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ABSTRACT 

 

The present study deals with commodities and time series analysis to create daily price 

forecasting models and basic daily return risk analysis. The purpose of this work is to 

investigate the fundamental concepts of commodities and to interpret the interaction between 

them, as well as how their prices are affected. First, the theoretical background of commodities 

and their dynamics in the world economy are analyzed. In addition, linear models of daily price 

forecasting are created and daily returns at risk level are interpreted. ARIMA models are created 

as prediction models, which are compared for their predictive ability in out of sample 

forecasting. For this purpose, daily historical closing prices are used until the time 17/7/2020. 

Risk analysis is performed from the point of view of volatility by finding the number of jumps 

in GARCH models in the whole sample of daily returns. 

 

 

 

 

 

 

ΠΕΡΙΛΗΨΗ 

 

Η παρούσα μελέτη ασχολείται με τα χρηματιστηριακά εμπορεύματα και την ανάλυση 

χρονοσειρών για τη δημιουργία μοντέλων πρόβλεψης ημερήσιων τιμών και στοιχειώδεις 

ανάλυσης ρίσκου ημερήσιων αποδόσεων. Σκοπός της εργασίας είναι να ερευνήσει τις 

θεμελιώδεις έννοιες των εμπορευμάτων και να ερμηνεύσει την αλληλεπίδραση μεταξύ τους, 

καθώς και τον τρόπο με τον οποίο επηρεάζονται οι τιμές τους. Αρχικά, αναλύεται το θεωρητικό 

υπόβαθρο των εμπορευμάτων και η δυναμική τους στην παγκόσμια οικονομία. Επιπλέον, 

δημιουργούνται γραμμικά μοντέλα πρόβλεψης ημερήσιων τιμών και ερμηνεύονται οι 

ημερήσιες αποδόσεις σε επίπεδο ρίσκου. Ως μοντέλα πρόβλεψης δημιουργούνται ARIMA 

υποδείγματα, τα οποία συγκρίνονται για την προβλεπτική τους ικανότητα σε εκτός δείγματος 

πρόβλεψη. Για το σκοπό αυτό, χρησιμοποιούνται ημερήσιες ιστορικές τιμές κλεισίματος μέχρι 

τη χρονική στιγμή 17/7/2020. Η ανάλυση ρίσκου πραγματοποιείται από την οπτική της 

διακύμανσης με την εύρεση πλήθους jumps σε GARCH υποδείγματα στο σύνολο του 

δείγματος των ημερήσιων αποδόσεων. 



6 
 

TABLE OF CONTENTS 

 
ABSTRACT ......................................................................................................................................... 5 

1. INTRODUCTION ........................................................................................................................ 14 

2. COMMODITY MARKETS ...................................................................................................... 15 

3. COMMODITY EXCHANGES ................................................................................................. 17 

4. FUNDAMENTALS OF COMMODITIES ............................................................................. 25 

4.1 Metals ....................................................................................................................................... 25 

4.2 Energy ...................................................................................................................................... 59 

4.3 Agriculture .............................................................................................................................. 76 

5. METHODOLOGY .................................................................................................................... 114 

6. DESCRIPTIVE STATISTICS ................................................................................................ 118 

6.1 Metals ..................................................................................................................................... 119 

6.2 Energy .................................................................................................................................... 129 

6.3 Agriculture ............................................................................................................................ 134 

7. EMPIRICAL RESULTS .......................................................................................................... 149 

7.1 ARIMA Models .................................................................................................................... 149 

7.2 Jumps in Commodities Returns ....................................................................................... 197 

9. CONCLUSION ........................................................................................................................... 199 

10. BIBLIOGRAPHY .................................................................................................................... 200 

11. APPENDIX ................................................................................................................................ 201 

11.1 APPENDIX I: Unit root tests results for stationarity ............................................... 201 

11.2 APPENDIX II: ARIMA Models output ....................................................................... 321 

11.3 APPENDIX III: Jumps graphs for daily returns ....................................................... 380 

 

 

 



7 
 

TABLE OF TABLES 

Table 1: Commodity Exchanges in the world ....................................................................................... 19 

Table 2: Commodity exchanges for every commodity category ........................................................... 24 

Table 3: Data structure of commodities time series ............................................................................ 115 

Table 4: Unit root test results of all commodities that passed the test at significance level 5% ......... 116 

Table 5: Gold daily close prices descriptive statistics ......................................................................... 119 

Table 6: Gold daily log returns descriptive statistics .......................................................................... 119 

Table 7: Silver daily close prices descriptive statistics ....................................................................... 120 

Table 8: Silver daily log returns descriptive statistics ......................................................................... 120 

Table 9: Platinum daily close prices descriptive statistics .................................................................. 121 

Table 10: Platinum daily log returns descriptive statistics .................................................................. 121 

Table 11: Palladium daily close prices descriptive statistics ............................................................... 122 

Table 12: Palladium daily log returns descriptive statistics ................................................................ 122 

Table 13: Alumium daily close prices descriptive statistics ................................................................ 123 

Table 14: Aluminum daily log returns descriptive statistics ............................................................... 123 

Table 15: Copper daily close prices descriptive statistics ................................................................... 124 

Table 16: Copper daily log returns descriptive statistics ..................................................................... 124 

Table 17: Lead daily close prices descriptive statistics ....................................................................... 125 

Table 18: Copper daily log returns descriptive statistics ..................................................................... 125 

Table 19: Nickel daily close prices descriptive statistics .................................................................... 126 

Table 20: Nickel daily log returns descriptive statistics ...................................................................... 126 

Table 21: Tin daily close prices descriptive statistics ......................................................................... 127 

Table 22: Tin daily log returns descriptive statistics ........................................................................... 127 

Table 23: Zinc daily close prices descriptive statistics ....................................................................... 128 

Table 24: Nickel daily log returns descriptive statistics ...................................................................... 128 

Table 25: Crude oil daily close prices descriptive statistics ................................................................ 129 

Table 26: Crude oil daily log returns descriptive statistics ................................................................. 129 

Table 27: Brent oil daily close prices descriptive statistics ................................................................. 130 

Table 28: Brent oil daily log returns descriptive statistics .................................................................. 130 

Table 29: Gasoline daily close prices descriptive statistics ................................................................. 131 

Table 30: Gasoline daily log returns descriptive statistics .................................................................. 131 

Table 31: Heating oil daily close prices descriptive statistics ............................................................. 132 

Table 32: Heating oil daily log returns descriptive statistics............................................................... 132 

Table 33: Natural gas daily close prices descriptive statistics............................................................. 133 

Table 34: Natural gas daily log returns descriptive statistics .............................................................. 133 

Table 35: Corn daily close prices descriptive statistics ....................................................................... 134 



8 
 

Table 36: Corn daily log returns descriptive statistics ........................................................................ 134 

Table 37: Rice daily close prices descriptive statistics ....................................................................... 135 

Table 38: Rice daily log returns descriptive statistics ......................................................................... 135 

Table 39: Soybeans daily close prices descriptive statistics ................................................................ 136 

Table 40: Soybeans daily log returns descriptive statistics ................................................................. 136 

Table 41: Soybean oil daily close prices descriptive statistics ............................................................ 137 

Table 42: Soybean oil daily log returns descriptive statistics ............................................................. 137 

Table 43: Soybean meal daily close prices descriptive statistics ........................................................ 138 

Table 44: Soybean meal daily log returns descriptive statistics .......................................................... 138 

Table 45: Oats daily close prices descriptive statistics ....................................................................... 139 

Table 46: Oats daily log returns descriptive statistics ......................................................................... 139 

Table 47: Wheat daily close prices descriptive statistics .................................................................... 140 

Table 48: Wheat daily log returns descriptive statistics ...................................................................... 140 

Table 49: Coffee daily close prices descriptive statistics .................................................................... 141 

Table 50: Coffee daily log returns descriptive statistics ..................................................................... 141 

Table 51: Cocoa daily close prices descriptive statistics ..................................................................... 142 

Table 52: Cocoa daily log returns descriptive statistics ...................................................................... 142 

Table 53: Sugar daily close prices descriptive statistics ..................................................................... 143 

Table 54: Sugar daily log returns descriptive statistics ....................................................................... 143 

Table 55: Cotton daily close prices descriptive statistics .................................................................... 144 

Table 56: Cotton daily log returns descriptive statistics ..................................................................... 144 

Table 57: Lumber daily close prices descriptive statistics .................................................................. 145 

Table 58: Lumber daily log returns descriptive statistics .................................................................... 145 

Table 59: Lean hogs daily close prices descriptive statistics .............................................................. 146 

Table 60: Lean hogs daily log returns descriptive statistics ................................................................ 146 

Table 61: Feeder cattle daily close prices descriptive statistics .......................................................... 147 

Table 62: Feeder cattle daily log returns descriptive statistics ............................................................ 147 

Table 63: Live cattle daily close prices descriptive statistics .............................................................. 148 

Table 64: Live cattle daily log returns descriptive statistics ............................................................... 148 

Table 65: ARIMA models for the commodities .................................................................................. 149 

Table 66: Diebold-Mariano test statistic for each commodity ............................................................ 195 

Table 67: Forecasting accuracy indicators comparison between models for each commodity ........... 196 

Table 68: Jumps results for commodities ............................................................................................ 198 

 

 

 



9 
 

TABLE OF FIGURES 

Figure 1: Uses of gold ........................................................................................................................................... 28 

Figure 2: Silver Production distribution .................................................................................................................. 31 

Figure 3: Uses of silver .......................................................................................................................................... 33 

Figure 4: Uses of Platinum .................................................................................................................................... 35 

Figure 5: Aluminum lifecycle and production process ........................................................................................... 38 

Figure 6: The evolution of aluminum consumption ................................................................................................ 40 

Figure 7: Uses of Copper ...................................................................................................................................... 44 

Figure 8: Uses of Nickel ........................................................................................................................................ 51 

Figure 9: Producers of Tin ..................................................................................................................................... 53 

Figure 10: Ranking of Tin uses .............................................................................................................................. 54 

Figure 11: Zinc producing countries distribution .................................................................................................... 56 

Figure 12: Zinc primary uses ................................................................................................................................. 58 

Figure 13: Zinc end uses ....................................................................................................................................... 58 

Figure 14: Oil market participants .......................................................................................................................... 61 

Figure 15: Oil distillates ......................................................................................................................................... 61 

Figure 16: Benchmark crudes and where they are used ....................................................................................... 66 

Figure 17: Natural gas consumption ...................................................................................................................... 73 

Figure 18: Soybean producing countries ............................................................................................................... 83 

Figure 19: Coffee production by country ............................................................................................................... 93 

Figure 20: Hog Production ................................................................................................................................... 108 

Figure 21: Gold daily closing prices and log returns graph .................................................................................. 119 

Figure 22: Silver daily closing prices and log returns graph ................................................................................ 120 

Figure 23: Platinum daily closing prices and log returns graph ........................................................................... 121 

Figure 24: Palladium daily closing prices and log returns graph ......................................................................... 122 

Figure 25: Aluminum daily closing prices and log returns graph ......................................................................... 123 

Figure 26: Copper daily closing prices and log returns graph ............................................................................. 124 

Figure 27: Lead daily closing prices and log returns graph ................................................................................. 125 

Figure 28: Nickel daily closing prices and log returns graph ............................................................................... 126 

Figure 29: Tin daily closing prices and log returns graph .................................................................................... 127 

Figure 30: Zinc daily closing prices and log returns graph .................................................................................. 128 

Figure 31: Crude oil daily closing prices and log returns graph ........................................................................... 129 

Figure 32: Brent oil daily closing prices and log returns graph ............................................................................ 130 

Figure 33: Gasoline daily closing prices and log returns graph ........................................................................... 131 

Figure 34: Heating oil daily closing prices and log returns graph ........................................................................ 132 

Figure 35: Natural gas daily closing prices and log returns graph ....................................................................... 133 

file:///C:/Users/Νικόλαος/ΠΑΝΕΠΙΣΤΗΜΙΟ%20ΜΑΚΕΔΟΝΙΑ/ΜΕΤΑΠΤΥΧΙΑΚΟ/ΔΙΠΛΩΜΑΤΙΚΗ%20ΕΡΓΑΣΙΑ/commodities/τελική%20εργασία.docx%23_Toc53796880


10 
 

Figure 36: Corn daily closing prices and log returns graph ................................................................................. 134 

Figure 37: Rice daily closing prices and log returns graph .................................................................................. 135 

Figure 38: Soybeans daily closing prices and log returns graph ......................................................................... 136 

Figure 39: Soybean oil daily closing prices and log returns graph....................................................................... 137 

Figure 40: Soybean meal daily closing prices and log returns graph .................................................................. 138 

Figure 41: Oats daily closing prices and log returns graph .................................................................................. 139 

Figure 42: Wheat daily closing prices and log returns graph ............................................................................... 140 

Figure 43: Coffee daily closing prices and log returns graph ............................................................................... 141 

Figure 44: Cocoa daily closing prices and log returns graph ............................................................................... 142 

Figure 45: Sugar daily closing prices and log returns graph ................................................................................ 143 

Figure 46: Cotton daily closing prices and log returns graph ............................................................................... 144 

Figure 47: Lumber daily closing prices and log returns graph ............................................................................. 145 

Figure 48: Lean hogs daily closing prices and log returns graph ........................................................................ 146 

Figure 49: Feeder cattle daily closing prices and log returns graph .................................................................... 147 

Figure 50: Live cattle daily closing prices and log returns graph ......................................................................... 148 

Figure 51: Custom ARIMA Model forecast output for Aluminum ......................................................................... 150 

Figure 52: Eviews add in ARIMA Model forecast output for Aluminum ............................................................... 150 

Figure 53: Comparison of the out of sample forecast of two ARIMA models for aluminum ................................. 151 

Figure 54: Custom ARIMA Models forecast output for Brent Oil ......................................................................... 151 

Figure 55: Eviews add in ARIMA Model forecast output for Brent Oil ................................................................. 152 

Figure 56: Comparison of the out of sample forecast of two ARIMA models for Brent oil ................................... 152 

Figure 57: Custom ARIMA Model forecast output for Cocoa ............................................................................... 153 

Figure 58: Eviews add in ARIMA Models forecast output for Cocoa ................................................................... 153 

Figure 59: Comparison of the out of sample forecast of two ARIMA models for cocoa ....................................... 154 

Figure 60: Custom ARIMA Model forecast output for Coffee .............................................................................. 154 

Figure 61: Eviews add in ARIMA Models forecast output for Coffee ................................................................... 155 

Figure 62: Comparison of the out of sample forecast of two ARIMA models for coffee ...................................... 155 

Figure 63: Custom ARIMA Model forecast output for Copper ............................................................................. 156 

Figure 64: Eviews add in ARIMA Models forecast output for Copper .................................................................. 156 

Figure 65: Comparison of the out of sample forecast of two ARIMA models for copper ..................................... 157 

Figure 66: Custom ARIMA Model forecast output for Corn ................................................................................. 157 

Figure 67: Eviews add in ARIMA Models forecast output for Corn ...................................................................... 158 

Figure 68: Comparison of the out of sample forecast of two ARIMA models for corn ......................................... 158 

Figure 69: Custom ARIMA Model forecast output for Cotton .............................................................................. 159 

Figure 70: Eviews add in ARIMA Models forecast output for Cotton ................................................................... 159 

Figure 71: Comparison of the out of sample forecast of two ARIMA models for cotton ...................................... 160 

Figure 72: Custom ARIMA Model forecast output for Crude oil ........................................................................... 160 



11 
 

Figure 73: Eviews add in ARIMA Models forecast output for Crude oil ............................................................... 161 

Figure 74: Comparison of the out of sample forecast of two ARIMA models for crude oil ................................... 161 

Figure 75: Custom ARIMA Model forecast output for feeder cattle ..................................................................... 162 

Figure 76: Eviews add in ARIMA Models forecast output for feeder cattle .......................................................... 162 

Figure 77: Comparison of the out of sample forecast of two ARIMA models for feeder cattle ............................ 163 

Figure 78: Custom ARIMA Model forecast output for gasoline ............................................................................ 163 

Figure 79: Eviews add in ARIMA Models forecast output for gasoline ................................................................ 164 

Figure 80: Comparison of the out of sample forecast of two ARIMA models for gasoline ................................... 164 

Figure 81: Custom ARIMA Model forecast output for gold .................................................................................. 165 

Figure 82: Eviews add in ARIMA Models forecast output for gold ....................................................................... 165 

Figure 83: Comparison of the out of sample forecast of two ARIMA models for gold ......................................... 166 

Figure 84: Custom ARIMA Model forecast output for heating oil ......................................................................... 166 

Figure 85: Eviews add in ARIMA Models forecast output for heating oil ............................................................. 167 

Figure 86: Comparison of the out of sample forecast of two ARIMA models for heating oil ................................ 167 

Figure 87: Custom ARIMA Model forecast output for lead .................................................................................. 168 

Figure 88: Eviews add in ARIMA Models forecast output for lead ....................................................................... 168 

Figure 89: Comparison of the out of sample forecast of two ARIMA models for lead ......................................... 169 

Figure 90: Custom ARIMA Model forecast output for lean hogs ......................................................................... 169 

Figure 91: Eviews add in ARIMA Models forecast output for lean hogs .............................................................. 170 

Figure 92: Comparison of the out of sample forecast of two ARIMA models for lean hogs ................................. 170 

Figure 93: Custom ARIMA Model forecast output for live cattle .......................................................................... 171 

Figure 94: Eviews add in ARIMA Models forecast output for live cattle ............................................................... 171 

Figure 95: Comparison of the out of sample forecast of two ARIMA models for live cattle ................................. 172 

Figure 96: Custom ARIMA Model forecast output for lumber .............................................................................. 172 

Figure 97: Eviews add in ARIMA Models forecast output for lumber................................................................... 173 

Figure 98: Comparison of the out of sample forecast of two ARIMA models for lumber ..................................... 173 

Figure 99: Custom ARIMA Model forecast output for natural gas ....................................................................... 174 

Figure 100: Eviews add in ARIMA Models forecast output for natural gas .......................................................... 174 

Figure 101: Comparison of the out of sample forecast of two ARIMA models for natural gas............................. 175 

Figure 102: Custom ARIMA Model forecast output for nickel .............................................................................. 175 

Figure 103: Eviews add in ARIMA Models forecast output for nickel .................................................................. 176 

Figure 104: Comparison of the out of sample forecast of two ARIMA models for nickel ..................................... 176 

Figure 105: Custom ARIMA Model forecast output for oats ................................................................................ 177 

Figure 106: Eviews add in ARIMA Models forecast output for oats ..................................................................... 177 

Figure 107: Comparison of the out of sample forecast of two ARIMA models for oats ....................................... 178 

Figure 108: Custom ARIMA Model forecast output for palladium ........................................................................ 178 

Figure 109: Eviews add in ARIMA Models forecast output for palladium ............................................................ 179 



12 
 

Figure 110: Comparison of the out of sample forecast of two ARIMA models for palladium ............................... 179 

Figure 111: Custom ARIMA Model forecast output for platinum ......................................................................... 180 

Figure 112: Eviews add in ARIMA Models forecast output for platinum .............................................................. 180 

Figure 113: Comparison of the out of sample forecast of two ARIMA models for platinum ................................. 181 

Figure 114: Custom ARIMA Model forecast output for rice ................................................................................. 181 

Figure 115: Eviews add in ARIMA Models forecast output for rice ...................................................................... 182 

Figure 116: Comparison of the out of sample forecast of two ARIMA models for rice ........................................ 182 

Figure 117: Custom ARIMA Model forecast output for silver ............................................................................... 183 

Figure 118: Eviews add in ARIMA Models forecast output for silver ................................................................... 183 

Figure 119: Comparison of the out of sample forecast of two ARIMA models for silver ...................................... 184 

Figure 120: Custom ARIMA Model forecast output for soybean meal ................................................................. 184 

Figure 121: Eviews add in ARIMA Models forecast output for soybean meal ..................................................... 185 

Figure 122: Comparison of the out of sample forecast of two ARIMA models for soybean meal ........................ 185 

Figure 123: Custom ARIMA Model forecast output for soybean oil ..................................................................... 186 

Figure 124: Eviews add in ARIMA Models forecast output for soybean oil ......................................................... 186 

Figure 125: Comparison of the out of sample forecast of two ARIMA models for soybean oil ............................ 187 

Figure 126: Custom ARIMA Model forecast output for soybeans ........................................................................ 187 

Figure 127: Eviews add in ARIMA Models forecast output for soybeans ............................................................ 188 

Figure 128: Comparison of the out of sample forecast of two ARIMA models for soybeans ............................... 188 

Figure 129: Custom ARIMA Model forecast output for sugar .............................................................................. 189 

Figure 130: Eviews add in ARIMA Models forecast output for sugar................................................................... 189 

Figure 131: Comparison of the out of sample forecast of two ARIMA models for sugar ..................................... 190 

Figure 132: Custom ARIMA Model forecast output for tin ................................................................................... 190 

Figure 133: Eviews add in ARIMA Models forecast output for tin ........................................................................ 191 

Figure 134: Comparison of the out of sample forecast of two ARIMA models for tin .......................................... 191 

Figure 135: Custom ARIMA Model forecast output for wheat ............................................................................. 192 

Figure 136: Eviews add in ARIMA Models forecast output for wheat .................................................................. 192 

Figure 137: Comparison of the out of sample forecast of two ARIMA models for wheat ..................................... 193 

Figure 138: Custom ARIMA Model forecast output for zinc ................................................................................. 193 

Figure 139: Eviews add in ARIMA Models forecast output for zinc ..................................................................... 194 

Figure 140: Comparison of the out of sample forecast of two ARIMA models for zinc ........................................ 194 

Figure 141: Jumps graph of gold daily log returns ............................................................................................... 380 

Figure 142: Jumps graph of silver daily log returns ............................................................................................. 381 

Figure 143: Jumps graph of platinum daily log returns ........................................................................................ 381 

Figure 144: Jumps graph of paladium daily log returns ....................................................................................... 382 

Figure 145: Jumps graph of aluminum daily log returns ...................................................................................... 383 

Figure 146: Jumps graph of copper daily log returns .......................................................................................... 383 



13 
 

Figure 147: Jumps graph of lead daily log returns ............................................................................................... 384 

Figure 148: Jumps graph of nickel daily log returns ............................................................................................ 385 

Figure 149: Jumps graph of tin daily log returns.................................................................................................. 385 

Figure 150: Jumps graph of zinc daily log returns ............................................................................................... 386 

Figure 151: Jumps graph of crude oil daily log returns ........................................................................................ 387 

Figure 152: Jumps graph of brent oil daily log returns ......................................................................................... 387 

Figure 153: Jumps graph of gasoline daily log returns ........................................................................................ 388 

Figure 154: Jumps graph of heating oil daily log returns ..................................................................................... 389 

Figure 155: Jumps graph of natural gas daily log returns .................................................................................... 389 

Figure 156: Jumps graph of corn daily log returns .............................................................................................. 390 

Figure 157: Jumps graph of rice daily log returns ................................................................................................ 391 

Figure 158: Jumps graph of soybeans daily log returns ...................................................................................... 391 

Figure 159: Jumps graph of soybean oil daily log returns ................................................................................... 392 

Figure 160: Jumps graph of soybean meal daily log returns ............................................................................... 393 

Figure 161: Jumps graph of oats daily log returns ............................................................................................... 393 

Figure 162: Jumps graph of wheat daily log returns ............................................................................................ 394 

Figure 163: Jumps graph of coffee daily log returns ............................................................................................ 395 

Figure 164: Jumps graph of cocoa daily log returns ............................................................................................ 395 

Figure 165: Jumps graph of sugar daily log returns ............................................................................................ 396 

Figure 166: Jumps graph of cotton daily log returns ............................................................................................ 397 

Figure 167: Jumps graph of lumber daily log returns .......................................................................................... 397 

Figure 168: Jumps graph of lean hogs daily log returns ...................................................................................... 398 

Figure 169: Jumps graph of feeder cattle daily log returns .................................................................................. 399 

Figure 170: Jumps graph of live cattle daily log returns ...................................................................................... 399 

 

 

 

 

 

 

 

 

 

 

 



14 
 

1. INTRODUCTION 

 

Commodities is a fascinating topic regarding the financial markets. It is a special asset class 

that has its roots in the beginning of the western civilization and derives from the need of many 

individuals to buy and sell vital goods for their needs. Commodity market began as a market 

for buying and selling agricultural goods from farmers looking to exchange their crops. Then it 

expaned to other products forming the commodity market we know today. 

Commodities are divided into three categories, metals, energy and agriculture, 

according to their physical properties. These categories include many commodities each one 

with different characteristics and dynamics. The understanding of the behavior for each 

commodity will help investors take informed decisions and how they can use commodities as 

investment or hedging instrument. Another important step would be the prediction of future 

prices and returns. In this study, we try to achieve that by proposing some ARIMA models for 

forecasting the daily closing prices. 

 This master thesis is organized as follows. In chapter 2 there is a general description of 

the commodities markets, what it is about and what are some unique characteristics of this asset 

class. Following that in chapter 3 there is brief description of the most important commodities 

exchanges that operates today, helping many participants to complete their transactions in a 

regulated environment. The chapter 4 is where we describe thoroughly the fundamentals of 

commodities and how they interact with its other, as well as their pricing dynamics. In chapter 

5 we describe the methodology that we followed regarding the empirical research of 

commodities and the construction of our ARIMA forecasting models. In chapter 6 we present 

the descriptive statistics of our data with extensive graphs and tables, to get a better 

understanding of the commodities prices behavior. In chapter 7  we present two sets of ARIMA 

forecasting models that we have prepared for each commodity and compare their accuracy 

using different indicators for the out of sample forecast. Also, we present a basic fundamental 

risk analysis by measuring the jumps in daily commodity returns. Finally, we have the 

conclusion, the bibliography and the appendixes where you can find detailed calculations of 

how we get to our models and supporting material for our analysis. 
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2. COMMODITY MARKETS 

 

A commodity futures market (or exchange) is, in simple terms, nothing more or less than a 

public marketplace where commodities are contracted for purchase or sale at an agreed price 

for delivery at a specified date. These purchases and sales, which must be made through a broker 

who is a member of an organized exchange, are made under the terms and conditions of a 

standardized futures contract. The primary distinction between a futures market and a market 

in which actual commodities are bought and sold, either for immediate or later delivery, is that 

in the futures market one deals in standardized contractual agreements only. These agreements 

(more formally called futures contracts) provide for delivery of a specified amount of a 

particular commodity during a specified future month, but involve no immediate transfer of 

ownership of the commodity involved (Lerner, 2000). 

When measured over the course of centuries, the price of commodities has gone down 

in real terms, not up. Commodities are produced to be consumed, and they do not naturally 

produce investment returns. The selection of commodities as a major investment theme is 

relatively new. Commodities have earned positive returns during periods of high inflation, but 

these are periods when interest rates are also high, increasing the portion of return due to margin 

interest. Commodities have performed well in recent years, but their long-term performance 

has not been so good, especially when compared with equities. Stocks and bonds are purely 

financial assets. That is, they exist solely to  provide a financial return to their owners. They 

generally produce positive cash flows over their lives. Commodities do not exist to provide 

investment returns; they are produced to be consumed. Even when they are not good 

investments, commodities can offer insurance; doing well when inflation is high or when there 

is a stock market crash or some other wealth destroying event. Commodities have been a 

somewhat useful hedge against inflation and have tended to perform somewhat above average 

when equities have performed below average (Dunsby, et al., 2008). 

Some of the key differentiators between the commodities markets and other asset 

classes are the functions of storage, transport and distribution and, in the case of agricultural 

products, spoilage.  As a discrete asset class, commodities are vital to any diversified portfolio 

due to their unique characteristics. When equity markets fall, commodity markets tend to rise, 

and vice versa. The price of equities can go to zero – not true of commodities. There is no credit 

risk on a commodity. Commodity returns are higher than inflation. Bonds and equities are 

negatively correlated to inflation (this increases with the holding period), whilst the opposite is 
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true of commodities – thus commodities provide an inflation hedge. Commodity prices can rise 

even if the economy is going nowhere (Taylor, 2013).  

The cost of producing a commodity provides a floor for prices. The macroeconomic 

approach to commodity prices is broader, seeing price as a function of demand and supply and 

the behaviour of inventories (stocks). To predict the level of consumption, we need to know 

something about the price elasticity of demand. Typically, if a good is seen as a staple or a 

necessity, the price elasticity will be low, but what is considered a necessity in one country may 

be considered a luxury in other parts of the world. Other factors that influence price elasticity 

include the availability of (presumably cheaper) substitutes and the duration of the change in 

price. Another relationship to be considered is income elasticity of demand. Although you 

would expect higher incomes to lead to increased consumption, for commodities such as basic 

grains it could mean that consumption shifts in favor of more expensive foods, such as meat. 

The supply side is also difficult to predict. The speed of supply response should also be 

considered, as well as the uncertainty over stock levels. Of course, other exogenous factors like 

global liquidity levels, the value of dollar, movements in alternative assets (bonds, stocks), 

interest rates, investor behaviour or sentiment and changes in the commodity-related financial 

products available (Bain, 2013). 

Despite all the controversy, the fact is that the commodities asset class is an effective 

way to diversify your portfolio. It is often the case that when commodities prices are in a bull 

market, the stock market is in the bear phase. A key reason is that companies get squeezed by 

higher materials prices (Taulli, 2011). 
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3. COMMODITY EXCHANGES 

 

Exchanges are institutions where the trading of ‘paper’ takes place, usually futures and/or 

options linked to a specific underlying asset. Worldwide, there are around 54 major commodity 

exchanges that trade in more than 90 commodities. A list of all exchanges involving 

commodities compiled by UNCTAD (2009) is shown at table 1. Commodity exchanges have 

developed from physical markets where deals were originally transacted in warehouses to 

futures markets (which were vast buildings, but which are now in essence computer-based 

‘server farms’), allowing for both hedging and trading. Exchanges introduce stability, 

transparency and regulations not found in the physical market and are supposed to create a 

‘safer marketplace’ (Taylor, 2013). Some of the most important commodity exchanges are 

presented below that are the game setters of the global commodities prices. 

Acronym Exchange Name Country 

AEX Euronext Amsterdam The Netherlands 

ACE Agricultural Commodity Exchange for Africa Malawi 

AFET Agricultural Futures Exchange of Thailand Thailand 

AMEX American Stock and Options Exchange United States 

APX APX Group (formerly Amsterdam Power Exchange) 
The Netherlands, 
United Kingdom and 
Belgium 

ASCE Abuja Securities and Commodity Exchange Nigeria 

ASX Australian Securities Exchange (formerly Australian Stock Exchange) Australia 

BCE Budapest Commodity Exchange Hungary 

BM&F Bolsa de Mercadorias & Futuros Brazil 

BMD Bursa Malaysia Derivative Berhad Malaysia 

BMFMS 
Bursa Monetar Finaciara si de Marfuri Sibiu (Sibiu Monetary 
Financial and Commodities Exchange) 

Romania 

BNA Bolsa National Agropecuaria Colombia 

BOTCC Board of Trade Clearing Corporation (now The Clearing Corporation) United States 

Bovespa Bolsa de Valores de São Paulo Brazil 

BRM Bursa Romana de Marfuri (Romanian Commodities Exchange) Romania 

BSCE Belarussian Currency and Stock Exchange Belarus 

BSE Budapest Stock Exchange Hungary 

BXS Euronext Brussels Belgium 

CBOE Chicago Board Options Exchange United States 

CBOT Chicago Board of Trade United States 

C-COM Central Japan Commodity Exchange Japan 

CCX Chicago Climate Exchange United States 

CFFEX China Financial Futures Exchange China 

CME Chicago Mercantile Exchange United States 

COMMEX Commodity & Monetary Exchange of Malaysia (now part of BMD) Malaysia 

DCE Dalian Commodity Exchange China 

DGCX Dubai Gold & Commodities Exchange UAE 
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DME Dubai Mercantile Exchange UAE 

ECEX Ethiopian Commodity Exchange Ethiopia 

ECX European Climate Exchange The Netherlands 

EEX European Energy Exchange Germany 

EXAA Energy Exchange Austria Austria 

FFE Fukuoka Futures Exchange (now part of KEX) Japan 

FORTS Futures & Options on the RTS Russian Federation 

GME Gestore Mercato Elettrico Italy 

HKEx Hong Kong Exchanges and Clearing Hong Kong China 

ICE Intercontinental Exchange United States 

IDEM Italian Derivatives Exchange Market Italy 

IEX Indian Energy Exchange India 

IGE Istanbul Gold Exchange Turkey 

IPE International Petroleum Exchange (now ICE Futures) United Kingdom 

IPEX Italian Power Exchange Italy 

ISE International Securities Exchange (now part of Eurex) United States 

JADE Joint Asian Derivatives Exchange (now part of SGX) Singapore 

JCCH Japan Commodity Clearing House Japan 

JFX Jakarta Futures Exchange Indonesia 

JSE JSE Securities Exchange South Africa 

KACE Kenya Agricultural Commodities Exchange Kenya 

KBB Komoditná Burza Bratislava Slovakia 

KCBT Kansas City Board of Trade United States 

KEX Kansai Commodity Exchange Japan 

KICE Kazakhstan International Commodity Exchange Kazakhstan 

KLCE Kuala Lumpur Commodity Exchange (now part of BMD) Malaysia 

KLOFFE 
Kuala Lumpur Options & Financial Futures Exchange (now part of 
BMD) 

Malaysia 

KLSE Kuala Lumpur Stock Exchange (now part of BMD) Malaysia 

KOFEX Korean Futures Exchange Republic of Korea 

KRX Korea Exchange Republic of Korea 

LCH London Clearing House (now part of LCH.Clearnet) United Kingdom 

LIFFE Euronext London International Financial Futures Exchange United Kingdom 

LME London Metal Exchange United Kingdom 

MACE Malawi Agricultural Commodity Exchange Malawi 

MATba Mercado a Termino de Buenos Aires Argentina 

MATIF Euronext Paris France 

MCX Multi Commodity Exchange India 

MEFF Mercado español de opciones y futuros financieros Spain 

MexDer Mexican Derivatives Exchange Mexico 

MGEX Minneapolis Grain Exchange United Status 

MICEX Moscow Inter-bank Currency Exchange Russian Federation 

MME Malaysia Monetary Exchange (now part of BMD) Malaysia 

MX Bourse de Montréal Canada 

NAMEX National Mercantile Exchange Russian Federation 

NASDAQ National Association of Securities Dealers Automated Quotations United States 

NBOT National Board of Trade India 

NCDEX National Commodity & Derivatives Exchange India 
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NCEL National Commodity Exchange Limited Pakistan 

NEL NYMEX Europe Ltd United Kingdom 

NMCE National Multi-Commodity Exchange India 

Nord Pool Nordic Power Exchange Norway 

NSE National Stock Exchange of India India 

NYBOT New York Board of Trade United States 

NYMEX New York Mercantile Exchange United States 

NYSE New York Stock Exchange (now part of NYSE Euronext) United States 

OMX OMX Group of Exchanges Sweden 

OME Osaka Mercantile Exchange (now part of C-COM) Japan 

OSE Osaka Securities Exchange Japan 

PACDEX Pan-African Commodities & Derivatives Exchange Botswana 

PHLX Philadelphia Stock Exchange United States 

RMX Risk Management Exchange (formerly Warenterminbörse Hannover) Germany 

ROFEX Rosario Futures Exchange Argentina 

RTS Russian Trading System Russian Federation 

SAFEX South African Futures Exchange (now part of JSE) South Africa 

SCE Sofia Commodity Exchange Bulgaria 

SFE Sydney Futures Exchange (now part of ASX) Australia 

SGX Singapore Exchange Singapore 

SHFE Shanghai Futures Exchange China 

SICOM Singapore Commodity Exchange Singapore 

SPCEX St. Petersburg Currency Exchange Russian Federation 

TASE Tel Aviv Stock Exchange Israel 

TAIFEX Taiwan Futures Exchange 
Taiwan, Province of 
China 

TFEX Thailand Futures Exchange Thailand 

TFX Tokyo Financial Exchange (formerly TIFFE) Japan 

TGE Tokyo Grain Exchange Japan 

TME Tehran Metals Exchange 
Iran, Islamic Republic 
of 

TOCOM Tokyo Commodity Exchange Japan 

TSE Tokyo Stock Exchange Japan 

TurkDex Turkish Derivatives Exchange Turkey 

UCE Ugandan Commodity Exchange Uganda 

UICEX Ukrainian Interbank Currency Exchange Ukraine 

UFEX Ukrainian Futures Exchange Ukraine 

USFE U.S. Futures Exchange United States 

UZEX Uzbek Commodity Exchange Uzbekistan 

WCE Winnepeg Commodity Exchange Canada 

WGT Warszawskiej Gieldy Towarowej Poland 

WSE Warsaw Stock Exchange Poland 

Y-COM Yokohama Commodity Exchange (now part of TGE) Japan 

ZCE Zhengzhou Commodity Exchange China 

ZAMACE Zambian Agricultural Commodity Exchange Zambia 

ZIMACE Zimbabwe Agricultural Commodity Exchange Zimbabwe 

Table 1: Commodity Exchanges in the world (UNCTAD, 2009) 



20 
 

The Chicago Board of Trade 

The Chicago Board of Trade was created by a handful of savvy grain traders to establish 

a central location for buyers and sellers to conduct business. Established in 1848, the CBOT is 

the world’s oldest futures and options exchange. The new formalized location and operation 

enticed wealthy investors to build storage silos to smooth the supply of grain throughout the 

year and, in turn, aid in price stability. After spending the last decade and a half as one of the 

largest futures trading organizations in the world and a direct competitor to the Chicago 

Mercantile Exchange (CME), the CBOT and the CME merged July 12, 2007, to form the CME 

Group, creating the largest derivatives market ever. The CBOT division of the CME Group is 

the home of the trading of agricultural products such as corn, soybeans, and wheat. However, 

the exchange has added several products over the years, to include Treasury bonds and notes 

and the Dow Jones Industrial Index (Garner, 2013).  

 

The Chicago Mercantile Exchange 

The success of the CBOT fueled investment dollars into exchanges that could facilitate 

the process of trading products other than grain. One of the offshoots of this new investment 

interest was the Chicago Mercantile Exchange. The CME was formed in 1874 under the 

operating name Chicago Produce Exchange; it also carried the title Chicago Butter and Egg 

Board before finally gaining its current name. The contract that put this exchange on the map 

was frozen pork belly 

futures, or simply “bellies,” as many insiders say. Hollywood and media portrayals of the 

futures industry often focus on the pork belly market. The CME, a division of the CME Group, 

is responsible for trading in a vast variety of contracts, including cattle, hogs, stock index 

futures, currency futures, and short-term interest rates. The exchange also offers alternative 

trading vehicles such as weather and real-estate derivatives (Garner, 2013).  

 

The New York Mercantile Exchange 

Although the futures and options industry was born in Chicago, New York was quick 

to get in on the action. In the early 1880s, a crop of Manhattan dairy merchants created the 

Butter and Cheese Exchange of New York, which was later modified to the Butter, Cheese, and 

Egg Exchange and then, finally, the New York Mercantile Exchange (NYMEX). The NYMEX 

division of the CME Group currently houses futures trading in the energy complex. Examples 

of NYMEX-listed futures contracts are crude oil, gasoline, and natural gas. A 1994 merger with 

the nearby Commodity Exchange (COMEX) exchange allowed the NYMEX to acquire the 



21 
 

trading of precious metals futures such as gold and silver under what is referred to as its 

COMEX division. In March 2008, NYMEX accepted a cash and stock offer from the CME 

Group that brought the New York futures exchange into the fold, along with the CBOT and the 

CME. On August 18, 2008, NYMEX seat-holders and shareholders accepted the proposal and 

the rest is history. The NYMEX division of the CME Group has been fully integrated with the 

CME and CBOT divisions of the exchange despite being located hundreds of miles away from 

downtown Chicago (Garner, 2013). 

 

The CME Group 

The CME Group consists of the three aforementioned divisions: the CBOT, CME, and 

NYMEX, which previously stood as independent exchanges. Accordingly, the CME is 

officially the world’s largest derivatives exchange. As previously mentioned, on July 12, 2007, 

the merger of the CBOT and the CME created the CME Group, but NYMEX was acquired in 

2008 to create a powerful and innovative entity. The CME Group currently serves the 

speculative and risk management needs of customers worldwide. Among the three divisions, 

the CME Group offers derivative products across nearly all imaginable asset classes. Upon 

merging, the CBOT and the CME consolidated all floor-trading operations into a single 

location: the historic CBOT building on 141 West Jackson Boulevard in downtown Chicago 

(Garner, 2013).  

 

Intercontinental Exchange 

Intercontinental Exchange (ICE) is the newest player in U.S. futures trading. In stark 

contrast to the original models of the CBOT, the CME, and NYMEX, ICE primarily facilitates 

over-the-counter energy and commodity futures contracts. This simply means that there is no 

centralized location; nearly all trading takes place in cyberspace. However, ICE continues to 

operate floor-trading operations in some of its option markets. In addition, the CME Group has 

followed the lead of ICE and moved a majority of its futures contract execution to electronic 

means, as opposed to a trading pit with a physical location.  ICE was established May 2000, 

with the mission of transforming OTC trading. By 2001, it had acquired a European energy 

futures exchange, but it did not dig its claws deep into the heart of the U.S. futures industry 

until its acquisition of the New York Board of Trade (NYBOT) in 2007, along with the 

responsibility to facilitate trading in the softs complex. The term soft generally describes a 

commodity that is grown rather than mined; examples of contracts categorized as soft and 

traded on ICE in the United States include sugar, cocoa, coffee, and cotton (Garner, 2013).  
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The New York Board of Trade 

The New York Board of Trade (NYBOT) was established in 1998 with the merger of 

the New York Cotton Exchange (founded 1870) and the Coffee, Sugar and Cocoa Exchange 

(founded 1882). The NYBOT is the world’s ninth largest commodity exchange and the 30th 

largest futures exchange overall. It sets worldwide reference prices for several key 

commodities, including cocoa, coffee, cotton, sugar and frozen concentrated orange juice. In 

January 2007, NYBOT was purchased by ICE and renamed ICE Futures US (UNCTAD, 2009).  

 

The London Metal Exchange 

The London Metal Exchange (LME) remains Britain’s only independent major 

commodity exchange. Founded in 1877, the LME specializes in non-ferrous metals and – since 

May 2005 – plastics. In 2007, with trade of 92.9 million contracts (7 per cent annual growth) it 

was the world’s sixth largest commodity exchange (and the 25th largest futures exchange 

overall). The LME’s role in discovering world metal prices is still predominant. Some analysts 

had been suggesting that the competing Shanghai Futures Exchange (SHFE) was starting to 

lead, rather than follow, LME in price discovery, particularly in copper. Contrasting 

performances between LME and SHFE in 2007 – volume at the former increasing by 6.8 per 

cent whilst volume at the latter decreased by 47.2 per cent – may weaken such claims. The 

LME has long been in the process of developing a steel contract. Recent developments have 

seen the release of two regional physically delivered steel billets contract specifications, with 

trading to commence in April 2008 (UNCTAD, 2009). 

 

Shanghai Futures Exchange 

The SHFE was formed in 1999 after the merger of three Shanghai-based exchanges – 

the Metal, Commodity, and Cereals & Oils Exchanges. It deals primarily in industrial products, 

offering futures contracts in copper, aluminium, natural rubber, fuel oil and – since March 2007 

– zinc. During 2006, the exchange saw a strong performance, its volumes increasing by 72 per 

cent to 58 million contracts, making it the seventh largest commodity exchange in the world 

and the 27th largest futures exchange overall. Over half of the exchange’s 2006 volume came 

from trade in rubber, a sector which posted a 174 per cent rise in volume to become the world’s 

ninth largest commodity derivatives contract. There was also strong growth in aluminium 

trading and fuel oil trading, which more than made up for a second year of significant decline 

in SHFE’s once highly liquid copper contracts. In September 2007, regulatory approval was 
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granted for the SHFE to list gold futures contracts. That same year, SHFE’s trading volumes 

dipped to 85 million lots and an annual increase of 47 per cent (UNCTAD, 2009). 

 

Dalian Commodity Exchange 

Founded in 1993, the DCE was the world’s largest agricultural futures exchange by 

contract volume – its 185 million agri-contracts traded in 2007 places it narrowly ahead of the 

154 million traded on the US-based CBOT. In 2006, the DCE also operated the world’s most 

liquid market by volume for corn – the DCE Corn was the world’s largest agricultural futures 

contract with 65 million traded contracts. Moreover, the DCE offered the world’s largest market 

for non-transgenic soybeans and a highly liquid contract for soymeal, the world’s third most 

liquid agricultural futures contract with 32 million contracts traded. The DCE started trading 

soybean oil futures as of January 2006, and most recently in 2007, linear low-density 

polyethylene (LLDPE, a raw material in plastics) and palm oil. The exchange’s corn and 

soybean futures prices have become important references for Chinese industry. A broad-based 

farmer education programme conducted by the exchange, the “1,000 villages, 10,000 farmers” 

initiative, is training farmers to use this information to form more accurate expectations about 

future price development across the two crops, improving their planting, harvesting and selling 

decisions as a result. The DCE’s volume has been the largest in China since 2000, although the 

SHFE – mainly focused on metals – is the largest in terms of notional turnover (UNCTAD, 

2009). 

 

Tokyo Commodity Exchange 

TOCOM was created in November 1984 through the consolidation of three existing 

exchanges: the Tokyo Textile Commodities Exchange, the Tokyo Rubber Exchange, and the 

Tokyo Gold Exchange. In the 24-hour global trading environment, TOCOM has emerged as an 

influential exchange on a par with exchanges in New York, Chicago and London, dealing in 

gold, silver, and platinum futures as well as several other precious metals (UNCTAD, 2009).  

 

Overall, the purpose of a commodity exchange is to provide an organized marketplace 

in which members can freely buy and sell various commodities in which they have an interest 

(Lerner, 2000). At table 2 you can see the most important commodity exchanges for each 

commodity category. 
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Energy 

 CME Group, which includes New York Mercantile Exchange (NYMEX), which 

became part of CME in March 2008; 

 Shanghai Futures Exchange (SHFE), China 

 InterContinental Exchange (ICE), which acquired the International Petroleum 

Exchange (IPE) London in 2001 

 Multi Commodity Exchange of India 

 Tokyo Commodity Exchange (TOCOM), Japan 

 RTS Exchange in Russia 

 Dubai Mercantile Exchange (DME), UAE 

Metals 

 CME Group, which includes NYMEX and COMEX; 

 Shanghai Futures Exchange (SHFE), China 

 Multi Commodity Exchange of India 

 LME – London Metal Exchange, UK 

 RTS Exchange, Russia 

 DGCX – Dubai Gold & Commodities Exchange 

Agriculture 

 CME Group – Chicago Board of Trade and Chicago Mercantile Exchange 

 Shanghai Futures Exchange (SHFE), China 

 Zhengzhou Commodity Exchange (ZCE), China 

 Dalian Commodity Exchange (DCE), China 

 InterContinental Exchange – Atlanta and London 

 Tokyo Commodity Exchange (TOCOM), Japan 

 Kansas City (Missouri) Board of Trade, USA 

 RTS Exchange, Russia 

 NYSE Liffe, UK 

 InterContinental Exchange, Canada 

Table 2: Commodity exchanges for every commodity category (Taylor, 2013) 
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4. FUNDAMENTALS OF COMMODITIES 

 

4.1 Metals 

 

Metals are considered those commodities that has the physical properties of a metal element 

and are produced by extraction from earth. They divided in two categories based on their value 

and their use. The first category is precious metals, which include gold, silver, platinum and 

palladium that are characterized by its high value and scarcity. The other category is industrial 

or base metals, which include aluminum, copper, zinc, tin, lead and nickel. Their primary use 

is for industrial purposes, as a base raw material for many applications. 

 

 

PRECIOUS METALS 

 

Gold 

 

Gold is one of the rarest metals in the world and one of the oldest known to man. While gold 

has been much used for decorative objects, it also has industrial uses. Its properties include 

strong resistance to corrosion and good conductivity; it is also malleable and ductile. Gold is 

easily recyclable because of its low melting point. Its traditional role as a store of value has 

meant that, according to the World Gold Council (WGC), only 2% of all the gold that has ever 

been mined has been lost over time (Bain, 2013). Money are flowing into the metal as a store 

of value, particularly when inflationary expectations heat up or in times of money printing. 

That’s why gold is considered as a hedge against asset erosion in times of inflation and political 

unrest. Although gold certainly is used in the jewelry industry and electronics and other 

industries, it is considered precious due to its traditional role as a medium of exchange 

(Kleinman, 2013). Gold, like most metals, is measured and weighed in troy ounces. When you 

want to refer to large quantities of gold, such as the amount of gold a bank holds in reserves or 

the amount of gold produced in a mine, the unit of measurement you use is metric tons 

(Bouchentouf, 2015).   

Gold has clearly become a mainstream asset class and a credible alternative hard 

currency, acting as a protection against government policies to devalue their paper currencies 

in an effort to stimulate their flagging economies (Taylor, 2013). When governments are 
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printing money, gold by default rises (more currency units in circulation require a higher gold 

price per ounce). In times of instability, gold is considered a store of value. War or a loss of 

confidence in traditional investments can cause a shift of funds into gold (Kleinman, 2013). 

Demand for gold will continue to increase, especially as a store of value, driven in part by the 

weakening paper currency environment that’s a result of expansionary monetary policy in the 

Organization for Economic Cooperation and Development (OECD) countries. As paper 

currencies come under increased pressure, expect demand for gold to increase (Bouchentouf, 

2015). After all, in human perception one of the basic gold’s roles is as currency. Thus, if the 

value of the paper currency is falling, then people could start to request the metal, which should 

bring the system into balance again. While governments can print money—and most do—they 

still cannot produce more gold. Its scarcity is certainly a good trait for being an unofficial basis 

of a currency (Taulli, 2011).  

Perhaps no other metal — or commodity — in the world has the cachet and prestige of 

gold. For centuries, gold has been coveted and valued for its unique metallurgical 

characteristics. It was such a desirable commodity that it developed monetary applications, and 

a number of currencies were based on the value of gold. Gold is a very ductile metal, which 

mean it can be drawn out into a wire effectively. Pure gold (24 karat) is a very malleable metal 

and has high resistance levels without corroding easily (Bouchentouf, 2015). Unique and 

therefore precious, gold is its own asset class (Kleinman, 2013). 

Gold is mined in both open and underground pits, often alongside other metals, 

especially lead, zinc and copper. Once the gold ore is extracted, it undergoes extensive and 

time-consuming processing to remove the gold from the carbon or oxides or sulphides that are 

also in the ore (Bain, 2013). The process of extracting gold is expensive and time-consuming. 

It often requires large mines and blasting rock to mine gold. The ore is then transported to a 

plant that crushes it to get to the gold. Gold is one of the most wasteful commodities (Taulli, 

2011). Mine supply typically accounts for nearly 70% of annual gold supply, a low amount 

compared with other commodities (Bain, 2013). Gold is considered one of the rarest natural 

resources on earth. Only about 150,000 tons of gold have ever been produced since humans 

first began mining gold more than 6,000 years ago. And because most gold is recycled every 

year (about 15%) and never destroyed, a majority of gold is still in use today (Bouchentouf, 

2015). While gold mines are the largest part of the global supply, another important source is 

from scrap. This is the process of converting jewelry into gold bars or coins (Taulli, 2011). 

Recycling is particularly strong in the United States and southern Europe but fall in the 

traditional markets of the Middle East, India and East Asia (Bain, 2013).  
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South Africa was once the dominant global producer of gold, accounting for more than 

25% of the world’s production and 50% of the in-ground reserves (Kleinman, 2013). But, 

according to Taulli (2011) since the 1980s, production has steadily declined, partly because of 

falling profitability, as power and labour costs have risen but also because of ageing mines 

(Bain, 2013). In 2007, China overtook both South Africa and Australia to become the world’s 

largest gold miner (Bain, 2013) and eventually the largest gold producer is now China  (Taulli, 

2011). China is the both the world’s number one gold producer and second ranking consumer 

behind India, although recent reports suggest that the world’s most populous country may well 

be about to overtake India to become the top buyer of gold (Taylor, 2013). The other main 

producers include Australia and the United States (Taulli, 2011). Australia is the second largest 

producer of gold, followed by the United States and Russia, while South Africa, for many years 

the world’s biggest source of gold, has slipped to fifth place (Taylor, 2013). The next major 

producers are Canada and Brazil (Kleinman, 2013). So, we can see that gold is widely dispersed 

geographically, with no one region accounting for more than 20% of production (Bain, 2013). 

The increased demand for gold is linked to a number of reasons (Bouchentouf, 2015). 

There are five main demand sources for gold as Figure 1 shows. First, there is jewelry, which 

accounts for 40 percent of global consumption (Taulli, 2011) and it is the most important 

consumer use of gold in the world (Bouchentouf, 2015). This has been falling steadily over the 

years. Investment is the next largest demand factor and it represents about 25 percent of global 

consumption (Taulli, 2011). The gap left by the fall in jewelry consumption has been more than 

filled by strong growth in investment demand for gold. This includes bars and coins as well as 

the gold held by exchange-traded funds (ETFs). Gold has a number of characteristics that make 

it an attractive commodity investment, such as high liquidity and global acceptance or 

recognition (clear quality standards that can be checked), a high value relative to volume 

(making it easily transportable and reducing storage costs) and the fact that it is virtually 

indestructible. It is also scarce (especially when compared with currencies – paper money issued 

by governments). On the negative side, however, relative to currencies, it does not have a body 

such as a central bank that can monitor its value and take action to support its price. Also interest 

cannot be earned on a gold investment (Bain, 2013). The third largest category for global gold 

demand is industrial use, which comes to about 12 percent  (Taulli, 2011). Although because 

of its high price, it is used only as a last resort when a suitable alternative is not available (Bain, 

2013). Gold is used because it is nontoxic and an effective conductor of electricity. Some of 

applications include bonding wire and gold-plated contacts (Taulli, 2011). It can be used in 

wiring because of its good conductivity, but aluminum and copper are typically used instead as 
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they cost much less (Bain, 2013). Also, it’s used as a semiconductor in circuit boards and 

integrated boards (Bouchentouf, 2015). An additional source of demand in recent years has 

been central banks, which had been net sellers of gold for decades but since 2010 have become 

net buyers. Gold is still the world’s third largest reserve asset behind dollar- and euro-

denominated assets. This is probably a reflection of concerns about the outlook for the dollar 

and the euro, in particular, with central banks seeking to diversify their reserve holdings (Bain, 

2013) . Roughly, 18 percent of the world’s supply of gold is not put onto the market. The reason 

is that this is the amount of the world’s gold that is held by central banks (in some cases, the 

gold has been in vaults for centuries). Finally, gold is also useful in medical treatments, clean 

energy, and even the aerospace industry (Taulli, 2011). Besides that, because gold resists 

corrosion, it has wide application in dentistry. It’s alloyed with other metals, such as silver, 

copper, and platinum, to create dental fixtures (Bouchentouf, 2015). Historically, gold was used 

extensively in medicine and dentistry because of its biocompatibility with the human body, but 

the availability of much cheaper plastic or ceramic substitutes means it is losing its role in 

dentistry (Bain, 2013). 

 

Figure 1: Uses of gold 

Traditionally, jewelry making was the primary end-use of gold. India has historically 

always been the largest consumer of gold jewelry and gold more generally. Culturally, gold has 

been the principal store of wealth and spikes in consumption have tended to coincide with 
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Indian festivals and/or the Indian wedding season. Some of the decline in gold’s use in jewelry 

has been a reflection of high prices in recent years as well as the weakness in Western 

economies since 2008. Whether for reasons of austerity or just fashion, there has been a move 

away from gold jewelry to cheaper costume jewelry (Bain, 2013). 

Although gold has effectively been used as a currency or as a store of value for 

thousands of years, it began to be formally traded only during the 17th century in London. The 

gold market is larger and more liquid than almost all other commodity markets; in terms of 

volumes traded it is more like a large developed-country sovereign bond market (Bain, 2013). 

Gold trades on many futures exchanges. The main ones include the CME and the Tokyo 

Commodity Exchange (TOCOM) (Taulli, 2011). London is also a large market, with significant 

trading also happening in New York, and Zurich (Bain, 2013). Gold now trades freely, in 

accordance with supply and demand (Kleinman, 2013), across the world with other important 

exchanges in Dubai, Shanghai, Vietnam, China, India and Pakistan as well as more traditional 

markets in Europe (Bain, 2013). 

There are various factors that influence the price of gold (Taulli, 2011). As with all 

commodities, textbook economic theory and market fundamentals (the demand–supply 

balance) can rarely predict exactly the trend in gold prices, but there are a number of 

relationships between gold and economic indicators that have held in the past. Gold prices are 

typically inversely correlated with the dollar. This reflects gold’s property as a hedge against 

inflation, particularly hyperinflation, as it will retain its value as well as its appeal as a safe 

haven in times of dollar uncertainty as currencies are debased (Bain, 2013). So, if there is 

inflation, or the threat of it, the price of gold is likely to rise. The same goes with economic 

instability and possible sovereign debt defaults (Taulli, 2011). Furthermore, a falling dollar 

makes gold and other commodities that are typically denominated in dollars cheaper in terms 

of other currencies, increasing both demand for gold and the price. Gold prices have also 

generally done well when other investment assets such as equities (in particular) or bonds are 

performing poorly; this is partly because gold demand does not have the direct link with the 

economic or industrial cycle that characterizes base metal and energy demand. The appeal of 

gold is enhanced when interest rates are low. As holding gold involves only a capital return (no 

interest), it is less appealing as a savings vehicle if interest rates are high. Geopolitical risk is a 

further factor that can encourage the consumption of gold and lead to higher prices (Bain, 2013). 

Also, it is observed that as income growth increases, so has gold demand. However, in the long 

run, the prices of gold and all other precious metals are sensitive to inflation (Kleinman, 2013). 

Another reason of price volatility could be that easily accessible scrap supply had already 
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largely been exploited (Bain, 2013), so the availability of gold decreases. The financial crisis 

certainly came close to bringing down the global economic system. But during the crisis, gold 

was one of the few investment assets that increased in value. The fact is that the precious metal 

is considered a safe haven. This has been the case for centuries and will likely continue in the 

future (Taulli, 2011). 

In the future, if concerns about the creditworthiness of major countries escalate, or the 

American economy slows sharply or the governments fails to tackle their fiscal deficits, gold 

prices would benefit. However, a marked slowdown in developing countries would negatively 

affect gold demand and thus prices. A normalization of global monetary conditions and eventual 

tightening would diminish gold’s attractiveness as an investment vehicle. As one of the most 

actively traded commodities and the one with only limited productive use, gold may suffer 

unduly from efforts to prevent speculative trading. This could include ever higher reserve 

requirements in futures trading. There remains a substantial risk of another collapse in gold 

prices. If economic conditions worsen, investors could be forced to sell off their gold positions 

to offset losses elsewhere, driving down prices. Conversely, should the global recovery gather 

pace more quickly than anticipated, investors may decide that gold prices have peaked and seek 

to take profits to invest them elsewhere, triggering a collapse in prices. Mine supply could 

become increasingly uncertain, particularly if gold prices fall or mining companies struggle 

with financing. This is particularly the case as mining costs are expected to increase in the 

medium term as a result of high energy costs, rising labor costs and potentially more expensive 

capital investment, as readily available sources of supply are depleted and ores become more 

difficult to extract (Bain, 2013). 

 

 

Silver 

 

Silver is considered both precious and industrial (Kleinman, 2013). Silver is a shiny white 

precious metal. It has many of the same chemical properties as gold, and because it is more 

plentiful and cheaper its industrial uses are more extensive. Silver is ductile and malleable and 

has high electrical and thermal conductivity. Historically, it was also used in health products 

because of its antiseptic qualities. It is found in a pure form, as an alloy with gold or with various 

other ores (principally copper, lead and zinc). As a result, silver is often mined as part of a wider 

mining operation focused on gold or copper, for example (Bain, 2013). 
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While gold production has been declining over the years, this has not been the case with 

silver (Taulli, 2011). Mine supply has been growing steadily. However, silver mining 

companies face many of the same issues as their gold-mining counterparts, in particular 

disruption as a result of labor unrest and falling ore grades in many mines. Nevertheless, supply 

has continued to grow because of a number of new, relatively small mining projects and larger 

amounts of silver being extracted in the process of lead/zinc or gold mining (Bain, 2013). 

Roughly, 77 percent of silver production comes from mines, 20 percent comes from scrap, and 

3 percent comes from government stockpiles. However, over the next decade, there are likely 

to be constraints on the production of silver. The amount of scrap is declining because more 

silver is being used in electronics products, which are fairly difficult to recycle. Also, 

government stockpiles are relatively small (Taulli, 2011). Mexico and the United States are the 

world’s largest producers, followed by Peru and Canada. Fourth and fifth in production are 

Australia and Russia. In recent years, silver consumption has outpaced new production, with 

the balance being met by above-ground supplies (Kleinman, 2013). 

 

Figure 2: Silver Production distribution 

Silver has the highest conductivity of any element, even copper. Silver is also strong yet 

malleable. Because of these qualities, silver has been a good element for coins. But this usage 

was eventually phased out in the mid-1960s. Now the only country that uses silver coins is 

Mexico.  There are two main grades of silver. One is pure silver, which has the highest content. 

Then there is sterling silver or standard silver, which is an alloy of 92.5 percent silver and 7.5 

percent copper. Copper helps to increase the durability of silver (Taulli, 2011). 

Silver has a number of uses that make it an attractive investment (Bouchentouf, 2015). 

Some demand sources for silver are for industrial use, for jewelry and silverware, for 

investment, and for photography (Taulli, 2011). The largest amount of demand for silver comes 

from industrial applications, which accounts for 46 percent of supply. These include batteries, 
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computer components, medical devices, and surgical instruments. In fact, silver has “green” 

qualities, such as being a replacement for some applications of lead (Taulli, 2011). Silver has a 

number of applications in the industrial sector, including creating control switches for electrical 

appliances and connecting electronic circuit boards, as long as conducting electricity, creating 

bearings, and welding, soldering, and brazing (the process by which metals are permanently 

joined together). Because it is a good electrical conductor, silver will keep playing an important 

role in the industrial sector (Bouchentouf, 2015). That’s why silver is also used in electrical 

conductors, switches and circuit breakers, batteries and mirrors. Recently, growth in demand 

for silver has come from the solar energy industry, particularly photovoltaic (solar energy) 

panels (Bain, 2013). The second biggest component of demand for silver is for jewelry and 

silverware. This is a fairly steady category. However, if silver prices continue to rise, there may 

be a decline in demand (Taulli, 2011). Silver has been used in jewelry and coinage for thousands 

of years and in decorative household items such as cutlery. Today the biggest market for silver 

jewelry is India (Bain, 2013). Many people believe (incorrectly) that the largest consumer of 

silver is the jewelry industry. Although silver does play a large role in creating jewelry and 

silverware, demand from this sector accounted for 25 percent of total silver consumption 

(Bouchentouf, 2015). Therefore, silverware and jewelry are not the only uses for silver. In fact, 

silverware is only a small portion of the silver market (Bouchentouf, 2015)! Another category 

that has been robust is investment demand. Many investors consider silver to be a good 

alternative to gold. A big reason is that silver is cheaper than gold on a per-ounce basis (Taulli, 

2011). Some investors consider silver to be an alternative to a currency (Taulli, 2011). While 

photography was once a substantial part of silver demand, this has declined substantially over 

the years. The main reason has been the growth in digital cameras (Taulli, 2011). The 

photographic industry used to be a major consumer of silver, accounting for about 20 percent 

of total consumption. In photography, silver is compounded with halogens to form silver halide, 

which is used in photographic film. With the rise of digital cameras, which don’t use silver 

halide, becoming more popular than traditional cameras, photography demand for silver went 

down (Bouchentouf, 2015). Yet, there have been some offsetting factors. For example, in some 

emerging markets, there has been rising demand for traditional film. Also, there is still a large 

market for film for professional photographers (Taulli, 2011). Silver is truly a hybrid 

industrial/precious metal (Kleinman, 2013). 
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Figure 3: Uses of silver 

You can trade silver futures on the Chicago Mercantile Exchange (CME) and the Tokyo 

Commodities Exchange (TOCOM). Some factors that influence the price of silver are the silver 

standard, the government silver holdings, and the gold-silver ratio. Today, few governments 

have silver holdings. As with any commodity, the value of silver is largely affected by supply 

and demand. However, there is one interesting metric that can provide a relative valuation of 

the metal. This is done by using the gold-silver ratio. Throughout history, there has been a 

relatively stable relationship between the two metals. But, when the gold-silver ratio diverges, 

there may be a buying opportunity. Of course, another key factor has been in the increase in 

industrial demand. Silver is becoming a key ingredient for high-tech products (Taulli, 2011). 

Silver’s industrial uses, particularly in a number of new, green technologies, suggest 

that it will continue to enjoy strong industrial demand in the medium term. In recent years, 

growing investment demand has driven consumption. This makes the price vulnerable to a loss 

of investor interest, for example when monetary policy starts to tighten and interest rates to rise. 

Strong investor interest is leading to higher prices, potentially undermining silver’s 

competitiveness in industrial uses. However, in some applications, there are no suitable 

substitutes for silver (Bain, 2013). Monitoring the commercial activity in each of these market 

segments and looking for signs of strength or weakness, will show investment opportunities, 

because a demand increase or decrease in one of these markets, such as photography, will have 

a direct impact on the price of silver. 
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Platinum 

 

Platinum is a grey-white precious metal and one of the rarest elements in the Earth’s crust. It is 

malleable and ductile, has a high melting point, is an excellent electrical conductor and is highly 

resistant to corrosion. Platinum occurs naturally in a pure form and also alongside nickel and 

copper ores (Bain, 2013). Platinum is the main part of the so-called platinum group. This group 

of metals includes palladium, rhodium, ruthenium, iridium, and osmium. They tend to be found 

in the same mining deposits (Taulli, 2011). Platinum, sometimes referred to as “the rich man’s 

gold,” is one of the rarest and most precious metals in the world. Perhaps no other metal or 

commodity carries the same cachet as platinum, and for good reason: It is by far the rarest metal 

in the world (Bouchentouf, 2015). Platinum is fairly scarce and is considered a precious metal, 

because only 80 tons of new production reach the world annually (Kleinman, 2013). To produce 

1 ounce, it takes a mine to crush about 10 tons of ore. The process can easily take six months 

(Taulli, 2011). 

Platinum was soon discovered to have superior characteristics to most metals: It’s more 

resistant to corrosion, doesn’t oxidize in the air, and has stable chemical properties. Deposits of 

platinum ore are extremely scarce and, more important, are geographically concentrated in a 

few regions around the globe, primarily in South Africa, Russia, and North America 

(Bouchentouf, 2015). The world’s largest supplier of platinum is South Africa, which provides 

about 70 percent of the total. As a result, a disruption in this country could have a major impact. 

The second largest producer of platinum is Russia. Yet its output has seen wide swings, from 

10 percent to 20 percent of the worldwide supply (Taulli, 2011). So, almost ninety percent of 

the world’s production takes place in South Africa and Russia (Kleinman, 2013). North 

America is also a significant producer of platinum. The country with the world’s second largest 

amount of platinum reserves—an amount that has not been extracted yet—is Zimbabwe (Taulli, 

2011). 

Some demand sources for platinum are for jewelry, for industrial use, and for investment 

(Taulli, 2011). Platinum has proven effective for various commercial purposes, such as lab 

equipment, LCDs, video equipment, and electrodes. But the biggest usage of platinum—60 

percent of the world’s supply—is for catalytic converters. So the price of the metal is highly 

related to the global production of cars (Taulli, 2011). Autocatalysts use precious metals to 

convert the noxious gases in vehicle exhausts into harmless substances (Bain, 2013). Platinum’s 

unique characteristics make it a suitable metal in the production of these pollution-reducing 

devices. As environmental fuel standards become more stringent, expect the demand from this 
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sector to increase (Bouchentouf, 2015). Slightly less than one-third of total consumption of the 

metal is in jewelry. Platinum jewelry is particularly popular in China and India (Bain, 2013). 

At one point, jewelry accounted for more than 50 percent of total demand for platinum. 

Although that number has decreased, the jewelry industry is still a major purchaser of platinum 

metals for use in highly prized jewelry (Bouchentouf, 2015). In Japan, platinum is the precious 

metal of choice, with more of it used for jewelry than gold. A strong economy in Japan is good 

for platinum prices (Kleinman, 2013). Other uses are in electrical contacts, liquid crystal display 

(LCD) glass, petrochemicals, oil refining and laboratory equipment. Platinum is also used in 

dentistry and medicine (Bain, 2013). Platinum is also a key part of batteries and fuel cells for 

hybrid and electric cars, which should be a long-term growth driver (Taulli, 2011). Because it 

is a great conductor of heat and electricity, platinum has wide applications in industry. It is used 

in creating everything from personal computer hard drives to fiber-optic cables. Despite its 

relative value, platinum will continue to be used for industrial purposes. A change in demand 

from one of these industries will affect the price of platinum (Bouchentouf, 2015). 

 

Figure 4: Uses of Platinum 

Platinum is traded on the New York Mercantile Exchange (NYMEX) and the London 

Platinum and Palladium Market (Bain, 2013). Platinum is traded on the CME and the Tokyo 

Commodity Exchange as well (Taulli, 2011). Platinum’s unique characteristics as a highly 

sought-after precious metal with industrial applications make it an ideal investment 

(Bouchentouf, 2015). Many times, the platinum price is considered in terms of its relationship 

with gold (Bain, 2013). 

Like all the precious metals, platinum has become more vulnerable to investor sentiment 

in recent years, as investors account for an increasing amount of the consumption of the physical 
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metal. This will lead to heightened price volatility. Volatile prices create considerable 

uncertainty for mining companies, given that it takes years to develop a mine and capital costs 

are typically high. The concentration of mining in a few countries makes the supply of the metal 

vulnerable to disruption. Developments in the automotive industry are crucial for the future of 

platinum (Bain, 2013). This is an industrial metal and a precious metal, and the demand for 

platinum is somewhat dependent on the health of the automotive, electrical, dental, medical, 

chemical, and petroleum (Kleinman, 2013). 

 

 

Palladium 

 

Palladium is a rare steely white-coloured metal. It has many of the same properties as the other 

precious metals: it is ductile and malleable, has good conductivity, has a low melting point and 

is recyclable. It is also noncorrosive. However, palladium is the softest of the precious metals 

making it particularly suitable for fine decorative work. It is typically mined in “placer” deposits 

alongside platinum and other precious metals, including gold. It can also be a by-product of 

nickel mining (Bain, 2013). Palladium is part of a group of elements called the platinum group 

metals (PGM), which include platinum, rhodium, ruthenium, iridium, and osmium. While they 

have many similar properties, palladium has the lowest melting point (Taulli, 2011). 

The global supply of palladium is fairly limited. The biggest supplier is Russia, with 45 

percent. But this has been declining over the years. To make up for the decrease in supply, 

South Africa has become a major palladium producer. It now accounts for 29 percent of the 

world’s supply (Taulli, 2011). Because these two countries dominate palladium production, any 

supply disruption from either country has a significant impact on palladium prices. However, 

there is no way around the fact that most of the world’s reserves of palladium ore are located 

in these two countries. In fact, perhaps no two countries dominate a commodity as much as 

Russia and South Africa dominate palladium (Bouchentouf, 2015). North America is an 

important (and increasing) source of supply, and Zimbabwe has started to increase its 

production of the metal. Other sources of supply in the palladium market are scrap or investor 

selling from physically backed ETFs (Bain, 2013). 

Palladium, which belongs to the platinum group of metals (PGM), is a popular 

alternative to platinum in the automotive industry in autocatalysts in petrol-fuelled cars and the 

jewelry industry. Its largest use comes into play in the creation of pollution-reducing catalytic 

converters. Palladium’s malleability and resistance to corrosion make it the perfect metal for 
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such use and due to the fact that palladium is less expensive per troy ounce than platinum 

(Bouchentouf, 2015). The most common use is for catalytic converters, which accounts for 57 

percent of demand. Palladium may be useful for catalytic converters, but it is not as efficient as 

platinum. Often confused, palladium and platinum are not interchangeable. Thus, the global 

demand for cars has a significant impact on the price of palladium (Taulli, 2011). In the EU, 

there is some substitution of platinum with palladium in lighter diesel vehicles. Its primary use 

is in autocatalysts in petrol-fuelled cars, but it is also used in the chemical industry, dentistry, 

electrical components and increasingly in jewellery. Industrial use of palladium rose strongly, 

despite the difficulties faced by the automobile industry (Bain, 2013). Palladium has also seen 

strong growth from jewelry with the total worldwide demand being 11 percent (Taulli, 2011).  

Palladium is traded on the New York Mercantile Exchange (NYMEX) and the London 

Platinum and Palladium Market (Bain, 2013). You can also trade palladium on the CME and 

on the Tokyo Commodity Exchange (Taulli, 2011). Platinum and palladium prices typically 

move in the same direction and more like those of industrial metals than the other precious 

metals, gold and silver (Bain, 2013). 

 

 

INDUSTRIAL/BASE METALS 

 

Aluminum 

 

Aluminum is the third most common element in the earth’s crust after oxygen and silicon, 

accounting for 8 percent of the ground we walk on, while 150 years ago, aluminum was more 

valuable than gold and platinum (Dunsby, et al., 2008). The primary source of aluminium is 

from the aluminum ore known as bauxite; this is found worldwide in varying concentrations 

(Taylor, 2013). Aluminum is a lightweight metal that is resistant to corrosion. Aluminum is 

generally measured in metric tons (Bouchentouf, 2015). 

Primary aluminum processing proceeds in three steps: bauxite mining and milling, 

conversion of bauxite to alumina and conversion of alumina to aluminum. Aluminum 

production remains an energy-intensive process, with even modern plants requiring 13 to 16 

kilowatt-hours (kWh) of direct electrical energy per kilogram of output. Two tons of alumina 

are required for each ton of aluminum produced and therefore four to five tons of bauxite 

produce one ton of aluminum at a purity level of 99.7 percent. The production process of 

aluminum is shown in Figure 5. Aluminum produced from bauxite via alumina is commonly 
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known as primary aluminum (Dunsby, et al., 2008). This process is highly energy intensive 

(between 13,000 and 16,000 kWh for each ton of aluminum) and smelters are often built in 

close proximity to power stations. For a metal, such as aluminum, the operating cost could rise 

(or drop) drastically due to variations in bauxite or the electricity price. Both price variables 

represent more than 50 per cent of the production cost changes but the situation is the same (to 

a lesser extent) with other base metals. As a result, the price of electricity has a strong impact 

on production costs (Taylor, 2013). 

 

Figure 5: Aluminum lifecycle and production process (Taylor, 2013) 

The secondary source of aluminum is scrap, or recycled aluminum. Surprisingly, 

aluminum recycling is a very old business, which started around 1900. Secondary aluminum 

accounted for 50 per cent of the supply in 1980 and is now over 70 per cent of the supply since 

the beginning of the 2000s. Part of this success is due to the fact that recycling of aluminum is 

less energy intensive (approximately 1/20 of the energy) and therefore cheaper to produce than 

primary aluminum (Taylor, 2013). Secondary production, or recycling, remains an attractive 

source of production for aluminum. Recycling aluminum incurs only 5 percent of the energy 

costs required to convert alumina to aluminum. Currently, recycling global production is 

significantly higher than the proportions for other metals. Primary and secondary aluminum are 

frequently but not necessarily alloyed with other metals and then converted into semi-fabricated 

products (Dunsby, et al., 2008). 

Aluminum is mined primarily in tropical parts of the world (Bain, 2013). Bauxite 

deposits are found primarily in tropical regions, with 80 percent of world production coming 

from Australia, Brazil, Guinea, China, Jamaica, and India (Dunsby, et al., 2008). The biggest 

producers of aluminum include China, Russia, Canada, the United States, and Australia (Taulli, 

2011). Overall, primary aluminum production is more dispersed than bauxite mining. World 

primary aluminum production has grown at 5 percent per year since 1995. As with all the 

metals, the major story is the growth of Chinese primary production. The major supply story 

over the next 10 years will likely be the continuing shift of production from West to East as 
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new plants come online in China, India, Russia, and the Middle East. Cheap, captive power 

supply is driving capacity expansion in Russia and the Middle East, while economic growth is 

driving the expansion in China and India. Notable exceptions to this trend, Iceland and Canada, 

will likely see capacity increases due to available geothermal and hydroelectric energy sources. 

While Chinese primary production skyrocketed during the past 10 years, U.S. production fell 

by one-third. Primary aluminum production has been roughly flat in the other major producing 

countries, causing their share of world production to fall in the face of China’s dramatic growth. 

On the contrary, the major aluminum recyclers are, unsurprisingly, the United States, Europe, 

and Japan. In the United States, recycling accounts for a full 60 percent of aluminum 

production, and in Japan recycling accounts for nearly all aluminum production (Dunsby, et al., 

2008). 

Demand in the former Soviet Union collapsed after 1990 and remains lower than in the 

1980s, boosting export availability. Since 1992 Russia has become the world’s largest exporter 

of primary aluminum and accounted for 26% of total exports in 2011. Canada is the next largest 

exporter with 11% of the market, with China some way behind with a 3.5% market share. Trade 

in aluminum has been falling as a share of world consumption from a peak of 66% in 2004 

largely because China is self-sufficient. Exports accounted for 50% of total consumption in 

2011. Imports of primary aluminum are typically duty-free but trade in semi-finished and 

finished products is more restricted. The exception to this is the EU, which imposes a 6% tariff 

on imports of primary aluminum (Bain, 2013). 

The consumption picture is dominated by China (Dunsby, et al., 2008). Aluminum is 

used in the construction industry (more than 20 per cent of demand), packaging (18 per cent), 

and of course the transportation sectors (largest end user of aluminum with 29 per cent), and 

with a high level of activity in infrastructure development in emerging countries this increasing 

price trend looks likely to continue (Taylor, 2013). Aluminum has industrial uses as well, 

including a role in the construction of buildings, oil pipelines, and even bridges. Building 

constructors are attracted to it because it is lightweight, durable, and sturdy. In packaging almost 

a quarter of aluminum is used to create aluminum wrap and foil, along with beverage cans and 

rivets. In transportation aluminum is used to create the body, axles, and, in some cases, engines 

of cars. In addition, large commercial aircrafts are built using aluminum, because of its 

lightweight and sturdiness (Bouchentouf, 2015). As of 1998, end use of aluminum worldwide 

consisted of: 26 percent transportation (vehicles), 20 percent packaging (foil and cans), 20 

percent construction (commercial and residential), 9 percent electric (transmission), and 25 

percent other uses (machinery, consumer durables, etc). As of 2004, 37 percent transportation, 
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22 percent packaging, 16 percent construction, 7 percent electric, and 18 percent other uses. 

Regarding the set of end uses, GDP, industrial production, and their components would seem 

to be promising indicators of demand for aluminum (Dunsby, et al., 2008). 

 

Figure 6: The evolution of aluminum consumption 

Although much metal is moved within integrated company systems, primary aluminum 

is widely traded. Market pricing has been made transparent by the LME, which has traded 

primary aluminum since 1978. Although metal is still sold directly between producers and 

consumers on prices fixed for various periods, the setting of those prices is now 

overwhelmingly influenced by the LME quotations, particularly the 3-months future quotation 

(Bain, 2013). Primary aluminum trades on the London Metal Exchange (LME) and is quoted 

in $/metric ton. Contract specifications are for 25 tons of aluminum at 99.7 percent purity. For 

physical delivery, each lot of metal must be of an LME-approved brand and form residing in 

an LME-approved warehouse. The minimum quoted tick size is $0.25 on LME Select, but in 

the ring it is $0.50 (Dunsby, et al., 2008). Aluminum is now traded on a number of exchanges 

around the world, notably the Shanghai Futures Exchange (SHFE) and also exchanges in 

Singapore, Rotterdam, Japan and Malaysia (Bain, 2013). Aluminum used to trade in the 

COMEX division of the New York Mercantile Exchange (NYMEX). However, the COMEX 

contract was delisted in 2009, after the Chicago Mercantile Exchange (CME) acquired the 

exchange (Bouchentouf, 2015). 

Increasingly attractive alternative to steel (Bain, 2013), aluminum is far more abundant 

in the earth’s crust than copper (Dunsby, et al., 2008) and can be substituted in some 
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applications (Bain, 2013). The risk of upside to aluminum is that aluminum production is highly 

energy intensive per unit weight, much more so than copper. If energy prices continue to rise, 

this will have more of an impact on aluminum (Dunsby, et al., 2008). Even when aluminum 

prices increase, the impact may be delayed for companies. The main reason is that the aluminum 

industry relies mostly on long-term contracts. Another problem is energy, which accounts for 

large amounts of the company’s costs. Therefore, a spike in the price of crude oil or coal can 

depress profits from aluminum (Taulli, 2011). In addition, new plants exploiting low-cost 

power sources should minimize the upward pressure on aluminum prices from higher oil prices. 

However, Chinese authorities’ efforts to restrain power consumption in the sector may slow the 

pace of supply growth. Aluminum could also benefit from new production standards in the 

automotive industry (Taylor, 2013). 

Aluminum prices have relatively low volatility compared with copper and zinc. The low 

volatility of aluminum may well be a consequence of its geological abundance (low relative 

scarcity) in conjunction with the presence of mothballed capacity. Aluminum will remain less 

volatile than the other metals, benefiting less from the boom in emerging markets but suffering 

less if the boom should crash. Investing in aluminum may thus provide exposure to the 

industrial (metal) cycle with a defensive posture. Thus, as long as investment in capacity 

remains prudent and the industrial cycle stays strong, aluminum is likely to stay strong. Neither 

of these is guaranteed, however. While the strength of the current commodity markets makes it 

tempting to forget, growth in supply can certainly exceed growth in demand. Rapidly growing 

nations such as China may build excessive aluminum capacity, looking to export the excess 

abroad, until they grow into the available capacity. Similarly, nations with low energy costs 

such as the Gulf States are ramping up aluminum production to supply export markets. A heavy 

reliance on export markets, a potential issue in both of those scenarios, leaves aluminum 

exposed to downward price pressure from a slowdown in the rest of the world. The crisis in the 

U.S. sub-prime housing market as of mid-2007 may well be a precursor of such a downturn. 

There are two additional factors that suggest a positive future for aluminum. First, the energy 

intensity of aluminum means it should benefit more than the other metals from any future 

increases in energy prices. Second, the larger surge in copper and zinc prices will lead to their 

substitution by aluminum. Working in the other direction, the rise in aluminum prices may 

engender switching to plastics. Of course, this will depend on the price of plastics, which are 

themselves products of the increasingly pricey petroleum complex (Dunsby, et al., 2008). 

The global market for aluminum is expected to remain strong for the foreseeable future 

as retail customers are generally eager to buy lighter and more recyclable consumer goods 
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(Taylor, 2013). Demand for aluminum will be supported by steady growth in car ownership in 

countries such as China and India. Alongside its use in construction, consumer goods and 

packaging, the metal’s lightweight properties will ensure that it will be in considerable demand 

in the production of lightweight, fuel-efficient aircraft and cars. Its easy recyclability will also 

make it a greener option for end-users. High-energy costs and environmental issues are limiting 

output growth both in China and globally. These restrictions and the high cost of inputs (both 

energy and bauxite) mean there will be an increased focus on boosting the use of recycled 

aluminum instead of refining new metal. Limited bauxite supply could constrain aluminum 

supply, as importing countries are dependent on a few main exporters. The energy-intensive 

nature of aluminum production means that production is likely to become more polarized in 

energy-rich countries. It is also likely to move to lower-wage regions of the world. This 

combination suggests EU production is in structural decline (Bain, 2013). 

 

 

Copper 

 

Copper was the first base metal ever discovered and is still widely used (Taylor, 2013). Copper 

was probably the first base metal to have its properties recognized and to be used extensively 

by humans. Copper is versatile: it is malleable and ductile; it has superb alloying characteristics; 

it is resistant to corrosion, strong, durable and recyclable; and it is an excellent conductor of 

heat and electricity (Bain, 2013). The mining of copper extends back as far as 13,000 B.C. and 

is actually the first-known industrial metal. As a sign of its importance, copper became the basis 

of the Copper Age during prehistoric times. Copper was a critical metal for civilizations like 

the Egyptians and the Romans. It is also an effective conductor of electricity and was essential 

for the Electric Revolution during the nineteenth century (Taulli, 2011). Copper played a huge 

role during the Industrial Revolution and in connecting and wiring the modern world. Copper, 

the third most widely used metal, is the metal of choice for industrial uses. Because it’s a great 

conductor of heat and electricity, its applications in industry are wide and deep. Because of the 

current trends of industrialization and urbanization across the globe, demand for copper has 

been — and will remain — very strong, making this base metal a very attractive investment 

(Bouchentouf, 2015). 

Copper occurs naturally in the Earth’s crust and is extracted by both open-pit mining 

(the majority of copper mines) and underground mining (Bain, 2013). Copper miners typically 

use open-pit mines to process large amounts of low-grade ore. The copper is then crushed and 
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then sent to a smelter. After this, there is a refining process that removes much of the oxygen 

and impurities. The end-product is cathode and wire rods, which are then sold to copper 

fabricators (Taulli, 2011). Around 80% of copper mine production is in the form of concentrates 

(copper sulphide minerals typically containing around 30% copper before concentration), 

requiring smelting and refining (Bain, 2013). Smelters not associated with a mine—custom 

smelters—obtain their copper through the market. The mines may either retain ownership of 

the metal or sell it outright to the smelter. In the former case, smelters receive concentrate 

treatment ($/ton) and refining charges (cents/pound) from the mines in exchange for converting 

concentrates to refined metal. The charges vary with the availability of concentrates (Dunsby, 

et al., 2008). Secondary copper smelters use scrap copper as their feed (Bain, 2013). Recycling 

plays an important role in copper production, accounting for 10 to 15 percent of total refined 

copper production worldwide. Secondary copper is the name for refined copper produced 

through recycling (Dunsby, et al., 2008). Copper is often alloyed with other metals, usually 

with nickel and zinc. When copper and nickel are alloyed with tin, the resulting metal is bronze; 

when copper is alloyed with zinc, it results in brass (Bouchentouf, 2015). By 3000 B.C., humans 

had learned that mixing copper with tin or arsenic yielded a significantly harder material, an 

alloy that had a low enough melting point to be cast in open hearth pit fires. This was bronze, 

and with its discovery came the Bronze Age and the continued blossoming of Western 

civilization (Dunsby, et al., 2008). 

There are large amounts of copper reserves in the world. In terms of physical volume, 

copper is number three in the metals market (Taulli, 2011). South America has emerged as the 

world’s most productive copper region, especially from the Andes Mountains, with Chile being 

the largest producer (Taylor, 2013). One-third of world-mined copper originates in Chile, with 

another 5 to 10 percent coming from the United States, Peru, Australia, Indonesia, and China; 

the remainder is divided among another half-dozen countries. South America, Australia, and 

Indonesia are the major exporters of concentrate, with much of their copper being refined 

elsewhere (Dunsby, et al., 2008). Chile remains by far the dominant exporter of all types of 

copper (Bain, 2013). World refined copper production has grown. This growth has not been 

evenly distributed. Chile and China are the dominant refiners, and China’s production has 

almost exactly offset the decline in the United States on a percentage basis. More generally, 

refining in Asia has risen while refining in the West has fallen (Dunsby, et al., 2008).  

Copper has been used in jewelry and weapons for as long as 10,000 years (Dunsby, et 

al., 2008). Copper, the third most widely used metal in the world, has applications in many 

sectors, including construction, electricity conduction, and large-scale industrial projects. 
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Copper is sought after because of its high electrical conductivity, resistance to corrosion, and 

malleability. Copper is used for a variety of purposes, from building and construction to 

electrical wiring and engineering (Bouchentouf, 2015). Copper’s largest end-use is in 

construction, principally building wire and plumbing (Bain, 2013). However, construction’s 

share of consumption has been falling, with the high cost of copper being one factor that 

accelerated the substitution of copper by plastics in plumbing applications. Copper also has 

many crucial applications in electrical and general engineering, coinage and transport. Copper 

wire is used extensively in the manufacture of electronic equipment. Copper and its alloys still 

dominate in the production of connectors, but in telecommunications, where new technologies 

require high-speed data transmission, copper faces competition from fibre optics (Bain, 2013). 

Aluminum radiators have largely displaced copper in the automotive industry, but use of copper 

here has started to recover, partly through the introduction of a lightweight alloy radiator and 

even more by the increased use of electronic components in modern vehicles (Bain, 2013). 

Copper is also used in heating systems, solar installations, and the desalination of water (Taulli, 

2011). Copper is benefiting from environmental legislation and the promotion of renewable 

energy systems. Approximately ten times more copper is required per megawatt of effective 

capacity for wind turbines than for coalor gas-fired power stations (Bain, 2013). 

 

Figure 7: Uses of Copper 

Copper is the third most widely used metal, after aluminum (Kleinman, 2013). In 

Europe and the United States, building and construction account for the bulk of consumption. 

In Asia, electrical and electronic production is more important, but as countries develop, 
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infrastructure and construction are also absorbing larger amounts of copper (Bain, 2013). China 

represents 40 percent of global copper consumption. The European Union is ranked second in 

copper consumption, at 17 percent. The United States is ranked third, with 9 percent (Taulli, 

2011). 

Copper is the most actively traded of the base metals (Bain, 2013). Copper, the red 

metal, copper, is traded both in New York and in London at the London Metals Exchange 

(Kleinman, 2013). The London Metal Exchange (LME) is the dominant price setter along with 

the Commodity Exchange Division of the New York Mercantile Exchange 

(COMEX/NYMEX), which is the benchmark for the North American market. The Shanghai 

Futures Exchange is the main exchange in China. Prices are settled by a bid and offer process. 

These exchanges also offer futures and options contracts, and provide warehousing facilities 

that enable market participants to make or take physical delivery of copper in accordance with 

each exchange’s criteria (Bain, 2013). You can also purchase futures contracts on copper on the 

CME (Taulli, 2011) but the copper contract on the London Metal Exchange (LME) accounts 

for more than 90 percent of total copper futures activity (Bouchentouf, 2015). 

Surging demand for copper is a result of urbanization and rural electrification. With 

increased prosperity, demand has been rising for air conditioners and refrigerators, electrical 

appliances and other copper intensive consumer durables, including motor vehicles (Bain, 

2013). All in all, copper is a key indicator in gauging the status of the economy. Consider that 

at the end of 2008, there was a 4 percent drop in copper demand. While this may seem 

insignificant, it was actually a major event. For savvy investors, the drop-off was a telltale sign 

that the global economy was falling into a recession (Taulli, 2011). Production of copper varies 

from year to year for various reasons. Much of the short-term volatility in prices resulting from 

physical supply–demand imbalances. Demand tends to grow more steadily (Dunsby, et al., 

2008). Furthermore, high copper prices have increased copper recycling; this metal is 100 per 

cent recyclable without any loss of quality. Approximately one third of all copper consumed 

worldwide is recycled, and these trends are expected to push the copper balance into surplus in 

the long term (Taylor, 2013). Despite the abundant supply of copper, there are major constraints 

on the mining of the supply. These include exploration costs, political instability, labor 

problems, and environmental issues. Apart from these, the age of the mines and the lack of 

copper scrap causes supply problems, resulting in major swings in prices. One of the big 

problems for copper companies is that it is tough to cut back on production when there is a 

recession. As a result, copper companies saw large drops in revenues and profits (Taulli, 2011). 
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In contrast to its ubiquitous industrial use, copper is a relatively rare element (Dunsby, 

et al., 2008). Copper is essential to the processes of urbanisation and raising living standards in 

the developing world, ensuring that long-term demand will prove resilient. Mine production 

has been particularly vulnerable to unplanned disruption. Strikes, accidents, technical 

difficulties, low ore grades, planning constraints, tight credit conditions, political risks, and 

shortages of skilled personnel, equipment and other supplies have all hampered the timely start-

up of new projects and the smooth operation of existing ones. There are potential shortages of 

power and water, both of which are used in, and are crucial to, the copper extraction or mining 

process, in key producing regions, in particular Chile, Southern Africa and China. If prices 

remain high and stocks low, there will be rationing of copper, substitution with other metals 

where possible and the greater use of scrap (Bain, 2013). Copper will likely stay strong as long 

as the world industrial cycle stays strong and the current cycle is being driven by growth 

foremost in China and secondarily in other emerging markets in Asia. The main risk is, 

therefore, a major economic downturn, especially one extending to China. Another risk is that 

the high price of copper relative to substitutes will lead to substantial demand destruction. This 

can already be seen in the substitution of PVC for copper pipes for plumbing and the 

replacement of copper by aluminum in power cables. It will also be seen as copper applications 

make do with less copper, perhaps by using thinner and smaller components. Finally, another 

risk for copper is that fully one-third of copper comes from Chile (Dunsby, et al., 2008), that 

will affect the price and the supply and demand balance, if a disruption will happen there. 

 

 

Lead 

 

Lead has a blue-white color, is soft, and malleable. When exposed to air, the blue-white color 

changes to gray. When lead is melted, it turns to a silvery luster. Of course, lead is toxic. 

Exposure can cause neurological and nervous disorders (Taulli, 2011). It is one of the scarcer 

non-ferrous metals in the Earth’s crust. Lead has useful properties; in particular, it is highly 

resistant to corrosion and is malleable, melting and joining easily. Its high density makes it a 

valuable insulating material for electrical and radiation screening and soundproofing, and its 

electrochemical properties make it a useful component in storage batteries in motor vehicles 

and for some back-up power supplies. However, an increasing awareness of the toxicity of lead 

has led to changes in the pattern of lead consumption (Bain, 2013). 
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Lead is usually found in ore form with silver, zinc and/or copper and is mined in 

conjunction with these metals. Only 5% of mined output is from lead-only mines. Mines are 

now geographically concentrated in China, Australia and the Americas but globally deposits 

are widespread, which explains why lead has been in use for thousands of years. It is easy to 

recover by reduction from sulphide or oxide ores. Today, much refined lead comes from 

secondary sources, particularly recycling. At the primary (mining) stage, lead and zinc are 

generally produced by the same companies, although new mines tend to have much higher zinc 

grades relative to those of lead. Many of the new zinc mines are based on copper zinc rather 

than the traditional lead-zinc-silver deposits (Bain, 2013). Mining is widely integrated with 

smelting in the United States and Australia. However, there is a large custom smelting industry 

in Europe, Japan and South Korea, and more recently China, based mainly on imported lead 

concentrate (particularly from Australia, Canada and Latin America) or secondary production. 

Recycling (primarily of vehicle batteries) now makes a big contribution to production, 

particularly in countries where no lead is mined. Another reason for the high level of secondary 

production in western Europe and the United States is the closure of primary smelting 

operations for economic and environmental reasons. Outside the United States, secondary 

producers are more numerous, smaller and more geographically dispersed than primary 

producers; they serve local markets; and they are closer to end-users (the main source of scrap) 

(Bain, 2013). The United States is the largest mining producer, followed by Canada, Mexico, 

Kazakhstan, and Australia (Kleinman, 2013), whereas the main smelting producers of lead are 

China, the United States, and Germany (Taulli, 2011). As we can see, mine production of lead 

is highly concentrated. Mine output has been rising over the past ten years but all the growth 

has been in China; in other parts of the world it has been falling (Bain, 2013). 

The primary uses for lead include construction and batteries (Taulli, 2011), while other 

major uses of lead include car batteries, ammunition, fuel tanks, and as a solder for pipes 

(Kleinman, 2013). The metal has a broad range of industrial uses, especially in transport, 

construction and electrical goods. In applications such as cable sheathing, pipe and sheet, it is 

used as unalloyed metal. It is also used in alloyed form (most importantly in lead battery grids) 

and in various lead-based chemical compounds, such as lead oxide paste in batteries and 

pigments (Bain, 2013).  However, lead has faced competition from plastics and aluminum in 

applications such as cable sheathing, pipe and sheet. Substitution in these markets has been 

offset by the growth of the use of lead in battery manufacture, which now accounts for around 

80% of total consumption (Bain, 2013). This growth has been driven by vehicle production and 

demand for original equipment batteries. An even larger end-use is in replacement batteries 
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where demand will grow alongside growth in the existing stock of vehicles (Bain, 2013). 

However, new battery technologies are likely to lengthen battery life, ultimately constraining 

lead demand. Lead, because of its toxic nature, is less used than copper and aluminum. 

Technology and substitution have reduced the use of lead in many industrial processes, 

including electronic systems, cable covering, packaging and lead pipes for water and gas 

(Taylor, 2013). 

The United States, Japan, Germany, and the United Kingdom are big consumers. The 

common link between these countries is a major automotive industry (Kleinman, 2013). There 

is important intra-European trade in refined lead (and also in lead concentrate) and significant 

two-way trade in North America but the most important trade flow is with China. Australia is 

now the largest exporter. China has dominated growth in lead consumption over the past ten 

years, fueled by the growth in domestic vehicle production. The other factor driving demand in 

China has been the relocation of battery manufacture to China from higher-cost countries. 

China’s emergence as the leading source of mine supply as well as refined lead output has 

reduced the trade in lead concentrate, as has the large reduction in smelting capacity in Europe 

(Bain, 2013). 

Lead is listed on the London Metal Exchange (LME) in 25 metric ton contracts quoted 

in dollars and cents per ton (Kleinman, 2013); under the product symbol PB (Taulli, 2011). 

Trade in lead concentrate is based on treatment charges, an arrangement for sharing the price 

of lead between miners and smelters. Concentrates are traded mainly on the basis of annual 

contracts, typically set in the first quarter of the year. The outcome of these negotiations reflects 

the balance between mine supply of concentrates and smelter demand, a low treatment charge 

favouring mining companies and a high charge benefiting smelters. The contracts are set on a 

basis price plus adjustments that take into account changes in London Metal Exchange (LME) 

lead prices. As the only futures market for lead, the LME acts as the basis for prices for refined 

and intermediate products. One feature of the lead market that is more powerful than in other 

metal markets is the ability of trends in the secondary market to influence prices. Lower lead 

prices tend to depress the supply of secondary lead (scrap), which in turn leads to reduced 

supply of total refined lead and thus leads to a renewed tightening of the market balance. The 

reverse is true when lead prices are high. In this way the secondary market acts as a kind of a 

pressure valve for the wider market (Bain, 2013). 

In the future, there is scope for significant increases in global vehicle numbers, as the 

vehicles per head figure is low in most emerging economies. However, it appears that lead-acid 

batteries perform poorly in hybrid and all-electric cars, with producers preferring to use other 
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batteries, notably lithium. At the moment, these eco-friendly vehicles are too expensive to take 

a large market share, but prices could fall and the technology could improve in the medium 

term. Steps to reduce pollution and energy intensity in China could have negative consequences 

for the country’s mining and smelting industries, at least in terms of increasing costs. Indeed, 

concerns about the negative impact of lead production more generally could be a constraint on 

supply in future years. Prices are likely to be more volatile, despite lead’s recession-proof 

qualities. Automobile sales in developing countries (where all the growth in consumption will 

be) can be expected to fluctuate more markedly in tandem with the economic cycle, unlike sales 

in the more mature, largely saturated markets in the Western world (Bain, 2013). Finally, 

because lead is extremely toxic, there has been a concerted effort to “get the lead out” of many 

products in recent years (Kleinman, 2013), a factor that will affect the prices and the 

equilibriums dramatically. 

 

 

Nickel 

 

Nickel is a silvery-white metal, which can be given a high polish and is the fifth most common 

element in the Earth’s crust (Bain, 2013). Nickel is a ferrous metal, which means it belongs to 

the iron group of metals (Bouchentouf, 2015).  Nickel exhibits a mixture of ferrous and non-

ferrous metal properties that can be used in various different industries (Taylor, 2013). It is 

tough but workable, and resistant to corrosion (Bain, 2013). It can also withstand high levels of 

heat (Taulli, 2011). These characteristics determine its predominant use as the main alloying 

metal with chrome in austenitic (iron based) stainless steels and other special steels or 

superalloys (Bain, 2013). Steel is usually alloyed with nickel to create stainless steel, which 

ensures that nickel will play an important role for years to come (Bouchentouf, 2015). 

The primary production comes mainly from two types of ore deposits, lateritic and 

magmatic sulfides. Most of the nickel resources on Earth are believed to be concentrated in the 

planet’s core (Taylor, 2013). Nickel mining is a labor-intensive industry, but countries that have 

large reserves of this special metal are poised to do very well (Bouchentouf, 2015). A variety 

of diversified miners extracts the commodity. The mining of nickel is quite difficult because it 

requires sophisticated technologies and mining techniques (Taulli, 2011). The manufacture of 

austenitic stainless steel accounts for about two-thirds of total nickel consumption. Nickel can 

constitute 10% or more of austenitic steels, but the most common alloys contain 8% nickel and 

cheaper grades use as little as 6%. Nickel improves workability by counteracting the embrittling 
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effect of chrome, while maintaining and enhancing corrosion resistance. As a substitute for 

primary nickel, scrap supply amplifies fluctuations in primary demand. The availability of new 

scrap depends on output at steelworks and throughput at fabricators in the recent past. When 

falling sales lead to reduced activity among fabricators, and, as a result, stainless steel output is 

reduced, new scrap supply (from an earlier period of high activity) is high relative to nickel 

demand. When, emerging from a recession, fabricating work increases and stainless steel output 

rises, scrap supply is low relative to demand (Bain, 2013). 

Known reserves of nickel are plentiful and geographically well-dispersed, although 

Australia accounts for 30% (Bain, 2013). Australia has the largest reserves of nickel, and its 

proximity to the rapidly industrializing Asian center — China and India — is a strategic 

advantage (Bouchentouf, 2015). The top producers of nickel include Russia, Canada, Australia, 

Indonesia, Colombia, and China (Taulli, 2011). Russia has dominated mine production for 

decades, typically accounting for about 15–20% of global output. Canada is another important 

source of nickel minerals. It exports a high proportion of the nickel matte from its smelters and 

some of its mine concentrates for refining abroad, which reduces its share of refined nickel 

production. Canada and Russia are the world’s largest exporters of refined nickel. Indonesia is 

the world’s third largest producer and, like the Philippines, an important exporter. China’s 

nickel ore deposits are in geologically difficult areas but this has not deterred the country from 

increasing mine output and processing in a bid to reduce its stainless steelmakers’ dependence 

on imported refined nickel (Bain, 2013). 

The main use for nickel is for stainless steel, which accounts for about two thirds of the 

global production (Taulli, 2011). When steel is alloyed with nickel, its resistance to corrosion 

increases dramatically. Because stainless steel is a necessity of modern life, and a large portion 

of nickel goes toward creating this important metal alloy, you can rest assured that demand for 

nickel will remain strong (Bouchentouf, 2015). Other uses include coins, batteries, and plating 

(Taulli, 2011). Nickel is also used, in smaller quantities, to toughen tool steels and some high-

strength steels that are not fully corrosion-resistant. Nickel is also an important constituent of 

some special high-performance alloys (Bain, 2013). Nickel is occasionally used in pure or near-

pure forms, most importantly in electroplating, providing a base for other coatings, particularly 

chrome, and sometimes directly as a final surface treatment. Nickel use in electroplating is more 

widespread; it has applications in many basic industrial products as well as those involving 

advanced technology. In the chemicals industry, nickel is used as a catalyst; and it is 

increasingly used in batteries for portable electronic equipment (Bain, 2013). Sixty-five per 

cent of the nickel consumed in the Western world is used to make stainless steel. Another 12 
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per cent goes into superalloys – mostly for the aerospace industry – or non-ferrous alloys, both 

of which are widely used because of their corrosion resistance. The remaining 23 per cent of 

consumption is divided between steel alloys, rechargeable batteries, catalysts and other 

chemicals (Taylor, 2013). 

 

Figure 8: Uses of Nickel 

By far, the biggest consumer of nickel is China. It is a key to its economic growth 

because of the production of stainless steel products (Taulli, 2011). The most significant 

development of the past few years has been the rise in nickel consumption in China, owing to 

a rapid increase in stainless steel production capacity. The new capacity was ostensibly aimed 

at building the country’s self-sufficiency in supplies for domestic industries, particularly 

manufacturers of household appliances such as washing machines and dishwashers. Many new 

production lines were effectively guaranteed a large share of Asian markets because they were 

set up in partnership with established international manufacturers, especially those based in 

Japan and South Korea. Rival producers in other countries, particularly the EU, have had to 

scale back production in the face of this China-based competition. The EU is the world’s second 

largest nickel consumer (Bain, 2013). 

You can trade nickel on the London Metal Exchange (LME), with the product symbol 

NI (Taulli, 2011). Western nickel producers were hostile to nickel trading on the LME and 

initially tried to disregard LME prices in their contracts, but over time came to use it as a 

reference point of last resort. Solid consumption growth is expected to be maintained despite 

cyclical lows and highs. Stainless steel plays an important role in urbanization and 

industrialisation – trends that are expected to continue in the developing world (Bain, 2013). 

The two main factors behind a huge drop in price are the level of surpluses and the substitution 
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effect from nickel pig-iron (NPI), a low grade ferronickel invented in China as a cheaper 

alternative to pure nickel for the production of stainless steel, that occurs when nickel prices 

are too high (Taylor, 2013). Moreover, the widespread use of scrap by the steel industry and 

the use of nickel pig iron in China (predominantly) complicate the supply/demand dynamics of 

the nickel market (Bain, 2013). 

 

 

Tin  

 

Tin is one of the earliest metals known to man. During the Bronze Age, tin was added to copper 

to make bronze – the addition of tin makes the copper stronger and easier to cast (Bain, 2013). 

Tin has a silvery color, is malleable, and is resistant to oxidation. It is used to help prevent 

corrosion for other metals (Taulli, 2011). Tin has a low melting point, is resistant to corrosion, 

and alloys readily with other metals. It is also non-toxic and easy to recycle, attributes that have 

become increasingly important (Bain, 2013). In modern times, tin is used for food packaging 

because it is nontoxic (Taulli, 2011). 

Indonesia has been the world’s leading exporter of tin metal, trading mainly through 

Singapore. China and Indonesia together accounted for 73% of total mine supply of tin, but 

output was declining in both countries. Today, tin is mined mainly in Asia and South America. 

Four countries – China, Indonesia, Peru and Bolivia – accounted for 85% of world output. 

Known reserves are concentrated in South-East Asia, South America, China and Russia. 

Outside Asia, the other important producing areas are in South America, particularly Peru and 

Bolivia and, to a lesser extent, Brazil. Tin is also mined in small quantities in Africa, principally 

the Democratic Republic of Congo but also Rwanda and Burundi. Until recently, much of the 

mining was illicit, and undertaken in often dangerous conditions. But there has been a campaign 

to legalise and improve oversight of the mining of so-called “conflict” minerals in Africa. 

Australia is also a growing producer of tin with a large number of projects in the pipeline, and 

increasingly tin mines are being reopened or initiated in more developed countries, including 

the UK and Germany. As an industry, tin smelting is much more concentrated than mining. 

China is the world’s leading producer of refined tin (Bain, 2013). However, more tin is smelted 

in Malaysia for export than any other country. It can be volatile at times (Kleinman, 2013). 

Malaysia and Thailand are important producers of refined tin, but with refining capacity far in 

excess of local mining capabilities they depend on imported concentrates, primarily from 

Indonesia. Peru ranks third as a producer of refined tin. Tin supply does, however, still rely on 



53 
 

mining and the refining of tin-containing ores (Bain, 2013). Overall, as shown in Figure 9, the 

biggest producers of tin are China (37%), Indonesia (33%), and Peru (12%), Bolivia (3%). 

There is no tin production in the United States (Taulli, 2011). Tin consumption in Western 

industrialised countries is in long-term decline, owing mainly to the migration of electronics 

manufacturing and other tin-using industries to lower-cost countries (Bain, 2013). 

 

Figure 9: Producers of Tin 

Tin is manufactured into a coating for steel containers used to preserve foods and 

beverages and other forms of electroplating (Kleinman, 2013). The main use of tin is in solder 

alloys, which are widely used to attach components to circuit boards used in the manufacture 

of electronic equipment and electrical appliances, and for joining pipes in plumbing systems. 

Solder’s share of tin consumption has slipped recently perhaps because of slower growth in the 

electronics industry or the manufacture of goods that use less solder. The second most important 

use of tin is in the production of tinplate (cold reduced sheet steel electrolytically coated with a 

thin layer of tin). It is used primarily in food packaging, beverage cans and other containers, 

but it has been losing market share to aluminum for beverage canning, to glass for premium 

food and beverage products, and to plastics for a wide range of products including chilled foods 

and paint. Furthermore, where tinplate continues to be used, manufacturers have been 

experimenting with lighter gauges to cut costs. Although tinplate producers have responded to 

competition with innovative products and efforts to emphasize tin’s recyclability, tinplate is 

expected to continue to lose market share to other materials. The chemicals industry is the third 

most important consumer of tin and its market share has been increasing. Tin is used in the 

manufacture of both organic and inorganic chemicals such as polyvinyl chloride (PVC), 

silicone resins (where it is used as a catalyst), polyurethane foam and ceramic pigments. 

However, some of these applications are at risk from legislation to phase out the use of heavy 

metals, including tin. Production of bronze ranks fourth among end-uses, accounting for around 
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5% of total consumption, followed by plate glass, accounting for about 2%. Potential new 

applications for tin include its use in rechargeable batteries, and a potentially significant 

application may be a nickel-tin-aluminium catalyst for the production of hydrogen for use in 

fuel cells, in competition with platinum (Bain, 2013). 

 

Figure 10: Ranking of Tin uses 

The London Metal Exchange (LME) is the focal point for tin prices; trading of its tin 

futures contract represents a global reference price. Tin producers and their customers 

commonly agree business based on the LME price. Most (over 95%) of the LME’s tin stocks 

are held in Singapore and Malaysia. The smallest (in volume terms) of the non-ferrous metals 

markets, the tin market is thinly traded, particularly when compared to the markets for copper 

and oil, and this adds to price volatility. 

In the future, low stocks and the difficulties with mine supply suggest tin prices could 

rise strongly if consumption growth picks up. China’s demand should rise strongly as its 

electronics industry is aiming to move up the value-added chain. Consumption of processed 

food is also rising strongly in China, requiring more tinplate packaging. The high concentration 

of tin mining makes the market vulnerable to supply shocks. It is likely that there will be some 

diversification of supply in the medium term, possibly in developed countries where investment 

risk is lower. The average cost of tin mining will rise (with implications for the price) as the 

easy-access alluvial-based mines become exhausted and companies have to dig deeper mines. 

In addition, in both Asia and South America, there are increasingly strong environmental 

lobbies making it more difficult to obtain licenses to mine. The business operating environment 

in many producing countries, including Indonesia, Peru and Bolivia, is highly uncertain for 

foreign mining companies, with governments often threatening to raise royalty payments, 
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nationalize part or all of the operation or impose export taxes or quotas. Additional constraints 

on mining come from the labour market, such as a shortage of mining engineers and increasing 

union activity by mine workers (Bain, 2013). 

 

 

Zinc 

 

Zinc is present in the Earth’s crust and is found in air, water and soil. Its properties include a 

resistance to corrosion and a low melting point, and it is a fairly good conductor of heat and 

electricity. Zinc is also an essential mineral in human well-being; it is found in high 

concentrations in red blood cells, which helps the functioning of the immune system (Bain, 

2013). Zinc is a bit of a mystery. Unlike copper and aluminum, zinc is hardly ever used on its 

own. It is used to galvanize steel (preventing rust), to make alloys such as brass and bronze, and 

in various other chemical applications. One of zinc’s most familiar applications, zinc oxide, 

hardly even seems like a metal (Dunsby, et al., 2008). Zinc is a bluish-white color and is a 

brittle metal. Through metal galvanization, zinc helps to prevent rust and corrosion of other 

metals like steel or iron (Taulli, 2011). Zinc accounts for roughly 0.007 percent of the Earth’s 

crust on a mass basis, making it only slightly more common than copper. Economically, zinc 

sulfide is the most important mineral form of the metal with mined ores having concentrations 

from 1 to 15 percent zinc sulfide (Dunsby, et al., 2008). 

The zinc market is one of the major markets in terms of production – fourth behind iron, 

aluminum and copper. The primary production represents 70 per cent of the total world 

production, the other 30 per cent coming from recycled zinc. The level of recycling is increasing 

each year (Taylor, 2013).  Zinc is usually mined in conjunction with a number of other metals, 

notably lead, silver, copper and, less frequently, gold. Approximately 80% of mines are 

underground operations, 10% open-pit and the remainder a combination of both. In terms of 

production, large open-pit mines account for as much as 15% of the total, with underground 

mines producing 65% and combined mines 20% (Bain, 2013). It should be noted that lead and 

zinc are frequently associated in industry and trade publications. This is because zinc and lead 

are commonly found together (Dunsby, et al., 2008). Although a handful of countries dominate 

zinc mine output, there are many small producers in more countries than is the case for many 

base metals. This is partly because it is often mined as part of a copper-mining operation or 

there may be combined lead and zinc mines. Smelting is usually located close to the market 

rather than a mine, and it is even less concentrated than mining (Bain, 2013). 
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China accounts for one-quarter of the world production of zinc concentrate, with 

Australia and Peru together accounting for another quarter. The United States, Canada, Europe, 

Mexico, and India combine for a little more than the third quarter, with the remainder split 

among several countries (Dunsby, et al., 2008). Unlike other industrial metals, this commodity 

has sufficient supplies to meet current demand (Taulli, 2011). Worldwide, slab zinc production 

has grown. China accounts for 30 percent of current slab zinc production, with Europe and 

Canada together combining for another quarter. Japan and Korea, with their large steel 

producing and steel-using industries are next. The United States, remarkably, processes very 

little zinc and is a major exporter of zinc concentrate as well as a major importer of slab zinc 

(Dunsby, et al., 2008). China is the largest producer of refined zinc with the next single largest 

producer being South Korea. Significant smelting capacity is located in Europe, with Spain 

being the largest producer. Usually, smelting takes place near the consuming markets. China is 

the only exception to this rule with its ten largest smelters accounting for 50% of domestic 

production. However, even in China, numerous medium-sized or small-scale smelters account 

for the remaining 50% of output (Bain, 2013). 

 

Figure 11: Zinc producing countries distribution 

Many of the major trade flows in refined zinc are intra-regional. The United States is by 

far the largest importer of zinc metal but the bulk of its requirements are met by Canada, the 

world’s biggest exporter. Similarly, a number of European countries are heavily reliant on 

imports, notably Germany, Italy and the Netherlands. The region also has a number of leading 

exporters, namely Belgium, Finland and Spain. Other significant exporters of refined zinc 
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include South Korea, Kazakhstan, India and Peru. Because most refining takes place some way 

from where zinc is mined, there is a significant trade in zinc concentrate. Countries such as 

Japan and South Korea and parts of western Europe have to import nearly all the zinc 

concentrate needed by their smelters. China also has to import zinc concentrate despite being 

the world’s largest zinc miner. Most of the zinc concentrate is traded under long-term contracts, 

but with some degree of flexibility on quantity and price. This ensures a guaranteed outlet for 

a mine’s production, and allows smelters to fine-tune their operations, by ensuring access to a 

particular blend of concentrates (Bain, 2013). 

Zinc is the fifth most commonly used metal after iron, copper, aluminum, and lead 

(Dunsby, et al., 2008). Zinc has unique abilities to resist corrosion and oxidation and is used for 

metal galvanization, the process of applying a metal coating to another metal to prevent rust 

and corrosion (Bouchentouf, 2015). Zinc is used mainly in galvanising, die-casting and brass 

(alloyed with copper), which together account for around 80% of its use. Galvanising is by far 

the largest market and also the fastest-growing in volume terms (Bain, 2013). About 50 per cent 

of zinc is used for galvanising other metals, coating them to protect iron and steel from 

corrosion (Taylor, 2013), whether for sheets, structures, fences, storage tanks, fasteners, or even 

wire (Dunsby, et al., 2008). Another 20 percent of zinc is blended with copper to form brass. 

Major applications of brass include tubes, valves, fittings, electrical connections, heat 

exchangers, and ammunition. The automotive, construction, and electrical sectors are 

particularly important users of brass (Dunsby, et al., 2008). Zinc is also used to a lesser extent 

in batteries, chemicals and rubber (Bain, 2013), paint pigment, batteries, agriculture fungicides 

and in some dietary supplements (Taulli, 2011). Another important industry to watch is 

automobiles. Demand for more durable cars has increased the use of galvanised sheet for body 

parts in the automotive industry. Construction is the largest consumer of galvanised steel (45% 

of total zinc use), accounting for over half of the market. Transport accounts for approximately 

25%, with consumer goods and electrical appliances at 23% and general engineering at about 

7% (Bain, 2013). Chinese end-use growth accounts for more than 60 percent of worldwide 

growth (Dunsby, et al., 2008). 
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     Figure 12: Zinc primary uses   

 

Figure 13: Zinc end uses 

Zinc trades on the London Metals Exchange (LME) (Dunsby, et al., 2008). The London 

Metal Exchange (LME) is the main futures market for zinc. The metal is also traded on the 

Shanghai Futures Exchange and on exchanges in the Netherlands, the United States and 

Singapore. Pricing on the LME provides the benchmark for sales of refined metal and 

concentrates throughout much of the world (Bain, 2013). Competition, to a large extent, comes 

from aluminum, magnesium, and plastics (Dunsby, et al., 2008), affecting the price of zinc, due 

to substitution. 

In the future, the risk of a Chinese slowdown exposes a deeper truth: zinc follows the 

world industrial cycle. While China may present an obvious risk, a slowdown in any of the 

major areas of the world poses a problem for strong zinc prices. In the medium term, zinc will 

have to be recovered from less attractive sources as the better mine deposits become tapped out. 

This natural decline will be at least somewhat mitigated by technological progress, which helps 

to expand the set of economical mines. Another factor that should help to contain zinc prices is 

recycling: unlike the products of the petroleum complex, zinc can be recycled. Relative to 

aluminum, though, zinc is less readily recycled because of the dispersive nature of its uses. 

Since zinc is also less commonly available in the ground, this will likely mean an increase in 

the price of zinc compared with that of aluminum. If the price of zinc rises too high, however, 

substitution will occur. Aluminum, magnesium, and plastics are all possible substitutes for zinc. 

Admittedly, all these materials are currently experiencing strong prices (Dunsby, et al., 2008). 
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aluminium, which is lighter in weight and thus more fuel-efficient. Supply has improved but 

low prevailing prices and the risks associated with future demand could lead to lower 

investment in the zinc industry in future. Small-scale projects, of which there are many in the 

zinc industry, often owned by junior mining companies that can struggle to obtain financing, 

could be particularly vulnerable (Bain, 2013). 

 

 

4.2 Energy 

 

Energy commodities are those that are used to produce energy, mostly by burn, or to create 

other derivative products with many applications. The main energy commodities are crude oil, 

brent oil, gasoline, heating oil and natural gas. 

 

 

Crude Oil 

 

Crude oil, also known as petroleum, was formed millions of years ago by the remains of plants 

and animals that inhabited the seas. It is thought that the majority of these organisms were 

single-celled and as they died their remains fell to the sea bed and were covered with sand and 

mud creating a rich organic layer. This process repeated itself over and over and the layers 

eventually developed into sedimentary rock. Over time increased pressure and heat from the 

weight of the layers caused the organic remains to slowly transform themselves into crude oil 

and natural gas, among other things (Dunsby, et al., 2008). Crude oil is a hydrocarbon, 

composed mostly of hydrogen and carbon. It is typically found in underground or undersea 

reservoirs (Bain, 2013). Oil is the biggest business in the world. If anything, it has been the 

driver of industrialization and modernization. Even with higher oil prices, oil is still a cheap 

source of energy—especially in terms of its power and efficiency. A barrel of oil equals the 

manual labor of a person for eight days (Taulli, 2011). Crude oil is undoubtedly the king of 

commodities, in both its production value and its importance to the global economy 

(Bouchentouf, 2015). 

The most common way to produce crude oil is to use drilling rigs to create an oil well 

that will extract oil from a crude oil field. Oil wells can be located onshore or offshore (Dunsby, 

et al., 2008). It is extracted by a number of methods, using either the natural pressure in the 
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reservoir or pumps. As the oil becomes more difficult to extract, recovery-enhancing techniques 

such as injecting water or gas can be used. The extraction of less conventional crude from oil 

sands or oil shale requires more of a mining-style approach (Bain, 2013). In the simplest of 

terms, oil is still extracted from the ground in crude oil form and then shipped or piped to 

refineries where the crude oil is refined into oil products. Once refined, the finished products 

would either be destined for domestic use or in some cases they went for export (Taylor, 2013). 

The oil industry first classifies crude based on its production location. The important physical 

characteristics of crude oil are whether it is light or heavy and whether it is sweet or sour 

(Dunsby, et al., 2008). Crude oils are typically classed as high or low sulphur. Typically the 

lower the sulphur, the higher the value of the crude. Crude oils are also classed as light or heavy. 

The higher the gravity (or the lighter the crude oil), typically the higher the value of the crude 

(Taylor, 2013). Historically, lighter oil has commanded a price premium as it is more suited to 

the production of petroleum in the refinery (Bain, 2013). A number of factors influence how 

much crude a country is able to pump out of the ground daily, including geopolitical stability 

and the application of technologically advanced crude-recovery techniques. Daily production 

may vary throughout the year because of disruptions resulting either from geopolitical events 

such as embargos, sanctions, and sabotage that put a stop to daily production or from other 

external factors, like weather (Bouchentouf, 2015). 

Crude oil by itself is not very useful; it derives its value from its products. Only after 

it’s processed and refined into consumable products it become so valuable (Bouchentouf, 

2015). Refining is the act of taking crude oil and processing it to make finished petroleum 

products that we use on a daily basis such as gasoline, heating oil, diesel, and jet fuel. The 

quality of the crude oil used in the refining process is important in determining how much 

processing is needed to achieve an optimal mix of products. Each type of crude oil has a unique 

distillation curve dependent on the kinds of hydrocarbons that make up that crude. The amount 

of carbon atoms in the crude oil determines its density or weight. Gases typically have between 

one and four carbons, whereas heavier grades of crude oil can have 50 carbons. Both the weight 

and the distillation curve of a specific crude oil are important to refiners who need to separate 

the different components of the crude oil to make various products such as gasoline, heating 

oil, diesel, and jet fuel (Dunsby, et al., 2008). Crude oil is refined into various products such as 

petrol, middle distillates and fuel oil. Petrol consists of aviation and motor petrol, and light 

distillate feedstock (LDF). Middle distillates consist of jet and heating kerosene, and gas and 

diesel oils. Fuel oil includes marine fuels (bunkers or oil used in maritime transport) and crude 

oil used directly as fuel. Other products are liquefied petroleum gas (LPG), solvents, petroleum 
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coke, lubricants and bitumen. The market for crude consists primarily of refiners, many of 

which are integrated downstream into the distribution and sale of petroleum products, or 

upstream into exploration or production, or both. 

Historically, crude oil refining took place in 

consuming countries, as crude oil is cheaper to 

transport than its products. Although more 

refining is now taking place in producing 

countries. Refining has generally been less 

profitable than other parts of the oil business 

(Bain, 2013). The oil industry is a 

multidimensional, complex business with many 

players that often have conflicting interests (Bouchentouf, 2015). 

 

Figure 15: Oil distillates (Bain, 2013) 

The vast majority of the world’s untapped crude oil is to be found in the Middle East, 

with over 50 per cent of the world’s proven reserves. Areas such as West Africa and the Former 

Soviet Union (FSU) also hold vast reserves, as well as the continent of South America. Crude 

oil is also to be found all over Asia but usually in vastly smaller quantities (Taylor, 2013). An 

oil reserve is a known supply of oil held underground that is economically recoverable. Proven 

reserves are oil reserves that are reasonably certain to be able to be extracted using current 

technologies at current prices (Dunsby, et al., 2008). Having large deposits of crude does not 

mean that a country has exploited and developed all its oil fields. There is a big difference 

between proven reserves and actual production. A country may have large deposits of crude oil, 

but it isn’t necessarily able to produce and export crude oil for a profit (Bouchentouf, 2015). 

Crude oil is literally a fossil fuel — a fuel derived from fossils (Bouchentouf, 2015). 
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from fossil fuels. The most popular bio-fuels are ethanol and biodiesel. Ethanol is currently 

made from both sugarcane and corn. Biodiesel is produced from vegetable oils such as soybean 

oil, canola oil, or palm oil. Other alternative sources such as wind power, solar energy, wave 

power, nuclear energy, and methane hydrates can also be considered partial substitutes for crude 

oil products. While some of these alternative sources of energy have been around for some time 

and others are still being tested for real world application, the global marketplace continues to 

search for energy sources to compete and possibly take the place of nonrenewable crude oil 

(Dunsby, et al., 2008). 

Oil producers are classified according to two groupings. The first and most famous of 

these is the Organization of Petroleum Exporting Countries (OPEC). OPEC members hold the 

majority of the spare oil production capacity in the world and use it to change their production 

levels dependent on both prices and demand for crude oil. The 12 member states are Algeria, 

Angola, Indonesia, Iran, Iraq, Kuwait, Libya, Nigeria, Qatar, Saudi Arabia, the United Arab 

Emirates, and Venezuela. The other producer group is non-OPEC, which consists of all oil 

producers that are not members of OPEC. By 1980 the rest of the world had surpassed OPEC 

in oil production. The major characteristic of non-OPEC producers is that the large majority of 

them are net oil importers. Most of the non-OPEC oil production is run by private oil 

companies, with the notable exception of Mexico. In addition, production costs tend to be 

higher for non-OPEC countries than for OPEC countries, making them more vulnerable to price 

collapses. OPEC is important to the world because as a whole those countries have the most 

spare production capacity available. Since OPEC institutes production quotas for its members, 

production tends to run below total capacity. This enables OPEC to react to changes in the 

global oil market quickly. Unexpected increases in demand that raise the price of oil can be met 

by increases in the OPEC production quota. If there is a long-term supply loss from a non-

OPEC country, OPEC is able to use spare capacity to make up this shortfall if necessary. This 

ability makes OPEC the swing producer in the global oil market, and at times the market is at 

the whim of OPEC’s decisions (Dunsby, et al., 2008). OPEC still yield tremendous power and 

can have a major impact on the price of crude oil (Taulli, 2011). 

Oil is used in a variety of applications. It can be burned to power a car, generate 

electricity, or heat a home. It also can be used as a raw material to create plastics, 

petrochemicals, and many other products (Dunsby, et al., 2008). Oil still dominates as a source 

of commercial energy. Energy accounts for the bulk of crude oil consumption, of which 

transport and power generation are the largest. Non-energy uses of oil, mainly feedstock for 

plastics, synthetic fibres and rubber, account for less than 10% of demand. Transport accounts 
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for around half of the oil consumed globally, with industry (including manufacturing, 

agriculture, mining and construction) accounting for approximately one-third. Household and 

commercial uses account for the remainder. Despite the rise in consumption of biofuels and 

compressed natural gas, petroleum products remain dominant in the transport industry (Bain, 

2013). Crude oil is the most traded nonfinancial commodity in the world today, and it supplies 

40 percent of the world’s total energy needs — more than any other single commodity. Despite 

many calls to shift energy consumption toward more renewable energy sources, the crude 

reality is that petroleum products are still the dominant resource worldwide. Crude oil’s 

importance also stems from the fact that it’s the base product for a number of indispensable 

goods, including gasoline, jet fuel, and plastics. Oil is truly the lifeblood of the global economy 

(Bouchentouf, 2015). 

Globally the largest consumers of oil have traditionally been industrialized countries 

such as the United States, England, Germany, and Japan. Asia Pacific region has had a large 

expansion in demand during the past 20 years. A large portion of this demand increase in Asia 

has come from China. China, South Korea, and India have shown huge increases in demand for 

oil whereas industrialized countries such as Germany and France have actually exhibited a 

decline in oil demand. This is partly because the industrialized countries are using energy more 

efficiently than the emerging economies. In addition, manufacturing has been moving out of 

countries such as the United States and Germany and into China and South Korea. As these 

emerging economies such as China, India, and Brazil continue their growth, their consumption 

of oil will continue to increase. It is not unreasonable to suppose that these countries may have 

a growth pattern similar to that of the United States after the Great Depression. Although China 

and India are the most populous countries in the world, their global share of oil consumption is 

extremely small. As their economies grow and consumption increases, demand for energy is 

sure to grow as well. This will create competition for oil imports between the industrialized 

countries and these emerging economies (Dunsby, et al., 2008). The United States and China 

are currently the biggest consumers of crude oil in the world, and this trend will continue 

throughout the 21st century (Bouchentouf, 2015). Although global consumption figures might 

remain within a tight trading band, the consumer profile is likely to change. Specifically, you 

can expect oil consumption in OECD and developed countries to remain stagnant — and, in 

some cases, experience a decrease — and consumption in emerging market nations to increase 

(Bouchentouf, 2015). Typically, oil consumption follows the path of GDP growth (Bain, 2013). 

Crude oil is the undisputed heavyweight champion in the commodities world. More 

barrels of crude oil are traded every single day than any other commodity (Bouchentouf, 2015). 
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There is more international trade in oil than in any other commodity, in both volume and value, 

and oil exports account for around 60% of production. Crude oil still predominates, but trade 

in products is rising. Most oil is transported by sea (via tankers) or overland through pipelines 

(Bain, 2013). Physical barrels of products or crude can be traded on a fixed price basis, but are 

typically traded and priced off a series of price quotes established during a date range relevant 

to the time of loading or delivery. The actual price quotations that are used are defined at the 

time of the physical or paper (such as swaps) transaction (Taylor, 2013). Countries that export 

crude oil have seen their current account surpluses reach record highs. These windfall profits 

are having a tremendous effect on the economies of such countries (Bouchentouf, 2015). 

The NYMEX WTI crude oil contract is arguably the most important commodity 

contract listed today, and it makes up a large part of the S&P GSCI Index, the most widely 

followed commodity index. The Chicago Board of Trade was formed in 1848, but crude oil 

futures were not introduced until 1983. It is arguably with the introduction of crude oil futures 

that the modern age of commodity investing began. Both of the two most liquid futures 

contracts on crude oil are those of the light sweet variety. The first one is West Texas 

Intermediate (WTI), traded on the New York Mercantile Exchange (NYMEX). WTI crude oil 

is produced in the United States and is of very high quality, making it ideal for refining into 

gasoline. The second contract is Brent crude oil, which is traded on the Intercontinental 

Exchange (ICE). Both WTI crude oil and Brent futures, traded on the NYMEX, were launched 

in March, 1983 (Dunsby, et al., 2008) and they are also traded in London on ICE Futures Europe 

(Bain, 2013). The WTI is a light, sweet crude, preferred by refiners due to its low sulfur content. 

Most of the world’s supply is sour (high-sulfur) crude, but because the sulfur content varies 

widely, the contract based on WTI is one of the two pace setters for world oil prices in general 

(Kleinman, 2013). Oil futures were traded in the past on open outcry exchanges. When the 

International Petroleum Exchange (IPE) was acquired by ICE in 2005, the London trading floor 

was closed down and all the volume was transferred onto screen-based trading via the ICE 

platform. The last bastion of open outcry trading for the oil markets, but the reality is that the 

success of the screen-based ICE platform forced NYMEX to follow suit. This is the main 

benchmark in the Americas. Unlike Brent, WTI has real physical deliverability (not just linked 

to an underlying physical contract) with the delivery point in Cushing, Oklahoma (Taylor, 

2013). Traditionally, WTI traded at a small premium to Brent, but in 2009 this relationship 

reversed (Bain, 2013). The futures markets are particularly sensitive to daily crude oil 

production numbers, and any event that takes crude off the market can have a sudden impact 
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on crude futures contracts (Bouchentouf, 2015). There are also enormous international traded 

markets for finished products (Taylor, 2013). 

As mentioned previously, the various prices of crude oil and oil products are set on the 

international exchanges. This effectively sets what is known as the ‘flat price’. The oil markets 

are typically traded as a series of curves across the various crudes and products linked by 

differentials to each other. The oil products curves move in much the same way as and at 

fluctuating levels to the crude oil contracts. Oil is driven as much by politics as it is by 

fundamentals and by regulation as much as it is by speculation. Oil markets are essentially very 

‘mature’ nowadays, with the price highly defined and tracked every second of the day all around 

the world (Taylor, 2013). Spot and futures markets exist in the principal crudes traded 

internationally. Because oil comes in a changing variety of types, no single crude can be taken 

as fully representative of the market price (Bain, 2013). 

A growing problem is a mismatch between the nature of refining capacity and the sort 

of crude oil available, due to supply inconsistency. Unforeseen disruptions to supply in recent 

years include adverse weather, civil and labour unrest, politically motivated sanctions, accidents 

and unanticipated maintenance. Seasonal demand swings influence the supply/demand balance 

and the price of oil. Normally, prices increase in the fourth quarter when demand is boosted by 

stock-building for the northern hemisphere winter months, and decrease in the spring months 

when space-heating demand falls. However, this is slowly changing as emerging-world 

consumption increases. Oil projects are becoming increasingly complex and are subject to 

delay. Costs are also much higher and some projects face environmental obstacles or 

technological constraints. Transport needs will determine long-term demand, as there are 

substitutes for oil in almost all its other uses. If a cost-effective, easily accessible alternative to 

running cars on oil is found, global oil prices would collapse (Bain, 2013). 

 

 

Brent Oil 

 

Brent crude oil consists of a variety of crudes produced from the North Sea and includes Brent 

Crude, Oseberg, and Forties. It is not as light or sweet as WTI but it is ideal for the production 

of gasoline and distillates. The name Brent is taken from the Brent goose, but it is also an 

acronym for the formation layers (Broom, Rannoch, Etieve, Ness, and Tarbat) of the Brent oil 

field (Dunsby, et al., 2008). Brent Crude is also liquid and active, based on the European North 
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Sea variety but a benchmark for much of the oil traded in Europe and Asia. The dominant 

benchmarks for crudes are Brent Blend (North Sea crudes, seaborne oil) (Kleinman, 2013). 

Brent oil future listed on the ICE (Dunsby, et al., 2008), which trades an active Brent 

Crude Oil, contract (Kleinman, 2013). Brent has myriad jargon and names that follow it. The 

futures contract is now simply referred to as ICE Brent but the underlying contract is actually 

called ‘BOFE’, an acronym for a basket of crude oils that are deliverable into the physical 

contract. These are Brent, Oseberg, Forties and Ekofisk. This provides the main benchmark for 

crude oil delivered within Europe, for crude exported from West Africa and for Arabian Gulf 

deliveries to Europe. It is also used widely now for sweet crude oil produced in Asia (Taylor, 

2013). Brent is currently used as the basis for the pricing of nearly 70% of the global trade in 

oil (Kleinman, 2013). 

 

Figure 16: Benchmark crudes and where they are used 
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Gasoline 

 

Gasoline has become a topic of conversation and is a commodity that many people are 

constantly aware of. Yet, it is also the most complicated of all the energy commodities (Dunsby, 

et al., 2008). Unleaded gasoline is a complicated mixture, which relies primarily on crude oil 

(Taulli, 2011). Gasoline is the main product produced from refining crude oil. When a barrel of 

crude oil is refined, it produces about 20 gallons of gasoline, a yield of 47 percent (Dunsby, et 

al., 2008). 

Because summer is the heavy driving season, there’s an increase in demand for gasoline 

products. Thus, all things equal, unleaded gasoline tends to increase in price during the summer 

(Bouchentouf, 2015). During the summer, refineries are often close to maxing out their capacity 

due to the strong demand for gasoline. This results in little open refining capacity in the 

summer; therefore, unplanned refinery outages due to fire or other mechanical issues can create 

quite a stir in the gasoline markets. Refinery outages in the summer cut into gasoline production 

expectations, so price rises in order to entice other refineries to increase gasoline production. 

This rise in price also acts to attract additional imports and to curb gasoline demand. Since 

refining capacity growth has not increased as fast as gasoline demand, both imports and storage 

help meet the production shortfall that occurs during the summer months. Gasoline imports can 

come in the form of finished gasoline or blending components which are then combined to 

make finished gasoline. During the winter when it is cold and snow is building up, gasoline 

demand decreases. This allows refiners to build up storage. Once the winter maintenance season 

ends, usually in February or March, gasoline production is increased to build supplies up in 

anticipation of the summer demand period. Throughout the summer, storage decreases as 

gasoline demand exceeds production and imports. Gasoline storage typically hits its lows for 

the year coming out of the summer demand season and from the refinery maintenance that 

occurs in October and November. Gasoline demand rises over the summer vacation period, 

with peak demand occurring in the months of July and August. The lowest demand for gasoline 

occurs in the winter, usually during the month of February. Weather affects demand in the 

gasoline market to some extent, but not to the degree that it does so for heating oil (Dunsby, et 

al., 2008). 

Gasoline is facing competition from many other fuels. The main alternative 

transportation fuel is a form of fuel ethanol. Ethanol, also known as grain alcohol or ethyl 

alcohol, is an alcohol-based fuel made from the simple sugars of various crops. Globally, 

ethanol is primarily made from sugarcane or corn, although it can be made from wheat, 
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sorghum, and other starch crops. Fuel ethanol has been around for a long time. Today the largest 

use of ethanol is as a fuel and fuel additive. The common ethanol gasoline mixture consists of 

10 percent ethanol and 90 percent gasoline, called E10. This is the current fuel available in 

major metropolitan areas.  Fuel ethanol contains more than a third less energy content per gallon 

than conventional gasoline, resulting in fewer miles per gallon for fuel ethanol. So blending 

approximately 10 percent ethanol with gasoline will result in higher overall demand, because a 

full tank of gasoline will now contain less energy than it did before ethanol was added to the 

gasoline pool (Dunsby, et al., 2008). 

Unleaded gasoline is traded at CME. Futures prices for unleaded gasoline might appear 

to be too cheap when compared to the pump price, but they are based on the wholesale price 

for delivery at New York Harbor. The price you pay at the pump has all those costs added to 

get it to the station, including local and national taxes (Kleinman, 2013). The demand for 

gasoline isn’t absolutely inelastic, however — you won’t keep paying for it regardless of the 

price. A point will come at which you’d decide that it’s simply not worth it to keep paying the 

amount you’re paying at the pump, so you’d begin looking for alternatives. But the truth 

remains that you’re willing to pay more for gasoline than for other products you don’t need 

(Bouchentouf, 2015). The higher price is caused by both the strong demand for gasoline and 

the high cost of production. Of all the finished products made from crude oil, demand for 

gasoline is the highest. In addition, the processing costs are higher since gasoline is one of the 

lightest products and it requires further refining and additives to meet various requirements. 

The peak demand for gasoline occurs during the summer months of July and August. Other 

large price increases for gasoline can occur during April and May if gasoline stocks are low for 

that time of year. This is necessary to increase the profit margin and entice refiners to produce 

as much gasoline as possible in order to build stocks before the summer demand season begins 

(Dunsby, et al., 2008). 

Unleaded gasoline is by far the most important product, accounting for almost half of 

the yield from a barrel of crude (Kleinman, 2013). Due to the close relationship between 

unleaded gasoline and crude oil, the prices often follow each other. But there are times when 

there are divergences, especially during events like hurricanes. For example, there may be a 

large amount of crude oil on the market yet a major storm could disrupt refineries and 

distribution systems. So as crude oil prices fall, unleaded gasoline prices will do the opposite 

(Taulli, 2011). Prices of products in the petroleum complex are highly correlated. Although the 

correlation is not perfect, the prices of these products generally do move together. There are 

risks on the supply side from slow increases in refining capacity and further specification 
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changes. Unless there are major changes made to refining capacity, public transportation, or a 

cheaper alternative fuel is discovered, gasoline prices are likely to rise over time (Dunsby, et 

al., 2008). 

 

 

Heating Oil 

 

Heating oil is one of the many products produced from refining crude oil. It is classified as a 

distillate along with diesel, jet fuel, and kerosene. All of the distillates have a similar chemical 

make-up, and in some areas heating oil is the same product as diesel fuel with the exception of 

a few additives. When refined, one barrel (42 gallons) of crude oil produces approximately 10 

gallons of diesel and heating oil along with 4 gallons of jet fuel. Slightly higher yields of these 

distillates may be possible through further refining or use of different crude oil grades (Dunsby, 

et al., 2008). Heating oil—also called oil heat—is flammable petroleum that has low viscosity. 

The primary uses include energy for furnaces, much of it for homes. Heating oil is stored in 

tanks, which are typically in basements or garages. Much of the demand is from October to 

March (Taulli, 2011). 

Heating oil is used to heat both residential homes and commercial buildings and is very 

safe to use for heating. Since heating oil is used as a heating fuel, it is highly dependent on the 

winter weather. A warm or above-average winter would result in lower than normal seasonal 

demand for heating oil. In the other case, an extremely cold winter can cause a spike in both 

the demand and the price of heating oil. Traders in the heating oil market are very focused on 

both short-term and long-term forecasts for winter weather. Because heating oil is considered 

a middle distillate along with diesel, jet fuel, and kerosene, the demand factors for these other 

products are also important. For example, strong demand for diesel may pull supply away from 

the heating oil market as refiners focus on yielding more diesel fuel from their distillates pool. 

Both jet fuel and kerosene are the lesser known distillates, but each can have an impact on the 

supply and price of heating oil (Dunsby, et al., 2008). 

Heating oil can also be used as a substitute for natural gas in power generation. Some 

power plants have the ability to burn either natural gas or heating oil to generate power. Plant 

managers will make this decision based on which fuel is cheaper for them to burn and still 

generate the same amount of electricity. Natural gas is almost always the cheaper fuel, but in 

the past heating oil has been cheaper for short periods of time when natural gas prices spike due 

to short supply or high demand. Another possible substitute for heating oil and diesel is 
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biodiesel or bioheat. Biodiesel is fuel created using biological sources; in this case vegetable 

oils such as palm oil, canola oil, and soybean oil are used. The biodiesel can be used in pure 

form or blended with regular diesel to achieve a fuel mix (Dunsby, et al., 2008). 

Heating oil futures trade on the New York Mercantile Exchange (NYMEX) and heating 

oil was the first successful energy contract on the exchange (Dunsby, et al., 2008). For many 

years, the NYMEX heating oil contract was the second-most liquid energy contract, although 

in recent years, it has been overshadowed by natural gas. It is also known as the number-two 

fuel oil and accounts for about 25% of the yield of a barrel of crude (Kleinman, 2013). Heating 

oil is also  traded on the CME (Taulli, 2011). Heating oil price volatility does increase during 

the winter months. These price spikes all occur during the winter months in conjunction with 

extreme cold weather (Dunsby, et al., 2008). 

In the future heating, oil prices will have a closer relationship with its substitutes, such 

as natural gas, as price will continue to create competition between the fuels in some sectors. 

Heating oil prices will continue to be volatile in the winter months. Demand for both diesel and 

jet fuel will grow globally with the need to transport both goods and people. Supply issues such 

as refining capacity must be addressed in order to produce enough distillate to meet demand 

over the long term. Overall, prices will continue to be correlated with both crude oil and 

gasoline. In the longer-term, higher prices should prevail to attract companies to invest in future 

refinery and pipeline infrastructure to increase supply of refined products. 

 

 

Natural Gas 

 

Natural gas is a nonrenewable fossil fuel found in large deposits within the earth. In fact, natural 

gas is sometimes found not too far away from crude oil deposits (Bouchentouf, 2015). Natural 

gas is hydrocarbon gas and it is found in underground rock beds or with other hydrocarbons 

(oil and coal deposits). Natural gas was formed during the same process that created petroleum. 

Plant and animal remains from millions of years ago formed organic material. Over time this 

organic material was trapped under rock and exposed to pressure and heat. The pressure and 

high temperatures changed the organic material into petroleum, coal, and natural gas. At low 

temperatures more oil was formed than natural gas, and at high temperatures more natural gas 

was formed. It is composed primarily of methane (Dunsby, et al., 2008) and is found alongside 

fossil fuels and coal beds. As a source of energy, natural gas has many advantages. It is cheaper 

than crude oil and it is environmentally friendly. Consider that a natural gas plant will generate 
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about half the amount of carbon emissions than a coal plant (Taulli, 2011). Historically, gas 

was not considered commercially viable and the gas produced by oil drilling was just burnt off 

or flared. By the 1970s, it was recognised that gas was a viable commodity in its own right, and 

“associated” (with oil) gas is now transported from oil wells by pipeline. Non-associated gas is 

derived from pure natural gas fields, and coal bed methane is extracted from coal-bearing rock 

formations (Bain, 2013). 

The purest form of natural gas is almost pure methane, which is called dry natural gas 

(Dunsby, et al., 2008). When other hydrocarbons are present at a level of over 10 per cent, the 

natural gas is ‘wet’ (Taylor, 2013). Natural gas has a long history, although techniques to 

capture, process, and utilize it are more recent. Like crude oil, natural gas is produced by drilling 

for a gas deposit and extracting the natural gas through a well. Natural gas produced through 

the basic drilling and well system is known as conventional natural gas because it is easy, 

feasible, and economic to produce. Natural gas can be found in deposits that contain gas and 

oil, gas and coal, or just gas. Deposits that contain gas and oil have the natural gas on the top 

since it is lighter. After production, natural gas goes through a processing plant, where it is 

cleaned and brought to pipeline quality specifications. The natural gas that is produced directly 

underground is not the same form of natural gas that is used by the consumer. Pipelines require 

natural gas of a specific quality in order to operate properly (Dunsby, et al., 2008). Gas must be 

processed following extraction to remove impurities. The byproducts of the extraction process 

– ethane, propane and butane – are then viable for commercial sale in their own right (Bain, 

2013). 

Unconventional natural gas is much harder and more costly to produce than 

conventional gas. It may also use technological methods that are not fully developed. As these 

technologies become more advanced and the price received for natural gas production 

increases, then what is unconventional gas today may be considered conventional gas in the 

future (Dunsby, et al., 2008). As the technology has become available, gas has started to be 

extracted from less accessible rock formations. These “unconventional” gases include tight gas, 

which is extracted from low-permeability rock formations, and shale gas, which is extracted 

from shale formations. These gases cost more to extract because of the advanced technology 

used and the amount of energy involved (Bain, 2013). Shale is a rock; a very fine grained, 

organic-rich, sedimentary rock. Geologists have known for years that natural gas may be found 

in shale rock but until a short time ago it could not be cost-effectively extracted (Taylor, 2013). 

Natural gas, oil and coal resources are known as finite or non-renewable, given the 

millions of years required for their formation (Taylor, 2013). Natural gas reserves are a supply 
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of natural gas held underground. Unfortunately, unlike crude oil, there is no reliable data for 

total (proven and unproven) recoverable global natural gas reserves. Further exploration for 

global natural gas reserves and technological advances in production of unconventional sources 

are likely to increase the total reserve base in the coming years. This increase is likely to lead 

to an increase in price also. The costs of research, new technology, and exploration continue to 

rise. If the prices paid to producers do not increase with these costs, production will be shut in 

when it becomes unprofitable and exploration will stop (Dunsby, et al., 2008). 

A few large producers dominate gas production (Bain, 2013). The US and countries of 

the former Soviet Union are currently the largest producers of natural gas. Other major global 

producers include Canada, Iran, Norway, Qatar, China, Algeria, Saudi Arabia and Indonesia. 

The Middle East holds 41 per cent of world reserves, while an additional 34 per cent is located 

in the former Soviet Union, with only 9 per cent held in the OECD countries (Taylor, 2013). 

Russia has the world’s largest reserves, followed by Iran, Qatar and Turkmenistan. Other 

countries with large reserves include oil-producing countries in the Middle East and Africa 

(Saudi Arabia, Iraq, the United Arab Emirates, Algeria and Nigeria) and Australia (Bain, 2013). 

There have been various attempts, led by Russia and Iran, to create an OPEC-style gas 

organisation, and Qatar, Venezuela, Nigeria, Libya, Indonesia, Egypt and Algeria have taken 

part in periodic discussions with them about the gas market. However, an organisation that can 

influence prices by co-ordinated changes in output does not seem feasible with the dislocation 

in global gas markets (Bain, 2013).  

Natural gas as an energy source is used in a variety of ways. It can heat homes and 

businesses, generate electricity, cook food, or serve as an industrial fuel or heat source (Dunsby, 

et al., 2008). In terms of percentage of total consumption, the residential, commercial, and 

transportation sectors have been largely unchanged. The industrial sector decline occurred at 

the same time that prices of natural gas increased. Natural gas costs became too high to sustain 

profitability, and some industrial plants (such as in the aluminum smelter industry) were 

mothballed as a result. The electrical generation increase occurred as new generation plants 

fueled by natural gas came online and replaced older plants fueled by oil and other fossil fuels. 

Natural gas use in generation has grown as the fuel is considered environmentally friendly and 

has a high heat content, which is important when determining the heat rate of a power plant 

(Dunsby, et al., 2008). Of all the natural gas that is produced, industry (including utilities) uses 

about two-thirds, and homeowners use one-fourth (Kleinman, 2013). Gas is increasingly the 

fuel of choice to supply electricity, provide heating and cooling, and support economic growth. 

Now it is used mostly for heating and cooking although some gas is used to power gas and 
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steam turbines for electricity generation in preference to coal (Taylor, 2013). The electricity-

generating industry is by far the largest consumer of gas, followed by buildings (where gas is 

used to power boilers generating hot water and space heating, primarily in the OECD) and 

industry (metal refining, petrochemicals, iron and steel). Gas now accounts for just over 20% 

of the feedstock for power generation globally. There is growing consumption in the transport 

industry, but this accounts for only a tiny proportion of total consumption (Bain, 2013). It’s not 

a widely known fact, but natural gas is used in a number of vehicles as a source of fuel. These 

vehicles, known simply as natural gas vehicles (NGV), run on a grade of natural gas called 

compressed natural gas (CNG). This usage accounts for only about 5 percent of total natural 

gas consumption, but demand for NGV may increase as a viable (cheaper) alternative to 

gasoline (a crude oil derivative). The primary consumers of this commodity are the industrial 

sector, commercial interests, residential elements, transportation, and electricity generation. 

The industrial sector is the largest consumer of natural gas, accounting for almost 40 percent of 

total consumption. Although industrial uses of natural gas have always played a major role in 

the sector, their significance has increased during the last several years and will continue to do 

so. Residential use accounts for almost a quarter of total natural gas consumption. The use of 

natural gas for cooking purposes has steadily increased as technological developments have 

allowed for an efficient and safe use of natural gas. About 40 percent of the energy consumed 

by commercial users, such as hospitals and schools, comes from natural gas, accounting for 

about 15 percent of total natural gas consumption. Because commercial users include 

establishments such as schools, hospitals, restaurants, movie theatres, malls, and office 

buildings, demand for natural gas from these key drivers of the economy rises during times of 

increasing economic activity (Bouchentouf, 2015). 

 

Figure 17: Natural gas consumption 
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Since natural gas and oil are both hydrocarbons, it is reasonable to suppose that they 

may be substitutes within some sectors. In homes and businesses, heating equipment is able to 

burn heating oil or natural gas as fuel, but not both. Homeowners cannot just flip a switch on 

the burner depending on which fuel is cheaper to burn. One sector in which fuel switching does 

occur is electrical generation. Dual-fuel generators allow utilities to choose between an oil-

based fuel (such as residual fuel oil, kerosene, or heating oil) and natural gas. Heating oil is 

priced under natural gas a few times during the winter when natural gas prices spiked due to 

heating demand. It is during these times that utilities may find it more profitable to burn heating 

oil in their dual-fuel power plants if they are able to switch. Keep in mind that utilities have 

other factors to consider when determining the economics of switching. These include the cost 

to switch the plant to a different fuel, taxes, and cost of extra emissions produced by burning a 

dirtier fuel. Utilities will not switch fuels if it is beneficial for just a day. They will look at the 

cost of either fuel over a medium to longer time frame to determine which fuel is more 

beneficial (Dunsby, et al., 2008). 

Historically the natural gas was released either intentionally or unintentionally during 

coal-mining activities. It was realized that this natural gas could be captured and either used to 

fuel mining activities or injected into a natural gas pipeline for resale (Dunsby, et al., 2008). 

Gas is not easy to transport and it was not until the 1960s when high strength steel pipelines 

were developed that gas could be transported over long distances. As a result, many countries 

did not develop the infrastructure to use natural gas (Taylor, 2013). As demand for natural gas 

increases, you need to be able to transport this precious commodity across vast distances (for 

example, across continents and through oceans). Transporting it is difficult to do when it’s in a 

gaseous state (Bouchentouf, 2015). Transportation of natural gas across the ocean on vessels is 

not a simple process (Dunsby, et al., 2008). Natural gas is frequently cooled for ease of 

transportation and storage (Taylor, 2013). In order to be transported, natural gas must go 

through a liquefaction process, creating liquefied natural gas (LNG). The liquefaction process 

reduces volume and allows it to be shipped efficiently across oceans (Dunsby, et al., 2008). 

Liquefaction takes place when natural gas is cooled under high pressure, condensed and then 

reduced in pressure for storage (Taylor, 2013). Liquefied natural gas (LNG) is a clear liquid 

that is created when natural gas is cooled to around −160°C. The volume shrinks hugely, 

making the gas easy to store and transport (Bain, 2013). Japan and South Korea together 

account for nearly half of all LNG imports (Taylor, 2013). 

Natural gas futures are traded on NYMEX (now part of CME) and to a lesser extent on 

ICE (Taylor, 2013). The natural gas futures contract is the second-most popular energy contract 
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on the CME, right behind crude oil (Bouchentouf, 2015). Gas is one of the few commodities 

for which there is no global benchmark price forming the basis of most international trade. This 

is partly because of the difficulty in transporting gas. Traditionally, long-term sales contracts 

would be signed between producer and consumer countries and a pipeline would then be 

constructed to fulfil these obligations. The price would be indexed through a formula (typically 

involving a time lag) based on international oil prices. It is not possible to generalise about gas 

prices in the way that is possible for many commodities. This is because of the differences in 

regional markets (Bain, 2013). 

Demand peaks in the winter months of January and February because of strong demand 

for residential and commercial heating. It rises again in the summer months of July and August 

on electrical generation demand driven by air conditioner use. The one thing in common in 

these two cases is the weather. Winter weather drives demand for natural gas as a heating fuel, 

whereas summer weather drives demand for natural gas as a generation fuel. These changes in 

demand from month to month in turn affect the price. The seasonality of natural gas 

consumption is exhibited in the futures curve, where the highest-priced months of January and 

February are also the two months with the highest demand. Storage is used in the winter to meet 

the strong demand for natural gas, because during that time domestic production and imports 

fall short of demand. Natural gas storage has both a withdrawal and an injection season. Natural 

gas consumption is dominated by its use to heat residential and commercial buildings. This 

results in the need to withdraw natural gas from storage during peak demand in the winter and 

inject it into storage during the spring, summer, and fall months. The injection season occurs 

from April through October and is associated with the non-heating season. The withdrawal 

period occurs between November and March during the heating season (Dunsby, et al., 2008).  

In the short run, the price of natural gas is heavily impacted by the weather (Taulli, 2011). 

Natural gas price volatility has been very exciting in the twenty-first century. As discussed 

previously, the use of natural gas as a heating fuel and to power air conditioners through 

electrical generation makes demand reliant on weather patterns. Many of the price spikes are 

the result of below-average winter temperatures in the natural gas consuming areas (Dunsby, et 

al., 2008). The long-term trend is that more natural gas will be required to generate electricity. 

This increased demand from a critical sector will keep upward pressures on natural gas prices 

over the long term (Bouchentouf, 2015). 

The future of natural gas looks bright. On the demand side, increased need for cleaner-

burning fuel will help feed demand, along with strong growth in many emerging economies 

(Dunsby, et al., 2008). Natural gas burns cleanly and produces 30 per cent less carbon dioxide 
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than oil and 40 per cent less than coal (Taylor, 2013). The carbon emissions associated with the 

combustion of gas are lower than for coal or oil, so gas is perceived to play a major role in 

efforts to control (and reduce) such emissions globally. The energy policies of large economies 

will determine the future for gas. It remains to be seen whether governments take measures to 

reduce carbon emissions which would favour gas relative to other hydrocarbons. The promotion 

of renewable energy would also benefit gas, as it is perceived to be the best alternative fuel to 

act as a back-up power source in periods of low generation by renewables (Bain, 2013). Also, 

increased industrial demand should put upward price pressures on natural gas. Transportation 

sector is a really important industry to be watched for technological developments. If natural 

gas grabbed a slice of the transportation market, which now accounts for almost two-thirds of 

crude oil consumption, prices for natural gas could increase dramatically (Bouchentouf, 2015). 

Further exploration and production will continue as strong global demand from electrical 

generation and industrial sectors will support prices. Compared with oil, the natural gas market 

is still in its infancy. Many questions must be answered regarding the supply side of the market, 

specifically the amount of global reserves available. It will continue to be essential to watch 

how the prices of natural gas and its fossil fuel substitutes, oil and coal interact (Dunsby, et al., 

2008). Although there is no shortage of untapped gas reserves, many of these reserves will be 

expensive to tap, given the increasing complexity of extraction. This has implications for long-

term supply and prices. Unconventional gas production is expected to continue to increase its 

share of global production (Bain, 2013). 

 

 

4.3 Agriculture 

 

Agricultural commodities are the primary commodities in the world that derive from the 

cultivation of land. They can be classified in three categories, grains, softs and livestock. The 

grains complex consists of corn, wheat, soybeans, soybean oil, soybean meal, rice and oats and 

are used as basic food source for humans and animals. The softs complex consists of coffee 

cotton, sugar, cocoa, lumber that has a softer nature. Finally, the livestock commodities are 

feeder cattle, live cattle and lean hogs, which are the meats. 
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GRAINS 

 

Corn 

 

Corn is a unique grain with no close counterpart in the plant world. The origins of corn remain 

controversial. There is no historical evidence of wild corn as we know it today. It is not able to 

survive in the wild, as it has no way of distributing its seeds, or kernels. It must be planted and 

cultivated each year by humans in order to produce a crop (Dunsby, et al., 2008). Corn is an 

important food source for both humans and animals and, unlike other grains, can be grown in a 

wide variety of climates and conditions, making it an important cash crop. Beyond feedstock, 

corn has other important applications and is processed into starches, corn oil, and even fuel 

ethanol (Bouchentouf, 2015). 

Corn production is not smooth from year to year. Corn production depends on two 

things—acreage harvested and yield per acre. The number of acres harvested is a function of 

the amount initially planted. Some planted acreage may not be harvested due to poor 

performance of the crop, pest infestation, or extreme weather events that would destroy the 

crop. Crop yield is the main driver of production, and it is dependent on weather during the 

critical tasseling and pollination stages. The yield is upward sloping as a result of technological 

advances in farm machinery, fertilizer, and genetically modified seed, among other things. It is 

noticeable that yield from year to year can be extremely volatile. The volatility in yield occurs 

because the crop is vulnerable to stress during the tasseling and pollination stages. Yield 

changes greater than ±10 percent from one year to the next are not uncommon (Dunsby, et al., 

2008). Weather has a major impact on corn, especially during June and July. If the weather is 

severe, then there will likely be a spike in corn prices. However, prices will likely hit their lows 

in the fall because of the harvest (Taulli, 2011). 

In the grain market, the supply comes all at harvest whereas demand is spread 

throughout the year. This creates supply in excess of immediate consumption. That’s why 

storage is an extremely important concern in the grain markets. Grains are largely stored in 

grain elevators located near major rivers and ports for shipping. A series of bins, tanks, or silos 

that are able to store grain in bulk and then empty it into trucks, barges, or railcars for shipment 

to end users (Dunsby, et al., 2008). 

Corn is grown in more countries than any other crop and on all continents except 

Antarctica. It can thrive in many climates (Dunsby, et al., 2008). Approximately 35 million 

hectares of land are used exclusively for the production of corn worldwide, a business that the 
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U.S. Department of Agriculture values at more than $20 billion a year (Bouchentouf, 2015). 

Worldwide production of corn is dominated by the United States. The next largest producer of 

corn is China, while European Union and Brazil follow (Dunsby, et al., 2008). Historically, the 

United States has dominated the corn markets — and still does, thanks to abundant land and 

helpful governmental subsidies. China is also a major player and exhibits potential for 

becoming a market leader in the future. Other notable producers include Mexico, and India 

(Bouchentouf, 2015). 

Corn started as a primary food source for humans, but today it’s mainly used as animal 

feed. As livestock feed, corn is important for its high-energy value (Dunsby, et al., 2008). Corn 

is the predominant carbohydrate source used for animal feed (Kleinman, 2013). The key reason 

is that corn has a high starch content (Taulli, 2011). Corn is also utilized in starch form in 

consumer and industrial products. Paper products, adhesives, and thickening agents are just a 

few of the ways we use corn starch (Dunsby, et al., 2008). Corn’s use for culinary purposes is 

perhaps unrivaled by any other grain, which makes this a potentially lucrative investment 

(Bouchentouf, 2015). We consume corn as food in kernel form and in products such as corn 

flakes, tortillas, and popcorn. Corn also yields other products such as vegetable oil and high 

fructose corn syrup (Dunsby, et al., 2008). Besides being a food for people and animals, corn 

is also used for the fuel known as ethanol (Taulli, 2011). Corn has been grabbing headlines 

since 2005 for its use as a fuel in the form of ethanol. Ethanol is an alcohol-based fuel made 

from the simple sugars and starches of various crops (Dunsby, et al., 2008). Around 40 per cent 

of all US corn production is now used as inputs for the refining of biofuel (Taylor, 2013). This 

versatility makes it one of the most important crops in the world (Dunsby, et al., 2008). 

Not only is the United States the largest worldwide producer of corn, it is also the largest 

exporter of corn. Japan is by far the largest importer of corn followed by South Korea. Both 

countries do not produce many coarse grains. However, because they are large meat producers, 

it is necessary to import corn for feed use. Both Argentina and South Africa are large exporters 

of corn. Worldwide corn consumption is highest in the United States and is followed by China, 

the European Union, Brazil, and Mexico. Demand for corn is dominated by its use in livestock 

feed for animals such as cattle, hogs, and poultry (Dunsby, et al., 2008). 

Different corn futures trade in many different countries. The most liquid corn future 

trades on the Chicago Board of Trade (CBOT) (Dunsby, et al., 2008) and comes nearest to 

representing a global benchmark, but there are many other regional and national exchanges, in 

China and Latin America in particular. It is also traded on the London-based Euronext-LIFFE 

(Bain, 2013). The most direct way of investing in corn is to go through the futures markets. A 
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corn contract, courtesy of the Chicago Mercantile Exchange (CME), helps farmers, consumers, 

and investors manage and profit from the underlying market opportunities. Corn futures 

contracts are usually measured in bushels (as with the corn contract the CME offers). Large-

scale corn production and consumption is measured in metric tons (Bouchentouf, 2015). 

Corn is subject to seasonal and cyclical factors that have a direct, and often powerful, 

effect on prices (Bouchentouf, 2015). From September to November, corn generally has a lower 

price because of the high amounts of corn on the market. Then from December to May, the 

prices tend to increase. In fact, this may continue throughout the summer. The reason is the 

potential for bad weather (Taulli, 2011). In some countries, the commodity is known as maize 

(Taulli, 2011). Maize prices are chiefly determined by the balance between American supply 

and demand (domestic and overseas), but they are also influenced by availability in Argentina 

and China. Low stocks and high prices will constrain consumption, with other grains being 

substituted for maize, particularly in animal feed (Bain, 2013). The corn market does compete 

with other grains for use in the feed sector. Other feed grains available to livestock producers 

are sorghum, barley, and oats. In addition, when corn is expensive as compared with wheat, 

livestock producers have the ability to feed wheat to their animals. Corn also competes with 

sugar for its use in the sweetener market, especially in soft drinks (Dunsby, et al., 2008). 

However, higher prices will encourage the planting of maize and consumption growth can be 

expected to resume strongly once stocks start to be rebuilt (Bain, 2013). 

The future outlook for corn demand looks strong with increasing use of corn to make 

ethanol for fuel. The demand for corn from ethanol production will not change until additional 

and cheaper sources of ethanol are established. The two common stressors for agricultural 

plants are drought and heat (Dunsby, et al., 2008) that will constantly create more volatility 

(Kleinman, 2013). Another aspect that should be considered is the fact that corn needs more 

fuel and fertiliser than other crops and, as input costs rise or credit facilities disappear, farmers 

in many countries, especially in South America, may turn to other commodities (Bain, 2013). 

This will reduce the corn crop and eventually the entire supply, driving the prices up. 

 

 

Rice 

 

A member of the grass family, rice produces seeds that are used for human consumption (Bain, 

2013). Rice is a grain that represents the main staple for billions of people in Asia, the Middle 
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East, and Latin America. Rice is the second-most produced grain, with the biggest being corn 

(Taulli, 2011).  

Rice crops require a large amount of rainfall (Taulli, 2011). It is usually an annual crop, 

but in some countries (India, for example) a winter and a summer crop can be sown.  It thrives 

in areas with heavy rainfall; the traditional method of cultivation involves flooding the fields 

with water (paddies), which helps to repel weeds and pests. There are many varieties of rice, 

but almost all are grown for human consumption, which accounts for about 90% of (milled) 

production. Some lower-quality rice and surpluses that cannot be marketed may be sold for 

animal feed  (Bain, 2013). But there have been pressures on the rice supply because of droughts 

and flooding in areas where it is grown. Another supply constraint has been the surge in the 

prices of other grains, like corn and wheat. The result is that farmers have been pushing 

production of these commodities. This in turn has lowered the plantings of rice crops. The 

production of rice is labor-intensive. So production is most economical in low-wage countries, 

like Thailand and Vietnam. However, this makes rice subject to major governmental control 

and if there are key changes in policy, this could have a big impact on rice prices (Taulli, 2011). 

In advanced commercial farming, high yielding seeds and agrochemicals are used extensively 

and mechanization enables harvests to be swiftly and efficiently gathered. However, falling 

water tables and rising salinity may affect production in the future (Bain, 2013). 

The Middle East is a major rice market that is growing as domestic production is limited 

by lack of water. Asia accounts for about 90% of global production, but output is increasing in 

Africa. The high priority given to agriculture by many Asian governments has encouraged 

private as well as public investment in rice farming, and the use of better cultivation techniques 

and improved varieties. Improved irrigation has reduced vulnerability to drought, although 

water is becoming scarcer in some producing areas. In Bangladesh, rice occupies three-quarters 

of the crop area. The United States is a high-quality rice producer and a major exporter (Bain, 

2013). 

The leading rice exporters are Thailand, Vietnam, India, Pakistan and the United States, 

but internationally traded rice accounts for only around 7% of total rice production a year. Most 

rice is transported in milled form, but this does not store well and has to be bagged for shipment. 

Freight and handling costs are accordingly higher than for wheat or corn, which are generally 

shipped in bulk. Indonesia’s needs sometimes dominate the international rice market. The 

Philippines is another important player in global trade China’s imports are almost entirely high-

quality fragrant grades, sourced exclusively from Thailand. Perhaps more important for the rice 

market and international prices are the stocks held in the main exporting countries (Bain, 2013). 
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Rice is culturally important in South and East Asia, and food habits are slow to change, 

especially in rural areas. However, in more developed Asian countries, such as Japan and South 

Korea, rice consumption per head is steadily declining. In many developing countries outside 

Asia, where the grain is not a traditional staple food, consumption is growing in line with rising 

incomes and the availability of improved varieties. China typically accounts for about 30% of 

global rice consumption. Rice is the staple food in rural Bangladesh but is giving way to wheat 

in urban areas. India is the second largest rice-consuming country. Demand is increasing as the 

population grows, but consumption varies widely. In recent years population growth has been 

offsetting the impact of declining consumption per head as diets diversify. Rising disposable 

incomes have increased demand for high quality non-indigenous varieties such as fragrant rice.  

(Bain, 2013). 

Investors can trade futures on rough rice on the CME. Rough rice is rice that comes 

after a harvest (Taulli, 2011). Rice futures are traded on the Chicago Board of Trade, and there 

are important exchanges in Thailand, Vietnam and Pakistan (Bain, 2013). 

Rice is politically sensitive in much of Asia, and in many countries rice farmers and 

consumers are a major political force. Accordingly, governments are alert to price fluctuations 

and are active players in procurement for domestic consumption or export. They are also quick 

to impose trade restrictions if there are concerns about supply or prices. Limited production 

prospects in the Middle East and a growing market will lead to higher imports. Middle Eastern 

countries concerned about supplies are also starting to invest in farmland in a number of 

countries in Africa and Asia. Consumption per head will continue to decline in parts of Asia, 

especially in China, Japan and South Korea, as diets diversify to include greater quantities of 

meat and other convenience (wheat-based) foods (Bain, 2013). 

 

 

Soybeans – Soybean oil – Soybean meal 

 

Soybeans are part of the oilseed family of legumes. Oilseeds are crops that are grown mainly 

for their vegetable oil and protein meal content. Within the oilseeds complex, soybeans are the 

most important in terms of world production and trade (Dunsby, et al., 2008). Soybeans are a 

species of legume (others include peas, beans, lentils, alfalfa, and so on), originally from East 

Asia; it is only in the past couple of centuries that they were introduced in other parts of the 

world. Historically, soybeans have been grown in temperate parts of the world, typically with 

hot summers, but now they are cultivated in tropical and subtropical parts of the world, 
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particularly India. Aside from being able to sell the beans for consumption, soybean crops 

improve soil fertility by adding nitrogen from the atmosphere. The plant has an edible bean that 

is valued for its nutritional qualities; it is one of the few plants that can provide a complete 

protein (Bain, 2013). Soybeans have been cultivated for centuries, starting in Asia. Soybeans 

are a vital crop for the world economy, used in everything from producing poultry feedstock to 

creating vegetable oil (Bouchentouf, 2015). 

Soybean production is cyclical (Bouchentouf, 2015). Soybeans are often grown in 

rotation with corn. There is a close relationship between the two, with farmers often deciding 

to expand one crop or another in a particular year based on their relative prices (Bain, 2013). 

Within the soy complex there are two separate production stages. The first stage is the 

production of soybeans (Dunsby, et al., 2008). The most critical time for the soybeans crop is 

during pollination, or the fertilization phase, which comes in July. If there is adverse weather, 

it could reduce the crop (Taulli, 2011). Once the crop has been harvested, the soybeans are 

exported, sent to a local processor or used directly for human consumption (Bain, 2013). The 

second stage of production occurs when the soybeans are processed into soymeal and bean oil. 

Soybeans are a raw product that must be processed to create protein meal and vegetable oil. 

This occurs at a soybean processing plant and is called crushing. Crushing facilities are often 

located near production regions and major transportation areas. This allows countries to import 

soybeans and process them as soon as they are received and then send the soymeal and bean oil 

to various other regions. Logistically, many countries find it is easier to import soybeans and 

do the crushing themselves instead of importing soymeal and bean oil (Dunsby, et al., 2008). 

Globally, 90–95% of soybeans are processed (either in the country of origin or in the importing 

country), with the remainder being used for human consumption (Bain, 2013). 

Worldwide, there are four large soybean producers: Argentina, Brazil, China, and the 

United States. These countries account for approximately 90 percent of world soybean 

production. Since these four countries account for the majority of worldwide soybean 

production, they must also be responsible for the soybean export market. This is true with the 

exception of China, whose vast population still consumes more than China can produce. This 

leaves Argentina, Brazil, and the United States with the bulk of the export market. The climate, 

soil, and topography in the Midwest and in the southeastern parts of the United States are ideal 

for soybean production. This has allowed it to become the world’s largest soybean producer 

and exporter (Dunsby, et al., 2008). Sixty percent of U.S. production is used domestically, and 

the balance is exported (Kleinman, 2013). This is quite an achievement when you realize that 

soybeans are a relatively new crop in the United States compared with corn and wheat (Dunsby, 
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et al., 2008). A number of countries have started to expand soybean cultivation in recent years, 

but their output remains small compared with that of the Americas (Bain, 2013). In Brazil, 

soybeans are planted in November and December, and they are harvested in March through 

May. Argentina follows a similar planting and harvesting schedule for its main soybean crop. 

Some farmers in Argentina plant soybeans double cropped with winter wheat. These farmers 

plant in January after the winter wheat harvest, and they harvest the soybeans in May and June. 

This double crop represents a small amount of soybean production in Argentina. The crop 

marketing year for soybeans in Brazil extends from February through January. In the U.S., the 

soybean marketing year is September through August with planting in May and June, and 

harvest in September through October. Since harvests in these large producing countries do not 

occur at the same time, this creates a more stable soybean supply year round. In the United 

States, the crop marketing years for soymeal and bean oil are from October through September. 

This lags the soybean marketing year by one month to allow for the time it takes to put the new 

soybean harvest through the crushing process. As with other agricultural crops, the amount of 

soybean production relies on the acreage harvested and the yield. Yields can vary depending 

on the weather during the growing season (Dunsby, et al., 2008). Nearly all the US crop is now 

genetically modified. Initially, the modifications were made to reduce the need for herbicides 

and pesticides, but now they are improving the nutritional quality of the soybean. Soybeans are 

the second most planted field crop in the United States. Although the United States remains the 

largest producer for now, its scope for further expansion is less than in Brazil. China and India 

have also been trying to increase output in an effort to meet rising domestic demand. In China, 

soybeans are primarily grown in the northeast, but there are limitations on available land and 

water. In India, yields are typically low, but production has been growing strongly. However, 

the soybean crop is entirely summer-sown and therefore dependent on monsoon rains. Ukraine 

has significantly increased output and is becoming an important supplier to the international 

market. As soybean is a spring-sown crop, farmers there have been planting it in preference to 

winter-sown rapeseed, which is often susceptible to winterkill (Bain, 2013). 

 

Figure 18: Soybean producing countries 
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A small amount of whole soybeans are used for seed and human consumption. The 

majority of soybeans are crushed for the meal and oil. Soybean oil, also known as vegetable 

oil, is derived from actual soybeans. The vegetable oil is called soybean oil, soyoil, or bean oil 

and is used primarily for human consumption. It is used for cooking purposes and has become 

popular in recent years with the health-conscious dietary movement. Bean oil is mainly 

consumed by humans in a number of foods such as cooking oils, salad dressing, margarine, and 

various bakery products and food spreads. More than 90 percent of total use comes from human 

consumption (Dunsby, et al., 2008). In addition to its gastronomic uses, soybean oil is becoming 

an increasingly popular additive in alternative energy sources technology, such as biodiesel 

(Bouchentouf, 2015). Biodiesel is a diesel fuel made from vegetable oils such as soybean oil, 

palm oil, and rapeseed oil. In addition, bean oil does have some industrial applications in 

products such as paints, putty, epoxy, and adhesives. (Dunsby, et al., 2008). Most soybean oil 

(over 90%) is edible oil, with the remainder being used by the biodiesel industry and in the 

manufacture of products such as soaps, plastics and crayons. It is the most important vegetable 

oil, accounting for about 20% of global consumption, but it has been losing market share to 

(typically cheaper) palm oil (Bain, 2013). Palm oil competes directly with soybean oil and 

canola oil, but it generally trades at a discount because of health concerns about saturated fat in 

tropical oils. Palm oil is attractive to countries with expanding, low-income populations 

(Kleinman, 2013). 

Of the two soy products, soymeal is considered the more valuable and is the most 

significant protein meal produced in the world. It has the highest percentage of protein meal 

produced from any of the major oilseeds (Dunsby, et al., 2008). Soybean meal, like soybean 

oil, is an extract of soybeans. Basically, whatever is left after soybean oil is extracted from 

soybeans can be converted to soybean meal. Soybean meal is a high-protein, high-energy 

content food used primarily as a feedstock for cattle, hogs, and poultry (Bouchentouf, 2015). 

Soybean meal is used almost entirely for animal feed, with a small percentage (typically about 

2%) used to make soy flour and proteins. The demand for soybean meal for animal feed has 

been an important factor in soybean oil production and, ultimately, consumption (Bain, 2013). 

Its closest competitor in the protein meal market is rapeseed meal (also known as canola meal), 

which accounts for slightly more than 10 percent of worldwide protein meal consumption. 

Another protein meal, fish meal, can also be a significant competitor as it has protein content 

comparable to soymeal. Soymeal and bean oil are created by processing the raw soybeans, a 

process called crushing. These products along with soybeans make up the soy complex 

(Dunsby, et al., 2008). 
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The largest consumers of soymeal are the European Union, the United States, and China. 

Soymeal is an excellent source of protein and is used extensively in the feed industry for cattle, 

hogs, poultry, and aquaculture (Dunsby, et al., 2008). EU consumption of soybeans depends to 

some extent on European grains harvests, as their use in animal feed increases if the availability 

of grains is low or prices are high. Imports of soybeans to make oil will also increase if regional 

output of other oilseeds, rapeseed in particular, is low. The EU can be an important import 

market in years when its own grain or oilseed crops suffer weather-related damage. EU 

countries import soybeans particularly for their protein content. Consumption in the United 

States has been growing steadily in recent years, partly because it has stepped up its exports of 

meat and partly because of recent demand for soybean oil for biodiesel. Although Argentina is 

only the world’s third largest producer of soybeans, it has a highly developed crushing industry 

and is the world’s largest exporter of soybean meal and oil. This reflects a government policy 

to encourage domestic processing – the export tax is lower on soybean meal and oil than on 

raw soybeans. However, Argentina’s domestic consumption is low and as a result it is an 

important exporter (Bain, 2013). 

Like the other major agricultural products corn and wheat, the benchmark future 

contracts for soybeans, soymeal, and bean oil all trade on the Chicago Board of Trade (CBOT). 

Each contract has different specifications with regard to contract size, tick size, value, and 

delivery specifications. Different soybean, soymeal and bean oil futures contracts are traded on 

global exchanges, but none are as liquid as those on the CBOT. Bean oil has a large amount of 

substitutable commodities, unlike soymeal, so its price may respond to be competitive with 

those oils (Dunsby, et al., 2008). The futures market in Chicago is the main indicator of soybean 

price changes. Soybeans are also traded on exchanges in South Africa, China, Japan, India and 

Argentina (Bain, 2013). The soybean market is a large market and presents some good 

investment opportunities. The most direct way to invest and trade soybeans is through the CME 

soybean futures contract (Bouchentouf, 2015). Financially, it is generally the most volatile of 

all the grains, although, technically, it is not a grain but a legume (also known as an oilseed) 

(Kleinman, 2013). 

Growth in consumption has been particularly strong in the developing world, where 

rising incomes have led to greater meat consumption and thus demand for animal feed (Bain, 

2013). Demand for soybeans in the form of soymeal and bean oil has grown excessively during 

the past 25 years. One reason is that the increase in world wealth can cause a diet change that 

incorporates more meat. This results in more livestock being raised and a correspondingly 

higher demand for soymeal to feed them. In addition, given that soybeans are a new crop as 
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compared with corn and wheat, there has been demand from new products that use soymeal and 

bean oil in the food and industrial sectors (Dunsby, et al., 2008). In the medium term, increased 

meat consumption in the developing world should sustain growth in soybean demand. This will 

depend on continued growth in per head income, particularly in China and India. The protein 

in soybeans is a useful addition to vegetarian and vegan diets. However, the presence of trans 

fats in soybean oil has reduced its popularity in processed foods in recent years (Bain, 2013). 

The long-term prospects for the soy complex are supportive. Increased wealth and demand for 

meat products will continue to support demand for soymeal. Worldwide demand for bean oil to 

create biofuels will increase as interest rises in greener fuels. In addition, government mandates 

in a variety of countries on biofuel consumption along with tax incentives for biofuel production 

will continue to support this specific sector. Production in countries such as Argentina and 

Brazil, which still have available arable acreage, will increase. This increase in acreage will be 

needed to meet future demand increases. In other countries such as the United States and China, 

competition for acreage between soybeans and other crops such as corn will also lend support 

to the soy complex (Dunsby, et al., 2008). 

 

 

Oats 

 

The oat is a cereal grain, which is grown for its seed. Nearly 90 percent of oats is used for 

oatmeal. But the commodity is also useful to feed horses, chicken, and other livestock. Oats are 

even a part of various dog foods. Oats are usually planted in the spring, but may be planted in 

the summer months. Over the years, demand has been declining. Instead, the focus has been on 

soybeans and corn (Taulli, 2011). 

The oat market is generally a slower-moving, more thinly traded market. Oats is the 

only major crop that the United States imports, primarily from the Scandinavian countries, 

Argentina, and Canada. Milling quality (used in oatmeal and other forms of human 

consumption) and feed oats are the two major varieties of oats (Kleinman, 2013). You can trade 

oats futures on the Chicago Board of Trade (CBOT) of the CME (Taulli, 2011). 
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Wheat 

 

Wheat is the staple food of mankind. It is a cereal grain and globally the most important grain 

for human consumption. Cereal grains are grasses cultivated for their grains or seeds, and they 

provide more food energy to humans than any other crop. Other cereal grains include corn, rice, 

barley, oats, and rye. The calories that have fed the population boom of the world have largely 

come from these grains (Dunsby, et al., 2008). Wheat is a grass grown widely throughout the 

world, but particularly in temperate climates. Certain varieties can, however, cope with widely 

varying temperatures and levels of rainfall. There are a number of wheat types, each 

traditionally associated with different products, although modern milling and baking 

technologies are blurring the distinctions (Bain, 2013). The leading producers include China, 

the European Union (EU), and the United States. It helps that wheat can be planted in many 

types of climates but wheat does require a heavy amount of rainfall (Taulli, 2011). 

Wheat is the second most widely produced agricultural commodity in the world (on a 

per-volume basis), right behind corn and ahead of rice (Bouchentouf, 2015). Annual wheat 

production comes to about 20 billion bushels (Taulli, 2011). Countries have different marketing 

years depending on when they begin to harvest the new crop. In wheat, the international 

marketing year is from July through June. Wheat is grouped into two categories based on its 

growing season: winter wheat and spring wheat. Winter wheat is planted in the fall and becomes 

established before a period of dormancy during the winter. When spring comes, the winter 

wheat resumes its growth until an early summertime harvest. In areas where the winter is harsh, 

spring wheat is planted during the spring. It then is harvested in the late summer or early fall. 

Each wheat class is important as it has characteristics that are important to food manufacturers 

for specific products. Worldwide there are different classes (dependent on the country it is 

grown in) and varieties of wheat, but any wheat produced can be classified as either winter 

wheat or spring wheat (Dunsby, et al., 2008). Wheat production, like that of corn and soybeans, 

is a seasonal enterprise that’s subject to various output disruptions (Bouchentouf, 2015). As 

with other agricultural crops, the weather is an important factor in the final crop yield for wheat 

(Dunsby, et al., 2008). The supply of wheat depends on weather conditions, although 

investment in the sector – such as fertiliser, pesticides, irrigation and good storage – can also 

have an effect. In general, higher-protein hard wheats, which are grown in a short summer 

season under relatively dry conditions, have lower yields than other types, while varieties grown 

for animal feed have higher yields (Bain, 2013). Worldwide production of wheat has begun to 

take a back seat to production of corn and soybeans. Over the last decade its area harvested has 
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declined by more than 7 percent. During this same time the area harvested for corn has increased 

over 7 percent and soybeans area harvested has increased over 36 percent. Wheat production 

has lost its luster as demand for corn and soybeans has increased at a faster pace than demand 

for wheat. In addition, declining returns relative to other crops have helped entice farmers to 

switch away from planting wheat. However, an  important factor affecting the production 

dynamics is the fact that while corn farmers tend to buy their seed from dealers each year, wheat 

farmers use saved seeds from prior production (Dunsby, et al., 2008). 

The majority of the world’s wheat production is grown as winter wheat in the Northern 

Hemisphere (Dunsby, et al., 2008). Unlike other commodities that are dominated by single 

producers no single country dominates wheat production (Bouchentouf, 2015). The EU is the 

world’s largest wheat producer of which approximately one-third is grown in France. Other 

large wheat producers include Germany, the UK, Poland, Romania, Italy and Spain. The EU 

often produces more than it needs, but wheat remains popular among farmers: it is easy to grow, 

yields are good, and it is readily marketed. The EU actively supports wheat farming and has 

taken protectionist measures in the past to prevent cheap imports (Bain, 2013). The next largest 

wheat producer is China, the Chinese government also actively supports wheat farmers. India’s 

harvests are variable and sometimes it becomes a net importer, but it is the world’s third largest 

producer (Bain, 2013). Together, the advanced developing countries of China and India are the 

two largest producers in Asia. (Bouchentouf, 2015). The production of wheat in the United 

States is extremely important to the worldwide market. This is because the United States is the 

largest exporter of wheat. Approximately half of the country’s production is exported each year 

(Dunsby, et al., 2008). The United States produces a wide variety of types and classes of wheat, 

each of which is exported as well as consumed domestically (Bain, 2013). Other countries, such 

as Australia and Canada, are also important with regard to their levels of wheat production. 

Although they may not be the largest producers, these two countries are large exporters of 

wheat; historically, they export more than half of their production each year (Dunsby, et al., 

2008).  

World wheat trade accounts for only 20% of total production. The wheat market, unlike 

those for barley, corn or soybeans, is widely based geographically. It is almost unknown for a 

single country to account for more than 10% of total wheat imports. The EU is a leading wheat 

exporter but lacks the high-protein wheat needed in the baking industry as well as high-

specification durum wheat. High internal prices make the EU an attractive market for medium-

quality and feed wheat produced in the Black Sea region, although these shipments are subject 

to import restrictions. The United States is always the biggest wheat exporter no other country 
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can match the range of types and grades it produces and the efficient storage, transport and 

handling systems keep costs down and enable large amounts to be moved at short notice. The 

country is the “residual market supplier” and its transparent export prices (closely related to 

prices on American futures markets) represent a target against which other exporters compete 

(Bain, 2013). Most of the wheat consumed in China is produced within the country; China 

imports only a small amount of wheat (Dunsby, et al., 2008). With its huge demand, fluctuating 

production and uncertainty about the exact levels of reserve stocks, China can have a major 

impact on world wheat markets but it is not a regular importer. Small amounts of wheat are 

currently imported annually for use in blending with domestic grains. Countries in the Middle 

East and North Africa where bread is a staple food are important players in the wheat trade, 

importing significant quantities, particularly from Black Sea exporters such as Russia, Ukraine 

and Kazakhstan. Egypt is usually the largest wheat-importing country. Although efforts are 

being made to increase domestic production, it still falls short of demand, which is sustained at 

great expense by heavy bread subsidies. With high consumption per head and limited 

production, Algeria is heavily dependent on wheat imports, and Turkey’s imports can also be 

substantial. India is an occasional purchaser depending on the state of domestic supply and 

stocks. Pakistan is normally close to self-sufficiency but has to resort to imports occasionally. 

In Bangladesh, consumption of wheat is growing strongly, helped by the government’s open-

market sales, which offer wheat at a marked discount to people on low incomes. Domestic 

production is increasing only slowly, and imports are substantial. Indonesia is a major importer 

as it produces no wheat and demand for noodles and bakery products is increasing along with 

economic growth. With small domestic markets and no production or export subsidies, wheat 

farmers in Argentina and Australia depend much more on trade than their northern hemisphere 

counterparts. Some can, however, turn to other products so output is responsive to world prices 

as well as to the weather (Bain, 2013). Unlike the corn export market, which is dominated by 

one player—the United States—the wheat market has a number of exporters. The United States 

happens to be the largest wheat exporter, but it faces competition from Canada, Russia, 

Argentina, and Australia. This competition is healthy for the market and allows importers 

several choices from which to buy their wheat. In addition, since wheat is planted and harvested 

at different times during the year, a production shortfall in one region may be made up easily 

by upcoming harvests in other regions. This diversity of exporting countries provides stability 

to wheat trade and prices. The result is lower price volatility for wheat than in the corn market, 

because the corn market relies on one country’s production for the majority of the world export 

market (Dunsby, et al., 2008). 
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Wheat is still a dominant commodity, ranked second in food production. Of the world 

production, about two-thirds is for food consumption, with much of the rest for livestock feed. 

But there are other uses including seeds (Taulli, 2011). Wheat is primarily consumed in the 

form of flour used to bake breads, cakes, crackers, pasta, and other edibles. The wheat milling 

byproducts bran, germ, middling, and shorts are also produced. These milling byproducts are 

used by feed manufacturers in the production of livestock feeds (Dunsby, et al., 2008). Wheat 

is also used for industrial purposes, primarily to make starch. An emerging use of wheat, 

particularly in the EU, is in making ethanol (Bain, 2013). Since wheat is primarily consumed 

in the form of flour, other cereal grains and starchy food substances can be considered 

substitutes. Besides wheat, flour can be made from many other crops such as corn, barley, rye, 

and rice. Wheat flour is considered superior because of its gluten content. Other flour 

alternatives such as corn flour, bean flour, and rice flour are important because of their use in 

specific cultures (Dunsby, et al., 2008). 

Wheat consumption per capita has been in decline for almost 20 years. This is in 

comparison with corn, where per capita consumption has been rising during the same period of 

time.  One of the reasons is that as diets become more diversified and disposable income rises, 

demand for more expensive foods such as meats, fruits, and vegetables replaces demand for 

wheat. Keep in mind that wheat is still primarily consumed as a food source. On the other hand, 

corn is used in a variety of applications outside of food such as industrial uses and ethanol. The 

lack of additional uses for wheat results in slower growth in demand over time (Dunsby, et al., 

2008). Globally, human consumption per head is falling, but increases in human consumption 

are still recorded in many developing countries in some cases because of government subsidies, 

especially in North Africa. In India and Bangladesh massive amounts of wheat and rice are 

supplied through subsidized public distribution systems. Population growth and rising sales of 

flour-based convenience foods underpin world food-wheat consumption. Growth in 

consumption is largely in developing countries in South Asia, the Middle East, Latin America 

and North Africa; consumption in the most advanced economies is more or less unchanged 

(Bain, 2013). Worldwide consumption of wheat is dominated by China. This is not surprising 

considering that it is the most populated country in the world. Other large consumers of wheat 

include the EU, India, Russia, and the United States. Together they constituted almost 70 

percent of worldwide wheat consumption. Not surprisingly, all of these countries are also the 

ones with the highest levels of production. They do not rely on imports for their domestic 

consumption needs. Instead, with the exception of China, they are also some of the market’s 

largest exporters (Dunsby, et al., 2008). 
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As with the other agricultural commodities discussed in this chapter, the CME offers a 

futures contract for those interested in capturing profits from wheat price movements 

(Bouchentouf, 2015). The benchmark wheat future is the Chicago Board of Trade (CBOT) 

wheat future (Dunsby, et al., 2008). The Chicago contract is the highest volume contract in the 

world (Kleinman, 2013). 

The future outlook for wheat prices is mixed. Demand should remain steady, yet the 

supply side could have many changes. The most likely change comes from increasing 

competition for acreage from other crops such as corn and soybeans. Farmers that have the 

ability to plant multiple crops on their land will choose the crop with the highest profit margin. 

This battle for acreage will result in more competition between products for land and the 

potential for higher price correlation among crops. Overall wheat prices should lag gains in 

other crops as demand growth will be slower. As with other crops, the weather will play an 

important part in determining yields and thus production for each year’s harvest. Poor weather 

will lead to price spikes similar to those seen in the past (Dunsby, et al., 2008). Also, transport 

improvements and larger supplies from newer exporting countries, such as Russia, mean that 

the world wheat economy can function smoothly with much smaller stocks, while shortages of 

water will limit growth in wheat production, especially in China and other rapidly urbanizing 

and populous developing countries. Growth in food use will remain sluggish and mainly 

concentrated in developing countries in Asia, particularly India, and Latin America. In the 

longer term, food-wheat consumption growth may begin to slow as more meat is included in 

diets in parts of Asia and North Africa. The use of wheat as feed is linked to pricing and 

availability. The EU and Russia will remain big users, but processors in other countries could 

switch back to corn and other products (Bain, 2013). 

 

 

SOFTS 

 

Coffee 

 

Coffee beans are not actually beans but are the seeds within a fruit (or cherry) of a tropical tree 

grown in a large number of countries across Asia, Africa and Latin America. Two principal 

varieties of coffee are traded internationally: arabica and robusta (Bain, 2013). Coffee is the 

world’s premiere caffeine delivery device. It provides about 54 percent of the world’s total 

caffeine, followed by tea and soft drinks. The coffee plant is a woody evergreen shrub or tree 
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that is grown in subtropical and tropical climates. Coffee beans are the seeds of this plant  

(Dunsby, et al., 2008). Coffee is the second most widely produced commodity in the world, in 

terms of physical volume, behind only crude oil (Bouchentouf, 2015). 

There are two major types of coffee: Arabica and Robusta. Arabica coffee is generally 

considered superior to Robusta, which is often described as having a harsh taste. About two-

thirds of world production is Arabica, and one-third Robusta (Dunsby, et al., 2008). Arabica 

coffee is the most widely grown coffee plant in the world, accounting for more than 60 percent 

of global coffee production. It’s the premium coffee bean, adding a richer taste to any brew, 

and, as a result, is the most expensive coffee bean in the world. Because of its high quality, it 

serves as the benchmark for coffee prices all over the world (Bouchentouf, 2015). Arabica is 

more aromatic but takes more time to cultivate and is more complex (Taulli, 2011). Arabica 

trees grow at high altitudes, often on volcanic soils, and because they are more difficult and 

costly to grow, the beans trade at a premium (Bain, 2013). Robusta accounts for about 40 

percent of total coffee production. Because it’s easier to grow than Arabica coffee, it’s also less 

expensive (Bouchentouf, 2015). As the name implies, Robusta is stronger and has higher 

caffeine levels (Taulli, 2011). Robusta trees grow at lower altitudes and the beans, while 

stronger, are considered to have less flavor (Bain, 2013). It takes approximately four years for 

a coffee bush to produce a useful crop (Kleinman, 2013). This long lead time can create periods 

of supply–demand imbalance, as farmers plant coffee when prices are high but then do not 

produce a crop for several years, by which time circumstances may differ (Dunsby, et al., 2008). 

Farmers typically sell their beans to local co-operatives or buyers, who sell them on to exporters 

for roasting or processing in the consuming country. Roasters then sell directly to retailers. 

Coffee roasting is a concentrated activity; nearly 40% of the world’s coffee is traded by four 

companies and 45% is processed by three coffee-roasting firms. Most processing takes place in 

end-user countries and they still dominate. The dominance of a few multinationals in the coffee 

business has reduced the power of coffee farmers to influence prices or the market more 

generally. 

Many countries produce both varieties. There are a lot of smallholders growing coffee 

as well as large farms and estates, particularly in Latin America and Kenya (Bain, 2013). Coffee 

is produced in approximately 70 countries, but the world’s largest coffee producer by far is 

Brazil. This makes the price of coffee sensitive to weather conditions in Brazil. About two-

thirds of world coffee production is Arabica. The countries of Western Africa and Vietnam 

produce mostly Robusta coffee. Although Brazil produces mostly Arabica coffee, it is actually 

the world’s second largest Robusta producer, behind Vietnam. A bit more than 20 percent of 



93 
 

Brazil’s crop is typically Robusta. The producers of Arabica coffee are located in Central 

America, Africa, and South America. Brazil is the world’s largest producer of Arabica coffee 

by far (Dunsby, et al., 2008). The potential dangers to the Brazilian harvest are frosts from early 

June to August in the south, and drought from September to December in the north, by far the 

more important producing region. The biennial cycle of the country’s arabica trees also affects 

the size of the harvest. Colombia, Peru, Ecuador, Mexico and Central America are all important 

coffee-growing regions, but Colombia’s output has fallen in recent years, partly because of 

adverse weather and partly because of a rejuvenation programme, the rewards of which will 

come later (Bain, 2013). Recently, the second largest producer of coffee has been Vietnam, 

surpassing Colombia, which has historically been the second-biggest producer. This represents 

quite a change to the coffee supply dynamic, given that as of the mid-1980s Vietnam was only 

a trivial producer of coffee. The value of Colombia’s production is still greater, however, as it 

produces premium Arabica beans whereas Vietnam’s production is primarily Robusta (Dunsby, 

et al., 2008). The Central American countries of Costa Rica, Mexico, Guatemala, Honduras, 

and El Salvador are also important producers, as are Uganda, Indonesia, and Vietnam 

(Kleinman, 2013).  

Producing countries export most of what they grow (Dunsby, et al., 2008). Vietnam is 

now the world’s largest coffee exporter (reflecting very low domestic consumption) and second 

largest producer. Africa, where coffee farming has been starved of investment and at times hit 

by civil disturbance, now accounts for little more than 12% of exportable supply (Bain, 2013). 

Brazil and Columbia account for one-third of the world’s exportable supplies (Kleinman, 2013). 

 

Figure 19: Coffee production by country (Dunsby, et al., 2008) 
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Coffee consumption is believed to be more inelastic, with a major price increase needed 

to curtail demand. Americans consume close to double what the Germans drink (they are 

number two), followed by the Chinese, the French, the Japanese, and then those from the other 

major EEC countries. Consumption trends need to be followed closely (Kleinman, 2013). 

Arabica coffee has the highest consumption (70 percent) and price. Yet both Robusta and 

Arabica coffee prices tend to track each other (Taulli, 2011).  Consumer preferences are also 

impacted by changes in culture or even in advertising. Companies like Starbucks have helped 

to increase the demand for coffee (Taulli, 2011). 

Coffee trades on two major exchanges (Dunsby, et al., 2008). Coffee is traded in 

London, but the most active contract is in the United States, which is also the major consuming 

nation (Kleinman, 2013). The main international futures markets for coffee are in New York 

(arabicas) and London (robustas) (Bain, 2013). The New York Board of Trade (NYBOT) lists 

a contract for washed Arabica deliverable from a predetermined set of countries. The same goes 

for Robusta coffee that trades on the Euronext-Liffe exchange. Like the NYBOT contract, this 

contract also specifies a set of countries whose growths are deliverable (Dunsby, et al., 2008). 

Investors can also purchase coffee futures on the CME (Taulli, 2011). Arabica trades at a 

premium to Robusta, and the two prices tend to move together. There is no long-term 

discernible trend in the price of coffee (Dunsby, et al., 2008). 

For decades (between the 1960s and 1980s), coffee prices were controlled by 

International Coffee Agreements (ICAs), which sought to manage exports in a bid to maintain 

prices at a level acceptable to both consumers and producers. Intervention ended in July 1989, 

and prices were subsequently hit by large increases in coffee production in Brazil and Vietnam. 

Coffee prices proved surprisingly resilient during the subsequent global economic downturn, 

largely because of disappointing crops which meant that the market was in deficit for five years 

between 2007/08 and 2011/12 (Bain, 2013). Because of seasonality, cyclicality, and 

geopolitical factors, coffee can be a volatile commodity subject to extreme price swings 

(Bouchentouf, 2015). A major impact on coffee pricing is from supply disruptions due to 

weather (Taulli, 2011). 

The outlook for global coffee consumption is for sluggish growth, with lower growth in 

most OECD countries (Europe in particular) than in non-traditional markets (mainly in the 

developing world) for some time (Bain, 2013). The steady increase in coffee supply and the 

only moderate increase in demand make it unlikely that there will be a secular demand/supply 

imbalance that will put upward pressure on the price of coffee. More likely, the price of coffee 

will remain trendless or mildly increasing and will continue to have weather-related price 
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spikes. Given that coffee is produced in many different countries and that many of these 

countries are poor, there is likely to be continued upward pressure on supplies. If so, it will be 

difficult for coffee to show a strong upward trend in the future (Dunsby, et al., 2008). Supply 

should continue to grow as many countries have rehabilitation schemes in place or on the 

drawing board aimed at boosting yields and cutting costs. Furthermore, the legacy of several 

years of historically high prices has allowed farmers to invest in better crop maintenance and 

expand planted area (Bain, 2013). 

 

 

Cocoa 

 

Cocoa is the fundamental ingredient in all things chocolate: milk chocolate, dark chocolate, and 

cocoa powder, among other things. It is the seed a of the cacao tree a tropical understory tree 

that grows only in wet environments near the equator. It originates from South America, but 

today it is mostly grown in Africa. It has been the exclusive delicacy of royalty, it has served 

as currency, and it has become what it is today—an everyday treat for people worldwide and 

an important cash crop for many developing countries (Dunsby, et al., 2008). Cocoa production, 

which is dominated by a handful of countries, is a major agricultural commodity, primarily 

because it’s used to create chocolate (Bouchentouf, 2015). 

Cocoa is grown mainly in tropical parts of the world, close to the equator and 

predominantly on smallholdings. Cocoa trees need plenty of rain and sun and protection from 

strong winds (Bain, 2013). The cacao tree is unusual in that it produces both flowers and seeds 

at the same time; thus, where rainfall is adequate, it can produce more than one crop during the 

year (Dunsby, et al., 2008). The main producing countries have two crops a year: a main one 

and a subsidiary crop, usually called the mid-crop. The world’s main crop is produced from 

October to March (Dunsby, et al., 2008). Once trees reach maturity, which takes 3–4 years, 

yields increase for some years and then reach a plateau, which can be maintained for up to 30 

years, before going into decline. As a result, cocoa production tends to be inelastic in response 

to price as it takes several years to establish a commercially productive plantation. However, 

yields can be improved through increased use of fertilizers and pesticides. Cocoa farmers 

typically sell their beans to a local co-operative or buyer, which then sells the beans on to 

grinders. These can be either local companies or foreign buyers, which then ship the beans 

abroad – or, increasingly, foreign-owned companies operating in the cocoa-growing countries. 

Cocoa beans are cleaned, roasted and ground to produce cocoa liquor. The liquor is then 
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processed to give two intermediate products: cocoa butter and cocoa powder (Bain, 2013). The 

marketing year for cocoa runs from October to September (Dunsby, et al., 2008). 

Cocoa production is highly concentrated in certain parts of the world, principally West 

Africa, Indonesia and Brazil (Bain, 2013). The cocoa tree is a tropical plant that grows only in 

hot, rainy climates. As a result, the major producing countries are Brazil, The Ivory Coast, 

Ghana, Malaysia, and Nigeria (Kleinman, 2013). The largest by a wide margin is Cote d’Ivoire 

(Ivory Coast) which produces just under 40 percent of all cocoa.  The importance of Cote 

d’Ivoire to the supply of cocoa makes events there important for the price of cocoa. A bad crop, 

perhaps due to dry weather, would certainly push the price of cocoa up worldwide. Also, Cote 

d’Ivoire has had periods of political instability (Dunsby, et al., 2008) and since cocoa is found 

in areas that involve political instability, like the Ivory Coast, the commodity has seen much 

volatility over the years (Taulli, 2011). Additionally, lower labor costs in producing countries 

have been an incentive for foreign companies to invest in local processing (Bain, 2013). 

The number-one and number-two export destinations for cocoa are Europe and North 

America. Because cocoa is a luxury good, consumption is generally related to a country’s 

wealth (Dunsby, et al., 2008). Over 85% of world cocoa output is exported, either as raw beans 

or as processed products, as most producing countries are small final consumers of the 

commodity. Exceptions include Brazil, which in some years is a net importer, Mexico and 

Colombia. The leading exporters –Côte d’Ivoire, Ghana, Indonesia, Nigeria and Cameroon – 

accounted for 83% of all cocoa bean exports. Historically, cocoa-producing countries exported 

most of their cocoa beans for processing in their end markets, particularly in Europe and the 

United States. However, in recent years there has been an expansion in cocoa-bean grindings 

in producing countries as they try to move up the value chain (Bain, 2013). The leading 

importing nations are (in order) the United States, Germany, France, the Netherlands, and the 

United Kingdom (Kleinman, 2013). Traditionally, the bulk of stocks were held in importing 

countries, particularly western Europe’s main entry ports, but this has changed in recent years 

with the growth in processing in producing countries (Bain, 2013). Cocoa production for import 

and export purposes is measured in metric tons (Bouchentouf, 2015).  

Consumption is not measured directly but is inferred from grindings—that is, how much 

cocoa bean enters processing (Dunsby, et al., 2008). Cocoa butter is extracted from the beans 

for use in cosmetics and pharmaceuticals, but its primary use is for the manufacture of chocolate 

(Kleinman, 2013). More than 98% of cocoa ends up in chocolate, other confectionery, bakery 

products and drinks, with the pharmaceutical and cosmetic industries taking the rest (Bain, 

2013). Cocoa is consumed primarily in countries of relatively high income. It was first brought 
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to Europe as a luxury drink in the seventeenth century. The five leading importing nations, 

mentioned above, account for about two-thirds of the world’s consumption (Kleinman, 2013). 

The growth in cocoa demand in emerging countries is proving more robust, but this is from a 

low base. Rising cocoa consumption in developing markets is, however, influencing the balance 

of demand between cocoa butter and cocoa powder, leading to a shift in demand from butter, 

which is used in richer products like chocolate confectionery, to cocoa powder, which is used 

in products like chocolate biscuits, cakes and drinks (Bain, 2013). 

Cocoa futures are traded on the London (Euronext-LIFFE) and New York (NYBOT) 

stock exchanges, and these provide a reference point for the physical trade in cocoa (Bain, 

2013). The main difference between the contracts is that the NYBOT contract is denominated 

in U.S. dollars and the Euronext contract is denominated in British pounds sterling. Accounting 

for the currency difference, the Euronext contract typically trades at a premium because of 

warehouse location and the quality of the cocoa deliverable at par. It also has a moderately 

higher open interest (Dunsby, et al., 2008). Having benchmarks set in London or New York 

makes it harder for producers or buyers to manipulate prices in local markets (Bain, 2013). 

Cocoa is one of the few agricultural commodities to suffer in an economic downturn, 

reflecting its status as a luxury item rather than an essential food (Bain, 2013). As with coffee, 

the cocoa market is subject to seasonal and cyclical factors that have a large impact on price 

movements. It can be pretty volatile (Bouchentouf, 2015). Production is more volatile than 

consumption but much more steady than production in, say, coffee (Dunsby, et al., 2008). In 

the past couple of decades, cocoa prices have been hugely volatile. This is partly because supply 

is concentrated in only a few producers, so adverse weather or civil unrest (which disrupts 

output or trade) in any of the large producers leads to market shortages. Financial investors in 

the cocoa market have also contributed to price volatility. The activity of investment funds on 

futures markets has in recent years played a big role in short-term price movements (Bain, 

2013). Aside from spikes, the price of cocoa has increased only very slowly (Dunsby, et al., 

2008). 

The outlook for cocoa supply is positive (barring unforeseen shocks such as adverse 

weather), constraining the potential for sharply higher prices in the medium term. Slow global 

growth in recent years and price-conscious consumers have led to some switching by 

confectionery-makers from cocoa butter to cheaper vegetable-oil substitutes (Bain, 2013). In 

recent years, perhaps following in the footsteps of coffee, there has been increased interest in 

higher-quality, single-country cocoa. This could potentially lead to a double or multi-tiered 

market in the future. Other recent developments are the introduction of organic cocoa and, again 
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as with coffee, fair trade cocoa, which guarantees a minimum price to the grower. Looking 

forward, as with all commodities, there will be price spikes. In cocoa, they will likely be related 

to weather and possibly also to political unrest. Increasing world wealth and newly found health 

benefits bode well for demand, which should grow steadily, as it has. Supply should increase 

as producing countries increase acreage devoted to cocoa, but it will be limited by the fact that 

cocoa can be grown only in equatorial regions. Thus, the long-term outlook for price is flat to 

modestly increasing (Dunsby, et al., 2008). 

 

 

Sugar 

 

Sugar is a crystalline of carbohydrates. The main ingredients are sucrose, lactose, and fructose. 

Of course, the result is a sweet flavor (Taulli, 2011). Sugar is made by plants to store energy 

that they don’t need immediately, similar to the way animals store fat. All plants produce sugar 

using photosynthesis, but only sugarcane and sugar beets store enough for commercial 

production. Once processed, the end product produced from both crops is nearly identical 

(Dunsby, et al., 2008). The two main sources for sugar come from sugarcane and sugar beets. 

Of these, sugarcane accounts for roughly 70 percent of global production (Taulli, 2011). 

Sugarcane is a perennial grass that looks like bamboo and is grown in tropical and semitropical 

climates. Sugar beets are an annual crop grown in the more temperate climates of the Northern 

Hemisphere. Sugar is a pure carbohydrate that supplies energy to the body. It plays an important 

role in the world’s food supply (Dunsby, et al., 2008). 

The two main types of sugar grown in the world are cane and beet. Both produce the 

same type of refined product (Kleinman, 2013). Sugar cane is a grass grown in tropical and 

subtropical parts of the world. It can be cut manually or by machine. It is taken to a processing 

plant where it is milled and the juice extracted. Sugar beet is grown in temperate parts of the 

world and is an annual plant with a tuberous root that has a high concentration of sucrose. It 

can also be harvested manually or mechanically (Bain, 2013). During the past 25 years, 

approximately 70 percent of world sugar production has come from sugarcane and 30 percent 

from sugar beets. More recently, those percentages have shifted to account for more sugar from 

sugarcane and less from sugar beets. This is because the cost of producing sugar from sugarcane 

is cheaper than from sugar beets. Sugarcane and sugar beets go through different processes in 

order to  arrive at the end product, refined sugar (Dunsby, et al., 2008). At the processing plant, 

the sugar is extracted by diffusion. Sugar cane, the main source of supply, requires more 
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processing than beet and this sometimes takes place in the destination country (Bain, 2013). 

The raw sugar is yellowish brown in color and can be bleached to make crystal sugar or refined 

to create white refined sugar. When raw sugar goes through a sugar refiner, it is purified even 

further to white refined sugar. This is the sugar commonly found in Europe and the United 

States. White refined sugar is usually dried and packaged as granulated sugar. Sugar beets and 

sugarcane can also be processed into sugar-based ethanol for transportation fuel. Of the two, 

sugarcane is the most cost effective input for making ethanol (Dunsby, et al., 2008). Around 

70% of total production is traditionally during October to March, with the peak beet lifting and 

processing period occurring in October- December, and cane cutting taking place in January-

March. Southern hemisphere crops, mainly cane, boost supply in the second and third quarters. 

Cane crops are harvested 12–18 months after planting and cut for up to seven years before 

replanting. If the weather is good, some countries can harvest more than once a year. The 

balance comes from sugar beet, which is sown in the spring and harvested from October 

onwards, mainly in the temperate zones (Bain, 2013). 

Sugar is grown in more than 100 countries around the world (Kleinman, 2013). The 

world’s largest sugar producers are Brazil, the European Union, China, and India. They account 

for more than 50 percent of world production. Of the four, the European Union is the only 

country to produce most of its sugar from sugar beets. Other smaller but important sugar 

producers include Thailand, Australia, Pakistan, Mexico, and the United States (Dunsby, et al., 

2008). More specifically, Cuba, India, Thailand, Brazil and China are the leading cane 

producers, whereas Russia, USA, Europe, Japan, and the EEC are the major beet producers 

(Kleinman, 2013; Taulli, 2011). A few countries spanning subtropical and temperate zones, 

such as the United States and China, produce beet and cane. The contribution of cane to supply 

has risen sharply in recent years, following steep increases in Indian and Brazilian output and 

a decline in EU beet production. More recently, the rate of cane sugar expansion has slowed 

because of competition for the raw material from Brazil’s ethanol sector (Bain, 2013). Brazil is 

the largest producer of ethanol using sugarcane (Dunsby, et al., 2008). Furthermore, Russia’s 

efforts to reduce dependency on imports with larger domestic crops is sustaining the size of the 

global beet crop (Bain, 2013). India is the world’s second largest sugar producer, but annual 

production can vary enormously depending on the monsoon (Bain, 2013). Since sugar 

production is concentrated in only a few regions, it is vulnerable to weather (Taulli, 2011). 

Four major players – Brazil, Thailand, Australia and Guatemala – typically account for 

around two-thirds of world exports, with the rest coming from medium-sized and smaller 

suppliers, which helps to reduce supply volatility. India and EU can also be important suppliers 
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in years of good harvests. Exports consist mainly of raws (unrefined cane sugar) and whites 

(mainly refined from beet but including some refined raws). Raw sugar exports were 

traditionally dominated by Brazil, Australia, Thailand, Guatemala, South Africa and Cuba, and 

white sugar by Brazil, the EU and Thailand and, in good crop years, India. In some years, India 

is an important supplier to the global market, but in other years it restricts exports to contain 

internal prices. Russia, the United States, Japan, South-East Asia, the Middle East, western 

Europe and China have traditionally been the largest net importers. However, Russia has made 

some progress in boosting domestic beet supply and is no longer such a large presence in the 

market, partly because it uses its own stocks when it can, particularly when prices are high. 

Indonesia has also made progress on reducing its import volumes but so far has failed to reach 

its goal of self-sufficiency, while Pakistan has gone from being a net importer to a small net 

exporter in some years. Efforts by importing countries to reduce their reliance on imports mean 

that world trade in sugar as a share of production is declining, apart from years in which one of 

these countries experiences a major crop shortfall (Bain, 2013). In addition, the countries that 

utilize the sugar import market have changed over time. At this time the sugar import market is 

made up of many developing countries that will lower their consumption when prices increase. 

Brazil has been a model for the rest of the world in weaning itself of energy imports. It helps 

that Brazil has a large amount of available land and the right climate for growing sugarcane to 

make ethanol. Ethanol is a biofuel made from the fermentation of sugars and is used as an 

alternative to gasoline. The low-cost production of ethanol using sugarcane will allow Brazil to 

have a foothold in the global ethanol industry for many decades to come (Dunsby, et al., 2008). 

The EU is in a good position to expand beet output with its equable climate, high yields, rapid 

harvest and modern, efficient processing chains, and the demand is likely to be there if ethanol 

production expands. However, growing opposition to the use of food crops to make biofuels 

could curtail this incentive for beet production, although it may indirectly benefit the region’s 

sugar production. Thailand has significantly increased sugarcane production and milling in 

recent years. This expansion is the result of harvest mechanisation and increased milling 

capacity, and Thailand is now the world’s second largest exporter. China typically produces 

more sugar than Thailand and has also been increasing output, but output still falls short of 

consumption and the country is a net importer. The government will continue to encourage 

domestic crop expansion, but suitable land could prove a constraint (Bain, 2013).   

Consumption of sugar divides between household use and indirect industrial use in soft 

drinks, confectionery and manufactured foods. Indirect use accounts for over two-thirds of 

consumption in Europe and North America and over 80% in some East Asian countries. The 



101 
 

split in the developing world varies widely, but growth is principally in indirect use, as 

processed food and soft-drink consumption increases (Bain, 2013). Also, the expansion into 

biofuels has increased demand for raw sugar from sugarcane to make fuel ethanol (Dunsby, et 

al., 2008). India is the world’s largest consumer of sugar, although growth in consumption in 

recent years has been much slower than in China. Consumption in India, though, can vary from 

year to year depending on the size of the domestic crop and prices. Demand in the Middle East 

has been growing steadily in recent years, despite high prices, and in much of Sub-Saharan 

Africa (apart from South Africa and its sugar-producing neighbours) demand for sugar has long 

outstripped supply (Bain, 2013). The highest consumer of sugar is Brazil, in terms of per-capita 

consumption. A key driver for sugar demand has actually been for energy production. Brazil 

uses a large amount of sugarcane for ethanol. Interestingly enough, the higher oil prices go, the 

more attractive this fuel becomes, due to substitution effect (Taulli, 2011). Usually, most sugar 

is consumed in the country in which it was grown and produced under government pricing 

arrangements (Kleinman, 2013). 

Of course, sugar is used to manufacture food products. There are substitutes for sugar. 

One is high fructose corn syrup. If sugar prices get to extreme levels, consumers will usually 

move over to the sugar alternatives, which will affect the demand for sugar. There are both 

natural and chemical sweetener substitutes for sugar, although sugar retains about a 70% share 

of world demand for sweeteners. Chemical sweeteners, such as saccharin and aspartame, as 

well as an expanding number of synthetic chemical products, are typically much stronger than 

sugar. High-fructose corn syrup is a more natural alternative to sugar that has been widely 

adopted in the United States. However, chemical sweeteners are typically less versatile and 

cannot be used at extremely high temperatures, making them unsuitable for baking. They can 

also affect taste. Nevertheless, their low calorific value and intensity of sweetness can help with 

weight reduction or control programmes and make them popular with diabetics. There are also 

cost advantages in using artificial sweeteners rather than sugar in food processing. Furthermore, 

substitutes for sugar have been widely adopted in the manufacture of soft drinks where taste is 

more easily masked or in countries where sugar prices are so manipulated that they are price 

competitive. Technological advances are extending some of the substitutes’ properties, 

gradually enlarging their share of sweetener use, especially in soft drinks (Bain, 2013). 

Sugar has a market structure that is completely different from that of the other 

commodities (Dunsby, et al., 2008). Government sugar subsidies have a significant impact on 

the fundamentals of the world sugar market. Nearly every country in the world that produces 

sugar has some form of subsidy, either directly or indirectly. This makes sugar the most 
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subsidized commodity in the world. Direct subsidies can be in the form of domestic market 

controls such as production quotas and guaranteed prices, export controls such as export 

subsidies, or import controls such as import tariffs or quotas. Indirect subsidies occur in the 

form of income support and debt financing or additional long-term support programs such as 

government ethanol programs. The result of these sugar subsidies is overproduction of sugar 

and a sugar surplus in the world market. This occurs because subsidized producers overproduce 

and then dump their excess sugar on the world market for whatever price they can get. The 

price received is often a fraction of the cost of production. This dumping of sugar on the market 

is why the world market for sugar is often referred to as the world dump market and the price 

received is called the dump price. Compared to actual supply and demand, the dump market for 

sugar is fairly small. Approximately 20 percent of world sugar production is openly traded on 

the world dump market. Some countries do not allow or minimize access to the dump market 

for both consumers and producers. This distorts the market even further in that consumers may 

be required to pay the domestic price, which is higher than the dump market price. In addition, 

countries can limit their sugar production by not allowing producers to sell excess sugar on the 

dump market. This will make them produce only what the government will pay for, because 

additional production would not be of any value (Dunsby, et al., 2008). Historically, subsidised 

production led to high global stocks, which hovered at around one-third of global consumption. 

India in particular required high stocks to feed a vast and complex distribution system, and the 

EU and China both maintained stockpiles in an effort to regulate their internal markets. 

Transparency in the sugar market has improved hugely as a result of efforts, mainly during the 

1990s, to liberalise trade, privatisation and deregulation. However, government policies in some 

countries still distort domestic prices or prices paid by end-users. In the EU, a reform 

programme designed to be compliant with WTO rules – curbing subsidised output and exports 

– has resulted in significant restructuring in the industry, which has emerged smaller but more 

efficient. However, the region is now a net sugar importer (Bain, 2013). 

There are many varieties of sugar futures. But the most common one for futures 

investors is Sugar No.11, which is based on the world benchmark contract for raw sugar (Taulli, 

2011). There are two active sugar futures in the world, one for the delivery of raw cane sugar 

and one for the delivery of white refined crystal sugar. The raw sugar future is traded on the 

New York Board of Trade (NYBOT). It is the world sugar #11 future and has been trading 

since 1914. The London International Financial Futures Exchange (LIFFE) trades the white 

sugar future. In terms of liquidity the NYBOT sugar #11 future is the premier sugar future. It 

has approximately 10 times the open interest and significantly more daily volume than the 
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LIFFE white sugar future (Dunsby, et al., 2008). You can, also, trade the sugar futures on the 

CME (Taulli, 2011). 

Sugar has had a volatile trading history (Taulli, 2011). The world market for sugar as 

well as the corresponding futures contract does not bear any relationship to the true global 

supply and demand conditions. This is because nearly every sugar-producing country in the 

world intervenes in its production, consumption, and trade of sugar. Only approximately 20 

percent of global sugar production is traded on the open market. The rest is consumed or stored 

in the country in which it is produced. This makes it extremely hard to derive a true assessment 

of the fundamentals that drive the world sugar price. The sugar on the open market is heavily 

subsidized, and often the price received is lower than the cost of production. The future of the 

sugar market is dependent on world governments’ curtailing subsidies and other sugar support 

programs (Dunsby, et al., 2008). The sugar that is not subject to government restrictions is 

freely traded among nations, corporations, and traders. This free market is typically 15% to 

25% of world production. A 5% change in production can mean a 25% change in free market 

supply (Kleinman, 2013). Investor interest in the market has been cited as an important factor 

in the strengthening of prices, but there are others such as years of underinvestment in the sector 

(because of low prices), rising demand for sugarcane from the biofuel sector, protectionist trade 

policies and strong economic growth (Bain, 2013). 

 As adoption of ethanol as fuel increases, Brazil will divert some of its sugar exports to 

ethanol exports. Demand growth for sugar will come from alternative markets such as ethanol 

because refined sugar is facing increasing competition from non-sugar substitutes. 

The price for sugar on the world dump market should continue to be influenced by changes in 

government subsidies for sugar. Overall, the price should remain steady, but production 

shortfalls due to weather events could lead to price spikes (Dunsby, et al., 2008). Sugar 

consumption, which is often supply-led, weakens but continues to grow during times of high 

prices. A recovery in supply and a return to lower prices could unleash a rapid acceleration in 

consumption, particularly in the beverages and manufactured-food industries of developing 

countries. Growing concerns in the developed world, and increasingly in the developing world, 

about obesity and the rising incidence of diabetes associated with sweet foods (although sweet 

foods are not always sugar-based) could act as a constraint on sugar consumption. Cane (and 

to a lesser extent beet) can also be used to make biochemical – acting as a substitute for 

petrochemicals – and bioplastics. As cane is a renewable input, these industries are likely to 

grow, putting more pressure on cane suppliers and potentially leading to higher prices (Bain, 

2013). 
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Cotton 

 

Cotton is the world’s most important textile (Dunsby, et al., 2008). Cotton has been around for 

thousands of years. Today, cotton is still important and it is the most widely used natural fiber 

for clothing (Taulli, 2011). Cotton is the soft fiber seed casing of the cotton plant that is grown 

worldwide in tropical and subtropical regions. The fiber is spun into thread and used to make a 

textile or cloth. Its economic importance in many countries around the world resulted in cotton 

being known as white gold (Dunsby, et al., 2008). 

Farmers plant cotton during April and May, when the soil and weather are generally the 

best. But if there is adverse weather during this time, then it can wreak havoc on the cotton crop 

(Taulli, 2011). Cotton plants require a sunny growing period with at least 160 frost-free days 

and an ample supply of water. Wild cotton is a perennial plant, but cultivated cotton must be 

planted annually. Today’s cotton plant was created using a combination of genetic modification 

and specific breeding of a variety of wild cotton species. These modifications have enabled the 

cotton plant to be resistant to some insects, to require less fertilizer, and to make the cotton fiber 

better for textile processing (Dunsby, et al., 2008). Cotton grows around the seeds of the plant 

in a protective pod or boll and is almost pure cellulose, which means that is soft, breathable and 

absorbs moisture easily. Cotton used to be picked manually in what was an arduous process, 

but now most picking is mechanised. Once harvested, the cotton is combed to remove the seeds. 

Cotton is typically spun to make a yarn or thread. The intermediate processing stages are many: 

spinning, weaving, knitting, dyeing, finishing, the manufacture of clothing, and so on. Cotton 

is graded by country of origin, staple length, fineness and maturity. Objective grading criteria 

have been introduced, of which the micronaire ranking of fibre quality is the most significant. 

(Bain, 2013). All parts, not just the cotton fiber, of the cotton plant are valuable. . The cottonseed 

part of the cotton plant is an oilseed like soybeans. Cottonseed is crushed to produce its three 

products: cottonseed oil, cottonseed meal, and hulls. Both the cottonseed oil and cottonseed 

meal have uses similar to those of soybean oil and soybean meal. The cottonseed oil is used 

primarily for human consumption in the form of cooking oil, salad dressings, and other food 

products. Cottonseed meal is a protein source used for livestock feed (Dunsby, et al., 2008). 

World production of cotton is dominated by China, the United States, India, and 

Pakistan. These four producers account for approximately 70 percent of world production. Each 

country may have a different crop marketing year depending on its planting and harvest 

schedule (Dunsby, et al., 2008). The American government subsidizes cotton producers and 

exporters; in recent years this has proved controversial, with Brazil and African countries 
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challenging the subsidies. EU countries, particularly Spain and Greece, also offer subsidies, but 

output is small and thus this has not been the subject of debate. China offers incentives to 

producers, but as it is a net importer of cotton this is not deemed to be a market-distorting 

activity. India and many African producers offer minimum support prices to farmers, but the 

level of subsidy is generally low. Production in Eastern Europe and central Asia declined after 

the break-up of the Soviet Union, but it has since recovered in Uzbekistan, Turkmenistan, 

Tajikistan and Kazakhstan and is typically price competitive (Bain, 2013). 

World cotton trade has two major players—the United States and China. The United 

States is the single largest exporter of cotton, as its textile and clothing production has been 

declining but its cotton production has been increasing. China is the largest importer of cotton 

as its textile production has had tremendous growth (Dunsby, et al., 2008). Now, China and 

India are the biggest importers of cotton, and the growth has been strong (Taulli, 2011). 

The cotton fiber is used to produce fabric, and the seed is used for cooking oil 

(Kleinman, 2013). Approximately 60% of cotton consumption is in the manufacture of clothing, 

notably jeans, shirts and t-shirts. A significant proportion is used to make household textiles: 

towels, table linen, bedding, curtains and upholstery fabrics (Bain, 2013). It is used in hundreds 

of textile products, including bed sheets, and bath towels (Dunsby, et al., 2008). 

China is now the largest consumer of cotton with the India being the second (Bain, 

2013). Other major consumers (some are users for manufacturing) of cotton are Pakistan, 

Turkey, Brazil, and the United States (Kleinman, 2013). These countries then re-export the 

finished apparel and household goods back to the United States, which is the largest exporter 

of raw cotton. One reason is the expansion of the textile industry in this region. Cotton 

production there is high, creating a potentially lower input cost to the textile mills (Dunsby, et 

al., 2008). 

Futures and options are traded on the ICE Futures exchange in New York. There are 

around 20 cotton exchanges around the world, in both producing and consuming countries, 

where raw cotton is traded (Bain, 2013). You can, also, purchase futures contracts for cotton on 

the CME (Taulli, 2011). In terms of both volume and open interest, the cotton futures on the 

New York Board of Trade (NYBOT) are the most liquid in the world (Dunsby, et al., 2008). 

Price changes in the U.S. cotton market seem to be largely driven by export demand. 

The movement of the textile industry away from the United States to China and other Asian 

countries has fueled the expansion of cotton production in China. Other smaller cotton 

producers such as Brazil and Uzbekistan have emerged as swing cotton producers. A large 

amount of their excess production goes to the export market. This results in more competition 
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and supply in the cotton export market, benefiting importers with lower prices (Dunsby, et al., 

2008). Cotton prices are affected by trends in other industrial raw material prices, by the prices 

of possible substitutes (wool and man-made fibres), developments in the textile sector, the value 

of the dollar, and the demand and supply fundamentals associated with cotton. While cotton 

competes with other natural fibres such as wool, flax, jute and bamboo, more serious 

competition has come from synthetic (petroleumbased) and artificial (cellulose-based) fibres, 

affecting the pricing dynamics of cotton as substitutes. Today, the use of cotton in products 

such as net draperies, sportswear, hosiery and technical textiles is small. In many other products 

– woven shirts, for example – cotton is often blended, usually with polyester (Bain, 2013). 

Cotton is a sustainable fibre (in that it comes from a crop that can be grown again, 

whereas most man-made fibres are based on petroleum, a finite resource), which should boost 

its attractiveness in the medium term (Bain, 2013). Cotton’s future remains mired between the 

competition for acreage among agricultural products and demand for textile products. As 

population and global wealth increase, demand for clothing, household goods, and other textile 

products will increase. This demand increase will come at a time of lower available acreage for 

cotton, as it faces competition globally from food crops such as corn, soybeans and other 

oilseeds, and wheat. Still, cotton production will be dependent on the weather, and price spikes 

will occur. Overall cotton prices should remain steady to higher going forward in order to buy 

acreage each year as needed for production (Dunsby, et al., 2008). 

 

 

Lumber 

 

Woods are classified as hard or soft. Softwoods account for 85% of total lumber consumption. 

Most harvesting of lumber is done by the mill on land leased for timber rights by private parties 

or the government. The bark is removed, and logs move to the head saw (Kleinman, 2013). 

There are two types of wood in the lumber industry: softwood and hardwood. Softwood 

comes from trees whose seeds, known as conifers, are protected by cones. Examples of 

softwood trees are pine, fir, larch, spruce, and hemlock. For the most part, softwood is easy to 

saw and nail. Because of this, it is the primary source of lumber production used in construction. 

The main areas for lumber production are the Baltic area in Europe and North America. 

Hardwood comes from trees whose seeds, known as angiosperms, are protected by a covering. 

An acorn comes from a hardwood tree. The main trees are broad-leaved. Examples of hardwood 

trees are deciduous trees like oak. Hardwoods are primarily used in furniture manufacturing. 
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Hardwoods are also used for wood flooring, construction, panels, and kitchen cabinets (Taulli, 

2011). 

The processing of lumber is time-consuming. A tree must be felled and the branches 

removed. From this, logs will be created and trucked to sawmills. Depending on the demand, 

the lumber will be cut into various sizes. Then the lumber is either shipped via truck or rail. 

Freight can constitute 20 percent to 30 percent of the overall price of lumber. Of the 

construction market, housing is the biggest user of lumber. You can trade lumber on the CME 

(Taulli, 2011). 

 

 

LIVESTOCK 

 

Lean Hogs 

 

Hogs, along with goats and sheep, are the oldest known domesticated animal food source. 

Today’s hog farming is high-tech big business. Long gone are most of the small family farms. 

In their place are massive buildings containing thousands of hogs under a common roof. The 

rigorous application of scientific and management principles has driven a spectacular leap 

forward in pork production productivity (Dunsby, et al., 2008). 

Over the past 20 years, the hog industry has undergone some major innovations. Hog 

producers typically have hog factories, which are state of the art facilities. They are made to 

minimize disease and to boost the size and grade of the hogs. The factories also protect the herd 

from adverse weather conditions. The hog industry has also been sensitive to changes in the 

American diet. There has been a move to steadily reduce the fat component of hogs. The farms 

are mostly large so as to benefit from economies of scale, as well as leverage when negotiating 

with packers (Taulli, 2011). The preslaughter phase of hog production is usually combined into 

what’s called the “farrow-to-finish operation.” In the hog industry, the backgrounding phase 

does not exist. In other words, the hog generally stays on the same farm from birth to finish 

(Kleinman, 2013). 

A rancher will breed hogs twice a year, which results in more consistent production of 

baby piglets. The breeding is done with matching boars or by artificial insemination. A female 

hog will give birth to nine to ten piglets after a four month gestation period. They will have a 

high-grain diet—including corn, barley, oats, and oilseed meal—that maximizes weight and 

growth. Within six months, the hogs should be ready for slaughter (Taulli, 2011). By 26 weeks 
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of age, the piglet has grown into a 260 pound hog and is ready for slaughter. Roughly 25 percent 

of hog weight is lost during the slaughter process, leaving a carcass weight of about 200 pounds. 

In addition, 10 percent of the pig crop is commonly lost to death and disease before slaughter 

(Dunsby, et al., 2008). Of this carcass, about 20 percent will be ham, 20 percent loin, 15 percent 

belly, 10 percent picnic (a ham-like cut), 5 percent spareribs, and 5 percent butt (Taulli, 2011).  

Most beef is sold as fresh meat; however, a large portion of pork is processed further and 

becomes storable as ham— smoked, canned, or frozen (Kleinman, 2013). Each batch of hogs 

requires about 42 weeks to progress from previous crop weaning to current crop slaughter, and 

each sow spends about 20 weeks between successive farrowings. Thus, an efficient operation 

could see a sow produce three litters per year (Dunsby, et al., 2008). During the accumulation 

phase of the cattle cycle, ranchers are building their herds by holding back cows. This method 

can temporarily create a short supply of market-ready animals, but it is bearish longer term. 

During liquidation (for example, in times of drought, which kills off the grazing pastures, or 

high feed prices), cows are sent to market. This is bearish from a supply and price standpoint 

in the short run but bullish longer term. This tactic works the same way for hogs as cattle. 

During the expansion phase, an increased number of gilts and sows (female breeders) are 

withheld from slaughter to become part of the breeding herd. During contraction, females are 

culled from the breeding herd, and the female portion of the total slaughter rises (Kleinman, 

2013). 

 

Figure 20: Hog Production (Dunsby, et al., 2008) 
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The packers are that firms process the hogs from the nation’s farms and convert them 

into portions fit for our tables, earning profits by buying hogs from farmers and selling the 

processed ensemble, known as the pork cutout, to wholesalers and retailers. The packer industry 

has undergone substantial consolidation over the last 20 years with more than 50 plants closing 

and the top 3 packers increasing their share of total slaughter capacity from 35 percent to 55 

percent. This consolidation has seen the scale of individual packing plants grow dramatically 

and has seen substantial improvements in productivity, such that processing is now seen as a 

distinctive source of comparative advantage for the U.S. pork industry. At the same time, in 

order to secure consistent supplies for their plants, packers have changed the way they source 

market hogs by integrating backward into hog production and developing long-term contracting 

relationships with independent producers (Dunsby, et al., 2008). 

The hog market is fairly concentrated in the United States. The United States is the 

largest exporter of pork in the world. Interestingly enough, the largest amount goes to Japan. 

Other major importers include Canada, Mexico, Hong Kong, and China (Taulli, 2011). United 

States has become an importer of pork. The United States imports nearly 10 percent of all 

domestically slaughtered hogs from Canada (Dunsby, et al., 2008). 

The lean hog futures contract (which is a contract for the hog’s carcass) trades on the CME and 

is used primarily by producers of lean hogs — both domestic and international — and pork 

importers/exporters. Perhaps no other commodity, agricultural or otherwise, exhibits the same 

level of volatility as the lean hogs futures contract. One of the reasons is that, compared to other 

products, this contract isn’t very liquid: It’s primarily used by commercial entities seeking to 

hedge against price risk. Other commodities that are actively traded by individual speculators 

as well as the commercial entities (such as crude oil) are far more liquid and, therefore, less 

volatile (Bouchentouf, 2015). Since it started to trade in 1997, the lean hogs contracts have been 

extremely volatile. A key reason is that the market is fairly illiquid and involves large 

commercial players. Another important driver is the outbreak of viruses. Because of the fears 

of consumers, the futures of lean hogs plunged (Taulli, 2011). 

Notice a high degree of seasonality in hog prices. Hog markets have a long history of 

cyclical prices, commonly known as the hog cycle. In fact, lean hogs are one of the most 

seasonal of all futures contracts. This is at least partially due to natural seasonal variation in 

reproductive fitness and weight gain. The source of these manmade cycles is the 10-month 

delay between the decision to invest by breeding a sow rather than sending it to the 

slaughterhouse and the return on the investment in the form of a marketable pig crop. 

Farrowings are lowest during the heart of winter and highest in mid to late spring, yielding low 
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supplies of marketable hogs in early summer and high supplies just before the holiday season. 

Natural patterns of weight gain reinforce the reproductive cycle as hogs grow fastest in the 

spring and fall. Enclosed, temperature-controlled barns have mitigated but not eliminated 

nature’s own hog production cycle (Dunsby, et al., 2008). Hog prices tend to be the highest in 

the summer months because the December through- February time frame is traditionally a low-

birth period. Also, the demand for pork tends to peak during the summer months. The rule of 

thumb is that high feed prices result in liquidation and low feed prices result in accumulation. 

The other variable here is the market price of the finished product. If sale prices of cattle or 

hogs are high, then more money can be spent on feed (Kleinman, 2013). If the prices of the 

agricultural commodities used to feed the hogs increase, it will usually lead to higher hog prices. 

In fact, if feed prices are high, producers will usually increase the slaughter of hogs so as to 

lower costs. This is the same with the beef industry but the process tends to be quicker (Taulli, 

2011). 

Demand for meat tends to be relatively inelastic, so an increase in the price of hogs 

driven by feed cost would have a moderate downward impact on overall meat consumption and 

production. Another upward price risk would be stricter enforcement of environmental 

regulations (Dunsby, et al., 2008). When a country achieves a higher level of income, the 

demand for red meat increases. Exports to Asia have become a much more important factor in 

recent years, and unexpected new export business can, at times, result in price spikes. China is 

a major soybean (and at times corn) importer due in large part to its large and expanding hog 

industry. Beef, pork, chicken, turkey, and fish are substitutable commodities to a major extent, 

affecting the price dynamics (Kleinman, 2013). As for future trends, if ethanol from corn or 

biodiesel from soybeans develop into significant sources of energy for fueling cars, the price of 

these two commodities may be expected to rise. Since feed composed of corn and beans 

constitutes the largest component of hog costs, the price of hogs ought to rise as well. This 

applies to broilers and cattle as well, however (Dunsby, et al., 2008). 

 

 

Feeder Cattle – Live Cattle 

 

Cows are a special breed because they’re low-maintenance animals with high product output: 

They eat almost nothing but grass, yet they produce milk, provide meat, and, in some cases, 

create leather goods. This input to output ratio means that cows occupy a special place in the 

agricultural complex (Bouchentouf, 2015). Cattle provide meat and dairy for food, leather for 
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clothing, raw muscle power for transportation and farm work, and, in many poorer countries, 

serve as a store of wealth (Dunsby, et al., 2008). There are many definitions for livestock, which 

is also known as cattle. But in a broad sense, it refers to animals that are domesticated for some 

type of commercial purposes (Taulli, 2011). 

Raising cattle is a more complicated process than raising hogs. First, the time from 

gestation to slaughter in cattle runs 30 months, whereas the life cycle for slaughter hogs runs 

10 months. Thus, cattle production requires more long-term planning and, consequently, one 

might expect longer cattle cycles and more financial hedging on the part of farmers. U.S. cattle 

are awarded one of eight grade designations based on age, the degree of fatness, and the 

firmness of muscling. For farmers and feedlots the Choice to Select price spread has a strong 

bearing on feeding decisions. The larger the spread, the more attractive it is to feed cattle longer 

to achieve a higher grade. For traders the ratio of Choice to Select slaughter can be informative, 

inasmuch as a higher ratio of Choice to Select suggests less current (older) supplies of fed cattle 

and more pressure for slaughter (Dunsby, et al., 2008). In cattle feeding, the feeder’s cost 

accounts for, in many cases, more than half of the total cost of production. Higher feeder costs 

lead to lower placements into feedlots (Kleinman, 2013). Simultaneously, marketing 

agreements and alliances between producers and packers have grown substantially. These 

longer-term arrangements guarantee steady, consistent quality throughput for packers while 

lowering price risk and providing access to quality premiums for producers. Some in the 

industry are concerned that these new pricing arrangements are reflective of increasing 

monopsony power amongst the packers. It is not clear that increased concentration is bad. The 

spread between the retail price faced by consumers and the farm price received by producers 

can be decomposed into two parts: the farm-to-wholesale spread and the wholesale-to-retail 

spread. If packers wield increasing market power, the farm-to-wholesale spread would likely 

increase, and the wholesale-to-retail spread would likely fall (Dunsby, et al., 2008). Today, 

most cattle feeders just accept the risk of the marketplace. They feed cattle and hope for a decent 

price in four or five months to reward them for their efforts (Kleinman, 2013). 

The United States is the major producer of beef, accounting for nearly one quarter of 

world production during the past 10 years. Other major producers include Argentina and Brazil 

(together about as large as the United States), Europe, and China. Unlike the case with hogs, 

the location of beef cattle production in the United States has remained relatively constant over 

time (Dunsby, et al., 2008). 

Physical live cattle trade is mostly very local, with U.S. live exports and imports going 

to and from Canada and Mexico. Historically, imports from Canada consist of feeder cattle 
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destined for feedlots and live cattle destined for packing plants. Mexico exports primarily 

lighter cattle for finishing in U.S. feedlots or stocking/pasturing operations. Ultimately the 

major players drawing cattle into the United States are the large, efficient packing facilities that 

need a continual supply of live animals. As cattle are far more expensive to transport than beef, 

most of the movement of meat occurs after processing. The major exporters of beef are the 

Brazil–Argentina–Uruguay axis, the Australia–New Zealand axis, the United States and 

Canada, and India. Perhaps surprisingly given its dominant production position and its massive 

exports, the United States on its own has been a net importer of beef for more than 25 years. In 

fact, the United States is the world’s largest importer of beef. This is partly because many of 

these imports are re-exported, as the United States imports low-quality beef for processing and 

then sends it back out again. Russia, the European Union, and East Asia are the other major 

importers worldwide. China imports virtually no beef, probably a political rather than an 

economic outcome (Dunsby, et al., 2008). 

Two futures contracts exist for the cattle trader and investor: the live cattle and the 

feeder cattle contracts. Both trade on the Chicago Mercantile Exchange (CME). The market for 

the live cattle contract can be fairly volatile (Bouchentouf, 2015) and it is by far the more liquid 

contract (Dunsby, et al., 2008). Per pound, feeder cattle trade at a premium to fed cattle. This 

differential arises because the dollar cost per pound of gain is typically higher for raising feeder 

cattle than for converting feeder cattle to fed cattle (Dunsby, et al., 2008). 

Demand for live cattle typically falls during May and June. The reason is that this is 

when a large amount of supply comes onto the market. There is also the influx of other meats, 

like poultry and pork (Taulli, 2011). Tough winter weather can result in death loss and weight 

loss, which can reduce supply permanently or temporarily. At times, when the temperatures in 

the major feeding regions get extremely cold, cattle eat more and gain less. Animals that were 

to be ready for market at a certain date are “pushed back,” creating a temporary shortage, and 

there is a glut later when they reach market weight. This fundamental is more important for 

cattle than hogs because the majority of hogs are now fed indoors (Kleinman, 2013). Although 

it does not happen every year, feeder cattle sales tend to peak in the fall, with the end of the 

grazing season. At the same time, calf/cow operators tend to sell off unproductive cows, which 

increases the total beef supply and depresses prices (Kleinman, 2013). 

Furthermore, a rise in grain prices, as biofuels and ethanol play a more significant role 

in energy supply, will drive up feed costs and, therefore, the price of cattle. The impact of higher 

grains costs merits further elaboration. When the price of grain rises permanently, this must 

pass through to feeder cattle and live (fed) cattle prices in the long run. Feeder cattle prices rise 
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to reflect grain consumption by pregnant and lactating cows as well as any grain 

supplementation of the calves. Fed cattle prices rise to accommodate both the increase in the 

price of feeder cattle and the grain fed directly to the feedlot animals. In the short run or when 

the price of grain rises only temporarily, we often see a fall in the price of feeder cattle. This is 

because retail prices are relatively sticky, more or less fixed in the short run, so the cost increase 

in the price of grain must be shared between the players somewhere along the chain of 

production. Ranchers receive less for their animals, feedlot operators see their margins fall if 

not turn negative, and packers see their margins fall as well. Accompanying these shifts in 

prices, ranchers are inclined to keep feeder cattle on pasture longer, passing along heavier, more 

mature animals. Meanwhile, feedlot operators pass along lighter, less mature, lower-grade 

animals. In fact, feeder cattle can even trade at a discount to fed cattle in these situations. It is 

not too surprising, then, that even temporary surges in grain prices can halt expansions or cause 

outright contractions of the breeding population. Thus, culled beef and dairy cows enter the 

market and fewer heifers are retained (Dunsby, et al., 2008). There are some risks to that rosy 

view of high prices for beef in the future. Continued growth of the cattle industry in Argentina, 

Brazil, and Uruguay may put some downward pressure on beef prices, relative demand for beef 

could fall as a result of the perception of beef as less healthy than other possible meat choices 

(Dunsby, et al., 2008). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



114 
 

5. METHODOLOGY 

 

The research objective of this study is to try to create forecasting models in order to predict 

daily prices and daily returns of different commodities. To achieve that we collect the 

appropriate data and proceed creating linear ARIMA models, following the Box-Jenkins 

method for time series forecasting (Box, et al., 2016). Finally, we try to forecast closing prices 

with the models and compare the results with our out of sample data. 

The two primary sources for raw data collection was yahoo finance and investing.com. 

We collect the daily closing prices of the 30 investigated commodities from the beginning of 

available data until 17/7/2020. This way we have a big sample with high frequency historical 

data to perform our analysis. We keep the 90% of our sample as in-sample data to create our 

models and we exclude the last 10% to perform out of sample forecasting and compare the 

results with the forecasted prices and the actual out of sample prices, in order to determine the 

accuracy of our prediction. In the table 3, you can see all the commodities, the sample sizes and 

the observations we kept out of sample for model forecasting accuracy evaluation with the 

corresponding dates. So, we end up having 30 time series for analysis for 30 different 

commodities. 

 

Commodities 

Total 

historical 

daily closing 

prices 

observations 

Out of sample 

observations 

(last 10% of 

the sample) 

In sample 

observations 

Date of the 

first 

observation 

(first price) 

Date of the 

last 

observation 

(last price) 

METALS 

Precious 

gold 5.108 511 4597 27/12/1979 17/7/2020 

silver 5.166 517 4649 28/2/2000 17/7/2020 

platinum 5.267 527 4740 28/4/1997 17/7/2020 

palladium 5.202 520 4682 27/3/1998 17/7/2020 

Industrial/Base 

aluminum 902 90 812 21/11/2016 17/7/2020 

copper 6.234 509 4584 30/3/2000 17/7/2020 

lead 2.946 296 2651 7/7/2008 17/7/2020 

nickel 2.946 295 2651 7/7/2008 17/7/2020 

tin 2.946 295 2651 7/7/2008 17/7/2020 

zinc 3.033 303 2730 18/2/2008 17/7/2020 

ENERGY 

crude oil 5.095 510 4585 22/3/1998 17/7/2020 

brent oil 8.182 818 7364 27/6/1988 17/7/2020 

gasoline rbob 4.018 402 3616 4/10/2005 17/7/2020 

heating oil 5.114 511 4603 1/3/2000 17/7/2020 

natural gas 5.113 511 4602 28/2/2000 17/7/2020 
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AGRICULTURE 

Grains 

corn 10.447 1045 9402 27/12/1979 17/7/2020 

rice 5.058 506 4552 21/3/2000 17/7/2020 

soybeans 7.914 791 7123 2/1/1990 17/7/2020 

soybean oil 10.462 1046 9416 27/12/1979 17/7/2020 

soybean meal 7.875 788 7087 2/1/1990 17/7/2020 

oats 5.082 508 4574 15/3/2000 17/7/2020 

wheat 5.080 508 4572 23/3/2000 17/7/2020 

Softs 

coffee 10.229 1023 9206 27/12/1979 17/7/2020 

cocoa 10.184 1018 9166 27/12/1979 17/7/2020 

sugar 10.213 1021 9192 27/12/1979 17/7/2020 

cotton 5.225 523 4702 8/12/1999 17/7/2020 

lumber 10.228 1024 9204 27/12/1979 17/7/2020 

Livestock 

lean logs 10.256 1026 9230 27/12/1979 17/7/2020 

feeder cattle 5.109 511 4598 28/1/2000 17/7/2020 

live cattle 10.244 1024 9220 3/1/1980 17/7/2020 

Table 3: Data structure of commodities time series 

To analyze the closing prices we used two software, MS Excel and Eviews. We calculate 

the descriptive statistics of both closing prices and daily log returns of the 30 commodities and 

create graphs as an initial overview of the data, in order to see the bigger picture and understand 

how they behave. We used log daily returns, as they are not different from simple returns, due 

to their high frequency, and will help us later in the time series analysis. This initial stage of 

analysis was performed using MS Excel and is presented extensively in the descriptive statistics 

chapter. 

The second step was to create the actual models to forecast daily closing prices. To do 

that we used Eviews, importing all the available daily closing prices data and then we followed 

the Box-Jenkins method for time series forecasting (Box, et al., 2016). First, we checked the 

stationarity of our data for each commodity separately and we figure that data are becoming 

stationary using first differences. One way to understand that was to use autocorrelogram and 

partial autocorrelogram of time series of daily closing prices. We observe that with first 

differences the bars of each graph was within the limits. Another way to support this, was to 

perform unit root tests using different methods at significance level of 5%. The three tests that 

we used was Augmented Dickey-Fuller (ADF) test, Kwiatkowski-Phillips-Schmidt-Shin 

(KPSS) test and Phillips-Perron (PP) test. Again, when we used first differences the data were 

becoming stationary and almost all commodities passed all the three tests that we used. So, all 

the models that we will create will have first degree of differencing (d=1). The results of the 

commodities that passed the tests are presented at the table 4. 
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 Stationarity – Unit Root Tests 

ADF KPSS PP 

Aluminum ● ● ● 

Corn ●  ● 

Brent Oil ● ● ● 

Coffee ● ● ● 

Copper ● ● ● 

Crude Oil ● ● ● 

Feeder Cattle ● ● ● 

Cocoa ● ● ● 

Gasoline ●  ● 

Gold ● ● ● 

Heating Oil ● ● ● 

Lead ● ● ● 

Lean Hogs ●  ● 

Live Cattle ●  ● 

Lumber ●  ● 

Natural Gas ● ● ● 

Nickel ● ● ● 

Oats ● ● ● 

Palladium ● ● ● 

Platinum ● ● ● 

Rice ● ● ● 

Silver ● ● ● 

Soybean Meal ●  ● 

Soybean Oil ●  ● 

Soybeans ●  ● 

Sugar ● ● ● 

Tin ● ● ● 

Wheat ● ● ● 

Zinc ● ● ● 

Cotton ●  ● 

Table 4: Unit root test results of all commodities that passed the test at significance level 5% 

Following that procedure it was the time to choose the AR/MA terms p (the number of 

lag observations) and q (the size of the moving average window). Unfortunately, ACF and 

PACF correlograms were not very helpful in determining these terms so we followed another 

approach to select the AR/MA terms and create the ARIMA models. We decided to create two 

sets of ARIMA models to forecast daily closing prices. The first one was based on selecting 

AR/MA terms that was statistically significant at significance level 5%. Additionally, these 

AR/MA terms should present a stable AR/MA structure based on Inverse Roots of AR/MA 

Polynomials circle graph by Eviews, with all the roots being inside the circle and all be 

statistically significant at the Ramsey RESET stability test, at significance level of 5%. Also, 

we performed residuals diagnostics with ACF and PACF plots indicating that there is no serial 
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correlation in the residual errors, leaving no temporal structure in the time series of forecast 

residuals for any of the models. With all these requirements satisfied we end up to the first set 

of 30 ARIMA models, one for each commodity. We call these models “Custom ARIMA 

models”. The other set of ARIMA models created based on AR/MA terms proposed by the 

Eviews Add in “Automatic ARIMA selection” using an automated process of finding the roots, 

based on the Akaike criterion. These AR/MA terms did not have the same strict requirements 

as the previous set and we have accepted models that did not satisfy some of the above 

requirements. Therefore, we have another 30 ARIMA models, one for each commodity. We 

name these models “Eviews Add in ARIMA models”. 

 After the identification of the two sets of the ARIMA models, we perform an out of 

sample forecast for the closing prices of each commodity. In an effort to compare these two 

sets of models between them we initially perform a Diebold-Mariano test (Diebold & Mariano, 

1995) that compares the forecast accuracy of two forecast methods. Then we compare four 

forecasting accuracy indicators, Root Mean Square Error (RMSE), Mean Absolute Error 

(MAE), Mean Absolute Percentage Error (MAPE) and Theil Inequality Coefficient, in order to 

see which model performs the best in an out of sample forecasting of two forecast methods. 

 We also perform a basic risk analysis of commodities based on their volatility and 

GARCH models. We calculate the jumps of their daily returns and compare them with each 

other. In addition, we present the number of positive and negative jumps for each commodity, 

trying to explain in a basic level the risk involved in daily returns. 
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6. DESCRIPTIVE STATISTICS 

 

For the examined period of each commodity, we calculate the descriptive statistic for each one 

as a first, basic level of our initial analysis. As theory and commodities’ fundamentals describe, 

we observe that generally commodities are doing good when economy is down and vise versa. 

There is an indication for this that almost all commodities prices climbed during the recent 

economic crisis and during other unstable times in the past. Therefore, we confirm the notion 

that wants commodities as alternative investments during bad times. 

Gold presented an upward trend through the years of our sample, confirming its strong 

reputation as value preserving asset. The base metals present very little trends, remaining almost 

stable with small flunctuations of their prices. This can be described by its own nature that are 

industrial metals, used as raw materials to many necessary applications. Soybeans, soybean oil 

and soybean meal prices tend to move together as they are products that derive from the same 

raw material soybeans. The agricultural commodities seem to have a great level of seasonality, 

because they always are affected by weather and seasonal demand. 

Generally, daily returns of all commodities present a high level of volatility. They tend 

to become extremely volatile in times of small or big crisis. In 2020, they present great 

volatility, due to the COVID-19 outbreak and the instability and uncertainty that it has brought 

to the markets. An interesting fact regarding daily returns of almost all commodities, is that 

they present a high level of kurtosis (excess kurtosis) which is a common phenomenon in 

finance described as “fat tails”. By definition, a fat tail is a probability distribution, which 

predicts movements of three or more standard deviations more frequently than a normal 

distribution (Nath, 2015). It is worth mentioning that the average daily return is not positive for 

all commodities and it is also very small. Daily returns seem to be stationary indicating no 

trends and no seasonality. 

You can see the graphs and the descriptive statistics for each commodity in the following pages. 
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6.1 Metals 

 

Gold 

 

 

Figure 21: Gold daily closing prices and log returns graph 

 

Table 5: Gold daily close prices descriptive statistics 

 

Table 6: Gold daily log returns descriptive statistics 
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Gold

Close_Price_GC Log_Return_GC

Close_Price_GC Simple_Return_GC

Mean 962,7964371

Standard Error 6,618243862

Median 1117,549988

Mode 273,100006

Standard Deviation 473,0076992

Sample Variance 223736,2835

Kurtosis -1,335345025

Skewness -0,115991729

Range 1633,599945

Minimum 255,100006

Maximum 1888,699951

Sum 4917964,201

Count 5108

Log_Return_GC

Mean 0,000357113

Standard Error 0,000155371

Median 0,000367221

Mode 0

Standard Deviation 0,01110332

Sample Variance 0,000123284

Kurtosis 5,799334489

Skewness -0,193217229

Range 0,184637449

Minimum -0,098205791

Maximum 0,086431657

Sum 1,823776993

Count 5107



120 
 

Silver 

 

 

Figure 22: Silver daily closing prices and log returns graph 

 

Table 7: Silver daily close prices descriptive statistics 

 

Table 8: Silver daily log returns descriptive statistics 
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Close_Price_SI Log_Return_SI

Close_Price_SI Simple_Return_SI

Mean 15,07485231

Standard Error 0,116426024

Median 15,2915

Mode 4,923

Standard Deviation 8,368107794

Sample Variance 70,02522805

Kurtosis 0,707439269

Skewness 0,849008576

Range 44,558

Minimum 4,026

Maximum 48,584

Sum 77876,68705

Count 5166

Log_Return_SI

Mean 0,000264067

Standard Error 0,000267311

Median 0,000994332

Mode 0

Standard Deviation 0,019211089

Sample Variance 0,000369066

Kurtosis 8,473049901

Skewness -0,957511731

Range 0,317415196

Minimum -0,195456789

Maximum 0,121958407

Sum 1,36390822

Count 5165
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Platinum 

 

 

Figure 23: Platinum daily closing prices and log returns graph 

 

Table 9: Platinum daily close prices descriptive statistics 

 

Table 10: Platinum daily log returns descriptive statistics 
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Platinum

Close_Price_PL Log_Return_PL

Close_Price_PL Simple_Return_PL

Mean 978,149307

Standard Error 5,923755622

Median 913,5

Mode 352

Standard Deviation 429,9112333

Sample Variance 184823,6685

Kurtosis -0,756687844

Skewness 0,394676506

Range 1914,700104

Minimum 336,399994

Maximum 2251,100098

Sum 5151912,4

Count 5267

Log_Return_PL

Mean 0,000156978

Standard Error 0,000261214

Median 0,000807159

Mode 0

Standard Deviation 0,018955603

Sample Variance 0,000359315

Kurtosis 258,1985751

Skewness -7,215773813

Range 0,885922308

Minimum -0,570415821

Maximum 0,315506487

Sum 0,826645044

Count 5266
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Palladium 

 

 

Figure 24: Palladium daily closing prices and log returns graph 

 

Table 11: Palladium daily close prices descriptive statistics 

 

Table 12: Palladium daily log returns descriptive statistics 
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Close_Price_PA Log_Return_PA

Close_Price_PA Simple_Return_PA

Mean 640,2716551

Standard Error 5,935289889

Median 595,25

Mode 342

Standard Deviation 428,0821403

Sample Variance 183254,3188

Kurtosis 3,373265852

Skewness 1,666071545

Range 2635,600098

Minimum 148,5

Maximum 2784,100098

Sum 3330693,15

Count 5202

Log_Return_PA

Mean 0,000398033

Standard Error 0,000328756

Median 0,00080997

Mode 0

Standard Deviation 0,023709185

Sample Variance 0,000562125

Kurtosis 43,34573723

Skewness 0,758436591

Range 0,781492

Minimum -0,309487191

Maximum 0,472004809

Sum 2,070169809

Count 5201
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Aluminum 

 

 

Figure 25: Aluminum daily closing prices and log returns graph 

 

Table 13: Alumium daily close prices descriptive statistics 

 

Table 14: Aluminum daily log returns descriptive statistics 
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Close_Price_MAL Log_Return_MAL

Close_Price_MAL Simple_Return_MAL

Mean 1898,415676

Standard Error 6,757287909

Median 1879,375

Mode 1899,75

Standard Deviation 202,9437552

Sample Variance 41186,16778

Kurtosis -0,194438891

Skewness 0,175345695

Range 1121,5

Minimum 1426,5

Maximum 2548

Sum 1712370,94

Count 902

Log_Return_MAL

Mean -0,000039643

Standard Error 0,000404092

Median -0,00011849

Mode 0

Standard Deviation 0,012129495

Sample Variance 0,000147125

Kurtosis 3,446758187

Skewness 0,106700399

Range 0,138850237

Minimum -0,079104181

Maximum 0,059746056

Sum -0,035718083

Count 901
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Copper 

 

 

Figure 26: Copper daily closing prices and log returns graph 

 

Table 15: Copper daily close prices descriptive statistics 

 

Table 16: Copper daily log returns descriptive statistics 
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Close_Price_HG Log_Return_HG

Close_Price_HG Simple_Return_HG

Mean 2,450289515

Standard Error 0,014768716

Median 2,678

Mode 0,765

Standard Deviation 1,05397321

Sample Variance 1,110859527

Kurtosis -1,022833189

Skewness -0,357701074

Range 4,019

Minimum 0,604

Maximum 4,623

Sum 12479,3245

Count 5093

Log_Return_HG

Mean 0,000252372

Standard Error 0,000240008

Median 0,000160801

Mode 0

Standard Deviation 0,017126546

Sample Variance 0,000293319

Kurtosis 4,524633591

Skewness -0,169766902

Range 0,234625057

Minimum -0,116932531

Maximum 0,117692526

Sum 1,285078929

Count 5092
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Lead 

 

 

Figure 27: Lead daily closing prices and log returns graph 

 

Table 17: Lead daily close prices descriptive statistics 

 

Table 18: Copper daily log returns descriptive statistics 
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Sample Variance 97585,27791
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Maximum 2926

Sum 6022985,25

Count 2946

Log_Return_L

Mean 0,000040146
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Median 0,000209666

Mode 0

Standard Deviation 0,020593531

Sample Variance 0,000424094

Kurtosis 6,039099348

Skewness -0,2197763

Range 0,273827906

Minimum -0,145157026

Maximum 0,12867088

Sum 0,118231103

Count 2945
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Nickel 

 

 

Figure 28: Nickel daily closing prices and log returns graph 

 

Table 19: Nickel daily close prices descriptive statistics 

 

Table 20: Nickel daily log returns descriptive statistics 
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Log_Return_N
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Mode 0

Standard Deviation 0,022085499

Sample Variance 0,000487769

Kurtosis 6,080706745

Skewness 0,107363471

Range 0,344837924

Minimum -0,167778145
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Sum -0,460093789

Count 2945
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Tin 

 

 

Figure 29: Tin daily closing prices and log returns graph 

 

Table 21: Tin daily close prices descriptive statistics 

 

Table 22: Tin daily log returns descriptive statistics 
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Standard Deviation 0,017600082

Sample Variance 0,000309763
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Minimum -0,207253998

Maximum 0,154866499

Sum -0,275331752

Count 2945



128 
 

Zinc 

 

 

Figure 30: Zinc daily closing prices and log returns graph 

 

Table 23: Zinc daily close prices descriptive statistics 

 

Table 24: Nickel daily log returns descriptive statistics 
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Close_Price_Z Simple_Return_Z

Mean 2188,973304

Standard Error 8,330680341

Median 2137

Mode 1916

Standard Deviation 458,7928864

Sample Variance 210490,9126

Kurtosis 0,503330873

Skewness 0,411536392

Range 2532,5

Minimum 1047

Maximum 3579,5

Sum 6639156,03

Count 3033

Log_Return_Z

Mean -0,000023912
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Median 0,000266657

Mode 0

Standard Deviation 0,01952352

Sample Variance 0,000381168

Kurtosis 8,708517258

Skewness -0,483030122

Range 0,348728831

Minimum -0,225445748

Maximum 0,123283083

Sum -0,072501915

Count 3032
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6.2 Energy 

 

Crude Oil 

 

 

Figure 31: Crude oil daily closing prices and log returns graph 

 

Table 25: Crude oil daily close prices descriptive statistics 

 

Table 26: Crude oil daily log returns descriptive statistics 
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Close_Price_CL Log_Return_CL
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Mean 61,4361715

Standard Error 0,366701138

Median 58,1499995

Mode 26,860001

Standard Deviation 26,17742761

Sample Variance 685,2577163

Kurtosis -0,678723464
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Minimum -2,72
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Sum 313078,7299

Count 5096
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Brent Oil 

 

 

Figure 32: Brent oil daily closing prices and log returns graph 

 

Table 27: Brent oil daily close prices descriptive statistics 

 

Table 28: Brent oil daily log returns descriptive statistics 
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Mode 17,5

Standard Deviation 32,8061596

Sample Variance 1076,244108

Kurtosis -0,543263082
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Minimum 9,64

Maximum 146,08

Sum 393321,2
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Log_Return_B
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Standard Error 0,000255297
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Standard Deviation 0,023091285
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Maximum 0,190774012
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Gasoline 

 

 

Figure 33: Gasoline daily closing prices and log returns graph 

 

Table 29: Gasoline daily close prices descriptive statistics 

 

Table 30: Gasoline daily log returns descriptive statistics 
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Sample Variance 0,372487898
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Maximum 0,234684022

Sum -0,410109268

Count 4017
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Heating Oil 

 

 

Figure 34: Heating oil daily closing prices and log returns graph 

 

Table 31: Heating oil daily close prices descriptive statistics 

 

Table 32: Heating oil daily log returns descriptive statistics 
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Sample Variance 0,629019596
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Standard Error 0,000329393

Median 0,000249333

Mode 0
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Natural Gas 

 

 

Figure 35: Natural gas daily closing prices and log returns graph 

 

Table 33: Natural gas daily close prices descriptive 

statistics 

 

Table 34: Natural gas daily log returns descriptive statistics 
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Sample Variance 5,135591527
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Minimum 1,537

Maximum 15,378

Sum 23298,334
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Mode 0
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Sample Variance 0,001143424
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6.3 Agriculture 

 

Corn 

 

 

Figure 36: Corn daily closing prices and log returns graph 

 

Table 35: Corn daily close prices descriptive statistics 

 

Table 36: Corn daily log returns descriptive statistics 
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Close_Price_C Log_Return_C

Close_Price_C Simple_Return_C

Mean 323,8759826

Standard Error 1,2939229

Median 279,75

Mode 238,75

Standard Deviation 132,2525933

Sample Variance 17490,74843

Kurtosis 2,438267365

Skewness 1,622992105

Range 688,5

Minimum 142,75

Maximum 831,25

Sum 3383532,39

Count 10447

Log_Return_C

Mean 0,000013484

Standard Error 0,000165557

Median 0

Mode 0

Standard Deviation 0,016920862

Sample Variance 0,000286316

Kurtosis 27,4340072

Skewness -0,98131582

Range 0,526494193

Minimum -0,276205681

Maximum 0,250288511

Sum 0,140851124

Count 10446
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Rice 

 

 

Figure 37: Rice daily closing prices and log returns graph 

 

Table 37: Rice daily close prices descriptive statistics 

 

Table 38: Rice daily log returns descriptive statistics 
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Close_Price_RR Simple_Return_RR

Mean 1087,556248

Standard Error 5,433194249

Median 1099

Mode 395

Standard Deviation 386,406697

Sample Variance 149310,1355

Kurtosis -0,432010479

Skewness -0,015123069

Range 2103

Minimum 343

Maximum 2446

Sum 5500859,5

Count 5058

Log_Return_RR
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Median 0
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Standard Deviation 0,018159007

Sample Variance 0,00032975
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Skewness -0,535910422
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Minimum -0,299702943
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Soybeans 

 

 

Figure 38: Soybeans daily closing prices and log returns graph 

 

Table 39: Soybeans daily close prices descriptive statistics 

 

Table 40: Soybeans daily log returns descriptive statistics 
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 Soybean oil 

 

 

Figure 39: Soybean oil daily closing prices and log returns graph 

 

Table 41: Soybean oil daily close prices descriptive 

statistics 

 

Table 42: Soybean oil daily log returns descriptive statistics 
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Soybean meal 

 

 

Figure 40: Soybean meal daily closing prices and log returns graph 

 

Table 43: Soybean meal daily close prices descriptive 

statistics 

 

Table 44: Soybean meal daily log returns descriptive 

statistics 
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Oats 

 

 

Figure 41: Oats daily closing prices and log returns graph 

 

Table 45: Oats daily close prices descriptive statistics 

 

Table 46: Oats daily log returns descriptive statistics 
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Standard Deviation 84,28185472

Sample Variance 7103,431035
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Minimum 93,75

Maximum 557,75
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Wheat 

 

 

Figure 42: Wheat daily closing prices and log returns graph 

 

Table 47: Wheat daily close prices descriptive statistics 

 

Table 48: Wheat daily log returns descriptive statistics 
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Range 0,175394861
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Sum 0,470783878
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Coffee 

 

 

Figure 43: Coffee daily closing prices and log returns graph 

 

Table 49: Coffee daily close prices descriptive statistics 

 

Table 50: Coffee daily log returns descriptive statistics 
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Coffee

Close_Price_KC Log_Return_KC

Close_Price_KC Simple_Return_KC

Mean 124,2987496

Standard Error 0,437840007

Median 122,4

Mode 113

Standard Deviation 44,28248978

Sample Variance 1960,938901

Kurtosis 1,193462027
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Minimum 41,5

Maximum 314,8

Sum 1271451,91

Count 10229
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Median 0

Mode 0
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Sample Variance 0,000522969
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Range 0,458367002
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Maximum 0,23772509

Sum -0,594853832
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Cocoa 

 

 

Figure 44: Cocoa daily closing prices and log returns graph 

 

Table 51: Cocoa daily close prices descriptive statistics 

 

Table 52: Cocoa daily log returns descriptive statistics 
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Cocoa

Close_Price_CC Log_Return_CC

Close_Price_CC Simple_Return_CC

Mean 1877,725403

Standard Error 6,657888049

Median 1827

Mode 1327

Standard Deviation 671,886142

Sample Variance 451430,9878
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Skewness 0,366443704
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Minimum 674

Maximum 3774
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Log_Return_CC
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Standard Deviation 0,019327541

Sample Variance 0,000373554
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Skewness 0,022824142

Range 0,262439509

Minimum -0,135068672

Maximum 0,127370837

Sum -0,359679684

Count 10183
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Sugar 

 

 

Figure 45: Sugar daily closing prices and log returns graph 

 

Table 53: Sugar daily close prices descriptive statistics 

 

Table 54: Sugar daily log returns descriptive statistics 
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Mean 12,35835895

Standard Error 0,060618001
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Mode 10,97

Standard Deviation 6,126018135
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Maximum 44,8
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Cotton 

 

 

Figure 46: Cotton daily closing prices and log returns graph 

 

Table 55: Cotton daily close prices descriptive statistics 

 

Table 56: Cotton daily log returns descriptive statistics 
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Cotton

Close_Price_CT Log_Return_CT

Close_Price_CT Simple_Return_CT

Mean 67,98632726

Standard Error 0,322347521

Median 64,32

Mode 49

Standard Deviation 23,30062027

Sample Variance 542,9189051

Kurtosis 9,677858462
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Minimum 28,52

Maximum 213,84
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Lumber 

 

 

Figure 47: Lumber daily closing prices and log returns graph 

 

Table 57: Lumber daily close prices descriptive statistics 

 

Table 58: Lumber daily log returns descriptive statistics 
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Lumber

Close_Price_LB Log_Return_LB

Close_Price_LB Simple_Return_LB

Mean 267,3009875

Standard Error 0,856197007

Median 260,85

Mode 185,3

Standard Deviation 86,59026429

Sample Variance 7497,873869

Kurtosis 0,128602187

Skewness 0,563709664

Range 537

Minimum 114

Maximum 651

Sum 2733954,5

Count 10228

Log_Return_LB
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Standard Error 0,000215381
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Mode 0

Standard Deviation 0,021781181

Sample Variance 0,00047442
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Skewness 0,575137116

Range 0,401513139

Minimum -0,204393361

Maximum 0,197119778

Sum 0,943994864
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Lean hogs 

 

 

Figure 48: Lean hogs daily closing prices and log returns graph 

 

Table 59: Lean hogs daily close prices descriptive statistics 

 

Table 60: Lean hogs daily log returns descriptive statistics 
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Lean Hogs

Close_Price_LH Log_Return_LH

Close_Price_LH Simple_Return_LH

Mean 59,97120905

Standard Error 0,160362583

Median 56,7

Mode 47,12

Standard Deviation 16,24022525

Sample Variance 263,7449161

Kurtosis 1,428950533

Skewness 1,048579167

Range 112,28

Minimum 21,1

Maximum 133,38

Sum 615064,72

Count 10256

Log_Return_LH

Mean 0,000022548

Standard Error 0,000225299

Median 0,000387522

Mode 0

Standard Deviation 0,022815312

Sample Variance 0,000520538

Kurtosis 28,28862786

Skewness -0,230199851

Range 0,552857692

Minimum -0,271713532

Maximum 0,281144159

Sum 0,231225364

Count 10255
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Feeder Cattle 

 

 

Figure 49: Feeder cattle daily closing prices and log returns graph 

 

Table 61: Feeder cattle daily close prices descriptive 

statistics 

 

Table 62: Feeder cattle daily log returns descriptive 

statistics 
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Feeder Cattle

Close_Price_FC Log_Return_FC

Close_Price_FC Simple_Return_FC

Mean 125,0341583

Standard Error 0,499254164

Median 115,324997

Mode 145,425003

Standard Deviation 35,68532421

Sample Variance 1273,442364

Kurtosis 0,891472172

Skewness 1,022354309

Range 168,824997

Minimum 73,5

Maximum 242,324997

Sum 638799,5147
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Log_Return_FC
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Standard Error 0,000144497

Median 0,000250827

Mode 0

Standard Deviation 0,010327261

Sample Variance 0,000106652
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Minimum -0,0861144

Maximum 0,093668519

Sum 0,522028451
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Live Cattle 

 

 

Figure 50: Live cattle daily closing prices and log returns graph 

 

Table 63: Live cattle daily close prices descriptive statistics 

 

Table 64: Live cattle daily log returns descriptive statistics 
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Standard Error 0,244847822
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Mode 90

Standard Deviation 24,78169633

Sample Variance 614,1324729
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Maximum 171
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7. EMPIRICAL RESULTS 

 

7.1 ARIMA Models 

 

As we discussed in Methodology chapter we have created two sets of ARIMA models the 

Custom ARIMA models and the Eviews add in ARIMA models. At the following table, we 

present all these models. 

 Custom Models Eviews Add in Models 

Aluminum ARIMA(5,1,5) ARIMA(6,1,6) 

Corn ARIMA(3,1,3) ARIMA(4,1,5) 

Brent Oil ARIMA(2,1,2) ARIMA(8,1,8) 

Coffee ARIMA(1,1,1) ARIMA(6,1,9) 

Copper ARIMA(5,1,5) ARIMA(8,1,6) 

Crude Oil ARIMA(1,1,6) ARIMA(5,1,5) 

Feeder Cattle ARIMA(6,1,6) ARIMA(1,1,0) 

Cocoa ARIMA(3,1,3) ARIMA(8,1,5) 

Gasoline ARIMA(6,1,1) ARIMA(6,1,5) 

Gold ARIMA(2,1,2) ARIMA(7,1,7) 

Heating Oil ARIMA(4,1,4) ARIMA(8,1,8) 

Lead ARIMA(4,1,4) ARIMA(5,1,5) 

Lean Hogs ARIMA(3,1,3) ARIMA(5,1,5) 

Live Cattle ARIMA(4,1,4) ARIMA(6,1,7) 

Lumber ARIMA(2,1,9) ARIMA(10,1,10) 

Natural Gas ARIMA(1,1,1) ARIMA(4,1,4) 

Nickel ARIMA(1,1,1) ARIMA(2,1,2) 

Oats ARIMA(1,1,5) ARIMA(5,1,5) 

Palladium ARIMA(6,1,6) ARIMA(8,1,6) 

Platinum ARIMA(3,1,3) ARIMA(4,1,0) 

Rice ARIMA(6,1,5) ARIMA(0,1,1) 

Silver ARIMA(3,1,3) ARIMA(6,1,4) 

Soybean Meal ARIMA(1,1,5) ARIMA(7,1,7) 

Soybean Oil ARIMA(2,1,2) ARIMA(5,1,7) 

Soybeans ARIMA(6,1,6) ARIMA(10,1,8) 

Sugar ARIMA(3,1,2) ARIMA(7,1,4) 

Tin ARIMA(5,1,5) ARIMA(7,1,7) 

Wheat ARIMA(2,1,2) ARIMA(6,1,6) 

Zinc ARIMA(3,1,3) ARIMA(6,1,4) 

Cotton ARIMA(2,1,2) ARIMA(7,1,7) 

Table 65: ARIMA models for the commodities 
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Using these ARIMA models for each commodity, we performed an out of sample forecast. We 

observe that most of the created models captured the trends and the turns of the daily closing 

prices. Below you can see the results of each out of sample forecast, as well as the graphical 

comparison of the two set of models with the actual prices.  

 

Aluminum 
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Figure 51: Custom ARIMA Model forecast output for Aluminum 
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Figure 52: Eviews add in ARIMA Model forecast output for Aluminum 
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Figure 53: Comparison of the out of sample forecast of two ARIMA models for aluminum 
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Figure 54: Custom ARIMA Models forecast output for Brent Oil 
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Figure 55: Eviews add in ARIMA Model forecast output for Brent Oil 
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Figure 56: Comparison of the out of sample forecast of two ARIMA models for Brent oil 
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Figure 57: Custom ARIMA Model forecast output for Cocoa 
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Figure 58: Eviews add in ARIMA Models forecast output for Cocoa 

 



154 
 

1,600

1,800

2,000

2,200

2,400

2,600

2,800

3,000

3,200

3,400

16 17 18 19 20

Close_Price_CC CLOSE_PRICEF1 CLOSE_PRICEF2
 

Figure 59: Comparison of the out of sample forecast of two ARIMA models for cocoa 
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Figure 60: Custom ARIMA Model forecast output for Coffee 
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Figure 61: Eviews add in ARIMA Models forecast output for Coffee 
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Figure 62: Comparison of the out of sample forecast of two ARIMA models for coffee 
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Figure 63: Custom ARIMA Model forecast output for Copper 
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Figure 64: Eviews add in ARIMA Models forecast output for Copper 
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Figure 65: Comparison of the out of sample forecast of two ARIMA models for copper 
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Figure 66: Custom ARIMA Model forecast output for Corn 
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Figure 67: Eviews add in ARIMA Models forecast output for Corn 
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Figure 68: Comparison of the out of sample forecast of two ARIMA models for corn 
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Figure 69: Custom ARIMA Model forecast output for Cotton 
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Figure 70: Eviews add in ARIMA Models forecast output for Cotton 
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Figure 71: Comparison of the out of sample forecast of two ARIMA models for cotton 
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Figure 72: Custom ARIMA Model forecast output for Crude oil 
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Figure 73: Eviews add in ARIMA Models forecast output for Crude oil 
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Figure 74: Comparison of the out of sample forecast of two ARIMA models for crude oil 
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Figure 75: Custom ARIMA Model forecast output for feeder cattle 
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Figure 76: Eviews add in ARIMA Models forecast output for feeder cattle 
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Figure 77: Comparison of the out of sample forecast of two ARIMA models for feeder cattle 
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Figure 78: Custom ARIMA Model forecast output for gasoline 
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Figure 79: Eviews add in ARIMA Models forecast output for gasoline 
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Figure 80: Comparison of the out of sample forecast of two ARIMA models for gasoline 
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Figure 81: Custom ARIMA Model forecast output for gold 
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Figure 82: Eviews add in ARIMA Models forecast output for gold 
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Figure 83: Comparison of the out of sample forecast of two ARIMA models for gold 
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Figure 84: Custom ARIMA Model forecast output for heating oil 
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Figure 85: Eviews add in ARIMA Models forecast output for heating oil 
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Figure 86: Comparison of the out of sample forecast of two ARIMA models for heating oil 
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Figure 87: Custom ARIMA Model forecast output for lead 
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Figure 88: Eviews add in ARIMA Models forecast output for lead 
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Figure 89: Comparison of the out of sample forecast of two ARIMA models for lead 
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Figure 90: Custom ARIMA Model forecast output for lean hogs 
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Figure 91: Eviews add in ARIMA Models forecast output for lean hogs 
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Figure 92: Comparison of the out of sample forecast of two ARIMA models for lean hogs 
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Figure 93: Custom ARIMA Model forecast output for live cattle 
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Figure 94: Eviews add in ARIMA Models forecast output for live cattle 
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Figure 95: Comparison of the out of sample forecast of two ARIMA models for live cattle 
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Figure 96: Custom ARIMA Model forecast output for lumber 
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Figure 97: Eviews add in ARIMA Models forecast output for lumber 
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Figure 98: Comparison of the out of sample forecast of two ARIMA models for lumber 
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Figure 99: Custom ARIMA Model forecast output for natural gas 
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Figure 100: Eviews add in ARIMA Models forecast output for natural gas 
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Figure 101: Comparison of the out of sample forecast of two ARIMA models for natural gas 
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Figure 102: Custom ARIMA Model forecast output for nickel 
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Figure 103: Eviews add in ARIMA Models forecast output for nickel 
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Figure 104: Comparison of the out of sample forecast of two ARIMA models for nickel 
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Figure 105: Custom ARIMA Model forecast output for oats 
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Figure 106: Eviews add in ARIMA Models forecast output for oats 
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Figure 107: Comparison of the out of sample forecast of two ARIMA models for oats 
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Figure 108: Custom ARIMA Model forecast output for palladium 
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Figure 109: Eviews add in ARIMA Models forecast output for palladium 
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Figure 110: Comparison of the out of sample forecast of two ARIMA models for palladium 
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Figure 111: Custom ARIMA Model forecast output for platinum 
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Figure 112: Eviews add in ARIMA Models forecast output for platinum 
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Figure 113: Comparison of the out of sample forecast of two ARIMA models for platinum 
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Figure 114: Custom ARIMA Model forecast output for rice 
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Figure 115: Eviews add in ARIMA Models forecast output for rice 
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Figure 116: Comparison of the out of sample forecast of two ARIMA models for rice 
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Figure 117: Custom ARIMA Model forecast output for silver 
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Figure 118: Eviews add in ARIMA Models forecast output for silver 
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Figure 119: Comparison of the out of sample forecast of two ARIMA models for silver 
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Figure 120: Custom ARIMA Model forecast output for soybean meal 
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Figure 121: Eviews add in ARIMA Models forecast output for soybean meal 
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Figure 122: Comparison of the out of sample forecast of two ARIMA models for soybean meal 
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Figure 123: Custom ARIMA Model forecast output for soybean oil 
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Figure 124: Eviews add in ARIMA Models forecast output for soybean oil 
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Figure 125: Comparison of the out of sample forecast of two ARIMA models for soybean oil 
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Figure 126: Custom ARIMA Model forecast output for soybeans 
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Figure 127: Eviews add in ARIMA Models forecast output for soybeans 
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Figure 128: Comparison of the out of sample forecast of two ARIMA models for soybeans 
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Figure 129: Custom ARIMA Model forecast output for sugar 
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Figure 130: Eviews add in ARIMA Models forecast output for sugar 
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Figure 131: Comparison of the out of sample forecast of two ARIMA models for sugar 
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Figure 132: Custom ARIMA Model forecast output for tin 
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Figure 133: Eviews add in ARIMA Models forecast output for tin 
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Figure 134: Comparison of the out of sample forecast of two ARIMA models for tin 
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Figure 135: Custom ARIMA Model forecast output for wheat 
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Figure 136: Eviews add in ARIMA Models forecast output for wheat 
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Figure 137: Comparison of the out of sample forecast of two ARIMA models for wheat 
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Figure 138: Custom ARIMA Model forecast output for zinc 
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Figure 139: Eviews add in ARIMA Models forecast output for zinc 
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Figure 140: Comparison of the out of sample forecast of two ARIMA models for zinc 
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After we have conducted the forecast, we performed Diebold-Mariano test to see if the 

predictive ability of each model differ, so it worth using the one ARIMA model over the other. 

All of the models passed the test successfully, as |DM statistic|> ± 1.96, indicating that forecast 

accuracy of two forecast methods differ significantly. The results of this test are presented 

below. 

DM Test Statistic DM SQR DM ABS 

Aluminum 17,08052 17,07233 

Corn -239,1550 -238,9285 

Brent Oil 122,2663 122,1592 

Coffee 275,3240 275,3020 

Copper 129,1084 128,7022 

Crude Oil -55,60704 -55,63019 

Feeder Cattle 197,7561 197,9185 

Cocoa 27,67356 27,66916 

Gasoline -82,51257 -82,87890 

Gold -153,3745 -153,4925 

Heating Oil -66,58352 -66,49447 

Lead 15,05732 15,03294 

Lean Hogs 150,0289 148,6948 

Live Cattle 25,50501 25,50709 

Lumber 142,2237 141,3380 

Natural Gas -57,87276 -58,29523 

Nickel 275,1852 275,1148 

Oats 167,1640 166,9870 

Palladium 157,3889 157,3685 

Platinum 191,3361 191,3237 

Rice 172,5420 172,5841 

Silver -34,11769 -34,11243 

Soybean Meal -69,50640 -69,53258 

Soybean Oil 206,6237 206,5803 

Soybeans -98,94952 -99,01308 

Sugar 148,9387 148,6837 

Tin 34,03102 33,88944 

Wheat 33,95192 33,94961 

Zinc -199,0555 -199,1783 

Cotton -42,83575 -42,85928 

Table 66: Diebold-Mariano test statistic for each commodity 

 

Due to the fact that the predictability of the two models differ, we should examine which one 

performs better, resulting to more accurate results on this out of sample forecast. That’s why 

we gathered the 4 accuracy indicators we discussed in the Methodology section and perform 

comparison between the two sets of ARIMA models, presented at the table 67. 
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 Custom Model Eviews Add in Model 

RMSE MAE MAPE Theil RMSE MAE MAPE Theil 

Aluminum 21,35 17,28 1,12 0,0069 22,92 18,43 1,19 0,0074 

Corn 4,96 3,56 0,98 0,0068 4,96 3,56 0,98 0,0068 

Brent Oil 1,32 0,90 1,69 0,0106 1,32 0,91 1,70 0,0106 

Coffee 2,23 1,71 1,47 0,0093 2,24 1,72 1,47 0,0093 

Copper 0,03 0,03 0,96 0,0063 0,03 0,03 0,96 0,0063 

Crude Oil 1,63 1,02 2,64 0,0151 1,64 1,02 2,65 0,0152 

Feeder Cattle 1,91 1,23 0,90 0,0067 1,90 1,24 0,91 0,0067 

Cocoa 43,80 34,15 1,48 0,0093 43,84 34,22 1,48 0,0093 

Gasoline 0,044 0,03 2,43 0,0139 0,043 0,03 2,42 0,0139 

Gold 15,64 9,72 0,65 0,0054 15,57 9,72 0,65 0,0053 

Heating Oil 0,04 0,027 1,85 0,0112 0,04 0,027 1,85 0,0112 

Lead 24,20 19,32 1,02 0,0064 24,47 19,58 1,03 0,0064 

Lean Hogs 2,07 1,22 1,93 0,0155 2,07 1,22 1,93 0,0155 

Live Cattle 1,73 1,10 0,998 0,0076 1,74 1,11 1,00 0,0076 

Lumber 9,48 6,59 1,68 0,0119 9,5 6,64 1,69 0,0119 

Natural Gas 0,1 0,06 2,42 0,0195 0,1 0,06 2,43 0,0195 

Nickel 239,24 181,23 1,32 0,0086 239,46 181,71 1,32 0,0086 

Oats 6,95 4,47 1,57 0,0122 6,94 4,49 1,58 0,0122 

Palladium 50,57 27,79 1,63 0,0149 50,08 27,62 1,62 0,0148 

Platinum 15,00 9,89 1,17 0,0087 15,08 9,88 1,17 0,0088 

Rice 34,11 15,00 1,22 0,0139 34,07 15,95 1,21 0,0138 

Silver 0,27 0,17 1,06 0,0082 0,27 0,17 1,06 0,0082 

Soybean Meal 3,66 2,72 0,86 0,0058 3,68 2,73 0,86 0,0058 

Soybean Oil 0,35 0,26 0,86 0,0056 0,35 0,27 0,87 0,0056 

Soybeans 8,74 6,53 0,72 0,0048 8,75 6,53 0,72 0,0048 

Sugar 0,26 0,20 1,38 0,0090 0,27 0,20 1,40 0,0091 

Tin 227,78 162,05 0,99 0,0068 227,94 161,78 0,99 0,0068 

Wheat 8,63 6,38 1,38 0,0093 8,69 6,43 1,39 0,0094 

Zinc 28,78 22,89 1,03 0,0064 28,80 22,99 1,03 0,0064 

Cotton 0,97 0,73 1,08 0,0069 0,97 0,74 1,08 0,0069 

Table 67: Forecasting accuracy indicators comparison between models for each commodity 

 

Overall, we observe that most of the times the Custom models perform better than the 

Eviews add in models. Forecasting with custom models is more accurate for aluminum, coffee, 

crude oil, feeder cattle, cocoa, lead, live cattle, lumber, nickel, oats, platinum, soybean meal, 

sugar, wheat and zinc, while forecasting with Eviews add in models is more accurate for 

gasoline, gold, palladium, rice and soybean oil. Prediction accuracy for corn, brent oil, copper, 

heating oil, lean hogs, natural gas, silver, soybeans, tin and cotton is indifferent for whoever 

model from both we use, according to the corresponding indicators. 
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7.2 Jumps in Commodities Returns 

 

Jumps are considered to be discontinuous variations in assets’ prices and generate returns that 

lie outside their usual scale of value. Those jumps can either be significant investing 

opportunities or massive threats to profit and losses. Hence, the higher the jump activity, the 

higher the uncertainty for market participants. Identifying jumps in commodity returns 

represents indeed an essential step to understanding the dynamics of these markets. They 

usually occur as extreme, discontinued events that happen rarely in financial markets 

(Chevallier & Ielpo, 2014). 

 To analyze the daily returns of the selected commodities we calculate these jumps in an 

effort to explain volatility and risk. Then we calculate the percentage of positive and negative 

jumps for every commodity, as well as the percentage of jumps to whole sample. The jumps 

are indicating abnormal returns or losses that happen unexpectedly and cannot be predicted 

very easily, occurring usually during short or long crisis periods of the markets. The results are 

shown at the table 68. 

We see that the commodities with the highest percentage of jumps relating to the sample 

size are lean hogs, feeder cattle, live cattle, oats, gasoline, tin, silver, platinum and lumber. Also, 

metals and energy commodities present a higher percentage of negative jumps. On the contrary, 

agricultural commodities, and more specifically grains and softs, present higher percentage of 

positive jumps something that Chevallier & Ielpo (2014) observed as well. The highest number 

of jumps occurs between livestock commodities, while the lowest number of jumps is observed 

in energy cluster of commodities (except gasoline). 

 The existence of these jumps is indication of risk in commodities markets. This implies 

that commodities are not necessary providing investors with as much diversification as one 

could expect. Commodities should not be overlooked when it comes to systemic risk 

(Chevallier & Ielpo, 2014). So, the notion that commodities are doing well during crisis is 

generally correct but there can be times during these crisis that jumps will occur, affecting the 

hedging role of commodities. With this analysis we can have an idea regarding the risk involved 

in daily returns of commodities. 

 

 



198 
 

 

Table 68: Jumps results for commodities 

Commodities

Total 

daily log 

returns 

observat

ions

Total 

Jumps

% of 

total 

daily 

returns

Positive 

Jumps

% of 

total 

jumps

Negative 

Jumps

% of 

total 

jumps

gold 5.107 42 0,8224 16 38% 26 62%

silver 5.165 57 1,1036 16 28% 41 72%

platinum 5.266 53 1,0065 23 43% 30 57%

palladium 5.201 48 0,9229 19 40% 29 60%

aluminum 901 6 0,6659 4 67% 2 33%

copper 6.233 34 0,5458 11 32% 23 68%

lead 2.945 21 0,7131 10 48% 11 52%

nickel 2.945 16 0,7131 8 50% 8 50%

tin 2.945 37 1,2564 7 19% 30 81%

zinc 3.032 15 0,4947 5 33% 10 67%

crude oil 5.094 28 0,0055 7 25% 21 75%

brent oil 8.181 45 0,5501 15 33% 30 67%

gasoline rbob 4.017 49 1,2198 18 37% 31 63%

heating oil 5.113 28 0,5476 9 32% 19 68%

natural gas 5.112 25 0,489 18 72% 7 28%

corn 10.446 95 0,9077 59 62% 36 38%

rice 5.057 37 0,7317 25 68% 12 32%

soybeans 7.913 52 0,6571 19 37% 33 63%

soybean oil 10.461 29 0,2772 17 59% 12 41%

soybean meal 7.874 63 0,8001 28 44% 35 56%

oats 5.081 66 1,299 26 39% 40 61%

wheat 5.079 19 0,3741 15 79% 4 21%

coffee 10.228 70 0,6844 34 49% 36 51%

cocoa 10.183 50 0,491 24 48% 26 52%

sugar 10.212 101 0,989 44 44% 57 56%

cotton 5.224 43 0,8231 29 67% 14 33%

lumber 10.227 120 1,1734 80 67% 40 33%

lean logs 10.255 206 2,0088 95 46% 111 54%

feeder cattle 5.108 91 1,8135 38 42% 53 58%

live cattle 10.243 123 1,2008 41 33% 82 67%

Softs

Livestock

METALS

Precious

Industrial/Base

ENERGY

AGRICULTURE

Grains
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9. CONCLUSION 

 

Commodities is a very special market with its own characteristics. We can separate them into 

three categories, agriculture, metals and energy, to understand and study them better, drawing 

interesting conclusions. They have their own pricing dynamics that needs special analysis to be 

understood extensively. From the analysis of commodity fundamentals we conclude that most 

of the times over the counter deals regarding commodities are affected by the commodities that 

trade freely at the open market, based on supply and demand dynamics. Also, we observe that 

most of the commodities are used for industrial purposes as raw materials for the creation of 

other products. Generally, they are doing good during high inflation periods, used as a safe for 

investments. Precious metals are usually used combined with industrial metals as alloys to 

improve their properties. However, many metals are energy intensive to be produced, with 

industries and governments seeking for alternative solutions. The commodities that correlate 

more with each other are those which belong to the energy complex, as they are distillates of 

the same base commodity, oil. Furthermore, there is a strong substitution effect between of the 

same group, especially when the prices are high for one commodity; consumers tend to 

substitute it with another. Most of the commodities are affected by weather either directly, like 

agricultural commodities, or indirectly. Brazil is the biggest producer of agricultural 

commodities with high rank to many others, with huge future potential. Finally, China seems 

to be the biggest end user of almost all commodities due to their rapid growth and the shift of 

production from advanced economies to the East. 

The interesting part from investment perspective is to create models that can predict 

commodities prices. We have created such ARIMA models and most of the times the “custom 

ARIMA models”, were better in an out of sample forecast. These models differ from the other 

set, because we create them more conservatively, trying to have all the ARMA terms 

statistically significant and have a very stable structure. However, both sets of ARIMA models 

seem to capture the trends and turns of the closing prices during forecasting. Moreover, we 

conclude that livestock commodities are those with the highest risk involved in their volatility, 

as they present the highest number of jumps to their daily returns. Metals and energy present a 

high number of negative jumps, while agriculture commodities present a high number of 

positive jumps. A very important aspect of commodities for future research would be the 

analysis of risk of daily returns and the creation of even more accurate forecasting models for 

daily prices and daily returns. 
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11. APPENDIX 

 

11.1 APPENDIX I: Unit root tests results for stationarity 
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 ADF Test 

 
 

Null Hypothesis: R has a unit root  

Exogenous: Constant   

Lag Length: 1 (Automatic - based on SIC, maxlag=20) 
     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -18.33860  0.0000 

Test critical values: 1% level  -3.438208  

 5% level  -2.864898  

 10% level  -2.568613  
     
     *MacKinnon (1996) one-sided p-values.  

     

Augmented Dickey-Fuller Test Equation  

Dependent Variable: D(R)   

Method: Least Squares   

Sample (adjusted): 11/24/2016 3/09/2020  

Included observations: 809 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     R(-1) -0.913495 0.049813 -18.33860 0.0000 

D(R(-1)) -0.096203 0.035103 -2.740597 0.0063 

C -7.70E-05 0.000416 -0.185026 0.8533 
     
     R-squared 0.509953     Mean dependent var -7.54E-06 

Adjusted R-squared 0.508737     S.D. dependent var 0.016878 

S.E. of regression 0.011830     Akaike info criterion -6.032728 

Sum squared resid 0.112791     Schwarz criterion -6.015315 

Log likelihood 2443.239     Hannan-Quinn criter. -6.026042 

F-statistic 419.3700     Durbin-Watson stat 1.991909 

Prob(F-statistic) 0.000000    
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 KPSS Test 

 
 

Null Hypothesis: R is stationary  

Exogenous: Constant   

Bandwidth: 11 (Newey-West automatic) using Bartlett kernel 
     
         LM-Stat. 
     
     Kwiatkowski-Phillips-Schmidt-Shin test statistic  0.246736 

Asymptotic critical values*: 1% level   0.739000 

  5% level   0.463000 

  10% level   0.347000 
     
     *Kwiatkowski-Phillips-Schmidt-Shin (1992, Table 1)  

     
     
     Residual variance (no correction)  0.000141 

HAC corrected variance (Bartlett kernel)  0.000118 
     
          

KPSS Test Equation   

Dependent Variable: R   

Method: Least Squares   

Sample (adjusted): 11/22/2016 3/09/2020  

Included observations: 811 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C -3.83E-05 0.000417 -0.091787 0.9269 
     
     R-squared 0.000000     Mean dependent var -3.83E-05 

Adjusted R-squared 0.000000     S.D. dependent var 0.011887 

S.E. of regression 0.011887     Akaike info criterion -6.025556 

Sum squared resid 0.114448     Schwarz criterion -6.019763 

Log likelihood 2444.363     Hannan-Quinn criter. -6.023332 

Durbin-Watson stat 2.012998    
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 Phillips – Perron test 
 

 

Null Hypothesis: R has a unit root  

Exogenous: Constant   

Bandwidth: 11 (Newey-West automatic) using Bartlett kernel 
     
        Adj. t-Stat   Prob.* 
     
     Phillips-Perron test statistic -28.86268  0.0000 

Test critical values: 1% level  -3.438198  

 5% level  -2.864894  

 10% level  -2.568610  
     
     *MacKinnon (1996) one-sided p-values.  

     
     
     Residual variance (no correction)  0.000141 

HAC corrected variance (Bartlett kernel)  0.000120 
     
          

Phillips-Perron Test Equation   

Dependent Variable: D(R)   

Method: Least Squares   

Sample (adjusted): 11/23/2016 3/09/2020  

Included observations: 810 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     R(-1) -1.008822 0.035098 -28.74317 0.0000 

C -6.70E-05 0.000417 -0.160673 0.8724 
     
     R-squared 0.505559     Mean dependent var -2.59E-05 

Adjusted R-squared 0.504947     S.D. dependent var 0.016875 

S.E. of regression 0.011873     Akaike info criterion -6.026556 

Sum squared resid 0.113911     Schwarz criterion -6.014958 

Log likelihood 2442.755     Hannan-Quinn criter. -6.022103 

F-statistic 826.1699     Durbin-Watson stat 2.001031 

Prob(F-statistic) 0.000000    
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Brent Oil 

 

 Correlogram 
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 ADF Test 

 
 

Null Hypothesis: R has a unit root  

Exogenous: Constant   

Lag Length: 0 (Automatic - based on SIC, maxlag=35) 
     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -87.69979  0.0001 

Test critical values: 1% level  -3.431061  

 5% level  -2.861739  

 10% level  -2.566918  
     
     *MacKinnon (1996) one-sided p-values.  

     

Augmented Dickey-Fuller Test Equation  

Dependent Variable: D(R)   

Method: Least Squares   

Sample (adjusted): 6/29/1988 5/17/2017  

Included observations: 7362 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     R(-1) -1.022007 0.011653 -87.69979 0.0000 

C 0.000171 0.000261 0.655150 0.5124 
     
     R-squared 0.511004     Mean dependent var -5.59E-08 

Adjusted R-squared 0.510938     S.D. dependent var 0.031960 

S.E. of regression 0.022351     Akaike info criterion -4.763635 

Sum squared resid 3.676760     Schwarz criterion -4.761759 

Log likelihood 17536.94     Hannan-Quinn criter. -4.762990 

F-statistic 7691.254     Durbin-Watson stat 2.001018 

Prob(F-statistic) 0.000000    
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 KPSS Test 

 
 

Null Hypothesis: R is stationary  

Exogenous: Constant   

Bandwidth: 3 (Newey-West automatic) using Bartlett kernel 
     
         LM-Stat. 
     
     Kwiatkowski-Phillips-Schmidt-Shin test statistic  0.079377 

Asymptotic critical values*: 1% level   0.739000 

  5% level   0.463000 

  10% level   0.347000 
     
     *Kwiatkowski-Phillips-Schmidt-Shin (1992, Table 1)  

     
     
     Residual variance (no correction)  0.000500 

HAC corrected variance (Bartlett kernel)  0.000467 
     
          

KPSS Test Equation   

Dependent Variable: R   

Method: Least Squares   

Sample (adjusted): 6/28/1988 5/17/2017  

Included observations: 7363 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 0.000168 0.000261 0.646770 0.5178 
     
     R-squared 0.000000     Mean dependent var 0.000168 

Adjusted R-squared 0.000000     S.D. dependent var 0.022354 

S.E. of regression 0.022354     Akaike info criterion -4.763525 

Sum squared resid 3.678663     Schwarz criterion -4.762587 

Log likelihood 17537.92     Hannan-Quinn criter. -4.763202 

Durbin-Watson stat 2.043949    
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 Phillips – Perron Test 
 
 

Null Hypothesis: R has a unit root  

Exogenous: Constant   

Bandwidth: 2 (Newey-West automatic) using Bartlett kernel 
     
        Adj. t-Stat   Prob.* 
     
     Phillips-Perron test statistic -87.71858  0.0001 

Test critical values: 1% level  -3.431061  

 5% level  -2.861739  

 10% level  -2.566918  
     
     *MacKinnon (1996) one-sided p-values.  

     
     
     Residual variance (no correction)  0.000499 

HAC corrected variance (Bartlett kernel)  0.000491 
     
          

Phillips-Perron Test Equation   

Dependent Variable: D(R)   

Method: Least Squares   

Sample (adjusted): 6/29/1988 5/17/2017  

Included observations: 7362 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     R(-1) -1.022007 0.011653 -87.69979 0.0000 

C 0.000171 0.000261 0.655150 0.5124 
     
     R-squared 0.511004     Mean dependent var -5.59E-08 

Adjusted R-squared 0.510938     S.D. dependent var 0.031960 

S.E. of regression 0.022351     Akaike info criterion -4.763635 

Sum squared resid 3.676760     Schwarz criterion -4.761759 

Log likelihood 17536.94     Hannan-Quinn criter. -4.762990 

F-statistic 7691.254     Durbin-Watson stat 2.001018 

Prob(F-statistic) 0.000000    
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Cocoa 

 

 Correlogram 
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 ADF Test 

 
 

Null Hypothesis: R has a unit root  

Exogenous: Constant   

Lag Length: 0 (Automatic - based on SIC, maxlag=37) 
     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -95.64579  0.0001 

Test critical values: 1% level  -3.430888  

 5% level  -2.861662  

 10% level  -2.566877  
     
     *MacKinnon (1996) one-sided p-values.  

     

Augmented Dickey-Fuller Test Equation  

Dependent Variable: D(R)   

Method: Least Squares   

Sample (adjusted): 12/31/1979 7/01/2016  

Included observations: 9164 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     R(-1) -0.999213 0.010447 -95.64579 0.0000 

C -2.85E-07 0.000202 -0.001407 0.9989 
     
     R-squared 0.499621     Mean dependent var 2.97E-06 

Adjusted R-squared 0.499566     S.D. dependent var 0.027397 

S.E. of regression 0.019381     Akaike info criterion -5.048808 

Sum squared resid 3.441532     Schwarz criterion -5.047253 

Log likelihood 23135.64     Hannan-Quinn criter. -5.048279 

F-statistic 9148.117     Durbin-Watson stat 1.999984 

Prob(F-statistic) 0.000000    
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 KPSS Test 

 

Null Hypothesis: R is stationary  

Exogenous: Constant   

Bandwidth: 15 (Newey-West automatic) using Bartlett kernel 
     
         LM-Stat. 
     
     Kwiatkowski-Phillips-Schmidt-Shin test statistic  0.153121 

Asymptotic critical values*: 1% level   0.739000 

  5% level   0.463000 

  10% level   0.347000 
     
     *Kwiatkowski-Phillips-Schmidt-Shin (1992, Table 1)  

     
     
     Residual variance (no correction)  0.000376 

HAC corrected variance (Bartlett kernel)  0.000350 
     
          

KPSS Test Equation   

Dependent Variable: R   

Method: Least Squares   

Sample (adjusted): 12/28/1979 7/01/2016  

Included observations: 9165 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C -2.17E-06 0.000202 -0.010729 0.9914 
     
     R-squared 0.000000     Mean dependent var -2.17E-06 

Adjusted R-squared -0.000000     S.D. dependent var 0.019380 

S.E. of regression 0.019380     Akaike info criterion -5.049048 

Sum squared resid 3.441833     Schwarz criterion -5.048271 

Log likelihood 23138.26     Hannan-Quinn criter. -5.048783 

Durbin-Watson stat 1.998310    
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 Phillips – Perron Test 

 

Null Hypothesis: R has a unit root  

Exogenous: Constant   

Bandwidth: 15 (Newey-West automatic) using Bartlett kernel 
     
        Adj. t-Stat   Prob.* 
     
     Phillips-Perron test statistic -95.70716  0.0001 

Test critical values: 1% level  -3.430888  

 5% level  -2.861662  

 10% level  -2.566877  
     
     *MacKinnon (1996) one-sided p-values.  

     
     
     Residual variance (no correction)  0.000376 

HAC corrected variance (Bartlett kernel)  0.000349 
     
          

Phillips-Perron Test Equation   

Dependent Variable: D(R)   

Method: Least Squares   

Sample (adjusted): 12/31/1979 7/01/2016  

Included observations: 9164 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     R(-1) -0.999213 0.010447 -95.64579 0.0000 

C -2.85E-07 0.000202 -0.001407 0.9989 
     
     R-squared 0.499621     Mean dependent var 2.97E-06 

Adjusted R-squared 0.499566     S.D. dependent var 0.027397 

S.E. of regression 0.019381     Akaike info criterion -5.048808 

Sum squared resid 3.441532     Schwarz criterion -5.047253 

Log likelihood 23135.64     Hannan-Quinn criter. -5.048279 

F-statistic 9148.117     Durbin-Watson stat 1.999984 

Prob(F-statistic) 0.000000    
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Coffee 

 

 Correlogram 
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 ADF Test 

 
 

Null Hypothesis: R has a unit root  

Exogenous: Constant   

Lag Length: 0 (Automatic - based on SIC, maxlag=37) 
     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -97.23782  0.0001 

Test critical values: 1% level  -3.430885  

 5% level  -2.861661  

 10% level  -2.566876  
     
     *MacKinnon (1996) one-sided p-values.  

     

Augmented Dickey-Fuller Test Equation  

Dependent Variable: D(R)   

Method: Least Squares   

Sample (adjusted): 12/31/1979 6/24/2016  

Included observations: 9204 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     R(-1) -1.013691 0.010425 -97.23782 0.0000 

C -3.31E-05 0.000242 -0.136605 0.8913 
     
     R-squared 0.506785     Mean dependent var -2.91E-06 

Adjusted R-squared 0.506732     S.D. dependent var 0.033107 

S.E. of regression 0.023252     Akaike info criterion -4.684656 

Sum squared resid 4.975004     Schwarz criterion -4.683107 

Log likelihood 21560.79     Hannan-Quinn criter. -4.684129 

F-statistic 9455.193     Durbin-Watson stat 2.000318 

Prob(F-statistic) 0.000000    
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 KPSS Test 

 
 

Null Hypothesis: R is stationary  

Exogenous: Constant   

Bandwidth: 0 (Newey-West automatic) using Bartlett kernel 
     
         LM-Stat. 
     
     Kwiatkowski-Phillips-Schmidt-Shin test statistic  0.049188 

Asymptotic critical values*: 1% level   0.739000 

  5% level   0.463000 

  10% level   0.347000 
     
     *Kwiatkowski-Phillips-Schmidt-Shin (1992, Table 1)  

     
     
     Residual variance (no correction)  0.000541 

HAC corrected variance (Bartlett kernel)  0.000541 
     
          

KPSS Test Equation   

Dependent Variable: R   

Method: Least Squares   

Sample (adjusted): 12/28/1979 6/24/2016  

Included observations: 9205 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C -3.37E-05 0.000242 -0.138972 0.8895 
     
     R-squared 0.000000     Mean dependent var -3.37E-05 

Adjusted R-squared -0.000000     S.D. dependent var 0.023252 

S.E. of regression 0.023252     Akaike info criterion -4.684778 

Sum squared resid 4.976018     Schwarz criterion -4.684004 

Log likelihood 21562.69     Hannan-Quinn criter. -4.684515 

Durbin-Watson stat 2.027102    
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 Phillips – Perron Test 
 
 

Null Hypothesis: R has a unit root  

Exogenous: Constant   

Bandwidth: 2 (Newey-West automatic) using Bartlett kernel 
     
        Adj. t-Stat   Prob.* 
     
     Phillips-Perron test statistic -97.24969  0.0001 

Test critical values: 1% level  -3.430885  

 5% level  -2.861661  

 10% level  -2.566876  
     
     *MacKinnon (1996) one-sided p-values.  

     
     
     Residual variance (no correction)  0.000541 

HAC corrected variance (Bartlett kernel)  0.000533 
     
          

Phillips-Perron Test Equation   

Dependent Variable: D(R)   

Method: Least Squares   

Sample (adjusted): 12/31/1979 6/24/2016  

Included observations: 9204 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     R(-1) -1.013691 0.010425 -97.23782 0.0000 

C -3.31E-05 0.000242 -0.136605 0.8913 
     
     R-squared 0.506785     Mean dependent var -2.91E-06 

Adjusted R-squared 0.506732     S.D. dependent var 0.033107 

S.E. of regression 0.023252     Akaike info criterion -4.684656 

Sum squared resid 4.975004     Schwarz criterion -4.683107 

Log likelihood 21560.79     Hannan-Quinn criter. -4.684129 

F-statistic 9455.193     Durbin-Watson stat 2.000318 

Prob(F-statistic) 0.000000    
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Copper 

 

 Correlogram 
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 ADF Test 

 
 

Null Hypothesis: R has a unit root  

Exogenous: Constant   

Lag Length: 0 (Automatic - based on SIC, maxlag=31) 
     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -73.21129  0.0001 

Test critical values: 1% level  -3.431594  

 5% level  -2.861975  

 10% level  -2.567044  
     
     *MacKinnon (1996) one-sided p-values.  

     

Augmented Dickey-Fuller Test Equation  

Dependent Variable: D(R)   

Method: Least Squares   

Sample (adjusted): 4/03/2000 8/09/2018  

Included observations: 4582 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     R(-1) -1.078466 0.014731 -73.21129 0.0000 

C 0.000291 0.000258 1.126720 0.2599 
     
     R-squared 0.539230     Mean dependent var 1.87E-06 

Adjusted R-squared 0.539130     S.D. dependent var 0.025744 

S.E. of regression 0.017477     Akaike info criterion -5.255400 

Sum squared resid 1.398976     Schwarz criterion -5.252594 

Log likelihood 12042.12     Hannan-Quinn criter. -5.254412 

F-statistic 5359.893     Durbin-Watson stat 2.000733 

Prob(F-statistic) 0.000000    
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 KPSS Test 

 
 

Null Hypothesis: R is stationary  

Exogenous: Constant   

Bandwidth: 4 (Newey-West automatic) using Bartlett kernel 
     
         LM-Stat. 
     
     Kwiatkowski-Phillips-Schmidt-Shin test statistic  0.230671 

Asymptotic critical values*: 1% level   0.739000 

  5% level   0.463000 

  10% level   0.347000 
     
     *Kwiatkowski-Phillips-Schmidt-Shin (1992, Table 1)  

     
     
     Residual variance (no correction)  0.000307 

HAC corrected variance (Bartlett kernel)  0.000273 
     
          

KPSS Test Equation   

Dependent Variable: R   

Method: Least Squares   

Sample (adjusted): 3/31/2000 8/09/2018  

Included observations: 4583 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 0.000269 0.000259 1.039649 0.2986 
     
     R-squared 0.000000     Mean dependent var 0.000269 

Adjusted R-squared 0.000000     S.D. dependent var 0.017528 

S.E. of regression 0.017528     Akaike info criterion -5.249871 

Sum squared resid 1.407654     Schwarz criterion -5.248468 

Log likelihood 12031.08     Hannan-Quinn criter. -5.249377 

Durbin-Watson stat 2.156902    
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 Phillips – Perron Test 

 
 

Null Hypothesis: R has a unit root  

Exogenous: Constant   

Bandwidth: 9 (Newey-West automatic) using Bartlett kernel 
     
        Adj. t-Stat   Prob.* 
     
     Phillips-Perron test statistic -73.14867  0.0001 

Test critical values: 1% level  -3.431594  

 5% level  -2.861975  

 10% level  -2.567044  
     
     *MacKinnon (1996) one-sided p-values.  

     
     
     Residual variance (no correction)  0.000305 

HAC corrected variance (Bartlett kernel)  0.000313 
     
          

Phillips-Perron Test Equation   

Dependent Variable: D(R)   

Method: Least Squares   

Sample (adjusted): 4/03/2000 8/09/2018  

Included observations: 4582 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     R(-1) -1.078466 0.014731 -73.21129 0.0000 

C 0.000291 0.000258 1.126720 0.2599 
     
     R-squared 0.539230     Mean dependent var 1.87E-06 

Adjusted R-squared 0.539130     S.D. dependent var 0.025744 

S.E. of regression 0.017477     Akaike info criterion -5.255400 

Sum squared resid 1.398976     Schwarz criterion -5.252594 

Log likelihood 12042.12     Hannan-Quinn criter. -5.254412 

F-statistic 5359.893     Durbin-Watson stat 2.000733 

Prob(F-statistic) 0.000000    
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Corn 

 

 Correlogram 
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 ADF Test 

 
 

Null Hypothesis: R has a unit root  

Exogenous: Constant   

Lag Length: 0 (Automatic - based on SIC, maxlag=37) 
     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -97.44820  0.0001 

Test critical values: 1% level  -3.430870  

 5% level  -2.861654  

 10% level  -2.566872  
     
     *MacKinnon (1996) one-sided p-values.  

     

Augmented Dickey-Fuller Test Equation  

Dependent Variable: D(R)   

Method: Least Squares   

Sample (adjusted): 3 9402   

Included observations: 9400 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     R(-1) -1.005188 0.010315 -97.44820 0.0000 

C 1.18E-05 0.000178 0.066325 0.9471 
     
     R-squared 0.502597     Mean dependent var -4.05E-07 

Adjusted R-squared 0.502544     S.D. dependent var 0.024475 

S.E. of regression 0.017262     Akaike info criterion -5.280365 

Sum squared resid 2.800499     Schwarz criterion -5.278844 

Log likelihood 24819.71     Hannan-Quinn criter. -5.279848 

F-statistic 9496.152     Durbin-Watson stat 2.000006 

Prob(F-statistic) 0.000000    
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 KPSS Test 

 
 

Null Hypothesis: R is stationary  

Exogenous: Constant   

Bandwidth: 7 (Newey-West automatic) using Bartlett kernel 
     
         LM-Stat. 
     
     Kwiatkowski-Phillips-Schmidt-Shin test statistic  0.044938 

Asymptotic critical values*: 1% level   0.739000 

  5% level   0.463000 

  10% level   0.347000 
     
     *Kwiatkowski-Phillips-Schmidt-Shin (1992, Table 1)  

     
     
     Residual variance (no correction)  0.000298 

HAC corrected variance (Bartlett kernel)  0.000291 
     
          

KPSS Test Equation   

Dependent Variable: R   

Method: Least Squares   

Sample (adjusted): 2 9402   

Included observations: 9401 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 1.25E-05 0.000178 0.070090 0.9441 
     
     R-squared 0.000000     Mean dependent var 1.25E-05 

Adjusted R-squared 0.000000     S.D. dependent var 0.017261 

S.E. of regression 0.017261     Akaike info criterion -5.280640 

Sum squared resid 2.800622     Schwarz criterion -5.279880 

Log likelihood 24822.65     Hannan-Quinn criter. -5.280382 

Durbin-Watson stat 2.010356    
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 Phillips – Perron Test 

 
 

Null Hypothesis: R has a unit root  

Exogenous: Constant   

Bandwidth: 7 (Newey-West automatic) using Bartlett kernel 
     
        Adj. t-Stat   Prob.* 
     
     Phillips-Perron test statistic -97.45415  0.0001 

Test critical values: 1% level  -3.430870  

 5% level  -2.861654  

 10% level  -2.566872  
     
     *MacKinnon (1996) one-sided p-values.  

     
     
     Residual variance (no correction)  0.000298 

HAC corrected variance (Bartlett kernel)  0.000294 
     
          

Phillips-Perron Test Equation   

Dependent Variable: D(R)   

Method: Least Squares   

Sample (adjusted): 3 9402   

Included observations: 9400 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     R(-1) -1.005188 0.010315 -97.44820 0.0000 

C 1.18E-05 0.000178 0.066325 0.9471 
     
     R-squared 0.502597     Mean dependent var -4.05E-07 

Adjusted R-squared 0.502544     S.D. dependent var 0.024475 

S.E. of regression 0.017262     Akaike info criterion -5.280365 

Sum squared resid 2.800499     Schwarz criterion -5.278844 

Log likelihood 24819.71     Hannan-Quinn criter. -5.279848 

F-statistic 9496.152     Durbin-Watson stat 2.000006 

Prob(F-statistic) 0.000000    
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Cotton 

 

 Correlogram 
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 ADF Test 

 
 

Null Hypothesis: R has a unit root  

Exogenous: Constant   

Lag Length: 0 (Automatic - based on SIC, maxlag=31) 
     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -66.35207  0.0001 

Test critical values: 1% level  -3.431559  

 5% level  -2.861959  

 10% level  -2.567036  
     
     *MacKinnon (1996) one-sided p-values.  

     

Augmented Dickey-Fuller Test Equation  

Dependent Variable: D(R)   

Method: Least Squares   

Sample (adjusted): 3 4702   

Included observations: 4700 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     R(-1) -0.967539 0.014582 -66.35207 0.0000 

C 0.000112 0.000268 0.418758 0.6754 
     
     R-squared 0.483770     Mean dependent var 1.48E-06 

Adjusted R-squared 0.483660     S.D. dependent var 0.025595 

S.E. of regression 0.018392     Akaike info criterion -5.153420 

Sum squared resid 1.589103     Schwarz criterion -5.150673 

Log likelihood 12112.54     Hannan-Quinn criter. -5.152454 

F-statistic 4402.598     Durbin-Watson stat 1.999134 

Prob(F-statistic) 0.000000    
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 KPSS Test 

 
 

Null Hypothesis: R is stationary  

Exogenous: Constant   

Bandwidth: 9 (Newey-West automatic) using Bartlett kernel 
     
         LM-Stat. 
     
     Kwiatkowski-Phillips-Schmidt-Shin test statistic  0.038441 

Asymptotic critical values*: 1% level   0.739000 

  5% level   0.463000 

  10% level   0.347000 
     
     *Kwiatkowski-Phillips-Schmidt-Shin (1992, Table 1)  

     
     
     Residual variance (no correction)  0.000338 

HAC corrected variance (Bartlett kernel)  0.000362 
     
          

KPSS Test Equation   

Dependent Variable: R   

Method: Least Squares   

Sample (adjusted): 2 4702   

Included observations: 4701 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 0.000115 0.000268 0.429592 0.6675 
     
     R-squared 0.000000     Mean dependent var 0.000115 

Adjusted R-squared 0.000000     S.D. dependent var 0.018397 

S.E. of regression 0.018397     Akaike info criterion -5.152996 

Sum squared resid 1.590793     Schwarz criterion -5.151622 

Log likelihood 12113.12     Hannan-Quinn criter. -5.152513 

Durbin-Watson stat 1.935064    
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 Phillips – Perron Test 
 
 

Null Hypothesis: R has a unit root  

Exogenous: Constant   

Bandwidth: 7 (Newey-West automatic) using Bartlett kernel 
     
        Adj. t-Stat   Prob.* 
     
     Phillips-Perron test statistic -66.35594  0.0001 

Test critical values: 1% level  -3.431559  

 5% level  -2.861959  

 10% level  -2.567036  
     
     *MacKinnon (1996) one-sided p-values.  

     
     
     Residual variance (no correction)  0.000338 

HAC corrected variance (Bartlett kernel)  0.000339 
     
          

Phillips-Perron Test Equation   

Dependent Variable: D(R)   

Method: Least Squares   

Sample (adjusted): 3 4702   

Included observations: 4700 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     R(-1) -0.967539 0.014582 -66.35207 0.0000 

C 0.000112 0.000268 0.418758 0.6754 
     
     R-squared 0.483770     Mean dependent var 1.48E-06 

Adjusted R-squared 0.483660     S.D. dependent var 0.025595 

S.E. of regression 0.018392     Akaike info criterion -5.153420 

Sum squared resid 1.589103     Schwarz criterion -5.150673 

Log likelihood 12112.54     Hannan-Quinn criter. -5.152454 

F-statistic 4402.598     Durbin-Watson stat 1.999134 

Prob(F-statistic) 0.000000    
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Crude oil 

 

 Correlogram 
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 ADF Test 

 
 

Null Hypothesis: R has a unit root  

Exogenous: Constant   

Lag Length: 0 (Automatic - based on SIC, maxlag=32) 
     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -78.01086  0.0001 

Test critical values: 1% level  -3.431453  

 5% level  -2.861912  

 10% level  -2.567011  
     
     *MacKinnon (1996) one-sided p-values.  

     

Augmented Dickey-Fuller Test Equation  

Dependent Variable: D(R)   

Method: Least Squares   

Sample (adjusted): 3/24/2000 7/17/2020  

Included observations: 5093 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     R(-1) -1.088996 0.013960 -78.01086 0.0000 

C 8.46E-05 0.000405 0.208977 0.8345 
     
     R-squared 0.544499     Mean dependent var 1.58E-07 

Adjusted R-squared 0.544409     S.D. dependent var 0.042809 

S.E. of regression 0.028895     Akaike info criterion -4.249927 

Sum squared resid 4.250483     Schwarz criterion -4.247361 

Log likelihood 10824.44     Hannan-Quinn criter. -4.249028 

F-statistic 6085.695     Durbin-Watson stat 2.000662 

Prob(F-statistic) 0.000000    
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 KPSS Test 

 
 

Null Hypothesis: R is stationary  

Exogenous: Constant   

Bandwidth: 18 (Newey-West automatic) using Bartlett kernel 
     
         LM-Stat. 
     
     Kwiatkowski-Phillips-Schmidt-Shin test statistic  0.124825 

Asymptotic critical values*: 1% level   0.739000 

  5% level   0.463000 

  10% level   0.347000 
     
     *Kwiatkowski-Phillips-Schmidt-Shin (1992, Table 1)  

     
     
     Residual variance (no correction)  0.000841 

HAC corrected variance (Bartlett kernel)  0.000699 
     
          

KPSS Test Equation   

Dependent Variable: R   

Method: Least Squares   

Sample (adjusted): 3/23/2000 7/17/2020  

Included observations: 5094 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 7.66E-05 0.000406 0.188541 0.8505 
     
     R-squared 0.000000     Mean dependent var 7.66E-05 

Adjusted R-squared 0.000000     S.D. dependent var 0.029004 

S.E. of regression 0.029004     Akaike info criterion -4.242557 

Sum squared resid 4.284448     Schwarz criterion -4.241274 

Log likelihood 10806.79     Hannan-Quinn criter. -4.242108 

Durbin-Watson stat 2.177979    
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 Phillips – Perron Test 
 
 

Null Hypothesis: R has a unit root  

Exogenous: Constant   

Bandwidth: 11 (Newey-West automatic) using Bartlett kernel 
     
        Adj. t-Stat   Prob.* 
     
     Phillips-Perron test statistic -78.14775  0.0001 

Test critical values: 1% level  -3.431453  

 5% level  -2.861912  

 10% level  -2.567011  
     
     *MacKinnon (1996) one-sided p-values.  

     
     
     Residual variance (no correction)  0.000835 

HAC corrected variance (Bartlett kernel)  0.000805 
     
          

Phillips-Perron Test Equation   

Dependent Variable: D(R)   

Method: Least Squares   

Sample (adjusted): 3/24/2000 7/17/2020  

Included observations: 5093 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     R(-1) -1.088996 0.013960 -78.01086 0.0000 

C 8.46E-05 0.000405 0.208977 0.8345 
     
     R-squared 0.544499     Mean dependent var 1.58E-07 

Adjusted R-squared 0.544409     S.D. dependent var 0.042809 

S.E. of regression 0.028895     Akaike info criterion -4.249927 

Sum squared resid 4.250483     Schwarz criterion -4.247361 

Log likelihood 10824.44     Hannan-Quinn criter. -4.249028 

F-statistic 6085.695     Durbin-Watson stat 2.000662 

Prob(F-statistic) 0.000000    
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Feeder Cattle 

 

 Correlogram 
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 ADF Test 

 
 

Null Hypothesis: R has a unit root  

Exogenous: Constant   

Lag Length: 0 (Automatic - based on SIC, maxlag=31) 
     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -62.58539  0.0001 

Test critical values: 1% level  -3.431590  

 5% level  -2.861973  

 10% level  -2.567043  
     
     *MacKinnon (1996) one-sided p-values.  

     

Augmented Dickey-Fuller Test Equation  

Dependent Variable: D(R)   

Method: Least Squares   

Sample (adjusted): 2/01/2000 6/25/2018  

Included observations: 4596 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     R(-1) -0.921019 0.014716 -62.58539 0.0000 

C 0.000107 0.000144 0.743923 0.4570 
     
     R-squared 0.460224     Mean dependent var -6.54E-06 

Adjusted R-squared 0.460106     S.D. dependent var 0.013239 

S.E. of regression 0.009728     Akaike info criterion -6.427194 

Sum squared resid 0.434743     Schwarz criterion -6.424395 

Log likelihood 14771.69     Hannan-Quinn criter. -6.426209 

F-statistic 3916.931     Durbin-Watson stat 2.000102 

Prob(F-statistic) 0.000000    
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 KPSS Test 

 
 

Null Hypothesis: R is stationary  

Exogenous: Constant   

Bandwidth: 10 (Newey-West automatic) using Bartlett kernel 
     
         LM-Stat. 
     
     Kwiatkowski-Phillips-Schmidt-Shin test statistic  0.068231 

Asymptotic critical values*: 1% level   0.739000 

  5% level   0.463000 

  10% level   0.347000 
     
     *Kwiatkowski-Phillips-Schmidt-Shin (1992, Table 1)  

     
     
     Residual variance (no correction)  9.52E-05 

HAC corrected variance (Bartlett kernel)  0.000105 
     
          

KPSS Test Equation   

Dependent Variable: R   

Method: Least Squares   

Sample (adjusted): 1/31/2000 6/25/2018  

Included observations: 4597 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 0.000118 0.000144 0.819510 0.4125 
     
     R-squared 0.000000     Mean dependent var 0.000118 

Adjusted R-squared 0.000000     S.D. dependent var 0.009757 

S.E. of regression 0.009757     Akaike info criterion -6.421494 

Sum squared resid 0.437514     Schwarz criterion -6.420094 

Log likelihood 14760.80     Hannan-Quinn criter. -6.421001 

Durbin-Watson stat 1.840887    
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 Phillips - Perron 
 

 

Null Hypothesis: R has a unit root  

Exogenous: Constant   

Bandwidth: 12 (Newey-West automatic) using Bartlett kernel 
     
        Adj. t-Stat   Prob.* 
     
     Phillips-Perron test statistic -62.47438  0.0001 

Test critical values: 1% level  -3.431590  

 5% level  -2.861973  

 10% level  -2.567043  
     
     *MacKinnon (1996) one-sided p-values.  

     
     
     Residual variance (no correction)  9.46E-05 

HAC corrected variance (Bartlett kernel)  8.97E-05 
     
          

Phillips-Perron Test Equation   

Dependent Variable: D(R)   

Method: Least Squares   

Sample (adjusted): 2/01/2000 6/25/2018  

Included observations: 4596 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     R(-1) -0.921019 0.014716 -62.58539 0.0000 

C 0.000107 0.000144 0.743923 0.4570 
     
     R-squared 0.460224     Mean dependent var -6.54E-06 

Adjusted R-squared 0.460106     S.D. dependent var 0.013239 

S.E. of regression 0.009728     Akaike info criterion -6.427194 

Sum squared resid 0.434743     Schwarz criterion -6.424395 

Log likelihood 14771.69     Hannan-Quinn criter. -6.426209 

F-statistic 3916.931     Durbin-Watson stat 2.000102 

Prob(F-statistic) 0.000000    
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Gasoline 

 

 Correlogram 
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 ADF Test 

 

Null Hypothesis: R has a unit root  

Exogenous: Constant   

Lag Length: 0 (Automatic - based on SIC, maxlag=29) 
     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -67.21971  0.0001 

Test critical values: 1% level  -3.431973  

 5% level  -2.862142  

 10% level  -2.567134  
     
     *MacKinnon (1996) one-sided p-values.  

     

Augmented Dickey-Fuller Test Equation  

Dependent Variable: D(R)   

Method: Least Squares   

Sample (adjusted): 10/06/2005 4/01/2019  

Included observations: 3614 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     R(-1) -1.111064 0.016529 -67.21971 0.0000 

C 2.09E-05 0.000413 0.050594 0.9597 
     
     R-squared 0.555746     Mean dependent var 1.41E-05 

Adjusted R-squared 0.555623     S.D. dependent var 0.037275 

S.E. of regression 0.024848     Akaike info criterion -4.551518 

Sum squared resid 2.230151     Schwarz criterion -4.548091 

Log likelihood 8226.592     Hannan-Quinn criter. -4.550296 

F-statistic 4518.489     Durbin-Watson stat 2.000289 

Prob(F-statistic) 0.000000    
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 KPSS Test 

 

Null Hypothesis: R is stationary  

Exogenous: Constant   

Bandwidth: 9 (Newey-West automatic) using Bartlett kernel 
     
         LM-Stat. 
     
     Kwiatkowski-Phillips-Schmidt-Shin test statistic  0.048978 

Asymptotic critical values*: 1% level   0.739000 

  5% level   0.463000 

  10% level   0.347000 
     
     *Kwiatkowski-Phillips-Schmidt-Shin (1992, Table 1)  

     
     
     Residual variance (no correction)  0.000625 

HAC corrected variance (Bartlett kernel)  0.000518 
     
          

KPSS Test Equation   

Dependent Variable: R   

Method: Least Squares   

Sample (adjusted): 10/05/2005 4/01/2019  

Included observations: 3615 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 7.92E-06 0.000416 0.019044 0.9848 
     
     R-squared 0.000000     Mean dependent var 7.92E-06 

Adjusted R-squared 0.000000     S.D. dependent var 0.025007 

S.E. of regression 0.025007     Akaike info criterion -4.539048 

Sum squared resid 2.260008     Schwarz criterion -4.537335 

Log likelihood 8205.330     Hannan-Quinn criter. -4.538438 

Durbin-Watson stat 2.221228    
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 Phillips – Perron Test 

 
 

Null Hypothesis: R has a unit root  

Exogenous: Constant   

Bandwidth: 3 (Newey-West automatic) using Bartlett kernel 
     
        Adj. t-Stat   Prob.* 
     
     Phillips-Perron test statistic -67.20678  0.0001 

Test critical values: 1% level  -3.431973  

 5% level  -2.862142  

 10% level  -2.567134  
     
     *MacKinnon (1996) one-sided p-values.  

     
     
     Residual variance (no correction)  0.000617 

HAC corrected variance (Bartlett kernel)  0.000619 
     
          

Phillips-Perron Test Equation   

Dependent Variable: D(R)   

Method: Least Squares   

Sample (adjusted): 10/06/2005 4/01/2019  

Included observations: 3614 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     R(-1) -1.111064 0.016529 -67.21971 0.0000 

C 2.09E-05 0.000413 0.050594 0.9597 
     
     R-squared 0.555746     Mean dependent var 1.41E-05 

Adjusted R-squared 0.555623     S.D. dependent var 0.037275 

S.E. of regression 0.024848     Akaike info criterion -4.551518 

Sum squared resid 2.230151     Schwarz criterion -4.548091 

Log likelihood 8226.592     Hannan-Quinn criter. -4.550296 

F-statistic 4518.489     Durbin-Watson stat 2.000289 

Prob(F-statistic) 0.000000    
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Gold 

 

 Correlogram 
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 ADF Test 

 
 

Null Hypothesis: R has a unit root  

Exogenous: Constant   

Lag Length: 0 (Automatic - based on SIC, maxlag=31) 
     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -68.27242  0.0001 

Test critical values: 1% level  -3.431590  

 5% level  -2.861973  

 10% level  -2.567043  
     
     *MacKinnon (1996) one-sided p-values.  

     

Augmented Dickey-Fuller Test Equation  

Dependent Variable: D(R)   

Method: Least Squares   

Sample (adjusted): 3/01/2000 8/02/2018  

Included observations: 4595 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     R(-1) -1.007396 0.014756 -68.27242 0.0000 

C 0.000311 0.000165 1.883047 0.0598 
     
     R-squared 0.503681     Mean dependent var -1.23E-06 

Adjusted R-squared 0.503573     S.D. dependent var 0.015909 

S.E. of regression 0.011209     Akaike info criterion -6.143798 

Sum squared resid 0.577053     Schwarz criterion -6.140998 

Log likelihood 14117.38     Hannan-Quinn criter. -6.142812 

F-statistic 4661.123     Durbin-Watson stat 2.000042 

Prob(F-statistic) 0.000000    
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 KPSS Test 

 
 

Null Hypothesis: R is stationary  

Exogenous: Constant   

Bandwidth: 8 (Newey-West automatic) using Bartlett kernel 
     
         LM-Stat. 
     
     Kwiatkowski-Phillips-Schmidt-Shin test statistic  0.279570 

Asymptotic critical values*: 1% level   0.739000 

  5% level   0.463000 

  10% level   0.347000 
     
     *Kwiatkowski-Phillips-Schmidt-Shin (1992, Table 1)  

     
     
     Residual variance (no correction)  0.000126 

HAC corrected variance (Bartlett kernel)  0.000122 
     
          

KPSS Test Equation   

Dependent Variable: R   

Method: Least Squares   

Sample (adjusted): 2/29/2000 8/02/2018  

Included observations: 4596 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 0.000309 0.000165 1.869587 0.0616 
     
     R-squared 0.000000     Mean dependent var 0.000309 

Adjusted R-squared 0.000000     S.D. dependent var 0.011207 

S.E. of regression 0.011207     Akaike info criterion -6.144395 

Sum squared resid 0.577085     Schwarz criterion -6.142996 

Log likelihood 14120.82     Hannan-Quinn criter. -6.143903 

Durbin-Watson stat 2.014720    
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 Phillips – Perron Test 

 

 

Null Hypothesis: R has a unit root  

Exogenous: Constant   

Bandwidth: 8 (Newey-West automatic) using Bartlett kernel 
     
        Adj. t-Stat   Prob.* 
     
     Phillips-Perron test statistic -68.27982  0.0001 

Test critical values: 1% level  -3.431590  

 5% level  -2.861973  

 10% level  -2.567043  
     
     *MacKinnon (1996) one-sided p-values.  

     
     
     Residual variance (no correction)  0.000126 

HAC corrected variance (Bartlett kernel)  0.000123 
     
          

Phillips-Perron Test Equation   

Dependent Variable: D(R)   

Method: Least Squares   

Sample (adjusted): 3/01/2000 8/02/2018  

Included observations: 4595 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     R(-1) -1.007396 0.014756 -68.27242 0.0000 

C 0.000311 0.000165 1.883047 0.0598 
     
     R-squared 0.503681     Mean dependent var -1.23E-06 

Adjusted R-squared 0.503573     S.D. dependent var 0.015909 

S.E. of regression 0.011209     Akaike info criterion -6.143798 

Sum squared resid 0.577053     Schwarz criterion -6.140998 

Log likelihood 14117.38     Hannan-Quinn criter. -6.142812 

F-statistic 4661.123     Durbin-Watson stat 2.000042 

Prob(F-statistic) 0.000000    
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Heating oil 

 

 Correlogram 
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 ADF Test 

 
 

Null Hypothesis: R has a unit root  

Exogenous: Constant   

Lag Length: 0 (Automatic - based on SIC, maxlag=31) 
     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -71.19989  0.0001 

Test critical values: 1% level  -3.431588  

 5% level  -2.861972  

 10% level  -2.567043  
     
     *MacKinnon (1996) one-sided p-values.  

     

Augmented Dickey-Fuller Test Equation  

Dependent Variable: D(R)   

Method: Least Squares   

Sample (adjusted): 3/03/2000 8/07/2018  

Included observations: 4601 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     R(-1) -1.048695 0.014729 -71.19989 0.0000 

C 0.000229 0.000332 0.689682 0.4904 
     
     R-squared 0.524328     Mean dependent var 3.14E-06 

Adjusted R-squared 0.524224     S.D. dependent var 0.032658 

S.E. of regression 0.022527     Akaike info criterion -4.747805 

Sum squared resid 2.333753     Schwarz criterion -4.745008 

Log likelihood 10924.32     Hannan-Quinn criter. -4.746820 

F-statistic 5069.425     Durbin-Watson stat 2.000987 

Prob(F-statistic) 0.000000    
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 KPSS Test 

 
 

Null Hypothesis: R is stationary  

Exogenous: Constant   

Bandwidth: 20 (Newey-West automatic) using Bartlett kernel 
     
         LM-Stat. 
     
     Kwiatkowski-Phillips-Schmidt-Shin test statistic  0.100960 

Asymptotic critical values*: 1% level   0.739000 

  5% level   0.463000 

  10% level   0.347000 
     
     *Kwiatkowski-Phillips-Schmidt-Shin (1992, Table 1)  

     
     
     Residual variance (no correction)  0.000508 

HAC corrected variance (Bartlett kernel)  0.000434 
     
          

KPSS Test Equation   

Dependent Variable: R   

Method: Least Squares   

Sample (adjusted): 3/02/2000 8/07/2018  

Included observations: 4602 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 0.000218 0.000332 0.657005 0.5112 
     
     R-squared 0.000000     Mean dependent var 0.000218 

Adjusted R-squared 0.000000     S.D. dependent var 0.022548 

S.E. of regression 0.022548     Akaike info criterion -4.746083 

Sum squared resid 2.339301     Schwarz criterion -4.744684 

Log likelihood 10921.74     Hannan-Quinn criter. -4.745590 

Durbin-Watson stat 2.097303    
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 Phillips – Perron Test 

 
 

Null Hypothesis: R has a unit root  

Exogenous: Constant   

Bandwidth: 19 (Newey-West automatic) using Bartlett kernel 
     
        Adj. t-Stat   Prob.* 
     
     Phillips-Perron test statistic -71.35389  0.0001 

Test critical values: 1% level  -3.431588  

 5% level  -2.861972  

 10% level  -2.567043  
     
     *MacKinnon (1996) one-sided p-values.  

     
     
     Residual variance (no correction)  0.000507 

HAC corrected variance (Bartlett kernel)  0.000475 
     
          

Phillips-Perron Test Equation   

Dependent Variable: D(R)   

Method: Least Squares   

Sample (adjusted): 3/03/2000 8/07/2018  

Included observations: 4601 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     R(-1) -1.048695 0.014729 -71.19989 0.0000 

C 0.000229 0.000332 0.689682 0.4904 
     
     R-squared 0.524328     Mean dependent var 3.14E-06 

Adjusted R-squared 0.524224     S.D. dependent var 0.032658 

S.E. of regression 0.022527     Akaike info criterion -4.747805 

Sum squared resid 2.333753     Schwarz criterion -4.745008 

Log likelihood 10924.32     Hannan-Quinn criter. -4.746820 

F-statistic 5069.425     Durbin-Watson stat 2.000987 

Prob(F-statistic) 0.000000    
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Lead 

 

 Correlogram 
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 ADF Test 

 
 

Null Hypothesis: R has a unit root  

Exogenous: Constant   

Lag Length: 0 (Automatic - based on SIC, maxlag=27) 
     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -49.68977  0.0001 

Test critical values: 1% level  -3.432626  

 5% level  -2.862431  

 10% level  -2.567289  
     
     *MacKinnon (1996) one-sided p-values.  

     

Augmented Dickey-Fuller Test Equation  

Dependent Variable: D(R)   

Method: Least Squares   

Sample (adjusted): 7/09/2008 5/20/2019  

Included observations: 2649 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     R(-1) -0.965264 0.019426 -49.68977 0.0000 

C 3.87E-05 0.000414 0.093609 0.9254 
     
     R-squared 0.482611     Mean dependent var -5.92E-06 

Adjusted R-squared 0.482416     S.D. dependent var 0.029588 

S.E. of regression 0.021286     Akaike info criterion -4.860748 

Sum squared resid 1.199378     Schwarz criterion -4.856307 

Log likelihood 6440.060     Hannan-Quinn criter. -4.859140 

F-statistic 2469.074     Durbin-Watson stat 1.990860 

Prob(F-statistic) 0.000000    
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 KPSS Test 

 
 

Null Hypothesis: R is stationary  

Exogenous: Constant   

Bandwidth: 15 (Newey-West automatic) using Bartlett kernel 
     
         LM-Stat. 
     
     Kwiatkowski-Phillips-Schmidt-Shin test statistic  0.054165 

Asymptotic critical values*: 1% level   0.739000 

  5% level   0.463000 

  10% level   0.347000 
     
     *Kwiatkowski-Phillips-Schmidt-Shin (1992, Table 1)  

     
     
     Residual variance (no correction)  0.000453 

HAC corrected variance (Bartlett kernel)  0.000414 
     
          

KPSS Test Equation   

Dependent Variable: R   

Method: Least Squares   

Sample (adjusted): 7/08/2008 5/20/2019  

Included observations: 2650 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 4.21E-05 0.000414 0.101688 0.9190 
     
     R-squared 0.000000     Mean dependent var 4.21E-05 

Adjusted R-squared 0.000000     S.D. dependent var 0.021291 

S.E. of regression 0.021291     Akaike info criterion -4.860655 

Sum squared resid 1.200848     Schwarz criterion -4.858436 

Log likelihood 6441.368     Hannan-Quinn criter. -4.859852 

Durbin-Watson stat 1.930416    
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 Phillips – Perron Test 

 

Null Hypothesis: R has a unit root  

Exogenous: Constant   

Bandwidth: 16 (Newey-West automatic) using Bartlett kernel 
     
        Adj. t-Stat   Prob.* 
     
     Phillips-Perron test statistic -49.72014  0.0001 

Test critical values: 1% level  -3.432626  

 5% level  -2.862431  

 10% level  -2.567289  
     
     *MacKinnon (1996) one-sided p-values.  

     
     
     Residual variance (no correction)  0.000453 

HAC corrected variance (Bartlett kernel)  0.000382 
     
          

Phillips-Perron Test Equation   

Dependent Variable: D(R)   

Method: Least Squares   

Sample (adjusted): 7/09/2008 5/20/2019  

Included observations: 2649 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     R(-1) -0.965264 0.019426 -49.68977 0.0000 

C 3.87E-05 0.000414 0.093609 0.9254 
     
     R-squared 0.482611     Mean dependent var -5.92E-06 

Adjusted R-squared 0.482416     S.D. dependent var 0.029588 

S.E. of regression 0.021286     Akaike info criterion -4.860748 

Sum squared resid 1.199378     Schwarz criterion -4.856307 

Log likelihood 6440.060     Hannan-Quinn criter. -4.859140 

F-statistic 2469.074     Durbin-Watson stat 1.990860 

Prob(F-statistic) 0.000000    
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Lean hogs 

 

 Correlogram 
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 ADF Test 

 
 

Null Hypothesis: R has a unit root  

Exogenous: Constant   

Lag Length: 0 (Automatic - based on SIC, maxlag=37) 
     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -96.98403  0.0001 

Test critical values: 1% level  -3.430883  

 5% level  -2.861660  

 10% level  -2.566875  
     
     *MacKinnon (1996) one-sided p-values.  

     

Augmented Dickey-Fuller Test Equation  

Dependent Variable: D(R)   

Method: Least Squares   

Sample (adjusted): 12/31/1979 6/27/2016  

Included observations: 9228 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     R(-1) -1.009669 0.010411 -96.98403 0.0000 

C 7.52E-05 0.000223 0.337698 0.7356 
     
     R-squared 0.504828     Mean dependent var -9.60E-07 

Adjusted R-squared 0.504774     S.D. dependent var 0.030400 

S.E. of regression 0.021393     Akaike info criterion -4.851271 

Sum squared resid 4.222451     Schwarz criterion -4.849726 

Log likelihood 22385.77     Hannan-Quinn criter. -4.850746 

F-statistic 9405.902     Durbin-Watson stat 1.999797 

Prob(F-statistic) 0.000000    
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 KPSS Test 

 

Null Hypothesis: R is stationary  

Exogenous: Constant   

Bandwidth: 10 (Newey-West automatic) using Bartlett kernel 
     
         LM-Stat. 
     
     Kwiatkowski-Phillips-Schmidt-Shin test statistic  0.008238 

Asymptotic critical values*: 1% level   0.739000 

  5% level   0.463000 

  10% level   0.347000 
     
     *Kwiatkowski-Phillips-Schmidt-Shin (1992, Table 1)  

     
     
     Residual variance (no correction)  0.000458 

HAC corrected variance (Bartlett kernel)  0.000466 
     
          

KPSS Test Equation   

Dependent Variable: R   

Method: Least Squares   

Sample (adjusted): 12/28/1979 6/27/2016  

Included observations: 9229 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 7.43E-05 0.000223 0.333498 0.7388 
     
     R-squared 0.000000     Mean dependent var 7.43E-05 

Adjusted R-squared -0.000000     S.D. dependent var 0.021392 

S.E. of regression 0.021392     Akaike info criterion -4.851502 

Sum squared resid 4.222850     Schwarz criterion -4.850729 

Log likelihood 22388.26     Hannan-Quinn criter. -4.851239 

Durbin-Watson stat 2.019309    
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 Phillips – Perron Test 

 

Null Hypothesis: R has a unit root  

Exogenous: Constant   

Bandwidth: 10 (Newey-West automatic) using Bartlett kernel 
     
        Adj. t-Stat   Prob.* 
     
     Phillips-Perron test statistic -96.98324  0.0001 

Test critical values: 1% level  -3.430883  

 5% level  -2.861660  

 10% level  -2.566875  
     
     *MacKinnon (1996) one-sided p-values.  

     
     
     Residual variance (no correction)  0.000458 

HAC corrected variance (Bartlett kernel)  0.000475 
     
          

Phillips-Perron Test Equation   

Dependent Variable: D(R)   

Method: Least Squares   

Sample (adjusted): 12/31/1979 6/27/2016  

Included observations: 9228 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     R(-1) -1.009669 0.010411 -96.98403 0.0000 

C 7.52E-05 0.000223 0.337698 0.7356 
     
     R-squared 0.504828     Mean dependent var -9.60E-07 

Adjusted R-squared 0.504774     S.D. dependent var 0.030400 

S.E. of regression 0.021393     Akaike info criterion -4.851271 

Sum squared resid 4.222451     Schwarz criterion -4.849726 

Log likelihood 22385.77     Hannan-Quinn criter. -4.850746 

F-statistic 9405.902     Durbin-Watson stat 1.999797 

Prob(F-statistic) 0.000000    
     
     

 
 

 

 

 

 

 

 

 

 

 

 

 



257 
 

Live cattle 

 

 Correlogram 
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 ADF Test 

 
 

Null Hypothesis: R has a unit root  

Exogenous: Constant   

Lag Length: 0 (Automatic - based on SIC, maxlag=37) 
     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -93.24279  0.0001 

Test critical values: 1% level  -3.430884  

 5% level  -2.861660  

 10% level  -2.566876  
     
     *MacKinnon (1996) one-sided p-values.  

     

Augmented Dickey-Fuller Test Equation  

Dependent Variable: D(R)   

Method: Least Squares   

Sample (adjusted): 3 9220   

Included observations: 9218 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     R(-1) -0.970809 0.010412 -93.24279 0.0000 

C 6.10E-05 0.000114 0.535947 0.5920 
     
     R-squared 0.485433     Mean dependent var 2.57E-06 

Adjusted R-squared 0.485378     S.D. dependent var 0.015240 

S.E. of regression 0.010933     Akaike info criterion -6.193877 

Sum squared resid 1.101558     Schwarz criterion -6.192330 

Log likelihood 28549.58     Hannan-Quinn criter. -6.193351 

F-statistic 8694.218     Durbin-Watson stat 2.000621 

Prob(F-statistic) 0.000000    
     
     

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



259 
 

 KPSS Test 

 
 

Null Hypothesis: R is stationary  

Exogenous: Constant   

Bandwidth: 38 (Newey-West automatic) using Bartlett kernel 
     
         LM-Stat. 
     
     Kwiatkowski-Phillips-Schmidt-Shin test statistic  0.041310 

Asymptotic critical values*: 1% level   0.739000 

  5% level   0.463000 

  10% level   0.347000 
     
     *Kwiatkowski-Phillips-Schmidt-Shin (1992, Table 1)  

     
     
     Residual variance (no correction)  0.000120 

HAC corrected variance (Bartlett kernel)  0.000105 
     
          

KPSS Test Equation   

Dependent Variable: R   

Method: Least Squares   

Sample (adjusted): 2 9220   

Included observations: 9219 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 6.12E-05 0.000114 0.537362 0.5910 
     
     R-squared 0.000000     Mean dependent var 6.12E-05 

Adjusted R-squared 0.000000     S.D. dependent var 0.010937 

S.E. of regression 0.010937     Akaike info criterion -6.193158 

Sum squared resid 1.102709     Schwarz criterion -6.192385 

Log likelihood 28548.36     Hannan-Quinn criter. -6.192896 

Durbin-Watson stat 1.941355    
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 Phillips – Perron Test 
 

 

Null Hypothesis: R has a unit root  

Exogenous: Constant   

Bandwidth: 39 (Newey-West automatic) using Bartlett kernel 
     
        Adj. t-Stat   Prob.* 
     
     Phillips-Perron test statistic -93.39006  0.0001 

Test critical values: 1% level  -3.430884  

 5% level  -2.861660  

 10% level  -2.566876  
     
     *MacKinnon (1996) one-sided p-values.  

     
     
     Residual variance (no correction)  0.000120 

HAC corrected variance (Bartlett kernel)  9.93E-05 
     
          

Phillips-Perron Test Equation   

Dependent Variable: D(R)   

Method: Least Squares   

Sample (adjusted): 3 9220   

Included observations: 9218 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     R(-1) -0.970809 0.010412 -93.24279 0.0000 

C 6.10E-05 0.000114 0.535947 0.5920 
     
     R-squared 0.485433     Mean dependent var 2.57E-06 

Adjusted R-squared 0.485378     S.D. dependent var 0.015240 

S.E. of regression 0.010933     Akaike info criterion -6.193877 

Sum squared resid 1.101558     Schwarz criterion -6.192330 

Log likelihood 28549.58     Hannan-Quinn criter. -6.193351 

F-statistic 8694.218     Durbin-Watson stat 2.000621 

Prob(F-statistic) 0.000000    
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Lumber 

 

 Correlogram 
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 ADF Test 

 
 

Null Hypothesis: R has a unit root  

Exogenous: Constant   

Lag Length: 0 (Automatic - based on SIC, maxlag=37) 
     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -91.68247  0.0001 

Test critical values: 1% level  -3.430885  

 5% level  -2.861661  

 10% level  -2.566876  
     
     *MacKinnon (1996) one-sided p-values.  

     

Augmented Dickey-Fuller Test Equation  

Dependent Variable: D(R)   

Method: Least Squares   

Sample (adjusted): 12/31/1979 6/30/2016  

Included observations: 9203 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     R(-1) -0.954824 0.010414 -91.68247 0.0000 

C 3.69E-05 0.000225 0.164062 0.8697 
     
     R-squared 0.477414     Mean dependent var 5.90E-07 

Adjusted R-squared 0.477357     S.D. dependent var 0.029846 

S.E. of regression 0.021577     Akaike info criterion -4.834169 

Sum squared resid 4.283642     Schwarz criterion -4.832621 

Log likelihood 22246.43     Hannan-Quinn criter. -4.833643 

F-statistic 8405.675     Durbin-Watson stat 1.997413 

Prob(F-statistic) 0.000000    
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 KPSS Test 

 
 

Null Hypothesis: R is stationary  

Exogenous: Constant   

Bandwidth: 8 (Newey-West automatic) using Bartlett kernel 
     
         LM-Stat. 
     
     Kwiatkowski-Phillips-Schmidt-Shin test statistic  0.016126 

Asymptotic critical values*: 1% level   0.739000 

  5% level   0.463000 

  10% level   0.347000 
     
     *Kwiatkowski-Phillips-Schmidt-Shin (1992, Table 1)  

     
     
     Residual variance (no correction)  0.000466 

HAC corrected variance (Bartlett kernel)  0.000479 
     
          

KPSS Test Equation   

Dependent Variable: R   

Method: Least Squares   

Sample (adjusted): 12/28/1979 6/30/2016  

Included observations: 9204 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 3.80E-05 0.000225 0.168597 0.8661 
     
     R-squared 0.000000     Mean dependent var 3.80E-05 

Adjusted R-squared -0.000000     S.D. dependent var 0.021597 

S.E. of regression 0.021597     Akaike info criterion -4.832444 

Sum squared resid 4.292440     Schwarz criterion -4.831669 

Log likelihood 22239.91     Hannan-Quinn criter. -4.832180 

Durbin-Watson stat 1.909639    
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 Phillips – Perron Test 

 
 

Null Hypothesis: R has a unit root  

Exogenous: Constant   

Bandwidth: 6 (Newey-West automatic) using Bartlett kernel 
     
        Adj. t-Stat   Prob.* 
     
     Phillips-Perron test statistic -91.60982  0.0001 

Test critical values: 1% level  -3.430885  

 5% level  -2.861661  

 10% level  -2.566876  
     
     *MacKinnon (1996) one-sided p-values.  

     
     
     Residual variance (no correction)  0.000465 

HAC corrected variance (Bartlett kernel)  0.000444 
     
          

Phillips-Perron Test Equation   

Dependent Variable: D(R)   

Method: Least Squares   

Sample (adjusted): 12/31/1979 6/30/2016  

Included observations: 9203 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     R(-1) -0.954824 0.010414 -91.68247 0.0000 

C 3.69E-05 0.000225 0.164062 0.8697 
     
     R-squared 0.477414     Mean dependent var 5.90E-07 

Adjusted R-squared 0.477357     S.D. dependent var 0.029846 

S.E. of regression 0.021577     Akaike info criterion -4.834169 

Sum squared resid 4.283642     Schwarz criterion -4.832621 

Log likelihood 22246.43     Hannan-Quinn criter. -4.833643 

F-statistic 8405.675     Durbin-Watson stat 1.997413 

Prob(F-statistic) 0.000000    
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Natural gas 

 

 Correlogram 
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 ADF Test 

 
 

Null Hypothesis: R has a unit root  

Exogenous: Constant   

Lag Length: 0 (Automatic - based on SIC, maxlag=31) 
     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -71.27159  0.0001 

Test critical values: 1% level  -3.431589  

 5% level  -2.861972  

 10% level  -2.567043  
     
     *MacKinnon (1996) one-sided p-values.  

     

Augmented Dickey-Fuller Test Equation  

Dependent Variable: D(R)   

Method: Least Squares   

Sample (adjusted): 3/01/2000 8/01/2018  

Included observations: 4600 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     R(-1) -1.049695 0.014728 -71.27159 0.0000 

C -1.72E-07 0.000498 -0.000345 0.9997 
     
     R-squared 0.524884     Mean dependent var -8.19E-06 

Adjusted R-squared 0.524781     S.D. dependent var 0.048949 

S.E. of regression 0.033743     Akaike info criterion -3.939627 

Sum squared resid 5.235372     Schwarz criterion -3.936830 

Log likelihood 9063.142     Hannan-Quinn criter. -3.938643 

F-statistic 5079.640     Durbin-Watson stat 1.998571 

Prob(F-statistic) 0.000000    
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 KPSS Test 

 
 

Null Hypothesis: R is stationary  

Exogenous: Constant   

Bandwidth: 14 (Newey-West automatic) using Bartlett kernel 
     
         LM-Stat. 
     
     Kwiatkowski-Phillips-Schmidt-Shin test statistic  0.086797 

Asymptotic critical values*: 1% level   0.739000 

  5% level   0.463000 

  10% level   0.347000 
     
     *Kwiatkowski-Phillips-Schmidt-Shin (1992, Table 1)  

     
     
     Residual variance (no correction)  0.001141 

HAC corrected variance (Bartlett kernel)  0.001017 
     
          

KPSS Test Equation   

Dependent Variable: R   

Method: Least Squares   

Sample (adjusted): 2/29/2000 8/01/2018  

Included observations: 4601 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 5.75E-06 0.000498 0.011545 0.9908 
     
     R-squared 0.000000     Mean dependent var 5.75E-06 

Adjusted R-squared 0.000000     S.D. dependent var 0.033781 

S.E. of regression 0.033781     Akaike info criterion -3.937646 

Sum squared resid 5.249175     Schwarz criterion -3.936248 

Log likelihood 9059.555     Hannan-Quinn criter. -3.937154 

Durbin-Watson stat 2.099215    
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 Phillips – Perron Test 

 
 

Null Hypothesis: R has a unit root  

Exogenous: Constant   

Bandwidth: 12 (Newey-West automatic) using Bartlett kernel 
     
        Adj. t-Stat   Prob.* 
     
     Phillips-Perron test statistic -71.33831  0.0001 

Test critical values: 1% level  -3.431589  

 5% level  -2.861972  

 10% level  -2.567043  
     
     *MacKinnon (1996) one-sided p-values.  

     
     
     Residual variance (no correction)  0.001138 

HAC corrected variance (Bartlett kernel)  0.001102 
     
          

Phillips-Perron Test Equation   

Dependent Variable: D(R)   

Method: Least Squares   

Sample (adjusted): 3/01/2000 8/01/2018  

Included observations: 4600 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     R(-1) -1.049695 0.014728 -71.27159 0.0000 

C -1.72E-07 0.000498 -0.000345 0.9997 
     
     R-squared 0.524884     Mean dependent var -8.19E-06 

Adjusted R-squared 0.524781     S.D. dependent var 0.048949 

S.E. of regression 0.033743     Akaike info criterion -3.939627 

Sum squared resid 5.235372     Schwarz criterion -3.936830 

Log likelihood 9063.142     Hannan-Quinn criter. -3.938643 

F-statistic 5079.640     Durbin-Watson stat 1.998571 

Prob(F-statistic) 0.000000    
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Nickel 

 

 Correlogram 
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 ADF Test 

 
 

Null Hypothesis: R has a unit root  

Exogenous: Constant   

Lag Length: 0 (Automatic - based on SIC, maxlag=27) 
     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -52.19110  0.0001 

Test critical values: 1% level  -3.432626  

 5% level  -2.862431  

 10% level  -2.567289  
     
     *MacKinnon (1996) one-sided p-values.  

     

Augmented Dickey-Fuller Test Equation  

Dependent Variable: D(R)   

Method: Least Squares   

Sample (adjusted): 7/09/2008 5/20/2019  

Included observations: 2649 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     R(-1) -1.014231 0.019433 -52.19110 0.0000 

C -0.000205 0.000439 -0.466503 0.6409 
     
     R-squared 0.507160     Mean dependent var 5.40E-06 

Adjusted R-squared 0.506974     S.D. dependent var 0.032173 

S.E. of regression 0.022590     Akaike info criterion -4.741841 

Sum squared resid 1.350817     Schwarz criterion -4.737400 

Log likelihood 6282.568     Hannan-Quinn criter. -4.740233 

F-statistic 2723.910     Durbin-Watson stat 1.997993 

Prob(F-statistic) 0.000000    
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 KPSS Test 
 
 

Null Hypothesis: R is stationary  

Exogenous: Constant   

Bandwidth: 18 (Newey-West automatic) using Bartlett kernel 
     
         LM-Stat. 
     
     Kwiatkowski-Phillips-Schmidt-Shin test statistic  0.053726 

Asymptotic critical values*: 1% level   0.739000 

  5% level   0.463000 

  10% level   0.347000 
     
     *Kwiatkowski-Phillips-Schmidt-Shin (1992, Table 1)  

     
     
     Residual variance (no correction)  0.000510 

HAC corrected variance (Bartlett kernel)  0.000466 
     
          

KPSS Test Equation   

Dependent Variable: R   

Method: Least Squares   

Sample (adjusted): 7/08/2008 5/20/2019  

Included observations: 2650 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C -0.000208 0.000439 -0.473358 0.6360 
     
     R-squared 0.000000     Mean dependent var -0.000208 

Adjusted R-squared 0.000000     S.D. dependent var 0.022586 

S.E. of regression 0.022586     Akaike info criterion -4.742592 

Sum squared resid 1.351332     Schwarz criterion -4.740372 

Log likelihood 6284.934     Hannan-Quinn criter. -4.741789 

Durbin-Watson stat 2.028282    
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 Phillips – Perron Test 

 
 

Null Hypothesis: R has a unit root  

Exogenous: Constant   

Bandwidth: 18 (Newey-West automatic) using Bartlett kernel 
     
        Adj. t-Stat   Prob.* 
     
     Phillips-Perron test statistic -52.24170  0.0001 

Test critical values: 1% level  -3.432626  

 5% level  -2.862431  

 10% level  -2.567289  
     
     *MacKinnon (1996) one-sided p-values.  

     
     
     Residual variance (no correction)  0.000510 

HAC corrected variance (Bartlett kernel)  0.000478 
     
          

Phillips-Perron Test Equation   

Dependent Variable: D(R)   

Method: Least Squares   

Sample (adjusted): 7/09/2008 5/20/2019  

Included observations: 2649 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     R(-1) -1.014231 0.019433 -52.19110 0.0000 

C -0.000205 0.000439 -0.466503 0.6409 
     
     R-squared 0.507160     Mean dependent var 5.40E-06 

Adjusted R-squared 0.506974     S.D. dependent var 0.032173 

S.E. of regression 0.022590     Akaike info criterion -4.741841 

Sum squared resid 1.350817     Schwarz criterion -4.737400 

Log likelihood 6282.568     Hannan-Quinn criter. -4.740233 

F-statistic 2723.910     Durbin-Watson stat 1.997993 

Prob(F-statistic) 0.000000    
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Oats 

 

 Correlogram 
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 ADF Test 

 
 

Null Hypothesis: R has a unit root  

Exogenous: Constant   

Lag Length: 0 (Automatic - based on SIC, maxlag=31) 
     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -62.83225  0.0001 

Test critical values: 1% level  -3.431597  

 5% level  -2.861976  

 10% level  -2.567045  
     
     *MacKinnon (1996) one-sided p-values.  

     

Augmented Dickey-Fuller Test Equation  

Dependent Variable: D(R)   

Method: Least Squares   

Sample (adjusted): 3/17/2000 7/02/2018  

Included observations: 4572 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     R(-1) -0.927036 0.014754 -62.83225 0.0000 

C 0.000144 0.000353 0.407881 0.6834 
     
     R-squared 0.463482     Mean dependent var -5.78E-06 

Adjusted R-squared 0.463365     S.D. dependent var 0.032558 

S.E. of regression 0.023850     Akaike info criterion -4.633599 

Sum squared resid 2.599594     Schwarz criterion -4.630787 

Log likelihood 10594.41     Hannan-Quinn criter. -4.632609 

F-statistic 3947.892     Durbin-Watson stat 1.995958 

Prob(F-statistic) 0.000000    
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 KPSS Test 
 
 

Null Hypothesis: R is stationary  

Exogenous: Constant   

Bandwidth: 16 (Newey-West automatic) using Bartlett kernel 
     
         LM-Stat. 
     
     Kwiatkowski-Phillips-Schmidt-Shin test statistic  0.067355 

Asymptotic critical values*: 1% level   0.739000 

  5% level   0.463000 

  10% level   0.347000 
     
     *Kwiatkowski-Phillips-Schmidt-Shin (1992, Table 1)  

     
     
     Residual variance (no correction)  0.000572 

HAC corrected variance (Bartlett kernel)  0.000539 
     
          

KPSS Test Equation   

Dependent Variable: R   

Method: Least Squares   

Sample (adjusted): 3/16/2000 7/02/2018  

Included observations: 4573 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 0.000157 0.000354 0.444013 0.6571 
     
     R-squared 0.000000     Mean dependent var 0.000157 

Adjusted R-squared 0.000000     S.D. dependent var 0.023909 

S.E. of regression 0.023909     Akaike info criterion -4.628904 

Sum squared resid 2.613543     Schwarz criterion -4.627498 

Log likelihood 10584.99     Hannan-Quinn criter. -4.628409 

Durbin-Watson stat 1.853924    
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 Phillips – Perron Test 

 
 

Null Hypothesis: R has a unit root  

Exogenous: Constant   

Bandwidth: 18 (Newey-West automatic) using Bartlett kernel 
     
        Adj. t-Stat   Prob.* 
     
     Phillips-Perron test statistic -62.69367  0.0001 

Test critical values: 1% level  -3.431597  

 5% level  -2.861976  

 10% level  -2.567045  
     
     *MacKinnon (1996) one-sided p-values.  

     
     
     Residual variance (no correction)  0.000569 

HAC corrected variance (Bartlett kernel)  0.000461 
     
          

Phillips-Perron Test Equation   

Dependent Variable: D(R)   

Method: Least Squares   

Sample (adjusted): 3/17/2000 7/02/2018  

Included observations: 4572 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     R(-1) -0.927036 0.014754 -62.83225 0.0000 

C 0.000144 0.000353 0.407881 0.6834 
     
     R-squared 0.463482     Mean dependent var -5.78E-06 

Adjusted R-squared 0.463365     S.D. dependent var 0.032558 

S.E. of regression 0.023850     Akaike info criterion -4.633599 

Sum squared resid 2.599594     Schwarz criterion -4.630787 

Log likelihood 10594.41     Hannan-Quinn criter. -4.632609 

F-statistic 3947.892     Durbin-Watson stat 1.995958 

Prob(F-statistic) 0.000000    
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Palladium 

 

 Correlogram 
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 ADF Test 

 
 

Null Hypothesis: R has a unit root  

Exogenous: Constant   

Lag Length: 0 (Automatic - based on SIC, maxlag=31) 
     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -63.46048  0.0001 

Test critical values: 1% level  -3.431565  

 5% level  -2.861962  

 10% level  -2.567037  
     
     *MacKinnon (1996) one-sided p-values.  

     

Augmented Dickey-Fuller Test Equation  

Dependent Variable: D(R)   

Method: Least Squares   

Sample (adjusted): 3/31/1998 10/05/2018  

Included observations: 4680 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     R(-1) -0.925190 0.014579 -63.46048 0.0000 

C 0.000286 0.000340 0.841483 0.4001 
     
     R-squared 0.462622     Mean dependent var 6.45E-06 

Adjusted R-squared 0.462507     S.D. dependent var 0.031702 

S.E. of regression 0.023242     Akaike info criterion -4.685291 

Sum squared resid 2.526995     Schwarz criterion -4.682534 

Log likelihood 10965.58     Hannan-Quinn criter. -4.684321 

F-statistic 4027.232     Durbin-Watson stat 1.997914 

Prob(F-statistic) 0.000000    
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 KPSS Test 
 
 

Null Hypothesis: R is stationary  

Exogenous: Constant   

Bandwidth: 14 (Newey-West automatic) using Bartlett kernel 
     
         LM-Stat. 
     
     Kwiatkowski-Phillips-Schmidt-Shin test statistic  0.073108 

Asymptotic critical values*: 1% level   0.739000 

  5% level   0.463000 

  10% level   0.347000 
     
     *Kwiatkowski-Phillips-Schmidt-Shin (1992, Table 1)  

     
     
     Residual variance (no correction)  0.000543 

HAC corrected variance (Bartlett kernel)  0.000597 
     
          

KPSS Test Equation   

Dependent Variable: R   

Method: Least Squares   

Sample (adjusted): 3/30/1998 10/05/2018  

Included observations: 4681 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 0.000304 0.000341 0.893433 0.3717 
     
     R-squared 0.000000     Mean dependent var 0.000304 

Adjusted R-squared 0.000000     S.D. dependent var 0.023304 

S.E. of regression 0.023304     Akaike info criterion -4.680167 

Sum squared resid 2.541604     Schwarz criterion -4.678789 

Log likelihood 10954.93     Hannan-Quinn criter. -4.679683 

Durbin-Watson stat 1.850192    
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 Phillips – Perron Test 

 
 

Null Hypothesis: R has a unit root  

Exogenous: Constant   

Bandwidth: 13 (Newey-West automatic) using Bartlett kernel 
     
        Adj. t-Stat   Prob.* 
     
     Phillips-Perron test statistic -63.37541  0.0001 

Test critical values: 1% level  -3.431565  

 5% level  -2.861962  

 10% level  -2.567037  
     
     *MacKinnon (1996) one-sided p-values.  

     
     
     Residual variance (no correction)  0.000540 

HAC corrected variance (Bartlett kernel)  0.000518 
     
          

Phillips-Perron Test Equation   

Dependent Variable: D(R)   

Method: Least Squares   

Sample (adjusted): 3/31/1998 10/05/2018  

Included observations: 4680 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     R(-1) -0.925190 0.014579 -63.46048 0.0000 

C 0.000286 0.000340 0.841483 0.4001 
     
     R-squared 0.462622     Mean dependent var 6.45E-06 

Adjusted R-squared 0.462507     S.D. dependent var 0.031702 

S.E. of regression 0.023242     Akaike info criterion -4.685291 

Sum squared resid 2.526995     Schwarz criterion -4.682534 

Log likelihood 10965.58     Hannan-Quinn criter. -4.684321 

F-statistic 4027.232     Durbin-Watson stat 1.997914 

Prob(F-statistic) 0.000000    
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Platinum 

 

Correlogram 
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 ADF Test 

 
 

Null Hypothesis: R has a unit root  

Exogenous: Constant   

Lag Length: 1 (Automatic - based on SIC, maxlag=31) 
     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -53.92020  0.0001 

Test critical values: 1% level  -3.431548  

 5% level  -2.861954  

 10% level  -2.567033  
     
     *MacKinnon (1996) one-sided p-values.  

     

Augmented Dickey-Fuller Test Equation  

Dependent Variable: D(R)   

Method: Least Squares   

Sample (adjusted): 5/01/1997 10/14/2018  

Included observations: 4737 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     R(-1) -1.136523 0.021078 -53.92020 0.0000 

D(R(-1)) 0.074712 0.014494 5.154825 0.0000 

C 0.000197 0.000275 0.715104 0.4746 
     
     R-squared 0.531388     Mean dependent var 3.46E-06 

Adjusted R-squared 0.531190     S.D. dependent var 0.027680 

S.E. of regression 0.018953     Akaike info criterion -5.093118 

Sum squared resid 1.700458     Schwarz criterion -5.089025 

Log likelihood 12066.05     Hannan-Quinn criter. -5.091679 

F-statistic 2684.091     Durbin-Watson stat 1.999485 

Prob(F-statistic) 0.000000    
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 KPSS Test 
 
 

Null Hypothesis: R is stationary  

Exogenous: Constant   

Bandwidth: 13 (Newey-West automatic) using Bartlett kernel 
     
         LM-Stat. 
     
     Kwiatkowski-Phillips-Schmidt-Shin test statistic  0.235727 

Asymptotic critical values*: 1% level   0.739000 

  5% level   0.463000 

  10% level   0.347000 
     
     *Kwiatkowski-Phillips-Schmidt-Shin (1992, Table 1)  

     
     
     Residual variance (no correction)  0.000362 

HAC corrected variance (Bartlett kernel)  0.000311 
     
          

KPSS Test Equation   

Dependent Variable: R   

Method: Least Squares   

Sample (adjusted): 4/29/1997 10/14/2018  

Included observations: 4739 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 0.000172 0.000276 0.623636 0.5329 
     
     R-squared 0.000000     Mean dependent var 0.000172 

Adjusted R-squared 0.000000     S.D. dependent var 0.019030 

S.E. of regression 0.019030     Akaike info criterion -5.085430 

Sum squared resid 1.715754     Schwarz criterion -5.084066 

Log likelihood 12050.93     Hannan-Quinn criter. -5.084950 

Durbin-Watson stat 2.115010    
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 Phillips – Perron Test 
 
 

Null Hypothesis: R has a unit root  

Exogenous: Constant   

Bandwidth: 14 (Newey-West automatic) using Bartlett kernel 
     
        Adj. t-Stat   Prob.* 
     
     Phillips-Perron test statistic -72.99816  0.0001 

Test critical values: 1% level  -3.431548  

 5% level  -2.861954  

 10% level  -2.567033  
     
     *MacKinnon (1996) one-sided p-values.  

     
     
     Residual variance (no correction)  0.000361 

HAC corrected variance (Bartlett kernel)  0.000346 
     
          

Phillips-Perron Test Equation   

Dependent Variable: D(R)   

Method: Least Squares   

Sample (adjusted): 4/30/1997 10/14/2018  

Included observations: 4738 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     R(-1) -1.057529 0.014507 -72.89713 0.0000 

C 0.000182 0.000276 0.657891 0.5106 
     
     R-squared 0.528756     Mean dependent var 1.14E-06 

Adjusted R-squared 0.528656     S.D. dependent var 0.027678 

S.E. of regression 0.019002     Akaike info criterion -5.088116 

Sum squared resid 1.710068     Schwarz criterion -5.085387 

Log likelihood 12055.75     Hannan-Quinn criter. -5.087157 

F-statistic 5313.991     Durbin-Watson stat 2.008497 

Prob(F-statistic) 0.000000    
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Rice 

 

 Correlogram 
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 ADF Test 

 
 

Null Hypothesis: R has a unit root  

Exogenous: Constant   

Lag Length: 0 (Automatic - based on SIC, maxlag=32) 
     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -65.23733  0.0001 

Test critical values: 1% level  -3.431462  

 5% level  -2.861916  

 10% level  -2.567013  
     
     *MacKinnon (1996) one-sided p-values.  

     

Augmented Dickey-Fuller Test Equation  

Dependent Variable: D(R)   

Method: Least Squares   

Sample (adjusted): 3/23/2000 7/17/2020  

Included observations: 5056 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     R(-1) -0.914269 0.014015 -65.23733 0.0000 

C 0.000137 0.000254 0.539859 0.5893 
     
     R-squared 0.457138     Mean dependent var -4.90E-07 

Adjusted R-squared 0.457030     S.D. dependent var 0.024558 

S.E. of regression 0.018096     Akaike info criterion -5.185903 

Sum squared resid 1.654932     Schwarz criterion -5.183320 

Log likelihood 13111.96     Hannan-Quinn criter. -5.184998 

F-statistic 4255.909     Durbin-Watson stat 1.998391 

Prob(F-statistic) 0.000000    
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KPSS Test 
 
 

Null Hypothesis: R is stationary  

Exogenous: Constant   

Bandwidth: 15 (Newey-West automatic) using Bartlett kernel 
     
         LM-Stat. 
     
     Kwiatkowski-Phillips-Schmidt-Shin test statistic  0.084071 

Asymptotic critical values*: 1% level   0.739000 

  5% level   0.463000 

  10% level   0.347000 
     
     *Kwiatkowski-Phillips-Schmidt-Shin (1992, Table 1)  

     
     
     Residual variance (no correction)  0.000330 

HAC corrected variance (Bartlett kernel)  0.000348 
     
          

KPSS Test Equation   

Dependent Variable: R   

Method: Least Squares   

Sample (adjusted): 3/22/2000 7/17/2020  

Included observations: 5057 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 0.000151 0.000255 0.592773 0.5534 
     
     R-squared 0.000000     Mean dependent var 0.000151 

Adjusted R-squared 0.000000     S.D. dependent var 0.018159 

S.E. of regression 0.018159     Akaike info criterion -5.179102 

Sum squared resid 1.667214     Schwarz criterion -5.177811 

Log likelihood 13096.36     Hannan-Quinn criter. -5.178650 

Durbin-Watson stat 1.828517    
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Phillips – Perron Test 
 
 

Null Hypothesis: R has a unit root  

Exogenous: Constant   

Bandwidth: 18 (Newey-West automatic) using Bartlett kernel 
     
        Adj. t-Stat   Prob.* 
     
     Phillips-Perron test statistic -65.00166  0.0001 

Test critical values: 1% level  -3.431462  

 5% level  -2.861916  

 10% level  -2.567013  
     
     *MacKinnon (1996) one-sided p-values.  

     
     
     Residual variance (no correction)  0.000327 

HAC corrected variance (Bartlett kernel)  0.000283 
     
          

Phillips-Perron Test Equation   

Dependent Variable: D(R)   

Method: Least Squares   

Sample (adjusted): 3/23/2000 7/17/2020  

Included observations: 5056 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     R(-1) -0.914269 0.014015 -65.23733 0.0000 

C 0.000137 0.000254 0.539859 0.5893 
     
     R-squared 0.457138     Mean dependent var -4.90E-07 

Adjusted R-squared 0.457030     S.D. dependent var 0.024558 

S.E. of regression 0.018096     Akaike info criterion -5.185903 

Sum squared resid 1.654932     Schwarz criterion -5.183320 

Log likelihood 13111.96     Hannan-Quinn criter. -5.184998 

F-statistic 4255.909     Durbin-Watson stat 1.998391 

Prob(F-statistic) 0.000000    
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Silver 

 

 Correlogram 
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 ADF Test 

 
 

Null Hypothesis: R has a unit root  

Exogenous: Constant   

Lag Length: 0 (Automatic - based on SIC, maxlag=31) 
     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -69.64250  0.0001 

Test critical values: 1% level  -3.431575  

 5% level  -2.861966  

 10% level  -2.567040  
     
     *MacKinnon (1996) one-sided p-values.  

     

Augmented Dickey-Fuller Test Equation  

Dependent Variable: D(R)   

Method: Least Squares   

Sample (adjusted): 3/01/2000 10/12/2018  

Included observations: 4647 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     R(-1) -1.021599 0.014669 -69.64250 0.0000 

C 0.000233 0.000285 0.816095 0.4145 
     
     R-squared 0.510799     Mean dependent var 4.29E-07 

Adjusted R-squared 0.510694     S.D. dependent var 0.027813 

S.E. of regression 0.019455     Akaike info criterion -5.040989 

Sum squared resid 1.758129     Schwarz criterion -5.038216 

Log likelihood 11714.74     Hannan-Quinn criter. -5.040013 

F-statistic 4850.077     Durbin-Watson stat 1.999558 

Prob(F-statistic) 0.000000    
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 KPSS Test 
 
 

Null Hypothesis: R is stationary  

Exogenous: Constant   

Bandwidth: 4 (Newey-West automatic) using Bartlett kernel 
     
         LM-Stat. 
     
     Kwiatkowski-Phillips-Schmidt-Shin test statistic  0.192053 

Asymptotic critical values*: 1% level   0.739000 

  5% level   0.463000 

  10% level   0.347000 
     
     *Kwiatkowski-Phillips-Schmidt-Shin (1992, Table 1)  

     
     
     Residual variance (no correction)  0.000378 

HAC corrected variance (Bartlett kernel)  0.000368 
     
          

KPSS Test Equation   

Dependent Variable: R   

Method: Least Squares   

Sample (adjusted): 2/29/2000 10/12/2018  

Included observations: 4648 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 0.000228 0.000285 0.798826 0.4244 
     
     R-squared 0.000000     Mean dependent var 0.000228 

Adjusted R-squared 0.000000     S.D. dependent var 0.019455 

S.E. of regression 0.019455     Akaike info criterion -5.041168 

Sum squared resid 1.758950     Schwarz criterion -5.039782 

Log likelihood 11716.67     Hannan-Quinn criter. -5.040680 

Durbin-Watson stat 2.043196    
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Phillips – Perron Test 
 
 

Null Hypothesis: R has a unit root  

Exogenous: Constant   

Bandwidth: 4 (Newey-West automatic) using Bartlett kernel 
     
        Adj. t-Stat   Prob.* 
     
     Phillips-Perron test statistic -69.63701  0.0001 

Test critical values: 1% level  -3.431575  

 5% level  -2.861966  

 10% level  -2.567040  
     
     *MacKinnon (1996) one-sided p-values.  

     
     
     Residual variance (no correction)  0.000378 

HAC corrected variance (Bartlett kernel)  0.000381 
     
          

Phillips-Perron Test Equation   

Dependent Variable: D(R)   

Method: Least Squares   

Sample (adjusted): 3/01/2000 10/12/2018  

Included observations: 4647 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     R(-1) -1.021599 0.014669 -69.64250 0.0000 

C 0.000233 0.000285 0.816095 0.4145 
     
     R-squared 0.510799     Mean dependent var 4.29E-07 

Adjusted R-squared 0.510694     S.D. dependent var 0.027813 

S.E. of regression 0.019455     Akaike info criterion -5.040989 

Sum squared resid 1.758129     Schwarz criterion -5.038216 

Log likelihood 11714.74     Hannan-Quinn criter. -5.040013 

F-statistic 4850.077     Durbin-Watson stat 1.999558 

Prob(F-statistic) 0.000000    
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Soybean meal 

 

 Correlogram 
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 ADF Test 

 
 

Null Hypothesis: R has a unit root  

Exogenous: Constant   

Lag Length: 0 (Automatic - based on SIC, maxlag=35) 
     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -87.06057  0.0001 

Test critical values: 1% level  -3.431004  

 5% level  -2.861713  

 10% level  -2.566904  
     
     *MacKinnon (1996) one-sided p-values.  

     

Augmented Dickey-Fuller Test Equation  

Dependent Variable: D(R)   

Method: Least Squares   

Sample (adjusted): 3 7875   

Included observations: 7873 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     R(-1) -0.981136 0.011270 -87.06057 0.0000 

C 5.79E-05 0.000196 0.294838 0.7681 
     
     R-squared 0.490568     Mean dependent var -4.33E-07 

Adjusted R-squared 0.490503     S.D. dependent var 0.024417 

S.E. of regression 0.017429     Akaike info criterion -5.261162 

Sum squared resid 2.390847     Schwarz criterion -5.259391 

Log likelihood 20712.56     Hannan-Quinn criter. -5.260555 

F-statistic 7579.543     Durbin-Watson stat 2.000242 

Prob(F-statistic) 0.000000    
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 KPSS Test 

 
 
 

Null Hypothesis: R is stationary  

Exogenous: Constant   

Bandwidth: 13 (Newey-West automatic) using Bartlett kernel 
     
         LM-Stat. 
     
     Kwiatkowski-Phillips-Schmidt-Shin test statistic  0.030090 

Asymptotic critical values*: 1% level   0.739000 

  5% level   0.463000 

  10% level   0.347000 
     
     *Kwiatkowski-Phillips-Schmidt-Shin (1992, Table 1)  

     
     
     Residual variance (no correction)  0.000304 

HAC corrected variance (Bartlett kernel)  0.000306 
     
          

KPSS Test Equation   

Dependent Variable: R   

Method: Least Squares   

Sample (adjusted): 2 7875   

Included observations: 7874 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 5.92E-05 0.000196 0.301595 0.7630 
     
     R-squared 0.000000     Mean dependent var 5.92E-05 

Adjusted R-squared -0.000000     S.D. dependent var 0.017429 

S.E. of regression 0.017429     Akaike info criterion -5.261186 

Sum squared resid 2.391701     Schwarz criterion -5.260300 

Log likelihood 20714.29     Hannan-Quinn criter. -5.260882 

Durbin-Watson stat 1.962270    
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 Phillips – Perron Test 
 
 

Null Hypothesis: R has a unit root  

Exogenous: Constant   

Bandwidth: 13 (Newey-West automatic) using Bartlett kernel 
     
        Adj. t-Stat   Prob.* 
     
     Phillips-Perron test statistic -87.04645  0.0001 

Test critical values: 1% level  -3.431004  

 5% level  -2.861713  

 10% level  -2.566904  
     
     *MacKinnon (1996) one-sided p-values.  

     
     
     Residual variance (no correction)  0.000304 

HAC corrected variance (Bartlett kernel)  0.000296 
     
          

Phillips-Perron Test Equation   

Dependent Variable: D(R)   

Method: Least Squares   

Sample (adjusted): 3 7875   

Included observations: 7873 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     R(-1) -0.981136 0.011270 -87.06057 0.0000 

C 5.79E-05 0.000196 0.294838 0.7681 
     
     R-squared 0.490568     Mean dependent var -4.33E-07 

Adjusted R-squared 0.490503     S.D. dependent var 0.024417 

S.E. of regression 0.017429     Akaike info criterion -5.261162 

Sum squared resid 2.390847     Schwarz criterion -5.259391 

Log likelihood 20712.56     Hannan-Quinn criter. -5.260555 

F-statistic 7579.543     Durbin-Watson stat 2.000242 

Prob(F-statistic) 0.000000    
     
     

 
 
 
 
 

 

 

 

 

 

 

 

 

 



297 
 

Soybean oil 

 

 Correlogram 
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 ADF Test 

 
 

Null Hypothesis: R has a unit root  

Exogenous: Constant   

Lag Length: 0 (Automatic - based on SIC, maxlag=37) 
     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -93.34685  0.0001 

Test critical values: 1% level  -3.430869  

 5% level  -2.861654  

 10% level  -2.566872  
     
     *MacKinnon (1996) one-sided p-values.  

     

Augmented Dickey-Fuller Test Equation  

Dependent Variable: D(R)   

Method: Least Squares   

Sample (adjusted): 3 9416   

Included observations: 9414 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     R(-1) -0.961531 0.010301 -93.34685 0.0000 

C 2.84E-05 0.000155 0.182708 0.8550 
     
     R-squared 0.480735     Mean dependent var 1.24E-06 

Adjusted R-squared 0.480680     S.D. dependent var 0.020909 

S.E. of regression 0.015068     Akaike info criterion -5.552316 

Sum squared resid 2.136855     Schwarz criterion -5.550797 

Log likelihood 26136.75     Hannan-Quinn criter. -5.551800 

F-statistic 8713.635     Durbin-Watson stat 1.997988 

Prob(F-statistic) 0.000000    
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 KPSS Test 

 
 

Null Hypothesis: R is stationary  

Exogenous: Constant   

Bandwidth: 8 (Newey-West automatic) using Bartlett kernel 
     
         LM-Stat. 
     
     Kwiatkowski-Phillips-Schmidt-Shin test statistic  0.046660 

Asymptotic critical values*: 1% level   0.739000 

  5% level   0.463000 

  10% level   0.347000 
     
     *Kwiatkowski-Phillips-Schmidt-Shin (1992, Table 1)  

     
     
     Residual variance (no correction)  0.000227 

HAC corrected variance (Bartlett kernel)  0.000235 
     
          

     

KPSS Test Equation   

Dependent Variable: R   

Method: Least Squares   

Sample (adjusted): 2 9416   

Included observations: 9415 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 3.00E-05 0.000155 0.193238 0.8468 
     
     R-squared 0.000000     Mean dependent var 3.00E-05 

Adjusted R-squared 0.000000     S.D. dependent var 0.015077 

S.E. of regression 0.015077     Akaike info criterion -5.551141 

Sum squared resid 2.140050     Schwarz criterion -5.550381 

Log likelihood 26133.00     Hannan-Quinn criter. -5.550883 

Durbin-Watson stat 1.922925    
     
     

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



300 
 

 Phillips – Perron Test 
 
 

Null Hypothesis: R has a unit root  

Exogenous: Constant   

Bandwidth: 6 (Newey-West automatic) using Bartlett kernel 
     
        Adj. t-Stat   Prob.* 
     
     Phillips-Perron test statistic -93.29514  0.0001 

Test critical values: 1% level  -3.430869  

 5% level  -2.861654  

 10% level  -2.566872  
     
     *MacKinnon (1996) one-sided p-values.  

     
     
     Residual variance (no correction)  0.000227 

HAC corrected variance (Bartlett kernel)  0.000219 
     
          

Phillips-Perron Test Equation   

Dependent Variable: D(R)   

Method: Least Squares   

Sample (adjusted): 3 9416   

Included observations: 9414 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     R(-1) -0.961531 0.010301 -93.34685 0.0000 

C 2.84E-05 0.000155 0.182708 0.8550 
     
     R-squared 0.480735     Mean dependent var 1.24E-06 

Adjusted R-squared 0.480680     S.D. dependent var 0.020909 

S.E. of regression 0.015068     Akaike info criterion -5.552316 

Sum squared resid 2.136855     Schwarz criterion -5.550797 

Log likelihood 26136.75     Hannan-Quinn criter. -5.551800 

F-statistic 8713.635     Durbin-Watson stat 1.997988 

Prob(F-statistic) 0.000000    
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Soybeans 

 

 Correlogram 
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 ADF Test 

 
 

Null Hypothesis: R has a unit root  

Exogenous: Constant   

Lag Length: 0 (Automatic - based on SIC, maxlag=34) 
     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -84.36294  0.0001 

Test critical values: 1% level  -3.431091  

 5% level  -2.861752  

 10% level  -2.566925  
     
     *MacKinnon (1996) one-sided p-values.  

     

Augmented Dickey-Fuller Test Equation  

Dependent Variable: D(R)   

Method: Least Squares   

Sample (adjusted): 3 7123   

Included observations: 7121 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     R(-1) -0.999835 0.011852 -84.36294 0.0000 

C 7.02E-05 0.000183 0.383899 0.7011 
     
     R-squared 0.499933     Mean dependent var -1.23E-06 

Adjusted R-squared 0.499863     S.D. dependent var 0.021827 

S.E. of regression 0.015436     Akaike info criterion -5.503937 

Sum squared resid 1.696263     Schwarz criterion -5.502007 

Log likelihood 19598.77     Hannan-Quinn criter. -5.503273 

F-statistic 7117.105     Durbin-Watson stat 1.999876 

Prob(F-statistic) 0.000000    
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 KPSS Test 

 
 

Null Hypothesis: R is stationary  

Exogenous: Constant   

Bandwidth: 11 (Newey-West automatic) using Bartlett kernel 
     
         LM-Stat. 
     
     Kwiatkowski-Phillips-Schmidt-Shin test statistic  0.048004 

Asymptotic critical values*: 1% level   0.739000 

  5% level   0.463000 

  10% level   0.347000 
     
     *Kwiatkowski-Phillips-Schmidt-Shin (1992, Table 1)  

     
     
     Residual variance (no correction)  0.000238 

HAC corrected variance (Bartlett kernel)  0.000231 
     
          

KPSS Test Equation   

Dependent Variable: R   

Method: Least Squares   

Sample (adjusted): 2 7123   

Included observations: 7122 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 7.17E-05 0.000183 0.392146 0.6950 
     
     R-squared 0.000000     Mean dependent var 7.17E-05 

Adjusted R-squared -0.000000     S.D. dependent var 0.015434 

S.E. of regression 0.015434     Akaike info criterion -5.504293 

Sum squared resid 1.696375     Schwarz criterion -5.503328 

Log likelihood 19601.79     Hannan-Quinn criter. -5.503960 

Durbin-Watson stat 1.999602    
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 Phillips – Perron Test 
 
 

Null Hypothesis: R has a unit root  

Exogenous: Constant   

Bandwidth: 11 (Newey-West automatic) using Bartlett kernel 
     
        Adj. t-Stat   Prob.* 
     
     Phillips-Perron test statistic -84.37146  0.0001 

Test critical values: 1% level  -3.431091  

 5% level  -2.861752  

 10% level  -2.566925  
     
     *MacKinnon (1996) one-sided p-values.  

     
     
     Residual variance (no correction)  0.000238 

HAC corrected variance (Bartlett kernel)  0.000231 
     
          

Phillips-Perron Test Equation   

Dependent Variable: D(R)   

Method: Least Squares   

Sample (adjusted): 3 7123   

Included observations: 7121 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     R(-1) -0.999835 0.011852 -84.36294 0.0000 

C 7.02E-05 0.000183 0.383899 0.7011 
     
     R-squared 0.499933     Mean dependent var -1.23E-06 

Adjusted R-squared 0.499863     S.D. dependent var 0.021827 

S.E. of regression 0.015436     Akaike info criterion -5.503937 

Sum squared resid 1.696263     Schwarz criterion -5.502007 

Log likelihood 19598.77     Hannan-Quinn criter. -5.503273 

F-statistic 7117.105     Durbin-Watson stat 1.999876 

Prob(F-statistic) 0.000000    
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Sugar 

 

 Correlogram 
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 ADF Test 

 
 

Null Hypothesis: R has a unit root  

Exogenous: Constant   

Lag Length: 1 (Automatic - based on SIC, maxlag=37) 
     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -75.80450  0.0001 

Test critical values: 1% level  -3.430886  

 5% level  -2.861661  

 10% level  -2.566876  
     
     *MacKinnon (1996) one-sided p-values.  

     

Augmented Dickey-Fuller Test Equation  

Dependent Variable: D(R)   

Method: Least Squares   

Sample (adjusted): 1/02/1980 6/29/2016  

Included observations: 9189 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     R(-1) -1.162132 0.015331 -75.80450 0.0000 

D(R(-1)) 0.071531 0.010409 6.872212 0.0000 

C 2.94E-05 0.000297 0.098819 0.9213 
     
     R-squared 0.544539     Mean dependent var 7.00E-06 

Adjusted R-squared 0.544440     S.D. dependent var 0.042192 

S.E. of regression 0.028478     Akaike info criterion -4.279051 

Sum squared resid 7.449753     Schwarz criterion -4.276725 

Log likelihood 19663.10     Hannan-Quinn criter. -4.278261 

F-statistic 5491.287     Durbin-Watson stat 1.997832 

Prob(F-statistic) 0.000000    
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 KPSS Test 
 
 

Null Hypothesis: R is stationary  

Exogenous: Constant   

Bandwidth: 26 (Newey-West automatic) using Bartlett kernel 
     
         LM-Stat. 
     
     Kwiatkowski-Phillips-Schmidt-Shin test statistic  0.086919 

Asymptotic critical values*: 1% level   0.739000 

  5% level   0.463000 

  10% level   0.347000 
     
     *Kwiatkowski-Phillips-Schmidt-Shin (1992, Table 1)  

     
     
     Residual variance (no correction)  0.000821 

HAC corrected variance (Bartlett kernel)  0.000613 
     
          

KPSS Test Equation   

Dependent Variable: R   

Method: Least Squares   

Sample (adjusted): 12/28/1979 6/29/2016  

Included observations: 9191 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 2.55E-05 0.000299 0.085337 0.9320 
     
     R-squared 0.000000     Mean dependent var 2.55E-05 

Adjusted R-squared -0.000000     S.D. dependent var 0.028648 

S.E. of regression 0.028648     Akaike info criterion -4.267370 

Sum squared resid 7.542211     Schwarz criterion -4.266595 

Log likelihood 19611.70     Hannan-Quinn criter. -4.267106 

Durbin-Watson stat 2.168726    
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Phillips – Perron Test 
 
 

Null Hypothesis: R has a unit root  

Exogenous: Constant   

Bandwidth: 22 (Newey-West automatic) using Bartlett kernel 
     
        Adj. t-Stat   Prob.* 
     
     Phillips-Perron test statistic -105.1161  0.0001 

Test critical values: 1% level  -3.430886  

 5% level  -2.861661  

 10% level  -2.566876  
     
     *MacKinnon (1996) one-sided p-values.  

     
     
     Residual variance (no correction)  0.000815 

HAC corrected variance (Bartlett kernel)  0.000715 
     
          

Phillips-Perron Test Equation   

Dependent Variable: D(R)   

Method: Least Squares   

Sample (adjusted): 12/31/1979 6/29/2016  

Included observations: 9190 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     R(-1) -1.084558 0.010397 -104.3161 0.0000 

C 2.64E-05 0.000298 0.088691 0.9293 
     
     R-squared 0.542199     Mean dependent var 4.62E-06 

Adjusted R-squared 0.542149     S.D. dependent var 0.042191 

S.E. of regression 0.028548     Akaike info criterion -4.274224 

Sum squared resid 7.488250     Schwarz criterion -4.272673 

Log likelihood 19642.06     Hannan-Quinn criter. -4.273697 

F-statistic 10881.84     Durbin-Watson stat 2.011691 

Prob(F-statistic) 0.000000    
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Tin 

 

 Correlogram 
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 ADF Test 

 

Null Hypothesis: R has a unit root  

Exogenous: Constant   

Lag Length: 0 (Automatic - based on SIC, maxlag=27) 
     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -49.43626  0.0001 

Test critical values: 1% level  -3.432626  

 5% level  -2.862431  

 10% level  -2.567289  
     
     *MacKinnon (1996) one-sided p-values.  

     

Augmented Dickey-Fuller Test Equation  

Dependent Variable: D(R)   

Method: Least Squares   

Sample (adjusted): 7/09/2008 5/20/2019  

Included observations: 2649 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     R(-1) -0.960009 0.019419 -49.43626 0.0000 

C -5.26E-05 0.000349 -0.150828 0.8801 
     
     R-squared 0.480057     Mean dependent var 4.79E-06 

Adjusted R-squared 0.479861     S.D. dependent var 0.024893 

S.E. of regression 0.017953     Akaike info criterion -5.201355 

Sum squared resid 0.853163     Schwarz criterion -5.196915 

Log likelihood 6891.195     Hannan-Quinn criter. -5.199748 

F-statistic 2443.944     Durbin-Watson stat 1.999645 

Prob(F-statistic) 0.000000    
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 KPSS Test 
 
 

Null Hypothesis: R is stationary  

Exogenous: Constant   

Bandwidth: 7 (Newey-West automatic) using Bartlett kernel 
     
         LM-Stat. 
     
     Kwiatkowski-Phillips-Schmidt-Shin test statistic  0.062320 

Asymptotic critical values*: 1% level   0.739000 

  5% level   0.463000 

  10% level   0.347000 
     
     *Kwiatkowski-Phillips-Schmidt-Shin (1992, Table 1)  

     
     
     Residual variance (no correction)  0.000323 

HAC corrected variance (Bartlett kernel)  0.000319 
     
          

KPSS Test Equation   

Dependent Variable: R   

Method: Least Squares   

Sample (adjusted): 7/08/2008 5/20/2019  

Included observations: 2650 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C -6.01E-05 0.000349 -0.172136 0.8633 
     
     R-squared 0.000000     Mean dependent var -6.01E-05 

Adjusted R-squared 0.000000     S.D. dependent var 0.017963 

S.E. of regression 0.017963     Akaike info criterion -5.200677 

Sum squared resid 0.854709     Schwarz criterion -5.198457 

Log likelihood 6891.897     Hannan-Quinn criter. -5.199873 

Durbin-Watson stat 1.919808    
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 Phillips – Perron Test 
 
 

Null Hypothesis: R has a unit root  

Exogenous: Constant   

Bandwidth: 7 (Newey-West automatic) using Bartlett kernel 
     
        Adj. t-Stat   Prob.* 
     
     Phillips-Perron test statistic -49.39637  0.0001 

Test critical values: 1% level  -3.432626  

 5% level  -2.862431  

 10% level  -2.567289  
     
     *MacKinnon (1996) one-sided p-values.  

     
     
     Residual variance (no correction)  0.000322 

HAC corrected variance (Bartlett kernel)  0.000297 
     
          

Phillips-Perron Test Equation   

Dependent Variable: D(R)   

Method: Least Squares   

Sample (adjusted): 7/09/2008 5/20/2019  

Included observations: 2649 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     R(-1) -0.960009 0.019419 -49.43626 0.0000 

C -5.26E-05 0.000349 -0.150828 0.8801 
     
     R-squared 0.480057     Mean dependent var 4.79E-06 

Adjusted R-squared 0.479861     S.D. dependent var 0.024893 

S.E. of regression 0.017953     Akaike info criterion -5.201355 

Sum squared resid 0.853163     Schwarz criterion -5.196915 

Log likelihood 6891.195     Hannan-Quinn criter. -5.199748 

F-statistic 2443.944     Durbin-Watson stat 1.999645 

Prob(F-statistic) 0.000000    
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Wheat 

 

 Correlogram 
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 ADF Test 

 
 

Null Hypothesis: R has a unit root  

Exogenous: Constant   

Lag Length: 0 (Automatic - based on SIC, maxlag=31) 
     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -65.25662  0.0001 

Test critical values: 1% level  -3.431598  

 5% level  -2.861976  

 10% level  -2.567045  
     
     *MacKinnon (1996) one-sided p-values.  

     

Augmented Dickey-Fuller Test Equation  

Dependent Variable: D(R)   

Method: Least Squares   

Sample (adjusted): 3/27/2000 7/02/2018  

Included observations: 4570 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     R(-1) -0.965617 0.014797 -65.25662 0.0000 

C 0.000101 0.000268 0.377374 0.7059 
     
     R-squared 0.482463     Mean dependent var -8.34E-06 

Adjusted R-squared 0.482350     S.D. dependent var 0.025207 

S.E. of regression 0.018136     Akaike info criterion -5.181387 

Sum squared resid 1.502498     Schwarz criterion -5.178575 

Log likelihood 11841.47     Hannan-Quinn criter. -5.180397 

F-statistic 4258.426     Durbin-Watson stat 1.998075 

Prob(F-statistic) 0.000000    
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 KPSS Test 
 
 

Null Hypothesis: R is stationary  

Exogenous: Constant   

Bandwidth: 8 (Newey-West automatic) using Bartlett kernel 
     
         LM-Stat. 
     
     Kwiatkowski-Phillips-Schmidt-Shin test statistic  0.129017 

Asymptotic critical values*: 1% level   0.739000 

  5% level   0.463000 

  10% level   0.347000 
     
     *Kwiatkowski-Phillips-Schmidt-Shin (1992, Table 1)  

     
     
     Residual variance (no correction)  0.000329 

HAC corrected variance (Bartlett kernel)  0.000349 
     
          

KPSS Test Equation   

Dependent Variable: R   

Method: Least Squares   

Sample (adjusted): 3/24/2000 7/02/2018  

Included observations: 4571 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 0.000103 0.000268 0.385158 0.7001 
     
     R-squared 0.000000     Mean dependent var 0.000103 

Adjusted R-squared 0.000000     S.D. dependent var 0.018143 

S.E. of regression 0.018143     Akaike info criterion -5.180818 

Sum squared resid 1.504340     Schwarz criterion -5.179412 

Log likelihood 11841.76     Hannan-Quinn criter. -5.180323 

Durbin-Watson stat 1.929863    
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 Phillips – Perron Test 
 
 

Null Hypothesis: R has a unit root  

Exogenous: Constant   

Bandwidth: 9 (Newey-West automatic) using Bartlett kernel 
     
        Adj. t-Stat   Prob.* 
     
     Phillips-Perron test statistic -65.24927  0.0001 

Test critical values: 1% level  -3.431598  

 5% level  -2.861976  

 10% level  -2.567045  
     
     *MacKinnon (1996) one-sided p-values.  

     
     
     Residual variance (no correction)  0.000329 

HAC corrected variance (Bartlett kernel)  0.000327 
     
          

Phillips-Perron Test Equation   

Dependent Variable: D(R)   

Method: Least Squares   

Sample (adjusted): 3/27/2000 7/02/2018  

Included observations: 4570 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     R(-1) -0.965617 0.014797 -65.25662 0.0000 

C 0.000101 0.000268 0.377374 0.7059 
     
     R-squared 0.482463     Mean dependent var -8.34E-06 

Adjusted R-squared 0.482350     S.D. dependent var 0.025207 

S.E. of regression 0.018136     Akaike info criterion -5.181387 

Sum squared resid 1.502498     Schwarz criterion -5.178575 

Log likelihood 11841.47     Hannan-Quinn criter. -5.180397 

F-statistic 4258.426     Durbin-Watson stat 1.998075 

Prob(F-statistic) 0.000000    
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Zinc 

 

 Correlogram 
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 ADF Test 

 
 

Null Hypothesis: R has a unit root  

Exogenous: Constant   

Lag Length: 0 (Automatic - based on SIC, maxlag=27) 
     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -55.32406  0.0001 

Test critical values: 1% level  -3.432555  

 5% level  -2.862400  

 10% level  -2.567273  
     
     *MacKinnon (1996) one-sided p-values.  

     

Augmented Dickey-Fuller Test Equation  

Dependent Variable: D(R)   

Method: Least Squares   

Sample (adjusted): 2/22/2008 5/08/2019  

Included observations: 2728 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     R(-1) -1.055539 0.019079 -55.32406 0.0000 

C 2.03E-05 0.000384 0.052832 0.9579 
     
     R-squared 0.528924     Mean dependent var -3.38E-05 

Adjusted R-squared 0.528751     S.D. dependent var 0.029215 

S.E. of regression 0.020055     Akaike info criterion -4.979938 

Sum squared resid 1.096412     Schwarz criterion -4.975604 

Log likelihood 6794.635     Hannan-Quinn criter. -4.978371 

F-statistic 3060.752     Durbin-Watson stat 1.999684 

Prob(F-statistic) 0.000000    
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 KPSS Test 

 
 

Null Hypothesis: R is stationary  

Exogenous: Constant   

Bandwidth: 5 (Newey-West automatic) using Bartlett kernel 
     
         LM-Stat. 
     
     Kwiatkowski-Phillips-Schmidt-Shin test statistic  0.069375 

Asymptotic critical values*: 1% level   0.739000 

  5% level   0.463000 

  10% level   0.347000 
     
     *Kwiatkowski-Phillips-Schmidt-Shin (1992, Table 1)  

     
     
     Residual variance (no correction)  0.000405 

HAC corrected variance (Bartlett kernel)  0.000349 
     
          

KPSS Test Equation   

Dependent Variable: R   

Method: Least Squares   

Sample (adjusted): 2/21/2008 5/08/2019  

Included observations: 2729 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 4.45E-05 0.000385 0.115387 0.9081 
     
     R-squared 0.000000     Mean dependent var 4.45E-05 

Adjusted R-squared 0.000000     S.D. dependent var 0.020128 

S.E. of regression 0.020128     Akaike info criterion -4.973004 

Sum squared resid 1.105256     Schwarz criterion -4.970838 

Log likelihood 6786.664     Hannan-Quinn criter. -4.972221 

Durbin-Watson stat 2.105817    
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 Phillips – Perron Test 
 
 
 

Null Hypothesis: R has a unit root  

Exogenous: Constant   

Bandwidth: 5 (Newey-West automatic) using Bartlett kernel 
     
        Adj. t-Stat   Prob.* 
     
     Phillips-Perron test statistic -55.44480  0.0001 

Test critical values: 1% level  -3.432555  

 5% level  -2.862400  

 10% level  -2.567273  
     
     *MacKinnon (1996) one-sided p-values.  

     
     
     Residual variance (no correction)  0.000402 

HAC corrected variance (Bartlett kernel)  0.000379 
     
          

Phillips-Perron Test Equation   

Dependent Variable: D(R)   

Method: Least Squares   

Sample (adjusted): 2/22/2008 5/08/2019  

Included observations: 2728 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     R(-1) -1.055539 0.019079 -55.32406 0.0000 

C 2.03E-05 0.000384 0.052832 0.9579 
     
     R-squared 0.528924     Mean dependent var -3.38E-05 

Adjusted R-squared 0.528751     S.D. dependent var 0.029215 

S.E. of regression 0.020055     Akaike info criterion -4.979938 

Sum squared resid 1.096412     Schwarz criterion -4.975604 

Log likelihood 6794.635     Hannan-Quinn criter. -4.978371 

F-statistic 3060.752     Durbin-Watson stat 1.999684 

Prob(F-statistic) 0.000000    
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11.2 APPENDIX II: ARIMA Models output 

 

Aluminum 

 

Custom ARIMA Model 

 

Dependent Variable: R   

Method: ARMA Maximum Likelihood (OPG - BHHH)  

Sample: 11/22/2016 3/09/2020   

Included observations: 811   

Convergence achieved after 93 iterations  

Coefficient covariance computed using outer product of gradients 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     AR(1) -0.526802 0.168561 -3.125298 0.0018 

AR(2) 1.236533 0.084584 14.61898 0.0000 

AR(3) 1.045899 0.179082 5.840325 0.0000 

AR(4) -0.682084 0.061774 -11.04155 0.0000 

AR(5) -0.770937 0.139288 -5.534850 0.0000 

MA(1) 0.486195 0.176741 2.750892 0.0061 

MA(2) -1.184044 0.096575 -12.26038 0.0000 

MA(3) -0.995479 0.175228 -5.681048 0.0000 

MA(4) 0.617488 0.079455 7.771587 0.0000 

MA(5) 0.700074 0.143970 4.862630 0.0000 

SIGMASQ 0.000136 4.72E-06 28.83770 0.0000 
     
     R-squared 0.036491     Mean dependent var -3.83E-05 

Adjusted R-squared 0.024447     S.D. dependent var 0.011887 

S.E. of regression 0.011741     Akaike info criterion -6.037496 

Sum squared resid 0.110272     Schwarz criterion -5.973771 

Log likelihood 2459.205     Hannan-Quinn criter. -6.013031 

Durbin-Watson stat 1.951423    
     
     Inverted AR Roots  .93+.32i      .93-.32i   -.76-.58i -.76+.58i 

      -.87   

Inverted MA Roots  .92+.31i      .92-.31i   -.74-.59i -.74+.59i 

      -.84   
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Eviews add in ARIMA Model 

 

Dependent Variable: D(MAL)   

Method: ARMA Maximum Likelihood (OPG - BHHH)  

Sample: 11/22/2016 3/09/2020   

Included observations: 811   

Convergence achieved after 70 iterations  

Coefficient covariance computed using outer product of gradients 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     AR(1) -1.411214 0.145088 -9.726593 0.0000 

AR(2) 0.748318 0.117958 6.343928 0.0000 

AR(3) 2.159202 0.216810 9.958975 0.0000 

AR(4) 0.252144 0.173813 1.450661 0.1473 

AR(5) -1.344325 0.138497 -9.706531 0.0000 

AR(6) -0.727092 0.112471 -6.464684 0.0000 

MA(1) 1.397152 0.140953 9.912185 0.0000 

MA(2) -0.707845 0.120846 -5.857434 0.0000 

MA(3) -2.098884 0.210194 -9.985436 0.0000 

MA(4) -0.316228 0.164194 -1.925943 0.0545 

MA(5) 1.228951 0.139872 8.786263 0.0000 

MA(6) 0.708532 0.100444 7.053962 0.0000 

SIGMASQ 0.000134 4.84E-06 27.72125 0.0000 
     
     R-squared 0.048517     Mean dependent var -3.83E-05 

Adjusted R-squared 0.034209     S.D. dependent var 0.011887 

S.E. of regression 0.011682     Akaike info criterion -6.044609 

Sum squared resid 0.108896     Schwarz criterion -5.969298 

Log likelihood 2464.089     Hannan-Quinn criter. -6.015697 

Durbin-Watson stat 1.982389    
     
     Inverted AR Roots  .93-.32i      .93+.32i   -.73-.54i -.73+.54i 

 -.91-.29i     -.91+.29i  

Inverted MA Roots  .92-.31i      .92+.31i   -.69-.56i -.69+.56i 

 -.93+.31i     -.93-.31i  
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Brent oil 

 

Custom ARIMA Model 

 

Dependent Variable: R   

Method: ARMA Maximum Likelihood (OPG - BHHH)  

Sample: 6/28/1988 5/17/2017   

Included observations: 7363   

Convergence achieved after 39 iterations  

Coefficient covariance computed using outer product of gradients 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     AR(1) 1.864076 0.020678 90.14820 0.0000 

AR(2) -0.920885 0.019989 -46.06909 0.0000 

MA(1) -1.885968 0.019039 -99.05785 0.0000 

MA(2) 0.940394 0.018251 51.52431 0.0000 

SIGMASQ 0.000498 2.57E-06 194.0870 0.0000 
     
     R-squared 0.003421     Mean dependent var 0.000168 

Adjusted R-squared 0.002879     S.D. dependent var 0.022354 

S.E. of regression 0.022321     Akaike info criterion -4.765858 

Sum squared resid 3.666078     Schwarz criterion -4.761170 

Log likelihood 17550.51     Hannan-Quinn criter. -4.764247 

Durbin-Watson stat 2.006392    
     
     Inverted AR Roots  .93+.23i      .93-.23i  

Inverted MA Roots  .94-.23i      .94+.23i  
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Eviews add in ARIMA Model 

 

Dependent Variable: D(B)   

Method: ARMA Maximum Likelihood (OPG - BHHH)  

Sample: 6/28/1988 5/17/2017   

Included observations: 7363   

Convergence achieved after 240 iterations  

Coefficient covariance computed using outer product of gradients 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     AR(1) 0.074067 0.026521 2.792790 0.0052 

AR(2) -0.045046 0.025915 -1.738226 0.0822 

AR(3) 0.313251 0.025712 12.18285 0.0000 

AR(4) 0.262871 0.025728 10.21736 0.0000 

AR(5) 0.343837 0.025412 13.53029 0.0000 

AR(6) 0.005494 0.025207 0.217942 0.8275 

AR(7) 0.183835 0.022113 8.313549 0.0000 

AR(8) -0.900821 0.023690 -38.02532 0.0000 

MA(1) -0.098563 0.026726 -3.687909 0.0002 

MA(2) 0.017715 0.026177 0.676747 0.4986 

MA(3) -0.329391 0.025405 -12.96547 0.0000 

MA(4) -0.259943 0.026831 -9.688018 0.0000 

MA(5) -0.335263 0.026003 -12.89340 0.0000 

MA(6) -0.001893 0.024894 -0.076040 0.9394 

MA(7) -0.172592 0.022056 -7.825029 0.0000 

MA(8) 0.904945 0.023821 37.98979 0.0000 

SIGMASQ 0.000495 3.34E-06 148.4677 0.0000 
     
     R-squared 0.008355     Mean dependent var 0.000168 

Adjusted R-squared 0.006195     S.D. dependent var 0.022354 

S.E. of regression 0.022284     Akaike info criterion -4.767508 

Sum squared resid 3.647927     Schwarz criterion -4.751567 

Log likelihood 17568.58     Hannan-Quinn criter. -4.762029 

Durbin-Watson stat 1.997831    
     
     Inverted AR Roots  .94-.23i      .94+.23i    .34+.93i  .34-.93i 

 -.34-.93i     -.34+.93i   -.90-.43i -.90+.43i 

Inverted MA Roots  .95+.23i      .95-.23i    .35+.92i  .35-.92i 

 -.35-.93i     -.35+.93i   -.90+.43i -.90-.43i 
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Cocoa 

 

Custom ARIMA Model 

 

Dependent Variable: R   

Method: ARMA Maximum Likelihood (OPG - BHHH)  

Sample: 12/28/1979 7/01/2016   

Included observations: 9165   

Convergence achieved after 17 iterations  

Coefficient covariance computed using outer product of gradients 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     AR(2) 0.575793 0.141322 4.074337 0.0000 

AR(3) 0.344063 0.140037 2.456947 0.0140 

MA(2) -0.604370 0.139584 -4.329784 0.0000 

MA(3) -0.336794 0.138716 -2.427946 0.0152 

SIGMASQ 0.000375 3.61E-06 103.7662 0.0000 
     
     R-squared 0.002042     Mean dependent var -2.17E-06 

Adjusted R-squared 0.001606     S.D. dependent var 0.019380 

S.E. of regression 0.019364     Akaike info criterion -5.050216 

Sum squared resid 3.434806     Schwarz criterion -5.046330 

Log likelihood 23147.61     Hannan-Quinn criter. -5.048895 

Durbin-Watson stat 1.999616    
     
     Inverted AR Roots       .97     -.48+.35i   -.48-.35i 

Inverted MA Roots       .97     -.49-.33i   -.49+.33i 
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Eviews add in ARIMA Model 

 

Dependent Variable: D(CC)   

Method: ARMA Maximum Likelihood (OPG - BHHH)  

Sample: 12/28/1979 7/01/2016   

Included observations: 9165   

Convergence achieved after 66 iterations  

Coefficient covariance computed using outer product of gradients 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     AR(1) 0.529145 0.059626 8.874394 0.0000 

AR(2) -0.906645 0.075570 -11.99740 0.0000 

AR(3) 0.821915 0.085044 9.664577 0.0000 

AR(4) -0.517280 0.070590 -7.327981 0.0000 

AR(5) 0.935609 0.050956 18.36099 0.0000 

AR(6) -0.040844 0.015272 -2.674393 0.0075 

AR(7) 0.021532 0.011578 1.859669 0.0630 

AR(8) -0.015829 0.010349 -1.529612 0.1261 

MA(1) -0.529394 0.058899 -8.988212 0.0000 

MA(2) 0.886760 0.074872 11.84374 0.0000 

MA(3) -0.797270 0.083233 -9.578753 0.0000 

MA(4) 0.474963 0.069916 6.793351 0.0000 

MA(5) -0.907592 0.051738 -17.54215 0.0000 

SIGMASQ 0.000374 3.65E-06 102.5537 0.0000 
     
     R-squared 0.004110     Mean dependent var -2.17E-06 

Adjusted R-squared 0.002695     S.D. dependent var 0.019380 

S.E. of regression 0.019354     Akaike info criterion -5.050230 

Sum squared resid 3.427688     Schwarz criterion -5.039349 

Log likelihood 23156.68     Hannan-Quinn criter. -5.046531 

Durbin-Watson stat 1.999918    
     
     Inverted AR Roots       .96      .30+.95i    .30-.95i       .25 

 -.11-.24i     -.11+.24i   -.52+.82i -.52-.82i 

Inverted MA Roots       .97      .30+.95i    .30-.95i -.52+.82i 

 -.52-.82i   
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Coffee 

 

Custom ARIMA Model 

 

Dependent Variable: R   

Method: ARMA Maximum Likelihood (OPG - BHHH)  

Sample: 12/28/1979 6/24/2016   

Included observations: 9205   

Convergence achieved after 21 iterations  

Coefficient covariance computed using outer product of gradients 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     AR(1) 0.684224 0.183058 3.737754 0.0002 

MA(1) -0.699552 0.179679 -3.893347 0.0001 

SIGMASQ 0.000540 3.69E-06 146.2443 0.0000 
     
     R-squared 0.000439     Mean dependent var -3.37E-05 

Adjusted R-squared 0.000222     S.D. dependent var 0.023252 

S.E. of regression 0.023249     Akaike info criterion -4.684783 

Sum squared resid 4.973831     Schwarz criterion -4.682460 

Log likelihood 21564.71     Hannan-Quinn criter. -4.683993 

Durbin-Watson stat 1.997127    
     
     Inverted AR Roots       .68   

Inverted MA Roots       .70   
     
     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



328 
 

Eviews add in ARIMA Model 

 

Dependent Variable: D(KC)   

Method: ARMA Maximum Likelihood (OPG - BHHH)  

Sample: 12/28/1979 6/24/2016   

Included observations: 9205   

Convergence achieved after 54 iterations  

Coefficient covariance computed using outer product of gradients 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     AR(1) 0.476962 1.043551 0.457057 0.6476 

AR(2) 0.610992 0.078828 7.750934 0.0000 

AR(3) -0.957535 0.602634 -1.588917 0.1121 

AR(4) 0.233072 0.718134 0.324552 0.7455 

AR(5) 0.866520 0.146278 5.923810 0.0000 

AR(6) -0.370088 0.816715 -0.453142 0.6505 

MA(1) -0.490055 1.044180 -0.469321 0.6389 

MA(2) -0.625800 0.076937 -8.133881 0.0000 

MA(3) 0.991590 0.625526 1.585209 0.1130 

MA(4) -0.247171 0.741473 -0.333351 0.7389 

MA(5) -0.911742 0.146238 -6.234646 0.0000 

MA(6) 0.413703 0.863746 0.478964 0.6320 

MA(7) 0.000295 0.019050 0.015468 0.9877 

MA(8) -0.014654 0.015825 -0.926011 0.3545 

MA(9) 0.011891 0.012977 0.916340 0.3595 

SIGMASQ 0.000539 3.81E-06 141.5074 0.0000 
     
     R-squared 0.003753     Mean dependent var -3.37E-05 

Adjusted R-squared 0.002127     S.D. dependent var 0.023252 

S.E. of regression 0.023227     Akaike info criterion -4.685271 

Sum squared resid 4.957344     Schwarz criterion -4.672882 

Log likelihood 21579.96     Hannan-Quinn criter. -4.681060 

Durbin-Watson stat 1.999593    
     
     Inverted AR Roots       .94      .46+.86i    .46-.86i       .44 

 -.91+.32i     -.91-.32i  

Inverted MA Roots       .94           .52    .46+.87i  .46-.87i 

  .12-.28i      .12+.28i        -.29 -.92-.33i 

 -.92+.33i   
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Copper 

 

Custom ARIMA Model 

 

Dependent Variable: R   

Method: ARMA Maximum Likelihood (OPG - BHHH)  

Sample: 3/31/2000 8/09/2018   

Included observations: 4583   

Convergence achieved after 29 iterations  

Coefficient covariance computed using outer product of gradients 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     AR(5) -0.899291 0.034547 -26.03079 0.0000 

MA(5) 0.869741 0.039082 22.25428 0.0000 

SIGMASQ 0.000306 3.58E-06 85.43584 0.0000 
     
     R-squared 0.004340     Mean dependent var 0.000269 

Adjusted R-squared 0.003905     S.D. dependent var 0.017528 

S.E. of regression 0.017493     Akaike info criterion -5.253327 

Sum squared resid 1.401546     Schwarz criterion -5.249118 

Log likelihood 12041.00     Hannan-Quinn criter. -5.251845 

Durbin-Watson stat 2.150688    
     
     Inverted AR Roots  .79-.58i      .79+.58i   -.30+.93i -.30-.93i 

      -.98   

Inverted MA Roots  .79-.57i      .79+.57i   -.30+.92i -.30-.92i 

      -.97   
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Eviews add in ARIMA Model 

 

Dependent Variable: D(HG)   

Method: ARMA Maximum Likelihood (OPG - BHHH)  

Sample: 3/31/2000 8/09/2018   

Included observations: 4583   

Convergence achieved after 127 iterations  

Coefficient covariance computed using outer product of gradients 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     AR(1) -0.147249 0.024201 -6.084397 0.0000 

AR(2) 1.344347 0.023911 56.22410 0.0000 

AR(3) 0.141651 0.027471 5.156385 0.0000 

AR(4) -1.332148 0.026403 -50.45406 0.0000 

AR(5) -0.106177 0.028840 -3.681603 0.0002 

AR(6) 0.868438 0.027618 31.44448 0.0000 

AR(7) 0.078471 0.010834 7.243125 0.0000 

AR(8) 0.046204 0.010092 4.578132 0.0000 

MA(1) 0.071550 0.021872 3.271274 0.0011 

MA(2) -1.360888 0.020988 -64.84245 0.0000 

MA(3) -0.034405 0.020357 -1.690048 0.0911 

MA(4) 1.372325 0.019884 69.01741 0.0000 

MA(5) -0.005338 0.022160 -0.240884 0.8097 

MA(6) -0.905598 0.020616 -43.92685 0.0000 

SIGMASQ 0.000302 3.62E-06 83.37754 0.0000 
     
     R-squared 0.018244     Mean dependent var 0.000269 

Adjusted R-squared 0.015235     S.D. dependent var 0.017528 

S.E. of regression 0.017393     Akaike info criterion -5.261972 

Sum squared resid 1.381973     Schwarz criterion -5.240927 

Log likelihood 12072.81     Hannan-Quinn criter. -5.254563 

Durbin-Watson stat 1.999448    
     
     Inverted AR Roots       .97      .77-.63i    .77+.63i -.04+.22i 

 -.04-.22i     -.79-.61i   -.79+.61i      -.99 

Inverted MA Roots       .96      .76+.63i    .76-.63i -.79+.61i 

 -.79-.61i          -.97  
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Corn 

 

Custom ARIMA Model 

 

Dependent Variable: R   

Method: ARMA Maximum Likelihood (OPG - BHHH)  

Sample: 2 9402    

Included observations: 9401   

Convergence achieved after 59 iterations  

Coefficient covariance computed using outer product of gradients 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     AR(1) -0.982938 0.065864 -14.92378 0.0000 

AR(2) 0.934830 0.128644 7.266797 0.0000 

AR(3) 0.941055 0.065908 14.27841 0.0000 

MA(1) 0.988316 0.067382 14.66739 0.0000 

MA(2) -0.932700 0.132023 -7.064695 0.0000 

MA(3) -0.942145 0.067945 -13.86638 0.0000 

SIGMASQ 0.000297 1.25E-06 237.4122 0.0000 
     
     R-squared 0.001742     Mean dependent var 1.25E-05 

Adjusted R-squared 0.001105     S.D. dependent var 0.017261 

S.E. of regression 0.017251     Akaike info criterion -5.281101 

Sum squared resid 2.795742     Schwarz criterion -5.275779 

Log likelihood 24830.82     Hannan-Quinn criter. -5.279294 

Durbin-Watson stat 2.017840    
     
     Inverted AR Roots       .97     -.98-.11i   -.98+.11i 

Inverted MA Roots       .97     -.98+.10i   -.98-.10i 
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Eviews add in ARIMA Model 

 

Dependent Variable: D(CORN)   

Method: ARMA Maximum Likelihood (OPG - BHHH)  

Sample: 2 9402    

Included observations: 9401   

Convergence achieved after 80 iterations  

Coefficient covariance computed using outer product of gradients 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     AR(1) -0.076443 1.150977 -0.066416 0.9470 

AR(2) -0.332733 0.696112 -0.477988 0.6327 

AR(3) -0.459254 0.806660 -0.569327 0.5691 

AR(4) 0.480026 0.969310 0.495225 0.6205 

MA(1) 0.071693 1.151027 0.062286 0.9503 

MA(2) 0.323800 0.687480 0.470995 0.6377 

MA(3) 0.469028 0.794538 0.590315 0.5550 

MA(4) -0.497106 0.975204 -0.509745 0.6102 

MA(5) 0.001404 0.019581 0.071708 0.9428 

SIGMASQ 0.000298 1.42E-06 209.8699 0.0000 
     
     R-squared 0.001021     Mean dependent var 1.25E-05 

Adjusted R-squared 0.000064     S.D. dependent var 0.017261 

S.E. of regression 0.017260     Akaike info criterion -5.279746 

Sum squared resid 2.797762     Schwarz criterion -5.272142 

Log likelihood 24827.45     Hannan-Quinn criter. -5.277164 

Durbin-Watson stat 1.999994    
     
     Inverted AR Roots       .56      .13-.96i    .13+.96i      -.91 

Inverted MA Roots       .57      .14-.96i    .14+.96i       .00 

      -.92   
     
     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



333 
 

Cotton 

 

Custom ARIMA Model 

 

Dependent Variable: R   

Method: ARMA Maximum Likelihood (OPG - BHHH)  

Sample: 2 4702    

Included observations: 4701   

Convergence achieved after 26 iterations  

Coefficient covariance computed using outer product of gradients 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     AR(1) -1.245856 0.191350 -6.510890 0.0000 

AR(2) -0.612264 0.167140 -3.663187 0.0003 

MA(1) 1.280113 0.186644 6.858585 0.0000 

MA(2) 0.642746 0.160742 3.998625 0.0001 

SIGMASQ 0.000338 4.20E-06 80.49391 0.0000 
     
     R-squared 0.001900     Mean dependent var 0.000115 

Adjusted R-squared 0.001050     S.D. dependent var 0.018397 

S.E. of regression 0.018388     Akaike info criterion -5.153194 

Sum squared resid 1.587771     Schwarz criterion -5.146328 

Log likelihood 12117.58     Hannan-Quinn criter. -5.150780 

Durbin-Watson stat 2.001590    
     
     Inverted AR Roots -.62-.47i     -.62+.47i  

Inverted MA Roots -.64-.48i     -.64+.48i  
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Eviews add in ARIMA Model 

 

Dependent Variable: D(CT)   

Method: ARMA Maximum Likelihood (OPG - BHHH)  

Sample: 2 4702    

Included observations: 4701   

Convergence achieved after 152 iterations  

Coefficient covariance computed using outer product of gradients 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     AR(1) -1.296215 0.213838 -6.061681 0.0000 

AR(2) -0.689740 0.188408 -3.660882 0.0003 

AR(3) -0.803418 0.060965 -13.17833 0.0000 

AR(4) -0.559136 0.153074 -3.652718 0.0003 

AR(5) -0.996384 0.059441 -16.76265 0.0000 

AR(6) -1.305945 0.189505 -6.891350 0.0000 

AR(7) -0.446957 0.204939 -2.180930 0.0292 

MA(1) 1.330169 0.208753 6.371979 0.0000 

MA(2) 0.720347 0.183903 3.916988 0.0001 

MA(3) 0.797768 0.058082 13.73520 0.0000 

MA(4) 0.574071 0.146483 3.919033 0.0001 

MA(5) 1.014527 0.056252 18.03534 0.0000 

MA(6) 1.349135 0.186331 7.240534 0.0000 

MA(7) 0.492669 0.200540 2.456709 0.0141 

SIGMASQ 0.000336 4.37E-06 77.00122 0.0000 
     
     R-squared 0.006707     Mean dependent var 0.000115 

Adjusted R-squared 0.003739     S.D. dependent var 0.018397 

S.E. of regression 0.018363     Akaike info criterion -5.153659 

Sum squared resid 1.580124     Schwarz criterion -5.133061 

Log likelihood 12128.68     Hannan-Quinn criter. -5.146417 

Durbin-Watson stat 2.000644    
     
     Inverted AR Roots  .73-.67i      .73+.67i   -.18+.98i -.18-.98i 

      -.54          -.89        -.96 

Inverted MA Roots  .73+.67i      .73-.67i   -.19-.98i -.19+.98i 

      -.63          -.81        -.98 
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Crude oil 

 

Custom ARIMA Model 

 

Dependent Variable: D(LOG(CLOSE_PRICE_CL))  

Method: ARMA Maximum Likelihood (OPG - BHHH)  

Sample: 3/23/2000 8/02/2018   

Included observations: 4584   

Convergence achieved after 18 iterations  

Coefficient covariance computed using outer product of gradients 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     AR(1) -0.042625 0.009907 -4.302364 0.0000 

MA(6) -0.021905 0.010473 -2.091456 0.0365 

SIGMASQ 0.000564 6.77E-06 83.21545 0.0000 
     
     R-squared 0.002214     Mean dependent var 0.000201 

Adjusted R-squared 0.001778     S.D. dependent var 0.023767 

S.E. of regression 0.023746     Akaike info criterion -4.642127 

Sum squared resid 2.583158     Schwarz criterion -4.637919 

Log likelihood 10642.76     Hannan-Quinn criter. -4.640646 

Durbin-Watson stat 2.001009    
     
     Inverted AR Roots      -.04   

Inverted MA Roots       .53      .26+.46i    .26-.46i -.26-.46i 

 -.26+.46i          -.53  
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Eviews add in ARIMA Model 

 

Dependent Variable: D(LOG(CLOSE_PRICE_CL))  

Method: ARMA Maximum Likelihood (OPG - BHHH)  

Sample: 3/23/2000 8/02/2018   

Included observations: 4584   

Convergence achieved after 53 iterations  

Coefficient covariance computed using outer product of gradients 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     AR(1) 1.086315 0.142545 7.620868 0.0000 

AR(2) -0.695018 0.115540 -6.015370 0.0000 

AR(3) 0.946607 0.065812 14.38341 0.0000 

AR(4) -1.184631 0.116589 -10.16078 0.0000 

AR(5) 0.307017 0.137607 2.231115 0.0257 

MA(1) -1.130758 0.138120 -8.186808 0.0000 

MA(2) 0.733009 0.110169 6.653469 0.0000 

MA(3) -0.963715 0.062362 -15.45360 0.0000 

MA(4) 1.222901 0.111770 10.94125 0.0000 

MA(5) -0.371465 0.132010 -2.813923 0.0049 

SIGMASQ 0.000560 7.13E-06 78.52128 0.0000 
     
     R-squared 0.008408     Mean dependent var 0.000201 

Adjusted R-squared 0.006240     S.D. dependent var 0.023767 

S.E. of regression 0.023693     Akaike info criterion -4.644795 

Sum squared resid 2.567121     Schwarz criterion -4.629364 

Log likelihood 10656.87     Hannan-Quinn criter. -4.639363 

Durbin-Watson stat 1.999700    
     
     Inverted AR Roots  .82+.50i      .82-.50i         .33 -.45-.89i 

 -.45+.89i   

Inverted MA Roots  .81+.50i      .81-.50i         .41 -.45+.89i 

 -.45-.89i   
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Feeder cattle 

 

Custom ARIMA Model 

 

Dependent Variable: R   

Method: ARMA Maximum Likelihood (OPG - BHHH)  

Sample: 1/31/2000 6/25/2018   

Included observations: 4597   

Convergence achieved after 35 iterations  

Coefficient covariance computed using outer product of gradients 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     AR(2) 1.095696 0.072548 15.10311 0.0000 

AR(3) -0.170232 0.055266 -3.080225 0.0021 

AR(6) -0.442618 0.068003 -6.508805 0.0000 

MA(2) -1.088647 0.076091 -14.30716 0.0000 

MA(3) 0.162028 0.058051 2.791144 0.0053 

MA(6) 0.424542 0.072019 5.894901 0.0000 

SIGMASQ 9.50E-05 8.06E-07 117.8104 0.0000 
     
     R-squared 0.001776     Mean dependent var 0.000118 

Adjusted R-squared 0.000471     S.D. dependent var 0.009757 

S.E. of regression 0.009754     Akaike info criterion -6.420655 

Sum squared resid 0.436737     Schwarz criterion -6.410859 

Log likelihood 14764.88     Hannan-Quinn criter. -6.417207 

Durbin-Watson stat 1.842217    
     
     Inverted AR Roots  .92-.29i      .92+.29i    .02+.72i  .02-.72i 

 -.94-.16i     -.94+.16i  

Inverted MA Roots  .91-.29i      .91+.29i    .02+.72i  .02-.72i 

 -.94-.16i     -.94+.16i  
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Eviews add in ARIMA Model 

 

Dependent Variable: D(FC)   

Method: ARMA Maximum Likelihood (OPG - BHHH)  

Sample: 1/31/2000 6/25/2018   

Included observations: 4597   

Convergence achieved after 7 iterations  

Coefficient covariance computed using outer product of gradients 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     AR(1) 0.079110 0.011365 6.960897 0.0000 

SIGMASQ 9.46E-05 7.87E-07 120.2238 0.0000 
     
     R-squared 0.006108     Mean dependent var 0.000118 

Adjusted R-squared 0.005891     S.D. dependent var 0.009757 

S.E. of regression 0.009728     Akaike info criterion -6.427184 

Sum squared resid 0.434842     Schwarz criterion -6.424385 

Log likelihood 14774.88     Hannan-Quinn criter. -6.426198 

Durbin-Watson stat 1.999953    
     
     Inverted AR Roots       .08   
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Gasoline 

 

Custom ARIMA Model 

 

Dependent Variable: R   

Method: ARMA Maximum Likelihood (OPG - BHHH)  

Sample: 10/05/2005 4/01/2019   

Included observations: 3615   

Convergence achieved after 40 iterations  

Coefficient covariance computed using outer product of gradients 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     AR(6) -0.027863 0.014178 -1.965278 0.0495 

MA(1) -0.108280 0.008339 -12.98548 0.0000 

SIGMASQ 0.000617 6.97E-06 88.50976 0.0000 
     
     R-squared 0.012904     Mean dependent var 7.92E-06 

Adjusted R-squared 0.012358     S.D. dependent var 0.025007 

S.E. of regression 0.024852     Akaike info criterion -4.550926 

Sum squared resid 2.230844     Schwarz criterion -4.545786 

Log likelihood 8228.798     Hannan-Quinn criter. -4.549095 

Durbin-Watson stat 2.002104    
     
     Inverted AR Roots  .48-.28i      .48+.28i    .00+.55i -.00-.55i 

 -.48-.28i     -.48+.28i  

Inverted MA Roots       .11   
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Eviews add in ARIMA Model 

 

Dependent Variable: D(GPR)   

Method: ARMA Maximum Likelihood (OPG - BHHH)  

Sample: 10/05/2005 4/01/2019   

Included observations: 3615   

Convergence achieved after 82 iterations  

Coefficient covariance computed using outer product of gradients 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     AR(1) -0.460563 0.072245 -6.375010 0.0000 

AR(2) 0.658975 0.049789 13.23527 0.0000 

AR(3) 0.811127 0.042340 19.15740 0.0000 

AR(4) -0.367191 0.054559 -6.730109 0.0000 

AR(5) -0.893571 0.065888 -13.56199 0.0000 

AR(6) -0.116836 0.011269 -10.36809 0.0000 

MA(1) 0.349122 0.074023 4.716409 0.0000 

MA(2) -0.710660 0.050444 -14.08799 0.0000 

MA(3) -0.738243 0.042214 -17.48798 0.0000 

MA(4) 0.444094 0.055643 7.981122 0.0000 

MA(5) 0.852919 0.067330 12.66780 0.0000 

SIGMASQ 0.000615 7.52E-06 81.74082 0.0000 
     
     R-squared 0.016916     Mean dependent var 7.92E-06 

Adjusted R-squared 0.013915     S.D. dependent var 0.025007 

S.E. of regression 0.024832     Akaike info criterion -4.549983 

Sum squared resid 2.221777     Schwarz criterion -4.529426 

Log likelihood 8236.094     Hannan-Quinn criter. -4.542659 

Durbin-Watson stat 1.995257    
     
     Inverted AR Roots  .89+.43i      .89-.43i        -.14 -.60-.77i 

 -.60+.77i          -.88  

Inverted MA Roots  .89-.43i      .89+.43i   -.61-.78i -.61+.78i 

      -.91   
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Gold 

 

Custom ARIMA Model 

 

Dependent Variable: R   

Method: ARMA Maximum Likelihood (OPG - BHHH)  

Sample: 2/29/2000 8/02/2018   

Included observations: 4596   

Convergence achieved after 61 iterations  

Coefficient covariance computed using outer product of gradients 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     AR(1) 0.669256 0.027239 24.56946 0.0000 

AR(2) -0.938323 0.026837 -34.96441 0.0000 

MA(1) -0.688008 0.027175 -25.31805 0.0000 

MA(2) 0.940809 0.026959 34.89791 0.0000 

SIGMASQ 0.000125 1.37E-06 91.50578 0.0000 
     
     R-squared 0.002336     Mean dependent var 0.000309 

Adjusted R-squared 0.001467     S.D. dependent var 0.011207 

S.E. of regression 0.011198     Akaike info criterion -6.144983 

Sum squared resid 0.575737     Schwarz criterion -6.137984 

Log likelihood 14126.17     Hannan-Quinn criter. -6.142519 

Durbin-Watson stat 1.977878    
     
     Inverted AR Roots  .33-.91i      .33+.91i  

Inverted MA Roots  .34-.91i      .34+.91i  
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Eviews add in ARIMA Model 

 

Dependent Variable: D(GC)   

Method: ARMA Maximum Likelihood (OPG - BHHH)  

Sample: 2/29/2000 8/02/2018   

Included observations: 4596   

Convergence achieved after 122 iterations  

Coefficient covariance computed using outer product of gradients 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     AR(1) 0.591698 0.077976 7.588159 0.0000 

AR(2) -0.604469 0.061951 -9.757216 0.0000 

AR(3) -0.305567 0.040971 -7.458156 0.0000 

AR(4) 0.217256 0.049574 4.382496 0.0000 

AR(5) 0.709158 0.041830 16.95323 0.0000 

AR(6) -0.677565 0.064059 -10.57728 0.0000 

AR(7) 0.783101 0.076291 10.26467 0.0000 

MA(1) -0.603176 0.073509 -8.205456 0.0000 

MA(2) 0.609942 0.059270 10.29098 0.0000 

MA(3) 0.306757 0.039033 7.858915 0.0000 

MA(4) -0.226142 0.046434 -4.870168 0.0000 

MA(5) -0.707023 0.039252 -18.01242 0.0000 

MA(6) 0.667004 0.059696 11.17341 0.0000 

MA(7) -0.804333 0.070246 -11.45021 0.0000 

SIGMASQ 0.000124 1.44E-06 86.68694 0.0000 
     
     R-squared 0.008681     Mean dependent var 0.000309 

Adjusted R-squared 0.005652     S.D. dependent var 0.011207 

S.E. of regression 0.011175     Akaike info criterion -6.146918 

Sum squared resid 0.572075     Schwarz criterion -6.125923 

Log likelihood 14140.62     Hannan-Quinn criter. -6.139528 

Durbin-Watson stat 1.992783    
     
     Inverted AR Roots       .95      .45-.81i    .45+.81i  .23+.96i 

  .23-.96i     -.85-.52i   -.85+.52i 

Inverted MA Roots       .96      .45-.82i    .45+.82i  .22+.96i 

  .22-.96i     -.85+.52i   -.85-.52i 
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Heating oil 

 

Custom ARIMA Model 

 

Dependent Variable: R   

Method: ARMA Maximum Likelihood (OPG - BHHH)  

Sample: 3/02/2000 8/07/2018   

Included observations: 4602   

Convergence achieved after 157 iterations  

Coefficient covariance computed using outer product of gradients 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     AR(1) -1.102254 0.047819 -23.05074 0.0000 

AR(2) -0.894101 0.052866 -16.91274 0.0000 

AR(3) -1.011323 0.050625 -19.97686 0.0000 

AR(4) -0.880910 0.038134 -23.10009 0.0000 

MA(1) 1.067583 0.048697 21.92320 0.0000 

MA(2) 0.855140 0.051856 16.49076 0.0000 

MA(3) 0.982563 0.049535 19.83564 0.0000 

MA(4) 0.875014 0.039755 22.01020 0.0000 

SIGMASQ 0.000505 6.18E-06 81.72598 0.0000 
     
     R-squared 0.006107     Mean dependent var 0.000218 

Adjusted R-squared 0.004376     S.D. dependent var 0.022548 

S.E. of regression 0.022499     Akaike info criterion -4.748713 

Sum squared resid 2.325014     Schwarz criterion -4.736130 

Log likelihood 10935.79     Hannan-Quinn criter. -4.744284 

Durbin-Watson stat 2.028210    
     
     Inverted AR Roots  .29+.92i      .29-.92i   -.84-.49i -.84+.49i 

Inverted MA Roots  .30+.91i      .30-.91i   -.84-.49i -.84+.49i 
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Eviews add in ARIMA Model 

 

Dependent Variable: D(HO)   

Method: ARMA Maximum Likelihood (OPG - BHHH)  

Sample: 3/02/2000 8/07/2018   

Included observations: 4602   

Convergence achieved after 92 iterations  

Coefficient covariance computed using outer product of gradients 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     AR(1) 0.739590 0.053475 13.83045 0.0000 

AR(2) -0.709251 0.051405 -13.79726 0.0000 

AR(3) 0.419862 0.045466 9.234691 0.0000 

AR(4) 0.308138 0.045131 6.827650 0.0000 

AR(5) 0.431548 0.041344 10.43800 0.0000 

AR(6) -0.751634 0.043888 -17.12630 0.0000 

AR(7) 0.687585 0.051995 13.22405 0.0000 

AR(8) -0.830650 0.041493 -20.01904 0.0000 

MA(1) -0.781010 0.053033 -14.72680 0.0000 

MA(2) 0.732842 0.052218 14.03433 0.0000 

MA(3) -0.442671 0.045411 -9.748192 0.0000 

MA(4) -0.285736 0.046014 -6.209793 0.0000 

MA(5) -0.440010 0.042068 -10.45953 0.0000 

MA(6) 0.769188 0.043929 17.50973 0.0000 

MA(7) -0.727294 0.051919 -14.00827 0.0000 

MA(8) 0.840279 0.041043 20.47335 0.0000 

SIGMASQ 0.000504 6.28E-06 80.23091 0.0000 
     
     R-squared 0.008951     Mean dependent var 0.000218 

Adjusted R-squared 0.005493     S.D. dependent var 0.022548 

S.E. of regression 0.022486     Akaike info criterion -4.748074 

Sum squared resid 2.318361     Schwarz criterion -4.724306 

Log likelihood 10942.32     Hannan-Quinn criter. -4.739708 

Durbin-Watson stat 2.017231    
     
     Inverted AR Roots  .94-.26i      .94+.26i    .29+.92i  .29-.92i 

 -.01-.98i     -.01+.98i   -.85-.51i -.85+.51i 

Inverted MA Roots  .95+.26i      .95-.26i    .30-.91i  .30+.91i 

 -.01-.98i     -.01+.98i   -.84+.51i -.84-.51i 
     
     

 

 

 

 

 

 

 

 

 

 



345 
 

Lead 

 

Custom ARIMA Model 

 

Dependent Variable: R   

Method: ARMA Maximum Likelihood (OPG - BHHH)  

Sample: 7/08/2008 5/20/2019   

Included observations: 2650   

Convergence achieved after 131 iterations  

Coefficient covariance computed using outer product of gradients 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     AR(1) -0.512764 0.032530 -15.76295 0.0000 

AR(2) -0.542169 0.021345 -25.40031 0.0000 

AR(3) -0.590843 0.021651 -27.28922 0.0000 

AR(4) -0.880207 0.032092 -27.42742 0.0000 

MA(1) 0.542132 0.029158 18.59288 0.0000 

MA(2) 0.529925 0.020372 26.01273 0.0000 

MA(3) 0.570005 0.020509 27.79359 0.0000 

MA(4) 0.904028 0.027796 32.52350 0.0000 

SIGMASQ 0.000448 6.69E-06 66.87955 0.0000 
     
     R-squared 0.012246     Mean dependent var 4.21E-05 

Adjusted R-squared 0.009254     S.D. dependent var 0.021291 

S.E. of regression 0.021193     Akaike info criterion -4.866792 

Sum squared resid 1.186143     Schwarz criterion -4.846814 

Log likelihood 6457.499     Hannan-Quinn criter. -4.859561 

Durbin-Watson stat 1.984834    
     
     Inverted AR Roots  .46+.88i      .46-.88i   -.72-.61i -.72+.61i 

Inverted MA Roots  .47-.87i      .47+.87i   -.74+.62i -.74-.62i 
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Eviews add in ARIMA Model 

 

Dependent Variable: D(L)   

Method: ARMA Maximum Likelihood (OPG - BHHH)  

Sample: 7/08/2008 5/20/2019   

Included observations: 2650   

Convergence achieved after 68 iterations  

Coefficient covariance computed using outer product of gradients 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     AR(1) -0.127904 0.055273 -2.314031 0.0207 

AR(2) -0.365711 0.055748 -6.560099 0.0000 

AR(3) 0.136022 0.068648 1.981457 0.0476 

AR(4) 0.109095 0.056504 1.930752 0.0536 

AR(5) 0.802105 0.052695 15.22155 0.0000 

MA(1) 0.154637 0.049503 3.123767 0.0018 

MA(2) 0.348239 0.050479 6.898658 0.0000 

MA(3) -0.157546 0.062227 -2.531804 0.0114 

MA(4) -0.117764 0.051398 -2.291214 0.0220 

MA(5) -0.857342 0.046836 -18.30516 0.0000 

SIGMASQ 0.000447 6.66E-06 67.07890 0.0000 
     
     R-squared 0.013972     Mean dependent var 4.21E-05 

Adjusted R-squared 0.010235     S.D. dependent var 0.021291 

S.E. of regression 0.021182     Akaike info criterion -4.866640 

Sum squared resid 1.184070     Schwarz criterion -4.842223 

Log likelihood 6459.298     Hannan-Quinn criter. -4.857801 

Durbin-Watson stat 1.980093    
     
     Inverted AR Roots       .92      .19+.98i    .19-.98i -.72-.61i 

 -.72+.61i   

Inverted MA Roots       .93      .19+.98i    .19-.98i -.73-.62i 

 -.73+.62i   
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Lean hogs 

 

Custom ARIMA Model 

 

Dependent Variable: R   

Method: ARMA Maximum Likelihood (OPG - BHHH)  

Sample: 7/08/2008 5/20/2019   

Included observations: 2650   

Convergence achieved after 45 iterations  

Coefficient covariance computed using outer product of gradients 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     AR(1) -0.507425 0.055248 -9.184430 0.0000 

AR(2) 0.433763 0.069454 6.245340 0.0000 

AR(3) 0.809011 0.053163 15.21750 0.0000 

MA(1) 0.529919 0.049458 10.71462 0.0000 

MA(2) -0.451480 0.063300 -7.132358 0.0000 

MA(3) -0.859390 0.047110 -18.24230 0.0000 

SIGMASQ 0.000449 6.60E-06 68.09752 0.0000 
     
     R-squared 0.008303     Mean dependent var 4.21E-05 

Adjusted R-squared 0.006052     S.D. dependent var 0.021291 

S.E. of regression 0.021227     Akaike info criterion -4.864426 

Sum squared resid 1.190877     Schwarz criterion -4.848888 

Log likelihood 6452.365     Hannan-Quinn criter. -4.858802 

Durbin-Watson stat 1.969411    
     
     Inverted AR Roots       .92     -.71-.61i   -.71+.61i 

Inverted MA Roots       .94     -.73-.62i   -.73+.62i 
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Eviews add in ARIMA Model 

 

Dependent Variable: D(LH)   

Method: ARMA Maximum Likelihood (OPG - BHHH)  

Date: 09/03/20   Time: 20:36   

Sample: 12/28/1979 6/27/2016   

Included observations: 9229   

Convergence achieved after 60 iterations  

Coefficient covariance computed using outer product of gradients 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     AR(1) 1.400647 0.085007 16.47680 0.0000 

AR(2) -0.536026 0.078848 -6.798222 0.0000 

AR(3) -0.437748 0.073479 -5.957458 0.0000 

AR(4) 1.332991 0.069664 19.13464 0.0000 

AR(5) -0.764171 0.077036 -9.919614 0.0000 

MA(1) -1.411699 0.088678 -15.91940 0.0000 

MA(2) 0.561652 0.085304 6.584130 0.0000 

MA(3) 0.413810 0.080328 5.151508 0.0000 

MA(4) -1.309360 0.075192 -17.41364 0.0000 

MA(5) 0.746358 0.080846 9.231799 0.0000 

SIGMASQ 0.000455 1.93E-06 235.5879 0.0000 
     
     R-squared 0.006540     Mean dependent var 7.43E-05 

Adjusted R-squared 0.005462     S.D. dependent var 0.021392 

S.E. of regression 0.021333     Akaike info criterion -4.855798 

Sum squared resid 4.195233     Schwarz criterion -4.847300 

Log likelihood 22418.08     Hannan-Quinn criter. -4.852910 

Durbin-Watson stat 2.001530    
     
     Inverted AR Roots       .99           .82    .27+.96i  .27-.96i 

      -.96   

Inverted MA Roots       1.00           .80    .28+.95i  .28-.95i 

      -.94   
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Live Cattle 

 

Custom ARIMA Model 

 

Dependent Variable: R   

Method: ARMA Maximum Likelihood (OPG - BHHH)  

Sample: 2 9220    

Included observations: 9219   

Convergence achieved after 52 iterations  

Coefficient covariance computed using outer product of gradients 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     AR(1) 0.864602 0.045411 19.03955 0.0000 

AR(2) -0.161980 0.045279 -3.577401 0.0003 

AR(3) 0.910391 0.042078 21.63596 0.0000 

AR(4) -0.855021 0.041569 -20.56875 0.0000 

MA(1) -0.834946 0.047562 -17.55495 0.0000 

MA(2) 0.145748 0.043389 3.359104 0.0008 

MA(3) -0.911890 0.040166 -22.70315 0.0000 

MA(4) 0.830050 0.044388 18.70003 0.0000 

SIGMASQ 0.000119 7.51E-07 158.4148 0.0000 
     
     R-squared 0.005024     Mean dependent var 6.12E-05 

Adjusted R-squared 0.004160     S.D. dependent var 0.010937 

S.E. of regression 0.010915     Akaike info criterion -6.196453 

Sum squared resid 1.097169     Schwarz criterion -6.189493 

Log likelihood 28571.55     Hannan-Quinn criter. -6.194088 

Durbin-Watson stat 2.007187    
     
     Inverted AR Roots  .90-.27i      .90+.27i   -.47+.86i -.47-.86i 

Inverted MA Roots  .89+.26i      .89-.26i   -.47+.86i -.47-.86i 
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Eviews add in ARIMA Model 

 

Dependent Variable: D(LC)   

Method: ARMA Maximum Likelihood (OPG - BHHH)  

Sample: 2 9220    

Included observations: 9219   

Convergence achieved after 201 iterations  

Coefficient covariance computed using outer product of gradients 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     AR(1) 0.447529 0.051580 8.676389 0.0000 

AR(2) 0.739823 0.028499 25.95982 0.0000 

AR(3) -1.012584 0.043796 -23.12021 0.0000 

AR(4) 0.622827 0.041218 15.11067 0.0000 

AR(5) 0.604058 0.024025 25.14246 0.0000 

AR(6) -0.846278 0.045364 -18.65520 0.0000 

MA(1) -0.420336 0.052253 -8.044319 0.0000 

MA(2) -0.743247 0.033472 -22.20513 0.0000 

MA(3) 0.996690 0.044341 22.47796 0.0000 

MA(4) -0.599643 0.042134 -14.23196 0.0000 

MA(5) -0.635263 0.025718 -24.70080 0.0000 

MA(6) 0.808267 0.048926 16.52018 0.0000 

MA(7) 0.014161 0.011681 1.212396 0.2254 

SIGMASQ 0.000119 7.62E-07 155.7902 0.0000 
     
     R-squared 0.007782     Mean dependent var 6.12E-05 

Adjusted R-squared 0.006381     S.D. dependent var 0.010937 

S.E. of regression 0.010902     Akaike info criterion -6.198049 

Sum squared resid 1.094127     Schwarz criterion -6.187223 

Log likelihood 28583.91     Hannan-Quinn criter. -6.194370 

Durbin-Watson stat 1.999776    
     
     Inverted AR Roots  .90+.27i      .90-.27i    .30-.93i  .30+.93i 

 -.97-.23i     -.97+.23i  

Inverted MA Roots  .89+.25i      .89-.25i    .30-.93i  .30+.93i 

      -.02     -.97+.23i   -.97-.23i 
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Lumber  

 

Custom ARIMA Model 

 

Dependent Variable: R   

Method: ARMA Maximum Likelihood (OPG - BHHH)  

Sample: 12/28/1979 6/30/2016   

Included observations: 9204   

Convergence achieved after 9 iterations  

Coefficient covariance computed using outer product of gradients 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     AR(2) -0.026396 0.009053 -2.915653 0.0036 

MA(9) 0.018995 0.009265 2.050212 0.0404 

SIGMASQ 0.000466 2.97E-06 156.7903 0.0000 
     
     R-squared 0.001060     Mean dependent var 3.80E-05 

Adjusted R-squared 0.000843     S.D. dependent var 0.021597 

S.E. of regression 0.021588     Akaike info criterion -4.833069 

Sum squared resid 4.287891     Schwarz criterion -4.830746 

Log likelihood 22244.78     Hannan-Quinn criter. -4.832279 

Durbin-Watson stat 1.907483    
     
     Inverted AR Roots -.00+.16i     -.00-.16i  

Inverted MA Roots  .60+.22i      .60-.22i    .32-.56i  .32+.56i 

 -.11-.63i     -.11+.63i   -.49-.41i -.49+.41i 

      -.64   
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Eviews add in ARIMA Model 

 

Dependent Variable: D(LB)   

Method: ARMA Maximum Likelihood (OPG - BHHH)  

Sample: 12/28/1979 6/30/2016   

Included observations: 9204   

Convergence achieved after 95 iterations  

Coefficient covariance computed using outer product of gradients 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     AR(1) 0.131247 0.406202 0.323109 0.7466 

AR(2) 0.398074 0.302437 1.316221 0.1881 

AR(3) -0.036227 0.304669 -0.118905 0.9054 

AR(4) -0.427225 0.278638 -1.533265 0.1252 

AR(5) -0.097815 0.281185 -0.347868 0.7279 

AR(6) 0.408671 0.296350 1.379015 0.1679 

AR(7) 0.259976 0.264129 0.984276 0.3250 

AR(8) -0.243437 0.326376 -0.745879 0.4558 

AR(9) 0.595491 0.270688 2.199922 0.0278 

AR(10) -0.050608 0.208247 -0.243019 0.8080 

MA(1) -0.086040 0.406309 -0.211761 0.8323 

MA(2) -0.431771 0.314542 -1.372698 0.1699 

MA(3) 0.008752 0.315129 0.027772 0.9778 

MA(4) 0.440837 0.297851 1.480059 0.1389 

MA(5) 0.124004 0.288363 0.430029 0.6672 

MA(6) -0.418794 0.309269 -1.354145 0.1757 

MA(7) -0.298584 0.268817 -1.110735 0.2667 

MA(8) 0.240471 0.340714 0.705788 0.4803 

MA(9) -0.559797 0.282233 -1.983458 0.0473 

MA(10) 0.005279 0.213421 0.024733 0.9803 

SIGMASQ 0.000462 3.48E-06 132.9052 0.0000 
     
     R-squared 0.008663     Mean dependent var 3.80E-05 

Adjusted R-squared 0.006503     S.D. dependent var 0.021597 

S.E. of regression 0.021526     Akaike info criterion -4.836741 

Sum squared resid 4.255257     Schwarz criterion -4.820480 

Log likelihood 22279.68     Hannan-Quinn criter. -4.831214 

Durbin-Watson stat 1.999979    
     
     Inverted AR Roots       .99      .74+.66i    .74-.66i  .23-.74i 

  .23+.74i           .09   -.51-.86i -.51+.86i 

 -.94+.34i     -.94-.34i  

Inverted MA Roots       1.00      .74+.66i    .74-.66i  .24+.72i 

  .24-.72i           .01   -.51-.85i -.51+.85i 

 -.94+.34i     -.94-.34i  
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Natural gas 

 

Custom ARIMA Model 

 

Dependent Variable: R   

Method: ARMA Maximum Likelihood (OPG - BHHH)  

Sample: 2/29/2000 8/01/2018   

Included observations: 4601   

Convergence achieved after 15 iterations  

Coefficient covariance computed using outer product of gradients 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     AR(1) -0.536587 0.155579 -3.448980 0.0006 

MA(1) 0.489751 0.160891 3.043995 0.0023 

SIGMASQ 0.001137 1.22E-05 93.50114 0.0000 
     
     R-squared 0.003073     Mean dependent var 5.75E-06 

Adjusted R-squared 0.002639     S.D. dependent var 0.033781 

S.E. of regression 0.033736     Akaike info criterion -3.939854 

Sum squared resid 5.233045     Schwarz criterion -3.935658 

Log likelihood 9066.633     Hannan-Quinn criter. -3.938377 

Durbin-Watson stat 2.002800    
     
     Inverted AR Roots      -.54   

Inverted MA Roots      -.49   
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Eviews add in ARIMA Model 

 

Dependent Variable: D(NG)   

Method: ARMA Maximum Likelihood (OPG - BHHH)  

Sample: 2/29/2000 8/01/2018   

Included observations: 4601   

Convergence achieved after 66 iterations  

Coefficient covariance computed using outer product of gradients 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     AR(1) -0.424171 0.392100 -1.081794 0.2794 

AR(2) 0.859066 0.262015 3.278689 0.0011 

AR(3) 0.777361 0.277241 2.803918 0.0051 

AR(4) -0.226646 0.368219 -0.615520 0.5382 

MA(1) 0.378652 0.389636 0.971811 0.3312 

MA(2) -0.865500 0.250699 -3.452351 0.0006 

MA(3) -0.759442 0.273437 -2.777393 0.0055 

MA(4) 0.251766 0.363342 0.692919 0.4884 

SIGMASQ 0.001131 1.23E-05 92.34086 0.0000 
     
     R-squared 0.008454     Mean dependent var 5.75E-06 

Adjusted R-squared 0.006726     S.D. dependent var 0.033781 

S.E. of regression 0.033667     Akaike info criterion -3.942592 

Sum squared resid 5.204799     Schwarz criterion -3.930006 

Log likelihood 9078.932     Hannan-Quinn criter. -3.938162 

Durbin-Watson stat 2.000299    
     
     Inverted AR Roots       .99           .24   -.83-.51i -.83+.51i 

Inverted MA Roots       1.00           .27   -.82-.52i -.82+.52i 
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Nickel 

 

Custom ARIMA Model 

 

Dependent Variable: R   

Method: ARMA Maximum Likelihood (OPG - BHHH)  

Sample: 7/08/2008 5/20/2019   

Included observations: 2650   

Convergence achieved after 34 iterations  

Coefficient covariance computed using outer product of gradients 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     AR(1) 0.704073 0.166654 4.224764 0.0000 

MA(1) -0.725218 0.162819 -4.454134 0.0000 

SIGMASQ 0.000510 6.99E-06 72.89820 0.0000 
     
     R-squared 0.000803     Mean dependent var -0.000208 

Adjusted R-squared 0.000048     S.D. dependent var 0.022586 

S.E. of regression 0.022586     Akaike info criterion -4.741885 

Sum squared resid 1.350248     Schwarz criterion -4.735226 

Log likelihood 6285.997     Hannan-Quinn criter. -4.739474 

Durbin-Watson stat 1.987466    
     
     Inverted AR Roots       .70   

Inverted MA Roots       .73   
     
     

 

Eviews add in ARIMA Model 

 

Dependent Variable: D(N)   

Method: ARMA Maximum Likelihood (OPG - BHHH)  

Date: 09/04/20   Time: 23:18   

Sample: 7/08/2008 5/20/2019   

Included observations: 2650   

Convergence achieved after 36 iterations  

Coefficient covariance computed using outer product of gradients 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     AR(1) -0.031364 0.409520 -0.076588 0.9390 

AR(2) 0.562778 0.222670 2.527411 0.0115 

MA(1) 0.003073 0.413834 0.007425 0.9941 

MA(2) -0.566852 0.228034 -2.485817 0.0130 

SIGMASQ 0.000509 7.27E-06 70.04814 0.0000 
     
     R-squared 0.001093     Mean dependent var -0.000208 

Adjusted R-squared -0.000418     S.D. dependent var 0.022586 

S.E. of regression 0.022591     Akaike info criterion -4.740666 

Sum squared resid 1.349856     Schwarz criterion -4.729567 

Log likelihood 6286.382     Hannan-Quinn criter. -4.736648 

Durbin-Watson stat 1.972120    
     
     Inverted AR Roots       .73          -.77  

Inverted MA Roots       .75          -.75  
     
     



356 
 

Oats 

 

Custom ARIMA Model 

 

Dependent Variable: R   

Method: ARMA Maximum Likelihood (OPG - BHHH)  

Sample: 3/16/2000 7/02/2018   

Included observations: 4573   

Convergence achieved after 11 iterations  

Coefficient covariance computed using outer product of gradients 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     AR(1) 0.072829 0.011032 6.601918 0.0000 

MA(5) -0.035807 0.013855 -2.584520 0.0098 

SIGMASQ 0.000568 4.50E-06 126.1583 0.0000 
     
     R-squared 0.006463     Mean dependent var 0.000157 

Adjusted R-squared 0.006028     S.D. dependent var 0.023909 

S.E. of regression 0.023837     Akaike info criterion -4.634510 

Sum squared resid 2.596652     Schwarz criterion -4.630293 

Log likelihood 10599.81     Hannan-Quinn criter. -4.633026 

Durbin-Watson stat 1.995777    
     
     Inverted AR Roots       .07   

Inverted MA Roots       .51      .16-.49i    .16+.49i -.42+.30i 

 -.42-.30i   
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Eviews add in ARIMA Model 

 

Dependent Variable: D(O)   

Method: ARMA Maximum Likelihood (OPG - BHHH)  

Sample: 3/16/2000 7/02/2018   

Included observations: 4573   

Convergence achieved after 38 iterations  

Coefficient covariance computed using outer product of gradients 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     AR(1) 0.596651 0.136669 4.365678 0.0000 

AR(2) 0.070498 0.190224 0.370606 0.7109 

AR(3) -0.577071 0.181721 -3.175583 0.0015 

AR(4) 0.295662 0.163272 1.810852 0.0702 

AR(5) 0.443954 0.125429 3.539472 0.0004 

MA(1) -0.527662 0.133208 -3.961175 0.0001 

MA(2) -0.142698 0.180958 -0.788570 0.4304 

MA(3) 0.572567 0.167539 3.417520 0.0006 

MA(4) -0.249413 0.152518 -1.635309 0.1021 

MA(5) -0.515227 0.121193 -4.251291 0.0000 

SIGMASQ 0.000565 5.60E-06 100.7780 0.0000 
     
     R-squared 0.012130     Mean dependent var 0.000157 

Adjusted R-squared 0.009965     S.D. dependent var 0.023909 

S.E. of regression 0.023790     Akaike info criterion -4.636683 

Sum squared resid 2.581840     Schwarz criterion -4.621221 

Log likelihood 10612.77     Hannan-Quinn criter. -4.631239 

Durbin-Watson stat 1.992585    
     
     Inverted AR Roots       .94      .47+.87i    .47-.87i -.64+.26i 

 -.64-.26i   

Inverted MA Roots       .96      .47+.88i    .47-.88i -.68+.29i 

 -.68-.29i   
     
     

 

 

 

 

 

 

 

 

 

 

 

 

 

 



358 
 

Palladium 

 

Custom ARIMA Model 

 

Dependent Variable: R   

Method: ARMA Maximum Likelihood (OPG - BHHH)  

Sample: 3/30/1998 10/05/2018   

Included observations: 4681   

Convergence achieved after 60 iterations  

Coefficient covariance computed using outer product of gradients 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     AR(1) -0.388613 0.114727 -3.387284 0.0007 

AR(3) -0.821711 0.107554 -7.639954 0.0000 

AR(4) -0.564282 0.084837 -6.651354 0.0000 

AR(6) -0.260702 0.080667 -3.231831 0.0012 

MA(1) 0.449520 0.114851 3.913948 0.0001 

MA(3) 0.753975 0.106880 7.054428 0.0000 

MA(4) 0.605103 0.084988 7.119861 0.0000 

MA(6) 0.207084 0.083338 2.484863 0.0130 

SIGMASQ 0.000538 2.43E-06 221.0203 0.0000 
     
     R-squared 0.010002     Mean dependent var 0.000304 

Adjusted R-squared 0.008307     S.D. dependent var 0.023304 

S.E. of regression 0.023207     Akaike info criterion -4.686792 

Sum squared resid 2.516182     Schwarz criterion -4.674388 

Log likelihood 10978.44     Hannan-Quinn criter. -4.682430 

Durbin-Watson stat 1.964148    
     
     Inverted AR Roots  .55-.75i      .55+.75i    .12-.57i  .12+.57i 

 -.87-.34i     -.87+.34i  

Inverted MA Roots  .54-.75i      .54+.75i    .10+.51i  .10-.51i 

 -.87+.35i     -.87-.35i  
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Eviews add in ARIMA Model 

 

Dependent Variable: D(PA)   

Method: ARMA Maximum Likelihood (OPG - BHHH)  

Sample: 3/30/1998 10/05/2018   

Included observations: 4681   

Convergence achieved after 38 iterations  

Coefficient covariance computed using outer product of gradients 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     AR(1) 0.212904 0.122380 1.739692 0.0820 

AR(2) 0.096368 0.083524 1.153775 0.2487 

AR(3) -0.863260 0.078543 -10.99093 0.0000 

AR(4) 0.432125 0.092014 4.696270 0.0000 

AR(5) -0.043616 0.098878 -0.441107 0.6592 

AR(6) -0.703196 0.086137 -8.163726 0.0000 

AR(7) 0.117754 0.011821 9.961576 0.0000 

AR(8) -0.023233 0.018123 -1.281915 0.1999 

MA(1) -0.134781 0.122724 -1.098246 0.2722 

MA(2) -0.116380 0.083796 -1.388847 0.1649 

MA(3) 0.815072 0.081016 10.06068 0.0000 

MA(4) -0.329938 0.088242 -3.739020 0.0002 

MA(5) -0.002884 0.092697 -0.031117 0.9752 

MA(6) 0.684312 0.088338 7.746486 0.0000 

SIGMASQ 0.000535 2.50E-06 214.0533 0.0000 
     
     R-squared 0.013897     Mean dependent var 0.000304 

Adjusted R-squared 0.010938     S.D. dependent var 0.023304 

S.E. of regression 0.023176     Akaike info criterion -4.688157 

Sum squared resid 2.506284     Schwarz criterion -4.667485 

Log likelihood 10987.63     Hannan-Quinn criter. -4.680888 

Durbin-Watson stat 2.000074    
     
     Inverted AR Roots  .75+.53i      .75-.53i    .17+.96i  .17-.96i 

  .08-.16i      .08+.16i   -.90-.24i -.90+.24i 

Inverted MA Roots  .77-.53i      .77+.53i    .18+.96i  .18-.96i 

 -.88+.24i     -.88-.24i  
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Platinum 

 

Custom ARIMA Model 

 

Dependent Variable: R   

Method: ARMA Maximum Likelihood (OPG - BHHH)  

Sample: 4/29/1997 10/14/2018   

Included observations: 4739   

Convergence achieved after 129 iterations  

Coefficient covariance computed using outer product of gradients 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     AR(2) -0.687792 0.070276 -9.787019 0.0000 

AR(3) -0.180134 0.072715 -2.477268 0.0133 

MA(2) 0.631626 0.072157 8.753561 0.0000 

MA(3) 0.196898 0.076680 2.567792 0.0103 

SIGMASQ 0.000360 9.80E-07 366.9897 0.0000 
     
     R-squared 0.006810     Mean dependent var 0.000172 

Adjusted R-squared 0.005971     S.D. dependent var 0.019030 

S.E. of regression 0.018973     Akaike info criterion -5.090569 

Sum squared resid 1.704070     Schwarz criterion -5.083750 

Log likelihood 12067.10     Hannan-Quinn criter. -5.088173 

Durbin-Watson stat 2.121557    
     
     Inverted AR Roots  .12-.86i      .12+.86i        -.24 

Inverted MA Roots  .14-.83i      .14+.83i        -.28 
     
     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



361 
 

Eviews add in ARIMA Model 

 

Dependent Variable: D(PL)   

Method: ARMA Maximum Likelihood (OPG - BHHH)  

Date: 09/06/20   Time: 12:11   

Sample: 4/29/1997 10/14/2018   

Included observations: 4739   

Convergence achieved after 280 iterations  

Coefficient covariance computed using outer product of gradients 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     AR(1) -0.061643 0.003359 -18.35151 0.0000 

AR(2) -0.071115 0.008759 -8.118678 0.0000 

AR(3) 0.005059 0.010561 0.479076 0.6319 

AR(4) 0.044553 0.017153 2.597378 0.0094 

SIGMASQ 0.000358 1.09E-06 327.8419 0.0000 
     
     R-squared 0.010742     Mean dependent var 0.000172 

Adjusted R-squared 0.009906     S.D. dependent var 0.019030 

S.E. of regression 0.018935     Akaike info criterion -5.094537 

Sum squared resid 1.697324     Schwarz criterion -5.087717 

Log likelihood 12076.50     Hannan-Quinn criter. -5.092140 

Durbin-Watson stat 1.998994    
     
     Inverted AR Roots       .42     -.02-.50i   -.02+.50i      -.43 
     
     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



362 
 

Rice 

 

Custom ARIMA Model 

 

Dependent Variable: D(LOG(CLOSE_PRICE_RR))  

Method: ARMA Maximum Likelihood (OPG - BHHH)  

Date: 10/12/20   Time: 18:44   

Sample: 3/22/2000 6/18/2018   

Included observations: 4551   

Convergence achieved after 17 iterations  

Coefficient covariance computed using outer product of gradients 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     AR(5) -0.776502 0.125642 -6.180289 0.0000 

AR(6) 0.053867 0.012334 4.367412 0.0000 

MA(1) 0.057240 0.012431 4.604527 0.0000 

MA(5) 0.755016 0.130562 5.782829 0.0000 

SIGMASQ 0.000305 1.88E-06 161.6859 0.0000 
     
     R-squared 0.004608     Mean dependent var 0.000185 

Adjusted R-squared 0.003732     S.D. dependent var 0.017498 

S.E. of regression 0.017465     Akaike info criterion -5.256147 

Sum squared resid 1.386629     Schwarz criterion -5.249090 

Log likelihood 11965.36     Hannan-Quinn criter. -5.253662 

Durbin-Watson stat 1.997603    
     
     Inverted AR Roots  .75-.56i      .75+.56i         .07 -.31+.90i 

 -.31-.90i          -.96  

Inverted MA Roots  .75+.56i      .75-.56i   -.30-.90i -.30+.90i 

      -.96   
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Eviews add in ARIMA Model 

 

Dependent Variable: D(LOG(CLOSE_PRICE_RR))  

Method: ARMA Maximum Likelihood (OPG - BHHH)  

Date: 10/12/20   Time: 20:00   

Sample: 3/22/2000 6/18/2018   

Included observations: 4551   

Convergence achieved after 6 iterations  

Coefficient covariance computed using outer product of gradients 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     MA(1) 0.057412 0.012410 4.626348 0.0000 

SIGMASQ 0.000305 1.72E-06 177.2762 0.0000 
     
     R-squared 0.003120     Mean dependent var 0.000185 

Adjusted R-squared 0.002901     S.D. dependent var 0.017498 

S.E. of regression 0.017472     Akaike info criterion -5.255977 

Sum squared resid 1.388701     Schwarz criterion -5.253154 

Log likelihood 11961.98     Hannan-Quinn criter. -5.254983 

Durbin-Watson stat 2.000216    
     
     Inverted MA Roots      -.06   
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Silver 

 

Custom ARIMA Model 

 

Dependent Variable: R   

Method: ARMA Maximum Likelihood (OPG - BHHH)  

Sample: 2/29/2000 10/12/2018   

Included observations: 4648   

Convergence achieved after 85 iterations  

Coefficient covariance computed using outer product of gradients 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     AR(1) -1.017591 0.045898 -22.17058 0.0000 

AR(3) 0.531926 0.040550 13.11766 0.0000 

MA(1) 1.004673 0.048900 20.54538 0.0000 

MA(3) -0.522339 0.043763 -11.93564 0.0000 

SIGMASQ 0.000378 3.67E-06 102.9781 0.0000 
     
     R-squared 0.001384     Mean dependent var 0.000228 

Adjusted R-squared 0.000524     S.D. dependent var 0.019455 

S.E. of regression 0.019450     Akaike info criterion -5.040828 

Sum squared resid 1.756515     Schwarz criterion -5.033896 

Log likelihood 11719.89     Hannan-Quinn criter. -5.038390 

Durbin-Watson stat 2.014882    
     
     Inverted AR Roots       .58     -.80+.53i   -.80-.53i 

Inverted MA Roots       .58     -.79-.53i   -.79+.53i 
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Eviews add in ARIMA Model 

 

Dependent Variable: D(SI)   

Method: ARMA Maximum Likelihood (OPG - BHHH)  

Sample: 2/29/2000 10/12/2018   

Included observations: 4648   

Convergence achieved after 80 iterations  

Coefficient covariance computed using outer product of gradients 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     AR(1) -0.400663 0.451684 -0.887042 0.3751 

AR(2) -0.141104 0.166873 -0.845578 0.3978 

AR(3) 0.676077 0.179884 3.758402 0.0002 

AR(4) 0.684546 0.433880 1.577731 0.1147 

AR(5) 0.006434 0.012598 0.510684 0.6096 

AR(6) -0.013400 0.010251 -1.307191 0.1912 

MA(1) 0.380229 0.451693 0.841786 0.4000 

MA(2) 0.145624 0.174553 0.834267 0.4042 

MA(3) -0.672151 0.181867 -3.695850 0.0002 

MA(4) -0.687605 0.439417 -1.564810 0.1177 

SIGMASQ 0.000377 3.79E-06 99.51739 0.0000 
     
     R-squared 0.003834     Mean dependent var 0.000228 

Adjusted R-squared 0.001686     S.D. dependent var 0.019455 

S.E. of regression 0.019439     Akaike info criterion -5.040642 

Sum squared resid 1.752205     Schwarz criterion -5.025391 

Log likelihood 11725.45     Hannan-Quinn criter. -5.035277 

Durbin-Watson stat 1.999843    
     
     Inverted AR Roots       .96           .13        -.16 -.31+.94i 

 -.31-.94i          -.70  

Inverted MA Roots       .96     -.31+.95i   -.31-.95i      -.72 
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Soybean meal 

 

Custom ARIMA Model 

 

Dependent Variable: D(LOG(CLOSE_PRICE_SM))  

Method: ARMA Maximum Likelihood (OPG - BHHH)  

Sample: 2 7087    

Included observations: 7086   

Convergence achieved after 20 iterations  

Coefficient covariance computed using outer product of gradients 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     AR(1) 0.022936 0.007773 2.950890 0.0032 

MA(5) -0.049173 0.008641 -5.690831 0.0000 

SIGMASQ 0.000322 2.05E-06 156.7937 0.0000 
     
     R-squared 0.002914     Mean dependent var 7.70E-05 

Adjusted R-squared 0.002632     S.D. dependent var 0.017970 

S.E. of regression 0.017946     Akaike info criterion -5.202451 

Sum squared resid 2.281196     Schwarz criterion -5.199544 

Log likelihood 18435.28     Hannan-Quinn criter. -5.201450 

Durbin-Watson stat 2.000065    
     
     Inverted AR Roots       .02   

Inverted MA Roots       .55      .17+.52i    .17-.52i -.44-.32i 

 -.44+.32i   
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Eviews add in ARIMA Model 

 

Dependent Variable: D(LOG(CLOSE_PRICE_SM))  

Method: ARMA Maximum Likelihood (OPG - BHHH)  

Sample: 2 7087    

Included observations: 7086   

Convergence achieved after 43 iterations  

Coefficient covariance computed using outer product of gradients 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     AR(1) -0.627473 0.230237 -2.725333 0.0064 

AR(2) 0.520253 0.251337 2.069940 0.0385 

AR(3) 0.662764 0.038251 17.32670 0.0000 

AR(4) -0.378599 0.153846 -2.460899 0.0139 

AR(5) -1.017816 0.039247 -25.93369 0.0000 

AR(6) -0.373362 0.246310 -1.515824 0.1296 

AR(7) 0.425341 0.203065 2.094604 0.0362 

MA(1) 0.650848 0.232867 2.794931 0.0052 

MA(2) -0.508509 0.255194 -1.992637 0.0463 

MA(3) -0.682009 0.041744 -16.33802 0.0000 

MA(4) 0.355172 0.163410 2.173496 0.0298 

MA(5) 0.998490 0.042196 23.66296 0.0000 

MA(6) 0.409757 0.244373 1.676766 0.0936 

MA(7) -0.389039 0.205136 -1.896487 0.0579 

SIGMASQ 0.000320 2.22E-06 144.0389 0.0000 
     
     R-squared 0.009740     Mean dependent var 7.70E-05 

Adjusted R-squared 0.007779     S.D. dependent var 0.017970 

S.E. of regression 0.017900     Akaike info criterion -5.205900 

Sum squared resid 2.265580     Schwarz criterion -5.191366 

Log likelihood 18459.51     Hannan-Quinn criter. -5.200895 

Durbin-Watson stat 2.004372    
     
     Inverted AR Roots  .83-.54i      .83+.54i         .48 -.46-.86i 

 -.46+.86i     -.92-.34i   -.92+.34i 

Inverted MA Roots  .83-.53i      .83+.53i         .45 -.46-.85i 

 -.46+.85i     -.92+.35i   -.92-.35i 
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Soybean oil 

 

Custom ARIMA Model 

 

Dependent Variable: R   

Method: ARMA Maximum Likelihood (OPG - BHHH)  

Sample: 2 9416    

Included observations: 9415   

Convergence achieved after 40 iterations  

Coefficient covariance computed using outer product of gradients 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     AR(1) -0.923171 0.154682 -5.968197 0.0000 

AR(2) -0.629155 0.099960 -6.294063 0.0000 

MA(1) 0.961855 0.154017 6.245102 0.0000 

MA(2) 0.644836 0.099856 6.457660 0.0000 

SIGMASQ 0.000227 2.22E-06 102.1791 0.0000 
     
     R-squared 0.002562     Mean dependent var 3.00E-05 

Adjusted R-squared 0.002138     S.D. dependent var 0.015077 

S.E. of regression 0.015061     Akaike info criterion -5.552856 

Sum squared resid 2.134568     Schwarz criterion -5.549058 

Log likelihood 26145.07     Hannan-Quinn criter. -5.551566 

Durbin-Watson stat 1.997964    
     
     Inverted AR Roots -.46+.65i     -.46-.65i  

Inverted MA Roots -.48-.64i     -.48+.64i  
     
     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



369 
 

Eviews add in ARIMA Model 

 

Dependent Variable: D(BO)   

Method: ARMA Maximum Likelihood (OPG - BHHH)  

Sample: 2 9416    

Included observations: 9415   

Convergence achieved after 212 iterations  

Coefficient covariance computed using outer product of gradients 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     AR(1) 0.906416 0.278541 3.254151 0.0011 

AR(2) -0.778312 0.338959 -2.296179 0.0217 

AR(3) 0.413581 0.317025 1.304570 0.1921 

AR(4) -0.216019 0.256417 -0.842450 0.3996 

AR(5) 0.553218 0.203826 2.714172 0.0067 

MA(1) -0.867704 0.278210 -3.118884 0.0018 

MA(2) 0.725739 0.329027 2.205712 0.0274 

MA(3) -0.372928 0.299917 -1.243436 0.2137 

MA(4) 0.206143 0.243095 0.847992 0.3965 

MA(5) -0.570262 0.189026 -3.016837 0.0026 

MA(6) 0.010960 0.022696 0.482913 0.6292 

MA(7) 0.001577 0.015209 0.103663 0.9174 

SIGMASQ 0.000226 2.22E-06 101.7036 0.0000 
     
     R-squared 0.004523     Mean dependent var 3.00E-05 

Adjusted R-squared 0.003252     S.D. dependent var 0.015077 

S.E. of regression 0.015053     Akaike info criterion -5.553114 

Sum squared resid 2.130371     Schwarz criterion -5.543241 

Log likelihood 26154.28     Hannan-Quinn criter. -5.549762 

Durbin-Watson stat 1.999837    
     
     Inverted AR Roots       .96      .42-.90i    .42+.90i -.44-.63i 

 -.44+.63i   

Inverted MA Roots       .95      .41+.90i    .41-.90i       .06 

      -.04     -.47+.62i   -.47-.62i 
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Soybeans 

 

Custom ARIMA Model 

 

Dependent Variable: R   

Method: ARMA Maximum Likelihood (OPG - BHHH)  

Sample: 2 7123    

Included observations: 7122   

Convergence achieved after 103 iterations  

Coefficient covariance computed using outer product of gradients 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     AR(1) 0.969459 0.024495 39.57824 0.0000 

AR(2) 0.472751 0.030952 15.27348 0.0000 

AR(3) -1.501121 0.039604 -37.90295 0.0000 

AR(4) 0.384171 0.037083 10.35984 0.0000 

AR(5) 0.889122 0.036246 24.53014 0.0000 

AR(6) -0.857497 0.026712 -32.10111 0.0000 

MA(1) -0.967749 0.023463 -41.24559 0.0000 

MA(2) -0.472714 0.028419 -16.63366 0.0000 

MA(3) 1.510722 0.034754 43.46853 0.0000 

MA(4) -0.395800 0.033337 -11.87277 0.0000 

MA(5) -0.916165 0.030936 -29.61523 0.0000 

MA(6) 0.893387 0.023649 37.77678 0.0000 

SIGMASQ 0.000237 1.36E-06 173.7096 0.0000 
     
     R-squared 0.007015     Mean dependent var 7.17E-05 

Adjusted R-squared 0.005339     S.D. dependent var 0.015434 

S.E. of regression 0.015393     Akaike info criterion -5.507933 

Sum squared resid 1.684475     Schwarz criterion -5.495391 

Log likelihood 19626.75     Hannan-Quinn criter. -5.503615 

Durbin-Watson stat 2.004673    
     
     Inverted AR Roots  .89-.42i      .89+.42i    .51+.81i  .51-.81i 

 -.92+.34i     -.92-.34i  

Inverted MA Roots  .89+.42i      .89-.42i    .51-.82i  .51+.82i 

 -.92-.35i     -.92+.35i  
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Eviews add in ARIMA Model 

 

Dependent Variable: D(S)   

Method: ARMA Maximum Likelihood (OPG - BHHH)  

Date: 09/06/20   Time: 18:45   

Sample: 2 7123    

Included observations: 7122   

Convergence achieved after 148 iterations  

Coefficient covariance computed using outer product of gradients 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     AR(1) 0.280178 0.032763 8.551638 0.0000 

AR(2) 0.182704 0.032284 5.659267 0.0000 

AR(3) -0.212496 0.034349 -6.186360 0.0000 

AR(4) -0.220778 0.032369 -6.820689 0.0000 

AR(5) -0.332621 0.030964 -10.74221 0.0000 

AR(6) 0.152895 0.032401 4.718856 0.0000 

AR(7) 0.261388 0.032282 8.097077 0.0000 

AR(8) -0.826259 0.032655 -25.30232 0.0000 

AR(9) 0.005587 0.008652 0.645723 0.5185 

AR(10) -0.026064 0.010146 -2.568825 0.0102 

MA(1) -0.280284 0.032815 -8.541445 0.0000 

MA(2) -0.191644 0.031479 -6.087992 0.0000 

MA(3) 0.226455 0.031057 7.291550 0.0000 

MA(4) 0.209954 0.028779 7.295295 0.0000 

MA(5) 0.307177 0.027502 11.16932 0.0000 

MA(6) -0.146971 0.029380 -5.002454 0.0000 

MA(7) -0.275908 0.028865 -9.558631 0.0000 

MA(8) 0.869968 0.028888 30.11526 0.0000 

SIGMASQ 0.000236 1.41E-06 166.9696 0.0000 
     
     R-squared 0.009084     Mean dependent var 7.17E-05 

Adjusted R-squared 0.006573     S.D. dependent var 0.015434 

S.E. of regression 0.015384     Akaike info criterion -5.508321 

Sum squared resid 1.680965     Schwarz criterion -5.489991 

Log likelihood 19634.13     Hannan-Quinn criter. -5.502010 

Durbin-Watson stat 1.999713    
     
     Inverted AR Roots  .89+.42i      .89-.42i    .52-.80i  .52+.80i 

 -.00+.18i     -.00-.18i   -.35-.92i -.35+.92i 

 -.92-.34i     -.92+.34i  

Inverted MA Roots  .90+.42i      .90-.42i    .52-.82i  .52+.82i 

 -.35-.93i     -.35+.93i   -.92-.34i -.92+.34i 
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Sugar 

 

Custom ARIMA Model 

 

Dependent Variable: R   

Method: ARMA Maximum Likelihood (OPG - BHHH)  

Sample: 12/28/1979 6/29/2016   

Included observations: 9191   

Convergence achieved after 24 iterations  

Coefficient covariance computed using outer product of gradients 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     AR(3) 0.017339 0.007563 2.292547 0.0219 

MA(2) -0.062553 0.006429 -9.729878 0.0000 

SIGMASQ 0.000817 3.48E-06 234.4673 0.0000 
     
     R-squared 0.004409     Mean dependent var 2.55E-05 

Adjusted R-squared 0.004192     S.D. dependent var 0.028648 

S.E. of regression 0.028588     Akaike info criterion -4.271353 

Sum squared resid 7.508956     Schwarz criterion -4.269027 

Log likelihood 19632.00     Hannan-Quinn criter. -4.270562 

Durbin-Watson stat 2.177634    
     
     Inverted AR Roots       .26     -.13-.22i   -.13+.22i 

Inverted MA Roots       .25          -.25  
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Eviews add in ARIMA Model 

 

Dependent Variable: D(SB)   

Method: ARMA Maximum Likelihood (OPG - BHHH)  

Sample: 12/28/1979 6/29/2016   

Included observations: 9191   

Convergence achieved after 331 iterations  

Coefficient covariance computed using outer product of gradients 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     AR(1) -0.535685 0.005755 -93.07525 0.0000 

AR(2) -0.020939 0.007292 -2.871373 0.0041 

AR(3) -0.463549 0.009039 -51.28213 0.0000 

AR(4) -1.018395 0.005783 -176.0931 0.0000 

AR(5) -0.126977 0.005686 -22.33057 0.0000 

AR(6) -0.062769 0.008060 -7.787693 0.0000 

AR(7) 0.013792 0.008067 1.709586 0.0874 

MA(1) 0.446368 0.003508 127.2283 0.0000 

MA(2) -0.089498 0.002331 -38.38793 0.0000 

MA(3) 0.452497 0.002423 186.7535 0.0000 

MA(4) 0.992930 0.003469 286.2486 0.0000 

SIGMASQ 0.000808 4.03E-06 200.6515 0.0000 
     
     R-squared 0.015140     Mean dependent var 2.55E-05 

Adjusted R-squared 0.013960     S.D. dependent var 0.028648 

S.E. of regression 0.028447     Akaike info criterion -4.280007 

Sum squared resid 7.428024     Schwarz criterion -4.270703 

Log likelihood 19680.77     Hannan-Quinn criter. -4.276844 

Durbin-Watson stat 1.999466    
     
     Inverted AR Roots  .62+.79i      .62-.79i         .14 -.12+.30i 

 -.12-.30i     -.84-.53i   -.84+.53i 

Inverted MA Roots  .62-.79i      .62+.79i   -.84+.53i -.84-.53i 
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Tin 

 

Custom ARIMA Model 

 

Dependent Variable: R   

Method: ARMA Maximum Likelihood (OPG - BHHH)  

Sample: 7/08/2008 5/20/2019   

Included observations: 2650   

Convergence achieved after 71 iterations  

Coefficient covariance computed using outer product of gradients 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     AR(1) 1.223981 0.126546 9.672222 0.0000 

AR(2) -1.919734 0.064003 -29.99456 0.0000 

AR(3) 1.698715 0.201243 8.441117 0.0000 

AR(4) -1.216851 0.061983 -19.63203 0.0000 

AR(5) 0.737455 0.112668 6.545393 0.0000 

MA(1) -1.186969 0.120414 -9.857429 0.0000 

MA(2) 1.887043 0.054237 34.79241 0.0000 

MA(3) -1.677347 0.189775 -8.838624 0.0000 

MA(4) 1.197505 0.052233 22.92606 0.0000 

MA(5) -0.768283 0.107040 -7.177506 0.0000 

SIGMASQ 0.000316 3.52E-06 89.97596 0.0000 
     
     R-squared 0.019324     Mean dependent var -6.01E-05 

Adjusted R-squared 0.015608     S.D. dependent var 0.017963 

S.E. of regression 0.017822     Akaike info criterion -5.212475 

Sum squared resid 0.838193     Schwarz criterion -5.188058 

Log likelihood 6917.530     Hannan-Quinn criter. -5.203637 

Durbin-Watson stat 1.998511    
     
     Inverted AR Roots       .82      .39-.88i    .39+.88i -.19-.96i 

 -.19+.96i   

Inverted MA Roots       .84      .38-.90i    .38+.90i -.21-.96i 

 -.21+.96i   
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Eviews add in ARIMA Model 

 

Dependent Variable: D(T)   

Method: ARMA Maximum Likelihood (OPG - BHHH)  

Sample: 7/08/2008 5/20/2019   

Included observations: 2650   

Convergence achieved after 124 iterations  

Coefficient covariance computed using outer product of gradients 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     AR(1) 1.387766 0.023581 58.85126 0.0000 

AR(2) -1.013621 0.035963 -28.18502 0.0000 

AR(3) 0.597614 0.030330 19.70393 0.0000 

AR(4) 0.667497 0.028506 23.41562 0.0000 

AR(5) -1.054915 0.032788 -32.17411 0.0000 

AR(6) 1.268173 0.034852 36.38745 0.0000 

AR(7) -0.881788 0.021283 -41.43171 0.0000 

MA(1) -1.344111 0.022235 -60.45064 0.0000 

MA(2) 0.963832 0.034565 27.88432 0.0000 

MA(3) -0.595844 0.028614 -20.82331 0.0000 

MA(4) -0.669934 0.026720 -25.07190 0.0000 

MA(5) 1.012254 0.030194 33.52545 0.0000 

MA(6) -1.246971 0.033514 -37.20713 0.0000 

MA(7) 0.911670 0.020798 43.83357 0.0000 

SIGMASQ 0.000315 3.68E-06 85.68040 0.0000 
     
     R-squared 0.023006     Mean dependent var -6.01E-05 

Adjusted R-squared 0.017815     S.D. dependent var 0.017963 

S.E. of regression 0.017802     Akaike info criterion -5.212939 

Sum squared resid 0.835046     Schwarz criterion -5.179643 

Log likelihood 6922.145     Hannan-Quinn criter. -5.200887 

Durbin-Watson stat 2.015771    
     
     Inverted AR Roots  .99-.07i      .99+.07i    .39-.89i  .39+.89i 

 -.19-.96i     -.19+.96i        -.99 

Inverted MA Roots  .99-.07i      .99+.07i    .38-.90i  .38+.90i 

 -.21-.96i     -.21+.96i        -1.00 
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Wheat 

 

Custom ARIMA Model 

 

Dependent Variable: R   

Method: ARMA Maximum Likelihood (OPG - BHHH)  

Sample: 3/24/2000 7/02/2018   

Included observations: 4571   

Convergence achieved after 19 iterations  

Coefficient covariance computed using outer product of gradients 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     AR(2) -0.795925 0.323592 -2.459653 0.0139 

MA(2) 0.786953 0.329410 2.388976 0.0169 

SIGMASQ 0.000329 5.09E-06 64.66512 0.0000 
     
     R-squared 0.000187     Mean dependent var 0.000103 

Adjusted R-squared -0.000251     S.D. dependent var 0.018143 

S.E. of regression 0.018146     Akaike info criterion -5.180130 

Sum squared resid 1.504059     Schwarz criterion -5.175912 

Log likelihood 11842.19     Hannan-Quinn criter. -5.178645 

Durbin-Watson stat 1.929099    
     
     Inverted AR Roots -.00+.89i     -.00-.89i  

Inverted MA Roots -.00+.89i     -.00-.89i  
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Eviews add in ARIMA Model 

 

Dependent Variable: D(KW)   

Method: ARMA Maximum Likelihood (OPG - BHHH)  

Sample: 3/24/2000 7/02/2018   

Included observations: 4571   

Convergence achieved after 55 iterations  

Coefficient covariance computed using outer product of gradients 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     AR(1) -0.742599 0.084802 -8.756829 0.0000 

AR(2) -0.891952 0.049261 -18.10652 0.0000 

AR(3) -0.370545 0.066840 -5.543752 0.0000 

AR(4) -0.875260 0.058622 -14.93064 0.0000 

AR(5) -0.758321 0.054578 -13.89424 0.0000 

AR(6) -0.844800 0.073474 -11.49791 0.0000 

MA(1) 0.767995 0.084088 9.133257 0.0000 

MA(2) 0.905959 0.046483 19.48997 0.0000 

MA(3) 0.394499 0.064712 6.096256 0.0000 

MA(4) 0.890508 0.055974 15.90929 0.0000 

MA(5) 0.797180 0.052928 15.06166 0.0000 

MA(6) 0.860824 0.073684 11.68259 0.0000 

SIGMASQ 0.000327 5.15E-06 63.51907 0.0000 
     
     R-squared 0.006228     Mean dependent var 0.000103 

Adjusted R-squared 0.003611     S.D. dependent var 0.018143 

S.E. of regression 0.018110     Akaike info criterion -5.181766 

Sum squared resid 1.494972     Schwarz criterion -5.163487 

Log likelihood 11855.93     Hannan-Quinn criter. -5.175330 

Durbin-Watson stat 1.979494    
     
     Inverted AR Roots  .67-.73i      .67+.73i   -.28+.94i -.28-.94i 

 -.77+.56i     -.77-.56i  

Inverted MA Roots  .67+.73i      .67-.73i   -.28+.94i -.28-.94i 

 -.77-.56i     -.77+.56i  
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Zinc 

 

Custom ARIMA Model 

 

Dependent Variable: R   

Method: ARMA Maximum Likelihood (OPG - BHHH)  

Sample: 2/21/2008 5/08/2019   

Included observations: 2729   

Convergence achieved after 143 iterations  

Coefficient covariance computed using outer product of gradients 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     AR(1) -1.115005 0.071149 -15.67143 0.0000 

AR(2) -1.132730 0.061969 -18.27899 0.0000 

AR(3) -0.754955 0.073739 -10.23819 0.0000 

MA(1) 1.068533 0.080463 13.27980 0.0000 

MA(2) 1.084864 0.070848 15.31260 0.0000 

MA(3) 0.691821 0.083099 8.325279 0.0000 

SIGMASQ 0.000401 6.00E-06 66.80805 0.0000 
     
     R-squared 0.009522     Mean dependent var 4.45E-05 

Adjusted R-squared 0.007338     S.D. dependent var 0.020128 

S.E. of regression 0.020054     Akaike info criterion -4.978152 

Sum squared resid 1.094732     Schwarz criterion -4.962989 

Log likelihood 6799.689     Hannan-Quinn criter. -4.972672 

Durbin-Watson stat 2.007457    
     
     Inverted AR Roots -.14-.94i     -.14+.94i        -.84 

Inverted MA Roots -.14-.92i     -.14+.92i        -.80 
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Dependent Variable: D(Z)   

Method: ARMA Maximum Likelihood (OPG - BHHH)  

Date: 09/06/20   Time: 23:55   

Sample: 2/21/2008 5/08/2019   

Included observations: 2729   

Convergence achieved after 40 iterations  

Coefficient covariance computed using outer product of gradients 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     AR(1) -0.320178 9.575782 -0.033436 0.9733 

AR(2) -0.592367 6.188591 -0.095719 0.9238 

AR(3) -0.478171 7.566297 -0.063197 0.9496 

AR(4) 0.187332 7.068107 0.026504 0.9789 

AR(5) -0.060682 0.431924 -0.140492 0.8883 

AR(6) 0.004420 0.703803 0.006279 0.9950 

AR(7) 0.003793 0.185556 0.020441 0.9837 

MA(1) 0.265667 9.574663 0.027747 0.9779 

MA(2) 0.562904 5.666016 0.099347 0.9209 

MA(3) 0.415984 7.114392 0.058471 0.9534 

MA(4) -0.207611 6.330544 -0.032795 0.9738 

SIGMASQ 0.000400 5.87E-06 68.22069 0.0000 
     
     R-squared 0.011309     Mean dependent var 4.45E-05 

Adjusted R-squared 0.007307     S.D. dependent var 0.020128 

S.E. of regression 0.020055     Akaike info criterion -4.976290 

Sum squared resid 1.092756     Schwarz criterion -4.950295 

Log likelihood 6802.148     Hannan-Quinn criter. -4.966895 

Durbin-Watson stat 1.993886    
     
     Inverted AR Roots       .28      .13+.31i    .13-.31i  .06+.92i 

  .06-.92i          -.17        -.81 

Inverted MA Roots       .32      .08+.93i    .08-.93i      -.75 
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11.3 APPENDIX III: Jumps graphs for daily returns 

 

Test for additive jumps in GARCH models of Laurent, Lecourt and Palm (2016) 

 

Gold 

 

series DL_gold 

Critical level of the test: 0.25 

Number of detected jumps: 42 

Proportion of detected jumps: 0.00822401 

Critical value, i.e. G(Beta)*Sn+Cn: 3.65537 

 

Figure 141: Jumps graph of gold daily log returns 

 

Silver 

 

series DL_silver 

Critical level of the test: 0.25 

Number of detected jumps: 57 

Proportion of detected jumps: 0.0110358 

Critical value, i.e. G(Beta)*Sn+Cn: 3.65826 
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Figure 142: Jumps graph of silver daily log returns 

 

Platinum 

 

series DL_platinum 

Critical level of the test: 0.25 

Number of detected jumps: 53 

Proportion of detected jumps: 0.0100646 

Critical value, i.e. G(Beta)*Sn+Cn: 3.6632 

 

Figure 143: Jumps graph of platinum daily log returns 
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Paladium 

 

series DL_paladium 

Critical level of the test: 0.25 

Number of detected jumps: 48 

Proportion of detected jumps: 0.00922899 

Critical value, i.e. G(Beta)*Sn+Cn: 3.66003 

 

Figure 144: Jumps graph of paladium daily log returns 

 

Aluminum 

 

DL_aluminum 

Critical level of the test: 0.25 

Number of detected jumps: 6 

Proportion of detected jumps: 0.00665927 

Critical value, i.e. G(Beta)*Sn+Cn: 3.18515 
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Figure 145: Jumps graph of aluminum daily log returns 

 

Copper 

 

DL_copper 

Critical level of the test: 0.25 

Number of detected jumps: 34 

Proportion of detected jumps: 0.00667714 

Critical value, i.e. G(Beta)*Sn+Cn: 3.65462 

 

Figure 146: Jumps graph of copper daily log returns 
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Lead 

 

series DL_lead 

Critical level of the test: 0.25 

Number of detected jumps: 21 

Proportion of detected jumps: 0.00713073 

Critical value, i.e. G(Beta)*Sn+Cn: 3.51211 

 

 

Figure 147: Jumps graph of lead daily log returns 

 

Nickel 

 

series DL_nickel 

Critical level of the test: 0.25 

Number of detected jumps: 16 

Proportion of detected jumps: 0.00543294 

Critical value, i.e. G(Beta)*Sn+Cn: 3.51211 
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Figure 148: Jumps graph of nickel daily log returns 

 

Tin  

 

series DL_tin 

Critical level of the test: 0.25 

Number of detected jumps: 37 

Proportion of detected jumps: 0.0125637 

Critical value, i.e. G(Beta)*Sn+Cn: 3.51211 

 

Figure 149: Jumps graph of tin daily log returns 
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Zinc 

 

series DL_zinc 

Critical level of the test: 0.25 

Number of detected jumps: 15 

Proportion of detected jumps: 0.00494723 

Critical value, i.e. G(Beta)*Sn+Cn: 3.51981 

 

Figure 150: Jumps graph of zinc daily log returns 

 

Crude Oil 

 

DL_crude oil 

Critical level of the test: 0.25 

Number of detected jumps: 28 

Proportion of detected jumps: 0.00549666 

Critical value, i.e. G(Beta)*Sn+Cn: 3.65472 

 

 

 

 

 

 



387 
 

 

Figure 151: Jumps graph of crude oil daily log returns 

 

Brent Oil 

 

DL_brent oil 

Critical level of the test: 0.25 

Number of detected jumps: 45 

Proportion of detected jumps: 0.00550055 

Critical value, i.e. G(Beta)*Sn+Cn: 3.77418 

 

Figure 152: Jumps graph of brent oil daily log returns 
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Gasoline 

 

series DL_gasoline 

Critical level of the test: 0.25 

Number of detected jumps: 49 

Proportion of detected jumps: 0.0121982 

Critical value, i.e. G(Beta)*Sn+Cn: 3.59351 

 

Figure 153: Jumps graph of gasoline daily log returns 

 

Heating oil 

 

DL_heating oil 

Critical level of the test: 0.25 

Number of detected jumps: 28 

Proportion of detected jumps: 0.00547624 

Critical value, i.e. G(Beta)*Sn+Cn: 3.65567 
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Figure 154: Jumps graph of heating oil daily log returns 

 

Natural gas 

 

series DL_natural gas 

Critical level of the test: 0.25 

Number of detected jumps: 25 

Proportion of detected jumps: 0.00489045 

Critical value, i.e. G(Beta)*Sn+Cn: 3.65562 

 

Figure 155: Jumps graph of natural gas daily log returns 
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Corn 

 

series DL_corn 

Critical level of the test: 0.25 

Number of detected jumps: 95 

Proportion of detected jumps: 0.00909439 

Critical value, i.e. G(Beta)*Sn+Cn: 3.83452 

 

Figure 156: Jumps graph of corn daily log returns 

 

Rice 

 

series DL_rice 

Critical level of the test: 0.25 

Number of detected jumps: 37 

Proportion of detected jumps: 0.00731804 

Critical value, i.e. G(Beta)*Sn+Cn: 3.6528 
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Figure 157: Jumps graph of rice daily log returns 

 

Soybeans 

 

series DL_soybeans 

Critical level of the test: 0.25 

Number of detected jumps: 52 

Proportion of detected jumps: 0.00657146 

Critical value, i.e. G(Beta)*Sn+Cn: 3.76589 

 

Figure 158: Jumps graph of soybeans daily log returns 
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Soybean oil 

 

series DL_soybean oil 

Critical level of the test: 0.25 

Number of detected jumps: 29 

Proportion of detected jumps: 0.0027722 

Critical value, i.e. G(Beta)*Sn+Cn: 3.83487 

 

Figure 159: Jumps graph of soybean oil daily log returns 

 

 

Soybean meal 

 

series DL_soybean meal 

Critical level of the test: 0.25 

Number of detected jumps: 63 

Proportion of detected jumps: 0.00799797 

Critical value, i.e. G(Beta)*Sn+Cn: 3.76475 
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Figure 160: Jumps graph of soybean meal daily log returns 

 

Oats 

 

series DL_oats 

Critical level of the test: 0.25 

Number of detected jumps: 66 

Proportion of detected jumps: 0.0129896 

Critical value, i.e. G(Beta)*Sn+Cn: 3.65406 

 

Figure 161: Jumps graph of oats daily log returns 
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Wheat 

 

series DL_wheat 

Critical level of the test: 0.25 

Number of detected jumps: 19 

Proportion of detected jumps: 0.00374089 

Critical value, i.e. G(Beta)*Sn+Cn: 3.65396 

 

Figure 162: Jumps graph of wheat daily log returns 

 

Coffee 

 

series DL_coffee 

Critical level of the test: 0.25 

Number of detected jumps: 70 

Proportion of detected jumps: 0.00684396 

Critical value, i.e. G(Beta)*Sn+Cn: 3.82934 
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Figure 163: Jumps graph of coffee daily log returns 

 

Cocoa 

 

series DL_cocoa 

Critical level of the test: 0.25 

Number of detected jumps: 50 

Proportion of detected jumps: 0.00491014 

Critical value, i.e. G(Beta)*Sn+Cn: 3.82826 

 

Figure 164: Jumps graph of cocoa daily log returns 



396 
 

Sugar 

 

series DL_sugar 

Critical level of the test: 0.25 

Number of detected jumps: 101 

Proportion of detected jumps: 0.00989033 

Critical value, i.e. G(Beta)*Sn+Cn: 3.82896 

 

Figure 165: Jumps graph of sugar daily log returns 

 

Cotton 

 

series DL_cotton 

Critical level of the test: 0.25 

Number of detected jumps: 43 

Proportion of detected jumps: 0.00823124 

Critical value, i.e. G(Beta)*Sn+Cn: 3.66116 
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Figure 166: Jumps graph of cotton daily log returns 

 

Lumber 

 

series DL_lumber 

Critical level of the test: 0.25 

Number of detected jumps: 120 

Proportion of detected jumps: 0.0117336 

Critical value, i.e. G(Beta)*Sn+Cn: 3.82932 

 

Figure 167: Jumps graph of lumber daily log returns 
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Lean hogs 

 

series DL_lean hogs 

Critical level of the test: 0.25 

Number of detected jumps: 206 

Proportion of detected jumps: 0.0200878 

Critical value, i.e. G(Beta)*Sn+Cn: 3.82999 

 

Figure 168: Jumps graph of lean hogs daily log returns 

 

Feeder cattle 

 

series DL_feeder cattle 

Critical level of the test: 0.25 

Number of detected jumps: 91 

Proportion of detected jumps: 0.0178152 

Critical value, i.e. G(Beta)*Sn+Cn: 3.65542 
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Figure 169: Jumps graph of feeder cattle daily log returns 

 

Live cattle 

 

series DL_live cattle 

Critical level of the test: 0.25 

Number of detected jumps: 123 

Proportion of detected jumps: 0.0120082 

Critical value, i.e. G(Beta)*Sn+Cn: 3.8297 

 

Figure 170: Jumps graph of live cattle daily log returns 
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