

UNIVERSITY OF MACEDONIA

DEPARTMENT OF APPLIED INFORMATICS
MSc IN ARTIFICIAL INTELLIGENCE AND DATA ANALYTICS

Computing trajectories in 3D space to avoid obstacles using systematic and stochastic
search algorithms

A dissertation
by

Vasileios Markou

Thessaloniki, September 2021

Computing trajectories in 3D space to avoid obstacles using systematic and stochastic
search algorithms

Vasileios Markou

Bachelor in Applied Informatics, University of Macedonia, 2019

Dissertation

Submitted in partial fulfilment of the requirements for
MSc IN ARTIFICIAL INTELLIGENCE AND DATA ANALYTICS

Supervisor
Ioannis Refanidis, Professor

Approved by the three-member Examination Committee on 21/09/2021

Ioannis Refanidis, Professor Dimitrios Hristu-Varsakelis,

Professor

Ilias Sakellariou, Assistant

Professor

...................................

Vasileios Markou

...................................

Abstract

Recent years have been characterized by great technological advances. When it

became an option to exploit in industrial work, the tasks were automated with the use of

robots. In this dissertation, we present a custom-made virtual robotic arm capable of

constructing Jenga towers. In contrast with previous work, we do not use force sensors for

placement detection. Furthermore, to demonstrate the robot controller 's extensibility in

design, we run two different simulations, ending with two different structures. Simplicity

and efficiency have been considered to achieve the desired results in the experiments above,

raising the key points where computational costs cannot be reduced, while providing

simple alternatives for the rest of some common issues in robotics. We also compare and

present results concerning various topics regarding commonly used algorithms including

A*, after implementing them for the purposes of this dissertation.

Keywords: robotics, robot, arm, manipulator, jenga, structure, A*, Dijkstra, RRT

Foreword – Special thanks

I am grateful to several individuals and the University of Macedonia for supporting

me throughout this study. First, I wish to express my sincere gratitude to my supervisor,

Professor Ioannis Refanidis, for his patience, insightful comments, helpful information,

and support that guided me throughout the writing of this thesis. I also wish to appreciate

the University of Macedonia for accepting me and providing me with the necessary

theoretical and practical background to overcome this project’ s difficulties.

Table of contents

1 Introduction 11

1.1. Problem – Importance of the topic 11

1.2. Aim - Objectives 12

1.3. Questions – Research hypotheses 12

1.4. Contribution 13

1.5. Basic terminology 13

1.6. Structure of the study 14

2 Literature review – Theoretical background 15

2.1. Multi-sensor information gathering in robotics 15

2.2. Robotic framework for structures and their importance in our lives 23

2.3. Robot autonomy and human-robot collaboration 27

2.4. Human-like robotic arms 33

2.5. Motion planner benchmarking 39

3 Methodology 44

3.1. Controller and implementation details 44

3.2. Algorithm solution space exploration 45

3.3. Algorithms presented 46

3.4. Rapidly-exploring Random Trees (RRT) 47

3.5. Rapidly-exploring Random Trees * (RRT-star) 49

3.6. Probabilistic Roadmaps (PRM) 52

3.7. Artificial Potential Fields (APF) 55

3.8. Monte Carlo Algorithm 59

3.9. A-star (A*) 61

3.10. Dijkstra 64

3.11. Storing information - RTree 67

3.12. Implementing RRT 70

3.13. Implementing Dijkstra 74

3.14. Implementing A* 77

4 Experiments 82

4.1. Controller execution 82

4.2. Sensor description 83

4.3. Controller extensibility 85

4.4. Algorithm accuracy 86

4.5. Time consumption 87

4.6. States traversed 88

4.7. Additional experiments with A* 89

5 Conclusion 93

5.1. Summary and conclusions 93

5.2. Research limits and limitations 94

5.3. Future extensions 95

List of Figures

Figure 1: RRT pseudocode

Figure 2: Some of the use cases of RRT

Figure 3: Pseudocode for PRM

Figure 4: Sample of a step in APF execution showing how the algorithm draws the robot

away from obstacles (the red circle) and closer to an un-explored area (the green circle)

Figure 5: A simple example of A* application on a grid-based problem (the yellow grid is

the start and the green is the goal, whereas the dark green line represents the path)

Figure 6: An example graph as input to the Dijkstra algorithm

Figure 7: R-Tree storing process demonstration for a 2D example where we can see the

indexes for each R-Tree stored object along with its MBR

Figure 8: Original RRT

Figure 9: Implemented RRT

Figure 10: Original Dijkstra

Figure 11: Implemented Dijkstra

Figure 12: Original A*

Figure 13: Implemented A*

Figure 14: The camera sensor feedback (top-left corner) detecting a tile

Figure 15: The robot reaching a tile after avoiding an obstacle

Figure 16: The distance sensor range of detection

Figure 17: The final result of all the tiles put together to form the Jenga tower

Figure 18: The robotic arm used to create a “Π” instead of a Jenga tower

Figure 19: A basic experiment where the robot avoids the rectangles to reach the tile

highlighted with the 3D axes

Figure 20: The basic experiment (Figure 19) whereas we now added an extra rectangle as

an obstacle (highlighted by the axis) blocking the previously computed path

Figure 21: The experiment (Figure 20) after adding another obstacle to block the previous

path highlighted by axis

List of tables

Table 1: Advantages comparison between simple and planning-based controllers

Table 2: Disadvantages comparison between simple and planning-based controllers

Table 3: Advantages comparison between complete and sampling-based algorithms

Table 4: Disadvantages comparison between complete and sampling-based algorithms

Table 5: Most common algorithms used for each category in motion planning

Table 6: Some of the performance differences between RRT and RRT*, however as we

can see they both do not perform well in certain aspects

Table 7: Demonstration of some of the algorithm’s use cases

Table 8: Some of the results of experiments concerning algorithm accuracy (in meters)

Table 9: Some of the results of experiments concerning algorithm time complexity

Table 10: Some of the results of experiments concerning algorithm motions performed

Notation

1. n; the next available node (in this research this will be used to mark the next available

motion in terms of action performed)

2. f(n); heuristic function used to determine the next most appropriate node to visit

3. g(n); distance, or cost, from the start node to the current node

4. h(n); distance, or cost, from the current node to the goal

5. b(n); greatest value that can be used for an action of the robot to be performed without

colliding with any obstacles in case they are provided

1 Introduction

1.1. Problem – Importance of the topic

Over the years, technology has played a leading role in shaping the world, assisting

mankind in the development of goods and services necessary for survival. At some point

in human history, there was an increasing need for providing greater quantities of various

products. As times changed, so did the needs and demands of modern-day life, including

consumers and scientists. However, this has always been restricted by the limitations that

human nature implied. That was a critical point that turned mankind towards seeking

automated ways of implementing various tasks. Albeit in the initial stages, robots used to

silently take over the heaviest of tasks, replacing workers in the different industries, while

providing quicker and more efficient ways to create products. This was one of the first

goals to be reached by a robot. As the years passed by, the more robots started to appear in

industrial use, the faster they tended to become irreplaceable in their work. This also led

to robot involvement in many other aspects of life, making it a matter of time until they

could find their way in all kinds of scientific fields, e.g., the process of manufacturing a

car is to provide the necessary parts, while a robot could take care of the actions to apply

in order for it to be properly assembled.

What is more, it is quite common in robotics to try to imitate certain behavior,

including animal movement in certain terrains, as a necessity in analyzing it, before we

can proceed with mimicking it and applying it to different problems. In the previous

example, this could assist us in providing environment-specific robots that can move with

greater ease and study their surroundings. Multi-sensor behavior, namely the combination

of input gathered from various different sensors, for example a vision sensor and a force

sensor, is deemed of significant importance in common uses, e.g., vehicle-control, where

complexity is detrimental. What appears as common behavior turns into a surprisingly

difficult problem, when applied to a robot. This usually happens, since the robot is tasked

with the following to make even the slightest move;

 data processing

 strategy selection

 world impact estimation

 proper move calculation

All the above combined can sometimes lead to information overload for the robot,

for example in cases where a vision sensor is constantly feeding the robot with new images

that need to be processed, making it unable to respond in real-time, while trying to tackle

various and complex tasks. Our research aims to provide some suggestions reducing the

computational cost of handling complex tasks on the problem of constructing a Jenga tower

and similar structures. We have chosen the Webots open-source robotic simulator. In order

to demonstrate our ideas, we are using a distance sensor and a camera sensor to reach one

of our tiles, in contrast with previous implementations on similar problems that featured a

camera sensor and a force sensor. The controller was written in Python and features a state-

machine algorithm designed for portability and simplicity. The robotic arm is equipped

with a fork-like gripper to be able to move the tiles in our simulated the world. As

mentioned previously, we also demonstrate the use of the same robot with minor-to-no

changes to the controller, to create an entirely different shaped structure, that of a “Π”. The

simulations were able to complete the tasks described before, demonstrating the

importance of simplicity and efficiency in robot designing.

1.2. Aim - Objectives

The main objectives of this study include covering and exploration of several topics

regarding robotics in modern days, such as progress reflected by software that has been

developed so far or implemented algorithms for motion planning and path planning. We

also sought to create a controller able to lead a robotic arm to construct a Jenga tower and

similar structures. Before that, the controller is responsible for following the shortest path

as it is found by implementing 3 (three) different algorithms, namely Rapidly exploring

Random Tree (RRT), Dijkstra and A* (a-star). These algorithms will be presented shortly

later, along with details on their implementation. As a side-note, the reader should keep in

mind that to be able to provide solutions on various scenarios including the presence of

obstacles around the targets (tiles), we had to make a few adjustments and hypotheses, the

most important of them being the fact that in A* the heuristic function used takes into

account the step that each motion is able to perform to pick the next least expensive action,

which appeared to be an extremely important in situations where the robotic arm was faced

with multiple obstacles on its path. The rest will be presented in detail in the corresponding

chapter.

1.3. Questions – Research hypotheses

Robotics is a well-known subject and common cause of scientific interest when it

comes to its application to human life. It was therefore expected to be questioned as both

a scientific field and an actual means to provide better quality of life for everyone. However,

in order to embrace technological advance we first need to understand its effects,

advantages, and applications to our lives. This call cannot be answered unless we delve

into researching and implementing on our own, which has been the main reason for

choosing this subject to author this dissertation. We need to understand, after

experimentation, that simplicity does not always lead to reduced costs, e.g., financial costs

and also, when it comes to algorithm implementation, complete algorithms tend to offer

greater accuracy while performing smaller number of actions but need to keep all the

explored space in memory, proved through experimentation. To tackle the above we can

explore several ways of efficient memory storage, including but not limited to R-Trees, as

the reader will gradually delve more into their importance.

1.4. Contribution

At first, we had to consider the latest trends in robotics to be able to provide readers

with an interesting topic that is tackled by researchers at present. The topic was selected as

constructing Jenga-like structures and building a controller that could handle the motion

plan behind it. To be able to achieve the above, there is this need of effective algorithms,

with effective being used to describe goal, or task completion and speed of providing such

a solution, meaning that it must be delivered within logical time limitations and

computational resources. Experiments had to be carried out after successful

implementation of A*, Dijkstra and RRT algorithms. The reader should note at this point

that RRT is specifically used in motion planning, unlike the other two algorithms that are

used in graph research. Finally, while achieving the above, similar studies and projects will

be presented along with algorithms that have proved to be of importance in generic, or

relative ideas and implementations. We need to understand that simplicity does not always

lead to reduced costs, e.g., financial costs and also, when it comes to algorithm

implementation, complete algorithms tend to offer greater accuracy while performing

smaller number of actions, but need to keep all the explored space in memory, proved

through experimentation. These algorithms are strongly discretized by the completeness in

their logic and thus, when using them we expect that the quality of solutions will vary in

different ways, i.e., the execution time to reach their goals.

1.5. Basic terminology

1. World refers to a 3D simulated environment, that for simplicity consists of a

horizontal plane, serving as a floor-like base

2. Robot is a custom-made robotic arm with 6 DOF

3. Tile is a rectangle-shaped object that will be used as a Jenga tile

4. Obstacle is a rectangle-shaped object that servers the purpose of interrupting the

way from our robot to a tile

5. Controller refers to the controller written in python 3.8 to provide the logic

implemented by the robotic arm

6. Webots refers to the software used for running the simulations

7. RRT refers to Rapidly-exploring Random Tree algorithm

8. Dijkstra refers to Dijkstra algorithm

9. A* refers to the a-star algorithm

10. PRM refers to Probabilistic Roadmaps algorithm

11. APF refers to Artificial Potential Fields algorithm

12. DFS refers to Depth-first search algorithm

13. BFS refers to Breadth-first search algorithm

1.6. Structure of the study

We will be going through the various aspects of what it involves to study and

develop solutions as plans in the robotics world in an order that aims to present key parts

and make the reader familiar with concepts not previously encountered, while maintaining

simplicity, yet completeness of information presented. Chapter 1has already discussed

what it means to explore the various applications of robotics and their impact on our lives.

In Chapter 2 we will be focusing on literature studied in order to be able to provide the

reader with useful information in order to give the necessary context of robotics. On the

contrary, Chapter 3 describes various approaches in algorithm implementation and

proceeds to applying three of them, which will be studied further. Consequently, in Chapter

4 we included some of the results that experimentation has led to after applying the

principles above and finally, Chapter 5 will conclude to what we need to keep after having

read this dissertation, summarizing the most critical parts we need to remember.

2 Literature review – Theoretical background

Several scientific articles have been studied to provide the theoretical background

and perspective of this thesis, along with published books widely acknowledged for their

authenticity and hard evidence in informing the reader from the most basic to advanced

issues that a researcher is tasked with solving when encountering robotics. They will be

presented below to also familiarize readers with the perspectives that inspired us and led

to the results presented later. In a simple manner, we will be exploring different approaches

for various problems, given that each algorithm can have a unique impact on every problem

faced.

2.1. Multi-sensor information gathering in robotics

One of the works studied is used to discuss the various aspects that integrate

different sensors, aiming to achieve a common goal [1]. It features the vast necessity that

engulfs robotics in industrial development, along with collaboration with humans as main

scientific goal is to explore of new ways to provide robots with more sophisticated and rich

information. In the main years of human evolution, it has been an integrated part of human

nature the ability to be able to receive different stimuli and process them at the same time

as electrical currents are parsed through billions of neurons. Therefore, it would be safe to

assume that all five senses, namely sight, smell, touch, hearing, and taste have played a

more than significant role in human brain evolution. Nowadays, mankind seems to be

interested in focusing on increasingly complex tasks to be able to deliver more

sophisticated results in many aspects of life. One of these sectors could not be the industrial

use and application of technological advances that tend to cover for today’ s needs. Of

course, during mankind’ s tremulous history of progression, we admittedly have to point

out the importance of creating machines that could replace labor and automate processes

including the creation of various goods.

In modern times, there is an ever-growing lust for knowledge and constant

development of robotics since it represents the higher form of machine application to

simplify everyday life and represents the greatest example effort of automating different

processes. However, after decades of research and studying it has become clear that there

is a tendency to create human-like robots to simulate human behavior in the best way.

Ideally, various scientists aim to achieve a general-task controller capable of achieving a

wide range of unsimilar tasks, providing the middleware that would exploit the different

dynamics of a system and its sensor capabilities.

What could be a suitable place to start with when it comes to performing different

tasks? It appears that a remarkably interesting environment where such application must

be applied is no other than modern-day industry, at its various levels, from assembling the

necessary components to delivering the end products to the customers. The most

interesting part however, appears to be the description of so far discovered and applied

controllers as close-sourced when it comes to sharing among different problems. In fact,

naming the most common sensor issues, it usually comes down to force calculation,

distance estimation, visual representation, and scalability of manipulators, which seem to

have individually been solved as of today. Unfortunately, it is easy to say that similar

problems tend to get a feel for exponential growth in difficulty in solving when they get to

be combined, since previous implementations are not made publicly available. From the

preliminary stages of applying robotics into task automation for industrial applications the

focus has been on providing quick and accurate manipulators on regards to trajectory-

following problems, for example the discrete position that can be computed by position

controllers.

In this paper, it is especially referred to as an example of continuous growth and

interest in the research and application over force control, which has led to a static phase

in further development when it comes down to this scientific sector. Moreover, additional

great load of work has been put to visual servoing, mainly on the theoretical aspect of its

utilization, as it describes the motivation to apply visual-based sensing towards controlling

the robot [2]. To be more specific, we should underline and understand the necessity of

fast image processing algorithms that need to be developed in order to have a better chance

of approaching better results and make more complicated robots that include an interface

that connects the various established motion commands to be sent to the controller, along

with the order and process that they need to undergo with. At this point, it should be

profound that due to the dynamic nature of programming background to exploit a system’

s sensors, it is more than likely that we will have to put a lot more effort into designing the

overall programming architecture of the controller, since it will serve as the mind able to

serve the ever-increasing demands and requests in delivering and answering the various

aspects of simple to complex commands, responsible for the un-breaking functionality and

flexibility of the whole robotic system. As mentioned in the paper, two well-known

examples that are able to perform the desired operations with the minimum necessary effort,

providing a more understandable, easily scalable, flexible and maintainable system of

robot manipulation system, both following and fulfilling the primitive requirements

mentioned and analyzed above, could be no other than the projects that are known in the

global scientific society by their abbreviations, OROCOS, an abbreviation that stands for

Open RObot COntrol Software and OSACA, an acronym used to refer to Open System

Architecture for Controls within Automation systems [3].

To focus on the current project, however, we will be shortly describing the basic

design and architecture of both software and hardware implementation. More specifically,

the manipulator used is a Staeubli RX60, with its controller having been replaced similar

to the ones mentioned above, while its power electronics have been maintained, since they

can be savored to serve different purposes no matter the scope within which they have been

initially scheduled to operate. It is in fact a network of PCs with QNX serving as its OS

(Operational System), extracting the main working processes straight out of the

MATLAB/Simulink software, enabling equal ease of addition or change according to task

specification during runtime. The first PC is responsible for handling the power needs for

the different tasks and mainstreaming it accordingly to the rest of the hardware to fulfill

the commands. It also helps with basic low-level joint control. At this point let us clarify

that this functionality can also be adopted by the rest of the PCs, although they serve the

different user requests. It is also obvious that despite the intention to create a scalable

system, it will perform differently depending on the complexity of each purpose in terms

of power consumption, e.g., distance calculation in contrast with image processing. What

is more, the freedom in role-playing described above is restrained in the current

implementation, namely the first PC serves for joint control, the second one handles

changes regarding transform (such as position, orientation or velocity applied), the third

one is responsible for responding to user commands and last but not the least, the fourth

one helps with providing real-time and more sophisticated image processing through

footage captured during execution.

The main middleware, implemented in all four PCs is called MiRPA, which stands

for Middleware for Robotics and Process Control Applications, serving as the base of all

operations. More specifically, as part of the scalability desired to achieve the logic behind

it covers for it being a distributed real-time software implementation having only one

communication server for each software aspect. These consist of two modules, named as

MP (short for Manipulation Primitives) Interface, being responsible for receiving the

requests made by the user at a more primitive form and interpreting them in a way that the

MP Execution module can map them to specific predefined actions. In this way, if one

would not be satisfied by the options available, it would pose as an easy task to extend its

functionality by adding more sensors or actuators and having to update their drivers to be

mapped with the new actions added in the MP Execution module.

As we discussed previously, this system is quite flexible and have high scalability

degree. More importantly, one’ s demand as the application programmer only requires the

list of available devices. What comes into play next is the modification of MPs, which

naturally only consist of three parts, namely the hybrid moves, which represents the task

to be achieved along with a list containing the DOF (Degrees Of Freedom) that correspond

to each different state during the process of achieving the desired task. Second comes the

tool command part, which informs the system about the additional actuators that are

addressed through adding more drivers to map to. In this case, it is only responsible for

choosing between opening and closing the gripper. The final part that needs to be

configured seems to be the exit condition, which is nothing but a set of different Boolean

terms combined to form a longer expression that further describes that the desired motion

or command has been reached, based on the different sensor values that indicate the various

states.

To show the scalability of the system that has been described so far, the researchers

decided to organize a little demonstration, with the robot competing against itself to create

a Jenga tower. To provide context clearance and for the sake of transparency, it is worth

mentioning that abstracting the aim of playing Jenga, it is no other than extracting a loose

block without disturbing the tower’ s stability. More importantly, the goal was similar as

in the actual game, no other than creating the highest possible tower, with the best result

consisting of 28 distinct levels. The robotic gripper used served two different purposes

utilizing an arbor; the functionality of pushing a block outside the tower and of course, the

ability to be able to place it back on top of the tower. It is also worth mentioning that two

charge-coupled CCD cameras were placed away of the robot in positions that enabled them

to detect observe the whole tower in a perimetric way and were programmed to process

and detect tiles that had been distinguished in the following way; each block was painted

black and featured two white lines and two dots, Also, the rest of the robot’ s hardware

configuration consists of a 6D force/torque sensor, a 6D acceleration sensor and a laser

distance sensor. Let us clear at this point that generally, judging by previous similar

problem solution implementations, we can speak of three well-distinguished approaches;

the first one is by using impedance control, which is mainly used to identify the impedance

applied from the tower’ s tiles back to the gripper through calculation of both forces

received from the tower and the estimated distance the gripper has away from it. Second,

there has been an effort of combining the above into a single calculation matrix, instead of

dealing with them individually, an approach considered as parallel control, aimed to

simplify, and provide faster estimations, while sacrificing accuracy. The third and final

approach, which happens to be adopted in the current project as well, is commonly known

as force/position control. As noted, this technique also focuses primarily on force sensor

readings along with position estimation, while demonstrating a critical difference; these

two metrics are separately considered as two dimensions that interfere with one another

orthogonally. It should be underlined that this is a more generic approach and does not

need to undergo any modifications despite changes originating from different coordinate

systems used. It also serves well as separating the forces caused by inner collisions that

occur due to passive and static contact made by objects, as compared to external

environmental forces that occur after taking actions. What is more, it allows for more

compliant motion control, which so far has only been approached in a more theoretical

perspective as it involved a more realistic and force-guided analysis of robot and

environment interaction. Jenga was picked as a case scenario due to its design to include

programming organized as tasks, force manipulation and understanding including but not

limited to processing continuous calculations in real time, combination of data produced

by various kinds of sensors, trajectory prediction to be able to estimate among others the

tower stability and climaxed control software architecture, able to handle different states

of the game. The process initiates by choosing a random tile that has been marked for

extraction after having been recognized by the cameras, by trying to push the desired block

a few centimeters out of the tower, provided that the cameras will not pick up any over

exceeded tower motion and the force sensor does not detect high repulsion when it attempts

the above, otherwise the previous process is repeated with the next randomly picked block.

Of course, it is necessary that the manipulator positions the gripper towards the tower while

maintaining a preset distance threshold, which later begins evaluating the pose of the

respected tile. To be able to correctly decide when a tile has been extracted either of the

following two criteria must be met; either a setup force threshold has been exceeded, or

both cameras have detected instability of the tower. It is important to note that in order to

avoid false signals leading to the robot taking no action, both cameras must claim the above.

The necessity of putting a block back on top of the tower was covered by a force-guided

MP module to avoid exceeding a threshold.

As far as the software architecture is concerned, we need to mention that the

modules regarding force/torque, distance and vision are closed-loop controllers, meaning

that they are constantly being fed with new data and use old to smoothen the progressive

curve of function, whereas the modules that correspond to data that deal with position and

velocity are feed-forward only. Moreover, with the use of a hybrid controller described as

above, we can set some discrete points that distinct the different values we need to monitor

our sensors for reaching, considering the physical impact from each degree of freedom

coming by the different robot’ s joints. In this way, more complex commands can be

produced, that, if handled properly, can concurrently manipulate multiple actuators

providing us with the option of more compact options to exploit the different DOF offered

by the various aspects of the robot gripper, for example we can apply action to both position

and force actuators in a single command. What is more, utilizing the hybrid controller’ s

capabilities, one can switch between the various modules during trajectory estimation, by

any means needed, namely the transform (position, velocity, and acceleration) and the

space it takes place, where that is described by the coordinates, or the tasks required to

fulfill, mainly with the use of Position and Velocity controllers. At the same time, it is

available for the MP to decide whether it is a viable option to take a specific action, with

viable corresponding to the tower’ s behavior, meaning whether the two cameras provide

via the Vision controller feedback that indicates turbulence, or even a collapsed tower,

keeping record of each tower tile. Finally, the Force/Torque controller is responsible for

providing the MP Execution module with the target pose that it is supposed to achieve after

performing a move. It is also extremely useful to understand that the previously mentioned

functionality is usually limited by values we need to reach with certain sensors, which

further elaborates on the necessity of closed loops.

Sequentially, it cannot be helped to further instruct research teams to study and

develop command-based robots, primarily focused on the middleware, without the need to

calibrate the available interface on a wide scale. Software producers should not be bothered

with the more technical details of implementing their goals. On the contrary, it would be

both a delight and catalyst when it comes to end products to be able to press themselves

towards providing the users with task-specific controllers that can offer a more specific

approach during different case scenarios without however losing their ubiquitous

application through extendibility. This enables scalability in both software and hardware

applications of pre-existing robotic skeletons, that provide the scientists with even higher

freedom in applying different manipulator control algorithms, tasked with goals of a wide

range of scientific spectrum. Furthermore, multisensory integration seems to be growing

as researchers continuously aim their robots to become more sophisticated and problem

agnostic. Judging even by the small non-industrial example provided above, it is safe to

assume that soon, if not already, it will become extremely crucial to be able to perform

what is usually referred to as sensor data fusion in modern literature, to describe the

phenomenon where various kinds of sensors use their potential to create more complex

information that can respond to higher levels of complexity. This could very well lead to

a new era in industrial applications of robotics, aiming to further automate production

processes, while at the same time it will be able to deliver faster and more efficient time

and resource management.

The next part of our literature bears the weight of dealing with fusion of diverse

sources of input combined to achieve a common goal [4] and was published at Science

Robotics in 2019. It demonstrates that physics can have their own latent knowledge that

robots can exploit to mimic human senses to achieve environment awareness, using PPO

& OpenAI Gym, Gaussian Mixture model, Dirichlet process, Bayesian neural network as

main tools. Humans have forever longed the ability to combine and put to actual use the

data they could receive from using their senses by interpreting it into valuable information

in real time. In a terribly comparable way, animals have also shown to possess the ability

to claim the above as well in a dynamic environment, resulting in their growing sense of

understanding it, exploring it, surviving and eventually, thriving in it. However, humans

have gone beyond that. being able to complete and even sometimes compete in challenging

and more complex tasks that require higher intellect. On the other hand, little to none

progress has been made in robotics, since it has been difficult to create the ability to sense

and acquire information through use of common intuition, let alone combine it all to

produce higher forms knowledge representation. For example, there has been quite some

progress in relation to simulating sight, with machine learning playing the leading role in

what we modern days call computer vision. It is based on being able to identify certain

patterns for recognizing objects, after having been trained in a variety of different images

representing them. The latest, is usually a resource-commanding process, which in many

ways could lead to either what is usually known as ‘overfitting’, or just fail, being unable

to capture the objects appearing on the image properly. Despite all that has been told, it

remains a decent simulation of the way that human sight works and thus, it has known

quite some acknowledgement among scientists in the past years, showing marks of

everlasting and growing tendency.

All the above cannot but justify the work that has been done by researchers all over

the world. One strong example of such work could be the attempt to combine both

computer science and real-time processing of data to be able to make a robot learn how to

play the incredibly famous game of Jenga. This board game was chosen due to its

demanding skill of physical understanding, strategic play and interpreting of visual data,

along with the ability to be able to create responsive actions that will not affect the stability

of the tower, resulting in it being unstable and eventually collapsing. For that reason, a

rather common approach of implementing the game’ s mechanics was via Bayesian model,

that could sequentially create a chain of events that could resemble a cycle of

understanding and interacting with both the environment and the objects in it. Two

important questions seem to emerge and tackle with the scientists’ skills; as far as the sense

of touch is concerned, what could one do with contact information and the force applied to

them, in align with object recognition of referencing, to computer vision

The researchers had to deal with an interesting and quite huge amount of yet

physics limitations, that would in fact slow them down. In contrast with the later, they were

able to produce effective methods that could successfully tackle with those. The main logic

behind the game’ s methods has been a completely hard-coded state machine, that will be

able to choose the best available next action to be taken, based on several measurements

coming from different sensors embedded on the robot’ s body producing a massive number

of signals, ready to be processed. Also, the robot used to consider the number of successive

successful extractions operating in different randomly created towers. It is worth

mentioning that the design of the problem is such that does not account for the presence of

an opponent. Moreover, as expected the robot uses two different sensors, an Intel

RealSense D415 RGB camera to be able to record RGB images showing the pose of the

tiles that correspond to a 6-DOF system of movement (regarding its placement and

rotation) and an ATI Gamma 6-axis Force-Torque sensor mounted at the wrist, to be able

to measure the applied force on the tip of the robot hand’ s finger, so that they could

calibrate the impact it had accordingly. In a general manner, the image representations

made by the camera were inaccurate many times, which led to misfire of fail signals, based

on criteria such as after a tile is extracted the tower rotation caused would not exceed 15

degrees and in terms of placement it would not appear to have moved more than 10mms.

Noteworthy, to be able to simulate learning process and experience. all the measurements

were entering a buffer of poses/observations including the tower condition, so that the

robot could process them in a way that would simplify the task for choosing the best

suggested action.

To provide some more clearance of mind which also serves well for explaining

why the scientists produced choosing Jenga for those not familiar with the game, it consists

of several tiles placed on top of one another to seem as if they represent a structural

admiration, intuition, and smooth movement. Therefore, the tower will not become

unstable, which could eventually result in it falling. What is more, it requires a proper

extraction technique or algorithm, to have the best decision of tile extraction off the tower

of till Furthermore, it is obvious that in order to provide the robot with the information

needed to be able to run the simulation and guess the ultimate number of possibilities, it is

obvious that a loop is needed.

The results bore fruit, proving the researchers correct regarding the state machine,

as it would turn out to be an entirely different level of abstraction to expect the robot to be

able to achieve rule extraction based on the two senses they gave to it, vision, and contact.

In fact, they compared it to different well-known techniques used in machine learning, to

be able to evaluate its performance. More specifically, the first one was reinforcement

learning using PPO implementation from the OpenAI gym framework. As a reward they

set it to be the positive displacement of a tile, from minor to major turbulence caused to

the tower’ s position that counted for negative reward. Second, they used Gaussian Mixture

Model with a Dirichlet Process prior over the number of clusters to include image

abstraction representations. They discovered that values for DP < 0.7 were not able to

detect clusters in the image samples given, including ‘move’, ‘tile’ which stood for

detecting presence of tile in the image, or ‘no block’ to express the absence of tiles in the

image sample given. At this point it is worth mentioning that the scientists after different

and random feed of samples, they concluded that the best number of representations in

terms of clusters is 4, without providing more clearance. Finally, they also compared their

model to the one they produced after using a Bayesian Neural Network, modeling the state

transitions and force applications to the tower blocks, so that they could maintain history

and simulate learning in a way that could map the tower interactions mapped to the physics

conditions established after performing an action on some block.

After theoretical testing, the researchers created a physical world representation of

their simulation to be able to test their lab results in real world scenarios, where robot and

tower enactments could not be fully predicted. As expected, compared to the three

techniques mentioned above, the implementation was able to yield better-suited results and

thus, leading to more delicate application of force and block choice extraction decisions.

A major impact seemed to have made the fact that the state machine they used was hand

coded, which actually led to a much cleaner version of the pick-and-push process, along

with properly handling the pre-calculations along with the post-manipulation and physics

simulation of the tower’ s block positions and rotations.

2.2. Robotic framework for structures and their importance in our lives

Another piece of scientific work that has provided additional background includes

a topic similar to the one discussed in this dissertation, with various points being quite

similar and involving the need for solving very similar problems, entitled Greedy Stone

Tower Creations with a Robotic Arm and introduces ideas and implementations, mainly

exploiting various third-party created software to explore the possibility and dynamics of

stacking different shaped stones to form tower-like structures [5]. The key points of this

research are that of a robot is tasked with stacking stones of unknown shape on top of the

other, while utilizing PCL framework and clustering algorithms for processing data fed by

a RGB camera and a force/torque sensor. Since its birth, mankind has always sought shelter

from external weather conditions threatening to harm their health and outdoor potential

enemies, including other humans. This led to the creation of houses that could serve their

purpose to be reliable and sturdy enough to withstand outcoming damage of all sorts. That

is how the idea of having structures housing humans was created at first serving as their

property and aiming to provide stability and safety. Speaking of creation, if we look into

humankind’ s evolution, we will also notice the dramatic change in both size, design and

material requirements. Eventually, humans started organizing into communities and

societies, sharing their ideas of hospitality and human shelter as part of their civilization.

As time passes, one cannot but notice that the evolution of humankind, among other things

including but not limited to work places has been drastically altered, since teams of people

with common goals started appearing, with needs to organize themselves under the aegis

of the same organizations. In modern day societies, the ever growing need to provide

companies along with other forms of organized common life has been driven by and

sometimes even strongly affected by the quality and quantity of the constructive materials

available.

After centuries of evolution, humans had finally the intellectual capacity to

understand and seek ways of automating the creation of such structures, an effort that was

kickstarted with the first Industrial Revolution, taking part during the 18th century. That

was the first official attempt by humankind to apply formerly acquired knowledge in many

sectors of science through machines. Since peeking into the very beginning of machines

helping humans to achieve their goals, let us now investigate modern applications along

with their impact on a primal need that has driven humankind since its origins. The

production of quality-level buildings that would serve as shelters from the outside world.

Trying to provide a clear understanding of the line of evolution so far, we will

briefly mention the presence of huge machines such as bulldozers to be able to cover up

for the need to apply great workforce into creating large structures. The next idea that

included industry, seemed to be the automation of the production process in many goods

and services. The final and most interesting part has been the exploitation of robotics, that

would actually come to put an end to human supervision and need to overlook many parts

of automation processes, since it has been unavoidable that at some point machines would

have to decide for themselves as to what would actually be the next best step, in a scenario

that has not been part of the main production chain, especially when there are dire and

high-cost consequences, coming as the result of automation in industry, e.g. the creation

of structures.

That was a crucial point where robots could play such a key role, since there are

many distinct aspects of the building process that could be automated. Admittedly, one

could expect that in such an environment where most of the factors are well-measured and

known at their full extent to affect the process, it would be rather needless to say that there

is an increasing need for human supervision. However, the truth is, that even the most

recent ways of robotics application in construction have been in indoor environments,

where there is, as mentioned full knowledge of the environment and the availability of

certain materials. So, what happens when we need to consider the fact that construction

includes outdoor structures, without predominant knowledge of what could be used us

constructive material, since the robot would have to utilize the available resources.

Imagine that at some point, which is a really close goal of humankind to be

achieved soon, humans decide that the planet’ s resources have become somewhat unable

to sustain the growing needs that modern lifestyle is demanding. In fact, due to

overgrowing population growth, that case of scenario has already decided to be provided

with the solution to create house-like structures at other planets, such as Mars. Due to the

needlessness and inability of humans to create the surviving habitat on such planets, robots

have been tasked to create and provide us with pre-made constructed buildings that could

serve as houses.

Unfortunately, considering the complexity of such a task, many researchers have

concluded that it is no longer possible to carry with them the materials needed to achieve

the above. This, however, has led to the creation of the idea to provide construction robots

in outdoor environments with the ability to identify and use already existing resources to

create such structures. Driven by this inspiration, many scientists seem to have seriously

considered to put some effort into developing similar case solutions. In this paper,

researchers were tasked and challenged with the need to create simulations with robots

being able to identify objects that could be put to such use and later, form constructions

with some structural order, namely stack them vertically, which would mean that they are

able to balance, something that has always been considered extremely needed.

To be able to simulate and minimize the working process, the scientists decided to

use a robotic arm empowered with an RGB camera and a force/torque sensor, to be able to

perform the following tasks; identify an object that has already been present on the scene

and later use it to balance it atop other similar objects, while maintaining structural stability

and thus, balance. More specifically, the force sensor was placed at the attaching point of

the gripper to be able to account for the impact that would be created after the placement

of each new object on top of the existing ones, since that would be the place that would

provide them with the necessary feedback to proceed with the implementation.

Furthermore, the camera sensor was able to provide high resolution images that were used

to identify objects based on their key points, in other words frames created by discovering

some important points of the seen objects, recognized with the help of PCL (Point Cloud

Library), which is an implementation of the ISS (Intrinsic Shape Signatures), a framework

that describes the importance of certain points of an object that help identify its shape. The

last step was to rotate the object identified to a default pose, based on clustering algorithms

that could verify the presence of enough points to confirm the presence of an object and of

course the fact that its flatter surface is vertically pointing.

The results were not really encouraging however, showing us that there is still large

room for improvement. More accurately, the experiment conducted via the effort of

consecutive runs of the robot to try and stack four different objects, namely rocks in this

case. The outcome was that the robot was able to successfully stack all four of the rocks

on top of each other on only two out of the eleven trials, which was more than two times

the cost of failure that the scientists have predicted. However, it is worth mentioning that

this should not be taken lightly, as in a real case scenario, it is guaranteed that the robot

will have a lot more alternative options, since there are expected to be more objects in the

scene. Also, it could potentially mean, since researchers revealed for example the

percentage of successful placements of rocks of a set consisting only of three of those,

which was a solid seven out of the eleven different efforts, that in a general case scenario

where we assume N available rocks, the probability that N-1, N-2... etc. is still a very

promising expectation. In other words, what could not be achieved due to lack of

experiment conduction materials at its peak, could not necessarily be a failure, if we extend

the number of available objects on-scene, meaning that what appeared to be less than

acceptable, namely stacking less than all four stones could be more than enough in actual

life problems.

There has been and always will be a need to create structures that can house humans,

or even whole teams of them. What is more, the current work could be considered only the

beginning of what will be one of the most popular tasks to achieve in modern robotics in

the next few years. It is unavoidable that humans will have to turn to robots in order to

provide a safer option to construction and make the most out of the available resources,

without the need of human supervision.

2.3. Robot autonomy and human-robot collaboration

Years have passed since computers have entered our lives, but whether that was

efficient has been affected by the ability to imitate and solve problems, along with the

quality of solutions. It is quite common to consider the complexity of a problem in order

to be able to decide the best course of actions that need to be made towards solving it. For

robotics, after researchers managed to solve simple kinematic-like problems, they turned

to more advanced issues that encompassed more delicate approaches for them to be able

to complete certain tasks. A communal problem that has troubled scientists and roboticists

among the world has been the creation and maintaining of a Jenga-like tower, as it will be

described shortly, demonstrating the importance and complexity of a planner to efficiently

proceed with solving a planning problem [6]. Most common reasons have been the need

for a planner that can safely evaluate the best block candidate for removal, along with other

reasons, such as the ability to maintain stability. In this paper, a PIONEER armed robot

with 5 degrees of freedom was created, keeping the overall cost to the minimum possible,

by using previously made system components (such as the PIONEER robot itself) and

strategic algorithms to be able to predict system failures. The robot PIONEER by Adept,

has been one of the most used robots in scientific research, since it provides flexibility,

because it can rotate about 300 degrees in a second despite its low speed, autonomy due to

its long-lasting batteries and of course the programmable interface to simplify control over

it, 5 cross-platform tools. It also features high-precision sonar sensors, making it ideal for

tasks that include obstacle avoidance and navigation in complex environments. So far,

previous works have been implemented in similar problems by South and PhysX,

simulating the physics that could represent such a tower along with the conditions to

maintain it, but we should bear in mind that they did not go as far as the 18-level tower,

but were able to partially construct it.

The current system was able to surpass that limit significantly by creating a full 18-

level Jenga structure and adding another 10 levels on top of it, while, as mentioned above,

the team tried to keep the cost to the bare minimum. Remarkably, the main and in fact only

strategy adopted was the random selection of blocks, which was evaluated by a 3-stage

planner, called BRP (short for Block Removal Planner). It is worth mentioning that despite

the fact that the overall performance achieved was nowhere comparable to the one using

the Kroger platform, it was able to deliver incredible results, especially if we consider that

as far as sensors are involved only 2 vision camera sensors were used, a decision that put

this robotic arm implementation ahead of previous and later robots that mostly feature

vision and force-torque sensors to be able to maintain tower balance and avoid collapsing

due to overextending the force applied by the robot in a given moment.

The planner, as described above, only consists of three distinct stages. The first

stage is the one responsible for creating a list of potential blocks to be removed, based on

neighboring tiles according to the previous extraction action performed. The second step

includes the selection of one such tile using heuristics to provide selection. At this point it

would be important to note that due to minimizing the disturbance levels caused to

neighboring tiles, the central ones were chosen with slight priority over side tiles, if

possible. Also, regarding heuristics used scientists did not further specify the methods used

in the paper. The third stage appears to be the most sophisticated one, since it conducts a

physics simulation to compute the efficiency of the removal of this block, judging by the

overall tower stability it results in. Based on proper gripper rotation it is assumed that the

movement will not cause any close by movement, thus disturbing the transform (including

position and rotation) of neighboring tiles. Vision-based error detection is used to evaluate

the cost of this move and the option to abort it is present. More specifically, the planner

uses heuristics to evaluate the remaining stability, using iterative techniques throughout

the list, starting with the tiles closest to the one chosen in stage 2 if it is deemed as a bad

removal option. The latter is determined by the return value of the heuristic, which

compared to a threshold of overall tower stability set by the user will determine the overall

quality and safety of performing this move.

Moreover, it is worth mentioning that the project was able to sustain continuous

monitoring of the tower' s motion through the vision camera during the removal action to

be able to launch a 'stop' signal in case of threshold exceeding. The above was achieved

with limited resources, such as a single desktop computer to perform the decision-making

and processing of the sensors' readings. The main logic consisted of two subsystems, with

one of them being the CMOS camera mentioned before as the most critical component,

which provides the necessary image readings, which are then transformed into a 2D planar

version of the image to represent the player' s point of view, increase realism and reduce

error. The second system is the one that handled and processed all motor commands passed

to the servo component to be able to manipulate the robotic arm in a successful way. Also,

the distance from the griper to the tower is considered known and standard, while it is

worth mentioning that the tower shape and size, along with lighting and movement of the

structure are constantly considered, resulting to a more accurate image representation. The

motion of the servo-based robotic arm on top of the PIONEER robot is only position

controlled, which led to fewer actions needed to be taken, but also the necessity of initial

orientation to be given on the gripper.

The Player system following the server-client architecture as implied above

continuously keeps on listening for position change controller commands. Furthermore,

the best outcome able to achieve was 28 levels of Jenga tiles, however in the final

implementation it had only nine levels of tiles due to the length limitation of the arm used.

This, however, should not be accounted for as a failure of compliance with the standards

it set. Instead, it should reflect to the various difficulties that robotic systems manipulation

includes when dealing with more complex problems, such as Jenga, Also, to avoid the need

for further computations, whenever a tile was removed it was not placed on top of the

structure as the game suggests, but instead it was dropped by the side. Again, this was

raised as a decision to avoid meaningless computations, without meaning that it could not

deliver the proper actions requested and reach its goals. It is noteworthy to mention that in

case of tower being disturbed by a single move due to e.g., blocks being out of place, then

in this scenario the system and eventually the robotic arm itself were not to perform any

corrections, staying consistent to the game rules in real life scenarios. The most helpful

components of the entire process were the vision-based estimation of the tower state along

with the correction algorithms and measures applied to it, while the continuous monitoring

of the tower' s movement was providing with real-time data on overall tower stability,

being able to assist in structural integrity and sustainability.

The main inspiration behind this paper and the ones that contributed the most to

the final result appear to be already known commonly used Jenga block extraction

strategies, the values monitored during block removal trials through simulations and the

realistic and low-cost physics evaluation considering tower stability. However, there is

always room for improvement, which in this case could possibly mean better image

processing techniques using better resources along with more accurate movement

detection algorithms to be able to monitor and interpret the tower' s stability in order to

provide the system with better and safer removal options. Furthermore, heuristics can

always be improved by adding more parameters, considering several factors such as history

kept to compute the next move and of course combination of both, all in favor of

maintaining tower stability. Another example of future work can reflect on the validity of

simulations, which could be more accurate in the future. The last, however, should be done

with caution due to possible dramatic increase in both computational and physical costs,

as it has been one of the key points of this research to maintain small cost.

The next step in literature review regards ways explored that involve human-robot

collaboration. Admittedly, it can become quite complex for a robotic system to understand

its environment, let alone operate in it and achieve its goals. Thus, having discussed

increasing the intel it gathers above, it is time we consider ways to fuse motion planning

and task completion with human intellect. The study that will be presented introduces a

modern system that can simplify the process of robot automation, by involving humans.

More specifically, it elaborates on constructing an intellectual bridge to fill the gaps that

prevent robots from being fully operational, replacing complexity tasks with human

interaction [7]. In modern day industry, throughout many different sections of applied

sciences and trading, along with coordination and transportation, there has been monitored

a direct increase in automation of fulfilling specific tasks, most of the production process.

However, not all areas have been automated, which creates an ever-growing need for

applying techniques where the progress of the completion of a task includes supervision

and most of the time collaboration between humans and robots, thus the lust for creating a

bridge to be able to combine the dynamic capabilities, or as mostly wanted, the best of both

worlds.

A terrific way of achieving the above is through being able to make a robot and a

human person handle and manipulate objects and actions in the same environment, at the

same time if possible. Such abilities are offered when using augmented reality, also known

as AR, where the user can manipulate virtual objects, actions that take place using the real

environment as a setup. Of course, similar techniques such as VR and MR are also

frequently used, but for the sake of this paper we will be focusing on AR. This enables one

to interact with virtual objects placed at a known environment in a robot-agnostic and

object-centric approach, giving the means to spend more time on determining the actual

goals, rather than spending time specifying the respective actions to achieve them

whatsoever.

This opens a whole new world of possibilities why the more complex the setup of

a robot and the problems it aims to solve, the harder it gets for the user to be able to

understand the dynamics and actual reach of each potential, other known as reachable

workspace. Furthermore, the user is un-bounded by the restrictions of the use-case

scenarios of a robot' s planner, along with the complexity of organizing the actions needed

to be able to achieve the desired goal. Let' s just consider a problem where a user demands

the robot to be able to pick and place cans of same shape and size from position A to

position B. We can easily think of different scenarios for this problem already, for example

cans placed with different orientation and spread across more than one location. The way

someone would come to naturally approach this problem would need a lot of man work

and time spent to create a controller that would be able to create valid plans to achieve the

above. By using AR, one can only focus on the representation of the objects, along with

the motion plans to be able to make it feasible, with the latter not even required to be

optimized, or even valid.

So, for the sake of clearance, let us repeat the plan of execution. The user can share

information and communicate with a robot via AR, used as the bridge to overcome the

problem of combining the best capabilities of task automation and human supervision. In

this way, the user can define an initial position of the cans, as mentioned in the example

above, which is the actual test-case scenario in this paper. Then, the user could place the

cans in an entirely new area, which would later enable the planner to take over and produce

approachable schemes of action and motion planning.

To be more specific, the robot gripper in this example is dubbed Fetch and, on its

endpoint, includes sensors such as vision cameras. This enables us with feedback that could

be used to create created plans, or provide us with information concerning the interference

of the user during each step of execution of the planner steps. Had we taken a more

traditional approach on obtaining our goal, thus called low-level motion planning, we

would end up with robots being functional only under human teleoperation, or manually

setting collision-free volumes in order to optimize the determined trajectories of a robot' s

motion.

The intended goal is to provide the user with a framework that will be able to let

the user focus on high-level operations, based on previously programmed low-level actions

that make up what is a called, as mentioned above, a high-level action. The user is assisted

with visual representations based on the Vicon camera feedback we get from the sensors

of the robot. In this way, it is easy to group low-level actions such as planned paths, objects

that are selected currently and gripper selected actions into a group of useful information

to present to the user.

It is worth mentioning for once again, that the user is responsible for the recording

of start and end positions of the objects they wish to move. The robot takes over from that

point, executing a pick-and-place algorithm expressed in steps.

The combination of dynamics mentioned before, however, poses some serious

limitations, including the lack of extendibility of the low-level available actions, that do

not cover for different versions of the problem, a different environment setup, or a

completely different problem. Although, the scientists decided to keep the idea of a virtual

inventory, which serves as the user' s personal warehouse of objects to be used, which will

be able to combine the user' s intensions, expressing them through the robot' s selected

motion plan.

With HARS (sort for High-level Augmented Reality Specifications) a user can take

advantage of an AR interface, can define the transform of a virtual object coming from the

virtual inventory, including position and rotation, and later let the robot take over by

implementing a motion planner in a much more dynamic environment, rather than

hardcoding the actual possible states, which undermines a latent pose-agnostic virtual

object placer.

To achieve all the above, one would suspect that the user then struggles with a lot

on their plate, considering the complexity of certain tasks. However, not the user does not

need to know the actual low-level actions taken, but also it enlarges the area of goal

implementations, which is introduced as a goal region.

To be more specific, a goal region is nothing but all the valid alternatives of a

motion plan to complete a desired action target. The user can define the orders of

magnitude that the above will impact the plan execution. This is achieved by applying

workspace constraints. These are simply distance tolerances to consider it has approached

a target (either an object, or location) and can be modified by the user.

Moreover, a set of different workspace constraints can describe the general

preferences of the user to consider an object as preferably placed in the desired location,

while maintaining respect with a real object. This could safely be interpreted as a goal

region, or even so a goal state, containing all the information that can identify that a robot

has reached its target configuration.

It is worth mentioning that while in goal pose configuration, it is essential that the

robot used must not be colliding with any nearby obstacle. This is both realistic and time

saving, since having to perform several calculations to determine the above could have

cost the robot both time and processing power. However, the real problems come into place

when the robot detects a previously unreported object in the path towards the goal state.

Through the AR interface, this can be easily overcome by generalizing the area that an

object can be placed within. Also, the robot tends to keep track of the order of the user' s

hand, which enables it to captivate a more refined idea of the appropriate path. The real

dynamics of this paper' s suggested proposition comes into play with the user being able

to preview the robot' s intended motion, giving them the ability to alter a mistakenly made

choice by the robot. We can already see how valuable information sharing is when it comes

to human-robot collaboration.

Upon initialization, or as referenced the 'boot', based on the localization system

used by the robot a position frame reference is used to compare the virtual with the real

object' s position and orientation, maintaining calibration, a process repeated in each

session.

Returning to the example mentioned before though, in that simple scenario which

represents a very practically common working problem that needs to be tackled even in

modern robotics, the Fetch robot will first have to identify each own position, proceed into

understanding the target' s position and finally approach it, while using distance tolerance

defined by the user to determine whether or not the object is within reach. It then checks

for any non-previously reported objects that interfere with its course of motion and finally

creates a representing area from which it will be able to approach the target-object. After

that step, it also uses a placement region which corresponds to the area that could be used

to place the can, letting the robot freely choose any available spots.

With the above techniques the scientists were able to create a more generalized

version of a human-robot collaborative way of achieving complex tasks, with the use of

high-level motion queries, that can reflect to more open requests from the user.

2.4. Human-like robotic arms

Published at IEEE in 2011, with the aim to create a robot capable of playing Jenga

using artificial fingers [8], it has emerged to be one of the few scientific articles that seem

to be tackling with an almost identical problem. It also features a more human looking

robotic arm, trying to imitate the same complexity that encompasses human armature.

Main tools are an omnidirectional camera and a metric introduced for computing structural

integrity of Jenga tower called degree of danger. It has been well established that as society

evolves and more sectors of science turn to task automation to be able to focus on more

sophisticated and complex aspects of problem solving, we need to force greater use of

robotics with higher intellectual capabilities along with more developed decision making.

In fact, we can already witness both the need and application of the above in various aspects

of industry, increasing productivity and reducing the need for human supervision. It is even

more commonly known that to achieve greatness we often need to start small. That is,

researchers usually tend to game simulation, since they combine both strategic decision

making and physics simulation in providing the full experience. It is widespread among

scientists to usually consider two diverse groups of games that could in fact be enhanced

and simulated with the use of robotics. The first group consists of games where it is

essential to apply more sophisticated techniques to provide challenging solutions and

actions on an entirely virtual and simulated environment. The other group consists of

games that can be interactive in real-time and in the real world, played against actual

human opponents. Speaking of games, one of the old favorites has always been Jenga,

having both tactical reasoning and understanding of the environment as mandatory

qualities.

In summary, among other teams of scientists, this specific team focused on being

able to utilize a more human-like approach of playing the famous board game. To be a

little more specific, they decided the use of a multi articulated robot hand, consisting of

two fingers covered with soft skin, instead of following the common approach of utilizing

a gripper to be able to select and grab blocks to be extracted. In addition, they used as most

researchers suggests an omni-directional camera, with the obvious difference being the

fact that the camera can provide depth in the images created, instead of 2D planar-like

cameras that have been used so far, ignoring the information that such commodity could

provide us with.

The main problem they have been focusing on, could still be interpreted as a more

enhanced version of the ones already explored, since it worth mentioning that it includes

playing against a human adversary, yet the goal is still trying to stack as many blocks as

possible on top of each other to create new levels of tiles while maintaining tower stability.

As a result, an experiment was conducted by taking turns against the robot to show the

potential of the robot’ s block extraction evaluation function.

The research group was in fact trying to approach Jenga robotic simulation in a

more interactive and dynamic example, involving the unpredictability of the human factor

interaction with the robot, to be able to demonstrate that such an option is already available,

giving more solid ground to future collaboration between humans and robots which could

combine the productive scalability of machine application in industry, along with the

human mind’ s ability to analyze and find similarities in more complex problems. This

could lead to a new industrial revolution, forever changing the way we can produce the

necessary goods around the globe, covering the needs of millions of people. Although it

all sounds exciting and very promising, for now we will be focusing on describing the

endgame of this scientific experiment, after going through the process they produced, to

overcome step by step the different difficulties their dream had to go through.

Two things have been common with previous approaches, despite the innovative

design of solution they tried to provide. The first thing has been the camera they had to

include in their implementation, which along with force sensors placed on finger tips were

responsible for the tasks corresponding to block detection and finally the need to calculate

the force with which the robotic arm should be extracting and placing the tiles from and to

the tower, keeping in mind the necessity of maintaining tower stability.

It is now vital that we describe the method of extraction and algorithm to be able

to calculate the force that had to be applied. But first, let us take a brief look at the robotic

arm itself. In this study, the robot arm is the PA10-7C arm, provided by Mitsubishi Heavy

Industries, Ltd. and has seven DOF (degrees of freedom). It is also worth mentioning that

the way its joints have been distributed in a way similar to that of human arms. First things

first, we must look at the way the objects are recognized as tiles. The camera serves the

purpose of providing the robot with 2D 640x480 pixelated feed of planar-like pictures of

the environment taken with a VS-C450U-200-TK by Vstone Co., Ltd. camera and

recognized objects that is later used to represent the 3D image of a tile. As we mentioned

above, the latter seems to be in contrast with their claim of not basing the image processing

into 2D images, but it still impresses that this is achieved indirectly, since the 2D versions

of the objects detected are fed to a middleware that is responsible for representing the exact

block. The next step in the algorithm is to evaluate the danger that extracting the block

identified implies to the whole structure’ s stability. There is not present a more

sophisticated way of approaching the selection of a block to be removed from the tower,

however the camera that is able to identify the one it recognizes first, also serves to provide

the algorithm with a list of one or two alternative candidates. We also need to specify that

all tiles are expected to have the same thickness and mass. In addition, the main area of

focus as the tower gets taller is always with the camera focusing at its center, to maximize

the blocks it should be able to detect. Noteworthy, the main logic behind computing the

degree of danger is the fact that we consider the number of upper surfaces a virtual vertical

line drawn from the top crosses their very center until the blocks at level that stops in the

middle of the tower. In case there is just one candidate, the above metric is not used, but

in case the latter is not true, we obviously must choose the one that returns the shortest

value, since it means that it plays the least significant role in the tower’ s stability and thus,

its removal will have the least significant impact. At this point, we must make clear that

the process of placing the tile back on top of the tower follows the same principle as the

method of extraction, with a small difference; the metric is now considering a virtual

vertical line drawn from the center of the tower all the way up to the top, however it is still

important to point that the minimum value is still selected, since we aim to disturb the

tower as little as possible. As far as the force sensor is considered, we must underline that

small six-axis force sensors (NANO5/4 by BL. Autotec Ltd.) were placed on the tip of the

fingers to provide the best feedback possible, while the soft skin covering the arm was

made by elastic gel to make the arm manipulation task more stable providing additional

frictional force.

The main experiment conducted represented a match between the robot and a

human competing on a six-level tower of Jenga tiles. The main task was to prove that in

order to provide more accurate and precise force-based measurements that can lead to

better results in terms of simulating human behavior we need to adopt a more man-like

approach of robot design. Mimicking other beings’ behavior has acted as a deterrent to

help in humankind’ s evolution, both emotionally and physically. It appears that we should

follow our own example and provide robots with physical design as close as possible to

humans to expect better results.

Previous mention of the importance and involvement of board games in robotics

evolution has been referred to as a crucial factor to speed up the development of complexity

and completion of more sophisticated, so called high-level, actions that a planner is

expected to perform. Due to this significance, researchers have been motivated to work

and study robotics in similar cases, which led to more concrete base for developing robotic

systems that are both human-like and can prove to be worthy antagonists against humans

as described in Development of a Jenga Game Manipulator having Multi-Articulated

Fingers [9]. Past work by the same team is discussed above in this dissertation and has

been extended and driven by the same factors as certain researchers have based their work

on the implementation of a Jenga tower manipulator. More specifically, in contrast with

former attempts they put a significant amount of effort to be able to further simulate the

experience of human involvement and playing of Jenga, to provide us with more concrete

examples of greater influence of robots in everyday activities and, to study the interaction

between humans and robots in a more dynamic environment.

It is widely admitted that games can be an incredibly challenging, yet rewarding

area to apply robotics, since one needs to tackle with many different issues to be able to

deliver a working simulation. Furthermore, they serve as a working blueprint of human

intellect application and study, judging by their nature to stimulate the brain into thinking

complex solutions and strategies to overcome different obstacles. Jenga, the world-famous

game, for example, is quite widely studied into applying robot manipulation and planning

techniques, mainly since it combines environment detection and understanding, along with

strategic planning and physics evaluation.

As mentioned above, the current study was heavily influenced and based on

research conducted barely a year before this one was published. Most importantly, it

offered some great alterations to the various aspects of different implementation parts,

while maintaining the same principles, ideas, and goals. To be a little more specific, the

main course of idea was aimed towards the implementation of a robotic hand that would

be able to suffice into playing competitively against humans with two articulated fingers,

instead of utilizing a gripper as in former experiments. What is more, they researchers

decided to cover the whole arm with soft skin tissue, to provide more stability while getting

a grasp of the Jenga blocks during extraction and placement. As far as the tower state

recognition is concerned, they used an RGB camera that would provide the robot with

different frames of the tower, while they were fed to the planner which was responsible for

choosing the best candidate tile for removal through a sophisticated intuitive method of

extraction.

Let us first discuss the key differences that distinguish the current implementation

compared to the already existing as it was described above. We first need to clarify that in

terms of logic applied the same process was followed, so it is important to point out the

fact that the scientists considered the pre-made concept as fulfilling to provide nice results,

however the main differences lie within the implementation followed as it was significantly

altered and improved in unusual ways. What is more, they still aimed to mimic the way a

human would play the game in the most natural of ways, which justifies the claim that their

goals did not shift from the original study, an important reference to elaborate for the claim

we made above. Considering that partially the research team behind the newer

implementation consisted of members that took part in the very first implementation this

should be expected and a means to firmly insist on creating robots based on human

resemblance, as it provides more stable and natural results, helping us understand the way

robots should be created in order to be injected in our lives, a fact that seems unavoidable.

So, to resume on enumerating the distinction between the two implementations; first, there

were significant improvements to the state recognition time needed for the robot to

understand the current state of the tower, which also involves the proper tile chosen to be

removed. In detail, instead of an omni-directional camera, they decided to use a monocular

one, which might have restrained the FOV (Field Of Vision), however it also led to fewer

unrelated information to be fed to the planner, which created the necessity of providing

less images for processing to understand the way the tower stood still, leaving more room

for providing a more realistic approach. Second, another key improvement was the ability

to make the fingers used by the robot hand thinner which provided more refined movement

and successful tile extraction along with error production, eventually leading to making

fewer miscalculated decisions. On the contrary, more accurate actions were able to be

made on the cost of having to use commercially used Jenga tiles, since it was no longer

needed to use custom made tiles, namely strapping two normal blocks together due to the

wider implementation of the fingers, which happened to be the case in the first study. In

addition, another significant impact was made after altering the position from which the

tiles are grabbed. This time, instead of having to grab a block from the top, the two fingers

of the hand can grasp a tile from the side, mimicking the human behavior and giving the

opportunity to play with higher Jenga towers, since that has been a major constraint of the

previous work, as it only allowed three-level towers to be implemented based on the arm’

s length.

Combining the above with the robotic arm already present, it helped the researchers

create a more reliable and realistic implementation of a Jenga manipulator, which could

realistically play Jenga [3]. Noteworthy, the project was separated into different tasks,

judging by the differentiation of goals needed to be achieved as they were described by the

scientists. The order of these tasks is the following; first, they had to be able to provide the

planner and in fact the robot with the ability to recognize the tower state, to be able to have

the available data to compute the best tile removal candidate, a task that was achieved

through the addition of the monocular camera mentioned above. Second, the images

provided created a tower state representation that was able to conclude to a specific tile

choice to be removed, through a sophisticated method. It appears that the scientists, in

order to maintain tower stability, they thought of a metric called “degree of danger”, which

simply counted the number of upper surfaces a vertical line would cross from the bottom

all the way up to a level k, passing through the center of gravity of these levels, namely the

center of gravity of the block placed in the middle position of each Jenga game level. In

case more than candidates were present, we would have to choose the one that had the

smallest degree of danger, since theoretically this would correspond to the safest available

option. The next step was to decide where the grabbed block should be placed, having only

three available spots on top of the tower. This led to simpler computations, but at this point

it is interested to point out that the scientists thought of this process as similar to the

extraction functionality and thus, the same metric was used to evaluate the position that

posed the most minor degree of danger, interpreting it as the position that would have the

least significant impact on regards to the stability of the tower maintaining its balance. For

simplicity, we just skip the discussion of the remove/place process followed by the robotic

hand, as it is implied to be mechanic and same in all different scenarios. Instead, we should

focus our attention on a similar issue that came up during implementation. That issue was

no other than the obvious asymmetry in the block shapes, since they were slightly different

from each other, something that very well could be the product of misplaced actions. To

solve this problem, the researching team decided to slightly tilt the way the hand should be

grabbing the blocks every time to be able to deal with the different placement ways that

could potentially lead to false grabs and tower collapse. Moreover, the force sensors were

placed on the tips of the fingers to provide more accurate calculations regarding the force

needed to be applied during placement of a block back on the tower.

Experimenting, in contrast to the first implementation, as we mentioned above, it

was a game changer to be able to create greater towers of Jenga tiles, providing more

insight as to whether the implementation was hugely successful. There is room for

improvement, since the robot did not seem to have the expected results, however there are

many factors that could be altered and provide us with better results, e.g., providing the

robot with a more sophisticated tile extraction method, or taking more than two images of

the tower to understand its state, as the current implementation suggests. Finally, we should

also mention that the game between a human and a robot is automated apart from the fact

that whenever a human has completed a move, they need to signal the robot to initiate its

move decision, a point that could also be altered in future implementations. However, the

scientists seem to believe that a more human-like robot is expected to achieve greater

performance.

2.5. Motion planner benchmarking

Continuous evolution of both hardware and software regarding robotics has led to

a spontaneous need of performance measurement to performance assertation to ensure

efficiency, separating mere solutions from implementable actions. Under the lines of this

guidance, the word performance was associated to benchmarking. This has led to the

development of tools and thus problems that can measure the efficiency of algorithms,

problems, and software in robotics, which will be introduced in the presentation of

different benchmarking problems that can safely evaluate the efficiency of different

planners in a problem-agnostic way [10]. Use of robots in various aspects of modern

lifestyle and culture seems to be growing with exponential rate, eventually leading to the

need of a measure or metric to be able to compare different planners. Moreover, one of the

recent planner trends that has received excessive attention in recent years is no other than

the one of motion planning, aiming to provide automation and ease among different TAMP

(TAsk and Motion Planning problems). Transportation, medical applications and industry

are only some of the highly affected sections of the fundamental gears that keep today’ s

societies from falling apart and seem to also attract a lot of attention considering the fair

fact that their role is so crucial that one could not think of a single day in their lives without

the exploitation of what technology has to offer on regards to the services mentioned above.

However, as we previously underlined there is no current way of being able to provide a

concrete and solid comparison metric as to which should be esteemed as the crown leader

of each corresponding problem. That issue has been tried to be dealt with a team of

researchers trying to provide us with the first platform independent evaluation method and

format of organizing and presenting such problems, through a collection of benchmark

issues trying to cover the most popular and challenging aspects of TAMP.

To begin with, we need to understand the reason such benchmarking system is more

than necessary. In fact, robotics has received global recognition and interest across its

application to many different scientific sections. However, that alone would not be able to

provide us with a clearer image about the usefulness of the potential of planners and robot

controllers in general, unless we are able to compare them effectively. Let us first have a

brief look at the evolution of humankind through technological advances and its impact on

society. Humans have always, for example, have struggled with the need to be able to

provide themselves with the food they needed, the shelter they sought, or even the clothes

that could protect them from different weather conditions. Throughout industrial

revolutions we have witnessed many different changes in technology and the progress

could not but be expected to eventually affect the complications and applications that the

effort to achieve the above would experience some alterations. Leaping through history to

avoid wasting the reader’ s time, it is only the least fair to strongly claim that we, humans,

have always struggled to industrialize technological advances to fit for our needs and make

modern life easier. Inevitably, humankind reached a point in time and technological

progress that could no longer spare us the time to handle problems of the past, as their

solutions were already invented, tending to turn our thinks into automating their

functionality, especially with the used of programmed robotic behavior. That has been

already widely known, however, it has been discussed the fact that us societies evolve our

needs tend to become more complex, meaning that we can no longer rest at previously

discovered techniques of planner evaluation, since today’ s planners and controllers tend

to describe higher level actions and even abstractions of robot states and actions. To give

a common yet still intuitive example, one could refer to the robot’ s location without feeling

the need to specify the coordinates of its base, rather than its relevant location to a known

environment (e.g., some robot X is in the living room), which if analyzed can easily be

interpreted as an abstraction of the current state of the location of the robot, where the user

is informed about the relevant (or, as explained by many researchers semantic) location,

preventing the user from entangling with details such as its actual coordinates. Furthermore,

we could also use a similar example to describe abstract forms of actions. For example,

one could possess a robot with the skill to provide them with a glass of water. During

robotics’ earlier stages of development, we would naturally care to define the different sub-

actions that would make up for the result, that would cover for transporting the robot to the

cupboard, get a grip of a glass, fill it, and then move on towards the user, until it could

finally stop. During these times it was relevantly easy to be able to compare between the

different planners, as their level of implementation included the most basic of actions.

In contrast with what we have already discussed, such methods are obsolete and

useless when it comes to high-level actions and states, that use one or more layers of

abstraction, unavoidably hiding most sub-goals needed to be achieved along with states to

be reached, becoming easier for people to understand, further develop and evolve the

actions taking part in goal achievement. This benchmark collection is primarily aimed

towards PDDL problems, but could easily be generalized to respond to other formats, such

as ASP (Answer Set Programming), or C+. Noteworthy, their focus has been around path

finding for problems issued to include the necessity of continuous actions.

Moreover, TAMP, this paper’ s main product of scientific research, includes those

problems that need to undergo certain modifications to meet certain requirements for the

comparison to be able to take place among similar planners. First, it is crucial that we

strictly define the established relationship between state representation and system

configuration including the hardware and software responsible for delivering the desired

outcome. Second, it is also particularly important that we specify direct relationships

between actions and motion plans, in order to provide a clearer understanding of the ones

responsible for contributing to the result the most. One could think of the latter as a means

of heuristics, but in case of judging by how much faster a variable gets close to the target

value, we could instead how much the desired outcome approaches what we mean to

achieve. At this point, we should point out that TAMP planners use their own symbolic-

geometric mappings to describe object states and thus, they are independent of the

language implemented upon. To be able to understand the general format of such a file we

provide the next definition and further elaborate; Σ= (S, A, γ, s0, Sg) represents a task’ s

domain different domains for evaluation. More specifically, S corresponds to the finite set

of states possible from the current state, namely the initial one. A, on the contrary, consists

of a finite set of all the available actions that could be performed from this point forward,

while γ is used as transition function which is used to give us the ability to move from one

state to a new one through a specific action, given that all prerequisites are met. What is

more, ‘s0' is simply used to identify the initial state, whereas ‘Sg‘ represents the set of goal

states that we wish to achieve.

Having made the above clear, it is obvious that judging by the vast area of non-

explored states, which includes both the ones we can reach in one step along with the ones

that can be reached later in the process, the amount of information we need to maintain

often tends to get out of hand, so it is beyond doubt needed to use on of the more compact

forms of representation, such as the ones mentioned to keep track of the various problems.

These problems could be part of other larger problems, but to be able to be classified as

TAMP, it is vital that they do not contain infeasible actions in their domain (A), also their

task space is often relatively large, otherwise there is not much use of benchmark problems

proposed and of course, we need to keep clear that certain metrics are also mentioned.

Among such techniques, we can count the trade-off between performing an action and

evaluating the progress we were able to make, the factor of monotonicity in terms of how

much certain objects are used compared to the rest and the general impact on current state

a planner includes, or in other words, how drastically the state space needs to be modified.

After discussing the preliminary requirements, we can now safely progress with

mentioning the problems on which the benchmarking process takes place. First, we

introduce the already famous problem of the Towers of Hanoi, and its extended version to

be able to handle the physics complications that should avoid a disc being moved while

being below another, which was successfully solved by providing the discs with greater

thickness. Second, they introduce the problem benchmark dubbed Block Worlds, which

involves correct placement of blocks with letters in alphabetical order. Third, we should

discuss about the problem of non-Monotonic, where the main goal is to place tiles in groups

based on their color, while considering their size. Moreover, they present the benchmark

of Sort Clutter where the robot is trying to place in size decreasing order the block it is

given. What is more, we have the Kitchen problem, which expects the robot to be able to

place several tiles in the proper order to achieve a desired sequence.

As modern-day societies tend to evolve, there seems to be an increasing demand

on delivering more complex services or products. It is undoubtedly part of our reality the

necessity of automation in many distinct aspects of life and the application of robotics

seems to be a reliable solution. However, as complexity increases, so does the level of

automation and its demands do, expecting for more abstracted, higher-level actions, while

the amount of information makes it crucial that we also describe the robot steps and

environment states in a compact, yet understandable way. This paper proves that it is also

still necessary to be able to compare different planners suggested and provides us with five

different problems to be able to understand how to correctly choose between the available

motion planners.

3 Methodology

3.1. Controller and implementation details

In robotics, it is vital that we combine each robotic system with a controller that

offers the necessary flexibility and efficiency when it comes to solving problems. One of

the options is to create a controller that can perform and execute specific problems and

actions. When this route is chosen, we soon realize that we cannot use such controllers

further than a certain extent, which eventually leads to inability of controller usage. Of

course, as in every situation it is wise to always measure and consider the advantages and

disadvantages of each method studied or used. In this case, this type of controllers offers

limited dexterity and solution to problems where fast prototyping is necessary. However,

they do not perform well in terms of problem scalability and diversity. At this point, we

start considering another option, that of a more generic controller that will be able to tackle

with various scenarios, even when we cannot even consider them. It usually, in the world

of robotics, comes down to creating motion planners, or even path planners, that will

provide better outcome, depending on the problem.

Motion planners are general purpose and offer a wider scope to providing our

robots with solutions, even when they are challenged with extreme situations (Table 1),

but that depends on the programming of the controller. It is obvious that motion planners

cannot be easily created for every problem and even if they require a lot of testing

throughout experiments, that will push them to their limits and therefore provide us with

feedback concerning their problem-solving ability. Various tests are then performed and

scenarios that offer the planners the chance to calculate complex solutions and provide us

with a chain of commands (or motions, as it is usually referred to) that will make up the

solution. We should always keep in mind that this type of approach is always guaranteed

to offer better quality of results, but that in fact depends on the use cases (Table 2).

Table 1: Advantages comparison between simple and planning-based controllers

SIMPLE CONTROLLERS PLANNERS

Faster implementation Greater dexterity based on

implementation

Cover basic required functionality Covers fully required functionality

Easily transfer between static and dynamic

environments when feedback is offered,

usually through sensors

Offer better understanding of the

environment, the obstacles present and

the required goals to achieve

No delay at execution Easily scalable to cover more scenarios

Table 2: Disadvantages comparison between simple and planning-based controllers

SIMPLE CONTROLLERS PLANNERS

Limited problem-solving capabilities Often there is delay before execution

Difficult to scale up Time-consuming implementation

Requires programming down to the last

detail

Requires vast experimenting and case

scenarios

 More difficult to traverse to dynamic

environments

3.2. Algorithm solution space exploration

Since the beginning of planners, algorithms have been at the heart of their

implementation, offering and thus controlling the flow and use of information available,

along with deciding the best course of action given any available context. Nowadays,

algorithms have evolved and reached a level where we have a plethora of options from

which we need to choose to be able to best adapt to any given problem. In this part, we

will be discussing the process of different algorithms, based on their implementation.

In general, in planning we have two distinct types of algorithms; the first type uses

information available and tries to find the best available route of motions that fulfill its

requirements, in this case this is a direct synonym to finding the set of actions that will lead

a robotic system from a starting state towards reaching an end state, defined as goal state.

To do so, the algorithm will need to seek out the best available option in every repetition

of its steps, which eventually leads to exploring the whole available configuration space.

The other category is based on algorithms that feature a more selective process of goal

reach algorithm execution, where they need to extract a sample of the available

configuration space. In this way, speed is increased dramatically, which usually comes at

the cost of not finding the optimal solution that will eventually lead to the goal (Table 4).

However, this approach offers other advantages, that vary upon implementation and

algorithm selection along with faced problem situation, such as more efficient use of

resources, lower memory consumption, or even fewer state search, minimizing the required

time of implementation (Table 3).

Table 3: Advantages comparison between complete and sampling-based algorithms

SAMPLE-BASED COMPLETE

Smaller resource usage Fully utilize a system’s resources

Speed of execution Completeness of configuration space

search

Offer a satisfactory solution Offer the optimal solution

 Answers the question about whether

there is a solution

Table 4: Disadvantages comparison between complete and sampling-based

algorithms

SAMPLE-BASED COMPLETE

Solution quality varies from good to bad Resource usage to the maximum

Usually does not fully exploit a system’s

capabilities

Takes considerable amount of time to

execute

Cannot answer if a solution does not exist Usually there is considerable delay till

execution

3.3. Algorithms presented

In this dissertation, we focus on the presentation of complete algorithms and their

implementation, namely A* and Dijkstra. In terms of sampling-based algorithms, we

present RRT, which performs actions based on random steps. Before that, we present a list

of algorithms that are quite commonly used based on their category in motion planning

(Table 5) and provide some more context over their uses, basic principles, case studies,

advantages and of course their disadvantages. Then we present and emphasize on the ones

used and implemented in this dissertation, while providing more edible background on

their implementation along with their application in robotics [11].

Table 5: Most common algorithms used for each category in motion planning

SAMPLE-BASED COMPLETE

RRT A* (A-star)

RRT* Dijkstra

Probabilistic roadmaps

Artificial potential fields

Monte Carlo algorithm

3.4. Rapidly-exploring Random Trees (RRT)

Based on sampling, randomly picking candidates for performing a next action,

RRTs have widely been used in robotic motion planning [12]. RRT aims to explore the

configuration space, regardless of the dimensionality. As the name implies, tree structure

is maintained, aimed to offer great efficiency in solution finding.

Two main factors affect the algorithm’s effectiveness and quality of solution. First,

random-based sampling is limited by a maximum distance growth in the new region the

branch extends to. In this way, we can avoid great differences in tree size which makes the

process smoother in exploring new areas. More importantly, we need to clarify that a

random step towards a feasible part of the configuration space is indeed chosen, however

we use the maximum value to limit it and eventually use this value as a substitute for the

originally chosen [13]. In different case scenarios, this might have different effects in

performance of the algorithm depending on the problem. Usually, however, it enables us

with a smoother progress of the algorithms state expanding tree, so we can avoid sudden

differences between steps of execution. The second most important thing is that we set a

probability for the algorithm to try between a certain number of attempts to reach for the

goal state itself. This has proved to be of significant interest, since depending on the

progress that has been covered in exploring the configuration space and trying on different

routes and approaches towards forming a solution, it can dramatically decrease the number

of steps and sum of time needed to solve each problem. A mild drawback would be to state

that this effort is irrelevant to the maximum distance step we have previously selected,

otherwise we would end up with no difference whatsoever in the algorithm execution.

Another key factor is the number of iterations we choose to perform before we decide to

end algorithm execution. In more complex environments it is usually ignored in the essence

of choosing a significantly substantial number that fits the problem description and will

not be able to stop the algorithm mid-execution, before it reaches a considerably and

workable solution, close the goal state.

Having highlighted the algorithm’s trickiest and with the most impact in its

performance aspects, we will now proceed with providing a step-by-step execution that the

algorithm states as the process in solution finding. Initially, we assume a configuration

space, a list of obstacles if there are any, the initial state and of course the maximum

allowed distance to cover in a single step. The algorithm starts by picking a random action

of a given distance less than or equal to the maximum distance allowed and the proceeds

with checking whether it is feasible, given the configuration space and the obstacles we

might have included. If indeed we can perform this motion, then the algorithm tries to add

this action to the nearest explored so far, maintaining the tree structure. The new motion is

then added to the already explored states of the tree and becomes its latest addition to the

branch it was added, becoming a leaf. The above process is continued for as many times

as the number of iterations describes. Given that the algorithm was designed having

efficiency in many aspects, including speed of execution, there might be different

conditions to indicate its end. Some researchers might consider end the algorithm if there

has been a solution found, or in terms of motion planning the given tree features a state

that meets the goal state fully, or based on the problem needs. However, the general idea

of the algorithm imposes that execution continues till the number of iterations is met, by

adding more actions to the given tree and therefore improving the algorithms state. Below

we will demonstrate the main aspects of the algorithm’s philosophy and implementation

(Figure 1), providing more insight to the ideas of utilizing the values we chose and

discussed above that lie into the heart of the algorithm, driving its execution till the end.

As a last reminder, we need to consider that this algorithm aims to provide faster solutions

to problems (Figure 2) and emphasizes on efficiency over quality of solution. In this way,

even after the algorithm ends its execution, we cannot in any way claim that it has found

the optimal solution, but this of course has to do with the dynamics of each problem at

hand, as it is the case in many planning problems.

Figure 1: RRT pseudocode

Figure 2: Some of the use cases of RRT

3.5. Rapidly-exploring Random Trees * (RRT-star)

Using the RRT algorithm for finding solutions in planning problems had massive

impact to scientific community, with many researchers implementing new patents based

on the existing philosophy of simplicity and resource efficiency. One of the most

commonly known variations, which is a more generic term for referring to providing a

more guided way of searching throughout the configuration space and find a solution for

the problem at hand, is that of RRT*, originally introduced by Dr. Karaman and Dr.

Frazzoli [13]. The algorithm still fits the same criteria as the original RRT; however, it

now features mechanism that enables the algorithm to converge towards an optimal

solution while exploring. Below we will see some other variations to RRT and some of

their use case;

1. RRT* FND - extension to RRT* for dynamic environments [14]

2. CERRT - variation of RRT to include uncertainty [15]

3. TB-RRT - variation of RRT to include time in constraints [16]

4. RRT*-AR - variation of RRT* dealing with alternate routes [17]

5. RRG - (Rapidly-exploring Random Graph) variation of RRT for optimal

solution convergence [18]

As we can see from the list above, RRT was able to introduce the importance of

simplicity in planning, since it is well-known as impossible to understand and include all

the parameters in a problem solver, which is the reason RRT is usually described and

referred to as naive implementation of a motion planner. However, the actual impact of

RRT and its contribution to the scientific society is recognized by the number of variations

and extensions that were based on RRT as shown above. RRT* is one of the most

commonly known and used, so we will be taking a closer look at its implementation, along

with the benefits it offers in contrast with the algorithm mentioned above, namely RRT

and some of their differences and similarities.

Quite obviously the algorithm’s implementation that utilizes tree structure has not

been affected, to be able to hold onto the benefits in performance we get by adopting a

similar structure. For simplicity of this demonstration, we will be considering a 2D graph-

based implementation of RRT*, to be able to highlight its key features and the ones that

distinct it from its predecessor. For this reason, every time we refer to the word vertex, we

will be now referring to what we called motion or action previously. The algorithm input

and output are the same in terms of objectively seeking a route that will lead us from a

starting state to a goal state however it is described as. Now, we will look at the actual

implementation differences between RRT and RRT*.

Two main aspects of RRT* make it different from what we already described, know,

and understand as RRT [19]. The first of them is the maintenance and utilization of a cost

function that can provide us with the toll it takes for a new vertex to be added to our tree.

In RRT, we only consider which is the closest vertex to the new feasible one and then we

add it to the tree. In RRT* we no longer do that, yet we do repeat this process in every

addition. More specifically, we tend to use the cost function to be able to tell between

several vertices in each radius, that will give us a few neighboring vertices when we add it

to the tree. In this way, if we compute that the newly added vertex should instead be added

as leaf to a different branch, since we can reach this state having smaller cost than reaching

it through the pre-determined branch, as a leaf to a vertex stated by RRT. The obvious gain

we get by performing the above is a reduction in terms of cost-related affects to the result.

In terms of quality, in other words, we get a better fitting for reaching a new state, however

in real terms we still aim and reach for the same state. An obvious drawback that someone

could conclude to is that this restricts searching towards more promising areas in the

configuration space, which makes the search biased. Some people might consider that this

is an improvement and in terms of quality of solutions it indeed provides cheaper paths to

a new state, however it also tends to steer the search toward certain paths which in some

cases could lead to ignorance of important paths that might demonstrate dramatic

improvement as the algorithm continues its execution. Thus, the main purpose of RRT* is

not to provide the shortest available path, but instead give us better quality paths to choose

from.

The second significant difference between RRT and RRT* is what is mentioned in

literature as “re-wiring” a vertex. In fact, it describes the process of having another run of

the algorithm’s explored states to find out if the newly added vertex has been added to the

best, again in terms of cost however it is measured, vertex. To make things clearer, this

aims to provide us with a smoother path instead of simply providing the path. Further

elaboration on this topic would suggest that re-examining the whole tree would be careless

and resource-consuming, so a key part in this process is the fact that instead of running

again through the whole tree, we focus on the neighbors of the vertex, as they were

discovered in the previous step. Again, we need to underline the fact that this does not have

a direct effect in the vertex itself in terms of changing each core values, or performing any

sort of operations that will make it reach closer to the goal state. It simply describes a

process that will genuinely lead to a shorter path in contrast with the one suggested by RRT

and when this happens it will increase the smoothness of this traversing from one vertex

to the other.

In contrast with the benefits of providing a more straight-forward solution to a

problem, that will avoid unnecessary steps as much as possible, RRT* had to undergo

serious performance decreases when operating against obstacles. Main reason the above is

taking place has been the cost of re-searching the neighboring vertices where we can add

a vertex. This affects the outcome when obstacle avoidance is added, especially because

of the additional calculations that need to be performed to check whether, or not the path

connecting the new vertex to any of the old ones do not traverse through obstacles [20].

Below we will show a brief overview of differences in performance aspects between RRT

and RRT* (Table 6). In general, we can see that the cost to reach the goal state is obviously

decreased compared to the original cost we get by running RRT, however the execution

time increases dramatically. The number of nodes, or vertices, in each tree suggests that

RRT* was able to explore the same number of vertices as RRT.

Table 6: Some of the performance differences between RRT and RRT*, however as

we can see they both do not perform well in certain aspects

3.6. Probabilistic Roadmaps (PRM)

Continuing with the next sampling-based algorithm, Probabilistic Roadmaps, or

PRM [21], are widely known and used in modern day robotics, due to their efficiency in

path planning. Like we saw previously with RRT, this is another algorithm that belongs to

the family of randomized planners, aiming to provide solutions within given time limits,

without going over the whole configuration space. In other words, this algorithm avoids

exhaustive search and proceeds with sampling over time, which in theory will return a

solution if it exists.

First, we need to clarify that this algorithm can be fully used in circumstances

where a robotic system is tasked with finding a path, or set of actions to reach a goal state,

despite any given obstacles. More specifically, the algorithm will indeed perform a random

move, but before adding it to the chain of actions it will check if it is feasible. It is designed

to answer queries regarding graphs, which implies that before we proceed with applying

the algorithm’s principles, we need to provide it with an initial state, along with some sort

of discretion of the configuration space.

Again, there are many different approaches for implementing this algorithm,

especially due to the variety in problems that robotics researchers are facing nowadays.

However, three are the main aspects of the algorithm that can be parameterized and an

affect both the quality and efficiency during execution. The first one is regarding the

presence of obstacles. Admittedly, it will make the process of discovering a solution more

computationally and time consuming, but it will also add some more calculations to ensure

the algorithm’s stability. For this reason, it is crucial that we provide the algorithm with a

good distance calculating method, e.g., the Euclidean distance appears to be the most used,

so we need to pick one based on the problem at hand. As mentioned before, when dealing

with coordinate systems, Euclidean distance can prove to be very efficient, however we

should keep in mind that the essence of distance in this context exists to describe the

distance from a given state to another, so depending on the robotic system we use this

might refer to more than just coordinates, increasing in complexity along with

dimensionality. Another particularly important variable we need to estimate is the number

of vertices (again we assume that our problem is based on graph theory, due to the nature

of this algorithm’s use) to consider that we have fully explored our configuration space.

This number should not be taken lightly, as a higher number of vertices might be able to

provide us with a more accurate solution, however it will cause the algorithm to become

unresponsive in terms of delivering solutions that are not bound by time increases in search

due to overly complex environments. To be able to find the proper number of vertices we

need to have a proper understanding of the problem we are solving. Finally, as in RRT, we

need to connect a newly found vertex into the existing graph, which means that we need

to use the distance metric to estimate up to k different vertices that are supposed to be the

closest to the new vertex. In this way, the algorithm can provide a smoother transition

between different states and motions. Also, we minimize the probability that the algorithm

will hit an obstacle along the way as it connects the two vertices, given the fact that obstacle

collision has been used before.

Let us now take a more in-depth look of the algorithm and explore the drawback,

along with some quite common difficulties one might face when tasked with implementing

PRM. At first, the parameters discussed before need to be rightly calibrated, otherwise we

might end up with a planner that will provide no solutions whatsoever. This requires in

most cases a lot of experimentation and research, categorized based on the problem that

one is facing. Also, when we choose some random point from our configuration we need

to remember two things; the first is that we need to choose a point from the space provided

that all points stand equal chances which will minimize the bias toward certain given

directions and we also need to take into account that points, or more likely whole areas

around objects that have been set to represent obstacles are more difficult to be chosen

either due to poor sampling, or rounding performed to decrease computational complexity.

In general, we should also consider using different approaches based on problem

complexity, given the fact that this algorithm will not perform well in crowded spaces.

Again, we point out the general efficiency it provides, but let us not be taken away and

forget that experimentation is required. In this way, randomized sampling might become

slightly different than what we proposed above. Instead, it should be more possible for the

algorithm to pick random points in parts of the configuration space not covered by

obstacles. At this point it extremely helpful to also consider splitting the whole space into

distinct parts. We should also notice that this is an offline algorithm, since it requires

absolute knowledge of the space it operates in and hence, it cannot be used for online

problems, at least not without changing the setup in terms of providing the algorithm with

new input to be able to cover for missing information, or intel that has changed in regards

to position, orientation, shape or size of objects, which is usually referred to as the

geometry of the configuration space, making this algorithm require greater amount of

information when performing in real-time. We will now proceed with explaining the

algorithm’s process of execution (Figure 3), along with some of the parts we need to give

more insight to regarding the algorithm’s inner functionality.

Figure 3: Pseudocode for PRM

At first, we provide the algorithm with an initial graph. Remember that we need to

provide the geometry and positions of the obstacles as well if we have any, since the

algorithm requires total knowledge of the configuration space. Of course, we also need to

provide it with an initial and a goal state, so that the algorithm can understand when the

search should be terminated, if we decide to add these parameters to the search performed.

All the above are in par with the various setups of the algorithm and its configuration we

decide pre-execution. At this point it is common that the graph we provide is considered

empty in terms of not having any actual vertices that can lead from the initial state to the

end state. We then proceed with picking a completely random vertex that has not been

explored yet and check to see if it is indeed collision-free. This is the part where our

distance metric begins to be utilized. We repeat the above until we find a non-colliding

vertex that we can add to our graph. When we do find it, we proceed estimating its k nearest

neighbors, as we suggested above. Again, we need to use our distance metric for that

usually along with a planner. When this part is also over, we can then repeat the process

of systematically picking random vertices till we meet the number of vertices we set during

initialization of the algorithm. The algorithm will terminate execution either when it

explores the number of vertices we decided, as the general implementation of it implies.

However, it is up to us to decide that by altering this condition and check if in a way we

have reached our goal state, depending on the problem configuration we chose as it is

mentioned above, providing a little more guidance to the algorithm.

3.7. Artificial Potential Fields (APF)

When it comes to robotics, most of the times we are tasked with solving problems

that have their roots into modern day situations, as in autonomous driving and the

automation of processes that we face in our lives. As mentioned, a vast range of these

problems falls under the category of mobile vehicles and our effort towards making them

fully autonomous.

Artificial Potential Fields [22] help us tackle similar case scenarios, where we

cannot afford the time or resource implications of fully exploring our configuration space.

When this is the case, we are forced to search for new methods and strategies that provide

us with decent quality solutions in a more efficient way, whether this requires fastest

execution, or computationally restricted planning. In most cases, we need to solve a

problem using an online strategy, as in the case of Artificial Potential Fields. An online

algorithm, for clarity, will provide us with a plan that improves and changes in real time.

What is more, in many cases, depending the implementation it might help us with more

efficient information storing.

What is described above is usually referred to in scientific literature as “online

planning”, as a response to more advanced and complex configuration spaces and

environments in general. When we implement an online planner, we often use partial

environment knowledge, in regards to not exploring the whole configuration space and

considering it in motion choice selection. This improves speed of execution, but might also

come with the drawback of incomplete knowledge that will give inferior quality range of

motions, which in the end might instead turn to greater time consumption which defies the

very reason it was used and chosen for in the first place. As the algorithm proceeds, our

system will collect more information, which can be stored as a map to increase efficiency

in exploration, comparison, and selection. Instead of searching through all our known

states we can efficiently iterate through the closest regions to what we are looking for in

our planners. Furthermore, in contrast with what we just presented, we might consider

using a stateless planner, in terms of not keeping any states in memory. More specifically,

our planners will be able to quickly respond to given situations and provide us with actions,

however this presents the drawback of completely ignoring the given states, which might

lead to difficult to break loops and again result to more time wasted than saved, as it was

originally intended. The previous includes sensor readings, which implies that we will need

to process information gathered during execution and even respond to dynamic

environments, or even unknown. Thus, there is no placebo when it comes to planners,

especially when our problem includes real-time navigation and decision making. We need

to consider, study, and understand our environment and carefully choose the planner that

will be able to properly respond to our problems. It is also a combination of computational

resources availability and sensor readings quality and access to, since we should not forget

that there is always noise that might and will affect the outcome, including the accuracy of

our computations, which could vary from no nuisance in our readings to completely

mistaken conclusions due to incorrect, or incomplete information and thus, it is also a

matter affected highly by the available hardware.

The main idea of Artificial Potential Fields is to provide the robot with more

promising regions in terms of successfully reaching the goal state and, provide it with areas

that should be avoided as they represent obstacles. In this way, we use the terms affected

and repelled by given areas of our configuration space, which in our case are called as

fields (Figure 4). If we want to refer to the general dynamic of the system, we refer to its

U, which represents the general part of the configuration space that is feasibly traversable,

in terms of being both accessible and collision-free with obstacles, in other words we use

a metric to answer the question of whether a point in our configuration space can be

reached without violating any obstacle-avoidance constraints. In each execution of the

algorithm the gradient of our feasible areas, after subtracting those that are occupied by

obstacles in negated and represents the most promising course of direction for our

algorithm to choose from. To describe the general potential to attract the robot towards a

field, we can consider it as either a conical, or a parabolical function. The later results in

more distance-aware approach that enables us to take more precisely into account the

metric we use to discriminate between different states and their distance from the goal state.

When we use a parabolical approach, in contrast with a more informed process of search,

we are also burdened by what could appear as a more biased strategy of searching our

space, since the affective power of each field tends to increase in our algorithm, so this

leads to a more directed search, which in some cases might prove to be quite useful for the

algorithm, but in most cases in deprives our planner from many promising areas of the

configuration space that might be overseen. On the other hand, when using a conical

approach, we have the advantage of a more balanced attractive power over our robot, since

it increases in a constant manner, saving us from ignoring states and parts in our space.

More frequently, when using parabolical computations we are granted more accurate

results when in need of more accurate results, but it will at the cost of biasing them after a

while. For this reason, it is quite common to combine both techniques to in the following

manner; we tend to adopt a conical approach for determining the repulsive power of any

field over our robot and tend to use parabolical computations for estimating the

attractiveness of a field in terms of reaching towards our goal. To further elaborate on the

above, we achieve a more informed idea of understanding the quality of a next chosen

action, over the reason it should not be selected, which again is highly affected by some

good metric, e.g., Euclidean distance. As it has been mentioned before, metrics will have

the most crucial impact on our algorithms in general, since they provide the most useful

parts of information that our algorithms will use. When we compute the same attraction or

repulsion effects for our obstacles, we tend to do this by providing surrounding boundaries

for each obstacle, to be able to describe its effects in our robot’s course. In other words,

we tend to reversibly increase the likeness of a field that contains an obstacle by dividing

by its distance to our obstacle. Again, it is important to choose an incredibly good metric,

that will fit for our problem at hand. Without stepping into too many details, the algorithm

is designed in a fashion that provides a range away from which the algorithm does not

consider the obstacle any more favorable to traverse to. In this way the repulsive forces are

increased and tend to reach infinity when a point is on the verge of colliding with an

obstacle’s boundaries, in contrast with attractive forces that are decreased to 0. The

algorithm can now secure a collision-free choice of motion.

At this point, let us recap the most important pieces in the algorithm’s process; first,

it is used for online planning, but this in no way means that it cannot be used for offline

planning, since we can very well provide the algorithm with a discretized version of our

configuration space. Second, we can utilize our robots to provide actual feedback that we

can use to estimate our movements, avoiding already explored states without necessary

storing them. Finally, this is an incomplete algorithm, which means that the solution we

get is most probably not optimal, but we should also remember that being a sampling

algorithm, we need to consider checking for local minima before implementing its plans,

which sometimes includes the addition of best-first implementation when trapped.

Figure 4: Sample of a step in APF execution showing how the algorithm draws the

robot away from obstacles (the red circle) and closer to an un-explored area (the

green circle)

3.8. Monte Carlo Algorithm

Another example of random-based algorithms is Monte Carlo [23]. Originating at

a same name site, birthplace to gambling and very frequent example of casino, this

algorithm is based on statistics in order to provide us with a point in the configuration space

that will not be colliding with any obstacles. It generically refers to a family of randomized

algorithms, where the probability to select from a range of options, varies according to a

given statistical function, with randomness being fair in terms of chance, stacking up when

it comes to certain scenarios, which differs upon implementation.

As we mentioned earlier, this type of algorithms cannot guarantee that we will be

granted the optimal solution in a problem, provided there actually is one. However, for this

case we should also point out the fact that between consecutive runs of the algorithm, we

might get completely different answers, whether it be the quality, or even the existence of

a path towards our goal [24]. This is caused by the randomized process that lies into the

heart of the algorithm and is considered crucial during execution. When we complete an

execution of such algorithm, it is quite frequent that we also include a test run to prove

whether this algorithm is truly randomized, in terms of equally allocating chances of

appearance of all outcomes between the runs. At this point let us clear that in computational

theory it is considered that algorithms that belong to this family will converge to finding a

solution if we repeat the process k number of times, with k approaching infinity.

One of the drawbacks that many can encounter when are first tasked with producing

results using these algorithms is the fact that in many times, they tend to provide us with

biased outcome due to the widely-known difficulty of providing truly random decisions,

hence the tests are need as described above. Usually, what one would expect is the strong

attitude towards strict feasibility checks and constraint respecting when it comes to making

decisions despite the problem and its nature. As we previously mentioned this algorithm is

not guaranteed to even provide us with the same chain of actions between consecutive runs,

which implies the freedom of execution and randomness in the algorithm’s nature. What

is more, most of the times this is a pursuit goal, however we should keep in mind that it in

no way removes the chance that our algorithm might end up as biased.

There are two different cases, that in the most general cases might occur when

implementing such algorithms; the first one is called as true-biased and false-biased, with

both implying the correctness of the provided answers to each problem as responses to

general queries. The first case tends to occur in cases where the algorithm claims the

righteousness of its answer and it in fact turns out to be correct. While this might sound as

an ideal scenario, we should consider what happens when we know and can distinct right

from wrong, in a fashion that enables us to claim that a fact is right via our algorithm’s

estimations and it is true, however we cannot really say something similar for all these

cases where our algorithm guesses wrong. As it has been silently implied, the other case

we might encounter during implementation, revolves around the probability that the

algorithm can effectively recognize an outcome or situation as mistaken, however we

cannot do the same when it comes to acknowledging the validity of a given context.

Whereas it is quite common to meet the above conditions in actual problem

implementations as we discussed above, we should at this point underline the strong

possibility that we encounter both cases. When faced with such situations, it is wise to

remember that we can reduce our falsely categorized decisions by incrementing the number

of times we run the algorithm, which as said earlier might be able to provide us with better

quality and more trustworthy results, since this type of algorithm has a higher success ratio

as it approaches an infinite number of tries. On the contrary, given that this is a randomized

algorithm, one might argue that such actions work toward increasing the time spent while

processing the running environment and might lead to tough time handle and intense

resource consumption.

Many different applications of this algorithm tend to provide a vast and chaotic

context that behaves differently depending the problem it is tasked with solving (Table 7).

For example, when in tight operating spaces and within exceedingly small margin of error,

it would not be advisable to use and exploit such an algorithm’s traits, meaning that it

might be more suited to provide a solution after even an increased period that will, however,

give an answer to our problem at hand. When we adopt similar case approaches, we aim

to provide efficient good in general decisions in a brief period, especially since this

algorithm is usually executed in polynomial time. Remember that we can always change

the setup, a couple of parameters or even the general context and provide different, both in

terms of quality and variety, series of answers.

At this point, it is a demand that we present an overview of the algorithm’s

execution process, such that we provide a skeleton that can be used in problem solving.

Previously we referred to this algorithm as a generic algorithm that in theory can make

right decisions in a brief period. That said the algorithm can be implemented in many

different cases, but let us take a closer view to its actual implementation when it comes to

planning problems, given the nature of our study. At first, as in many other algorithms, for

the most cases that includes all the offline algorithms and some of the online planners, we

need to provide the algorithm with a fully described configuration space, which our

algorithm can sample from. Of course, this involves all the areas that can act as obstacles,

which should be considered since it is vital that the algorithm is provided with as accurate

as representations of its environment. Next, we need to generate random sequence of points

in this configuration space, favorably equally scattered as options in the decision-making

process of execution. At this point we should mention that we use a probability distribution

to provide these points, which can dramatically affect the outcome. In most cases and

driven by the motive that we seek equal chances of picking between our options, we choose

to use a normal, or Gaussian distribution, pursuing true randomness. Depending on the

problem, we might want to boost certain areas of our search space, so in some cases we

might even consider using a different distribution, which results to the fact that it is not

mandatory. In contrast, it is one of the parameters that we can change to directly affect the

outcome, since the algorithm’s nature is based on statistics. As the follow-up action we

process the results to determine whether they obey our constraints, given that we provided

the problem with any constraints in the first place, storing or discarding the chosen action.

Finally, we need to sum all the results in order to construct the final plan, which forms our

solution. The final part sometimes might include more processing, since it might occur that

we need to refine some of the motions to achieve our goal, but this is not an original part

of the algorithm and thus it will not be discussed. In general, these are the steps that

combined will give a solution to a wide range of problems, though we emphasized on

planning problems, which we usually need to tackle with in robotics.

Table 7: Demonstration of some of the algorithm’s use cases

Weather forecasting

Signal processing

Statistical hypothesis evaluation

Commercial video game character logic

Financial consulting

Better random number generation (RNG)

Light tracing in CAD software

Chemical reaction predictions

3.9. A-star (A*)

After our thorough presentation of algorithms that share the principle to not search

the entire configuration space in pursuit of a solution to make sure they provide low cost

in terms of computational power and effectiveness of execution we will now refer to the

other great family of algorithms that in contrast with what we have seen so far debates on

providing with the best possible solution they can produce. For this part we will be

presenting A* [25], which is one of the algorithms that has also been implemented for the

purposes of this dissertation, an algorithm that is frequently used to address large spaces

and complex environments through well-guided execution.

At first, let us discuss the differences that this approach makes us face and the many

reasons why some might argue and debate on the effectiveness of a method. First, this

algorithm is part of a variety of algorithms called complete, in terms of searching the entire

configuration space in order to answer to our problems. An incredible first advantage that

we can understand is the wholeness that these algorithms respond with, given enough time.

In other words, provided that all paths and alternatives have been discovered and searched

at their full extent, we can claim the full reassurance of our actions, in the sequence they

are provided, since it means that there is no more guessing, or randomized selection. On

the contrary, we have successfully searched throughout the configuration space and

managed to create a plan that enables us to achieve our goals. What is more, adding a little

bit more insight to what we already explained, one cannot but state another obvious

advantage of the completeness with which we can answer whether a solution in fact exists.

This is a profoundly significant issue and of the strongest arguments debating against the

use of sampling-based algorithms. On the other hand, we should not forget that whereas

this is one of the greatest advantages of these type of algorithms, we also need the necessary

time and resources to decide that. More specifically, whenever we choose to execute such

an algorithm, it will most probably guarantee, with a slight chance of doubt depending on

any altercations we do to the algorithm to make it less resource consumptive, that if there

is a solution given a problem setup, it is only expected that the algorithm will require to be

given the necessary time to complete its execution searching amid the configuration

space’s corners. The disadvantage is that in order to do so, there are no cuts to its execution,

meaning that it will give us an answer after it completes running, no matter the cost this

might have. In this way, its worthy benefit becomes a burden, because depending on the

problem at hand we might not be able to provide an answer in brief period. This is one of

the reasons why sampling-based algorithms could be used instead since we intuitively

know if a solution exists. This is not true for more complex environments, however, which

also implies that given the structure of the space we might never get a solution using such

an algorithm, which in no ways mean that it does not exist. Another great benefit of

utilizing more systematic search algorithms is the guided structure we meet in its process.

More importantly, these algorithms implement some logic which they apply into their

search, which can save us time and resources (Figure 5). To elaborate more on the last, a

more guided search is not naive as the randomized algorithms are, but instead is targeted

to reach for a solution exploring more of the configuration space based on the logic

described for each algorithm. This provides us with more accurate and smooth results,

which also gives us a better understanding over the course of actions that the path or

solution consists of, which in the end results to better suited chains of commands,

especially for planners.

We will now look at the algorithm’s process, in order to gain more insight on its

mechanics and the ways all these benefits that we talked about take place and affect its

execution. First, during this presentation, let us state that this algorithm is used in graphs

and path finding, with application to many different scientific fields, which make it a

placebo in problem solving due to its optimality, as it offers us the best-case solution and

efficiency through its guided search in the configuration space. The main process of the

algorithm is as follows; first, we need to provide the algorithm with a list of options which

it needs to explore later as it proceeds. These options include all the available actions that

can be performed, in other words they must be feasible, which is usually checked by the

algorithm. Second A* will try and expand these available actions based on their feasibility

as we discussed before, providing us with their descendants to lead into the next set of

available actions. Let us distinguish at this point that these actions and states are not

discarded, instead we keep them in memory in case we happen to get across them in the

future while exploring the configuration space to avoid re-processing these states. As time

passes and the algorithm’s tree structure, which is also one of its benefits given the

efficiency in search time terms, is expanded by adding increased descendants, or leaves,

we can already understand that one of the algorithm’s main disadvantages is the necessity

to keep all the explored states in memory to be able to bring them up in the future and use

them. This also implies the need to be able to store them in an orderly fashion, which will

make searching and iteration through them as efficient as possible. We should also keep in

mind, that in order to choose make the next decision is part of the algorithm’s search

criterion which is able to guide the search towards the most promising direction. To be

able to do that, we estimate the best next action, which is stored as the one with the lowest

cost. This is the result of systematic search and application of the algorithm’s heuristic

function to be able to calculate the next successive move that will be as close to the goal

state as possible, while maintaining the cost to the bare minimum [25]. This function is

often described in scientific literature as f(n) = g(n) + h(n); where the n represents the next

node to be processed, while f(n) refers to the quality of this node, which is the combination

of the distance that has been covered from the start all the way to the next node, plus the

cost as it is usually referred to, which is coming out of the heuristic function we use and

provides an estimate of the distance between the next node and the goal. The most critical

part of the algorithm is its heuristic function, since the better equipped it is, the more

accurate predictions it will make, given the fact that being an estimate means that

depending on the problem it might refer to different uses. For example, when performing

path planning, the Euclidean distance is quite often considered a useful metric to calculate

an approach to the goal state, by providing us with the cost of the path that a direct line

forms from the node to the goal. The algorithm will terminate after the goal state has been

reached, or in case there are no other areas of the configuration space that have not been

explore when it comes to planning, but in general it means that when we can no longer get

any new descendants then the algorithm has reached a stopping point. That is the case that

we described earlier and which will indicate that there is no solution for a problem, in case

the algorithm terminates before it reaches the requested goal. However, let us for once

again state the importance of choosing a proper metric to be able to rightly evaluate the

cost. Different problems can and will require different metrics with which they can

understand the best course of action in any given case.

Figure 5: A simple example of A* application on a grid-based problem (the yellow

grid is the start and the green is the goal, whereas the dark green line represents the

path)

3.10. Dijkstra

As we delve more into the depths of completeness of search, we notice that their

benefits come along a series of issues which we need to keep in mind when implementing

these algorithms. Namely, the resource allocation necessity becomes even more crucial to

attaining our goal and the speed of their execution sometimes cannot prove to be as

important as it should be given the delay even for simple problems where a vast number

of parameters are included. In this part we will be exploring another complete algorithm,

the Dijkstra [26] algorithm.

This algorithm is used in graph theory and traversal to provide accurate paths with

the minimum possible cost while navigating from one node to the next. As we further

explain the process followed certain similarities will emerge and be discussed in a way that

will justify what a great deal of the scientific society claims; that the algorithm we

presented earlier, Dijkstra poses as a special case of A*, without using a cost evaluation

function. At this point we would like to state that this algorithm is supposed to estimate the

best in terms of cost efficiency route that will lead from one starting point, or node as in

graph theory to a concluding or ending point, or node. Furthermore, it is an algorithm that

requires certain information to be available, regarding the weights for each route, which

need to be different than negative values. When such a scenario is encountered, we tend to

adopt the use of different algorithms, such as the Bellman-Ford algorithm [27]. It is quite

important, in order to understand the capacity of this algorithm’s problem solving

capabilities, to refer to the fact that this is the algorithm that provides us with the desired

functionality concerning the use and effectiveness of everyday usage of the internet, since

Dijkstra is used behind the logic of OSPF protocol, which stands for Open Shortest Path

First and involves the execution of a functionality that enables us to direct the traffic

between the different routes and nodes, in this case the nodes are the available gates to

connect to and establish information exchange.

Dijkstra is a greedy algorithmic approach since it is bound to search for and provide

us with the best available solution, or path. However, let us not forget that during execution

and being part of its process, it is searching for the local available path and when added

information makes it no longer the shortest path it tends to update and thus provides us

with complete information to help us tackle with the problem’s needs. Another important

note to keep in mind is that this algorithm can distinct and work specifically for directed

and non-directed graphs (Figure 6). When used in motion planning, we need to first

discretize our actions and proceed with a certain modeling of the environment in which the

algorithm will be asked to operate. What is more, as we mentioned before this algorithm

among its execution keeps searching for a better fit solution till there are no more available

answers or part of the space, or graph in general, to search in. In this case there might be

some misunderstanding over the greedy nature of the algorithm. More importantly, as we

mentioned it will continue to search until it gets a more cost-efficient path leading to the

goal node, if there is still available search space. As it occurs this is the terminating

condition that will mark the algorithm as completed. When this happens, it is crucial to

understand that the algorithm will produce the best and most appropriate in terms of cost

path. In theory this alone should be enough to prove that the answer to a problem produced

by Dijkstra is the best available, however we need to prove this, or more precisely explain

it given the fact that the algorithm still explores locally when committing to a new path.

First, let us consider that we have a graph that only consists of one node. In this

oversimplified case, it is obvious that the cost is the minimum available, which is 0 since

the node has 0 units distance to itself. The main course through which we will try and

evaluate the algorithm’s efficiency is the fact that we will claim that for any given number

of nodes we can calculate the shortest path and any other path therefore will have the same

or even greater cost to be followed. As in many theories in the mathematical world, we

will first claim that we already know that for k different nodes this algorithm has provided

us with the best available course, with k > 1 for obvious reasons. To be able to claim that

we are executing an algorithm that will result into the shortest path we only need to prove

that by adding new nodes we still get the shortest route, in terms of the algorithm being

able to identify them. For example, for k + m number of nodes we should be able to still

provide the best route. Let us examine the even simpler scenario where we only add one

more node, namely we now have k + 1 nodes in our graph. Since the algorithm has already

run, we have all the known nodes explored with the single exception of this newly added

node. In this case, we will proceed by searching through our nodes and comparing the

neighbors of each new vertex to decide whether it should update the shortest path table. In

this case, when we add the new node, it makes sense that this node is already connected to

some already explored node in our graph. Given this case we can assume that the previous

node was connected to the recently added node since it had the shortest cost, which was

estimated as the local optimum which in turn when increasing the algorithm’s number of

unexplored nodes tend to give us the explanation needed to back the claim about the

shortest route it can provide us. Simply put, since the algorithm re-evaluates the paths in

every new explored node that is added to the set of visited nodes, we can always

progressively get the best available path.

Let us now describe the algorithm’s execution, having proven its authenticity and

effectiveness and hence its importance. First, as we already mentioned, we need to provide

it with an empty set that will be storing all the explored nodes’ previous nodes and the

distance from each node to the next, which in the beginning is marked us infinite. We then

begin the process by setting the distance to the starting node as 0, which we described

earlier. While we have not explored all available nodes, the execution will then seek the

node that will be reached with the smallest available cost from the current node. In this

way, we need to set mark the new node as explored and add it to the set of nodes we talked

about earlier. The next step before we update our algorithm’s status is to check the

neighboring nodes of the newly picked node and see whether connecting them to the new

node is more efficient than connecting it to the current node and if this is the case, we set

that node as the middle node between the two and connect them as a sequence of shortest

path algorithms considering the node weights for each one of the neighbors. This strategic

extraction of nodes and setting them as explored will provide us with the shortest path

possible when the execution terminates, in other words when we do not have any unvisited

nodes. As it is obvious this algorithm will take a considerable amount of time before it is

available to give us an answer and should be optimized through careful decisions and

better-informed weight estimate when initializing the graph.

Figure 6: An example graph as input to the Dijkstra algorithm

3.11. Storing information - RTree

Before we proceed with offering our implementation of RRT, Dijkstra and A* we

need to make a brief introduction to one of the concepts that was used and will be presented

as well, at least for the case of A*. As we have described and it is very profound throughout

the whole presentation of algorithms so far, it is crucial that we store the necessary

information as to what states of the configuration space we have already discovered, which

creates the need for an effective way to go back and of forth throughout our states for us

to be able to determine the nodes that lie the closest to the next node processing. In fact,

this is a need that will emerge when we need to search and iterate through 3D vectors that

represent the coordinates that our robot has been to so far, as is the case in this dissertation.

Like we mentioned above, we decided that as the search tree tends to expand and grow

beyond our ability to effectively store and iterate through, the need has emerged and was

covered by the presence of a data structure implementing an R-Tree.

R-Tree as a concept was discovered in 1984 by Antonin Guttman [28] and the main

purpose it had to serve was to provide us with proper process of stored spatial information.

More specifically, multi-dimensional indexes are used in order to describe and model

various aspects in our lives, but for the most part and as we did in this dissertation, they

are used to be able to give us a list of options answering the question regarding the closest

points to a given location. While this is the main purpose, it is demanded to provide some

more information as to the general concepts that there might be the need for them, such as

navigation instructions, finding nearest neighbors when we need to deal with multiple

dimensions and even filter through different provided shapes and structures that are used

to mark areas in a geographical map.

When we decide to use an R-Tree we need to keep in mind the structure to be kept

in order to represent all the available points and shapes. In the general case, every time we

need to store information within an R-Tree it will be broken down to different segments of

data. First, we need a unique identifier to be able to refer to each node within the tree. This

is usually referred to as the id of the node, be it a leaf or a parent node. We then need to be

able to define a minimum bounding rectangle, or MBR, which will represent the radius of

this spatial data. At this point let us explain that when we want to define a single point, we

can choose this course of action by ensuring that the point coordinates are the same

marking the start and end of it. Another important thing is to note that we store every point

with rectangle-shaped bounding box, hence the name. This might not be appropriate for

every case, but it helps discretize the search space and makes it fair for each newly stored

piece of information to be selected when compared to the rest. As it is implied, the more

information we store the more accurate the representation will be, so we should keep in

mind that R-Tree data structures will deal with the efficiency in searching through the

given states, however we will need to provide them with accurate information. What is

more, when using R-Trees we need to familiarize ourselves with the idea that every node

consists of other nodes, or objects, that in their turn also contain more objects. Furthermore,

despite what the reader might conclude to with our previous statement, the expected height

that each node is expected to have, is log(n) with n being the number of objects it contains.

In this way and given the fact that R-Tree structure uses pagination to store the data, let us

think of this particular concept; the MBR is used to refer to a rectangle that is bound to

cover all of the objects that it consists of (Figure 7) and thus, it will then descend and

search each one of the objects in order to more specifically answer the query which is

usually a question similar to finding the closest points, or shapes, to given coordinates and

if can find a more detailed closer object it will resort to the MBR we mentioned above. At

this point let us describe the most asked questions among querying an R-Tree which will

give us the number of operations and type of questions this form of data structure can

answer. A basic question is whether an object provided belongs to a specified area. This is

used in many applications of localization and can answer whether it is true based of inter-

lapping MBRs. Another question we might need to answer is whether some object is part

of an area, which is treated in an equivalent way as above. While we are describing these

objects, we can also provide a list of all the objects that an area consists of, or in other

words the rectangles that are present within an MBR. Another set of particularly useful

operations we can perform regards to giving the answer as to whether certain objects are

close enough to a certain other object, or all the objects that have distance minimum or

equal to the one we provide. In our implementation of A* we have relied on the last

operation in order to successfully decide whether an area has been explored before within

a given margin of distance from this point, in order to avoid adding to the tree unnecessary

information. Of course, some people might argue as to whether distance should be

considered an acceptable metric, or we should specifically seek the exact coordinates in

our configuration space’s explored states. The answer depends on the problem we are

dealing with and it should be in the middle; we need to reduce the acceptable distance

radius as much as possible in order to provide more accurate answers, however we should

also keep in mind that this might result into storing a lot of unnecessary information. As a

final piece of required data, we should further elaborate as to why we use page-indexed

search and the benefits from it. First, by using pages we can better organize our space,

whether it is discrete or continuous, which also enables us to divide it based on the areas it

consists of, or MBR of each object within it. This can lead to more accurate search and can

provide us with more effective solutions. Moreover, each page cannot contain more than a

certain number of objects, named M, which is an indication that we need to split a page

into two new ones. This is one of the parameters we control and should be carefully taken

into consideration, as it has been proved that 30-40% fill is enough to give us the best

theoretical performance. In general usage, R-Tree structure enables us to easily iterate

through our entries effectively, however we should keep in mind that deletion can

sometimes be tricky, in terms of coming together with the need to delete and update all the

parent page MBR coordinates, which given the leaf depth might prove to be resource-

consumptive.

Figure 7: R-Tree storing process demonstration for a 2D example where we can see

the indexes for each R-Tree stored object along with its MBR

3.12. Implementing RRT

Since we have finished with all the necessary theoretical background concerning

the use and mechanisms of certain algorithms, we will now proceed to explaining our own

implementation of some of the algorithms that have been mentioned and presented before.

The first algorithm that was implemented is part of the random-based algorithms, namely

RRT, short for Rapidly-exploring Random Trees. The algorithm was implemented in a

way that the actual input are these; the starting position, which is used to refer to the

coordinates of the point of the claw used to grab each tile in our environment, the end

position which is basically every position expressed in 3D coordinates of every given Jenga

tile that we want to grasp with our robotic arm, the obstacles as a list of vectors with 3

values to represent the X, Y and Z coordinates of our configuration space and the number

of iterations that the algorithm will run in order to simulate the similar parameter that exists

in the actual RRT. We also can provide a radius which is the minimum distance that will

determine whether two objects are colliding, especially important to determine the above

and can directly affect the outcome of the algorithm. This parameter can make the

execution slow, but much more accurate if set too low, or it can make the execution a lot

faster and provide entirely inaccurate results compared to what we would expect. That is

the reason we should keep in mind that it may vary among different problems depending

on the environment the objects are inside. The following parameter to be set is called

stepSize and refers to the incrementing step that will be used in order to make the algorithm

increase faster the chosen values or in a slower pace that can be more precise for our

computations. We can then also provide a certain number of the available different

branches we can keep in terms of selecting entirely different, random-based movements.

AS the last parameter we need to provide the threshold with which we calibrate the goal

reach checks and more precisely the necessary distance the algorithm needs to see that the

claw reaches the target before considering that the actual goal has been reached.

We begin executing the algorithm by setting all available branches to the start

position of the claw and we also properly set the covered rotation and distance so far by

initializing them. At this point we should clear that in the actual implementation we

initialize the forward covered motion to 0 as expected, however we set the rotation that has

been performed to 2.0 since we can in this way define any pre-existing rotation for our

claw. This is practical and could be ignored provided that our experiments include that, or

in other words if we indeed choose to not have initial rotation, we can do just that. The

next step is to randomly choose the next motion for the algorithm which happens through

randomly choosing one of the 4 available motions, move forward in a straight line, or

backwards and the same holds for rotating clockwise and counter-clockwise. We also

choose a random step to perform the motion with which ranges from a range of 0.0 to 1.0

multiplied with the stepSize that we mentioned earlier. The next necessary step is to check

if the next motion chosen can in fact be performed since it is likely that it collides with any

obstacles provided that the list with the available obstacles is not empty. The next part is

critical and requires further explanation. To perform the motion that is feasible, meaning

that it does not collide with any obstacles otherwise the algorithm continues execution and

goes straight to the next iteration, we need to simulate and, in a way, predict what the

coordinates for the claw will be after performing this move. For this reason, we have

implemented two distinct functions with just that specific behavior, which also justifies the

reason we measure the overall covered rotation and distance, since all our algorithms are

implemented in an offline manner, they will find a solution first if it exists and then execute

it, meaning that we could not test for the actual coordinates so we had to simulate and make

an estimate for them. There is no actual need for details, however it involves basic

principles of geometrical shape transition and trigonometry. After we get the new

coordinates, meaning the coordinates where we expect the robotic grasp to stand in the

environment, we create a new state and update the specific branch. The next iteration will

aim to pick the movement from this spot in the space and continue from there for each of

the different branches. At this point let us explain that we use branch in order to describe

the different motions linked in a path formation as alternatives to a common starting

position. It is also picked us a name in order to resemble the tree expand behavior of RRT.

After all the iterations have been completed, we will seek to get the one path that features

the shortest available cost among those that managed to reach within a given radius close

to the goal position. We will proceed with presenting the main process discussed above in

a form of pseudocode. As the reader may notice for the sake of clearance and further

comparison, we will provide both the original (Figure 8) and the implemented (Figure 9),

for the purposes of this dissertation. The main purpose is to spot similarities and differences

that were product of the modeling the problem had to undergo for the algorithm to be

successfully implemented.

Figure 8: Original RRT

Figure 9: Implemented RRT

3.13. Implementing Dijkstra

As we previously mentioned, as part of the research of this dissertation we

implemented 3 different algorithms, giving more bias on complete algorithms. The next

one that will be presented is the Dijkstra algorithm which will also set the basis for later

discussing the implementation of A*. First, let us discuss the different parameters that we

included in this case. As we previously mentioned we need to provide the algorithm we a

starting position in order to know the coordinates of the point in our configuration space

where the algorithm will begin its search. The coordinates are given as a list consisting of

three different numbers that refer to the X, Y and Z coordinates respectively in the order

they are provided. As a sidenote, in webots we consider X and Z for movement parallel to

the level, whereas the Y coordinate is used to define the height of a particular point in

space. Moreover, in order to have a sound implementation and the actual termination

condition we need to also provide the algorithm we the coordinates of the target’s position,

which as we have already mentioned is the positions of each tile, since the main problem

we are trying to tackle is make our robotic arm move around and reach a tile, grab it, and

then successfully place it to construct a Jenga tower. Like the need to provide a radius for

obstacle tracing, we also give this opportunity in the implementation of Dijkstra as well in

order to let the user decide how the algorithm should treat its obstacle. This means that

when we try to avoid obstacles, we should keep in mind that we use Euclidean distance as

a metric to decide the approximate distance between two points in our space. Using this

strategy, we can simulate and avoid obstacles in our way and successfully reach the goal

state provided that the route is feasible. As a last parameter we need to provide the

algorithm with a threshold that is used to decide when a certain motion has been thoroughly

examined. To further elaborate on the latter, based on the Dijkstra process we need at some

point in the definition of this algorithm to decide to move on after marking a node as visited.

In our implementation, in order to do that we decided to add some counter as to whether a

motion based on one of the four available actions that include straight and back movement

along with rotational and backwards rotation can no longer contribute towards creating a

path. This requires more explanation and will be examined further at a later moment in this

presentation as part of the presentation of the algorithm’s main functionality and strategy

in order to mimic the expected behavior.

First, the algorithm begins its execution by creating a single branch since Dijkstra

does not feature multiple different paths. On the contrary the algorithm constantly works

towards providing a certain path after exploring the whole graph. For this algorithm,

another function was created that simulates the best available step for each motion at any

given state during the algorithm’s execution. We also set a dictionary that represents the

cost of every available motion in each turn to determine the next shortest move and in order

to avoid repetition we will be decreasing its values later. Second, we need to check if there

are any available motions left so that the algorithm can continue its execution. This is a

crucial step and is used in order to resemble Dijkstra’s check in every loop of whether there

are any nodes that have not been explored. Consequently, the problem is modeled in a way

that every time we iterate through the algorithm, we consider every motion and the best

possible step for it, which also checks for collision avoidance, as the actual nodes left to

check. For the next move, we also consider the best available step which we calculated

before and we proceed with decreasing the value of this move by one in the dictionary we

mentioned earlier so that in the next loop the algorithm will only consider the rest of the

motions available so that we can avoid repetition as much as possible. At this point we

need to state that we calculate the coordinates based on the type of motion it is we perform

and its step using the same prediction functions as in RRT. WE should also clear that the

algorithm updates the states of the branch object we created in the beginning, which again

for Dijkstra is unique. Finally, we need to mention that in order to decide that the algorithm

does not have any unexplored motions we will proceed with checking if the step every

time we loop into the algorithm is lower than the threshold in order to instruct the algorithm

that this motion has been thoroughly searched and therefore, we should proceed with

removing it from our list of available motions and hence our unexplored nodes. It

summarizes that if the best available step does not give us any actual improvement given

the state the algorithm is in, we should no longer seek answers towards this direction and

should consequently remove it as unnecessary. Quite similarly as we did before we will

now present two different figures showing the original implementation of the Dijkstra

algorithm (Figure 10) in contrast with the implementation that we presented (Figure 11).

Figure 10: Original Dijkstra

Figure 11: Implemented Dijkstra

3.14. Implementing A*

The third and final algorithm we developed for this dissertation is the A* algorithm

that has been previously presented. As we mentioned it is a complete algorithm, in terms

of guaranteeing that it will find a solution provided it exists. Another trait of this algorithm

is the feature of a heuristic function to navigate through the various available paths in a

way that will always consider the most promising path, which sums the Euclidean distance

that has been covered so far and the Euclidean distance after performing an action. We will

now proceed with presenting the main context that adds up to the implementation along

with some general principles that were followed in order to model the algorithm’s most

important aspects and map them to the problem at hand; providing a path for our robotic

grasp to be able to reach the tile which as described above has always been our primary

goal.

First, as we did with the previous two algorithms, we need to provide that starting

position of the search as a list with a length of three in order to represent the three

dimensions of our space. We also require the end position of the targets in each execution,

which of course cannot but refer to each tile we are aiming to reach in an analogous way,

a list that comprises of three different numbers referring to the coordinates of the tile in the

environment. Next, we need to provide a list of similarly stored coordinates that refer to

every obstacle we include in our environment. Of course, the list might indeed be empty

and in this case, we do not need to care about the extra checks. Another thing we need to

provide the algorithm is the radius that will help us determine whether our claw and one

of the objects collide, in which case we cannot perform the motion we want. So far there

is no actual difference in the parameters we provide compared to the two previous

implementations of algorithms. However, this will change now regarding the two final

parameters. We provide the algorithm with a minimum step to execute a motion along with

a medium step to make this action, whether it be rotation or straight motion. These two

extra parameters are one of the differences regarding the algorithm’s available motions as

we will see next. At this point let us also clear that in order to ensure better performance

and increase the algorithm’s efficiency we also decided to use R-Tree structure to store the

visited nodes, which in this case it refers to parts in our environment. The benefits of the

use of such data structure have been discussed above and for now we will just explain that

it included speeding up various operations and greater efficiency when performing the

most necessary operation for A*, the decision of whether a given state has been previously

visited during execution.

Let us now provide the algorithm presentation and describe the way it was

implemented. First, we initialize our R-Tree storage variable based on similarly named

library we use and thus we will not be further discussing this since the implementation of

R-Tree is handled by a third-party library in order to keep our states. We also need to begin

keeping branches, objects of the same class mentioned above that will refer to the different

available paths in order to keep in memory all our options as it is demanded by A*. Each

branch contains series of states that make up for the path it consists of as it has been

previously explained. The algorithm execution after we have properly initialized the above

is straightforward, much as in the original algorithm implementation. Notice that in order

to simulate the different states that the algorithm explores we need to initialize it with

different motions for each branch. Next, we need to specify that since through

experimentation and theoretical background we know that this algorithm will provide us

with an answer we decided to use a different termination criterion. Instead of waiting until

we reach the goal and given that for every different tile and route needed to be performed,

we cannot set a global minimum distance to be reached we decided to check all the

available distances to the target in each loop and if for a specific number of iterations, we

do not see any improvement then we will proceed with terminating the loop. In this way,

we can gain from the algorithm’s precision in execution. The follow-up thing to do is for

every single branch we decide to add all the available motions taking into the account the

minimum and medium values as well. Notably, we perform a simple check before adding

the values of minimum and medium steps, meaning that if they are not feasible, we will

override these passed parameter values. We then need to update the R-Tree with the newly

calculated values and positions so that we can keep track of the visited coordinates in our

space. At this point we are ready to pick the most promising motion to perform based on

the data we have so far. For this to happen we also need to calculate first the Euclidean

distance from the coordinates of each new candidate move to the target and then we add

the distance that has been covered so far. As in A*, we will also pick the one with the

smallest value and we will then try and find any nearby points in our R-Tree. If that is the

case, we have a mechanism that is bound to unite the two motions in a continuous way in

order to ensure that the transition is as smooth as possible. We should keep in mind that

the comparison value is quite small in order to avoid having a dramatic difference among

the states that are considered visited. Notice that we will simply add both motions as one

in case of same movement instead of skipping it as it might have been expected. We then

need to update the branch we currently are at and then proceed with the rest of the execution,

until the algorithm terminates in the fashion that we described above. Let us now observe

a simple generic comparison between the original (Figure 12) and the implemented version

of A* (Figure 13).

Figure 12: Original A*

Figure 13: Implemented A*

4 Experiments

To be able to compare the algorithms we had to perform certain experiments, so

that we could conclude to concrete statements as to which algorithm behaves the best. This

comparison does only reflect the algorithms at hand, but is also a key part in understanding

the reasons and main differences between the philosophies behind those algorithms.

4.1. Controller execution

In previous chapters we have discussed the use and effectiveness from various

perspectives of the utilization of simple controllers. Before we delve more into the

algorithm performance, we need to take a more in-depth look of plain controllers that are

programmed to deal with a certain number of scenarios and we do not expect to use them

in more complex and dynamic environments.

For this dissertation, we first created a controller written in python 3.8 and the

simulations were run on Webots simulation software. The robot we created consists of 6

DOF and more specifically 2 rotary joints and 4 linear. It is designed to be able to rotate

around an epicenter and as stated already our aim was to be able to give it the ability to

construct a Jenga-like structure. For this reason and following similar-goal scientific

literature, namely [6] and [2], we considered that modern practices insist on implementing

robotic manipulators, heavily based on their ability to use visual recognition. Inspired by

their various applications, our robot also features a sensor designed for providing visual

feedback. More specifically, we enabled our robot to be aware of certain objects of interest,

namely the tiles that will be used to create the Jenga structure (Figure 14). The camera

sensor can detect those objects and distinct them from other objects that might get in our

way. For instance, we decided to use geometrical-shaped obstacles that our robotic grasp

needs to avoid in order to successfully reaching its destination. These obstacles are to be

avoided in the simplest of scenarios, in the sense that when encountered the robot must not

be directed to them. At this point, the camera sensor was also able to provide us with the

relative distance to an object when it is detected and it is also capable of giving as its

relative rotation as well, all in relation to the camera’s transform.

Figure 14: The camera sensor feedback (top-left corner) detecting a tile

4.2. Sensor description

Taking visual servoing into consideration, the next step was to implement logic that would

allow our robot to be able to take actions based on the visual feedback of the camera sensor.

For this reason, we decided to add more obstacles, this time not just around the orbit of our

robot, but also in its way to reaching the blocks, having to rely on the camera sensor to

successfully detect and distinguish them from the tiles. We used grey rectangle-shaped

obstacles for this case and the robot would have to perform certain chain of actions in order

to avoid them and proceed with exploring the space around it, until it finds all the tiles,

which always served as the final goal. As discussed, we exploit the environment’ s built-

in access to camera-gathered information, including the general transform of an object to

successfully approach a tile, or evade an obstacle at a given time. When the latter needs to

occur, we perform some basic movements that will allow the robotic arm to circle around

the obstacle and then continue its course. At this point, let us state that we do not need to

have previous knowledge of the obstacle positions, or the transform of the tiles. Instead,

we study and extract this information through our camera sensor.

Figure 15: The robot reaching a tile after avoiding an obstacle

At this point, we should also discuss about the rest of the sensors used in order to

create the robotic arm. More specifically, we used a distance sensor in order to be able to

measure the height from which we need to descend our grasp in order to place the tile at

the top of our Jenga structure (Figure 16). This of course was a result of an effort to reduce

the computational cost when implementing an actual robotic arm, as scientific literature

has stated that we need to utilize force sensors to be able to avoid disturbing the tower’ s

balance and structural integrity [6]. The sensor was able to provide us with interesting

results. As expected, it performed well in terms of time complexity, however it is not

suggested to be used, as that comes with a load of noise, or interference, given the

environment setup. This might be enough to provide inaccurate data and the sensor itself

could not be enough to deliver the results we expect. Moreover, we will state that we

utilized a GPS sensor in our implementation, but this has only been the case for

completeness of experiments, monitoring of the progress and basic logging, so we will not

present any further of it, as it is not vital for the controller’ s implementation.

Figure 16: The distance sensor range of detection

When the controller ends its execution, which happens after it successfully gathers

all 12 of available tiles, something that has been hardcoded into the controller’ s logic, it

will complete a tower structure to resemble a Jenga tower as shown below (Figure 17).

Figure 17: The final result of all the tiles put together to form the Jenga tower

4.3. Controller extensibility

To show the extensibility of our creation, we decided to proceed with re-adjusting

the controller’ s programming for it to be able to construct different structures. To be more

precise, we added the implementation of a controller that follows the same basic principles

as the controller above, but instead can construct a “Π” with three tiles (Figure 18). The

results were rather expected and the controller was able to construct it with minor changes

to the robot’s configuration. These changes included the point from which the robot is

supposed to grab a tile, along with omitting the use of a camera sensor, since its

functionality would be the same. In the same manner, we have stripped off the environment

from obstacles, since they would add nothing further to our experiments, making the robot

behave in the same way as it did before with the Jenga tower.

Figure 18: The robotic arm used to create a “Π” instead of a Jenga tower

4.4. Algorithm accuracy

We will now proceed with giving certain experiment results concerning the

execution time of each algorithm and we will also discuss these results. The environment

at which the robots were to operate in is remarkably similar to the one presented above

(Figure 15) and therefore it is omitted. Again, the grey rectangle-shaped objects pose as

the obstacles that will get in the way of our robotic arm. At first, we need to understand

the importance of providing fast solutions in the world of robotics. Eventually we must

perform costly solutions that given the problem configuration will behave differently and

provide us with different quality of results. One such measure of quality is the accuracy

regarding the algorithm’s findings in terms of Euclidean distance from the robot’s grip to

the goal (any possible tile in the world), which in this case is represented by a path that has

been established for us to reach our target, which is traversing among obstacles and finally

reaching a tile in our environment to start constructing our Jenga tower. Let us now observe

a table containing some of the results of given experiments. The initial position of the

robotic grasp is always maintained; however, we change the configuration of the tiles in

order to reach out for new end positions.

We will notice that the results will for the most part provide us with rather expected

results and namely the fact that RRT in comparison to Dijkstra and A* was providing us

with generally good solutions. However, each of these algorithms could reach a certain

level of accuracy in its path planning process, but when it comes to accuracy and hence,

quality of solutions, we need to use one of the complete algorithms (Table 8). As we have

stated before this is based upon the problem we are currently facing. If the problem is

genuinely complex in terms of both providing a solution along with the efficiency it needs

to be delivered, if accuracy is crucial towards algorithm success, then we need to adopt

one of the more complete approaches, such as in cases where the robotic arm needs to

assist in surgery. If there is however a more generic conclusion here, it is that for most

cases if we only measure and consider the quality of each solution, then we need to choose

a complete algorithm that performs more context-aware search among the environment it

explores.

Table 8: Some of the results of experiments concerning algorithm accuracy (in

meters)

RRT Dijkstra A*

0.16 0.13 0.12

0.16 0.14 0.12

0.16 0.13 0.13

0.15 0.12 0.1

0.15 0.23 0.11

4.5. Time consumption

At this part we will discuss the performance in terms of time consumption for these

algorithms to be executed. Some people might argue that in order to reduce the execution

times we should decide to use heuristics-based algorithms and that could be true for many

cases. However, when dealing with real-life problems the case is different. The general

truth is, as said above, that each choice we make should be problem-related. In other words,

we cannot produce any generic approach for all problems. This of course has dire effects

to the performance of the algorithms in terms of quality, which was discussed earlier.

Using heuristics indeed makes the search well-guided towards staying on the most

cost-effective path towards the end, whereas a more naïve algorithm that is based on

randomization might struggle providing promising if not refined results and seeking a path

that is beneficial for the result. Furthermore, we can have a more guided search of our

space and thus we understand the whole problem in an entirely separate way, able to give

us the necessary answers. However, this has also some drawbacks which might in fact

outperform the benefits of this type of search. These kinds of comparisons have already

been discussed and thoroughly both explained and explored, so we will only mention the

fact that there are cases where we need to find fast solutions that will be good, meaning

that in cases where we do not need to provide 100% accurate and as possible close to the

target plans, then we should focus on less complete algorithms that will be able to give us

a fast answer. On the other hand, we should as well decide to utilize the strengths of

complete algorithms when we tackle cases where the problem is complex. In this way we

can provide answers if they exist, but the complexity of operations will also lead to greater

time consumption. We should at this point have a more in-depth look as to what this might

mean in terms of exploring how our implementation of each one of the algorithms

performed (Table 9).

Table 9: Some of the results of experiments concerning algorithm time complexity

(execution time is expresses in msec)

RRT Dijkstra A*

13.97 3.08 1.44

13.23 3.83 3.04

15.56 8.30 6.99

12.87 4.53 4.27

15.84 5.03 4.74

4.6. States traversed

As a decisive step to comparing the three algorithms that we implemented we will

be looking at the number of states that each algorithm’s plan of execution included, in

order to reach the goal in different scenarios (Table 10). We consider this a key step as it

will show the difference between them in terms of providing what is needed to proceed.

More specifically, by understanding the way these algorithms work, as was the purpose of

previous chapters we now need to see in detail the effectiveness of their strategies. Another

way to do that is to search through the states that these algorithms operate and the

consecutive motions they produced.

At this point let us examine a little further to understand the reason we need to

perform such a comparison. At a first glance, it might seem that it is a measure of

comparison that we should skip as unnecessary. If we indeed, however, proceed with it,

we gain the advantage of more detailed analyze, since it can give us information that will

also describe the memory needs of our algorithms for example, given that in order to

perform more moves we need to store more information into memory. In this case we can

get an estimate of how these algorithms perform in terms of memory usage, if they are all

represented in the same way, as is our case. We store all states in the same way; they are

all objects of the same class. This can make up for a fair comparison, but again this is more

of a follow-up than an actual performance metric. Another advantage we gain is the fact

that we can understand which algorithms can find the most effective route and of course,

as expected we should expect that using heuristics is of course one of the reasons why there

might be such difference in some cases. On the contrary, in many cases, however, not

always, having a greater number of states means that the algorithm will transition between

states in a smoother way; for example, imagine reaching the target state in only two moves,

in which case the algorithm would be extremely effective, yet completely steeper than

getting there without only a handful of actions. We believe that while this should be kept

in mind, we should always check that given the algorithm we have a balanced result.

Table 10: Some of the results of experiments concerning algorithm motions

performed

RRT Dijkstra A*

42 33 30

114 15 13

137 58 46

76 68 63

63 21 15

4.7. Additional experiments with A*

Delving more into complete algorithm experimentation we decided to explore the behavior

of A* even further, under various scenarios and environments. Namely, we picked an

environment setup where the robotic arm had to reach a goal destination, a tile, as

previously described, while rectangle-shaped obstacles were blocking its way. For A* in

particular, we added a test-case of staggered difficulty. The main problem tackled is the

same as described above, with the difference being that for the path the robot was able to

detect that could lead to a solution, we decided to add a block in each follow-up experiment

that would be rendering it un-feasible, since it was amid its course (Figure 19). The

algorithm would then have to produce a new solution that would be feasible and would

consider the new problem setup. The main results were that the complexity tends to

increase along with execution time, however this did not seem to prevent A* from finding

a path.

Figure 19: A basic experiment where the robot avoids the rectangles to reach the tile

highlighted with the 3D axes

Figure 20: The basic experiment (Figure 19) whereas we now added an extra

rectangle as an obstacle (highlighted by the axis) blocking the previously computed

path

Figure 21: The experiment (Figure 20) after adding another obstacle to block the

previous path highlighted by axis

In the experiments presented we can see that the algorithm is able to produce smooth paths

for the robot to follow (Figure 19). After we add another obstacle capable of blocking the

previous path, we can notice that the algorithm can still find its course around the obstacles

while maintaining smooth transitions (Figure 20). It is important to understand that the

algorithm needs to know the position of the obstacles before the path computation begins.

After we change the environment setup again while adding another obstacle, we can see

that the robot guided by A* is still able to navigate through the environment avoiding the

newly-added obstacle (Figure 21).

5 Conclusion

In this dissertation, we presented many cases in which robotics is used along with

modern day struggles that continue to pose as serious problems. We studied various aspects

of literature and ways that similar problems have been tackled. Moreover, we have studied

controller organization and various purposes and means to implement. We also proceeded

with exploring different algorithm philosophies in terms of better utilizing our resources,

be it computational, time-like, or even complexity in terms of fully understanding a

problem before we can attempt to solve it. Furthermore, we delved into attaining the

benefits of certain algorithms through our attempts to simulate their behavior and logic

through implementing them in a problem to reach a target in 3D space while navigating

through obstacles. In this effort, we also touched the surface with exploring better spatial

information management using R-Trees in our implementation of A*, which enabled us

with better in terms of efficiency exploration of our states. As an aftermath, we produced

different results for each algorithm, each of them leading us to different conclusions

concerning the algorithm efficiency of them.

5.1. Summary and conclusions

Having reached some results, which we presented above and discussed what they

mean towards the effectiveness of each algorithm, we should now proceed to summarizing

outcome, for it to be perfectly clear. At a first glance, we investigated the accuracy of each

algorithm, as it was described in terms of reaching the goal the closest. Complete

algorithms were expected to behave better towards it and it occurred this way through

experimentation. We also witnessed the simplicity of RRT in action and the surprisingly

well accuracy it showed, since the values that were presented were lower than what we

estimated as a general comparison value, that of 0.2 for an algorithm to be close enough to

a solution, namely reaching the goal as close as it can get. We should also point out that

trivial differences emerged between Dijkstra and A*, which overall gave us the most

promising results. However, we should underline that more experiments could be included,

that would give us better insight over this metric. Proceeding further with comparison, we

need to effectively measure the time we needed to execute each algorithm through different

experiments and that was again, as we expected, to outline A* as the better alternative

between the three. Quite noticeably RRT in fact turned out to waste time performing

random moves that did not really lead the algorithm to better states of exploration and

consequently that led to many meaningless iterations, which was expressed due to the

results we presented given that the number of states it required in order to reach the goal

every time were overwhelmingly greater than what the rest of the algorithms needed. In

addition to what we have presented so far, in terms of speed of execution it is obvious that

A* was the fastest algorithm, outperforming the other two, with a slight difference

compared to Dijkstra's performance, which again could be a result of small sample of

problems tackled. As a result of our previous notice, the less guided our search is, the more

time it is expected to take for it to complete, which was the case with RRT. On the contrary,

Dijkstra and A* behaved better and given the heuristic usage in A* it performed better

compared to Dijkstra as we previously stated, something that was expected to happen.

From a macroscopic perspective, the scientist that could take this study in the next

level, would benefit from the already found results and compare them to the complexity of

each problem at hand. In other words, they should enrich their study with those results,

especially when it comes to applying it to problems regarding planning, which is the case

when it comes to robotics. If someone requires more accurate results, they should consider

using complete algorithms, however, as the difficulty rises and the computational needs

grow, they should keep in mind that such an approach might in fact have more drawbacks

than benefits. Apart from the experiments, a researcher can also use the selected algorithm

presentation to consider alternatives based on the problems they are dealing with, in order

to achieve better performance from various aspects. Finally, as we stated before, it is quite

wise to always take the different environment and situation of a problem at sincere

consideration before proceeding with applying any logic towards solving it. As a result,

different algorithms might have entirely different behavior given any problem and this in

fact might sometimes lead to better results, or alternatively lead to greater exploration of

how we should deal with any given problem structure.

5.2. Research limits and limitations

As the dissertation has concluded, we need to further explore certain aspects of it,

including the various limitations that might exist. We do so in order to give more context

on the potential of the current study and further motivate readers to understand the complex

mechanisms that led to all the results as they were previously discussed. First, we should

mention the obvious fact that only three different algorithms have been implemented. This

is by no means a finite number of algorithms so that no further additions should be made.

Instead, it only entraps the reader to the study and notice differences between these

algorithms only. What is more, the experiments should include more observations, which

does not on the other hand imply their weakness to present us with all that is produced

using each specific algorithm, or approach. Moreover, we are always restricted to certain

available means, namely the computational power of our systems, so it should also be kept

in mind that dissimilar needs and possibilities could emerge by performing this change.

Another drawback is the difficulty of adding more available motions for our algorithms to

be able to perform. As it has been stated, before we can estimate the outcome of a specific

action, we first need to be able to understand where exactly in the space our grasp will be

placed after performing each executed motion. In this case of scenario, we should keep in

mind that extensibility is considered low due to the geometrical studies we need to consider

before performing a move. Finally, in the case of A* in particular, we should include even

more steps in between the execution loops, since we only provide the best, medium and a

minimal step.

5.3. Future extensions

Having reached the end of the study, one might consider the direction to be

followed as we progress through the field of robotics. In modern days, it has become quite

a common need to seek navigational assistance, especially in more complex environments.

Keeping the latter in mind, a scientist could extend the number of available algorithms by

a considerable number, enough to apply different patterns to different problems, or even

combine their potential in future work. Instead of having to abide by using only one of

them, we expect many and great benefits to come after a more well-guided combination of

some of these algorithms is adopted in order to solve different problems. A researcher

could give more chances to random-based algorithms to solve similar problems to the ones

above and, provide more problems per aspect of scientific interest, depending on the needs

and necessities of tomorrow. What is more, we could include further experiments, in

regards to different metrics established, some that might not even exist yet. There are many

ways to measure the outcome in terms of quality when it comes to algorithmic procedures,

so we let that as deliberately included in a wider range of options for every scientist to

decide. In this way, we will be able to further understand the context of each algorithm and

the various corners in its execution that might and in many cases should be changed to

become more reliable. In addition, we need to provide a better way of storing information.

As each algorithm progresses and more data will be processed as available, we should

continue to enrich the analysis that takes place through the algorithm’s logic with a more

distilled version of all the information at hand. Another great path that remains for future

exploration is to perform similar computations and problem-solving experimentations on

better equipped systems that can deal with greater and vast computational needs. We could

as an even more refined approach of what has been presented consider the use of different

implementations of R-Trees as they already exist and provide us with better resource

management. Finally, researchers should also consider expanding the available geometric

computations that provide an estimate of an object’s movement and coordinates in a case

that includes more accurate and multi-dimensional approaches. The last is to be taken into

more consideration than the previous, since it is the main advantage and simulation means

to help each algorithm understand more about the environment along with the next motion

it should perform.

Literature

[1]. Kröger, Torsten, et al. "Demonstration of multi-sensor integration in industrial

manipulation (poster)." Proc. IEEE Int. Conf. Robotics and Automation. 2006.

[2]. Li, Chenping, et al. "A survey on visual servoing for wheeled mobile robots."

International Journal of Intelligent Robotics and Applications (2021): 1-16.

[3]. Kroger, Torsten, et al. "A manipulator plays Jenga." IEEE robotics & automation

magazine 15.3 (2008): 79-84.

[4]. Fazeli, Nima, et al. "See, feel, act: Hierarchical learning for complex manipulation

skills with multisensory fusion." Science Robotics 4.26 (2019).

[5]. Wermelinger, Martin, et al. "Greedy stone tower creations with a robotic arm."

Proceedings of the Twenty-Seventh International Joint Conference on Artificial

Intelligence (IJCAI-18). Lawrence Erlbaum Associates, 2018.

[6]. Wang, Jiuguang, et al. "Robot Jenga: Autonomous and strategic block extraction."

2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2009.

[7]. Hernández, Juan David, et al. "Increasing robot autonomy via motion planning and

an augmented reality interface." IEEE Robotics and Automation Letters 5.2 (2020):

1017-1023.

[8]. Yoshikawa, Tsuneo, et al. "Jenga game by a manipulator with multiarticulated

fingers." 2011 IEEE/ASME International Conference on Advanced Intelligent

Mechatronics (AIM). IEEE, 2011.

[9]. Yoshikawa, Tsuneo, Tatsuya Sugiura, and Seiji Sugiyama. "Development of a Jenga

game manipulator having multi-articulated fingers." 2012 7th ACM/IEEE International

Conference on Human-Robot Interaction (HRI). IEEE, 2012.

[10]. Lagriffoul, Fabien, et al. "Platform-independent benchmarks for task and motion

planning." IEEE Robotics and Automation Letters 3.4 (2018): 3765-3772.

[11]. LaValle, Steven M. Planning algorithms. Cambridge university press, 2006.

[12]. Lynch, Kevin M., and Frank C. Park. Modern Robotics. Cambridge University

Press, 2017.

[13]. Karaman, Sertac, et al. "Anytime motion planning using the RRT." 2011 IEEE

International Conference on Robotics and Automation. IEEE, 2011.

[14]. Adiyatov, Olzhas, and Huseyin Atakan Varol. "A novel RRT*-based algorithm for

motion planning in dynamic environments." 2017 IEEE International Conference on

Mechatronics and Automation (ICMA). IEEE, 2017.

[15]. Sieverling, Arne, et al. "Interleaving motion in contact and in free space for

planning under uncertainty." 2017 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS). IEEE, 2017.

[16]. Sintov, Avishai, and Amir Shapiro. "Time-based RRT algorithm for rendezvous

planning of two dynamic systems." 2014 IEEE International Conference on Robotics and

Automation (ICRA). IEEE, 2014.

[17]. Choudhury, Sanjiban, Sebastian Scherer, and Sanjiv Singh. "Realtime alternate

routes planning: the rrt*-ar algorithm." (2012).

[18]. Kala, Rahul. "Rapidly exploring random graphs: motion planning of multiple

mobile robots." Advanced Robotics 27.14 (2013): 1113-1122.

[19]. Noreen, Iram, Amna Khan, and Zulfiqar Habib. "A comparison of RRT, RRT* and

RRT*-smart path planning algorithms." International Journal of Computer Science and

Network Security (IJCSNS) 16.10 (2016): 20.

[20]. O. Khatib, “Real-time obstacle avoidance for manipulators and mobile robots,” in

Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2,

pp. 500-505.

[21]. Kavraki, Lydia E., et al. "Probabilistic roadmaps for path planning in high-

dimensional configuration spaces." IEEE transactions on Robotics and Automation 12.4

(1996): 566-580.

[22]. Warren, Charles W. "Global path planning using artificial potential fields." 1989

IEEE International Conference on Robotics and Automation. IEEE Computer Society,

1989.

[23]. Metropolis, Nicholas, and Stanislaw Ulam. "The monte carlo method." Journal of

the American statistical association 44.247 (1949): 335-341.

[24]. Eckhardt, Roger, Stan Ulam, and Jhon Von Neumann. "the Monte Carlo method."

Los Alamos Science 15 (1987): 131.

[25]. Hart, Peter E., Nils J. Nilsson, and Bertram Raphael. "A formal basis for the

heuristic determination of minimum cost paths." IEEE transactions on Systems Science

and Cybernetics 4.2 (1968): 100-107.

[26]. Dijkstra, Edsger W. "A note on two problems in connexion with graphs."

Numerische mathematik 1.1 (1959): 269-271.

[27]. Goldberg, Andrew, and Tomasz Radzik. A heuristic improvement of the Bellman-

Ford algorithm. STANFORD UNIV CA DEPT OF COMPUTER SCIENCE, 1993.

[28]. Guttman, Antonin. "R-trees: A dynamic index structure for spatial searching."

Proceedings of the 1984 ACM SIGMOD international conference on Management of

data. 1984.

	1 Introduction
	1.1. Problem – Importance of the topic
	1.2. Aim - Objectives
	1.3. Questions – Research hypotheses
	1.4. Contribution
	1.5. Basic terminology
	1.6. Structure of the study

	2 Literature review – Theoretical background
	2.1. Multi-sensor information gathering in robotics
	2.2. Robotic framework for structures and their importance in our lives
	2.3. Robot autonomy and human-robot collaboration
	2.4. Human-like robotic arms
	2.5. Motion planner benchmarking

	3 Methodology
	3.1. Controller and implementation details
	3.2. Algorithm solution space exploration
	3.3. Algorithms presented
	3.4. Rapidly-exploring Random Trees (RRT)
	3.5. Rapidly-exploring Random Trees * (RRT-star)
	3.6. Probabilistic Roadmaps (PRM)
	3.7. Artificial Potential Fields (APF)
	3.8. Monte Carlo Algorithm
	3.9. A-star (A*)
	3.10. Dijkstra
	3.11. Storing information - RTree
	3.12. Implementing RRT
	3.13. Implementing Dijkstra
	3.14. Implementing A*

	4 Experiments
	4.1. Controller execution
	4.2. Sensor description
	4.3. Controller extensibility
	4.4. Algorithm accuracy
	4.5. Time consumption
	4.6. States traversed
	4.7. Additional experiments with A*

	5 Conclusion
	5.1. Summary and conclusions
	5.2. Research limits and limitations
	5.3. Future extensions

