
Progressive Web Applications

MSc Thesis presentation
of

Sapountzi Ibraim

University of Macedonia, Applied
Informatics, November 2020

Desktop vs Mobile Share the last 5
years

Year Desktop Mobile

2015 62.38 31.06

2016 55.86 38.88

2017 45.27 48.60

2018 43.87 51.92

2019 47.02 49.11

2020 44.56 51.78

High increase on mobile share -
usage

Data taken from: https://gs.statcounter.com/platform-market-share/desktop-mobile-tablet/worldwide

Different web - mobile application
models

1. Web - HTML5/CSS3/JavaScript
2. Hybrid Web - Same as 1, using

dependencies like Phonegap, Ionic
3. Hybrid Native - JavaScript, React

Native
4. Cross compiled - C#, Xamarin
5. Native - Java/Objective-C-Swift

All the above models, except 1 and 5, are
trying to solve the same problem. Generate
a package that can run cross-platform for

mobile devices. All of them except 1, lack in
terms of distribution and deployment.

Progressive Web Applications
or

The Mobile Web

These apps aren't packaged and deployed
through stores, they're just websites that took

all the right vitamins, Alex Russell, Google
Engineer, 2015

A pattern to progressively develop and deliver web applications
using modern web APIs and architectures, being platform and

device independent, giving an app-like experience. With the reach
– link ability that the web offers, and the capabilities of native apps.

Characteristics

responsive works offline app like fresh safe

discoverable re-engageable installable linkable

Characteristics of mobile applications mixed with web attributes

Technical components - Web APIs

1. HTTPS - requirement to enable below
technologies

2. Service Workers - offline ability,
installability, engageability, app
updates, background synchronization
and more

3. Web App Manifest - installability,
discoverability

Core

● Web Storage APIs -
Cache(static application
assets), IndexedDB(application
state data), File Access API

● Web Push & Notifications API
● Background Synchronization

API
● Payment Request API
● Shape Detection API
● More under development

Optional - Good
to have

Service Workers

A web worker, that acts like a proxy in the background, and sits
between the application and the network.

● No direct DOM access, runs in separate thread
● Non blocking and asynchronous - use of promises
● Can have more than one registered in each scope, e.g

“example/foo”, “example/bar”
● Communicates with other APIs such as Cache API, Web

Push, Background Sync and more

user

service worker

network

Service Worker Lifecycle
1. Register - registration of the script, if

supported from the browser
2. Install - once in scope

a. Cache your static files in order to work
offline, with a cache first strategy
failing back to network if not available,
re-update cache with new versioned
file

3. Activate - remove old redundant cache
items, update the instance if necessary

4. Activated
a. - Listing to fetch / message / push

events and others, ready to take
control on events.

Web App Manifest
{

 "short_name": "Depo",

 "name": "Depo Warehouse Management System",

 "icons": [

 {

 "src": "depo-512x512.png",

 "type": "image/png",

 "sizes": "512x512"

 }

],

 "start_url": ".",

 "display": "standalone",

 "theme_color": "#000000",

 "background_color": "#ffffff"

}

Advantages - Disadvantages

Advantages
● Cost of development, using

only web technologies and
no external dependencies

● Cross platform and cross
device, having a browser

● Distribution is easy, shared
link or through Play
Store(TWA) atm

● Deployment, as a typical
web-site application, just
update your server with the
new assets

Disadvantages
● Vendor browsers cold war, Google vs

Apple, some features implemented only in
one ‘platform’, but lately we see Apple to
follow up

● APIs new and not yet mature - tested
● Device integration, more APIs must

developed and re-define which ‘device’ we
are targeting

● Performance, it depends in the type of the
application, for high resource applications
maybe with the power of Web Assembly
we will see performance demanded
applications in the browser

Live presentation of use case developed

Depo, a Warehouse Management System
client as progressive web app

Live instance here

Thank you !

https://blue-water-0241cf303.azurestaticapps.net/

