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Abstract 

Recent years have been characterized by great technological advances. When it 

became an option to exploit in industrial work, the tasks were automated with the use of 

robots. In this dissertation, we present a custom-made virtual robotic arm capable of 

constructing Jenga towers. In contrast with previous work, we do not use force sensors for 

placement detection. Furthermore, to demonstrate the robot controller 's extensibility in 

design, we run two different simulations, ending with two different structures. Simplicity 

and efficiency have been considered to achieve the desired results in the experiments above, 

raising the key points where computational costs cannot be reduced, while providing 

simple alternatives for the rest of some common issues in robotics. We also compare and 

present results concerning various topics regarding commonly used algorithms including 

A*, after implementing them for the purposes of this dissertation. 
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Notation 

1. n; the next available node (in this research this will be used to mark the next available 

motion in terms of action performed) 

2. f(n); heuristic function used to determine the next most appropriate node to visit 

3. g(n); distance, or cost, from the start node to the current node 

4. h(n); distance, or cost, from the current node to the goal 

5. b(n); greatest value that can be used for an action of the robot to be performed without 

colliding with any obstacles in case they are provided 

  



 

1  Introduction 

1.1. Problem – Importance of the topic 

Over the years, technology has played a leading role in shaping the world, assisting 

mankind in the development of goods and services necessary for survival. At some point 

in human history, there was an increasing need for providing greater quantities of various 

products. As times changed, so did the needs and demands of modern-day life, including 

consumers and scientists. However, this has always been restricted by the limitations that 

human nature implied. That was a critical point that turned mankind towards seeking 

automated ways of implementing various tasks. Albeit in the initial stages, robots used to 

silently take over the heaviest of tasks, replacing workers in the different industries, while 

providing quicker and more efficient ways to create products. This was one of the first 

goals to be reached by a robot. As the years passed by, the more robots started to appear in 

industrial use, the faster they tended to become irreplaceable in their work. This also led 

to robot involvement in many other aspects of life, making it a matter of time until they 

could find their way in all kinds of scientific fields, e.g., the process of manufacturing a 

car is to provide the necessary parts, while a robot could take care of the actions to apply 

in order for it to be properly assembled. 

What is more, it is quite common in robotics to try to imitate certain behavior, 

including animal movement in certain terrains, as a necessity in analyzing it, before we 

can proceed with mimicking it and applying it to different problems. In the previous 

example, this could assist us in providing environment-specific robots that can move with 

greater ease and study their surroundings. Multi-sensor behavior, namely the combination 

of input gathered from various different sensors, for example a vision sensor and a force 

sensor, is deemed of significant importance in common uses, e.g., vehicle-control, where 

complexity is detrimental. What appears as common behavior turns into a surprisingly 

difficult problem, when applied to a robot. This usually happens, since the robot is tasked 

with the following to make even the slightest move; 

 data processing 

 strategy selection 

 world impact estimation 

 proper move calculation 

All the above combined can sometimes lead to information overload for the robot, 

for example in cases where a vision sensor is constantly feeding the robot with new images 

that need to be processed, making it unable to respond in real-time, while trying to tackle 



 

various and complex tasks. Our research aims to provide some suggestions reducing the 

computational cost of handling complex tasks on the problem of constructing a Jenga tower 

and similar structures. We have chosen the Webots open-source robotic simulator. In order 

to demonstrate our ideas, we are using a distance sensor and a camera sensor to reach one 

of our tiles, in contrast with previous implementations on similar problems that featured a 

camera sensor and a force sensor. The controller was written in Python and features a state-

machine algorithm designed for portability and simplicity. The robotic arm is equipped 

with a fork-like gripper to be able to move the tiles in our simulated the world. As 

mentioned previously, we also demonstrate the use of the same robot with minor-to-no 

changes to the controller, to create an entirely different shaped structure, that of a “Π”. The 

simulations were able to complete the tasks described before, demonstrating the 

importance of simplicity and efficiency in robot designing. 

1.2. Aim - Objectives 

The main objectives of this study include covering and exploration of several topics 

regarding robotics in modern days, such as progress reflected by software that has been 

developed so far or implemented algorithms for motion planning and path planning. We 

also sought to create a controller able to lead a robotic arm to construct a Jenga tower and 

similar structures. Before that, the controller is responsible for following the shortest path 

as it is found by implementing 3 (three) different algorithms, namely Rapidly exploring 

Random Tree (RRT), Dijkstra and A* (a-star). These algorithms will be presented shortly 

later, along with details on their implementation. As a side-note, the reader should keep in 

mind that to be able to provide solutions on various scenarios including the presence of 

obstacles around the targets (tiles), we had to make a few adjustments and hypotheses, the 

most important of them being the fact that in A* the heuristic function used takes into 

account the step that each motion is able to perform to pick the next least expensive action, 

which appeared to be an extremely important in situations where the robotic arm was faced 

with multiple obstacles on its path. The rest will be presented in detail in the corresponding 

chapter. 

1.3. Questions – Research hypotheses 

Robotics is a well-known subject and common cause of scientific interest when it 

comes to its application to human life. It was therefore expected to be questioned as both 

a scientific field and an actual means to provide better quality of life for everyone. However, 

in order to embrace technological advance we first need to understand its effects, 



 

advantages, and applications to our lives. This call cannot be answered unless we delve 

into researching and implementing on our own, which has been the main reason for 

choosing this subject to author this dissertation. We need to understand, after 

experimentation, that simplicity does not always lead to reduced costs, e.g., financial costs 

and also, when it comes to algorithm implementation, complete algorithms tend to offer 

greater accuracy while performing smaller number of actions but need to keep all the 

explored space in memory, proved through experimentation. To tackle the above we can 

explore several ways of efficient memory storage, including but not limited to R-Trees, as 

the reader will gradually delve more into their importance. 

1.4. Contribution 

At first, we had to consider the latest trends in robotics to be able to provide readers 

with an interesting topic that is tackled by researchers at present. The topic was selected as 

constructing Jenga-like structures and building a controller that could handle the motion 

plan behind it. To be able to achieve the above, there is this need of effective algorithms, 

with effective being used to describe goal, or task completion and speed of providing such 

a solution, meaning that it must be delivered within logical time limitations and 

computational resources. Experiments had to be carried out after successful 

implementation of A*, Dijkstra and RRT algorithms. The reader should note at this point 

that RRT is specifically used in motion planning, unlike the other two algorithms that are 

used in graph research. Finally, while achieving the above, similar studies and projects will 

be presented along with algorithms that have proved to be of importance in generic, or 

relative ideas and implementations. We need to understand that simplicity does not always 

lead to reduced costs, e.g., financial costs and also, when it comes to algorithm 

implementation, complete algorithms tend to offer greater accuracy while performing 

smaller number of actions, but need to keep all the explored space in memory, proved 

through experimentation. These algorithms are strongly discretized by the completeness in 

their logic and thus, when using them we expect that the quality of solutions will vary in 

different ways, i.e., the execution time to reach their goals. 

1.5. Basic terminology 

1. World refers to a 3D simulated environment, that for simplicity consists of a 

horizontal plane, serving as a floor-like base 

2. Robot is a custom-made robotic arm with 6 DOF 

3. Tile is a rectangle-shaped object that will be used as a Jenga tile 



 

4. Obstacle is a rectangle-shaped object that servers the purpose of interrupting the 

way from our robot to a tile 

5. Controller refers to the controller written in python 3.8 to provide the logic 

implemented by the robotic arm 

6. Webots refers to the software used for running the simulations 

7. RRT refers to Rapidly-exploring Random Tree algorithm 

8. Dijkstra refers to Dijkstra algorithm 

9. A* refers to the a-star algorithm 

10. PRM refers to Probabilistic Roadmaps algorithm 

11. APF refers to Artificial Potential Fields algorithm 

12. DFS refers to Depth-first search algorithm 

13. BFS refers to Breadth-first search algorithm 

 

1.6. Structure of the study 

We will be going through the various aspects of what it involves to study and 

develop solutions as plans in the robotics world in an order that aims to present key parts 

and make the reader familiar with concepts not previously encountered, while maintaining 

simplicity, yet completeness of information presented. Chapter 1has already discussed 

what it means to explore the various applications of robotics and their impact on our lives. 

In Chapter 2 we will be focusing on literature studied in order to be able to provide the 

reader with useful information in order to give the necessary context of robotics. On the 

contrary, Chapter 3 describes various approaches in algorithm implementation and 

proceeds to applying three of them, which will be studied further. Consequently, in Chapter 

4 we included some of the results that experimentation has led to after applying the 

principles above and finally, Chapter 5 will conclude to what we need to keep after having 

read this dissertation, summarizing the most critical parts we need to remember. 



 

2  Literature review – Theoretical background 

Several scientific articles have been studied to provide the theoretical background 

and perspective of this thesis, along with published books widely acknowledged for their 

authenticity and hard evidence in informing the reader from the most basic to advanced 

issues that a researcher is tasked with solving when encountering robotics. They will be 

presented below to also familiarize readers with the perspectives that inspired us and led 

to the results presented later. In a simple manner, we will be exploring different approaches 

for various problems, given that each algorithm can have a unique impact on every problem 

faced. 

2.1. Multi-sensor information gathering in robotics 

One of the works studied is used to discuss the various aspects that integrate 

different sensors, aiming to achieve a common goal [1]. It features the vast necessity that 

engulfs robotics in industrial development, along with collaboration with humans as main 

scientific goal is to explore of new ways to provide robots with more sophisticated and rich 

information. In the main years of human evolution, it has been an integrated part of human 

nature the ability to be able to receive different stimuli and process them at the same time 

as electrical currents are parsed through billions of neurons. Therefore, it would be safe to 

assume that all five senses, namely sight, smell, touch, hearing, and taste have played a 

more than significant role in human brain evolution. Nowadays, mankind seems to be 

interested in focusing on increasingly complex tasks to be able to deliver more 

sophisticated results in many aspects of life. One of these sectors could not be the industrial 

use and application of technological advances that tend to cover for today’ s needs. Of 

course, during mankind’ s tremulous history of progression, we admittedly have to point 

out the importance of creating machines that could replace labor and automate processes 

including the creation of various goods. 

In modern times, there is an ever-growing lust for knowledge and constant 

development of robotics since it represents the higher form of machine application to 

simplify everyday life and represents the greatest example effort of automating different 

processes. However, after decades of research and studying it has become clear that there 

is a tendency to create human-like robots to simulate human behavior in the best way. 

Ideally, various scientists aim to achieve a general-task controller capable of achieving a 

wide range of unsimilar tasks, providing the middleware that would exploit the different 

dynamics of a system and its sensor capabilities. 



 

What could be a suitable place to start with when it comes to performing different 

tasks? It appears that a remarkably interesting environment where such application must 

be applied is no other than modern-day industry, at its various levels, from assembling the 

necessary components to delivering the end products to the customers. The most 

interesting part however, appears to be the description of so far discovered and applied 

controllers as close-sourced when it comes to sharing among different problems. In fact, 

naming the most common sensor issues, it usually comes down to force calculation, 

distance estimation, visual representation, and scalability of manipulators, which seem to 

have individually been solved as of today. Unfortunately, it is easy to say that similar 

problems tend to get a feel for exponential growth in difficulty in solving when they get to 

be combined, since previous implementations are not made publicly available. From the 

preliminary stages of applying robotics into task automation for industrial applications the 

focus has been on providing quick and accurate manipulators on regards to trajectory-

following problems, for example the discrete position that can be computed by position 

controllers. 

In this paper, it is especially referred to as an example of continuous growth and 

interest in the research and application over force control, which has led to a static phase 

in further development when it comes down to this scientific sector. Moreover, additional 

great load of work has been put to visual servoing, mainly on the theoretical aspect of its 

utilization, as it describes the motivation to apply visual-based sensing towards controlling 

the robot [2]. To be more specific, we should underline and understand the necessity of 

fast image processing algorithms that need to be developed in order to have a better chance 

of approaching better results and make more complicated robots that include an interface 

that connects the various established motion commands to be sent to the controller, along 

with the order and process that they need to undergo with. At this point, it should be 

profound that due to the dynamic nature of programming background to exploit a system’ 

s sensors, it is more than likely that we will have to put a lot more effort into designing the 

overall programming architecture of the controller, since it will serve as the mind able to 

serve the ever-increasing demands and requests in delivering and answering the various 

aspects of simple to complex commands, responsible for the un-breaking functionality and 

flexibility of the whole robotic system. As mentioned in the paper, two well-known 

examples that are able to perform the desired operations with the minimum necessary effort, 

providing a more understandable, easily scalable, flexible and maintainable system of 

robot manipulation system, both following and fulfilling the primitive requirements 

mentioned and analyzed above, could be no other than the projects that are known in the 



 

global scientific society by their abbreviations, OROCOS, an abbreviation that stands for 

Open RObot COntrol Software and OSACA, an acronym used to refer to Open System 

Architecture for Controls within Automation systems [3]. 

To focus on the current project, however, we will be shortly describing the basic 

design and architecture of both software and hardware implementation. More specifically, 

the manipulator used is a Staeubli RX60, with its controller having been replaced similar 

to the ones mentioned above, while its power electronics have been maintained, since they 

can be savored to serve different purposes no matter the scope within which they have been 

initially scheduled to operate. It is in fact a network of PCs with QNX serving as its OS 

(Operational System), extracting the main working processes straight out of the 

MATLAB/Simulink software, enabling equal ease of addition or change according to task 

specification during runtime. The first PC is responsible for handling the power needs for 

the different tasks and mainstreaming it accordingly to the rest of the hardware to fulfill 

the commands. It also helps with basic low-level joint control. At this point let us clarify 

that this functionality can also be adopted by the rest of the PCs, although they serve the 

different user requests. It is also obvious that despite the intention to create a scalable 

system, it will perform differently depending on the complexity of each purpose in terms 

of power consumption, e.g., distance calculation in contrast with image processing. What 

is more, the freedom in role-playing described above is restrained in the current 

implementation, namely the first PC serves for joint control, the second one handles 

changes regarding transform (such as position, orientation or velocity applied), the third 

one is responsible for responding to user commands and last but not the least, the fourth 

one helps with providing real-time and more sophisticated image processing through 

footage captured during execution. 

The main middleware, implemented in all four PCs is called MiRPA, which stands 

for Middleware for Robotics and Process Control Applications, serving as the base of all 

operations. More specifically, as part of the scalability desired to achieve the logic behind 

it covers for it being a distributed real-time software implementation having only one 

communication server for each software aspect. These consist of two modules, named as 

MP (short for Manipulation Primitives) Interface, being responsible for receiving the 

requests made by the user at a more primitive form and interpreting them in a way that the 

MP Execution module can map them to specific predefined actions. In this way, if one 

would not be satisfied by the options available, it would pose as an easy task to extend its 

functionality by adding more sensors or actuators and having to update their drivers to be 

mapped with the new actions added in the MP Execution module. 



 

As we discussed previously, this system is quite flexible and have high scalability 

degree. More importantly, one’ s demand as the application programmer only requires the 

list of available devices. What comes into play next is the modification of MPs, which 

naturally only consist of three parts, namely the hybrid moves, which represents the task 

to be achieved along with a list containing the DOF (Degrees Of Freedom) that correspond 

to each different state during the process of achieving the desired task. Second comes the 

tool command part, which informs the system about the additional actuators that are 

addressed through adding more drivers to map to. In this case, it is only responsible for 

choosing between opening and closing the gripper. The final part that needs to be 

configured seems to be the exit condition, which is nothing but a set of different Boolean 

terms combined to form a longer expression that further describes that the desired motion 

or command has been reached, based on the different sensor values that indicate the various 

states. 

To show the scalability of the system that has been described so far, the researchers 

decided to organize a little demonstration, with the robot competing against itself to create 

a Jenga tower. To provide context clearance and for the sake of transparency, it is worth 

mentioning that abstracting the aim of playing Jenga, it is no other than extracting a loose 

block without disturbing the tower’ s stability. More importantly, the goal was similar as 

in the actual game, no other than creating the highest possible tower, with the best result 

consisting of 28 distinct levels. The robotic gripper used served two different purposes 

utilizing an arbor; the functionality of pushing a block outside the tower and of course, the 

ability to be able to place it back on top of the tower. It is also worth mentioning that two 

charge-coupled CCD cameras were placed away of the robot in positions that enabled them 

to detect observe the whole tower in a perimetric way and were programmed to process 

and detect tiles that had been distinguished in the following way; each block was painted 

black and featured two white lines and two dots, Also, the rest of the robot’ s hardware 

configuration consists of a 6D force/torque sensor, a 6D acceleration sensor and a laser 

distance sensor. Let us clear at this point that generally, judging by previous similar 

problem solution implementations, we can speak of three well-distinguished approaches; 

the first one is by using impedance control, which is mainly used to identify the impedance 

applied from the tower’ s tiles back to the gripper through calculation of both forces 

received from the tower and the estimated distance the gripper has away from it. Second, 

there has been an effort of combining the above into a single calculation matrix, instead of 

dealing with them individually, an approach considered as parallel control, aimed to 

simplify, and provide faster estimations, while sacrificing accuracy. The third and final 



 

approach, which happens to be adopted in the current project as well, is commonly known 

as force/position control. As noted, this technique also focuses primarily on force sensor 

readings along with position estimation, while demonstrating a critical difference; these 

two metrics are separately considered as two dimensions that interfere with one another 

orthogonally. It should be underlined that this is a more generic approach and does not 

need to undergo any modifications despite changes originating from different coordinate 

systems used. It also serves well as separating the forces caused by inner collisions that 

occur due to passive and static contact made by objects, as compared to external 

environmental forces that occur after taking actions. What is more, it allows for more 

compliant motion control, which so far has only been approached in a more theoretical 

perspective as it involved a more realistic and force-guided analysis of robot and 

environment interaction. Jenga was picked as a case scenario due to its design to include 

programming organized as tasks, force manipulation and understanding including but not 

limited to processing continuous calculations in real time, combination of data produced 

by various kinds of sensors, trajectory prediction to be able to estimate among others the 

tower stability and climaxed control software architecture, able to handle different states 

of the game. The process initiates by choosing a random tile that has been marked for 

extraction after having been recognized by the cameras, by trying to push the desired block 

a few centimeters out of the tower, provided that the cameras will not pick up any over 

exceeded tower motion and the force sensor does not detect high repulsion when it attempts 

the above, otherwise the previous process is repeated with the next randomly picked block. 

Of course, it is necessary that the manipulator positions the gripper towards the tower while 

maintaining a preset distance threshold, which later begins evaluating the pose of the 

respected tile. To be able to correctly decide when a tile has been extracted either of the 

following two criteria must be met; either a setup force threshold has been exceeded, or 

both cameras have detected instability of the tower. It is important to note that in order to 

avoid false signals leading to the robot taking no action, both cameras must claim the above. 

The necessity of putting a block back on top of the tower was covered by a force-guided 

MP module to avoid exceeding a threshold. 

As far as the software architecture is concerned, we need to mention that the 

modules regarding force/torque, distance and vision are closed-loop controllers, meaning 

that they are constantly being fed with new data and use old to smoothen the progressive 

curve of function, whereas the modules that correspond to data that deal with position and 

velocity are feed-forward only. Moreover, with the use of a hybrid controller described as 

above, we can set some discrete points that distinct the different values we need to monitor 



 

our sensors for reaching, considering the physical impact from each degree of freedom 

coming by the different robot’ s joints. In this way, more complex commands can be 

produced, that, if handled properly, can concurrently manipulate multiple actuators 

providing us with the option of more compact options to exploit the different DOF offered 

by the various aspects of the robot gripper, for example we can apply action to both position 

and force actuators in a single command. What is more, utilizing the hybrid controller’ s 

capabilities, one can switch between the various modules during trajectory estimation, by 

any means needed, namely the transform (position, velocity, and acceleration) and the 

space it takes place, where that is described by the coordinates, or the tasks required to 

fulfill, mainly with the use of Position and Velocity controllers. At the same time, it is 

available for the MP to decide whether it is a viable option to take a specific action, with 

viable corresponding to the tower’ s behavior, meaning whether the two cameras provide 

via the Vision controller feedback that indicates turbulence, or even a collapsed tower, 

keeping record of each tower tile. Finally, the Force/Torque controller is responsible for 

providing the MP Execution module with the target pose that it is supposed to achieve after 

performing a move. It is also extremely useful to understand that the previously mentioned 

functionality is usually limited by values we need to reach with certain sensors, which 

further elaborates on the necessity of closed loops. 

Sequentially, it cannot be helped to further instruct research teams to study and 

develop command-based robots, primarily focused on the middleware, without the need to 

calibrate the available interface on a wide scale. Software producers should not be bothered 

with the more technical details of implementing their goals. On the contrary, it would be 

both a delight and catalyst when it comes to end products to be able to press themselves 

towards providing the users with task-specific controllers that can offer a more specific 

approach during different case scenarios without however losing their ubiquitous 

application through extendibility. This enables scalability in both software and hardware 

applications of pre-existing robotic skeletons, that provide the scientists with even higher 

freedom in applying different manipulator control algorithms, tasked with goals of a wide 

range of scientific spectrum. Furthermore, multisensory integration seems to be growing 

as researchers continuously aim their robots to become more sophisticated and problem 

agnostic. Judging even by the small non-industrial example provided above, it is safe to 

assume that soon, if not already, it will become extremely crucial to be able to perform 

what is usually referred to as sensor data fusion in modern literature, to describe the 

phenomenon where various kinds of sensors use their potential to create more complex 

information that can respond to higher levels of complexity. This could very well lead to 



 

a new era in industrial applications of robotics, aiming to further automate production 

processes, while at the same time it will be able to deliver faster and more efficient time 

and resource management. 

The next part of our literature bears the weight of dealing with fusion of diverse 

sources of input combined to achieve a common goal [4] and was published at Science 

Robotics in 2019. It demonstrates that physics can have their own latent knowledge that 

robots can exploit to mimic human senses to achieve environment awareness, using PPO 

& OpenAI Gym, Gaussian Mixture model, Dirichlet process, Bayesian neural network as 

main tools. Humans have forever longed the ability to combine and put to actual use the 

data they could receive from using their senses by interpreting it into valuable information 

in real time. In a terribly comparable way, animals have also shown to possess the ability 

to claim the above as well in a dynamic environment, resulting in their growing sense of 

understanding it, exploring it, surviving and eventually, thriving in it. However, humans 

have gone beyond that. being able to complete and even sometimes compete in challenging 

and more complex tasks that require higher intellect. On the other hand, little to none 

progress has been made in robotics, since it has been difficult to create the ability to sense 

and acquire information through use of common intuition, let alone combine it all to 

produce higher forms knowledge representation. For example, there has been quite some 

progress in relation to simulating sight, with machine learning playing the leading role in 

what we modern days call computer vision. It is based on being able to identify certain 

patterns for recognizing objects, after having been trained in a variety of different images 

representing them. The latest, is usually a resource-commanding process, which in many 

ways could lead to either what is usually known as ‘overfitting’, or just fail, being unable 

to capture the objects appearing on the image properly. Despite all that has been told, it 

remains a decent simulation of the way that human sight works and thus, it has known 

quite some acknowledgement among scientists in the past years, showing marks of 

everlasting and growing tendency. 

All the above cannot but justify the work that has been done by researchers all over 

the world. One strong example of such work could be the attempt to combine both 

computer science and real-time processing of data to be able to make a robot learn how to 

play the incredibly famous game of Jenga. This board game was chosen due to its 

demanding skill of physical understanding, strategic play and interpreting of visual data, 

along with the ability to be able to create responsive actions that will not affect the stability 

of the tower, resulting in it being unstable and eventually collapsing. For that reason, a 

rather common approach of implementing the game’ s mechanics was via Bayesian model, 



 

that could sequentially create a chain of events that could resemble a cycle of 

understanding and interacting with both the environment and the objects in it. Two 

important questions seem to emerge and tackle with the scientists’ skills; as far as the sense 

of touch is concerned, what could one do with contact information and the force applied to 

them, in align with object recognition of referencing, to computer vision 

The researchers had to deal with an interesting and quite huge amount of yet 

physics limitations, that would in fact slow them down. In contrast with the later, they were 

able to produce effective methods that could successfully tackle with those. The main logic 

behind the game’ s methods has been a completely hard-coded state machine, that will be 

able to choose the best available next action to be taken, based on several measurements 

coming from different sensors embedded on the robot’ s body producing a massive number 

of signals, ready to be processed. Also, the robot used to consider the number of successive 

successful extractions operating in different randomly created towers. It is worth 

mentioning that the design of the problem is such that does not account for the presence of 

an opponent. Moreover, as expected the robot uses two different sensors, an Intel 

RealSense D415 RGB camera to be able to record RGB images showing the pose of the 

tiles that correspond to a 6-DOF system of movement (regarding its placement and 

rotation) and an ATI Gamma 6-axis Force-Torque sensor mounted at the wrist, to be able 

to measure the applied force on the tip of the robot hand’ s finger, so that they could 

calibrate the impact it had accordingly. In a general manner, the image representations 

made by the camera were inaccurate many times, which led to misfire of fail signals, based 

on criteria such as after a tile is extracted the tower rotation caused would not exceed 15 

degrees and in terms of placement it would not appear to have moved more than 10mms. 

Noteworthy, to be able to simulate learning process and experience. all the measurements 

were entering a buffer of poses/observations including the tower condition, so that the 

robot could process them in a way that would simplify the task for choosing the best 

suggested action. 

To provide some more clearance of mind which also serves well for explaining 

why the scientists produced choosing Jenga for those not familiar with the game, it consists 

of several tiles placed on top of one another to seem as if they represent a structural 

admiration, intuition, and smooth movement. Therefore, the tower will not become 

unstable, which could eventually result in it falling. What is more, it requires a proper 

extraction technique or algorithm, to have the best decision of tile extraction off the tower 

of till Furthermore, it is obvious that in order to provide the robot with the information 



 

needed to be able to run the simulation and guess the ultimate number of possibilities, it is 

obvious that a loop is needed. 

The results bore fruit, proving the researchers correct regarding the state machine, 

as it would turn out to be an entirely different level of abstraction to expect the robot to be 

able to achieve rule extraction based on the two senses they gave to it, vision, and contact. 

In fact, they compared it to different well-known techniques used in machine learning, to 

be able to evaluate its performance. More specifically, the first one was reinforcement 

learning using PPO implementation from the OpenAI gym framework. As a reward they 

set it to be the positive displacement of a tile, from minor to major turbulence caused to 

the tower’ s position that counted for negative reward. Second, they used Gaussian Mixture 

Model with a Dirichlet Process prior over the number of clusters to include image 

abstraction representations. They discovered that values for DP < 0.7 were not able to 

detect clusters in the image samples given, including ‘move’, ‘tile’ which stood for 

detecting presence of tile in the image, or ‘no block’ to express the absence of tiles in the 

image sample given. At this point it is worth mentioning that the scientists after different 

and random feed of samples, they concluded that the best number of representations in 

terms of clusters is 4, without providing more clearance. Finally, they also compared their 

model to the one they produced after using a Bayesian Neural Network, modeling the state 

transitions and force applications to the tower blocks, so that they could maintain history 

and simulate learning in a way that could map the tower interactions mapped to the physics 

conditions established after performing an action on some block. 

After theoretical testing, the researchers created a physical world representation of 

their simulation to be able to test their lab results in real world scenarios, where robot and 

tower enactments could not be fully predicted. As expected, compared to the three 

techniques mentioned above, the implementation was able to yield better-suited results and 

thus, leading to more delicate application of force and block choice extraction decisions. 

A major impact seemed to have made the fact that the state machine they used was hand 

coded, which actually led to a much cleaner version of the pick-and-push process, along 

with properly handling the pre-calculations along with the post-manipulation and physics 

simulation of the tower’ s block positions and rotations. 

2.2. Robotic framework for structures and their importance in our lives 

Another piece of scientific work that has provided additional background includes 

a topic similar to the one discussed in this dissertation, with various points being quite 

similar and involving the need for solving very similar problems, entitled Greedy Stone 



 

Tower Creations with a Robotic Arm and introduces ideas and implementations, mainly 

exploiting various third-party created software to explore the possibility and dynamics of 

stacking different shaped stones to form tower-like structures [5]. The key points of this 

research are that of a robot is tasked with stacking stones of unknown shape on top of the 

other, while utilizing PCL framework and clustering algorithms for processing data fed by 

a RGB camera and a force/torque sensor. Since its birth, mankind has always sought shelter 

from external weather conditions threatening to harm their health and outdoor potential 

enemies, including other humans. This led to the creation of houses that could serve their 

purpose to be reliable and sturdy enough to withstand outcoming damage of all sorts. That 

is how the idea of having structures housing humans was created at first serving as their 

property and aiming to provide stability and safety. Speaking of creation, if we look into 

humankind’ s evolution, we will also notice the dramatic change in both size, design and 

material requirements. Eventually, humans started organizing into communities and 

societies, sharing their ideas of hospitality and human shelter as part of their civilization. 

As time passes, one cannot but notice that the evolution of humankind, among other things 

including but not limited to work places has been drastically altered, since teams of people 

with common goals started appearing, with needs to organize themselves under the aegis 

of the same organizations. In modern day societies, the ever growing need to provide 

companies along with other forms of organized common life has been driven by and 

sometimes even strongly affected by the quality and quantity of the constructive materials 

available. 

After centuries of evolution, humans had finally the intellectual capacity to 

understand and seek ways of automating the creation of such structures, an effort that was 

kickstarted with the first Industrial Revolution, taking part during the 18th century. That 

was the first official attempt by humankind to apply formerly acquired knowledge in many 

sectors of science through machines. Since peeking into the very beginning of machines 

helping humans to achieve their goals, let us now investigate modern applications along 

with their impact on a primal need that has driven humankind since its origins. The 

production of quality-level buildings that would serve as shelters from the outside world. 

Trying to provide a clear understanding of the line of evolution so far, we will 

briefly mention the presence of huge machines such as bulldozers to be able to cover up 

for the need to apply great workforce into creating large structures. The next idea that 

included industry, seemed to be the automation of the production process in many goods 

and services. The final and most interesting part has been the exploitation of robotics, that 

would actually come to put an end to human supervision and need to overlook many parts 



 

of automation processes, since it has been unavoidable that at some point machines would 

have to decide for themselves as to what would actually be the next best step, in a scenario 

that has not been part of the main production chain, especially when there are dire and 

high-cost consequences, coming as the result of automation in industry, e.g. the creation 

of structures. 

That was a crucial point where robots could play such a key role, since there are 

many distinct aspects of the building process that could be automated. Admittedly, one 

could expect that in such an environment where most of the factors are well-measured and 

known at their full extent to affect the process, it would be rather needless to say that there 

is an increasing need for human supervision. However, the truth is, that even the most 

recent ways of robotics application in construction have been in indoor environments, 

where there is, as mentioned full knowledge of the environment and the availability of 

certain materials. So, what happens when we need to consider the fact that construction 

includes outdoor structures, without predominant knowledge of what could be used us 

constructive material, since the robot would have to utilize the available resources. 

Imagine that at some point, which is a really close goal of humankind to be 

achieved soon, humans decide that the planet’ s resources have become somewhat unable 

to sustain the growing needs that modern lifestyle is demanding. In fact, due to 

overgrowing population growth, that case of scenario has already decided to be provided 

with the solution to create house-like structures at other planets, such as Mars. Due to the 

needlessness and inability of humans to create the surviving habitat on such planets, robots 

have been tasked to create and provide us with pre-made constructed buildings that could 

serve as houses. 

Unfortunately, considering the complexity of such a task, many researchers have 

concluded that it is no longer possible to carry with them the materials needed to achieve 

the above. This, however, has led to the creation of the idea to provide construction robots 

in outdoor environments with the ability to identify and use already existing resources to 

create such structures. Driven by this inspiration, many scientists seem to have seriously 

considered to put some effort into developing similar case solutions. In this paper, 

researchers were tasked and challenged with the need to create simulations with robots 

being able to identify objects that could be put to such use and later, form constructions 

with some structural order, namely stack them vertically, which would mean that they are 

able to balance, something that has always been considered extremely needed. 

To be able to simulate and minimize the working process, the scientists decided to 

use a robotic arm empowered with an RGB camera and a force/torque sensor, to be able to 



 

perform the following tasks; identify an object that has already been present on the scene 

and later use it to balance it atop other similar objects, while maintaining structural stability 

and thus, balance. More specifically, the force sensor was placed at the attaching point of 

the gripper to be able to account for the impact that would be created after the placement 

of each new object on top of the existing ones, since that would be the place that would 

provide them with the necessary feedback to proceed with the implementation. 

Furthermore, the camera sensor was able to provide high resolution images that were used 

to identify objects based on their key points, in other words frames created by discovering 

some important points of the seen objects, recognized with the help of PCL (Point Cloud 

Library), which is an implementation of the ISS (Intrinsic Shape Signatures), a framework 

that describes the importance of certain points of an object that help identify its shape. The 

last step was to rotate the object identified to a default pose, based on clustering algorithms 

that could verify the presence of enough points to confirm the presence of an object and of 

course the fact that its flatter surface is vertically pointing. 

The results were not really encouraging however, showing us that there is still large 

room for improvement. More accurately, the experiment conducted via the effort of 

consecutive runs of the robot to try and stack four different objects, namely rocks in this 

case. The outcome was that the robot was able to successfully stack all four of the rocks 

on top of each other on only two out of the eleven trials, which was more than two times 

the cost of failure that the scientists have predicted. However, it is worth mentioning that 

this should not be taken lightly, as in a real case scenario, it is guaranteed that the robot 

will have a lot more alternative options, since there are expected to be more objects in the 

scene. Also, it could potentially mean, since researchers revealed for example the 

percentage of successful placements of rocks of a set consisting only of three of those, 

which was a solid seven out of the eleven different efforts, that in a general case scenario 

where we assume N available rocks, the probability that N-1, N-2... etc. is still a very 

promising expectation. In other words, what could not be achieved due to lack of 

experiment conduction materials at its peak, could not necessarily be a failure, if we extend 

the number of available objects on-scene, meaning that what appeared to be less than 

acceptable, namely stacking less than all four stones could be more than enough in actual 

life problems. 

There has been and always will be a need to create structures that can house humans, 

or even whole teams of them. What is more, the current work could be considered only the 

beginning of what will be one of the most popular tasks to achieve in modern robotics in 

the next few years. It is unavoidable that humans will have to turn to robots in order to 



 

provide a safer option to construction and make the most out of the available resources, 

without the need of human supervision. 

2.3. Robot autonomy and human-robot collaboration 

Years have passed since computers have entered our lives, but whether that was 

efficient has been affected by the ability to imitate and solve problems, along with the 

quality of solutions. It is quite common to consider the complexity of a problem in order 

to be able to decide the best course of actions that need to be made towards solving it. For 

robotics, after researchers managed to solve simple kinematic-like problems, they turned 

to more advanced issues that encompassed more delicate approaches for them to be able 

to complete certain tasks. A communal problem that has troubled scientists and roboticists 

among the world has been the creation and maintaining of a Jenga-like tower, as it will be 

described shortly, demonstrating the importance and complexity of a planner to efficiently 

proceed with solving a planning problem [6]. Most common reasons have been the need 

for a planner that can safely evaluate the best block candidate for removal, along with other 

reasons, such as the ability to maintain stability. In this paper, a PIONEER armed robot 

with 5 degrees of freedom was created, keeping the overall cost to the minimum possible, 

by using previously made system components (such as the PIONEER robot itself) and 

strategic algorithms to be able to predict system failures. The robot PIONEER by Adept, 

has been one of the most used robots in scientific research, since it provides flexibility, 

because it can rotate about 300 degrees in a second despite its low speed, autonomy due to 

its long-lasting batteries and of course the programmable interface to simplify control over 

it, 5 cross-platform tools. It also features high-precision sonar sensors, making it ideal for 

tasks that include obstacle avoidance and navigation in complex environments. So far, 

previous works have been implemented in similar problems by South and PhysX, 

simulating the physics that could represent such a tower along with the conditions to 

maintain it, but we should bear in mind that they did not go as far as the 18-level tower, 

but were able to partially construct it. 

The current system was able to surpass that limit significantly by creating a full 18-

level Jenga structure and adding another 10 levels on top of it, while, as mentioned above, 

the team tried to keep the cost to the bare minimum. Remarkably, the main and in fact only 

strategy adopted was the random selection of blocks, which was evaluated by a 3-stage 

planner, called BRP (short for Block Removal Planner). It is worth mentioning that despite 

the fact that the overall performance achieved was nowhere comparable to the one using 

the Kroger platform, it was able to deliver incredible results, especially if we consider that 



 

as far as sensors are involved only 2 vision camera sensors were used, a decision that put 

this robotic arm implementation ahead of previous and later robots that mostly feature 

vision and force-torque sensors to be able to maintain tower balance and avoid collapsing 

due to overextending the force applied by the robot in a given moment. 

The planner, as described above, only consists of three distinct stages. The first 

stage is the one responsible for creating a list of potential blocks to be removed, based on 

neighboring tiles according to the previous extraction action performed. The second step 

includes the selection of one such tile using heuristics to provide selection. At this point it 

would be important to note that due to minimizing the disturbance levels caused to 

neighboring tiles, the central ones were chosen with slight priority over side tiles, if 

possible. Also, regarding heuristics used scientists did not further specify the methods used 

in the paper. The third stage appears to be the most sophisticated one, since it conducts a 

physics simulation to compute the efficiency of the removal of this block, judging by the 

overall tower stability it results in. Based on proper gripper rotation it is assumed that the 

movement will not cause any close by movement, thus disturbing the transform (including 

position and rotation) of neighboring tiles. Vision-based error detection is used to evaluate 

the cost of this move and the option to abort it is present. More specifically, the planner 

uses heuristics to evaluate the remaining stability, using iterative techniques throughout 

the list, starting with the tiles closest to the one chosen in stage 2 if it is deemed as a bad 

removal option. The latter is determined by the return value of the heuristic, which 

compared to a threshold of overall tower stability set by the user will determine the overall 

quality and safety of performing this move. 

Moreover, it is worth mentioning that the project was able to sustain continuous 

monitoring of the tower' s motion through the vision camera during the removal action to 

be able to launch a 'stop' signal in case of threshold exceeding. The above was achieved 

with limited resources, such as a single desktop computer to perform the decision-making 

and processing of the sensors' readings. The main logic consisted of two subsystems, with 

one of them being the CMOS camera mentioned before as the most critical component, 

which provides the necessary image readings, which are then transformed into a 2D planar 

version of the image to represent the player' s point of view, increase realism and reduce 

error. The second system is the one that handled and processed all motor commands passed 

to the servo component to be able to manipulate the robotic arm in a successful way. Also, 

the distance from the griper to the tower is considered known and standard, while it is 

worth mentioning that the tower shape and size, along with lighting and movement of the 

structure are constantly considered, resulting to a more accurate image representation. The 



 

motion of the servo-based robotic arm on top of the PIONEER robot is only position 

controlled, which led to fewer actions needed to be taken, but also the necessity of initial 

orientation to be given on the gripper. 

The Player system following the server-client architecture as implied above 

continuously keeps on listening for position change controller commands. Furthermore, 

the best outcome able to achieve was 28 levels of Jenga tiles, however in the final 

implementation it had only nine levels of tiles due to the length limitation of the arm used. 

This, however, should not be accounted for as a failure of compliance with the standards 

it set. Instead, it should reflect to the various difficulties that robotic systems manipulation 

includes when dealing with more complex problems, such as Jenga, Also, to avoid the need 

for further computations, whenever a tile was removed it was not placed on top of the 

structure as the game suggests, but instead it was dropped by the side. Again, this was 

raised as a decision to avoid meaningless computations, without meaning that it could not 

deliver the proper actions requested and reach its goals. It is noteworthy to mention that in 

case of tower being disturbed by a single move due to e.g., blocks being out of place, then 

in this scenario the system and eventually the robotic arm itself were not to perform any 

corrections, staying consistent to the game rules in real life scenarios. The most helpful 

components of the entire process were the vision-based estimation of the tower state along 

with the correction algorithms and measures applied to it, while the continuous monitoring 

of the tower' s movement was providing with real-time data on overall tower stability, 

being able to assist in structural integrity and sustainability. 

The main inspiration behind this paper and the ones that contributed the most to 

the final result appear to be already known commonly used Jenga block extraction 

strategies, the values monitored during block removal trials through simulations and the 

realistic and low-cost physics evaluation considering tower stability. However, there is 

always room for improvement, which in this case could possibly mean better image 

processing techniques using better resources along with more accurate movement 

detection algorithms to be able to monitor and interpret the tower' s stability in order to 

provide the system with better and safer removal options. Furthermore, heuristics can 

always be improved by adding more parameters, considering several factors such as history 

kept to compute the next move and of course combination of both, all in favor of 

maintaining tower stability. Another example of future work can reflect on the validity of 

simulations, which could be more accurate in the future. The last, however, should be done 

with caution due to possible dramatic increase in both computational and physical costs, 

as it has been one of the key points of this research to maintain small cost. 



 

The next step in literature review regards ways explored that involve human-robot 

collaboration. Admittedly, it can become quite complex for a robotic system to understand 

its environment, let alone operate in it and achieve its goals. Thus, having discussed 

increasing the intel it gathers above, it is time we consider ways to fuse motion planning 

and task completion with human intellect. The study that will be presented introduces a 

modern system that can simplify the process of robot automation, by involving humans. 

More specifically, it elaborates on constructing an intellectual bridge to fill the gaps that 

prevent robots from being fully operational, replacing complexity tasks with human 

interaction [7]. In modern day industry, throughout many different sections of applied 

sciences and trading, along with coordination and transportation, there has been monitored 

a direct increase in automation of fulfilling specific tasks, most of the production process. 

However, not all areas have been automated, which creates an ever-growing need for 

applying techniques where the progress of the completion of a task includes supervision 

and most of the time collaboration between humans and robots, thus the lust for creating a 

bridge to be able to combine the dynamic capabilities, or as mostly wanted, the best of both 

worlds. 

A terrific way of achieving the above is through being able to make a robot and a 

human person handle and manipulate objects and actions in the same environment, at the 

same time if possible. Such abilities are offered when using augmented reality, also known 

as AR, where the user can manipulate virtual objects, actions that take place using the real 

environment as a setup. Of course, similar techniques such as VR and MR are also 

frequently used, but for the sake of this paper we will be focusing on AR. This enables one 

to interact with virtual objects placed at a known environment in a robot-agnostic and 

object-centric approach, giving the means to spend more time on determining the actual 

goals, rather than spending time specifying the respective actions to achieve them 

whatsoever. 

This opens a whole new world of possibilities why the more complex the setup of 

a robot and the problems it aims to solve, the harder it gets for the user to be able to 

understand the dynamics and actual reach of each potential, other known as reachable 

workspace. Furthermore, the user is un-bounded by the restrictions of the use-case 

scenarios of a robot' s planner, along with the complexity of organizing the actions needed 

to be able to achieve the desired goal. Let' s just consider a problem where a user demands 

the robot to be able to pick and place cans of same shape and size from position A to 

position B. We can easily think of different scenarios for this problem already, for example 

cans placed with different orientation and spread across more than one location. The way 



 

someone would come to naturally approach this problem would need a lot of man work 

and time spent to create a controller that would be able to create valid plans to achieve the 

above. By using AR, one can only focus on the representation of the objects, along with 

the motion plans to be able to make it feasible, with the latter not even required to be 

optimized, or even valid. 

So, for the sake of clearance, let us repeat the plan of execution. The user can share 

information and communicate with a robot via AR, used as the bridge to overcome the 

problem of combining the best capabilities of task automation and human supervision. In 

this way, the user can define an initial position of the cans, as mentioned in the example 

above, which is the actual test-case scenario in this paper. Then, the user could place the 

cans in an entirely new area, which would later enable the planner to take over and produce 

approachable schemes of action and motion planning. 

To be more specific, the robot gripper in this example is dubbed Fetch and, on its 

endpoint, includes sensors such as vision cameras. This enables us with feedback that could 

be used to create created plans, or provide us with information concerning the interference 

of the user during each step of execution of the planner steps. Had we taken a more 

traditional approach on obtaining our goal, thus called low-level motion planning, we 

would end up with robots being functional only under human teleoperation, or manually 

setting collision-free volumes in order to optimize the determined trajectories of a robot' s 

motion. 

The intended goal is to provide the user with a framework that will be able to let 

the user focus on high-level operations, based on previously programmed low-level actions 

that make up what is a called, as mentioned above, a high-level action. The user is assisted 

with visual representations based on the Vicon camera feedback we get from the sensors 

of the robot. In this way, it is easy to group low-level actions such as planned paths, objects 

that are selected currently and gripper selected actions into a group of useful information 

to present to the user. 

It is worth mentioning for once again, that the user is responsible for the recording 

of start and end positions of the objects they wish to move. The robot takes over from that 

point, executing a pick-and-place algorithm expressed in steps. 

The combination of dynamics mentioned before, however, poses some serious 

limitations, including the lack of extendibility of the low-level available actions, that do 

not cover for different versions of the problem, a different environment setup, or a 

completely different problem. Although, the scientists decided to keep the idea of a virtual 

inventory, which serves as the user' s personal warehouse of objects to be used, which will 



 

be able to combine the user' s intensions, expressing them through the robot' s selected 

motion plan. 

With HARS (sort for High-level Augmented Reality Specifications) a user can take 

advantage of an AR interface, can define the transform of a virtual object coming from the 

virtual inventory, including position and rotation, and later let the robot take over by 

implementing a motion planner in a much more dynamic environment, rather than 

hardcoding the actual possible states, which undermines a latent pose-agnostic virtual 

object placer. 

To achieve all the above, one would suspect that the user then struggles with a lot 

on their plate, considering the complexity of certain tasks. However, not the user does not 

need to know the actual low-level actions taken, but also it enlarges the area of goal 

implementations, which is introduced as a goal region. 

To be more specific, a goal region is nothing but all the valid alternatives of a 

motion plan to complete a desired action target. The user can define the orders of 

magnitude that the above will impact the plan execution. This is achieved by applying 

workspace constraints. These are simply distance tolerances to consider it has approached 

a target (either an object, or location) and can be modified by the user. 

Moreover, a set of different workspace constraints can describe the general 

preferences of the user to consider an object as preferably placed in the desired location, 

while maintaining respect with a real object. This could safely be interpreted as a goal 

region, or even so a goal state, containing all the information that can identify that a robot 

has reached its target configuration. 

It is worth mentioning that while in goal pose configuration, it is essential that the 

robot used must not be colliding with any nearby obstacle. This is both realistic and time 

saving, since having to perform several calculations to determine the above could have 

cost the robot both time and processing power. However, the real problems come into place 

when the robot detects a previously unreported object in the path towards the goal state. 

Through the AR interface, this can be easily overcome by generalizing the area that an 

object can be placed within. Also, the robot tends to keep track of the order of the user' s 

hand, which enables it to captivate a more refined idea of the appropriate path. The real 

dynamics of this paper' s suggested proposition comes into play with the user being able 

to preview the robot' s intended motion, giving them the ability to alter a mistakenly made 

choice by the robot. We can already see how valuable information sharing is when it comes 

to human-robot collaboration. 



 

Upon initialization, or as referenced the 'boot', based on the localization system 

used by the robot a position frame reference is used to compare the virtual with the real 

object' s position and orientation, maintaining calibration, a process repeated in each 

session. 

Returning to the example mentioned before though, in that simple scenario which 

represents a very practically common working problem that needs to be tackled even in 

modern robotics, the Fetch robot will first have to identify each own position, proceed into 

understanding the target' s position and finally approach it, while using distance tolerance 

defined by the user to determine whether or not the object is within reach. It then checks 

for any non-previously reported objects that interfere with its course of motion and finally 

creates a representing area from which it will be able to approach the target-object. After 

that step, it also uses a placement region which corresponds to the area that could be used 

to place the can, letting the robot freely choose any available spots. 

With the above techniques the scientists were able to create a more generalized 

version of a human-robot collaborative way of achieving complex tasks, with the use of 

high-level motion queries, that can reflect to more open requests from the user. 

2.4. Human-like robotic arms 

Published at IEEE in 2011, with the aim to create a robot capable of playing Jenga 

using artificial fingers [8], it has emerged to be one of the few scientific articles that seem 

to be tackling with an almost identical problem. It also features a more human looking 

robotic arm, trying to imitate the same complexity that encompasses human armature. 

Main tools are an omnidirectional camera and a metric introduced for computing structural 

integrity of Jenga tower called degree of danger. It has been well established that as society 

evolves and more sectors of science turn to task automation to be able to focus on more 

sophisticated and complex aspects of problem solving, we need to force greater use of 

robotics with higher intellectual capabilities along with more developed decision making. 

In fact, we can already witness both the need and application of the above in various aspects 

of industry, increasing productivity and reducing the need for human supervision. It is even 

more commonly known that to achieve greatness we often need to start small. That is, 

researchers usually tend to game simulation, since they combine both strategic decision 

making and physics simulation in providing the full experience. It is widespread among 

scientists to usually consider two diverse groups of games that could in fact be enhanced 

and simulated with the use of robotics. The first group consists of games where it is 

essential to apply more sophisticated techniques to provide challenging solutions and 



 

actions on an entirely virtual and simulated environment. The other group consists of 

games that can be interactive in real-time and in the real world, played against actual 

human opponents. Speaking of games, one of the old favorites has always been Jenga, 

having both tactical reasoning and understanding of the environment as mandatory 

qualities. 

In summary, among other teams of scientists, this specific team focused on being 

able to utilize a more human-like approach of playing the famous board game. To be a 

little more specific, they decided the use of a multi articulated robot hand, consisting of 

two fingers covered with soft skin, instead of following the common approach of utilizing 

a gripper to be able to select and grab blocks to be extracted. In addition, they used as most 

researchers suggests an omni-directional camera, with the obvious difference being the 

fact that the camera can provide depth in the images created, instead of 2D planar-like 

cameras that have been used so far, ignoring the information that such commodity could 

provide us with. 

The main problem they have been focusing on, could still be interpreted as a more 

enhanced version of the ones already explored, since it worth mentioning that it includes 

playing against a human adversary, yet the goal is still trying to stack as many blocks as 

possible on top of each other to create new levels of tiles while maintaining tower stability. 

As a result, an experiment was conducted by taking turns against the robot to show the 

potential of the robot’ s block extraction evaluation function. 

The research group was in fact trying to approach Jenga robotic simulation in a 

more interactive and dynamic example, involving the unpredictability of the human factor 

interaction with the robot, to be able to demonstrate that such an option is already available, 

giving more solid ground to future collaboration between humans and robots which could 

combine the productive scalability of machine application in industry, along with the 

human mind’ s ability to analyze and find similarities in more complex problems. This 

could lead to a new industrial revolution, forever changing the way we can produce the 

necessary goods around the globe, covering the needs of millions of people. Although it 

all sounds exciting and very promising, for now we will be focusing on describing the 

endgame of this scientific experiment, after going through the process they produced, to 

overcome step by step the different difficulties their dream had to go through. 

Two things have been common with previous approaches, despite the innovative 

design of solution they tried to provide. The first thing has been the camera they had to 

include in their implementation, which along with force sensors placed on finger tips were 

responsible for the tasks corresponding to block detection and finally the need to calculate 



 

the force with which the robotic arm should be extracting and placing the tiles from and to 

the tower, keeping in mind the necessity of maintaining tower stability. 

It is now vital that we describe the method of extraction and algorithm to be able 

to calculate the force that had to be applied. But first, let us take a brief look at the robotic 

arm itself. In this study, the robot arm is the PA10-7C arm, provided by Mitsubishi Heavy 

Industries, Ltd. and has seven DOF (degrees of freedom). It is also worth mentioning that 

the way its joints have been distributed in a way similar to that of human arms. First things 

first, we must look at the way the objects are recognized as tiles. The camera serves the 

purpose of providing the robot with 2D 640x480 pixelated feed of planar-like pictures of 

the environment taken with a VS-C450U-200-TK by Vstone Co., Ltd. camera and 

recognized objects that is later used to represent the 3D image of a tile. As we mentioned 

above, the latter seems to be in contrast with their claim of not basing the image processing 

into 2D images, but it still impresses that this is achieved indirectly, since the 2D versions 

of the objects detected are fed to a middleware that is responsible for representing the exact 

block. The next step in the algorithm is to evaluate the danger that extracting the block 

identified implies to the whole structure’ s stability. There is not present a more 

sophisticated way of approaching the selection of a block to be removed from the tower, 

however the camera that is able to identify the one it recognizes first, also serves to provide 

the algorithm with a list of one or two alternative candidates. We also need to specify that 

all tiles are expected to have the same thickness and mass. In addition, the main area of 

focus as the tower gets taller is always with the camera focusing at its center, to maximize 

the blocks it should be able to detect. Noteworthy, the main logic behind computing the 

degree of danger is the fact that we consider the number of upper surfaces a virtual vertical 

line drawn from the top crosses their very center until the blocks at level that stops in the 

middle of the tower. In case there is just one candidate, the above metric is not used, but 

in case the latter is not true, we obviously must choose the one that returns the shortest 

value, since it means that it plays the least significant role in the tower’ s stability and thus, 

its removal will have the least significant impact. At this point, we must make clear that 

the process of placing the tile back on top of the tower follows the same principle as the 

method of extraction, with a small difference; the metric is now considering a virtual 

vertical line drawn from the center of the tower all the way up to the top, however it is still 

important to point that the minimum value is still selected, since we aim to disturb the 

tower as little as possible. As far as the force sensor is considered, we must underline that 

small six-axis force sensors (NANO5/4 by BL. Autotec Ltd.) were placed on the tip of the 

fingers to provide the best feedback possible, while the soft skin covering the arm was 



 

made by elastic gel to make the arm manipulation task more stable providing additional 

frictional force. 

The main experiment conducted represented a match between the robot and a 

human competing on a six-level tower of Jenga tiles. The main task was to prove that in 

order to provide more accurate and precise force-based measurements that can lead to 

better results in terms of simulating human behavior we need to adopt a more man-like 

approach of robot design. Mimicking other beings’ behavior has acted as a deterrent to 

help in humankind’ s evolution, both emotionally and physically. It appears that we should 

follow our own example and provide robots with physical design as close as possible to 

humans to expect better results. 

Previous mention of the importance and involvement of board games in robotics 

evolution has been referred to as a crucial factor to speed up the development of complexity 

and completion of more sophisticated, so called high-level, actions that a planner is 

expected to perform. Due to this significance, researchers have been motivated to work 

and study robotics in similar cases, which led to more concrete base for developing robotic 

systems that are both human-like and can prove to be worthy antagonists against humans 

as described in Development of a Jenga Game Manipulator having Multi-Articulated 

Fingers [9]. Past work by the same team is discussed above in this dissertation and has 

been extended and driven by the same factors as certain researchers have based their work 

on the implementation of a Jenga tower manipulator. More specifically, in contrast with 

former attempts they put a significant amount of effort to be able to further simulate the 

experience of human involvement and playing of Jenga, to provide us with more concrete 

examples of greater influence of robots in everyday activities and, to study the interaction 

between humans and robots in a more dynamic environment. 

It is widely admitted that games can be an incredibly challenging, yet rewarding 

area to apply robotics, since one needs to tackle with many different issues to be able to 

deliver a working simulation. Furthermore, they serve as a working blueprint of human 

intellect application and study, judging by their nature to stimulate the brain into thinking 

complex solutions and strategies to overcome different obstacles. Jenga, the world-famous 

game, for example, is quite widely studied into applying robot manipulation and planning 

techniques, mainly since it combines environment detection and understanding, along with 

strategic planning and physics evaluation. 

As mentioned above, the current study was heavily influenced and based on 

research conducted barely a year before this one was published. Most importantly, it 

offered some great alterations to the various aspects of different implementation parts, 



 

while maintaining the same principles, ideas, and goals. To be a little more specific, the 

main course of idea was aimed towards the implementation of a robotic hand that would 

be able to suffice into playing competitively against humans with two articulated fingers, 

instead of utilizing a gripper as in former experiments. What is more, they researchers 

decided to cover the whole arm with soft skin tissue, to provide more stability while getting 

a grasp of the Jenga blocks during extraction and placement. As far as the tower state 

recognition is concerned, they used an RGB camera that would provide the robot with 

different frames of the tower, while they were fed to the planner which was responsible for 

choosing the best candidate tile for removal through a sophisticated intuitive method of 

extraction. 

Let us first discuss the key differences that distinguish the current implementation 

compared to the already existing as it was described above. We first need to clarify that in 

terms of logic applied the same process was followed, so it is important to point out the 

fact that the scientists considered the pre-made concept as fulfilling to provide nice results, 

however the main differences lie within the implementation followed as it was significantly 

altered and improved in unusual ways. What is more, they still aimed to mimic the way a 

human would play the game in the most natural of ways, which justifies the claim that their 

goals did not shift from the original study, an important reference to elaborate for the claim 

we made above. Considering that partially the research team behind the newer 

implementation consisted of members that took part in the very first implementation this 

should be expected and a means to firmly insist on creating robots based on human 

resemblance, as it provides more stable and natural results, helping us understand the way 

robots should be created in order to be injected in our lives, a fact that seems unavoidable. 

So, to resume on enumerating the distinction between the two implementations; first, there 

were significant improvements to the state recognition time needed for the robot to 

understand the current state of the tower, which also involves the proper tile chosen to be 

removed. In detail, instead of an omni-directional camera, they decided to use a monocular 

one, which might have restrained the FOV (Field Of Vision), however it also led to fewer 

unrelated information to be fed to the planner, which created the necessity of providing 

less images for processing to understand the way the tower stood still, leaving more room 

for providing a more realistic approach. Second, another key improvement was the ability 

to make the fingers used by the robot hand thinner which provided more refined movement 

and successful tile extraction along with error production, eventually leading to making 

fewer miscalculated decisions. On the contrary, more accurate actions were able to be 

made on the cost of having to use commercially used Jenga tiles, since it was no longer 



 

needed to use custom made tiles, namely strapping two normal blocks together due to the 

wider implementation of the fingers, which happened to be the case in the first study. In 

addition, another significant impact was made after altering the position from which the 

tiles are grabbed. This time, instead of having to grab a block from the top, the two fingers 

of the hand can grasp a tile from the side, mimicking the human behavior and giving the 

opportunity to play with higher Jenga towers, since that has been a major constraint of the 

previous work, as it only allowed three-level towers to be implemented based on the arm’ 

s length. 

Combining the above with the robotic arm already present, it helped the researchers 

create a more reliable and realistic implementation of a Jenga manipulator, which could 

realistically play Jenga [3]. Noteworthy, the project was separated into different tasks, 

judging by the differentiation of goals needed to be achieved as they were described by the 

scientists. The order of these tasks is the following; first, they had to be able to provide the 

planner and in fact the robot with the ability to recognize the tower state, to be able to have 

the available data to compute the best tile removal candidate, a task that was achieved 

through the addition of the monocular camera mentioned above. Second, the images 

provided created a tower state representation that was able to conclude to a specific tile 

choice to be removed, through a sophisticated method. It appears that the scientists, in 

order to maintain tower stability, they thought of a metric called “degree of danger”, which 

simply counted the number of upper surfaces a vertical line would cross from the bottom 

all the way up to a level k, passing through the center of gravity of these levels, namely the 

center of gravity of the block placed in the middle position of each Jenga game level. In 

case more than candidates were present, we would have to choose the one that had the 

smallest degree of danger, since theoretically this would correspond to the safest available 

option. The next step was to decide where the grabbed block should be placed, having only 

three available spots on top of the tower. This led to simpler computations, but at this point 

it is interested to point out that the scientists thought of this process as similar to the 

extraction functionality and thus, the same metric was used to evaluate the position that 

posed the most minor degree of danger, interpreting it as the position that would have the 

least significant impact on regards to the stability of the tower maintaining its balance. For 

simplicity, we just skip the discussion of the remove/place process followed by the robotic 

hand, as it is implied to be mechanic and same in all different scenarios. Instead, we should 

focus our attention on a similar issue that came up during implementation. That issue was 

no other than the obvious asymmetry in the block shapes, since they were slightly different 

from each other, something that very well could be the product of misplaced actions. To 



 

solve this problem, the researching team decided to slightly tilt the way the hand should be 

grabbing the blocks every time to be able to deal with the different placement ways that 

could potentially lead to false grabs and tower collapse. Moreover, the force sensors were 

placed on the tips of the fingers to provide more accurate calculations regarding the force 

needed to be applied during placement of a block back on the tower. 

Experimenting, in contrast to the first implementation, as we mentioned above, it 

was a game changer to be able to create greater towers of Jenga tiles, providing more 

insight as to whether the implementation was hugely successful. There is room for 

improvement, since the robot did not seem to have the expected results, however there are 

many factors that could be altered and provide us with better results, e.g., providing the 

robot with a more sophisticated tile extraction method, or taking more than two images of 

the tower to understand its state, as the current implementation suggests. Finally, we should 

also mention that the game between a human and a robot is automated apart from the fact 

that whenever a human has completed a move, they need to signal the robot to initiate its 

move decision, a point that could also be altered in future implementations. However, the 

scientists seem to believe that a more human-like robot is expected to achieve greater 

performance. 

2.5. Motion planner benchmarking 

Continuous evolution of both hardware and software regarding robotics has led to 

a spontaneous need of performance measurement to performance assertation to ensure 

efficiency, separating mere solutions from implementable actions. Under the lines of this 

guidance, the word performance was associated to benchmarking. This has led to the 

development of tools and thus problems that can measure the efficiency of algorithms, 

problems, and software in robotics, which will be introduced in the presentation of 

different benchmarking problems that can safely evaluate the efficiency of different 

planners in a problem-agnostic way [10]. Use of robots in various aspects of modern 

lifestyle and culture seems to be growing with exponential rate, eventually leading to the 

need of a measure or metric to be able to compare different planners. Moreover, one of the 

recent planner trends that has received excessive attention in recent years is no other than 

the one of motion planning, aiming to provide automation and ease among different TAMP 

(TAsk and Motion Planning problems). Transportation, medical applications and industry 

are only some of the highly affected sections of the fundamental gears that keep today’ s 

societies from falling apart and seem to also attract a lot of attention considering the fair 

fact that their role is so crucial that one could not think of a single day in their lives without 



 

the exploitation of what technology has to offer on regards to the services mentioned above. 

However, as we previously underlined there is no current way of being able to provide a 

concrete and solid comparison metric as to which should be esteemed as the crown leader 

of each corresponding problem. That issue has been tried to be dealt with a team of 

researchers trying to provide us with the first platform independent evaluation method and 

format of organizing and presenting such problems, through a collection of benchmark 

issues trying to cover the most popular and challenging aspects of TAMP. 

To begin with, we need to understand the reason such benchmarking system is more 

than necessary. In fact, robotics has received global recognition and interest across its 

application to many different scientific sections. However, that alone would not be able to 

provide us with a clearer image about the usefulness of the potential of planners and robot 

controllers in general, unless we are able to compare them effectively. Let us first have a 

brief look at the evolution of humankind through technological advances and its impact on 

society. Humans have always, for example, have struggled with the need to be able to 

provide themselves with the food they needed, the shelter they sought, or even the clothes 

that could protect them from different weather conditions. Throughout industrial 

revolutions we have witnessed many different changes in technology and the progress 

could not but be expected to eventually affect the complications and applications that the 

effort to achieve the above would experience some alterations. Leaping through history to 

avoid wasting the reader’ s time, it is only the least fair to strongly claim that we, humans, 

have always struggled to industrialize technological advances to fit for our needs and make 

modern life easier. Inevitably, humankind reached a point in time and technological 

progress that could no longer spare us the time to handle problems of the past, as their 

solutions were already invented, tending to turn our thinks into automating their 

functionality, especially with the used of programmed robotic behavior. That has been 

already widely known, however, it has been discussed the fact that us societies evolve our 

needs tend to become more complex, meaning that we can no longer rest at previously 

discovered techniques of planner evaluation, since today’ s planners and controllers tend 

to describe higher level actions and even abstractions of robot states and actions. To give 

a common yet still intuitive example, one could refer to the robot’ s location without feeling 

the need to specify the coordinates of its base, rather than its relevant location to a known 

environment (e.g., some robot X is in the living room), which if analyzed can easily be 

interpreted as an abstraction of the current state of the location of the robot, where the user 

is informed about the relevant (or, as explained by many researchers semantic) location, 

preventing the user from entangling with details such as its actual coordinates. Furthermore, 



 

we could also use a similar example to describe abstract forms of actions. For example, 

one could possess a robot with the skill to provide them with a glass of water. During 

robotics’ earlier stages of development, we would naturally care to define the different sub-

actions that would make up for the result, that would cover for transporting the robot to the 

cupboard, get a grip of a glass, fill it, and then move on towards the user, until it could 

finally stop. During these times it was relevantly easy to be able to compare between the 

different planners, as their level of implementation included the most basic of actions. 

In contrast with what we have already discussed, such methods are obsolete and 

useless when it comes to high-level actions and states, that use one or more layers of 

abstraction, unavoidably hiding most sub-goals needed to be achieved along with states to 

be reached, becoming easier for people to understand, further develop and evolve the 

actions taking part in goal achievement. This benchmark collection is primarily aimed 

towards PDDL problems, but could easily be generalized to respond to other formats, such 

as ASP (Answer Set Programming), or C+. Noteworthy, their focus has been around path 

finding for problems issued to include the necessity of continuous actions. 

Moreover, TAMP, this paper’ s main product of scientific research, includes those 

problems that need to undergo certain modifications to meet certain requirements for the 

comparison to be able to take place among similar planners. First, it is crucial that we 

strictly define the established relationship between state representation and system 

configuration including the hardware and software responsible for delivering the desired 

outcome. Second, it is also particularly important that we specify direct relationships 

between actions and motion plans, in order to provide a clearer understanding of the ones 

responsible for contributing to the result the most. One could think of the latter as a means 

of heuristics, but in case of judging by how much faster a variable gets close to the target 

value, we could instead how much the desired outcome approaches what we mean to 

achieve. At this point, we should point out that TAMP planners use their own symbolic-

geometric mappings to describe object states and thus, they are independent of the 

language implemented upon. To be able to understand the general format of such a file we 

provide the next definition and further elaborate; Σ= (S, A, γ, s0, Sg) represents a task’ s 

domain different domains for evaluation. More specifically, S corresponds to the finite set 

of states possible from the current state, namely the initial one. A, on the contrary, consists 

of a finite set of all the available actions that could be performed from this point forward, 

while γ is used as transition function which is used to give us the ability to move from one 

state to a new one through a specific action, given that all prerequisites are met. What is 



 

more, ‘s0' is simply used to identify the initial state, whereas ‘Sg‘ represents the set of goal 

states that we wish to achieve. 

Having made the above clear, it is obvious that judging by the vast area of non-

explored states, which includes both the ones we can reach in one step along with the ones 

that can be reached later in the process, the amount of information we need to maintain 

often tends to get out of hand, so it is beyond doubt needed to use on of the more compact 

forms of representation, such as the ones mentioned to keep track of the various problems. 

These problems could be part of other larger problems, but to be able to be classified as 

TAMP, it is vital that they do not contain infeasible actions in their domain (A), also their 

task space is often relatively large, otherwise there is not much use of benchmark problems 

proposed and of course, we need to keep clear that certain metrics are also mentioned. 

Among such techniques, we can count the trade-off between performing an action and 

evaluating the progress we were able to make, the factor of monotonicity in terms of how 

much certain objects are used compared to the rest and the general impact on current state 

a planner includes, or in other words, how drastically the state space needs to be modified. 

After discussing the preliminary requirements, we can now safely progress with 

mentioning the problems on which the benchmarking process takes place. First, we 

introduce the already famous problem of the Towers of Hanoi, and its extended version to 

be able to handle the physics complications that should avoid a disc being moved while 

being below another, which was successfully solved by providing the discs with greater 

thickness. Second, they introduce the problem benchmark dubbed Block Worlds, which 

involves correct placement of blocks with letters in alphabetical order. Third, we should 

discuss about the problem of non-Monotonic, where the main goal is to place tiles in groups 

based on their color, while considering their size. Moreover, they present the benchmark 

of Sort Clutter where the robot is trying to place in size decreasing order the block it is 

given. What is more, we have the Kitchen problem, which expects the robot to be able to 

place several tiles in the proper order to achieve a desired sequence. 

As modern-day societies tend to evolve, there seems to be an increasing demand 

on delivering more complex services or products. It is undoubtedly part of our reality the 

necessity of automation in many distinct aspects of life and the application of robotics 

seems to be a reliable solution. However, as complexity increases, so does the level of 

automation and its demands do, expecting for more abstracted, higher-level actions, while 

the amount of information makes it crucial that we also describe the robot steps and 

environment states in a compact, yet understandable way. This paper proves that it is also 

still necessary to be able to compare different planners suggested and provides us with five 



 

different problems to be able to understand how to correctly choose between the available 

motion planners. 

  



 

3  Methodology 

3.1. Controller and implementation details 

In robotics, it is vital that we combine each robotic system with a controller that 

offers the necessary flexibility and efficiency when it comes to solving problems. One of 

the options is to create a controller that can perform and execute specific problems and 

actions. When this route is chosen, we soon realize that we cannot use such controllers 

further than a certain extent, which eventually leads to inability of controller usage. Of 

course, as in every situation it is wise to always measure and consider the advantages and 

disadvantages of each method studied or used. In this case, this type of controllers offers 

limited dexterity and solution to problems where fast prototyping is necessary. However, 

they do not perform well in terms of problem scalability and diversity. At this point, we 

start considering another option, that of a more generic controller that will be able to tackle 

with various scenarios, even when we cannot even consider them. It usually, in the world 

of robotics, comes down to creating motion planners, or even path planners, that will 

provide better outcome, depending on the problem. 

Motion planners are general purpose and offer a wider scope to providing our 

robots with solutions, even when they are challenged with extreme situations (Table 1), 

but that depends on the programming of the controller. It is obvious that motion planners 

cannot be easily created for every problem and even if they require a lot of testing 

throughout experiments, that will push them to their limits and therefore provide us with 

feedback concerning their problem-solving ability. Various tests are then performed and 

scenarios that offer the planners the chance to calculate complex solutions and provide us 

with a chain of commands (or motions, as it is usually referred to) that will make up the 

solution. We should always keep in mind that this type of approach is always guaranteed 

to offer better quality of results, but that in fact depends on the use cases (Table 2). 

Table 1: Advantages comparison between simple and planning-based controllers 

SIMPLE CONTROLLERS PLANNERS 

Faster implementation Greater dexterity based on 

implementation 

Cover basic required functionality Covers fully required functionality 

Easily transfer between static and dynamic 

environments when feedback is offered, 

usually through sensors 

Offer better understanding of the 

environment, the obstacles present and 

the required goals to achieve 



 

No delay at execution Easily scalable to cover more scenarios 

 

Table 2: Disadvantages comparison between simple and planning-based controllers 

SIMPLE CONTROLLERS PLANNERS 

Limited problem-solving capabilities Often there is delay before execution 

Difficult to scale up Time-consuming implementation 

Requires programming down to the last 

detail 

Requires vast experimenting and case 

scenarios 

 More difficult to traverse to dynamic 

environments 

 

3.2. Algorithm solution space exploration 

Since the beginning of planners, algorithms have been at the heart of their 

implementation, offering and thus controlling the flow and use of information available, 

along with deciding the best course of action given any available context. Nowadays, 

algorithms have evolved and reached a level where we have a plethora of options from 

which we need to choose to be able to best adapt to any given problem. In this part, we 

will be discussing the process of different algorithms, based on their implementation. 

In general, in planning we have two distinct types of algorithms; the first type uses 

information available and tries to find the best available route of motions that fulfill its 

requirements, in this case this is a direct synonym to finding the set of actions that will lead 

a robotic system from a starting state towards reaching an end state, defined as goal state. 

To do so, the algorithm will need to seek out the best available option in every repetition 

of its steps, which eventually leads to exploring the whole available configuration space. 

The other category is based on algorithms that feature a more selective process of goal 

reach algorithm execution, where they need to extract a sample of the available 

configuration space. In this way, speed is increased dramatically, which usually comes at 

the cost of not finding the optimal solution that will eventually lead to the goal (Table 4). 

However, this approach offers other advantages, that vary upon implementation and 

algorithm selection along with faced problem situation, such as more efficient use of 

resources, lower memory consumption, or even fewer state search, minimizing the required 

time of implementation (Table 3). 

Table 3: Advantages comparison between complete and sampling-based algorithms 

 



 

SAMPLE-BASED COMPLETE 

Smaller resource usage Fully utilize a system’s resources 

Speed of execution Completeness of configuration space 

search 

Offer a satisfactory solution Offer the optimal solution 

 Answers the question about whether 

there is a solution 

 

Table 4: Disadvantages comparison between complete and sampling-based 

algorithms 

 

SAMPLE-BASED COMPLETE 

Solution quality varies from good to bad Resource usage to the maximum 

Usually does not fully exploit a system’s 

capabilities 

Takes considerable amount of time to 

execute 

Cannot answer if a solution does not exist Usually there is considerable delay till 

execution 

 

 

3.3. Algorithms presented 

In this dissertation, we focus on the presentation of complete algorithms and their 

implementation, namely A* and Dijkstra. In terms of sampling-based algorithms, we 

present RRT, which performs actions based on random steps. Before that, we present a list 

of algorithms that are quite commonly used based on their category in motion planning 

(Table 5) and provide some more context over their uses, basic principles, case studies, 

advantages and of course their disadvantages. Then we present and emphasize on the ones 

used and implemented in this dissertation, while providing more edible background on 

their implementation along with their application in robotics [11]. 

 

Table 5: Most common algorithms used for each category in motion planning 

SAMPLE-BASED COMPLETE 

RRT A* (A-star) 

RRT* Dijkstra 

Probabilistic roadmaps  



 

Artificial potential fields  

Monte Carlo algorithm  

 

3.4. Rapidly-exploring Random Trees (RRT) 

Based on sampling, randomly picking candidates for performing a next action, 

RRTs have widely been used in robotic motion planning [12]. RRT aims to explore the 

configuration space, regardless of the dimensionality. As the name implies, tree structure 

is maintained, aimed to offer great efficiency in solution finding. 

Two main factors affect the algorithm’s effectiveness and quality of solution. First, 

random-based sampling is limited by a maximum distance growth in the new region the 

branch extends to. In this way, we can avoid great differences in tree size which makes the 

process smoother in exploring new areas. More importantly, we need to clarify that a 

random step towards a feasible part of the configuration space is indeed chosen, however 

we use the maximum value to limit it and eventually use this value as a substitute for the 

originally chosen [13]. In different case scenarios, this might have different effects in 

performance of the algorithm depending on the problem. Usually, however, it enables us 

with a smoother progress of the algorithms state expanding tree, so we can avoid sudden 

differences between steps of execution. The second most important thing is that we set a 

probability for the algorithm to try between a certain number of attempts to reach for the 

goal state itself. This has proved to be of significant interest, since depending on the 

progress that has been covered in exploring the configuration space and trying on different 

routes and approaches towards forming a solution, it can dramatically decrease the number 

of steps and sum of time needed to solve each problem. A mild drawback would be to state 

that this effort is irrelevant to the maximum distance step we have previously selected, 

otherwise we would end up with no difference whatsoever in the algorithm execution. 

Another key factor is the number of iterations we choose to perform before we decide to 

end algorithm execution. In more complex environments it is usually ignored in the essence 

of choosing a significantly substantial number that fits the problem description and will 

not be able to stop the algorithm mid-execution, before it reaches a considerably and 

workable solution, close the goal state. 

Having highlighted the algorithm’s trickiest and with the most impact in its 

performance aspects, we will now proceed with providing a step-by-step execution that the 

algorithm states as the process in solution finding. Initially, we assume a configuration 

space, a list of obstacles if there are any, the initial state and of course the maximum 



 

allowed distance to cover in a single step. The algorithm starts by picking a random action 

of a given distance less than or equal to the maximum distance allowed and the proceeds 

with checking whether it is feasible, given the configuration space and the obstacles we 

might have included. If indeed we can perform this motion, then the algorithm tries to add 

this action to the nearest explored so far, maintaining the tree structure. The new motion is 

then added to the already explored states of the tree and becomes its latest addition to the 

branch it was added, becoming a leaf. The above process is continued for as many times 

as the number of iterations describes. Given that the algorithm was designed having 

efficiency in many aspects, including speed of execution, there might be different 

conditions to indicate its end. Some researchers might consider end the algorithm if there 

has been a solution found, or in terms of motion planning the given tree features a state 

that meets the goal state fully, or based on the problem needs. However, the general idea 

of the algorithm imposes that execution continues till the number of iterations is met, by 

adding more actions to the given tree and therefore improving the algorithms state. Below 

we will demonstrate the main aspects of the algorithm’s philosophy and implementation 

(Figure 1), providing more insight to the ideas of utilizing the values we chose and 

discussed above that lie into the heart of the algorithm, driving its execution till the end. 

As a last reminder, we need to consider that this algorithm aims to provide faster solutions 

to problems (Figure 2) and emphasizes on efficiency over quality of solution. In this way, 

even after the algorithm ends its execution, we cannot in any way claim that it has found 

the optimal solution, but this of course has to do with the dynamics of each problem at 

hand, as it is the case in many planning problems. 

 

 

Figure 1: RRT pseudocode 



 

 

Figure 2: Some of the use cases of RRT 

3.5. Rapidly-exploring Random Trees * (RRT-star) 

Using the RRT algorithm for finding solutions in planning problems had massive 

impact to scientific community, with many researchers implementing new patents based 

on the existing philosophy of simplicity and resource efficiency. One of the most 

commonly known variations, which is a more generic term for referring to providing a 

more guided way of searching throughout the configuration space and find a solution for 

the problem at hand, is that of RRT*, originally introduced by Dr. Karaman and Dr. 

Frazzoli [13]. The algorithm still fits the same criteria as the original RRT; however, it 

now features mechanism that enables the algorithm to converge towards an optimal 

solution while exploring. Below we will see some other variations to RRT and some of 

their use case; 

1. RRT* FND - extension to RRT* for dynamic environments [14] 

2. CERRT - variation of RRT to include uncertainty [15] 

3. TB-RRT - variation of RRT to include time in constraints [16] 

4. RRT*-AR - variation of RRT* dealing with alternate routes [17] 

5. RRG - (Rapidly-exploring Random Graph) variation of RRT for optimal 

solution convergence [18] 

As we can see from the list above, RRT was able to introduce the importance of 

simplicity in planning, since it is well-known as impossible to understand and include all 

the parameters in a problem solver, which is the reason RRT is usually described and 

referred to as naive implementation of a motion planner. However, the actual impact of 

RRT and its contribution to the scientific society is recognized by the number of variations 



 

and extensions that were based on RRT as shown above. RRT* is one of the most 

commonly known and used, so we will be taking a closer look at its implementation, along 

with the benefits it offers in contrast with the algorithm mentioned above, namely RRT 

and some of their differences and similarities. 

Quite obviously the algorithm’s implementation that utilizes tree structure has not 

been affected, to be able to hold onto the benefits in performance we get by adopting a 

similar structure. For simplicity of this demonstration, we will be considering a 2D graph-

based implementation of RRT*, to be able to highlight its key features and the ones that 

distinct it from its predecessor. For this reason, every time we refer to the word vertex, we 

will be now referring to what we called motion or action previously. The algorithm input 

and output are the same in terms of objectively seeking a route that will lead us from a 

starting state to a goal state however it is described as. Now, we will look at the actual 

implementation differences between RRT and RRT*. 

Two main aspects of RRT* make it different from what we already described, know, 

and understand as RRT [19]. The first of them is the maintenance and utilization of a cost 

function that can provide us with the toll it takes for a new vertex to be added to our tree. 

In RRT, we only consider which is the closest vertex to the new feasible one and then we 

add it to the tree. In RRT* we no longer do that, yet we do repeat this process in every 

addition. More specifically, we tend to use the cost function to be able to tell between 

several vertices in each radius, that will give us a few neighboring vertices when we add it 

to the tree. In this way, if we compute that the newly added vertex should instead be added 

as leaf to a different branch, since we can reach this state having smaller cost than reaching 

it through the pre-determined branch, as a leaf to a vertex stated by RRT. The obvious gain 

we get by performing the above is a reduction in terms of cost-related affects to the result. 

In terms of quality, in other words, we get a better fitting for reaching a new state, however 

in real terms we still aim and reach for the same state. An obvious drawback that someone 

could conclude to is that this restricts searching towards more promising areas in the 

configuration space, which makes the search biased. Some people might consider that this 

is an improvement and in terms of quality of solutions it indeed provides cheaper paths to 

a new state, however it also tends to steer the search toward certain paths which in some 

cases could lead to ignorance of important paths that might demonstrate dramatic 

improvement as the algorithm continues its execution. Thus, the main purpose of RRT* is 

not to provide the shortest available path, but instead give us better quality paths to choose 

from. 



 

The second significant difference between RRT and RRT* is what is mentioned in 

literature as “re-wiring” a vertex. In fact, it describes the process of having another run of 

the algorithm’s explored states to find out if the newly added vertex has been added to the 

best, again in terms of cost however it is measured, vertex. To make things clearer, this 

aims to provide us with a smoother path instead of simply providing the path. Further 

elaboration on this topic would suggest that re-examining the whole tree would be careless 

and resource-consuming, so a key part in this process is the fact that instead of running 

again through the whole tree, we focus on the neighbors of the vertex, as they were 

discovered in the previous step. Again, we need to underline the fact that this does not have 

a direct effect in the vertex itself in terms of changing each core values, or performing any 

sort of operations that will make it reach closer to the goal state. It simply describes a 

process that will genuinely lead to a shorter path in contrast with the one suggested by RRT 

and when this happens it will increase the smoothness of this traversing from one vertex 

to the other. 

In contrast with the benefits of providing a more straight-forward solution to a 

problem, that will avoid unnecessary steps as much as possible, RRT* had to undergo 

serious performance decreases when operating against obstacles. Main reason the above is 

taking place has been the cost of re-searching the neighboring vertices where we can add 

a vertex. This affects the outcome when obstacle avoidance is added, especially because 

of the additional calculations that need to be performed to check whether, or not the path 

connecting the new vertex to any of the old ones do not traverse through obstacles [20]. 

Below we will show a brief overview of differences in performance aspects between RRT 

and RRT* (Table 6). In general, we can see that the cost to reach the goal state is obviously 

decreased compared to the original cost we get by running RRT, however the execution 

time increases dramatically. The number of nodes, or vertices, in each tree suggests that 

RRT* was able to explore the same number of vertices as RRT. 

 

Table 6: Some of the performance differences between RRT and RRT*, however as 

we can see they both do not perform well in certain aspects 



 

 

 

3.6. Probabilistic Roadmaps (PRM) 

Continuing with the next sampling-based algorithm, Probabilistic Roadmaps, or 

PRM [21], are widely known and used in modern day robotics, due to their efficiency in 

path planning. Like we saw previously with RRT, this is another algorithm that belongs to 

the family of randomized planners, aiming to provide solutions within given time limits, 

without going over the whole configuration space. In other words, this algorithm avoids 

exhaustive search and proceeds with sampling over time, which in theory will return a 

solution if it exists. 

First, we need to clarify that this algorithm can be fully used in circumstances 

where a robotic system is tasked with finding a path, or set of actions to reach a goal state, 

despite any given obstacles. More specifically, the algorithm will indeed perform a random 

move, but before adding it to the chain of actions it will check if it is feasible. It is designed 

to answer queries regarding graphs, which implies that before we proceed with applying 

the algorithm’s principles, we need to provide it with an initial state, along with some sort 

of discretion of the configuration space.  

Again, there are many different approaches for implementing this algorithm, 

especially due to the variety in problems that robotics researchers are facing nowadays. 

However, three are the main aspects of the algorithm that can be parameterized and an 

affect both the quality and efficiency during execution. The first one is regarding the 

presence of obstacles. Admittedly, it will make the process of discovering a solution more 



 

computationally and time consuming, but it will also add some more calculations to ensure 

the algorithm’s stability. For this reason, it is crucial that we provide the algorithm with a 

good distance calculating method, e.g., the Euclidean distance appears to be the most used, 

so we need to pick one based on the problem at hand. As mentioned before, when dealing 

with coordinate systems, Euclidean distance can prove to be very efficient, however we 

should keep in mind that the essence of distance in this context exists to describe the 

distance from a given state to another, so depending on the robotic system we use this 

might refer to more than just coordinates, increasing in complexity along with 

dimensionality. Another particularly important variable we need to estimate is the number 

of vertices (again we assume that our problem is based on graph theory, due to the nature 

of this algorithm’s use) to consider that we have fully explored our configuration space. 

This number should not be taken lightly, as a higher number of vertices might be able to 

provide us with a more accurate solution, however it will cause the algorithm to become 

unresponsive in terms of delivering solutions that are not bound by time increases in search 

due to overly complex environments. To be able to find the proper number of vertices we 

need to have a proper understanding of the problem we are solving. Finally, as in RRT, we 

need to connect a newly found vertex into the existing graph, which means that we need 

to use the distance metric to estimate up to k different vertices that are supposed to be the 

closest to the new vertex. In this way, the algorithm can provide a smoother transition 

between different states and motions. Also, we minimize the probability that the algorithm 

will hit an obstacle along the way as it connects the two vertices, given the fact that obstacle 

collision has been used before. 

Let us now take a more in-depth look of the algorithm and explore the drawback, 

along with some quite common difficulties one might face when tasked with implementing 

PRM. At first, the parameters discussed before need to be rightly calibrated, otherwise we 

might end up with a planner that will provide no solutions whatsoever. This requires in 

most cases a lot of experimentation and research, categorized based on the problem that 

one is facing. Also, when we choose some random point from our configuration we need 

to remember two things; the first is that we need to choose a point from the space provided 

that all points stand equal chances which will minimize the bias toward certain given 

directions and we also need to take into account that points, or more likely whole areas 

around objects that have been set to represent obstacles are more difficult to be chosen 

either due to poor sampling, or rounding performed to decrease computational complexity. 

In general, we should also consider using different approaches based on problem 

complexity, given the fact that this algorithm will not perform well in crowded spaces. 



 

Again, we point out the general efficiency it provides, but let us not be taken away and 

forget that experimentation is required. In this way, randomized sampling might become 

slightly different than what we proposed above. Instead, it should be more possible for the 

algorithm to pick random points in parts of the configuration space not covered by 

obstacles. At this point it extremely helpful to also consider splitting the whole space into 

distinct parts. We should also notice that this is an offline algorithm, since it requires 

absolute knowledge of the space it operates in and hence, it cannot be used for online 

problems, at least not without changing the setup in terms of providing the algorithm with 

new input to be able to cover for missing information, or intel that has changed in regards 

to position, orientation, shape or size of objects, which is usually referred to as the 

geometry of the configuration space, making this algorithm require greater amount of 

information when performing in real-time. We will now proceed with explaining the 

algorithm’s process of execution (Figure 3), along with some of the parts we need to give 

more insight to regarding the algorithm’s inner functionality. 

 

 

Figure 3: Pseudocode for PRM 

 



 

At first, we provide the algorithm with an initial graph. Remember that we need to 

provide the geometry and positions of the obstacles as well if we have any, since the 

algorithm requires total knowledge of the configuration space. Of course, we also need to 

provide it with an initial and a goal state, so that the algorithm can understand when the 

search should be terminated, if we decide to add these parameters to the search performed. 

All the above are in par with the various setups of the algorithm and its configuration we 

decide pre-execution. At this point it is common that the graph we provide is considered 

empty in terms of not having any actual vertices that can lead from the initial state to the 

end state. We then proceed with picking a completely random vertex that has not been 

explored yet and check to see if it is indeed collision-free. This is the part where our 

distance metric begins to be utilized. We repeat the above until we find a non-colliding 

vertex that we can add to our graph. When we do find it, we proceed estimating its k nearest 

neighbors, as we suggested above. Again, we need to use our distance metric for that 

usually along with a planner. When this part is also over, we can then repeat the process 

of systematically picking random vertices till we meet the number of vertices we set during 

initialization of the algorithm. The algorithm will terminate execution either when it 

explores the number of vertices we decided, as the general implementation of it implies. 

However, it is up to us to decide that by altering this condition and check if in a way we 

have reached our goal state, depending on the problem configuration we chose as it is 

mentioned above, providing a little more guidance to the algorithm. 

3.7. Artificial Potential Fields (APF) 

When it comes to robotics, most of the times we are tasked with solving problems 

that have their roots into modern day situations, as in autonomous driving and the 

automation of processes that we face in our lives. As mentioned, a vast range of these 

problems falls under the category of mobile vehicles and our effort towards making them 

fully autonomous. 

Artificial Potential Fields [22] help us tackle similar case scenarios, where we 

cannot afford the time or resource implications of fully exploring our configuration space. 

When this is the case, we are forced to search for new methods and strategies that provide 

us with decent quality solutions in a more efficient way, whether this requires fastest 

execution, or computationally restricted planning. In most cases, we need to solve a 

problem using an online strategy, as in the case of Artificial Potential Fields. An online 

algorithm, for clarity, will provide us with a plan that improves and changes in real time. 



 

What is more, in many cases, depending the implementation it might help us with more 

efficient information storing. 

What is described above is usually referred to in scientific literature as “online 

planning”, as a response to more advanced and complex configuration spaces and 

environments in general. When we implement an online planner, we often use partial 

environment knowledge, in regards to not exploring the whole configuration space and 

considering it in motion choice selection. This improves speed of execution, but might also 

come with the drawback of incomplete knowledge that will give inferior quality range of 

motions, which in the end might instead turn to greater time consumption which defies the 

very reason it was used and chosen for in the first place. As the algorithm proceeds, our 

system will collect more information, which can be stored as a map to increase efficiency 

in exploration, comparison, and selection. Instead of searching through all our known 

states we can efficiently iterate through the closest regions to what we are looking for in 

our planners. Furthermore, in contrast with what we just presented, we might consider 

using a stateless planner, in terms of not keeping any states in memory. More specifically, 

our planners will be able to quickly respond to given situations and provide us with actions, 

however this presents the drawback of completely ignoring the given states, which might 

lead to difficult to break loops and again result to more time wasted than saved, as it was 

originally intended. The previous includes sensor readings, which implies that we will need 

to process information gathered during execution and even respond to dynamic 

environments, or even unknown. Thus, there is no placebo when it comes to planners, 

especially when our problem includes real-time navigation and decision making. We need 

to consider, study, and understand our environment and carefully choose the planner that 

will be able to properly respond to our problems. It is also a combination of computational 

resources availability and sensor readings quality and access to, since we should not forget 

that there is always noise that might and will affect the outcome, including the accuracy of 

our computations, which could vary from no nuisance in our readings to completely 

mistaken conclusions due to incorrect, or incomplete information and thus, it is also a 

matter affected highly by the available hardware. 

The main idea of Artificial Potential Fields is to provide the robot with more 

promising regions in terms of successfully reaching the goal state and, provide it with areas 

that should be avoided as they represent obstacles. In this way, we use the terms affected 

and repelled by given areas of our configuration space, which in our case are called as 

fields (Figure 4). If we want to refer to the general dynamic of the system, we refer to its 

U, which represents the general part of the configuration space that is feasibly traversable, 



 

in terms of being both accessible and collision-free with obstacles, in other words we use 

a metric to answer the question of whether a point in our configuration space can be 

reached without violating any obstacle-avoidance constraints. In each execution of the 

algorithm the gradient of our feasible areas, after subtracting those that are occupied by 

obstacles in negated and represents the most promising course of direction for our 

algorithm to choose from. To describe the general potential to attract the robot towards a 

field, we can consider it as either a conical, or a parabolical function. The later results in 

more distance-aware approach that enables us to take more precisely into account the 

metric we use to discriminate between different states and their distance from the goal state. 

When we use a parabolical approach, in contrast with a more informed process of search, 

we are also burdened by what could appear as a more biased strategy of searching our 

space, since the affective power of each field tends to increase in our algorithm, so this 

leads to a more directed search, which in some cases might prove to be quite useful for the 

algorithm, but in most cases in deprives our planner from many promising areas of the 

configuration space that might be overseen. On the other hand, when using a conical 

approach, we have the advantage of a more balanced attractive power over our robot, since 

it increases in a constant manner, saving us from ignoring states and parts in our space. 

More frequently, when using parabolical computations we are granted more accurate 

results when in need of more accurate results, but it will at the cost of biasing them after a 

while. For this reason, it is quite common to combine both techniques to in the following 

manner; we tend to adopt a conical approach for determining the repulsive power of any 

field over our robot and tend to use parabolical computations for estimating the 

attractiveness of a field in terms of reaching towards our goal. To further elaborate on the 

above, we achieve a more informed idea of understanding the quality of a next chosen 

action, over the reason it should not be selected, which again is highly affected by some 

good metric, e.g., Euclidean distance. As it has been mentioned before, metrics will have 

the most crucial impact on our algorithms in general, since they provide the most useful 

parts of information that our algorithms will use. When we compute the same attraction or 

repulsion effects for our obstacles, we tend to do this by providing surrounding boundaries 

for each obstacle, to be able to describe its effects in our robot’s course. In other words, 

we tend to reversibly increase the likeness of a field that contains an obstacle by dividing 

by its distance to our obstacle. Again, it is important to choose an incredibly good metric, 

that will fit for our problem at hand. Without stepping into too many details, the algorithm 

is designed in a fashion that provides a range away from which the algorithm does not 

consider the obstacle any more favorable to traverse to. In this way the repulsive forces are 



 

increased and tend to reach infinity when a point is on the verge of colliding with an 

obstacle’s boundaries, in contrast with attractive forces that are decreased to 0. The 

algorithm can now secure a collision-free choice of motion. 

At this point, let us recap the most important pieces in the algorithm’s process; first, 

it is used for online planning, but this in no way means that it cannot be used for offline 

planning, since we can very well provide the algorithm with a discretized version of our 

configuration space. Second, we can utilize our robots to provide actual feedback that we 

can use to estimate our movements, avoiding already explored states without necessary 

storing them. Finally, this is an incomplete algorithm, which means that the solution we 

get is most probably not optimal, but we should also remember that being a sampling 

algorithm, we need to consider checking for local minima before implementing its plans, 

which sometimes includes the addition of best-first implementation when trapped. 

 

Figure 4: Sample of a step in APF execution showing how the algorithm draws the 

robot away from obstacles (the red circle) and closer to an un-explored area (the 

green circle) 

 



 

3.8. Monte Carlo Algorithm 

Another example of random-based algorithms is Monte Carlo [23]. Originating at 

a same name site, birthplace to gambling and very frequent example of casino, this 

algorithm is based on statistics in order to provide us with a point in the configuration space 

that will not be colliding with any obstacles. It generically refers to a family of randomized 

algorithms, where the probability to select from a range of options, varies according to a 

given statistical function, with randomness being fair in terms of chance, stacking up when 

it comes to certain scenarios, which differs upon implementation. 

As we mentioned earlier, this type of algorithms cannot guarantee that we will be 

granted the optimal solution in a problem, provided there actually is one. However, for this 

case we should also point out the fact that between consecutive runs of the algorithm, we 

might get completely different answers, whether it be the quality, or even the existence of 

a path towards our goal [24]. This is caused by the randomized process that lies into the 

heart of the algorithm and is considered crucial during execution. When we complete an 

execution of such algorithm, it is quite frequent that we also include a test run to prove 

whether this algorithm is truly randomized, in terms of equally allocating chances of 

appearance of all outcomes between the runs. At this point let us clear that in computational 

theory it is considered that algorithms that belong to this family will converge to finding a 

solution if we repeat the process k number of times, with k approaching infinity. 

One of the drawbacks that many can encounter when are first tasked with producing 

results using these algorithms is the fact that in many times, they tend to provide us with 

biased outcome due to the widely-known difficulty of providing truly random decisions, 

hence the tests are need as described above. Usually, what one would expect is the strong 

attitude towards strict feasibility checks and constraint respecting when it comes to making 

decisions despite the problem and its nature. As we previously mentioned this algorithm is 

not guaranteed to even provide us with the same chain of actions between consecutive runs, 

which implies the freedom of execution and randomness in the algorithm’s nature. What 

is more, most of the times this is a pursuit goal, however we should keep in mind that it in 

no way removes the chance that our algorithm might end up as biased. 

There are two different cases, that in the most general cases might occur when 

implementing such algorithms; the first one is called as true-biased and false-biased, with 

both implying the correctness of the provided answers to each problem as responses to 

general queries. The first case tends to occur in cases where the algorithm claims the 

righteousness of its answer and it in fact turns out to be correct. While this might sound as 

an ideal scenario, we should consider what happens when we know and can distinct right 



 

from wrong, in a fashion that enables us to claim that a fact is right via our algorithm’s 

estimations and it is true, however we cannot really say something similar for all these 

cases where our algorithm guesses wrong. As it has been silently implied, the other case 

we might encounter during implementation, revolves around the probability that the 

algorithm can effectively recognize an outcome or situation as mistaken, however we 

cannot do the same when it comes to acknowledging the validity of a given context. 

Whereas it is quite common to meet the above conditions in actual problem 

implementations as we discussed above, we should at this point underline the strong 

possibility that we encounter both cases. When faced with such situations, it is wise to 

remember that we can reduce our falsely categorized decisions by incrementing the number 

of times we run the algorithm, which as said earlier might be able to provide us with better 

quality and more trustworthy results, since this type of algorithm has a higher success ratio 

as it approaches an infinite number of tries. On the contrary, given that this is a randomized 

algorithm, one might argue that such actions work toward increasing the time spent while 

processing the running environment and might lead to tough time handle and intense 

resource consumption. 

Many different applications of this algorithm tend to provide a vast and chaotic 

context that behaves differently depending the problem it is tasked with solving (Table 7). 

For example, when in tight operating spaces and within exceedingly small margin of error, 

it would not be advisable to use and exploit such an algorithm’s traits, meaning that it 

might be more suited to provide a solution after even an increased period that will, however, 

give an answer to our problem at hand. When we adopt similar case approaches, we aim 

to provide efficient good in general decisions in a brief period, especially since this 

algorithm is usually executed in polynomial time. Remember that we can always change 

the setup, a couple of parameters or even the general context and provide different, both in 

terms of quality and variety, series of answers. 

At this point, it is a demand that we present an overview of the algorithm’s 

execution process, such that we provide a skeleton that can be used in problem solving. 

Previously we referred to this algorithm as a generic algorithm that in theory can make 

right decisions in a brief period. That said the algorithm can be implemented in many 

different cases, but let us take a closer view to its actual implementation when it comes to 

planning problems, given the nature of our study. At first, as in many other algorithms, for 

the most cases that includes all the offline algorithms and some of the online planners, we 

need to provide the algorithm with a fully described configuration space, which our 

algorithm can sample from. Of course, this involves all the areas that can act as obstacles, 



 

which should be considered since it is vital that the algorithm is provided with as accurate 

as representations of its environment. Next, we need to generate random sequence of points 

in this configuration space, favorably equally scattered as options in the decision-making 

process of execution. At this point we should mention that we use a probability distribution 

to provide these points, which can dramatically affect the outcome. In most cases and 

driven by the motive that we seek equal chances of picking between our options, we choose 

to use a normal, or Gaussian distribution, pursuing true randomness. Depending on the 

problem, we might want to boost certain areas of our search space, so in some cases we 

might even consider using a different distribution, which results to the fact that it is not 

mandatory. In contrast, it is one of the parameters that we can change to directly affect the 

outcome, since the algorithm’s nature is based on statistics. As the follow-up action we 

process the results to determine whether they obey our constraints, given that we provided 

the problem with any constraints in the first place, storing or discarding the chosen action. 

Finally, we need to sum all the results in order to construct the final plan, which forms our 

solution. The final part sometimes might include more processing, since it might occur that 

we need to refine some of the motions to achieve our goal, but this is not an original part 

of the algorithm and thus it will not be discussed. In general, these are the steps that 

combined will give a solution to a wide range of problems, though we emphasized on 

planning problems, which we usually need to tackle with in robotics. 

Table 7: Demonstration of some of the algorithm’s use cases 

 

Weather forecasting 

Signal processing 

Statistical hypothesis evaluation 

Commercial video game character logic 

Financial consulting 

Better random number generation (RNG) 

Light tracing in CAD software 

Chemical reaction predictions 

3.9. A-star (A*) 

After our thorough presentation of algorithms that share the principle to not search 

the entire configuration space in pursuit of a solution to make sure they provide low cost 

in terms of computational power and effectiveness of execution we will now refer to the 

other great family of algorithms that in contrast with what we have seen so far debates on 



 

providing with the best possible solution they can produce. For this part we will be 

presenting A* [25], which is one of the algorithms that has also been implemented for the 

purposes of this dissertation, an algorithm that is frequently used to address large spaces 

and complex environments through well-guided execution. 

At first, let us discuss the differences that this approach makes us face and the many 

reasons why some might argue and debate on the effectiveness of a method. First, this 

algorithm is part of a variety of algorithms called complete, in terms of searching the entire 

configuration space in order to answer to our problems. An incredible first advantage that 

we can understand is the wholeness that these algorithms respond with, given enough time. 

In other words, provided that all paths and alternatives have been discovered and searched 

at their full extent, we can claim the full reassurance of our actions, in the sequence they 

are provided, since it means that there is no more guessing, or randomized selection. On 

the contrary, we have successfully searched throughout the configuration space and 

managed to create a plan that enables us to achieve our goals. What is more, adding a little 

bit more insight to what we already explained, one cannot but state another obvious 

advantage of the completeness with which we can answer whether a solution in fact exists. 

This is a profoundly significant issue and of the strongest arguments debating against the 

use of sampling-based algorithms. On the other hand, we should not forget that whereas 

this is one of the greatest advantages of these type of algorithms, we also need the necessary 

time and resources to decide that. More specifically, whenever we choose to execute such 

an algorithm, it will most probably guarantee, with a slight chance of doubt depending on 

any altercations we do to the algorithm to make it less resource consumptive, that if there 

is a solution given a problem setup, it is only expected that the algorithm will require to be 

given the necessary time to complete its execution searching amid the configuration 

space’s corners. The disadvantage is that in order to do so, there are no cuts to its execution, 

meaning that it will give us an answer after it completes running, no matter the cost this 

might have. In this way, its worthy benefit becomes a burden, because depending on the 

problem at hand we might not be able to provide an answer in brief period. This is one of 

the reasons why sampling-based algorithms could be used instead since we intuitively 

know if a solution exists. This is not true for more complex environments, however, which 

also implies that given the structure of the space we might never get a solution using such 

an algorithm, which in no ways mean that it does not exist. Another great benefit of 

utilizing more systematic search algorithms is the guided structure we meet in its process. 

More importantly, these algorithms implement some logic which they apply into their 

search, which can save us time and resources (Figure 5). To elaborate more on the last, a 



 

more guided search is not naive as the randomized algorithms are, but instead is targeted 

to reach for a solution exploring more of the configuration space based on the logic 

described for each algorithm. This provides us with more accurate and smooth results, 

which also gives us a better understanding over the course of actions that the path or 

solution consists of, which in the end results to better suited chains of commands, 

especially for planners. 

We will now look at the algorithm’s process, in order to gain more insight on its 

mechanics and the ways all these benefits that we talked about take place and affect its 

execution. First, during this presentation, let us state that this algorithm is used in graphs 

and path finding, with application to many different scientific fields, which make it a 

placebo in problem solving due to its optimality, as it offers us the best-case solution and 

efficiency through its guided search in the configuration space. The main process of the 

algorithm is as follows; first, we need to provide the algorithm with a list of options which 

it needs to explore later as it proceeds. These options include all the available actions that 

can be performed, in other words they must be feasible, which is usually checked by the 

algorithm. Second A* will try and expand these available actions based on their feasibility 

as we discussed before, providing us with their descendants to lead into the next set of 

available actions. Let us distinguish at this point that these actions and states are not 

discarded, instead we keep them in memory in case we happen to get across them in the 

future while exploring the configuration space to avoid re-processing these states. As time 

passes and the algorithm’s tree structure, which is also one of its benefits given the 

efficiency in search time terms, is expanded by adding increased descendants, or leaves, 

we can already understand that one of the algorithm’s main disadvantages is the necessity 

to keep all the explored states in memory to be able to bring them up in the future and use 

them. This also implies the need to be able to store them in an orderly fashion, which will 

make searching and iteration through them as efficient as possible. We should also keep in 

mind, that in order to choose make the next decision is part of the algorithm’s search 

criterion which is able to guide the search towards the most promising direction. To be 

able to do that, we estimate the best next action, which is stored as the one with the lowest 

cost. This is the result of systematic search and application of the algorithm’s heuristic 

function to be able to calculate the next successive move that will be as close to the goal 

state as possible, while maintaining the cost to the bare minimum [25]. This function is 

often described in scientific literature as f(n) = g(n) + h(n); where the n represents the next 

node to be processed, while f(n) refers to the quality of this node, which is the combination 

of the distance that has been covered from the start all the way to the next node, plus the 



 

cost as it is usually referred to, which is coming out of the heuristic function we use and 

provides an estimate of the distance between the next node and the goal. The most critical 

part of the algorithm is its heuristic function, since the better equipped it is, the more 

accurate predictions it will make, given the fact that being an estimate means that 

depending on the problem it might refer to different uses. For example, when performing 

path planning, the Euclidean distance is quite often considered a useful metric to calculate 

an approach to the goal state, by providing us with the cost of the path that a direct line 

forms from the node to the goal. The algorithm will terminate after the goal state has been 

reached, or in case there are no other areas of the configuration space that have not been 

explore when it comes to planning, but in general it means that when we can no longer get 

any new descendants then the algorithm has reached a stopping point. That is the case that 

we described earlier and which will indicate that there is no solution for a problem, in case 

the algorithm terminates before it reaches the requested goal. However, let us for once 

again state the importance of choosing a proper metric to be able to rightly evaluate the 

cost. Different problems can and will require different metrics with which they can 

understand the best course of action in any given case. 

 

Figure 5: A simple example of A* application on a grid-based problem (the yellow 

grid is the start and the green is the goal, whereas the dark green line represents the 

path) 

 

3.10. Dijkstra 

As we delve more into the depths of completeness of search, we notice that their 

benefits come along a series of issues which we need to keep in mind when implementing 



 

these algorithms. Namely, the resource allocation necessity becomes even more crucial to 

attaining our goal and the speed of their execution sometimes cannot prove to be as 

important as it should be given the delay even for simple problems where a vast number 

of parameters are included. In this part we will be exploring another complete algorithm, 

the Dijkstra [26] algorithm. 

This algorithm is used in graph theory and traversal to provide accurate paths with 

the minimum possible cost while navigating from one node to the next. As we further 

explain the process followed certain similarities will emerge and be discussed in a way that 

will justify what a great deal of the scientific society claims; that the algorithm we 

presented earlier, Dijkstra poses as a special case of A*, without using a cost evaluation 

function. At this point we would like to state that this algorithm is supposed to estimate the 

best in terms of cost efficiency route that will lead from one starting point, or node as in 

graph theory to a concluding or ending point, or node. Furthermore, it is an algorithm that 

requires certain information to be available, regarding the weights for each route, which 

need to be different than negative values. When such a scenario is encountered, we tend to 

adopt the use of different algorithms, such as the Bellman-Ford algorithm [27]. It is quite 

important, in order to understand the capacity of this algorithm’s problem solving 

capabilities, to refer to the fact that this is the algorithm that provides us with the desired 

functionality concerning the use and effectiveness of everyday usage of the internet, since 

Dijkstra is used behind the logic of OSPF protocol, which stands for Open Shortest Path 

First and involves the execution of a functionality that enables us to direct the traffic 

between the different routes and nodes, in this case the nodes are the available gates to 

connect to and establish information exchange. 

Dijkstra is a greedy algorithmic approach since it is bound to search for and provide 

us with the best available solution, or path. However, let us not forget that during execution 

and being part of its process, it is searching for the local available path and when added 

information makes it no longer the shortest path it tends to update and thus provides us 

with complete information to help us tackle with the problem’s needs. Another important 

note to keep in mind is that this algorithm can distinct and work specifically for directed 

and non-directed graphs (Figure 6). When used in motion planning, we need to first 

discretize our actions and proceed with a certain modeling of the environment in which the 

algorithm will be asked to operate. What is more, as we mentioned before this algorithm 

among its execution keeps searching for a better fit solution till there are no more available 

answers or part of the space, or graph in general, to search in. In this case there might be 

some misunderstanding over the greedy nature of the algorithm. More importantly, as we 



 

mentioned it will continue to search until it gets a more cost-efficient path leading to the 

goal node, if there is still available search space. As it occurs this is the terminating 

condition that will mark the algorithm as completed. When this happens, it is crucial to 

understand that the algorithm will produce the best and most appropriate in terms of cost 

path. In theory this alone should be enough to prove that the answer to a problem produced 

by Dijkstra is the best available, however we need to prove this, or more precisely explain 

it given the fact that the algorithm still explores locally when committing to a new path. 

First, let us consider that we have a graph that only consists of one node. In this 

oversimplified case, it is obvious that the cost is the minimum available, which is 0 since 

the node has 0 units distance to itself. The main course through which we will try and 

evaluate the algorithm’s efficiency is the fact that we will claim that for any given number 

of nodes we can calculate the shortest path and any other path therefore will have the same 

or even greater cost to be followed. As in many theories in the mathematical world, we 

will first claim that we already know that for k different nodes this algorithm has provided 

us with the best available course, with k > 1 for obvious reasons. To be able to claim that 

we are executing an algorithm that will result into the shortest path we only need to prove 

that by adding new nodes we still get the shortest route, in terms of the algorithm being 

able to identify them. For example, for k + m number of nodes we should be able to still 

provide the best route. Let us examine the even simpler scenario where we only add one 

more node, namely we now have k + 1 nodes in our graph. Since the algorithm has already 

run, we have all the known nodes explored with the single exception of this newly added 

node. In this case, we will proceed by searching through our nodes and comparing the 

neighbors of each new vertex to decide whether it should update the shortest path table. In 

this case, when we add the new node, it makes sense that this node is already connected to 

some already explored node in our graph. Given this case we can assume that the previous 

node was connected to the recently added node since it had the shortest cost, which was 

estimated as the local optimum which in turn when increasing the algorithm’s number of 

unexplored nodes tend to give us the explanation needed to back the claim about the 

shortest route it can provide us. Simply put, since the algorithm re-evaluates the paths in 

every new explored node that is added to the set of visited nodes, we can always 

progressively get the best available path. 

Let us now describe the algorithm’s execution, having proven its authenticity and 

effectiveness and hence its importance. First, as we already mentioned, we need to provide 

it with an empty set that will be storing all the explored nodes’ previous nodes and the 

distance from each node to the next, which in the beginning is marked us infinite. We then 



 

begin the process by setting the distance to the starting node as 0, which we described 

earlier. While we have not explored all available nodes, the execution will then seek the 

node that will be reached with the smallest available cost from the current node. In this 

way, we need to set mark the new node as explored and add it to the set of nodes we talked 

about earlier. The next step before we update our algorithm’s status is to check the 

neighboring nodes of the newly picked node and see whether connecting them to the new 

node is more efficient than connecting it to the current node and if this is the case, we set 

that node as the middle node between the two and connect them as a sequence of shortest 

path algorithms considering the node weights for each one of the neighbors. This strategic 

extraction of nodes and setting them as explored will provide us with the shortest path 

possible when the execution terminates, in other words when we do not have any unvisited 

nodes. As it is obvious this algorithm will take a considerable amount of time before it is 

available to give us an answer and should be optimized through careful decisions and 

better-informed weight estimate when initializing the graph. 

 

Figure 6: An example graph as input to the Dijkstra algorithm 

 

3.11. Storing information - RTree 



 

Before we proceed with offering our implementation of RRT, Dijkstra and A* we 

need to make a brief introduction to one of the concepts that was used and will be presented 

as well, at least for the case of A*. As we have described and it is very profound throughout 

the whole presentation of algorithms so far, it is crucial that we store the necessary 

information as to what states of the configuration space we have already discovered, which 

creates the need for an effective way to go back and of forth throughout our states for us 

to be able to determine the nodes that lie the closest to the next node processing. In fact, 

this is a need that will emerge when we need to search and iterate through 3D vectors that 

represent the coordinates that our robot has been to so far, as is the case in this dissertation. 

Like we mentioned above, we decided that as the search tree tends to expand and grow 

beyond our ability to effectively store and iterate through, the need has emerged and was 

covered by the presence of a data structure implementing an R-Tree. 

R-Tree as a concept was discovered in 1984 by Antonin Guttman [28] and the main 

purpose it had to serve was to provide us with proper process of stored spatial information. 

More specifically, multi-dimensional indexes are used in order to describe and model 

various aspects in our lives, but for the most part and as we did in this dissertation, they 

are used to be able to give us a list of options answering the question regarding the closest 

points to a given location. While this is the main purpose, it is demanded to provide some 

more information as to the general concepts that there might be the need for them, such as 

navigation instructions, finding nearest neighbors when we need to deal with multiple 

dimensions and even filter through different provided shapes and structures that are used 

to mark areas in a geographical map. 

When we decide to use an R-Tree we need to keep in mind the structure to be kept 

in order to represent all the available points and shapes. In the general case, every time we 

need to store information within an R-Tree it will be broken down to different segments of 

data. First, we need a unique identifier to be able to refer to each node within the tree. This 

is usually referred to as the id of the node, be it a leaf or a parent node. We then need to be 

able to define a minimum bounding rectangle, or MBR, which will represent the radius of 

this spatial data. At this point let us explain that when we want to define a single point, we 

can choose this course of action by ensuring that the point coordinates are the same 

marking the start and end of it. Another important thing is to note that we store every point 

with rectangle-shaped bounding box, hence the name. This might not be appropriate for 

every case, but it helps discretize the search space and makes it fair for each newly stored 

piece of information to be selected when compared to the rest. As it is implied, the more 

information we store the more accurate the representation will be, so we should keep in 



 

mind that R-Tree data structures will deal with the efficiency in searching through the 

given states, however we will need to provide them with accurate information. What is 

more, when using R-Trees we need to familiarize ourselves with the idea that every node 

consists of other nodes, or objects, that in their turn also contain more objects. Furthermore, 

despite what the reader might conclude to with our previous statement, the expected height 

that each node is expected to have, is log(n) with n being the number of objects it contains. 

In this way and given the fact that R-Tree structure uses pagination to store the data, let us 

think of this particular concept; the MBR is used to refer to a rectangle that is bound to 

cover all of the objects that it consists of  (Figure 7) and thus, it will then descend and 

search each one of the objects in order to more specifically answer the query which is 

usually a question similar to finding the closest points, or shapes, to given coordinates and 

if can find a more detailed closer object it will resort to the MBR we mentioned above. At 

this point let us describe the most asked questions among querying an R-Tree which will 

give us the number of operations and type of questions this form of data structure can 

answer. A basic question is whether an object provided belongs to a specified area. This is 

used in many applications of localization and can answer whether it is true based of inter-

lapping MBRs. Another question we might need to answer is whether some object is part 

of an area, which is treated in an equivalent way as above. While we are describing these 

objects, we can also provide a list of all the objects that an area consists of, or in other 

words the rectangles that are present within an MBR. Another set of particularly useful 

operations we can perform regards to giving the answer as to whether certain objects are 

close enough to a certain other object, or all the objects that have distance minimum or 

equal to the one we provide. In our implementation of A* we have relied on the last 

operation in order to successfully decide whether an area has been explored before within 

a given margin of distance from this point, in order to avoid adding to the tree unnecessary 

information. Of course, some people might argue as to whether distance should be 

considered an acceptable metric, or we should specifically seek the exact coordinates in 

our configuration space’s explored states. The answer depends on the problem we are 

dealing with and it should be in the middle; we need to reduce the acceptable distance 

radius as much as possible in order to provide more accurate answers, however we should 

also keep in mind that this might result into storing a lot of unnecessary information. As a 

final piece of required data, we should further elaborate as to why we use page-indexed 

search and the benefits from it. First, by using pages we can better organize our space, 

whether it is discrete or continuous, which also enables us to divide it based on the areas it 

consists of, or MBR of each object within it. This can lead to more accurate search and can 



 

provide us with more effective solutions. Moreover, each page cannot contain more than a 

certain number of objects, named M, which is an indication that we need to split a page 

into two new ones. This is one of the parameters we control and should be carefully taken 

into consideration, as it has been proved that 30-40% fill is enough to give us the best 

theoretical performance. In general usage, R-Tree structure enables us to easily iterate 

through our entries effectively, however we should keep in mind that deletion can 

sometimes be tricky, in terms of coming together with the need to delete and update all the 

parent page MBR coordinates, which given the leaf depth might prove to be resource-

consumptive. 

 

Figure 7: R-Tree storing process demonstration for a 2D example where we can see 

the indexes for each R-Tree stored object along with its MBR 

3.12. Implementing RRT 

Since we have finished with all the necessary theoretical background concerning 

the use and mechanisms of certain algorithms, we will now proceed to explaining our own 

implementation of some of the algorithms that have been mentioned and presented before. 

The first algorithm that was implemented is part of the random-based algorithms, namely 



 

RRT, short for Rapidly-exploring Random Trees. The algorithm was implemented in a 

way that the actual input are these; the starting position, which is used to refer to the 

coordinates of the point of the claw used to grab each tile in our environment, the end 

position which is basically every position expressed in 3D coordinates of every given Jenga 

tile that we want to grasp with our robotic arm, the obstacles as a list of vectors with 3 

values to represent the X, Y and Z coordinates of our configuration space and the number 

of iterations that the algorithm will run in order to simulate the similar parameter that exists 

in the actual RRT. We also can provide a radius which is the minimum distance that will 

determine whether two objects are colliding, especially important to determine the above 

and can directly affect the outcome of the algorithm. This parameter can make the 

execution slow, but much more accurate if set too low, or it can make the execution a lot 

faster and provide entirely inaccurate results compared to what we would expect. That is 

the reason we should keep in mind that it may vary among different problems depending 

on the environment the objects are inside. The following parameter to be set is called 

stepSize and refers to the incrementing step that will be used in order to make the algorithm 

increase faster the chosen values or in a slower pace that can be more precise for our 

computations. We can then also provide a certain number of the available different 

branches we can keep in terms of selecting entirely different, random-based movements. 

AS the last parameter we need to provide the threshold with which we calibrate the goal 

reach checks and more precisely the necessary distance the algorithm needs to see that the 

claw reaches the target before considering that the actual goal has been reached. 

We begin executing the algorithm by setting all available branches to the start 

position of the claw and we also properly set the covered rotation and distance so far by 

initializing them. At this point we should clear that in the actual implementation we 

initialize the forward covered motion to 0 as expected, however we set the rotation that has 

been performed to 2.0 since we can in this way define any pre-existing rotation for our 

claw. This is practical and could be ignored provided that our experiments include that, or 

in other words if we indeed choose to not have initial rotation, we can do just that. The 

next step is to randomly choose the next motion for the algorithm which happens through 

randomly choosing one of the 4 available motions, move forward in a straight line, or 

backwards and the same holds for rotating clockwise and counter-clockwise. We also 

choose a random step to perform the motion with which ranges from a range of 0.0 to 1.0 

multiplied with the stepSize that we mentioned earlier. The next necessary step is to check 

if the next motion chosen can in fact be performed since it is likely that it collides with any 

obstacles provided that the list with the available obstacles is not empty. The next part is 



 

critical and requires further explanation. To perform the motion that is feasible, meaning 

that it does not collide with any obstacles otherwise the algorithm continues execution and 

goes straight to the next iteration, we need to simulate and, in a way, predict what the 

coordinates for the claw will be after performing this move. For this reason, we have 

implemented two distinct functions with just that specific behavior, which also justifies the 

reason we measure the overall covered rotation and distance, since all our algorithms are 

implemented in an offline manner, they will find a solution first if it exists and then execute 

it, meaning that we could not test for the actual coordinates so we had to simulate and make 

an estimate for them. There is no actual need for details, however it involves basic 

principles of geometrical shape transition and trigonometry. After we get the new 

coordinates, meaning the coordinates where we expect the robotic grasp to stand in the 

environment, we create a new state and update the specific branch. The next iteration will 

aim to pick the movement from this spot in the space and continue from there for each of 

the different branches. At this point let us explain that we use branch in order to describe 

the different motions linked in a path formation as alternatives to a common starting 

position. It is also picked us a name in order to resemble the tree expand behavior of RRT. 

After all the iterations have been completed, we will seek to get the one path that features 

the shortest available cost among those that managed to reach within a given radius close 

to the goal position. We will proceed with presenting the main process discussed above in 

a form of pseudocode. As the reader may notice for the sake of clearance and further 

comparison, we will provide both the original (Figure 8) and the implemented (Figure 9), 

for the purposes of this dissertation. The main purpose is to spot similarities and differences 

that were product of the modeling the problem had to undergo for the algorithm to be 

successfully implemented. 

 

Figure 8: Original RRT 

 



 

 

 

Figure 9: Implemented RRT 

 



 

 

3.13. Implementing Dijkstra 

As we previously mentioned, as part of the research of this dissertation we 

implemented 3 different algorithms, giving more bias on complete algorithms. The next 

one that will be presented is the Dijkstra algorithm which will also set the basis for later 

discussing the implementation of A*. First, let us discuss the different parameters that we 

included in this case. As we previously mentioned we need to provide the algorithm we a 

starting position in order to know the coordinates of the point in our configuration space 

where the algorithm will begin its search. The coordinates are given as a list consisting of 

three different numbers that refer to the X, Y and Z coordinates respectively in the order 

they are provided. As a sidenote, in webots we consider X and Z for movement parallel to 

the level, whereas the Y coordinate is used to define the height of a particular point in 



 

space. Moreover, in order to have a sound implementation and the actual termination 

condition we need to also provide the algorithm we the coordinates of the target’s position, 

which as we have already mentioned is the positions of each tile, since the main problem 

we are trying to tackle is make our robotic arm move around and reach a tile, grab it, and 

then successfully place it to construct a Jenga tower. Like the need to provide a radius for 

obstacle tracing, we also give this opportunity in the implementation of Dijkstra as well in 

order to let the user decide how the algorithm should treat its obstacle. This means that 

when we try to avoid obstacles, we should keep in mind that we use Euclidean distance as 

a metric to decide the approximate distance between two points in our space. Using this 

strategy, we can simulate and avoid obstacles in our way and successfully reach the goal 

state provided that the route is feasible. As a last parameter we need to provide the 

algorithm with a threshold that is used to decide when a certain motion has been thoroughly 

examined. To further elaborate on the latter, based on the Dijkstra process we need at some 

point in the definition of this algorithm to decide to move on after marking a node as visited. 

In our implementation, in order to do that we decided to add some counter as to whether a 

motion based on one of the four available actions that include straight and back movement 

along with rotational and backwards rotation can no longer contribute towards creating a 

path. This requires more explanation and will be examined further at a later moment in this 

presentation as part of the presentation of the algorithm’s main functionality and strategy 

in order to mimic the expected behavior. 

First, the algorithm begins its execution by creating a single branch since Dijkstra 

does not feature multiple different paths. On the contrary the algorithm constantly works 

towards providing a certain path after exploring the whole graph. For this algorithm, 

another function was created that simulates the best available step for each motion at any 

given state during the algorithm’s execution. We also set a dictionary that represents the 

cost of every available motion in each turn to determine the next shortest move and in order 

to avoid repetition we will be decreasing its values later. Second, we need to check if there 

are any available motions left so that the algorithm can continue its execution. This is a 

crucial step and is used in order to resemble Dijkstra’s check in every loop of whether there 

are any nodes that have not been explored. Consequently, the problem is modeled in a way 

that every time we iterate through the algorithm, we consider every motion and the best 

possible step for it, which also checks for collision avoidance, as the actual nodes left to 

check. For the next move, we also consider the best available step which we calculated 

before and we proceed with decreasing the value of this move by one in the dictionary we 

mentioned earlier so that in the next loop the algorithm will only consider the rest of the 



 

motions available so that we can avoid repetition as much as possible. At this point we 

need to state that we calculate the coordinates based on the type of motion it is we perform 

and its step using the same prediction functions as in RRT. WE should also clear that the 

algorithm updates the states of the branch object we created in the beginning, which again 

for Dijkstra is unique. Finally, we need to mention that in order to decide that the algorithm 

does not have any unexplored motions we will proceed with checking if the step every 

time we loop into the algorithm is lower than the threshold in order to instruct the algorithm 

that this motion has been thoroughly searched and therefore, we should proceed with 

removing it from our list of available motions and hence our unexplored nodes. It 

summarizes that if the best available step does not give us any actual improvement given 

the state the algorithm is in, we should no longer seek answers towards this direction and 

should consequently remove it as unnecessary. Quite similarly as we did before we will 

now present two different figures showing the original implementation of the Dijkstra 

algorithm (Figure 10) in contrast with the implementation that we presented (Figure 11). 

 

Figure 10: Original Dijkstra 

 

 



 

Figure 11: Implemented Dijkstra 

 

3.14. Implementing A* 

The third and final algorithm we developed for this dissertation is the A* algorithm 

that has been previously presented. As we mentioned it is a complete algorithm, in terms 

of guaranteeing that it will find a solution provided it exists. Another trait of this algorithm 

is the feature of a heuristic function to navigate through the various available paths in a 

way that will always consider the most promising path, which sums the Euclidean distance 

that has been covered so far and the Euclidean distance after performing an action. We will 

now proceed with presenting the main context that adds up to the implementation along 

with some general principles that were followed in order to model the algorithm’s most 

important aspects and map them to the problem at hand; providing a path for our robotic 

grasp to be able to reach the tile which as described above has always been our primary 

goal. 



 

First, as we did with the previous two algorithms, we need to provide that starting 

position of the search as a list with a length of three in order to represent the three 

dimensions of our space. We also require the end position of the targets in each execution, 

which of course cannot but refer to each tile we are aiming to reach in an analogous way, 

a list that comprises of three different numbers referring to the coordinates of the tile in the 

environment. Next, we need to provide a list of similarly stored coordinates that refer to 

every obstacle we include in our environment. Of course, the list might indeed be empty 

and in this case, we do not need to care about the extra checks. Another thing we need to 

provide the algorithm is the radius that will help us determine whether our claw and one 

of the objects collide, in which case we cannot perform the motion we want. So far there 

is no actual difference in the parameters we provide compared to the two previous 

implementations of algorithms. However, this will change now regarding the two final 

parameters. We provide the algorithm with a minimum step to execute a motion along with 

a medium step to make this action, whether it be rotation or straight motion. These two 

extra parameters are one of the differences regarding the algorithm’s available motions as 

we will see next. At this point let us also clear that in order to ensure better performance 

and increase the algorithm’s efficiency we also decided to use R-Tree structure to store the 

visited nodes, which in this case it refers to parts in our environment. The benefits of the 

use of such data structure have been discussed above and for now we will just explain that 

it included speeding up various operations and greater efficiency when performing the 

most necessary operation for A*, the decision of whether a given state has been previously 

visited during execution. 

Let us now provide the algorithm presentation and describe the way it was 

implemented. First, we initialize our R-Tree storage variable based on similarly named 

library we use and thus we will not be further discussing this since the implementation of 

R-Tree is handled by a third-party library in order to keep our states. We also need to begin 

keeping branches, objects of the same class mentioned above that will refer to the different 

available paths in order to keep in memory all our options as it is demanded by A*. Each 

branch contains series of states that make up for the path it consists of as it has been 

previously explained. The algorithm execution after we have properly initialized the above 

is straightforward, much as in the original algorithm implementation. Notice that in order 

to simulate the different states that the algorithm explores we need to initialize it with 

different motions for each branch. Next, we need to specify that since through 

experimentation and theoretical background we know that this algorithm will provide us 

with an answer we decided to use a different termination criterion. Instead of waiting until 



 

we reach the goal and given that for every different tile and route needed to be performed, 

we cannot set a global minimum distance to be reached we decided to check all the 

available distances to the target in each loop and if for a specific number of iterations, we 

do not see any improvement then we will proceed with terminating the loop. In this way, 

we can gain from the algorithm’s precision in execution. The follow-up thing to do is for 

every single branch we decide to add all the available motions taking into the account the 

minimum and medium values as well. Notably, we perform a simple check before adding 

the values of minimum and medium steps, meaning that if they are not feasible, we will 

override these passed parameter values. We then need to update the R-Tree with the newly 

calculated values and positions so that we can keep track of the visited coordinates in our 

space. At this point we are ready to pick the most promising motion to perform based on 

the data we have so far. For this to happen we also need to calculate first the Euclidean 

distance from the coordinates of each new candidate move to the target and then we add 

the distance that has been covered so far. As in A*, we will also pick the one with the 

smallest value and we will then try and find any nearby points in our R-Tree. If that is the 

case, we have a mechanism that is bound to unite the two motions in a continuous way in 

order to ensure that the transition is as smooth as possible. We should keep in mind that 

the comparison value is quite small in order to avoid having a dramatic difference among 

the states that are considered visited. Notice that we will simply add both motions as one 

in case of same movement instead of skipping it as it might have been expected. We then 

need to update the branch we currently are at and then proceed with the rest of the execution, 

until the algorithm terminates in the fashion that we described above. Let us now observe 

a simple generic comparison between the original (Figure 12) and the implemented version 

of A* (Figure 13). 

Figure 12: Original A* 



 

 

Figure 13: Implemented A* 



 

 

  



 

4  Experiments 

To be able to compare the algorithms we had to perform certain experiments, so 

that we could conclude to concrete statements as to which algorithm behaves the best. This 

comparison does only reflect the algorithms at hand, but is also a key part in understanding 

the reasons and main differences between the philosophies behind those algorithms. 

4.1. Controller execution 

In previous chapters we have discussed the use and effectiveness from various 

perspectives of the utilization of simple controllers. Before we delve more into the 

algorithm performance, we need to take a more in-depth look of plain controllers that are 

programmed to deal with a certain number of scenarios and we do not expect to use them 

in more complex and dynamic environments. 

For this dissertation, we first created a controller written in python 3.8 and the 

simulations were run on Webots simulation software. The robot we created consists of 6 

DOF and more specifically 2 rotary joints and 4 linear. It is designed to be able to rotate 

around an epicenter and as stated already our aim was to be able to give it the ability to 

construct a Jenga-like structure. For this reason and following similar-goal scientific 

literature, namely [6] and [2], we considered that modern practices insist on implementing 

robotic manipulators, heavily based on their ability to use visual recognition. Inspired by 

their various applications, our robot also features a sensor designed for providing visual 

feedback. More specifically, we enabled our robot to be aware of certain objects of interest, 

namely the tiles that will be used to create the Jenga structure (Figure 14). The camera 

sensor can detect those objects and distinct them from other objects that might get in our 

way. For instance, we decided to use geometrical-shaped obstacles that our robotic grasp 

needs to avoid in order to successfully reaching its destination. These obstacles are to be 

avoided in the simplest of scenarios, in the sense that when encountered the robot must not 

be directed to them. At this point, the camera sensor was also able to provide us with the 

relative distance to an object when it is detected and it is also capable of giving as its 

relative rotation as well, all in relation to the camera’s transform. 

 

Figure 14: The camera sensor feedback (top-left corner) detecting a tile 



 

 

4.2. Sensor description 

Taking visual servoing into consideration, the next step was to implement logic that would 

allow our robot to be able to take actions based on the visual feedback of the camera sensor. 

For this reason, we decided to add more obstacles, this time not just around the orbit of our 

robot, but also in its way to reaching the blocks, having to rely on the camera sensor to 

successfully detect and distinguish them from the tiles. We used grey rectangle-shaped 

obstacles for this case and the robot would have to perform certain chain of actions in order 

to avoid them and proceed with exploring the space around it, until it finds all the tiles, 

which always served as the final goal. As discussed, we exploit the environment’ s built-

in access to camera-gathered information, including the general transform of an object to 

successfully approach a tile, or evade an obstacle at a given time. When the latter needs to 

occur, we perform some basic movements that will allow the robotic arm to circle around 

the obstacle and then continue its course. At this point, let us state that we do not need to 

have previous knowledge of the obstacle positions, or the transform of the tiles. Instead, 

we study and extract this information through our camera sensor. 

 

Figure 15: The robot reaching a tile after avoiding an obstacle 



 

 

At this point, we should also discuss about the rest of the sensors used in order to 

create the robotic arm. More specifically, we used a distance sensor in order to be able to 

measure the height from which we need to descend our grasp in order to place the tile at 

the top of our Jenga structure (Figure 16). This of course was a result of an effort to reduce 

the computational cost when implementing an actual robotic arm, as scientific literature 

has stated that we need to utilize force sensors to be able to avoid disturbing the tower’ s 

balance and structural integrity [6]. The sensor was able to provide us with interesting 

results. As expected, it performed well in terms of time complexity, however it is not 

suggested to be used, as that comes with a load of noise, or interference, given the 

environment setup. This might be enough to provide inaccurate data and the sensor itself 

could not be enough to deliver the results we expect. Moreover, we will state that we 

utilized a GPS sensor in our implementation, but this has only been the case for 

completeness of experiments, monitoring of the progress and basic logging, so we will not 

present any further of it, as it is not vital for the controller’ s implementation. 

Figure 16: The distance sensor range of detection 



 

 

When the controller ends its execution, which happens after it successfully gathers 

all 12 of available tiles, something that has been hardcoded into the controller’ s logic, it 

will complete a tower structure to resemble a Jenga tower as shown below (Figure 17). 

Figure 17: The final result of all the tiles put together to form the Jenga tower 

 

4.3. Controller extensibility 

To show the extensibility of our creation, we decided to proceed with re-adjusting 

the controller’ s programming for it to be able to construct different structures. To be more 

precise, we added the implementation of a controller that follows the same basic principles 

as the controller above, but instead can construct a “Π” with three tiles (Figure 18). The 



 

results were rather expected and the controller was able to construct it with minor changes 

to the robot’s configuration. These changes included the point from which the robot is 

supposed to grab a tile, along with omitting the use of a camera sensor, since its 

functionality would be the same. In the same manner, we have stripped off the environment 

from obstacles, since they would add nothing further to our experiments, making the robot 

behave in the same way as it did before with the Jenga tower. 

 

Figure 18: The robotic arm used to create a “Π” instead of a Jenga tower 

 

 

4.4. Algorithm accuracy 

We will now proceed with giving certain experiment results concerning the 

execution time of each algorithm and we will also discuss these results. The environment 

at which the robots were to operate in is remarkably similar to the one presented above 

(Figure 15) and therefore it is omitted. Again, the grey rectangle-shaped objects pose as 

the obstacles that will get in the way of our robotic arm. At first, we need to understand 

the importance of providing fast solutions in the world of robotics. Eventually we must 

perform costly solutions that given the problem configuration will behave differently and 

provide us with different quality of results. One such measure of quality is the accuracy 

regarding the algorithm’s findings in terms of Euclidean distance from the robot’s grip to 



 

the goal (any possible tile in the world), which in this case is represented by a path that has 

been established for us to reach our target, which is traversing among obstacles and finally 

reaching a tile in our environment to start constructing our Jenga tower. Let us now observe 

a table containing some of the results of given experiments. The initial position of the 

robotic grasp is always maintained; however, we change the configuration of the tiles in 

order to reach out for new end positions. 

We will notice that the results will for the most part provide us with rather expected 

results and namely the fact that RRT in comparison to Dijkstra and A* was providing us 

with generally good solutions. However, each of these algorithms could reach a certain 

level of accuracy in its path planning process, but when it comes to accuracy and hence, 

quality of solutions, we need to use one of the complete algorithms (Table 8). As we have 

stated before this is based upon the problem we are currently facing. If the problem is 

genuinely complex in terms of both providing a solution along with the efficiency it needs 

to be delivered, if accuracy is crucial towards algorithm success, then we need to adopt 

one of the more complete approaches, such as in cases where the robotic arm needs to 

assist in surgery. If there is however a more generic conclusion here, it is that for most 

cases if we only measure and consider the quality of each solution, then we need to choose 

a complete algorithm that performs more context-aware search among the environment it 

explores. 

 

 

Table 8: Some of the results of experiments concerning algorithm accuracy (in 

meters) 

RRT Dijkstra A* 

0.16 0.13 0.12 

0.16 0.14 0.12 

0.16 0.13 0.13 

0.15 0.12 0.1 

0.15 0.23 0.11 

4.5. Time consumption 

At this part we will discuss the performance in terms of time consumption for these 

algorithms to be executed. Some people might argue that in order to reduce the execution 

times we should decide to use heuristics-based algorithms and that could be true for many 

cases. However, when dealing with real-life problems the case is different. The general 



 

truth is, as said above, that each choice we make should be problem-related. In other words, 

we cannot produce any generic approach for all problems. This of course has dire effects 

to the performance of the algorithms in terms of quality, which was discussed earlier. 

Using heuristics indeed makes the search well-guided towards staying on the most 

cost-effective path towards the end, whereas a more naïve algorithm that is based on 

randomization might struggle providing promising if not refined results and seeking a path 

that is beneficial for the result. Furthermore, we can have a more guided search of our 

space and thus we understand the whole problem in an entirely separate way, able to give 

us the necessary answers. However, this has also some drawbacks which might in fact 

outperform the benefits of this type of search. These kinds of comparisons have already 

been discussed and thoroughly both explained and explored, so we will only mention the 

fact that there are cases where we need to find fast solutions that will be good, meaning 

that in cases where we do not need to provide 100% accurate and as possible close to the 

target plans, then we should focus on less complete algorithms that will be able to give us 

a fast answer. On the other hand, we should as well decide to utilize the strengths of 

complete algorithms when we tackle cases where the problem is complex. In this way we 

can provide answers if they exist, but the complexity of operations will also lead to greater 

time consumption. We should at this point have a more in-depth look as to what this might 

mean in terms of exploring how our implementation of each one of the algorithms 

performed (Table 9). 

 

Table 9: Some of the results of experiments concerning algorithm time complexity 

(execution time is expresses in msec) 

RRT Dijkstra A* 

13.97 3.08 1.44 

13.23 3.83 3.04 

15.56 8.30 6.99 

12.87 4.53 4.27 

15.84 5.03 4.74 

4.6. States traversed 

As a decisive step to comparing the three algorithms that we implemented we will 

be looking at the number of states that each algorithm’s plan of execution included, in 

order to reach the goal in different scenarios (Table 10). We consider this a key step as it 

will show the difference between them in terms of providing what is needed to proceed. 



 

More specifically, by understanding the way these algorithms work, as was the purpose of 

previous chapters we now need to see in detail the effectiveness of their strategies. Another 

way to do that is to search through the states that these algorithms operate and the 

consecutive motions they produced. 

At this point let us examine a little further to understand the reason we need to 

perform such a comparison. At a first glance, it might seem that it is a measure of 

comparison that we should skip as unnecessary. If we indeed, however, proceed with it, 

we gain the advantage of more detailed analyze, since it can give us information that will 

also describe the memory needs of our algorithms for example, given that in order to 

perform more moves we need to store more information into memory. In this case we can 

get an estimate of how these algorithms perform in terms of memory usage, if they are all 

represented in the same way, as is our case. We store all states in the same way; they are 

all objects of the same class. This can make up for a fair comparison, but again this is more 

of a follow-up than an actual performance metric. Another advantage we gain is the fact 

that we can understand which algorithms can find the most effective route and of course, 

as expected we should expect that using heuristics is of course one of the reasons why there 

might be such difference in some cases. On the contrary, in many cases, however, not 

always, having a greater number of states means that the algorithm will transition between 

states in a smoother way; for example, imagine reaching the target state in only two moves, 

in which case the algorithm would be extremely effective, yet completely steeper than 

getting there without only a handful of actions. We believe that while this should be kept 

in mind, we should always check that given the algorithm we have a balanced result. 

 

Table 10: Some of the results of experiments concerning algorithm motions 

performed 

RRT Dijkstra A* 

42 33 30 

114 15 13 

137 58 46 

76 68 63 

63 21 15 

4.7. Additional experiments with A* 

Delving more into complete algorithm experimentation we decided to explore the behavior 

of A* even further, under various scenarios and environments. Namely, we picked an 



 

environment setup where the robotic arm had to reach a goal destination, a tile, as 

previously described, while rectangle-shaped obstacles were blocking its way. For A* in 

particular, we added a test-case of staggered difficulty. The main problem tackled is the 

same as described above, with the difference being that for the path the robot was able to 

detect that could lead to a solution, we decided to add a block in each follow-up experiment 

that would be rendering it un-feasible, since it was amid its course (Figure 19). The 

algorithm would then have to produce a new solution that would be feasible and would 

consider the new problem setup. The main results were that the complexity tends to 

increase along with execution time, however this did not seem to prevent A* from finding 

a path. 

Figure 19: A basic experiment where the robot avoids the rectangles to reach the tile 

highlighted with the 3D axes 

 

Figure 20: The basic experiment (Figure 19) whereas we now added an extra 

rectangle as an obstacle (highlighted by the axis) blocking the previously computed 

path 



 

 

Figure 21: The experiment (Figure 20) after adding another obstacle to block the 

previous path highlighted by axis 

 

In the experiments presented we can see that the algorithm is able to produce smooth paths 

for the robot to follow (Figure 19). After we add another obstacle capable of blocking the 

previous path, we can notice that the algorithm can still find its course around the obstacles 

while maintaining smooth transitions (Figure 20). It is important to understand that the 



 

algorithm needs to know the position of the obstacles before the path computation begins. 

After we change the environment setup again while adding another obstacle, we can see 

that the robot guided by A* is still able to navigate through the environment avoiding the 

newly-added obstacle (Figure 21). 

  



 

5  Conclusion 

In this dissertation, we presented many cases in which robotics is used along with 

modern day struggles that continue to pose as serious problems. We studied various aspects 

of literature and ways that similar problems have been tackled. Moreover, we have studied 

controller organization and various purposes and means to implement. We also proceeded 

with exploring different algorithm philosophies in terms of better utilizing our resources, 

be it computational, time-like, or even complexity in terms of fully understanding a 

problem before we can attempt to solve it. Furthermore, we delved into attaining the 

benefits of certain algorithms through our attempts to simulate their behavior and logic 

through implementing them in a problem to reach a target in 3D space while navigating 

through obstacles. In this effort, we also touched the surface with exploring better spatial 

information management using R-Trees in our implementation of A*, which enabled us 

with better in terms of efficiency exploration of our states. As an aftermath, we produced 

different results for each algorithm, each of them leading us to different conclusions 

concerning the algorithm efficiency of them. 

5.1. Summary and conclusions 

Having reached some results, which we presented above and discussed what they 

mean towards the effectiveness of each algorithm, we should now proceed to summarizing 

outcome, for it to be perfectly clear. At a first glance, we investigated the accuracy of each 

algorithm, as it was described in terms of reaching the goal the closest. Complete 

algorithms were expected to behave better towards it and it occurred this way through 

experimentation. We also witnessed the simplicity of RRT in action and the surprisingly 

well accuracy it showed, since the values that were presented were lower than what we 

estimated as a general comparison value, that of 0.2 for an algorithm to be close enough to 

a solution, namely reaching the goal as close as it can get. We should also point out that 

trivial differences emerged between Dijkstra and A*, which overall gave us the most 

promising results. However, we should underline that more experiments could be included, 

that would give us better insight over this metric. Proceeding further with comparison, we 

need to effectively measure the time we needed to execute each algorithm through different 

experiments and that was again, as we expected, to outline A* as the better alternative 

between the three. Quite noticeably RRT in fact turned out to waste time performing 

random moves that did not really lead the algorithm to better states of exploration and 

consequently that led to many meaningless iterations, which was expressed due to the 



 

results we presented given that the number of states it required in order to reach the goal 

every time were overwhelmingly greater than what the rest of the algorithms needed. In 

addition to what we have presented so far, in terms of speed of execution it is obvious that 

A* was the fastest algorithm, outperforming the other two, with a slight difference 

compared to Dijkstra's performance, which again could be a result of small sample of 

problems tackled. As a result of our previous notice, the less guided our search is, the more 

time it is expected to take for it to complete, which was the case with RRT. On the contrary, 

Dijkstra and A* behaved better and given the heuristic usage in A* it performed better 

compared to Dijkstra as we previously stated, something that was expected to happen. 

From a macroscopic perspective, the scientist that could take this study in the next 

level, would benefit from the already found results and compare them to the complexity of 

each problem at hand. In other words, they should enrich their study with those results, 

especially when it comes to applying it to problems regarding planning, which is the case 

when it comes to robotics. If someone requires more accurate results, they should consider 

using complete algorithms, however, as the difficulty rises and the computational needs 

grow, they should keep in mind that such an approach might in fact have more drawbacks 

than benefits. Apart from the experiments, a researcher can also use the selected algorithm 

presentation to consider alternatives based on the problems they are dealing with, in order 

to achieve better performance from various aspects. Finally, as we stated before, it is quite 

wise to always take the different environment and situation of a problem at sincere 

consideration before proceeding with applying any logic towards solving it. As a result, 

different algorithms might have entirely different behavior given any problem and this in 

fact might sometimes lead to better results, or alternatively lead to greater exploration of 

how we should deal with any given problem structure. 

5.2. Research limits and limitations 

As the dissertation has concluded, we need to further explore certain aspects of it, 

including the various limitations that might exist. We do so in order to give more context 

on the potential of the current study and further motivate readers to understand the complex 

mechanisms that led to all the results as they were previously discussed. First, we should 

mention the obvious fact that only three different algorithms have been implemented. This 

is by no means a finite number of algorithms so that no further additions should be made. 

Instead, it only entraps the reader to the study and notice differences between these 

algorithms only. What is more, the experiments should include more observations, which 

does not on the other hand imply their weakness to present us with all that is produced 



 

using each specific algorithm, or approach. Moreover, we are always restricted to certain 

available means, namely the computational power of our systems, so it should also be kept 

in mind that dissimilar needs and possibilities could emerge by performing this change. 

Another drawback is the difficulty of adding more available motions for our algorithms to 

be able to perform. As it has been stated, before we can estimate the outcome of a specific 

action, we first need to be able to understand where exactly in the space our grasp will be 

placed after performing each executed motion. In this case of scenario, we should keep in 

mind that extensibility is considered low due to the geometrical studies we need to consider 

before performing a move. Finally, in the case of A* in particular, we should include even 

more steps in between the execution loops, since we only provide the best, medium and a 

minimal step. 

5.3. Future extensions 

Having reached the end of the study, one might consider the direction to be 

followed as we progress through the field of robotics. In modern days, it has become quite 

a common need to seek navigational assistance, especially in more complex environments. 

Keeping the latter in mind, a scientist could extend the number of available algorithms by 

a considerable number, enough to apply different patterns to different problems, or even 

combine their potential in future work. Instead of having to abide by using only one of 

them, we expect many and great benefits to come after a more well-guided combination of 

some of these algorithms is adopted in order to solve different problems. A researcher 

could give more chances to random-based algorithms to solve similar problems to the ones 

above and, provide more problems per aspect of scientific interest, depending on the needs 

and necessities of tomorrow. What is more, we could include further experiments, in 

regards to different metrics established, some that might not even exist yet. There are many 

ways to measure the outcome in terms of quality when it comes to algorithmic procedures, 

so we let that as deliberately included in a wider range of options for every scientist to 

decide. In this way, we will be able to further understand the context of each algorithm and 

the various corners in its execution that might and in many cases should be changed to 

become more reliable. In addition, we need to provide a better way of storing information. 

As each algorithm progresses and more data will be processed as available, we should 

continue to enrich the analysis that takes place through the algorithm’s logic with a more 

distilled version of all the information at hand. Another great path that remains for future 

exploration is to perform similar computations and problem-solving experimentations on 

better equipped systems that can deal with greater and vast computational needs. We could 



 

as an even more refined approach of what has been presented consider the use of different 

implementations of R-Trees as they already exist and provide us with better resource 

management. Finally, researchers should also consider expanding the available geometric 

computations that provide an estimate of an object’s movement and coordinates in a case 

that includes more accurate and multi-dimensional approaches. The last is to be taken into 

more consideration than the previous, since it is the main advantage and simulation means 

to help each algorithm understand more about the environment along with the next motion 

it should perform. 
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