) local VNF/AF repositories hosting al-

ternative implementations of particular virtual network or application functions with

multiple virtualization technologies; and (ix) a service catalog enlisting available ser-

vices, along with a description of the deployment, operational and performance chara-

cteristics of their constituting virtual network and application functions.

89

3.8 Conclusions

In the context of this chapter, we conduct an extensive comparative evaluation of al-

ternative builds of virtualized exemplary web-services, involving both unikernels and

containers, and identify that each option is characterized by particular performance

trade-offs. Our experiments utilize a novel bespoke edge cloud experimentation infras-

tructure that considers virtualized service deployment, removal, operation, as well as

both vertical and horizontal elasticity processes. We consolidate the gained insights

from our realistic experiments and define a conceptual edge cloud orchestration plat-

form for 5G and beyond networks with its key design guidelines.

90

4 Virtualization Technology Shifting for Resource-Efficient

Edge Clouds

4.1 Introduction

5G networks and beyond (5GB) [75] are targeting services with challenging require-

ments (e.g., ultra-low latency, high throughput or for increased channel capacity),

such as holographic teleportation, extended reality, or ambient connectivity applica-

tions. The relevant research endeavours are mainly focusing on: (i) improved radio

spectrum efficiency and the utilization of higher frequency bands to meet stringent per-

formance requirements; (ii) a transformation of telecommunication network through

the virtualization of physical network functions, improving its deployment and config-

uration flexibility as well as reducing the associated capital expenditure (CAPEX); and

(iii) the employment of edge cloud deployments, bringing virtualized services and keep-

ing data closer to users, i.e., to improve service performance, reliability, and address

privacy issues.

In this context, orchestrating edge cloud resources is a complex and non-trivial

task. Internet services operating at large-scales depend on the efficient allocation of

server and network resources in many different locations. For example, edge cloud

resource availability in given areas may be unfeasible, limited or associated with in-

compatible virtualization technologies. Furthermore, such systems target mitigating

resource exhaustion conditions, data link and server failures, or sudden changes in

the workload behavior, as well as meeting particular service performance require-

ments. Existing orchestration strategies include the manipulation of duplicated vir-

tualized service nodes (i.e., horizontal elasticity), the allocation or removal of physical

resources (i.e., vertical elasticity), or service migration to more suitable cloud infras-

tructures, e.g., closer to users. Such processes may be time-consuming (e.g., the

allocation of new physical servers may take hundreds of seconds [96], [95]) or con-

strained by the performance capabilities of a particular virtualization technology. For

instance, legacy cloud deployments may be using traditional virtual machines (VMs),

91

that face slow times for deployment, downloading or scaling of virtual resources.

Applications should also be aligned to the evolution of 5GB ecosystems. The mi-

croservices paradigm [11] breaks down traditional software architectures to minimal,

single-purpose, communicating service functions or nodes, scaled towards bespoke

resource allocation and fault-tolerance. In the prior chapter 3, we propose that such

functions could be utilizing heterogeneous virtualization approaches [97], e.g., alter-

native container [13] and unikernel-based [14] implementations, since each virtualiza-

tion option is characterized by particular performance characteristics. For example,

the robustness of containers makes them suitable for the core cloud side, while the

rapid manipulation capabilities of unikernels for the edge, e.g., unikernels can boot up

in few ms [15]. Towards this direction, the European 5G-PPP initiative for 5G networks

is investigating the benefits of employing alternative container and unikernel-based

approaches for edge computing [83].

In the same chapter 3, we conducted an extensive comparative analysis [97] be-

tween different container and unikernel builds of exemplary web-services with respect

to basic edge cloud operations (e.g., resource allocation/removal, service operation

and elasticity), revealing that particular builds match the performance requirements

of given edge cloud operations or network conditions, in terms of resource allocation

efficiency and service performance.

Here, we argue that edge clouds mobilizing alternative virtualization technologies

is an attractive resource optimization strategy, since it can increase the range of

edge cloud deployments that can be utilized to better cover a large-scale service de-

ployment, as well as enrich the available resource control options for edge clouds,

i.e., mixing and matching alternative virtualized functions with challenging cloud re-

source optimization requirements. For example, in the case of a service that cannot

tolerate disruption, a rapid increase in the workload could be addressed from a quick

deployment of unikernels, even by sacrificing run-time performance.

92

4.2 Contributions and Chapter Organization

4.2.1 Contributions

In this chapter, our approach, called Virtualization Technology Shifting (VTS), targets

the 5G networks and beyond agenda through complementing their advanced radio

communication facilities with further improved end-to-end service performance based

on a better exploitation of the network edge, in terms of cloud resource utilization

efficiency. It augments existing cloud orchestration approaches with an additional

cloud resource control strategy, tuning the performance trade-offs characterizing the

virtualized application or network service functions.

The chapter contributes to the above vision through:

• introducing Virtualization Technology Shifting, a new cloud orchestration strategy

that exploits the diverse performance and resource demands of heterogeneous

virtualization technologies, as well as the corresponding service node builds,

to: (i) implement adaptability to dynamic network, service and cloud resource

utilization conditions; and (ii) address challenging application requirements;

• detailing a first VTS cloud resource optimization framework, as defined from an

optimization model and a corresponding system, being able to realize particular

performance goals over heterogeneous virtualization and hardware technologies,

distributed edge and core cloud deployments;

• providing an extensive set of simulations highlighting, from both service and

infrastructure viewpoints, (i) the impact of Virtualization Technology Shifting

against a typical edge cloud orchestration strategy (i.e., horizontal elasticity) uti-

lizing a single virtualization technology; and (ii) the efficient implementation of

particular performance goals for a given amount of network and cloud resources;

and

• giving an example integration of the proposed resource control strategy with a

typical Kubernetes-based edge cloud orchestration deployment.

93

4.2.2 Chapter Organization

The remainder of the chapter is organized as follows. Section 4.3 gives an overview of

the related investigations, in contrast to the novelties of the current work. Section 4.4

presents a system model of the introduced cloud paradigm. Section 4.5 details the

proposed VTS cloud resource allocation optimization model. Section 4.6 elaborates on

our methodological approach and its relevant assumptions. Section 4.7 provides our

evaluation results, quantifying the impact of proposed paradigm and model. Section

4.8 presents an example integration of our solution with a typical cloud orchestration

framework. Finally, Section 4.9 concludes the chapter.

4.3 Related Works

In this section, we discuss related works sharing common characteristics with our

proposal, including alternative cloud resource optimization and scaling strategies,

solutions adopting lightweight virtualization, and relevant optimization models.

Cloud resource optimization or autoscaling is typically involving horizontal / ver-

tical elasticity or virtualized service migration. For example, Kubernetes [98], the

most commonly used container orchestration framework, utilizes the Horizontal Pod

Autoscaling (HPA) and Cluster Autoscaler (CA) components autoscaling the number of

application replicas and server nodes, respectively.

HPA implements a control loop being periodically executed (i.e., its default period

is 15 sec). It drives a horizontal elasticity process that adjusts the number of service

node replicas according to the following equation: DesiredReplicas=d(CurrentReplicas∗
CurrentMetricValue
DesiredMetricValue). The DesiredReplicas, CurrentReplicas, CurrentMetricValue and Desired-

MetricValue parameters indicate the number of replicas after scaling, the currently

running replicas, the latest collected metric value and an average target metric value,

respectively.

On the other hand, CA checks periodically for unscheduled replicas, by default

every 10 sec. It implements a vertical elasticity process that increases the number

of nodes, when existing resources are exhausted and cannot host additional replicas.

The relevant autoscaling thresholds (e.g., DesiredMetricValue) in both HPA and CA are

94

fixed and configured according to context requirements.

A number of works adopt hybrid resource control strategies based on dynamic

autoscaling thresholds, e.g., adjusted to the incoming workload. For example, Libra

[99] and Copa [100] solutions propose hybrid autoscaling methods jointly employing

vertical and horizontal scaling procedures, both based on adaptable thresholds. Libra

[99] combines vertical and horizontal elasticity in consequent phases, while [100]

applies the two strategies simultaneously (i.e., in a single phase).

A small number of proposals are relevant to our work and introduce edge cloud

orchestration strategies based on dynamic shifting among alternative virtualized re-

sources or service nodes. For example, paper [101] introduces a novel cloud or-

chestration approach, called service shifting. It suggests that a network service can be

provided with alternative forwarding graphs, including a primary fully-fledged Virtual-

ized Network Function (VNF) graph and a sub-optimal secondary graph (i.e., including

only the essential network functions). Thus, the network service can be downgraded

from its primary to its secondary graph, in resource shortage conditions, while revert

back, whenever there is enough cloud resource availability. The authors conduct a

performance evaluation and elaborate on the benefits of integrating their approach in

5G networks, without focusing on a corresponding optimization framework.

The work [102] extends the service shifting concept and proposes a multi-flavored

Virtual Network Functions (VNFs) approach, suggesting that the network functions of

VNF graphs can also be provided with alternative less-demanding versions. It mixes

and matches different VNF flavors to particular requirements in contrast to single-

flavor deployments, in order for service providers to flexibly match multi-flavored

network service requests. The authors provide a relevant optimization model and

performance evaluation to analyze feasibility and potential benefits, while considering

time-efficiency of the model as a future work.

In contrast to the above solutions, we leverage the concept of Virtualization Tech-

nology Shifting to exploit the performance characteristics (e.g., trade-offs) of alternative

virtualization flavors through dynamically shifting among them, with respect to a given

resource availability and particular performance goals. We also tailor our solution to

95

common edge cloud operations (e.g., elasticity). For example, we may trade the robust

performance of containers for the quick deployment capabilities of unikernels, e.g.,

whenever there is an emergent need for new resources. Nevertheless, VTS and service

shifting approaches could also be combined, e.g., consider particular VNF graphs with

alternative lightweight virtualization options.

Furthermore, several other service or network orchestration solutions adopt light-

weight virtualization solutions (e.g., unikernel or container-based) due to the resource-

efficiency and rapid manipulation capabilities of the latter. These deployments tar-

get particular environments, e.g., Internet of Things (IoT), Content-Delivery Networks

(CDN) or 5G networks, such as: (i) PiCasso [103], an IoT infrastructure utilizing con-

tainers; (ii) FADES [104], an IoT facility, based on MirageOS unikernels [33], offloading

single-purpose functionalities from the core to the edge cloud; (iii) ECCO [105] deliver-

ing timely road context assessments to vehicles through MirageOS-based edge cloud

functions; (iv) Kubeedge [106] and K3S [107] offering IoT-specific container orchestra-

tion; (v) papers [46] and [47] investigating CDN deployments that utilize ClickOS [34]

unikernels as TCP proxies and content caches, respectively; and (vi) NGPaaS [108] and

Superfluidity [109] projects which introduce 5G platforms using ClickOS unikernels.

These papers confirm the choice of important 5G initiatives (e.g, [81], [83]) to

consider employing containers or unikernels in edge cloud deployments, as well as

highlight that there is no single virtualization solution that matches the requirements

of all applications or environments.

Moreover, chapter 2 introduces a novel elastic CDN infrastructure that utilizes

content caches based on MirageOS unikernels and change-point analysis for con-

tent popularity prediction (i.e., [72]). In the same chapter, we have proposed a CDN

platform that delivers content over 5G slices operating on top of the Fed4FIRE+ test-

bed infrastructure, while supporting heterogeneous unikernel-based technologies (i.e,

[110]).

In chapter 3, the above works inspired us to conduct a comparative evaluation

of alternative unikernel and container-based technologies, as well as implementa-

tions of application functions, to identify the particular performance trade-offs of each

96

combination [97], from the view-point of basic edge cloud operations (i.e., resource

manipulation, service operation and elasticity events). Along these lines, we argue

that heterogeneity of virtual resources can be exploited from a novel edge cloud or-

chestration platform, as a means to improve its flexibility and adaptability to diverse

network conditions and application requirements.

On the other hand, related papers introducing resource-allocation optimization

models and mechanisms mostly focus on a single virtualization technology (e.g., reg-

ular virtual machines or containers) and data centers, while recent works re-visited

the problem in the context of edge clouds.

In particular, these resource optimization approaches target (i) reducing CPU, RAM

or space consumption, such as [111]; (ii) improving Quality of Service (e.g., in terms

of service latency or response time), including [112], or (iii) achieving energy efficiency

through reducing the number of active server nodes [113]. Other works improve

resource efficiency through load balancing, achieving improved service performance,

server or network resource utilization, as well as a scalable operation, as identified in

survey paper [114].

Other related models or mechanisms focus on container-based data center deploy-

ments, including: (i) the resource allocation algorithm [115] minimizing the cost of

application deployment with respect to specific Quality of Service requirements, while

considering compute resource, network and energy consumption of each node; and

(ii) the EnLoB algorithm [116] that minimizes the overall energy consumption and

balances the load between active hosts.

Furthermore, recent resource-optimization proposals consider edge clouds. For

example, [117] proposes an auction-based mechanism for resource allocation that

guarantees the network latency in each task and maximizes the resource-allocation

efficiency for both service and edge infrastructure providers. In [118], the authors

experiment with two greedy algorithms that correspondingly aim at minimizing IoT

data request delay and cost of service deployment, based on a relevant lightweight

framework solution called FOGPLAN.

In comparison to these models, our cloud resource optimization framework ex-

97

hibits the following novel characteristics: (i) it is the first one considering Virtualiza-

tion Technology Shifting, our proposed edge cloud orchestration strategy that employs

multiple virtualization solutions; (ii) it maps users to alternative builds of service

nodes over distributed edge and core cloud infrastructures with heterogeneous hard-

ware; and (iii) it implements particular performance goals for an increased number

of users. Additionally, above models or mechanisms are commonly being evaluated

through Monte-Carlo based simulations (e.g., adjusting their parameters by setting

random values within specific ranges), e.g., in [115] or [118]. In our case, we con-

figure the proposed model with realistic values extracted from our relevant extensive

test-bed based evaluations, as documented in section 3.6 (i.e., paper [97]). However,

we currently target a feasibility validation of our proposed cloud orchestration strat-

egy, rather than time-efficiency of the model (e.g., like in [102]), which aspect deserves

an independent study.

4.4 System Model

Here, we elaborate on our proposed system model, which is a functional description

of a system implementing Virtualization Technology Shifting. Its main objective is to

maintain service performance as close as possible to a particular performance goal,

with a high cloud resource allocation efficiency.

As shown in Fig. 34, we assume an infrastructure provider operating multiple

points of presence (PoPs) that are either core clouds, characterized by sufficient re-

source availability but usually located far from the majority of users, or edge clouds

having limited resource availability, while being typically deployed close to users. Ac-

tually, each user participates in a cluster, illustrated as a pentagon, which is being

assigned to a particular PoP, i.e., ideally to the closer edge cloud PoP, in networking

distance terms. The PoPs may support diverse hardware, virtualization technologies

or content server technologies, even at the same PoP, as indicated with distinct col-

oring at the bottom left of Fig. 34. Although multi-domain orchestration aspects are

indeed important, here we assume either a single domain or an equivalent end-to-end

resource control abstraction already in place, like in the cloud-network slicing system

98

Edge-cloud PoP

Core-cloud PoP

Service
Catalog

PoP Management

Local Service
Repository

Content Request and Response

Edge-cloud PoP

Edge-cloud PoP

Edge-cloud PoP

DNS

R
eq

u
est

M
an

agem
e

n
tM

o
n

it
o

ri
n

g

URL Request and IP Response

Heterogeneous Virtualized Services

Heterogeneous Infrastructure

Virtual Resource Abstraction Layer

Heterogeneous Server Configurations

Cloud Resource Controller

Resource Allocation Model

Orchestrator

Database

Figure 34: System Model

NECOS [95].

For simplicity, we assume an exemplary web-based service deployment over a given

number of edge clouds and one core cloud, representing an operating content distribu-

tion network (CDN). In this context, different clusters of users reside at geographically

dispersed areas and periodically download content. The content requests are directed

to the most appropriate virtualized content server, in terms of satisfying a given per-

formance goal (e.g, upper limit in content delivery time). Such allocation considers the

available virtualization options and their performance capabilities that depend on the

particular server characteristics, as well as the latest resource availability monitoring

information.

We now briefly describe all involved system components of both Edge-cloud and

Core-cloud PoPs, as shown in Fig. 34.

The Edge-cloud PoPs support the Request Management, Monitoring and PoP Man-

agement functions, as well as contain a Virtual Resource Abstraction Layer, a DNS and

a Local Service Repository, all detailed below.

99

The Request Management function tracks all content requests over a fixed time

interval (i.e., called status update period – SUP) and maintains historical information

used from the function to identify the variations in client requests. For example,

it may either (i) reactively employ a change-point analysis, like in our recent works

[72], [57], or (ii) proactively utilize load prediction mechanisms (e.g., a matching Sea-

sonal Autoregressive Integrated Moving Average model, such as in [97]). However, this

paper is not focusing on this aspect, rather than assesses the benefits of adopting

VTS, in terms of service performance and cloud resource allocation efficiency, under

various client request demands and levels of cloud resource utilization. Similarly to

Request Management, the Monitoring function measures periodically, i.e., for every

SUP time-period, recent resource availability of compute and network resources in

the corresponding PoP.

Furthermore, the PoP Management function is responsible for the control of virtual

resources (e.g., manipulation or configuration) to match the service performance or

cloud resource requirements. This process is realized through the Virtual Resource

Abstraction Layer that employs virtualization-technology-specific APIs, supported for

each one of the considered virtualization technology. The control of virtual resources

may involve an interaction (i.e., downloading) with the Local Service Repository, which

hosts alternative builds of virtualized services (i.e., in the form of container or uniker-

nel images).

The PoP Management function is also responsible to confirm that services are up

and running, i.e., it configures the local DNS with their IP addresses and a maximum

number of clients to assign to each one of them. In the case of a service removal, the

DNS notification precedes the removal, so no new clients are assigned and the old ones

have time to complete their content retrieval. The services shutdown after all pending

clients are finished. Consequently, the DNS is now able to balance the users to the

appropriate virtualized services, i.e., in terms of quantities and types that satisfy the

given performance goal. The DNS is also responsible to periodically communicate the

number of content requests to the Request Management function. Actually, the SUP

timer is maintained in the former, but triggers the operation of the latter with the

100

communication of content requests’ number, in a sequential fashion.

The Core-cloud PoP supports all main functions of Edge-cloud PoPs, acting as

an edge cloud as well. However, we did not depict these functions in Fig. 34, for

simplicity. The Core-cloud PoP also supports a centralized Orchestrator, a Database

and a Service Catalog. The Orchestrator is comprised of two standalone functions: (i)

the Resource Allocation Model and (ii) the Cloud Resource Controller.

The Resource Allocation Model initially verifies, based on the latest resource avail-

ability of every PoP, whether the estimated client requests can be fulfilled. The resource

availability and client requests are received from the Monitoring and the Request Man-

agement functions of each PoP, respectively. The same component decides (i) whether

to allocate new or release existing resources; (ii) the number and characteristics of

required virtualized services (i.e., in terms of virtualization technology and physical

server configuration to utilize) to match the resource-demands of the estimated client

requests. More details on the optimization model can be found in Section 4.5.

The Cloud Resource Controller, in turn, is responsible to determine the quantity

changes regarding the number of services and virtualization technology choices, based

on the decision passed from the Resource Allocation Model and the current status of

virtualized services. After the completion of the previous process, the Cloud Resource

Controller is notifying the corresponding PoP Management functions about the mod-

ifications. Although here the Cloud Resource Controller employs the VTS strategy, it

can ideally support alternative approaches, including horizontal and vertical elastic-

ity, which can be selected on demand. A relevant initial investigation can be found in

Section 4.8.

The Database is storing information related to the status of virtualized services

(i.e., amount and virtualization option) in each PoP, based on the most recent decision

of the Cloud Resource Controller. Finally, the Service Catalog enlists and hosts all

available virtualized services. It provides them to the Local Service Repositories, in the

case they are not cached locally.

In the section that follows, we elaborate on our resource allocation model, which

is aligned to the above functional description.

101

4.5 Optimization model for resource allocation

The Resource Allocation Model introduced in this chapter implements the concept of

Virtualization Technology Shifting. The model supports our argument that adopting

alternative virtualization technologies enables resource allocation and service perfor-

mance flexibility.

We formulate the model with the main objective to maintain a given performance

goal and minimize resource consumption, while satisfying a maximum number of

users’ requests under given conditions, i.e., in terms of availability of resources and

choices of virtualization technologies.

Symbol Description

P Set of points of presence (PoP)

C Set of user clusters

Rc
Set of user requests in user cluster c

L A set of all links between PoPs p and clusters c
S Set of server configurations

V Set of available virtualization options

bcp,c Bandwidth capacity of link (p, c)

tdr,p,c,s,v Network throughput demand of request r over link (p, c), as-

signed to virtualization technology v that is hosted by server

with configuration s
RCr,s,v Fraction of CPU resources from server with configuration s

and virtualization technology v required from request r
RMr,s,v Fraction of Memory resources from server with configuration

s and virtualization technology v required from request r
RNr,p,c,s,v Fraction of Bandwidth capacity of link (p, c), connecting

cluster c with PoP p, required from request r assigned to

server with configuration s that hosts virtualization technol-

ogy v
dp,v Binary indicator variable reflecting whether PoP p supports

virtualization technology v
kp,s Number of servers with specific configuration s which are

deployed in PoP p
Tr,p,c,s,v Average service performance of content request r over link

(p, c), assigned to virtualization technology v that is hosted

by server with configuration s
λ Performance goal guarantee for average service performance

Table 9: Model Notations

The optimization model considers the topology illustrated in Fig. 34. We assume

102

a directed graph G = (N,L), where N = P∪C. Table 9 provides the terminology, we

employed in the paper (i.e., as a notation). Set P includes all points of presence p

(i.e., regarding both edge and core clouds) and C all user clusters c. Each cluster c

corresponds to a set Rc
that includes all user content retrieval requests r. Moreover,

set L contains the links between each PoP p with the user clusters c. We define the

links as (p,c), whereas their respective bandwidth capacities are expressed as bcp,c.

For simplicity, we assume that all links are direct. Although intermediary hops and

multiple paths with diverse network capabilities between the PoPs and user clusters

impact on the overall end-to-end (E2E) delays, we consider this aspect as a future

work.

Each PoP consists of node clusters with particular hardware configurations and

such nodes can host diverse virtualization technologies. The set S represents all

different server configurations s and the notation kp,s specifies the amount of physical

server configuration types s that are allocated to PoP p. Moreover, V expresses all

different supported virtualization technologies v. In order to determine whether a

particular virtualization technology is supported from a PoP, we introduce the relevant

indicator variable dp,v, which definition follows,

dp,v =

 1 , if virtualization technology v is supported in PoP p

0 Otherwise

 .

At this point of investigation, we consider a particular performance metric, ex-

pressing the time passed from the initiation of a client request, until it receives the

corresponding content, which we call Total Delivery Time (TDT). Although our model

is general enough to express additional service performance metrics for 5G services

(e.g., throughput, energy consumption, cost and latency), this aspect is considered as

an open issue. We also assume that each virtualization option v has a relatively stable

average TDT per request r. This can be maintained with a fixed number of clients

and amount of physical resources assigned to each deployed virtual entity. Hence,

we define the variable T r,p,c,s,v, indicating the Total Delivery Time (TDT) of a particular

virtualization option v, hosted by server with configuration s, serving a single request

103

r over link (p, c). Furthermore, λ is a specific threshold expressed as a number that

reflects the average value of the chosen performance goal, i.e., targeted TDT.

Resource consumption of a content request r in a user cluster c is expressed as

a fraction of the total resource amount of a server s. Along these lines, we introduce

variables RCr,s,v and RMr,s,v indicating the percentage of CPU and Memory utilization

requirements for a content request r assigned to a particular server s hosting a given

virtualization technology v, respectively. We also define the network utilization de-

mands of r in a similar way, i.e., as a variable RNr,p,c,s,v. To express the latter as a

percentage, it derives from the network throughput demand of content request r over

link (p, c) assigned to a particular virtualization technology v and server configuration

s (i.e., the tdr,p,c,s,v), divided by the total amount of bandwidth capacity bcp,c of the

same link.

Finally, to indicate whether a specific user request r is allocated to PoP p and

assigned to a server with configuration s hosting a virtualization technology v, we use

the binary decision variable xr,p,s,v ∈ {0,1}. Hence, our resource allocation objective

function (3) along with the constraints are expressed as follows:

min
xr,p,s,v

∑
c∈C

∑
r∈Rc

∑
v∈V

∑
p∈P

∑
s∈S

(RCr,s,v +RMr,s,v +RNr,p,c,s,v)xr,p,s,v (3)

s.t:

∑
c∈C

∑
r∈Rc

∑
v∈V

RCr,s,vxr,p,s,v ≤ kp,s ∀p ∈ P, ∀s ∈ S (4)

∑
c∈C

∑
r∈Rc

∑
v∈V

RMr,s,vxr,p,s,v ≤ kp,s ∀p ∈ P, ∀s ∈ S (5)

104

∑
r∈Rc

∑
v∈V

RNr,p,c,s,vxr,p,s,v ≤ 1

∀p ∈ P, ∀c ∈C, ∀s ∈ S
(6)

∑
p∈P

∑
v∈V

∑
s∈S

xr,p,s,vdp,v = 1 ∀r ∈ Rc, ∀c ∈C (7)

∑c∈C ∑r∈Rc ∑p∈P ∑v∈V ∑s∈S Tr,p,c,s,vxr,p,s,v

∑c∈C ∑r∈Rc xr,p,s,v
≤ λ (8)

xr,p,s,v ∈ {0,1} ∀r ∈ Rc, ∀c ∈C (9)

Next, we discuss the constrains (4)-(9). The first three constraints, i.e., (4)-(6),

ensure that the assignment of all content requests from all user clusters to particu-

lar virtualized servers cannot lead to consumed resources that exceed the available

capacity of each point of presence and corresponding links. Given the constrains (4)-

(5), we do not need a relevant constraint for server configurations s, since whenever

hardware configurations are not supported from a PoP p, the particular kp,s variables

take 0 values. Constraint (7) implies that all content requests r are being assigned to

single virtualization options, which are available to the particularly chosen PoPs. Fur-

thermore, constraint (8) ensures that average TDT performance of content requests

r, assigned to particular virtualization technologies v, does not exceed a specific λ

threshold. Finally, condition (9) expresses the binary domain for the decision variable

xr,p,s,v.

4.6 Methodology & Empirical Complexity Analysis

Here, we provide our methodological approach, including elaborating on (i) the goals

of our simulation analysis; (ii) the considered instantiation of proposed system and

model, i.e., its specific assumptions and parameters; and (iii) details on the simulation

process. Finally, we provide an empirical analysis regarding the complexity of the

105

optimization model.

Our simulation results target at supporting key findings in this chapter, such as

on (i) whether virtualized resource heterogeneity can be exploited, i.e., through the Vir-

tualization Technology Shifting strategy, to improve resource allocation efficiency and

tackle resource shortage situations; and (ii) how well the proposed system and model

can maximize the number of users enjoying a service meeting a particular performance

goal, in terms of efficiently assigning users to appropriate virtualization technologies

and PoPs, with respect to the levels of utilized network and cloud resources in hetero-

geneous hardware configurations.

We now detail the parameters of the considered system and model with respect

to the assumed topology, physical server hardware, supported virtualization tech-

nologies, and model parameters, regarding the resource-efficiency and performance of

alternative virtualization technologies and server configurations.

In the simulation results that follow next (i.e., in Section 4.7), we assume a topol-

ogy with three PoPs, i.e., two edge clouds and one core. We assume that the core cloud

serves multiple services providers across edge infrastructures, therefore, only a slice

of the maximum bandwidth capacity is allocated in each service provider. Such net-

work bandwidth capacity can be significantly reduced due to the bottlenecks across

particular hops in the network path from the core cloud to the client. Thus, we as-

sume that the core cloud can be accessed over a path with a lower capacity compared

to the links towards to the edge clouds. Furthermore, one cluster of users resides in

between the edge clouds, like the bottom right user cluster in Fig. 34.

In our simulations, we consider four alternative server configurations, inspired by

real open test-bed deployments: (i) the Mpc node of our own SWN test-bed [56]; (ii) the

Zotac nodes of w-iLab.2 test-bed
9
; and (iii) d710 as well as d430 of central Emulab

test-bed
10

. In order to evaluate the impact of server hardware heterogeneity, a PoP

may support more than one of above options.

Additionally, each PoP server is able to host alternative virtualization technologies.

9
https://doc.ilabt.imec.be/ilabt/wilab/hardware.html

10
https://wiki.emulab.net/wiki/UtahHardware

106

Here, we consider Docker containers [31] as well as the ClickOS [34] and RumpKer-

nel unikernel flavors [35]. Each virtualized service consists of a web-server with an

embedded 5MB content, with the former being resource-limited to 256MB of RAM

and able to handle up-to 15 simultaneous clients, i.e., exhibiting a relatively stable

resource-allocation efficiency and service performance.

Since our prior section 3.6 included relevant experimental results [97], i.e., eval-

uated the same assumed service with Docker, ClickOS and RumpKernel in the SWN

test-bed, we exploit them to define realistic parameters in our resource allocation

model. In Tables 10 and 11, we enlist the percentage of CPU and Memory utilization

required for a content request assigned to a server with a given configuration and

virtualization technology, respectively. These values reflect to the equivalent RCr,s,v

and RMr,s,v model parameters and do not depend on the choice of p.

Regarding the Table 10, we assume that Zotac, d710 and d430, require 75%, 25%,

and 10% less CPU resources compared to Mpc to serve the content, due to equivalent

differences in CPU power. In other words, the CPU consumption values of Mpc have

been extracted from the corresponding results in section 3.6 and the table is com-

pleted for the other servers based on the above analogies. We also assume that each

content request requires a fixed amount of memory, i.e., the allocated memory to the

virtualized service divided by the maximum number of requests it can handle. Conse-

quently, each content request requires around 17MBs of memory, for all virtualization

technologies. Table 11 values have been calculated by dividing this value with the

total memory amount of each corresponding server build.

For simplicity, we assume that alternative server configurations or network conne-

ctivity do not impact on the achieved service performance of a particular virtualization

technology for content delivery, in terms of throughput or Total Delivery Time. Conse-

quently, we omit the relevant parameters from td, RN, and T model parameters. In the

considered setting, our results revealed a higher dependence on the choice of virtu-

alized service rather than hardware configuration, given the availability of resources.

Alternatively, we would require additional time-consuming experiments with various

server and network configurations, without making a significant difference in the main

107

Table 10: CPU resource requirements of a content request (RCr,s,v)

s
v

Docker ClickOS RumpKernel

Mpc 3.24% 1.27% 1.56%

Zotac 2.43% 0.95% 1.16%

d710 0.81% 0.31% 0.39%

d430 0.32% 0.12% 0.15%

Table 11: Memory resource requirements of a content request (RMr,s,v)

v
s

Mpc Zotac d710 d430

for all v, v ∈V 0.416% 0.416% 0.138% 0.026%

arguments in the paper. However, this aspect deserves a further investigation.

Along these lines, Table 12 enlists the network throughput demands for one con-

tent request in Mbps for each one of the available virtualized server options, i.e., tdr,v.

The RNr,p,c,v values are being calculated based on the bandwidth configuration of the

PoPs. Furthermore, Table 13 presents the Tr,v reflecting the content delivery perfor-

mance, in terms of Total Delivery Time (i.e., in sec), for one user request in conjunction

to each one of the considered virtualized services.

As a bottom line, Docker achieves the best service performance, ClickOS the lower

CPU consumption and RumpKernel is the most network-friendly option, among the

considered virtualization options.

We now provide the basic details of our simulation process. We implemented the

proposed model in Python and utilized the Gurobi solver. The latter can measure the

execution time required to solve the model, based on the particular inputs. All our

runs have a deterministic nature, so no statistical evaluation is needed. We carried

out our simulations on a laptop with 6 CPU cores at 2.2 GHz and 16 GB of RAM, using

Table 12: Network throughput demands of a content request assigned to a particular

virtualized service (tdr,v)

s
v

Docker ClickOS RumpKernel

for all s, s ∈S 2.76 1.81 1.59

108

Table 13: Total Delivery Time (sec) with alternative virtualization options (Tr,v)

s
v

Docker ClickOS RumpKernel

for all s, s ∈S 2.7 3.89 4.18

the Linux-based Ubuntu 18.04 (LTS) operating system.

4.6.1 Empirical Complexity Analysis

At this point, we investigate the complexity of the model based on an empirical anal-

ysis. In our analysis, we (i) consider as input the predefined parameters enlisted in

Tables 10, 11, 12, and 13; (ii) assume the topology configuration of Table 14 (e.g.,

nine edge clouds and one core); (iii) enable virtualization technology shifting; and (iv)

consider a best-effort service. We note that 10 PoPs is a reasonably-sized edge cloud

deployment, e.g., Amazon CloudFrond maintains 14 edge PoPs in UK
11

.

Table 14: The setup of empirical complexity analysis

Parameter Values

P p ∈ {p1, .., p10} (i.e, 10 clouds - 9 edge and one core)

S s ∈ {Mpc,Zotac,d710,d430}
V ∈ {Docker,ClickOS,RumpKernel}
C c ∈ {c1}

bcp,c 10Gbps for all p, p ∈P,and for all c, c ∈C

kp,s 10 for all p, p ∈P,and for all s, s ∈S

In our resource allocation model, the number of client requests is the dominant

complexity factor. For the same reason, Fig. 35 illustrates the execution time of the

solver to find the optimal solutions with respect to increasing user load. According to

these results, a quadratic time complexity characterizes the model, in the worst case.

To assess the results of Fig. 35 both quantitatively and qualitatively, we consider

an example use-case. In 2020, a well-known food delivery app, namely "Just Eat",

received 294 millions of food orders in the UK
12

. This number is equivalent to an

average of 140 orders per 15 sec, considering the default execution time period of the

Kubernetes auto-scale component (i.e., HPA). According to Fig. 35, the model requires

11
https://aws.amazon.com/cloudfront/features

12
https://www.businessofapps.com/data/just-eat-statistics/

109

around 0.03 sec to find a solution with 250 client requests, which is an acceptable

execution time, associated with a fixed time interval of 15 sec.

Consequently, given the abundant resources typically characterizing a core cloud

that may host the model and above empirical analysis, it is safe to assume that our

model exhibits an acceptable complexity for medium-sized deployments (e.g., of 10-

20 PoPs and 2000-4000 client requests per 15 sec). In this case, there is no reason

to trade the complexity level of the model for a potential sub-optimal solution of a

heuristic, i.e., impacting on cloud resource allocation efficiency. Since this work

targets validating the proposed VTS concept rather than time efficiency, introducing

heuristics that are more suitable for larger-scale deployments is in our future plans.

125 250 500 1000 2000 4000 8000 16000 32000

Number of Client Requests

10-1

100

101

102

E
xe

cu
tio

n
T

im
e

(s
ec

)

Figure 35: Execution Time of increasing request demands

In the section that follows, we provide and elaborate on our simulation results.

4.7 Evaluation Simulation Results

We grouped our simulation results into two scenarios. The first scenario, called "Im-

pact of Adopting VTS", motivates the fresh view-point of this chapter that an edge cloud

orchestration system can significantly benefit from integrating VTS. The second sce-

nario, entitled "Assessing VTS", evaluates Virtualization Technology Shifting, as defined

110

in the proposed system and optimization models, with various network conditions and

server hardware configurations.

4.7.1 Scenario 1: Impact of Adopting VTS

In the first scenario, we provide simulation results in support of our main idea that VTS

brings benefits, in terms of (i) improving server and network resource utilization; and

(ii) increasing the number of users that can enjoy a service with a given resource avail-

ability, including meeting a particular service performance goal. In practical terms,

we compare the outcome of applying VTS against a typical edge cloud orchestration

system implementing horizontal elasticity. In the former case, VTS utilizes multiple

virtualization technologies (i.e., marked as all), where in the latter case, only docker

containers are utilized (i.e., marked as docker).

We consider two types of services: (i) a best-effort service that is able to serve users

when particular physical resources are available, only; (ii) and a performance-sensitive

service that delivers content, when a given service performance goal is satisfied. The

considered performance goal of the second service is a Total Delivery Time (TDT) below

3.5 sec (i.e., λ = 3.5), i.e., being delay-sensitive. We employ a topology with a single

edge cloud PoP serving all client requests via a 1Gbps link. The PoP hosts 6 servers

with Mpc configuration, 3 with Zotac and one with d710. This allows us to study

also the impact of server hardware heterogeneity. In the case of best-effort service, we

relaxed the constraint of Eq. (8).

Fig. 36 and 37 correspond to the best-effort and delay-sensitive service, respec-

tively, illustrating: (i) the virtualization options utilized per group of content requests,

i.e., in percentages, and (ii) the types of physical servers utilized as well as the re-

spective overall CPU and network utilization. We omitted the memory consumption

results, due to their expectable behavior, but we comment on them, when needed. In

all figures, we consider three numbers of requests. The first one is indicative (i.e., 200

requests) and the other two express the maximum feasible amount of client requests

(i.e., without a significant degradation in the service performance, as defined in Table

13), when the VTS strategy is not enabled or enabled (i.e., docker or all), respectively.

111

(a) Assignment of client requests (b) Overall CPU utilization (c) Overall network utilization

Figure 36: Impact of Virtualization Technology Shifting for a best-effort service

We start with the first part of our results that consider the best-effort service.

As shown in Fig. 36, 200 client requests are not exhausting the available CPU and

network resources. Nevertheless, VTS strategy assigns all 200 content requests to the

ClickOS unikernel, which, compared to the traditional employment of docker, leads

to an improved overall CPU and network resource consumption by 28.1% and 19%,

i.e., Fig. 36(b) and 36(c), respectively.

In Fig. 36(a), we notice that docker option is able to accommodate a maximum

number of 362 clients due to a bottleneck in network resources (i.e., 36(c)). However,

a triggering of a VTS strategy from an intelligent orchestrator would lead to serving

content up-to 628 clients (i.e., a 74% improvement), with the given resource availabil-

ity. In the latter case, we notice a shift from ClickOS to RumpKernel option, which

appears around the 450 client requests, because there is a need to switch from an

overall resource-efficient option to one with the lower network throughput demands,

due to the gradual appearance of the network bottleneck. For both 362 and 628 client

requests, VTS strategy consumes significantly lower CPU and network resources, e.g.,

up-to 50.9% CPU and 34.4% network resources (i.e., Fig. 36(b) and 36(c)).

The two options (i.e., all or docker) consume equivalent memory resources for the

362 clients, while VTS strategy consumes 8% more memory for the 628 users, since it

handles more content requests. Furthermore, VTS utilizes d430 only, both d430 and

112

Zotac, and all server configurations for 200, 362 and 450 clients, respectively. For

the docker option, more servers with diverse hardware configurations may be used,

i.e., both d430 and Zotac for 200 and all server configurations for 362 clients. Finally,

there is a trade-off to consider regarding the application of VTS strategy, since it may

affect the service performance. In this particular case, the Total Delivery Time (TDT)

is being gradually increased from 2.7 to 4.2 sec. However, the proposed model allows

the definition of particular service performance goals, in support of services with less

relaxed performance requirements. A relevant investigation follows next.

(a) Assignment of client requests

Docker All Docker All Docker All
200 362 471

0

20

40

60

80

100

Mpc Zotac d430

Number of client requests

P
er

ce
nt

ag
e

of
 O

ve
ra

ll
C

P
U

 U
til

iz
at

io
n

(%
)

(b) Overall CPU utilization (c) Overall network utilization

Figure 37: Impact of Virtualization Technology Shifting for a service under a perfor-

mance goal (i.e., λ = 3.5)

We now assume a service with a particular performance goal (i.e., with λ = 3.5). In

Fig. 37, we notice an equivalent behavior for the docker option as the best-effort service

simulations. This can be justified by the decent performance and resource-allocation

capabilities of Docker, i.e., it nevertheless addresses the service performance goal

with under-utilized resources. However, the VTS strategy, for both 362 and 471 client

requests, assigns the 67% of clients to ClickOS and the 33% of them to Docker, i.e.,

to serve services that meet the performance goal, while improving CPU and network

utilization up-to 34.2% and 23.1% (i.e., Fig. 37(b) and 37(c)), respectively. However,

comparing Fig. 37(b) and 37(c) with the equivalent Fig. 36(b), 36(c) of the best-effort

service reveals that mixed virtualization option requires 9.3% to 16.7% and 6.2% to

11.3% more CPU and network resources to achieve the targeted service performance

113

with the equivalent client requests, respectively. We also observe in Fig. 37(a) that

VTS strategy leads to 30% more clients enjoying the requested service quality (i.e., 471

compared to 362 of Docker).

The memory consumption for 362 clients is equivalent between Docker and VTS

strategy, while the latter consumes 4% more memory in the case of 471 clients. Addi-

tionally, both docker and all virtualization options utilized the same server configura-

tions with the best-effort service. Finally, now the TDT for VTS strategy takes a value

which is equal to the targeted performance goal (i.e., 3.5 sec).

According to the above results, the incorporation of VTS increases significantly the

load magnitude the system handles, before allocating additional physical resources.

For example, for both considered best-effort and delay-sensitive services, a hybrid

horizontal / vertical elasticity strategy would trigger vertical elasticity for 362 client

requests, which is the limit of applying a horizontal elasticity process. However, the

employment of VTS after the exhaustion of resources caused by horizontal elasticity

allows the system to satisfy up-to 628 clients, without the addition of new resources.

Consequently, it makes sense for horizontal elasticity, VTS, and vertical elasticity

processes to be triggered in a sequential fashion. Section 4.8 gives a relevant example,

where alternative edge cloud orchestration strategies can jointly be supported by an

intelligent orchestrator.

As a bottom line, applying the VTS strategy in resource-shortage conditions leads

to the accommodation of both best-effort and delay-sensitive services with a larger

number of users (i.e., up-to 74%) and improved server and network resource allocation

(i.e., up-to 50.9% and 34.4%, respectively), compared to a traditional deployment

utilizing Docker containers only. This demonstrates the capabilities of VTS, which are

stressed next under different conditions.

4.7.2 Scenario 2: Assessing VTS

Here, we evaluate the behavior of proposed VTS resource optimization framework

(i.e., system and optimization model) under different conditions, in terms of service

performance goal, available server configurations and network capacity. Our goal is

114

to demonstrate its capability to organize available heterogeneous virtual resources

and assign users to available PoPs and virtualized services, in a way that satisfies

a particular service performance goal. We consider the three-PoP topology and user

cluster described in section 4.6. We also set the bandwidth capacity as defined in

Table 15. In practice, the edge cloud PoPs have a ten times higher bandwidth capacity

compared to the core cloud, when considering two distinct levels of bandwidth capacity

(i.e., moderate and high). We range the service performance goal according to λ ∈

{5,4,3}, while assuming homogeneous hardware resources among the 3 PoPs with

alternative server configurations, i.e., s ∈ {Mpc,Zotac,d710,d430}, indicating different

sets of resources. We rank the server types on how powerful they are, in terms of

CPU and Memory resource capacity. All servers support RumpKernel, ClickOS and

Docker virtualization technologies. For each server configuration, we assume both an

indicative number of clients (i.e., 50) and the maximum number of clients the PoPs

can support, depending on the availability of resources.

For all of the above diverse conditions, i.e., in terms of service performance goal,

server configuration, network capacity and number of clients, we illustrate results on

(i) the user assignment to virtualization technologies; (ii) the average CPU utilization

per PoP; and (iii) the network throughput of each PoP.

Table 15: Bandwidth capacity (bcp,c) of link (p, c) in Mbps, i.e., between Edge Cloud

(EC) or Core Cloud (CC) PoPs and user cluster c

Bandwidth

Link
EC to c CC to c

Moderate bandwidth case 100 10

High bandwidth case 500 50

We first consider the case with high bandwidth availability and investigate the

impact of different service performance goals on the behavior of proposed system. In

Fig. 38, we observe that service performance goal threshold λ impacts significantly

on the chosen types and quantities of utilized virtualization options. For the majority

of server configurations, ClickOS and Docker are preferred for most client requests in

the cases of λ = {5,4} and 3, respectively. An exception is the most powerful d430

server with the conservative λ = 5, where the system assigns all user requests to the

115

RumpKernel virtualization technology.

We also see that decreasing λ leads to reduced numbers of clients that can be

accommodated in the cases of high-end servers and λ changing from 5 to 4 (i.e,

slightly for d710 server and around 8% for d430), however there is a rapid reduction

of feasible client requests for all server configurations and λ switching from 4 to the

lowest considered value 3, i.e., around 50%, 51%, 48%, and 31.5% for Mpc, zotac,

d710, and d430, respectively. This occurred due to the wide involvement of Docker,

i.e., ranging from 75 to 76% of clients, that achieves robust service performance at the

cost of more resources, i.e., reducing the number of clients enjoying a given service

quality.

In Fig. 39, we see that overall CPU consumption per PoP decreases with the utiliza-

tion of most powerful servers, in the case of 50 content requests. The 5 and 4 values

of λ lead to the consumption of equivalent CPU resources and the satisfaction of a

similar or the same number of clients, besides the run with d430 server configuration.

In the latter case, the reduction in the number of clients is associated with the release

of some CPU resources. Applying a more strict λ value of 3 leads to the utilization of

an additional PoP for the 50 clients, which can be justified by the increased resource

demands of the utilized Docker containers. Regarding the maximum achieved number

of clients, there is clearly a bottleneck in the CPU consumption for all server configura-

tions in the two edge clouds, besides the most powerful one (i.e., d430). Consequently,

CPU availability may set an upper limit on the number of admitted clients. This also

underlines the tendency of the system to select the most CPU-efficient ClickOS option,

when such a bottleneck appears.

Furthermore, Fig. 40 indicates a bottleneck in the network connectivity of core

cloud, for all cases that maximize the number of admitted clients. For the runs with

d710 and d430 server configurations, the edge cloud links are fully utilized as well.

In these cases, the system selects the most network-efficient RumpKernel option,

whenever there is availability of resources. The d430 servers have enough CPU to

serve many clients through RumpKernel servers, up to a limit that all links to the

three clouds are saturated.

116

50 187 50 239 50 609 50 659
Mpc Zotac d710 d430

0

20

40

60

80

100

RumpKernel ClickOS Docker

Number of requests per server configurationP
er

ce
nt

ag
e

of
 re

qu
es

ts
 a

ss
ig

nm
en

t p
er

 v
irt

ua
liz

at
io

n
te

ch
no

lo
gy

 (%
)

(a) λ=5

50 187 50 239 50 608 50 608
Mpc Zotac d710 d430

0

20

40

60

80

100

RumpKernel ClickOS Docker

Number of requests per server configurationP
er

ce
nt

ag
e

of
 re

qu
es

ts
 a

ss
ig

nm
en

t p
er

 v
irt

ua
liz

at
io

n
te

ch
no

lo
gy

 (%
)

(b) λ=4

50 93 50 117 50 312 50 416
Mpc Zotac d710 d430

0

20

40

60

80

100

RumpKernel ClickOS Docker

Number of requests per server configurationP
er

ce
nt

ag
e

of
 re

qu
es

ts
 a

ss
ig

nm
en

t p
er

 v
irt

ua
liz

at
io

n
te

ch
no

lo
gy

 (%
)

(c) λ=3

Figure 38: Assignment of client requests (high bandwidth capacity)

50 187 50 239 50 609 50 659
Mpc Zotac d710 d430

0

20

40

60

80

100

PoP_1 CC PoP_2 EC PoP_3 EC

Number of requests per server configuration

C
P

U
 U

til
iz

at
io

n
P

er
 P

oP
 (%

)

(a) λ=5

50 187 50 239 50 608 50 608
Mpc Zotac d710 d430

0

20

40

60

80

100

PoP_1 CC PoP_2 EC PoP_3 EC

Number of requests per server configuration

C
P

U
 U

til
iz

at
io

n
P

er
 P

oP
 (%

)

(b) λ=4

50 93 50 117 50 312 50 416
Mpc Zotac d710 d430

0

20

40

60

80

100

PoP_1 CC PoP_2 EC PoP_3 EC

Number of requests per server configuration

C
P

U
 U

til
iz

at
io

n
P

er
 P

oP
 (%

)

(c) λ=3

Figure 39: Overall CPU utilization per PoP (high bandwidth capacity)

Finally, we now discuss the impact of a moderate PoPs’ bandwidth capability on

the system behavior. As we see in Fig. 42 and 43, in contrast to Fig. 39 and 40, the

network bottleneck intensifies and CPU allocation is not having a critical role, besides

the low-end Mpc server configuration. In the latter experimental run, CPU exhausts

its resources, especially for λ = 3.

As we see in Fig. 41, service performance goal level leads for most clients to

particular choices in terms of virtualization technology, i.e., RumpKernel, ClickOS

and Docker for 5, 4, 3 values of λ , respectively. Switching λ from 5 to 4, leads to the

117

50 187 50 239 50 609 50 659
Mpc Zotac d710 d430

0

20

40

60

80

100

PoP_1 CC PoP_2 EC PoP_3 EC

Number of requests per server configuration

N
et

w
or

k
Th

ro
ug

hp
ut

 P
er

 P
oP

 (%
)

(a) λ=5

50 187 50 239 50 608 50 608
Mpc Zotac d710 d430

0

20

40

60

80

100

PoP_1 CC PoP_2 EC PoP_3 EC

Number of requests per server configuration
N

et
w

or
k

Th
ro

ug
hp

ut
 P

er
 P

oP
 (%

)

(b) λ=4

50 93 50 117 50 312 50 416
Mpc Zotac d710 d430

0

20

40

60

80

100

PoP_1 CC PoP_2 EC PoP_3 EC

Number of requests per server configuration

N
et

w
or

k
Th

ro
ug

hp
ut

 P
er

 P
oP

 (%
)

(c) λ=3

Figure 40: Overall network throughput per PoP (high bandwidth capacity)

50 130 50 130 50 130 50 130
Mpc Zotac d710 d430

0

20

40

60

80

100

RumpKernel ClickOS Docker

Number of requests per server configurationP
er

ce
nt

ag
e

of
 re

qu
es

ts
 a

ss
ig

nm
en

t p
er

 v
irt

ua
liz

at
io

n
te

ch
no

lo
gy

 (%
)

(a) λ=5

50 121 50 121 50 121 50 121
Mpc Zotac d710 d430

0

20

40

60

80

100

RumpKernel ClickOS Docker

Number of requests per server configurationP
er

ce
nt

ag
e

of
 re

qu
es

ts
 a

ss
ig

nm
en

t p
er

 v
irt

ua
liz

at
io

n
te

ch
no

lo
gy

 (%
)

(b) λ=4

50 76 50 83 50 83 50 83
Mpc Zotac d710 d430

0

20

40

60

80

100

RumpKernel ClickOS Docker

Number of requests per server configurationP
er

ce
nt

ag
e

of
 re

qu
es

ts
 a

ss
ig

nm
en

t p
er

 v
irt

ua
liz

at
io

n
te

ch
no

lo
gy

 (%
)

(c) λ=3

Figure 41: Assignment of client requests (moderate bandwidth capacity)

accommodation of 7% less users, and from 4 to 3, they are reduced by 32-38%.

For all server configurations besides Mpc, the selection of each particular virtuali-

zation technology is mainly attributed to its service performance in contrast to its

network efficiency. This is also validated by the almost zero impact of different server

configurations on the maximum numbers of users that can be accommodated for

alternative λ . Furthermore, the CPU resources of core clouds are minorly consumed

due to their low link capacity (i.e., Fig. 42). In the case of 50 clients, only one edge

cloud is required, besides the most challenging λ = 3, where the second edge cloud is

118

utilized as well.

50 130 50 130 50 130 50 130
Mpc Zotac d710 d430

0

20

40

60

80

100

PoP_1 CC PoP_2 EC PoP_3 EC

Number of requests per server configuration

C
P

U
 U

til
iz

at
io

n
P

er
 P

oP
 (%

)

(a) λ=5

50 121 50 121 50 121 50 121
Mpc Zotac d710 d430

0

20

40

60

80

100

PoP_1 CC PoP_2 EC PoP_3 EC

Number of requests per server configuration

C
P

U
 U

til
iz

at
io

n
P

er
 P

oP
 (%

)

(b) λ=4

50 76 50 83 50 83 50 83
Mpc Zotac d710 d430

0

20

40

60

80

100

PoP_1 CC PoP_2 EC PoP_3 EC

Number of requests per server configuration

C
P

U
 U

til
iz

at
io

n
P

er
 P

oP
 (%

)

(c) λ=3

Figure 42: Overall CPU utilization per PoP (moderate bandwidth capacity)

50 130 50 130 50 130 50 130
Mpc Zotac d710 d430

0

20

40

60

80

100

PoP_1 CC PoP_2 EC PoP_3 EC

Number of requests per server configuration

N
et

w
or

k
Th

ro
ug

hp
ut

 P
er

 P
oP

 (%
)

(a) λ=5

50 121 50 121 50 121 50 121
Mpc Zotac d710 d430

0

20

40

60

80

100

PoP_1 CC PoP_2 EC PoP_3 EC

Number of requests per server configuration

N
et

w
or

k
Th

ro
ug

hp
ut

 P
er

 P
oP

 (%
)

(b) λ=4

50 76 50 83 50 83 50 83
Mpc Zotac d710 d430

0

20

40

60

80

100

PoP_1 CC PoP_2 EC PoP_3 EC

Number of requests per server configuration

N
et

w
or

k
Th

ro
ug

hp
ut

 P
er

 P
oP

 (%
)

(c) λ=3

Figure 43: Overall network throughput per PoP (moderate bandwidth capacity)

The above results confirmed the following aspects of our proposal: (i) it organizes

heterogeneous virtual resources and client requests towards satisfying particular per-

formance goals; (ii) it is able to tune the involved performance trade-offs towards maxi-

mizing the numbers of accommodated content requests and minimizing the utilization

of server and network resources; and (iii) the potential performance bottlenecks play

a critical role in the choice of virtualization technology and the balancing of users to

multiple PoPs.

119

4.8 Example Integration of VTS

Here, we provide our initial considerations, being complemented with an example

workflow, on the integration of VTS with a typical Kubernetes-based edge cloud or-

chestration environment. The workflow is inspired by the results’ insights gained from

our first experimentation scenario (i.e., Subsection 4.7.1), highlighting that incorpo-

rating VTS in a hybrid horizontal/vertical autoscaling process leads to a significantly

increased user capacity of the system.

In this context, we assume a Kubernetes-based environment implementing hor-

izontal and vertical elasticity in a sequential manner, i.e., allocates new virtual re-

sources with the increase of user load up-to physical resource exhaustion, which

is, in-turn, triggering the inclusion of additional physical resources. Specifically, it

employs a centralized orchestrator component (i.e., kube-scheduler), which realizes

the most appropriate cloud resource control strategy to a given predicted user load

(i.e., based on Monitoring and Workload Prediction components). The selected strat-

egy manipulates virtual and physical resources through distributed subsystems (i.e.,

Kubelets), hosted from each physical node cluster. The supported cloud resource

control strategies are being handled by dedicated control entities, i.e, HPA and CA for

horizontal and vertical elasticity, respectively.

In sequence diagram of Fig. 44, we portray all above components and processes.

We also mark as red the extension of proposed system that incorporates the proposed

VTS strategy. Specifically, we include a new centralized control entity (i.e., VTS)

with its corresponding resource control processes, i.e., being sequentially executed in

between horizontal and vertical elasticity actions.

Although the above example requires a deeper investigation and analysis, the

considered components have analogies with the proposed system model, e.g., Kube-

scheduler and kubelet match the functionalities of PoP Management and Cloud Re-

source Controller, respectively. However, we consider the implementation and experi-

mentation of a cloud orchestration system integrating VTS, as an open issue to handle

in a follow-up work.

120

File Edit View Object Shape Text Tools Panels Help Install Account

Server Clusters Orchestrator Server Clusters

 Clients Monitoring Workload Prediction Kube-scheduler Horizontal Elasticity (HPA) VTS Vertical Elasticity (CA) Kubelet

Client requests

Client requests status

Predicted forthcoming client requests

Trigger Horizontal Elasticity

Check HPA thresholds violation and adjust the replicas accordingly

 Decision

Assign unscheduled replicas to server nodes

Inform corresponding server nodes

 Deploy or remove virtualized services

 Unscheduled replicas in server nodes

 Trigger VTS

Mix and match alternative virtualization technologies

 Decision

Assign unscheduled replicas to server nodes

Inform corresponding server nodes

 Deploy or remove virtualized services

 Trigger Vertical Elasticity

Allocate new resources or removal existing

loop [Execute periodically]

loop [Trigger alternative edge cloud orchestration deployments]
alt [Sufficient physical resources for requested demands]

[Insufficient physical resources for requested demands]

[Insufficient physical resources for requested demands after the application of VTS or sufficient physical resources after the removal of virtualized services]

Elements

SVG

Figure 44: Example workflow of a Kubernetes-based system integrating VTS (VTS

extensions in red)

4.9 Conclusions

This chapter introduces Virtualization Technology Shifting, a new cloud orchestration

strategy that exploits virtualization heterogeneity as a means to improve cloud re-

source allocation and service performance. Our approach is backed with a relevant

system model and a bespoke resource allocation optimization model that considers

the estimated performance trade-offs of a set of technologies (e.g., virtualization ap-

proaches and particular hardware) in a distributed edge and core cloud environment,

as well as aims at a particular performance guarantee. We carried out extensive

simulations using model parameters extracted from real experiments that: (i) vali-

dated the flexibility, resource utilization and performance impact of the VTS approach

against a typical edge cloud orchestration strategy (i.e., horizontal elasticity); and (ii)

assessed the proposed VTS resource optimization framework (i.e., system and opti-

mization model) under different conditions, in terms of targeted performance goal,

server configuration and network capacity. According to our results, integrating VTS

leads to a 74% higher number of users enjoying a service with a given performance

goal, as well as exhibits lower server and network resource utilization, i.e., up to 50.9%

and 34.4%, respectively.

121

5 Conclusions and Further Work Discussion

5.1 Summary and Conclusions

This chapter concludes the dissertation, presenting and summarizing its contributions

and describing relevant future research directions.

To begin with, in the thesis we proposed, designed, elaborated, and evaluated two

edge cloud orchestration facilities, namely UNIC and 5G-CDN. The UNIC platform re-

alizes flexible content and measurement distribution over heterogeneous virtual and

physical resources, utilizes tiny Unikernel-based VMs (i.e., Unikernels). UNIC realizes

intelligent and modular orchestration for both cloud and network aspects. We carry

out proof-of-concept results to validate: (i) the efficiency and elasticity capabilities (i.e.,

content popularity detection mechanisms driven the VM placement) of our approach in

terms of responsiveness and resource utilization; and (ii) the benefits regarding the im-

provement in communication connectivity of mobile users through employ an adapt-

able multi-homing solution with lightweight virtualization approaches. Furthermore,

5G-CDN is an experimentation facility that focuses on the next-generation Content

Delivery Networks (CDNs), a paradigm for hosting and launching ME services. We de-

signed and build on top of existing novel test-bed federations, such as the Fed4FIRE+,

to enable large-scale, multi-domain experimentation, involving: (i) large-scale end-

to-end network slicing over multiple infrastructure providers utilizing heterogeneous

hardware and virtualization resources; (ii) dynamic resource discovery and allocation

residing at both federated open-access and local test-beds; and (iii) experimentation

with modular media service orchestration mechanisms, e.g., on content caching and

service elasticity. We provided proof-of-concept results, validating the above aspects

involving different test-beds, where heterogeneous physical and virtual resources co-

exist. Finally, our overall results showed that Unikernel virtualization flavors have

rapid responsiveness, improve resource utilization as well as are suitable for resource

constraint environments.

Additionally, we studied the performance dynamics of alternative edge cloud techno-

122

logies, including different unikernel flavors, container builds, and implementations of

exemplary web services. Our experiments investigated both service and infrastructure

viewpoints, as well as all the basic edge cloud processes, including on service opera-

tion, cloud resource or service elasticity, dynamic resource allocation and removal,

which revealed that each involved option is characterized by particular performance

trade-offs benefits in different circumstances. In a nutshell: (i) unikernels represent an

asset for edge clouds, bringing rapid manipulation capabilities, while seem to exhibit

an expectable behavior in terms of server resource utilization, i.e., making prediction

mechanisms less challenging, while containers provide a robust service operation per-

formance; (ii) deployment frameworks utilizing containers at the core and unikernels

at the edge cloud balances well the trade-offs between content delivery times and

server resource utilization; and (iii) alternative application function options produce

different outcomes, e.g., even a minimalistic web server can achieve performance ad-

vantages, in specific conditions. Finally, we provided key design guidelines insights

for a conceptual edge cloud orchestration platform that gained from our extensive

comparative evaluation based on a novel edge cloud experimentation environment.

Next, we introduced and elaborated a fresh cloud orchestration strategy, called Vir-

tualization Technology Shifting (VTS). Our approach is backed by a relevant system

model and a cloud resource optimization framework in order to assess the benefits

as well as the feasibility of our solution. We carried out extensive simulations ex-

periments: (i) validated the impact of our VTS approach against a typical edge cloud

orchestration strategy (i.e., horizontal elasticity) in terms of flexibility, server and net-

work resource utilization and assignment of users; and (ii) assessed the capabilities

of the proposed system model, while enabling our cloud orchestration strategy under

different conditions, in terms of a service performance goal, server configuration and

network capacity. According to our results, such strategy augments the number of

users that can be served up to 74% and improves the server and network resource

utilization up to 50.9% and 34.4%, respectively.

To sum up, this thesis highlights, through leveraging the proposed edge cloud or-

chestration facilities, that the employment of lightweight virtualization technologies

123

(i.e., containers and multiple unikernel flavors) can become a powerful asset of edge

cloud deployments by improving resource allocation efficiency and tackling the dy-

namic changes with their fast deployment capabilities. However, there is no single

best virtualization solution for the edge cloud. Thus, mobilizing different lightweight

virtualization technologies in a joint scheme with edge cloud orchestration deploy-

ments, presents an attractive solution, since it enriches the available resource control

options for edge clouds, i.e., mixing and matching those alternative technologies with

challenging cloud resources optimization requirements. Therefore, understanding

how and when to utilize the most appropriate virtualization technology for edge cloud

orchestration deployments should be taken into account, according to resource con-

straints, particular requirements of network or application services, as well as the

dynamic changes of user demands and network conditions. These technologies can

become a vital capability of the next-generation edge cloud orchestration deployments.

5.2 Further Work Discussion

This thesis has presented novel platforms, mechanisms, experimental environments,

comparative evaluations and proposed a new cloud orchestration strategy, investigat-

ing the benefits of a full-fledged adoption of lightweight virtualization technologies in

5G networks. However, there are still open research issues that can potentially enable

further research works that stem from the research investigated in this dissertation.

Concluding, we present future research activities as follows:

• Design and implementation, we target implementing a complete service-centric

multi-domain orchestration platform, equipped with architecture and mecha-

nisms in adherence to the defined design guidelines introduced in section 3.7 as

well as incorporating our VTS approach;

• Integration and evaluation, we further plan to: (i) integrate our approach into

a Kubernetes-based orchestration system and experiment with additional ser-

vices with particular stringent performance requirements; (ii) evaluate important

virtual network optimization mechanisms, such as eBPF and XDP [79]; (iii) ex-

ploit complementary unique edge cloud orchestration capabilities in the novel

124

edge cloud infrastructure StarlingX; (iv) assessing NFV orchestration capabil-

ities, such as those proposed in [119],[120]; (v) investigate more sophisticated

slice embedding mechanisms (e.g., [121]) and investigate the scalability of multi-

domain slice instantiation with near-optimal slice embeddings; and (vi) synchro-

nize our approach with service shifting [101] in NVF orchestration framework;

• Extensive Experimentation, we also target: (i) experimenting with large-scale

multiple PoPs deployments at geographically distributed open-access test-beds

(Fed4FIRE+ or GENI [110]) involving our Virtualization technology shifting; (ii)

investigating the service performance impact of alternative network or applica-

tion services (e.g., video streaming and augmented reality) involving alternative

hypervisors, heterogeneous server hardware and network connectivity; (iii) ap-

plying appropriate prediction and rapid detection mechanisms on the workload

behavior (i.e., client requests), including employing novel prediction models or

change-point analysis algorithms; and

• Extension of our cloud resource optimization framework towards: (i) integrating

additional parameters that reflect E2E communication better, e.g., consider

topologies with intermediary hops and multiple paths; (ii) incorporating addi-

tional service performance metrics (e.g., throughput or energy consumption),

that are critical for particular 5G services; and (iii) implementing a sophisticated

heuristic solution, focusing on both scheduling and scalability aspects.

As a bottom line, the novel edge cloud platforms, as well as the edge cloud orche-

stration approaches proposed in this dissertation, should be considered as promising

enablers for 5G and beyond ecosystems. Our future goal is to keep integrating new

features and mechanisms in order to achieve a holistic edge cloud platform solution.

125

References

[1] M. Series, ‘‘IMT Vision–Framework and overall objectives of the future develop-

ment of IMT for 2020 and beyond,’’ Recommendation ITU, vol. 2083, p. 0, Sep

2015.

[2] 5G PPP Architecture Working Group, white paper, ‘‘View on 5G Archi-

tecture,’’ 2020, Available: https://5g-ppp.eu/wp-content/uploads/2020/02/

5G-PPP-5G-Architecture-White-Paper_final.pdf, Accessed on: Sep 2021.

[3] M. Satyanarayanan, ‘‘The emergence of edge computing,’’ Computer, vol. 50,

no. 1, pp. 30–39, Jan 2017.

[4] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky, and

S. Uhlig, ‘‘Software-defined networking: A comprehensive survey,’’ Proceedings

of the IEEE, vol. 103, no. 1, pp. 14–76, Dec 2014.

[5] S. Ejaz and Z. Iqbal, ‘‘Network function virtualization: Challenges and prospects

for modernization,’’ in 2018 International Conference on Engineering and Emerg-

ing Technologies (ICEET). IEEE, Feb 2018, pp. 1–5.

[6] Virtualisation, Network Functions, ‘‘An introduction, benefits, enablers, chal-

lenges & call for action,’’ in White Paper, SDN and OpenFlow World Congress,

Oct 2012, p. 73.

[7] X. Foukas, G. Patounas, A. Elmokashfi, and M. K. Marina, ‘‘Network slicing in

5g: Survey and challenges,’’ IEEE Communications Magazine, vol. 55, no. 5, pp.

94–100, May 2017.

[8] N. T. Le, M. A. Hossain, A. Islam, D.-y. Kim, Y.-J. Choi, and Y. M. Jang, ‘‘Survey

of promising technologies for 5G networks,’’ Mobile information systems, vol.

2016, Oct 2016.

126

[9] J. Matias, J. Garay, N. Toledo, J. Unzilla, and E. Jacob, ‘‘Toward an SDN-

enabled NFV architecture,’’ IEEE Communications Magazine, vol. 53, no. 4, pp.

187–193, Apr 2015.

[10] X. Li, M. Samaka, H. A. Chan, D. Bhamare, L. Gupta, C. Guo, and R. Jain,

‘‘Network slicing for 5G: Challenges and opportunities,’’ IEEE Internet Comput-

ing, vol. 21, no. 5, pp. 20–27, Sep 2017.

[11] D. Bhamare, M. Samaka, A. Erbad, R. Jain, and L. Gupta, ‘‘Exploring mi-

croservices for enhancing internet qos,’’ Trans. on Emerg. Telecommun. Technol.,

vol. 29, no. 11, p. e3445, Oct 2018.

[12] 5GPPP Technology Board and 5G-IA’s Trials Working Groups, white paper, ‘‘Edge

Computing for 5G Networks,’’ 2021, Available: http://shorturl.at/hxFO9, Ac-

cessed on: June 2021.

[13] P. Heidari, Y. Lemieux, and A. Shami, ‘‘Qos assurance with light virtualization-a

survey,’’ in IEEE International Conference on Cloud Computing Technology and

Science (CloudCom), Dec 2016, pp. 558–563.

[14] A. Madhavapeddy and D. J. Scott, ‘‘Unikernels: Rise of the virtual library oper-

ating system,’’ Queue, vol. 11, no. 11, pp. 30–44, Dec 2013.

[15] A. Madhavapeddy, T. Leonard, Skjegstad et al., ‘‘Jitsu: Just-in-time summoning

of unikernels,’’ in 12th USENIX Symposium on Networked Systems Design and

Implementation (NSDI) 15), May 2015, pp. 559–573.

[16] A. Medeiros et al., ‘‘End-to-end elasticity control of cloud-network slices,’’ Inter-

net Technology Letters, vol. 2, no. 4, p. e106, Jul 2019.

[17] Wang, Xiaofei and Chen, Min and Taleb, Tarik and Ksentini, Adlen and Leung,

Victor CM, ‘‘Cache in the air: Exploiting content caching and delivery techniques

for 5G systems,’’ IEEE Communications Magazine, vol. 52, no. 2, pp. 131–139,

Feb 2014.

127

[18] K. Cho, M. Lee, K. Park, T. T. Kwon, Y. Choi, and S. Pack, ‘‘Wave: Popularity-

based and collaborative in-network caching for content-oriented networks,’’ in

Proceedings IEEE INFOCOM Workshops, Mar 2012, pp. 316–321.

[19] M. Zeni, D. Miorandi, and F. De Pellegrini, ‘‘YOUStatAnalyzer: a tool for

analysing the dynamics of YouTube content popularity,’’ in Proceedings of the

7th International Conference on Performance Evaluation Methodologies and Tools,

Dec 2013, pp. 286–289.

[20] Ö. Alay, A. Lutu, M. Peón-Quirós et al., ‘‘Experience: An open platform for

experimentation with commercial mobile broadband networks,’’ in 23rd Ann.

Int. Conf. on Mobile Computing and Networking, ACM, Oct. 2017, pp. 70–78.

[21] Sinha, Vivek and Doucet, Frederic and Siska, Chuck and others, ‘‘YAML: a tool

for hardware design visualization and capture,’’ in Proc. of 13th Int. Symposium

on System Synthesis (ISSS’00), Sep. 2000, pp. 9–14.

[22] Node-RED, [Online], Available: https://nodered.org, Accessed on: December

2020.

[23] T. Wauters, B. Vermeulen, W. Vandenberghe et al., ‘‘Federation of Internet ex-

perimentation facilities: architecture and implementation,’’ in European Conf.

on Networks and Communications (EuCNC), Jun. 2014, pp. 1–5.

[24] Pathan, Mukaddim and Buyya, Rajkumar and Vakali, Athena, ‘‘Content de-

livery networks: State of the art, insights, and imperatives,’’ Content Delivery

Networks, pp. 3–32, 2008.

[25] A.-M. K. Pathan, R. Buyya et al., ‘‘A taxonomy and survey of content delivery

networks,’’ Grid Computing and Distributed Systems Laboratory, University of

Melbourne, Technical Report, vol. 4, p. 70, Feb 2007.

[26] Cisco, White Paper, ‘‘Cisco Annual Internet Report (2018 -

2023),’’ https://www.cisco.com/c/en/us/solutions/collateral/executive-

perspectives/annual-internet-report/white-paper-c11-741490.html.

128

[27] Akamai Technologies, Inc., [Online], Available: www.akamai.com, Accessed on:

October 2021.

[28] Azure Microsoft Interntet, Inc., [Online], Available: https://docs.microsoft.com/

el-gr/azure/, Accessed on: October 2021.

[29] Amazon.com, Inc., [Online], Available: https://www.aws.amazon.com/, Ac-

cessed on: October 2021.

[30] N. Alliance, ‘‘5g white paper,’’ Next generation mobile networks, white paper,

vol. 1, Feb 2015.

[31] Docker, ‘‘The Docker Containerization Platform,’’ [Online]. Available: https://

www.docker.com/ Accessed on: July 2021.

[32] Canonical Linux Containers (LXC), [Online]. Available: https://linuxcontainers.

org Accessed on: July 2021.

[33] A. Madhavapeddy et al., ‘‘Turning Down the LAMP: Software Specialisation for

the Cloud,’’ in Proc. 2nd USENIX Conf. HotCloud, vol. 10, pp. 11–11, Jun 2010.

[34] J. Martins, M. Ahmed, C. Raiciu et al., ‘‘Clickos and the art of network func-

tion virtualization,’’ in Proc. of 11th USENIX Symposium on Networked Systems

Design and Implementation (NSDI 14), Apr 2014, pp. 459–473.

[35] J. Cormack, ‘‘The rump kernel: A tool for driver development and a toolkit for

applications,’’ in Proc. of the Asian BSD conf.(AsianBSDCon), Mar 2015.

[36] A. Kivity, D. Laor, G. Costa et al., ‘‘OSv|Optimizing the Operating System for

Virtual Machines,’’ in proc. of the USENIX Annual Technical Conf. (USENIX ATC

’14), Jun 2014, pp. 61–72.

[37] F. Manco, C. Lupu, F. Schmidt, J. Mendes, S. Kuenzer, S. Sati, K. Yasukata,

C. Raiciu, and F. Huici, ‘‘My vm is lighter (and safer) than your container,’’ in

Proceedings of the 26th Symposium on Operating Systems Principles, Oct 2017,

pp. 218–233.

129

[38] F. Lopez-Pires and B. Baran, ‘‘Virtual machine placement literature review,’’

arXiv preprint arXiv:1506.01509, Feb 2015.

[39] Aue, Alexander and Hörmann, Siegfried and Horváth, Lajos and Reimherr,

Matthew, ‘‘Break detection in the covariance structure of multivariate time se-

ries models,’’ The Annals of Statistics, vol. 37, no. 6B, pp. 4046–4087, Dec 2009.

[40] Hoga, Yannick, ‘‘Monitoring multivariate time series,’’ Journal of Multivariate

Analysis, vol. 155, pp. 105–121, Mar 2017.

[41] Tartakovsky, Alexander G and Polunchenko, Aleksey S and Sokolov, Grigory,

‘‘Efficient computer network anomaly detection by changepoint detection meth-

ods,’’ IEEE Journal of Selected Topics in Signal Processing, vol. 7, no. 1, pp. 4–11,

Dec 2012.

[42] Chandola, Varun and Banerjee, Arindam and Kumar, Vipin, ‘‘Anomaly detec-

tion: A survey,’’ ACM computing surveys (CSUR), vol. 41, no. 3, pp. 1–58, Jul

2009.

[43] Marnerides, Angelos K and Schaeffer-Filho, Alberto and Mauthe, Andreas,

‘‘Traffic anomaly diagnosis in internet backbone networks: A survey,’’ Computer

Networks, vol. 73, pp. 224–243, Nov 2014.

[44] Nevat, Ido and Divakaran, Dinil Mon and Nagarajan, Sai Ganesh and Zhang,

Pengfei and Su, Le and Ko, Li Ling and Thing, Vrizlynn LL, ‘‘Anomaly detec-

tion and attribution in networks with temporally correlated traffic,’’ IEEE/ACM

Transactions on Networking, vol. 26, no. 1, pp. 131–144, Dec 2017.

[45] Turner, Daniel and Levchenko, Kirill and Snoeren, Alex C and Savage, Stefan,

‘‘California fault lines: understanding the causes and impact of network fail-

ures,’’ in Proceedings of the ACM SIGCOMM 2010 Conference, Aug 2010, pp.

315–326.

130

[46] G. Siracusano, R. Bifulco, M. Trevisan et al., ‘‘Re-designing Dynamic Content

Delivery in the Light of a Virtualized Infrastructure,’’ IEEE Journal on Selected

Areas in Communications, vol. 35, no. 11, pp. 2574–2585, Oct 2017.

[47] S. Kuenzer, A. Ivanov, F. Manco et al., ‘‘Unikernels Everywhere: The Case for

Elastic CDNs,’’ In Proc. of the 13th ACM SIGPLAN Notices, vol. 52, no. 7, pp.

15–29, Apr 2017.

[48] CDNSim - a stream-level simulator for large content delivery networks, [Online],

Available: https://github.com/cnplab/cdnsim, Accessed on: October 2021.

[49] P. Marques, C. Silva, V. Frascolla et al., ‘‘Experiments overview of the eu-brazil

futebol project,’’ in Proc. of the 26th European Conf. on Networks and Commun.,

Jun. 2017, pp. 1–2.

[50] T. Binz, U. Breitenbücher, O. Kopp, and F. Leymann, ‘‘Tosca: portable auto-

mated deployment and management of cloud applications,’’ in Advanced Web

Services. Springer, 2014, pp. 527–549.

[51] A. Gavras, S. Denazis, C. Tranoris et al., ‘‘Requirements and design of 5g ex-

perimental environments for vertical industry innovations,’’ in Global Wireless

Summit (GWS), Oct. 2017, pp. 165–169.

[52] I. Afolabi, A. Ksentini, M. Bagaa et al., ‘‘Towards 5g network slicing over

multiple-domains,’’ IEICE Transactions on Commun., vol. 100, no. 11, Nov. 2017.

[53] X. Foukas, M. K. Marina, and K. Kontovasilis, ‘‘Orion: Ran slicing for a flexible

and cost-effective multi-service mobile network architecture,’’ in ACM Proc. of

the 23rd Annual Int. Conf. on Mobile Computing and Networking, Oct. 2017, pp.

127–140.

[54] S. Rizou, P. Athanasoulis, P. Andriani et al., ‘‘A service platform architecture

enabling programmable edge-to-cloud virtualization for the 5g media industry,’’

in IEEE Int. Symposium on Broadband Multimedia Systems and Broadcasting

(BMSB), Jun. 2018.

131

[55] N. Makris, C. Zarafetas, S. Kechagias et al., ‘‘Enabling open access to lte network

components; the nitos testbed paradigm,’’ in Proc. of the IEEE conf. on Network

Softwarization (NetSoft), Apr. 2015, pp. 1–6.

[56] Softwarized Wireless Network, [Online], Available: http://emulab.swn.uom.gr/,

Accessed on: December 2020.

[57] S. Skaperas, L. Mamatas, and A. Chorti, ‘‘Real-time video content popular-

ity detection based on mean change point analysis,’’ IEEE Access, vol. 7, pp.

142 246–142 260, 2019.

[58] L. Horváth, P. Kokoszka, and J. Steinebach, ‘‘Testing for changes in multivariate

dependent observations with an application to temperature changes,’’ Journal

of Multivariate Analysis, vol. 68, no. 1, pp. 96–119, Jan 1999.

[59] P. Burridge and B. U. K. D. of Economics;, A Very Simple, Positive Semi-Definite,

Heteroskedasticity and Autocorrelation Consistent Covariance Matrix. University

of Birmingham, Department of Economics, 1991.

[60] L. Y. Vostrikova, ‘‘Detecting disorder in multidimensional random processes,’’

in Doklady akademii nauk, vol. 259, no. 2, 1981, pp. 270–274.

[61] C. Inclan and G. C. Tiao, ‘‘Use of cumulative sums of squares for retrospective

detection of changes of variance,’’ Journal of the American Statistical Association,

vol. 89, no. 427, pp. 913–923, Sep 1994.

[62] G. Appel, ‘‘Become your own technical analyst: How to identify significant mar-

ket turning points using the moving average convergence-divergence indicator

or macd,’’ The Journal of Wealth Management, vol. 6, no. 1, pp. 27–36, Apr 2003.

[63] S. Fremdt, ‘‘Asymptotic distribution of the delay time in page’s sequential pro-

cedure,’’ Journal of Statistical Planning and Inference, vol. 145, pp. 74–91, Feb

2014.

[64] Ansible, [Online], Available: https://www.ansible.com, Accessed on: October

2021.

132

[65] Httperf HTTP load generator, [Online], Available: https://github.com/httperf/

httperf, Accessed on: October 2021.

[66] Collectd - The system statistics collection daemon, [Online], Available: https:

//collectd.org/download.shtml, Accessed on: October 2021.

[67] InfluxData (InfluxDB) | Time Series Database Monitoring & Analytics, [On-

line], Available: https://www.influxdata.com/developers/, Accessed on: Oc-

tober 2021.

[68] Grafana - The open platform for analytics and monitoring, [Online], Available:

https://grafana.com/, Accessed on: October 2021.

[69] T. Theodorou, G. Violettas, P. Valsamas, S. Petridou, and L. Mamatas, ‘‘A multi-

protocol software-defined networking solution for the internet of things,’’ IEEE

Communications Magazine, vol. 57, no. 10, pp. 42–48, Oct 2019.

[70] M. Berman, J. S. Chase, L. Landweber et al., ‘‘Geni: A federated testbed for

innovative network experiments,’’ Computer Networks, Elsevier, vol. 61, pp. 5–

23, Mar. 2014.

[71] B. Nogales, I. Vidal, D. R. Lopez et al., ‘‘Design and deployment of an open

management and orchestration platform for multi-site nfv experimentation,’’

vol. 57, no. 1, pp. 20–27, Jan 2019.

[72] P. Valsamas, S. Skaperas, and L. Mamatas, ‘‘Elastic content distribution based

on unikernels and change-point analysis,’’ in Proc. 24th Eur. Wireless Conf.(EW),

May 2018, pp. 1–7.

[73] S. Skaperas, L. Mamatas, and A. Chorti, ‘‘Early video content popularity detec-

tion with change point analysis,’’ in Global Commun. Conf. (GLOBECOM), Dec.

2018, pp. 1–7.

[74] P. Di Francesco, P. Lago, and I. Malavolta, ‘‘Migrating towards microservice

architectures: An industrial survey,’’ in IEEE Int. Conf. on Software Architecture

(ICSA), 2018, p. Apr.

133

[75] T. Taleb et al., ‘‘White Paper on 6G Networking,’’ Jun 2020 Available: https:

//www.6gchannel.com/, Accessed on: July 2021.

[76] J. F. Santos et al., ‘‘Breaking Down Network Slicing: Hierarchical Orchestration

of End-to-End Networks,’’ IEEE Communications Magazine, vol. 58, no. 10, pp.

16–22, Nov 2020.

[77] R. Behravesh, E. Coronado, and R. Riggio, ‘‘Performance Evaluation on Virtu-

alization Technologies for NFV Deployment in 5G Networks,’’ in IEEE Conf. on

Network Softwarization (NetSoft), Jun 2019, pp. 24–29.

[78] I. Mavridis and H. Karatza, ‘‘Lightweight virtualization approaches for software-

defined systems and cloud computing: An evaluation of unikernels and con-

tainers,’’ in the 6th International Conf. on Software Defined Systems (SDS), Jun

2019, pp. 171–178.

[79] M. A. Vieira, M. S. Castanho, R. D. Pacı́fico, E. R. Santos, E. P. C. Júnior,

and L. F. Vieira, ‘‘Fast packet processing with ebpf and xdp: Concepts, code,

challenges, and applications,’’ ACM Computing Surveys (CSUR), vol. 53, no. 1,

pp. 1–36, Feb 2020.

[80] A. Nasrallah, A. S. Thyagaturu, Z. Alharbi, C. Wang, X. Shao, M. Reisslein,

and H. ElBakoury, ‘‘Ultra-low latency (ULL) networks: The IEEE TSN and IETF

DetNet standards and related 5G ULL research,’’ IEEE Communications Surveys

& Tutorials, vol. 21, no. 1, pp. 88–145, Sep 2018.

[81] ETSI GR NFV-IFA 029, \Network Functions Virtualisation (NFV) Release

3; Architecture; Report on the Enhancements of the NFV architecture

towards \Cloud-native" and \PaaS"", V3.3.1 (2019-11), [Online], Avail-

able: https://www.etsi.org/deliver/etsi_gr/NFV-IFA/001_099/029/03.03.01_

60/gr_NFV-IFA029v030301p.pdf, Accessed on: July 2021.

134

[82] ETSI GR MEC 027, \Multi-access Edge Computing (MEC); Study on MEC sup-

port for alternative virtualization technologies", V2.1.1 (2019-11), [Online], Avail-

able: http://shorturl.at/fDF59, Accessed on: December 2020.

[83] 5GPPP Technology Board and 5G-IA’s Trials Working Groups, white paper,

‘‘Edge Computing for 5G Networks,’’ 2019, Available: https://bscw.5g-ppp.

eu/pub/bscw.cgi/d397473/EdgeComputingFor5GNetworks.pdf, Accessed on:

July 2021.

[84] M. Plauth, L. Feinbube, and A. Polze, ‘‘A performance evaluation of lightweight

approaches to virtualization,’’ Cloud Computing, vol. 2017, p. 14, Feb 2017.

[85] T. Kurek, ‘‘Unikernel Network Functions: A Journey Beyond the Containers,’’

IEEE Communications Magazine, vol. 57, no. 12, pp. 15–19, 2019.

[86] I. Briggs, M. Day, Y. Guo, P. Marheine, and E. Eide, ‘‘A performance evaluation

of unikernels,’’ in Technical Report, 2014.

[87] T. Goethals, M. Sebrechts, A. Atrey, B. Volckaert, and F. De Turck, ‘‘Unikernels

vs Containers: An In-Depth Benchmarking Study in the context of Microservice

Applications,’’ in in Proc. of 8th International Symposium on Cloud and Service

Computing (SC2), Nov 2018, pp. 1–8.

[88] B. Xavier, T. Ferreto, and L. Jersak, ‘‘Time provisioning evaluation of kvm,

docker and unikernels in a cloud platform,’’ in 16th IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing (CCGrid), May 2016, pp. 277–

280.

[89] O. A. Ezenwigbo, J. Ramirez, G. Karthick, G. Mapp, and R. Trestian, ‘‘Exploring

the Provision of Reliable Network Storage in Highly Mobile Environments,’’ in

Proc. of the 13th International Conf. on Communications (COMM), Jun 2020, pp.

255–260.

[90] J. B. Filipe, F. Meneses, A. Rehman, D. Corujo, and R. L. Aguiar, ‘‘A perfor-

mance comparison of containers and unikernels for reliable 5g environments,’’

135

in 15th International Conference on the Design of Reliable Communication Net-

works (DRCN), Mar 2019, pp. 99–106.

[91] V. Aggarwal and B. Thangaraju, ‘‘Performance Analysis of Virtualisation Tech-

nologies in NFV and Edge Deployments,’’ in Proc. of the IEEE International Conf.

on Electronics, Computing and Communication Technologies (CONECCT), July

2020, pp. 1–5.

[92] Langston Nashold and Rayan Krishnan, ‘‘Using LSTM and SARIMA Models to

Forecast Cluster CPU Usage,’’ CoRR, 2020.

[93] L. M. Contreras et al., ‘‘Toward cloud-ready transport networks,’’ IEEE Commu-

nications Magazine, vol. 50, no. 9, pp. 48–55, Sep 2012.

[94] L. M. Contreras, J. Baliosian, P. Martı́nez-Julia, and J. Serrat, ‘‘Computing at

the Edge: But, what Edge?’’ in NOMS 2020-2020 IEEE/IFIP Network Operations

and Management Symposium, Apr 2020, pp. 1–9.

[95] S. Clayman, A. Neto, F. Verdi, S. Correa, S. Sampaio, I. Sakelariou, L. Mamatas,

R. Pasquini, K. Cardoso, F. Tusa, C. Rothenberg, and J. Serrat, ‘‘The necos ap-

proach to end-to-end cloud-network slicing as a service,’’ IEEE Communications

Magazine, vol. 59, no. 3, pp. 91–97, 2021.

[96] P. Valsamas, P. Papadimitriou, I. Sakellariou, S. Petridou, L. Mamatas, S. Clay-

man, F. Tusa, and A. Galis, ‘‘Multi-PoP network slice deployment: A feasibility

study,’’ in IEEE 8th International Conference on Cloud Networking (CloudNet),

Nov 2019, pp. 1–6.

[97] P. Valsamas, L. Mamatas, and L. M. Contreras, ‘‘Exploiting Edge Cloud Het-

erogeneity for 5G Networks and Beyond,’’ IEEE Transactions on Network and

Service Management, Submitted, Dec 2021.

[98] Kubernetes, [Online], Available: https://www.kubernetes.io, Accessed on:

November 2021.

136

[99] D. Balla, C. Simon, and M. Maliosz, ‘‘Adaptive scaling of Kubernetes pods,’’ in

NOMS 2020-2020 IEEE/IFIP Network Operations and Management Symposium,

Apr 2020, pp. 1–5.

[100] Z. Ding and Q. Huang, ‘‘COPA: A Combined Autoscaling Method for Kubernetes,’’

in IEEE International Conference on Web Services (ICWS), Sep 2021, pp. 416–425.

[101] F. Malandrino, C. F. Chiasserini, and G. Landi, ‘‘Service shifting: A paradigm

for service resilience in 5g,’’ IEEE Communications Magazine, vol. 57, no. 9, pp.

120–125, Sep 2019.

[102] F. Paganelli, P. Cappanera, A. Brogi, and R. Falco, ‘‘Profit-aware placement of

multi-flavoured VNF chains,’’ in 2021 IEEE 10th International Conference on

Cloud Networking (CloudNet), Nov 2021, pp. 48–55.

[103] A. Lertsinsrubtavee, A. Ali, C. Molina-Jimenez et al., ‘‘Picasso: A lightweight

edge computing platform,’’ in IEEE 6th International Conf. on Cloud Networking

(CloudNet), Sep 2017, pp. 1–7.

[104] V. Cozzolino, A. Y. Ding, and J. Ott, ‘‘Fades: Fine-grained edge offloading with

unikernels,’’ in Proc. of the Workshop on Hot Topics in Container Networking and

Networked Systems, Aug 2017, pp. 36–41.

[105] V. Cozzolino, J. Ott, A. Y. Ding, and R. Mortier, ‘‘Ecco: Edge-cloud chaining

and orchestration framework for road context assessment,’’ in IEEE/ACM Fifth

International Conf. on Internet-of-Things Design and Implementation (IoTDI), Apr

2020, pp. 223–230.

[106] Kubeedge, [Online]. Available: https://kubeedge.io/en/ Accessed on: July

2021.

[107] K3S, [Online]. Available: https://k3s.io/ Accessed on: July 2021.

[108] Next Generation Platform as a Service H2020 project (NGPaas), Available: http:

//ngpaas.eu/.

137

[109] Superfluidity, H2020 Project, Available: http://superfluidity.eu/.

[110] P. Valsamas, I. Sakellariou, S. Petridou, and L. Mamatas, ‘‘A Multi-domain

Experimentation Environment for 5G Media Verticals,’’ in IEEE INFOCOM Work-

shop on Computer and Networking Experimental Research using Testbeds (CN-

ERT), Apr 2019, pp. 461–466.

[111] O. Skarlat, M. Nardelli, S. Schulte, M. Borkowski, and P. Leitner, ‘‘Optimized

iot service placement in the fog,’’ Service Oriented Computing and Applications,

vol. 11, no. 4, pp. 427–443, Dec 2017.

[112] A. Yousefpour, G. Ishigaki, and J. P. Jue, ‘‘Fog computing: Towards minimizing

delay in the internet of things,’’ in Proc. IEEE 1st International Conf. on Edge

Computing (EDGE), Jun 2017, pp. 17–24.

[113] A. Dalvandi, M. Gurusamy, and K. C. Chua, ‘‘Time-aware vm-placement and

routing with bandwidth guarantees in green cloud data centers,’’ in Proc. IEEE

5th International Conf. on Cloud Computing Technology and Science(CloudCom),

vol. 1, Dec 2013, pp. 212–217.

[114] A. S. Milani and N. J. Navimipour, ‘‘Load balancing mechanisms and techniques

in the cloud environments: Systematic literature review and future trends,’’

Journal of Network and Computer Applications, vol. 71, pp. 86–98, Aug 2016.

[115] X. Guan, X. Wan, B. Y. Choi, S. Song, and J. Zhu, ‘‘Application oriented dynamic

resource allocation for data centers using docker containers,’’ IEEE Communi-

cations Letters, vol. 21, no. 3, pp. 504–507, Dec 2016.

[116] K. Kaur, S. Garg, G. Kaddoum, F. Gagnon, and D. N. K. Jayakody, ‘‘Enlob: En-

ergy and load balancing-driven container placement strategy for data centers,’’

in IEEE Globecom Workshops (GC Wkshps), Dec 2019, pp. 1–6.

[117] J. Xu, B. Palanisamy, H. Ludwig, and Q. Wang, ‘‘Zenith: Utility-aware resource

allocation for edge computing,’’ in Proc. IEEE international conf. on edge comput-

ing (EDGE), Jun 2017, pp. 47–54.

138

[118] A. Yousefpour, A. Patil, G. Ishigaki, I. Kim, X. Wang, H. C. Cankaya, Q. Zhang,

W. Xie, and J. P. Jue, ‘‘FOGPLAN: A lightweight QoS-aware dynamic fog service

provisioning framework,’’ IEEE Internet of Things Journal, vol. 6, no. 3, pp. 5080–

5096, Jan 2019.

[119] Castanho, Matheus S and Dominicini, Cristina K and Villacça, Rodolfo S and

Martinello, Magnos and Ribeiro, RN Moises, ‘‘Phantomsfc: A fully virtualized

and agnostic service function chaining architecture,’’ in IEEE Symposium on

Computers and Communications (ISCC), Jun 2018, pp. 354–359.

[120] Dominicini, Cristina K and Vassoler, Gilmar L and Meneses, Leonardo F and

Villaca, Rodolfo S and Ribeiro, Moises RN and Martinello, Magnos, ‘‘Virtphy:

Fully programmable nfv orchestration architecture for edge data centers,’’ in

IEEE Transactions on Network and Service Management, vol. 14, no. 4, pp. 817–

830, Sep 2017.

[121] Dietrich, David and Rizk, Amr and Papadimitriou, Panagiotis, ‘‘Multi-provider

virtual network embedding with limited information disclosure,’’ IEEE Transac-

tions on Network and Service Management, vol. 12, no. 2, pp. 188–201.

139

Appendices

A Funding

This work was partially supported by the open call scheme of the H2020 MONROE

(grant agr. n
o

644399) project, partially by EU’s Horizon 2020 research and innovation

program through the 4th open call scheme of the FED4FIRE+ "Unikernel-based CDNs

for 5G Networks(Unic)" Project (grant agr. n
o

732638) and partially by EU’s Horizon

2020 Research and Innovation Program through the EU-BRA Horizon 2020 "Novel

Enablers for Cloud Slicing(NECOS)" Project (grant agr. n
o

777067).

140

