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Abstract

Aircraft landing scheduling (ALS) is a contemporary NP-hard problem, arising from

the continuous growth of the air traffic. The purpose of this thesis is the implemen-

tation and application of a matheuristic approach, using VNS algorithm’s variants,

BVNS, VND and RVNS, along with interior-point method from mathematical program-

ming, as well as the evaluation of solving the static case of this problem, using the

Python programming language.

In the first part, the required theoretical background is presented. The descrip-

tion, information and details of the problem, followed by the reference to the VNS,

its variants and interior-point method, including the structure and the steps of the

algorithms.

In the second part, after a first come first served-based construction method and

the application of each algorithm on benchmark problems available on OR Library, the

computational results are presented. Finally, the conclusions are mentioned, derived

from comparing the results of the above implementation and the optimal values of the

problems as well as a statistical analysis of these results.

Keywords: Aircraft Landing Scheduling, ALS, Matheuristics, Heuristics, Meta-

heuristics, Optimization, Variable Neighborhood Search, VNS
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1 Introduction

1.1 Description and significance of the subject

Operational Research is a scientific approach to decision making and problem solv-

ing, achieved through mathematical models, analytical and stochastic methods. Op-

timization constitutes a significant part of Operational Research.

The subject of this thesis is a matheuristic approach, with VNS algorithm’s vari-

ants and the interior-point method, for solving the static case of the Aircraft landing

scheduling (ALS) problem. The continuous and rapid increase of civil air traffic in a

global level and the limited capability of expanding airport infrastructures has led to

the need of developing advanced ways for scheduling the runway operations, which

should mainly be able to find a feasible sequence of these operations as well as to

minimize their cost.

The usage only of exact algorithms, aiming to find the best solution for similar

problems, is usually quite costly in computational complexity and sometimes inef-

ficient in producing the desired results. In addition, some cases do not require an

optimal solution, which would consume significant computational time that cannot

be provided. Nevertheless, we could accept a lower quality but still feasible and effi-

cient solution, close to the optimal, satisfying the constraints and achieved in a short

period of time. Heuristic and metaheuristic methods can contribute to provide the

aforementioned solutions, that are acceptable in terms of quality and computational

time. ALS problem is one of these cases and a matheuristic algorithm can manage

to ensure the smooth operation of runways, which is quite demanding and hard to

achieve in busy periods of time.

1.2 Aim and objectives

The purpose of this thesis is the development of a matheuristic approach, aiming to

provide a solution for some indicative instances of the ALS’ problem (from OR Library),
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as well as the analytical comparison of the applied methods and their results, in order

to lead to safe conclusions about the effectiveness of the algorithms.

Specifically, VNS algorithm’s variants (BVNS, VND and RVNS) and the interior-

point method are implemented in Python programming language, where these pro-

cedures are tested. In addition, the mathematical model, developed also in Python

utilizing the Gurobi optimization solver, has been used. The results of these computa-

tions are presented and compared. Furthermore, R programming language has been

used for a statistical analysis regarding these results and the methods applied.

Moreover, the purpose of this thesis includes the following:

� Brief review of the background and the literature related with the subject of this

thesis.

� Analytical presentation and description of the ALS problem and the variations

of it.

� Analytical presentation and description of the matheuristic approach.

� Suggestions of future research of the topic.

1.3 Contribution

This thesis presents in detail the theoretical and technical elements of scheduling

aircraft landings. Moreover, a solution to this problem is analyzed. The awareness of

this information regarding the specific problem could lead to a better comprehension

of how crucial this problem is nowadays that air transportation industry is growing

continuously in a rapid rate.

The approach that is followed will be implemented with a matheuristic method,

which includes VNS algorithm’s variants and the interior-point method from mathe-

matical programming. Finally, we will evaluate the efficiency of this approach, regard-

ing the aforementioned problem.
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Hopefully, the end result of this study will be a helpful reference for future research

and development around this field.

1.4 Basic terminology

At this point, it is required to mention the basic terminology related to the subject

of the thesis.

Mathematical Optimization or Mathematical Programming: collection of math-

ematical principles and methods used for solving quantitative problems in many dis-

ciplines, including physics, biology, engineering, economics, and business. In math-

ematics, computer science and economics, an optimization problem is the problem of

finding the best solution from all feasible solutions.

Combinatorial Optimization: the process of finding one or more best (optimal)

solutions in a well defined discrete problem space. Such problems occur in almost all

fields of management , as well as in many engineering disciplines.

Heuristic Method: a technique designed for solving a problem rapidly when clas-

sic methods are too slow, or for finding an approximate solution when classic methods

fail to find any exact solution.

Metaheuristic Method: a higher-level procedure designed to find, generate, or se-

lect a heuristic method that may provide a sufficiently good solution to an optimization

problem, especially with incomplete or imperfect information or limited computation

capacity.

Matheuristics: optimization algorithms made by the interoperation of metaheuris-

tics and mathematical programming (MP) techniques.
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Approximation Algorithm: an algorithm that produces in polynomial time a fea-

sible solution whose objective function value is ‘‘close’’ to the optimal.

Exact Algorithm: an algorithm that always solves an optimization problem to op-

timality.

Search Space: the set of all possible solutions for an optimization problem.

Objective Function: a mathematical expression describing the relationship of the

optimization parameters or the result of an operation that uses the optimization pa-

rameters as inputs and evaluates the quality of the solution

Solution Representation: encoding of the candidate solutions in a suitable form.

Variable Neighborhood Search: a metaheuristic method, proposed by Mladenovic

& Hansen in 1997, for solving a set of combinatorial optimization and global optimiza-

tion problems. It explores distant neighborhoods of the current incumbent solution,

and moves from there to a new one if and only if an improvement was made.

NP: the class of decision problems that are solvable in polynomial time by a non-

deterministic Turing machine.

NP-Complete: a problem x that is in NP is also in NP-Complete if and only if every

other problem in NP can be transformed into x in polynomial time.

NP-Hard: the class of decision problems that are at least as hard as the hardest

problems in NP.
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1.5 Outline

In this subsection we briefly present the structure that is followed and the sections

of this thesis.

Firstly, the introductory section includes a presentation and a description of the

subject in a general context, aiming to a fundamental acquaintance with the con-

cept and the significance of it. Additionally, this part explains the purpose and the

conclusions of this study, along with the required basic terminology of the specific

sector.

The next two sections cover analytically the theoretical background of the sub-

ject, with regard to the details of the problem as well as the details of the applied

computational method. The second section describes the problem of scheduling air-

craft landings and the crucial information related with it. In addition, we declare the

variations of the problem mainly focused on the static case. Furthermore, this part

specifies the mathematical model that is used and the computational complexity of

the static case of the ALS problem.

In the third section we present the matheuristic method. We refer to the heuristic

and metaheuristic procedures for solving optimization problems and present in detail

the individual categories. After mentioning some historical facts about metaheuristic

methods, the problems in which they can be applied and a reference to the interior-

point method and local search, we present the Variable Neighborhood Search (VNS)

algorithm. We describe in depth the details of the method along with its variants

(Variable Neighborhood Descent, General VNS, Basic VNS, Reduced VNS, Skewed

VNS etc), which are applied for the matheuristic solution of the ALS.

The following section includes the review of some of the most significant literature

and related research already conducted.

In the next and critical section of this thesis, we describe in detail the development

of the algorithms in Python programming language, both the process of implementa-

tion and the application process in some instances from the OR Library. Moreover,

this chapter includes the evaluation of the effectiveness, a comparative study and

statistical tests of the results regarding the aforementioned algorithms, as well as the
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results of the Gurobi optimization solver for the mathematical model.

Finally, in the last section of the thesis, we draw the conclusions of the study and

some suggestions for further research upon the topic.

The literature and references related to the subject are mentioned in the end of

this thesis.

6



2 Aircraft Landing Scheduling

2.1 Introduction

The continuous and rapid increase of civil air traffic in a global level, along with

the limited capability of expanding airport infrastructures has led to airports and

their runways being the ‘‘bottleneck’’ in airport system. One solution would be to

expand airport infrastructures and create a suitable space for smooth operations.

Nevertheless, most of the times, this is not a realistic one, due to numerous reasons,

such as financial, geographical, environmental, spatial planning and, normally, it is

prefered to make the best use of the already existing infrastructure through improved

scheduling.

Figure 1: ‘‘The busy summer skies’’
[www.flightradar24.com][51]

According to United States Department of Transportation, the causes of flight de-

lays are classified in the following categories:

1. Air Carrier: The cause of the cancellation or delay was due to circumstances

within the airline’s control (e.g. maintenance or crew problems, aircraft cleaning,
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baggage loading, fueling, etc.).

2. Extreme Weather: Significant meteorological conditions (actual or forecasted)

that, in the judgment of the carrier, delays or prevents the operation of a flight

such as tornado, blizzard or hurricane.

3. National Aviation System (NAS): Delays and cancellations attributable to the

national aviation system that refer to a broad set of conditions, such as non-

extreme weather conditions, airport operations, heavy traffic volume, and air

traffic control.

4. Late-arriving aircraft: A previous flight with same aircraft arrived late, causing

the present flight to depart late.

5. Security: Delays or cancellations caused by evacuation of a terminal or con-

course, re-boarding of aircraft because of security breach, inoperative screening

equipment and/or long lines in excess of 29 minutes at screening areas.

The following figure presents the percentage of total delay minutes for each of the

these categories:

Figure 2: Delay cause by year, as a percent of total delay minutes

[www.bts.dot.gov] [48]
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As is known, the cost of air transportation is, generally, higher related to other

means of transport. The aforementioned bottleneck could affect the flight schedule

and cause delays and rescheduling, leading to reduced functionality and an enor-

mous cost. Therefore, the effective utilization of the available capacities is of utmost

significance. Considering that the availability of the runways is subject to constraints,

consequently arises the problem of aircraft landing scheduling (ALS).

Figure 3: Athens International Airport-Annual flights 2014-2019

[www.aia.gr][46]
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Figure 4: Annual passengers 2003-2018 on all flights to and from the United States

[www.bts.dot.gov][47]
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Figure 5: Evolution of total passenger throughput (in millions) at the 10 largest
airports in Asia: 2008-2015

[centreforaviation.com][43]

The above figures show the general increasing trend in the number of flights and

passengers. Regarding the last diagram, it is mentioned that ‘‘For some of Asia’s 10

largest airports in 2015 100 million annual passengers was a distant target - not in

terms of demand but of available infrastructure.’’ [centreforaviation.com][43] An im-

proved and suitable scheduling could, firstly, decrease the cost in time and financial

terms and, potentially, lead to the ability of achieving a greater increasement in the

number of flights and passengers.

2.2 ALS problem

Air Traffic Control (ATC) is responsible for the safety of the operations into and

above the runway. As soon as an airplane enters the radar horizon, ATC provide

the required directions to the pilot, for the assigned landing time, change of speed,
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height or direction. Moreover, if there are more than one runways available, the

assigned runway on which to proceed with the landing. ‘‘The airport control tower

is responsible for ground traffic, and take-off and landing within about 5 nautical

miles of the airport and 3000 ft above ground level. The terminal airspace control

centre handles departures and arrivals up to 40 nautical miles and 10,000 ft from

the airport. Finally, the en-route control centre deals with traffic outside the terminal

manoeuvring area.’’ [Bennell et al. (2017)][8] A commonly used strategy for scheduling

aircraft landings is ‘‘first come first serve’’ (FCFS) according to the time each aircraft

is detected by the ATC radar. Although this method is straightforwardly applied, it

could cause unnecessary delays and sometimes be not effective in busy situations.

The landing time of each aircraft is (strictly) bounded between a time window which

depends mainly on the specifications and capabilities of the aircraft. The time that

an aircraft can perform the landing directly after approaching the airport, while flying

at the maximum allowed speed, is the earliest landing time (lower bound). The latest

landing time (upper bound) denotes the time that an aircraft can land after flying at

its most fuel-efficient airspeed and circling (holding) for the maximum possible time.

[Beasley et al. (2000)][5] This limitation is resulting from the finite available fuel that

remains to every aircraft while arriving at the destination airport. Admittedly, these

time windows constitute hard constraints and a critical factor of scheduling aircraft

landings. Ideally, earliest and latest landing time should not be overly close because

this could render the problem infeasible.

Moreover, these time windows include the target landing time, which is the pre-

ferred landing time produced when the aircraft flies at the most economical speed

(cruise speed), and lands without delay. As shown in the next figure, any deviation

from the target landing time, either the aircraft is assigned to land earlier or later, will

incur an additional cost, which will grow as this deviation grows.

12



Figure 6: Variation in cost for a plane within its time window

[Beasley et al. (2000)][5]

Another critical restriction that has to be taken into consideration while schedul-

ing runway operations is the separation time. The time interval between assigned

landing times of a leading and a following aircraft must be greater than a specified

minimum to operate safely. ‘‘The amount of separation required is determined by col-

lision avoidance, wake turbulence, and other issues. Wake turbulence is generated

when an aircraft generates lift. In general, heavier aircraft produce stronger wake

turbulence and lighter aircraft are more vulnerable. If following aircraft are not suf-

ficiently separated from the wake of the preceding aircraft, the turbulence could be

sufficiently strong enough to result in violent aircraft accelerations. This is one reason

why, for take-off and landing, all passengers and crew are seated and belted. In the

worst case, wake turbulence could cause the encountering aircraft to lose control and

crash. Wake separation standards and their associated procedures are designed to

minimize the likelihood of this occurring.’’ [www.aerodefensetech.com][45] The figure

below describes the wake turbulence generated by an aircraft.

13



Figure 7: Area affected by aerodynamic turbulence created by an aircraft

[aviationknowledge.wikidot.com][42]

Therefore, landing a heavy aircraft requires a wider time interval before another air-

craft can land. On the other side, the separation time between a light aircraft and the

one that follows is (relatively) small as it generates less turbulence. Considering that

the separation time issue is evenly significant, several organizations are responsible

for the regulation.

The International Civil Aviation Organization (ICAO) is a UN specialized agency,

established by States in 1944 to manage the administration and governance of the

Convention on International Civil Aviation (Chicago Convention). ICAO works with the

Convention’s 193 Member States and industry groups to reach consensus on inter-

national civil aviation Standards and Recommended Practices (SARPs) and policies in

support of a safe, efficient, secure, economically sustainable and environmentally re-

sponsible civil aviation sector. [www.icao.int][53] According to ICAO, wake turbulence

separation minima shall be based on a grouping of aircraft types into three categories

according to the maximum certificated take-off mass as follows:
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1. HEAVY (H) - all aircraft types of 136000 kg or more

2. MEDIUM (M) - aircraft types less than 136000 kg but more than 7000 kg

3. LIGHT (L) - aircraft types of 7000 kg or less

The following distance-based wake turbulence separation minima shall be applied to

aircraft being provided with an ATS surveillance service in the approach and departure

phases of flight.

Figure 8: ICAO distance-based wake turbulence separation minima

[www.icao.int][52]

The Federal Aviation Administration (FAA) is the agency of the United States De-

partment of Transportation responsible for the regulation and oversight of civil aviation

within the U.S., as well as operation and development of the National Airspace System.

Its primary mission is to ensure safety of civil aviation. [www.skybrary.aero][54] As far

as Europe is concerned, European Union Aviation Safety Agency (EASA) is the centre-

piece of the European Union’s strategy for aviation safety. Its mission is to promote

the highest common standards of safety and environmental protection in civil aviation.

[www.easa.europa.eu][49] The initial standards set by ICAO are defined based on the

worst case in each category and this may lead to over separation in many instances.

For this reason, organizations like FAA and EASA reconsider them lately, for a better

classification of aircrafts and separations (as these in the following figures), which

improves the capacity of the airports.
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Figure 9: Categorisation process and criteria for assigning an existing aircraft type
into RECAT-EU scheme (MTOW: Maximum Takeoff Weight)

[www.eurocontrol.int][50]

Figure 10: RECAT-EU WT distance-based separation minima on approach and
departure

[www.eurocontrol.int][50]
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Figure 11: RECAT-EU WT time-based separation minima on departure

[www.eurocontrol.int][50]

2.3 Mathematical formulation and computational complexity

ALS is doubtlessly a complex and time sensitive problem. For this reason, an

analytical model presentation is required, to make more specific the restrictions that

must be met. The model is adopted from Beasley et al. [2000][5], for the static case

with a single runway. Let the following notation for the parameters:
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P = the number of planes

Ei = the earliest landing time for plane i (i = 1, . . . , P)

Li = the latest landing time for plane i (i = 1, . . . , P)

Ti = the target (preferred) landing time for plane i (i = 1, . . . , P)

Si j = the required separation time (>0) between plane i landing and plane j landing

(where plane i lands before plane j), i = 1, . . . , P; j = 1, . . . , P; i 6= j

gi = the penalty cost (>0) per unit of time for landing before the target time Ti for plane i

(i = 1, . . . , P)

hi = the penalty cost (>0) per unit of time for landing after the target time Ti for plane i

(i = 1, . . . , P)

Therefore, the time window for the landing of plane i is [Ei, Li], where Ei 6 Ti 6 Li.

The decision variables are:

xi = the landing time for plane i (i = 1, . . . , P)

αi = how soon plane i (i = 1, . . . , P) lands before Ti

βi = how soon plane i (i = 1, . . . , P) lands after Ti

δi j =

1, if plane i lands before plane j (i = 1, . . . , P; j = 1, . . . , P; i 6= j)

0, otherwise

Without significant loss of generality, we shall henceforth assume that the times Ei,

Li, and Si j are integers.
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The mathematical model is formed as follows:

Objective function:

minimize
P

∑
i=1

(giαi +hiβi) (1)

Under the constraints:

Ei 6 xi 6 Li, i = 1,2, ...,P (2)

δi j +δ ji = 1, i = 1,2, ...,P; j = 1, ...,P; j > i (3)

x j− xi > Si j, i = 1,2, ...,P; j = 1, ...,P; i 6= j (4)

xi = Ti−αi +βi, i = 1,2, ...,P (5)

αi > Ti− xi, i = 1,2, ...,P (6)

0 6 αi 6 Ti−Ei, i = 1,2, ...,P (7)

βi > xi−Ti, i = 1,2, ...,P (8)

0 6 βi 6 Li−Ei, i = 1,2, ...,P (9)

In more detail, the objective function (1) minimizes the deviation cost of the landing

times from the target times. Constraint (2) ensures that each aircraft lands within its

time window [Ei, Li] and constraint (3) ensures that for each pair (i, j), either plane

i must land before plane j (δi j = 1) or plane j must land before plane i (δ ji = 1).

Following, constraint (4) ensures the proper separation, at least Si j time, that must

be considered between aircrafts i and j. Constraint (5) relates the landing time (xi) of

an aircraft i to the time i lands before (αi), or after (βi), target (Ti). Finally, constraints

(6) and (7) ensure that αi is at least as big as zero and the time difference between Ti

and xi, and at most the time difference between Ti and Ei. Constraints (8) and (9) are

similar constraints for βi.
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Figure 12: An example of overlapping time windows

[Beasley et al. (2000)][5]

If the concepts ‘‘aircraft’’ and ‘‘runway’’ are taken into account as variables in gen-

eral, the ALS problem can be considered as common with other known scheduling

problems. As described by D’Ariano et al. [2012][13], this problem can be viewed as

a Job Shop Scheduling (JSS) problem with additional real-world constraints, mod-

elled via alternative graph as a general formulation of the JSS problem, where a job

(aircraft/landing operation) must undertake a prescribed sequence of operations on

specific machines - with capacity 1 (runways). The target landing time of aircraft j

corresponds to the ready time of r j of job j; the landing time of aircraft j corresponds

to the starting time s j of job j; the time aircraft j frees the runway corresponds to

the completion time C j of job j; the minimum separation time S ji between the landing

of aircraft j and the landing of the immediately following aircraft i corresponds to

the sequence-dependent processing time c ji. Since this formulation is possible, it is

straightforward to affiliate the ALS to the category of strongly NP-hard optimization

problems, as JSS. Hence, this computational complexity behind the problem restricts

the optimal solutions in polynomial time even for medium-sized instances. Addition-

ally, it is highly important to provide a feasible schedule of landings in an acceptable

time.
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2.4 ALS variants

As mentioned in previous sections, this thesis presents the static case of the ALS

problem with a single runway. The two main variants of this problem are the static (off-

line) and the dynamic (on-line, real-time) case. In the first case, the number of planes,

as well as the related times, costs etc and eventually the schedule, are predefined. In

the dynamic case, updating rules are constantly applied and it is possible to manage

a new plane out of the actual schedule. Both of these variants can be formulated for a

single or for multiple runways. Moreover, different objective functions can be applied,

regarding the preferred variables, for example time or cost. In addition, it is possible

to include airlines’ preferences, or increase and decrease the traffic for certain periods

of time.

Apart from these, since the model used in this case and in the rest variants can be

formulated using time constraints depending on the time windows and is not affected

by the operation, it can be applied (or include) also for take-offs. In the case of

multiple runways, landings and take-offs are usually separated in different runways

(segregated mode), mixed mode is rarely used.
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3 Heuristics, Metaheuristics & Matheuristics

3.1 Introduction

The object of Optimization is to find the best solution from the total of feasible ones

for a certain problem. There are several methods suggested to achieve this purpose.

An instance of an optimization problem is a pair (S, f ), where S is a finite set of

solutions and f : S �R is the objective (evaluation) function for the solutions, which is

intended to be minimized or maximized, depending on the problem and the require-

ments. The aim of this process is to find a solution s′ ∈ S, so that f (s′) 6 f (s), ∀

s ∈ S, whether it is a minimization problem or f (s′)> f (s), ∀ s ∈ S, for a maximization

problem, respectively.

Regarding the solution process of optimization problems (especially NP-complete

problems), we have some general methods at our disposal, which could be applied

in whichever problem and they include the exact algorithms, local search and meta-

heuristics. However, there are also specific methods available which depend directly

and they are designed for the problem they aim to solve. Approximation algorithms

and heuristics are included in this method category. Generally, the methods that

are commonly applied are exact methods of operational research, of which the most

significant examples are the linear programming algorithm Simplex and its variations

(Dual Simplex, Big M method etc) as well as interior-point methods.

However, in cases of NP-hard and large-scale optimization problems, for example

travelling salesman (TSP), knapsack, scheduling, vehicle routing, bin packing, facility

location etc, the conventional methods cannot be, usually, effective enough. The

search space is more complex and it is not manageable, most of the times, to find a

solution in polynomial time (unless P = NP).

One of the crucial and effective methods that have been applied to achieve an

acceptable solution in the aforementioned NP-hard problems, from the field of integer

programming, is Branch and Bound technique. The basic principle of this approach

is that the total set of feasible solutions can be separated into smaller subsets of
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solutions which can afterwards be evaluated systematically until the best (optimal)

solution is found.

Related research also includes heuristic methods as an approach to find a sub-

optimal solution in short computational time. This kind of methods are normally

efficient in local search, finding a quality solution in a limited search space. Meta-

heuristic methods can gradually guide the search process using heuristic methods

and, although they cannot assure an optimal solution, they generally provide quality

results.

According to Blum & Roli [2003, p. 270-271][10], in mathematical optimization

and computer science, metaheuristic methods are characterized by the following fun-

damental properties:

1. Metaheuristics are strategies that ‘‘guide’’ the search process.

2. The goal is to efficiently explore the search space in order to find (near-) optimal

solutions.

3. Techniques which constitute meta-heuristic algorithms range from simple local

search procedures to complex learning processes.

4. Metaheuristic algorithms are approximate and usually non-deterministic.

5. They may incorporate mechanisms to avoid getting trapped in confined areas of

the search space.

6. The basic concepts of metaheuristics permit an abstract level description.

7. Metaheuristics are not problem-specific.

8. Metaheuristics may make use of domain-specific knowledge in the form of heuris-

tics that are controlled by the upper level strategy.

9. Todays more advanced metaheuristics use search experience (embodied in some

form of memory) to guide the search.
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In short, we could say that metaheuristics are high level strategies for exploring search

spaces by using different methods. Of great importance hereby is that adynamic

balance is given between diversification and intensification. The term diversification

generally refers to the exploration of the search space, whereas the term intensification

refers to the exploitation of the accumulated search experience.

According to related literature, the word ‘‘metaheuristic’’ was coined by Fred Glover,

Professor of Computer Science Applied Mathematics in the University of Colorado

[Yang (2011)][40]. As mentioned before, metaheuristic procedures cannot promise a

global optimal solution. They commonly operate some kind of stochastic methods

and the resulting solution depends on the random variables that have been applied.

However, high quality solutions can be achieved in large-scale problems through the

search in a large set of feasible solutions.

Related literature involves plenty of experimental computations and results, re-

garding the advantages, disadvantages and effectiveness of metaheuristic approaches

to a variety of problems.

While the aforementioned methods have been widely used, the matheuristic ap-

proach has gained attention lately, combining the power of mathematical program-

ming with the flexibility of metaheuristics. Puchinger & Raidl [2005][34] proposed an

early survey and classification on combining metaheuristics and exact algorithms in

combinatorial optimization. Matheuristics have demonstrated significant results as

solution approach for complex optimization problems (routing, scheduling, bin pack-

ing, logistics etc).

3.2 Metaheuristics classification

There is a wide variety of metaheuristics and a set of properties according to which

they can be classified. The most important are the following:

� Population-based metaheuristics and single-point metaheuristics. This classi-

fication is based on the number of solutions that are manipulated by the pro-
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cedure at any given time. Examples of population-based metaheuristics are

Genetic Algorithms, Ant Colony Optimization, Particle Swarm Optimization etc,

which manipulate a set of solutions (population) at each iteration. On the other

side, Simulated Annealing, Variable Neighborhood Search etc. are single-point

metaheuristics, with one solution at each iteration.

� Memory-based metaheuristics and memory-less metaheuristics. This classifica-

tion is based on the use of memory (search history) or not by the metaheuristic.

Tabu search, Scatter Search and Ant Colony Optimization are examples of algo-

rithms for which memory is a crucial element. Variable Neighborhood Search,

Iterated Local Search etc. are memory-less metaheuristics.

� Nature-inspired metaheuristics and non-nature-inspired metaheuristics. This

classification is based on the origins of a metaheuristic. Examples of nature-

inspired metaheuristics are Genetic Algorithms, Particle Swarm Optimization

and Ant Colony Optimization. Variable Neighborhood Search, Tabu Search,

GRASP etc. belong to the category of non-nature-inspired metaheuristics.

In the following figure are presented the various categories of metaheuristics.
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Figure 13: Metaheuristics classification

[en.wikipedia.org][44]

3.3 Historical references

Apart from the great variety of the existing metaheuristics, new variations are con-

stantly being proposed. A number of the most significant contributions in this field

are presented in this section. [en.wikipedia.org][44]

� Stochastic approximation, Herbert Robbins-Sutton Monro, 1951[36]

As mentioned before, the term ‘‘metaheuristc’’ was referred for the first time by

Fred Glover in 1986[17]. Nevertheless, the research in the sector of optimization,

that led to results which created a new approach in solving optimization prob-

lems through metaheuristic procedures, had started earlier, at least at 1952,
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with crucial results, with the research in stochastic approximation by Robbins

and Monro.

� Random search, Leonard Andreevich Rastrigin, 1963[35]

Leonard Andreevich Rastrigin, in 1963, made a premature presentation of ran-

dom search along with some basic mathematical analysis and proposed it as a

method for solving optimization problems.

� Random optimization, J. Matyas, 1965[29]

In 1965, J. Matyas proposed the method of random optimization. Both random

search and random optimization are groups of numerical optimization meth-

ods that do not require the slope of the problem to be optimized, and therefore

both can be used in functions that are not continuous or differentiable. Such

optimization methods are also known as direct search methods, derivative free

methods, or black-box methods. Random search works repeatedly in better

search positions, which have been sampled by a superspace surrounding the

current location, while random optimization works by moving repeatedly to bet-

ter places in the search space, which have been sampled using, for example, a

normal distribution around the current location.

� Evolutionary programming, L. Fogel-A. Owens-M. Walsh, 1966[14]

In 1966, L. Fogel, A. Owens and M. Walsh, proposed evolutionary programming,

one of the four significant examples of evolutionary algorithms. Evolutionary

programming is similar to genetic programming, but its structure is stable, while

its numerical parameters are allowed to evolve. Fogel first used evolutionary

programming in 1960 in the United States in order to use simulated evolution as

a learning process aimed at creating artificial intelligence. Fogel used finite state

machines as prognostic factors and then developed them. Today, evolutionary

programming is a major evolutionary computational dialect without a stable

structure, unlike some of the other dialects, and it is becoming increasingly

difficult to distinguish it from evolutionary strategies.
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� Genetic algorithm, John Henry Holland, 1975[25]

In 1975, John Henry Holland proposed the Genetic algorithm, a heuristic search

that mimics the process of natural selection.

� Scatter search, Fred Glover, 1977[16]

In 1977, Fred Glover proposed Scatter Search as a technique for combining de-

cision making and constraints to solve integer programming problems. Scatter

search systematically combines some ‘‘good’’ solutions (reference points) from

previous steps and creates new points by applying additional steps, if it is re-

quired, rendering them feasible solutions.

� Genetic programming, Stephen Smith, 1980[39]

In 1980, we have the description of Genetic programming by Stephen Smith.

In artificial intelligence, Genetic programming is a methodology based on an

evolutionary algorithm, inspired by biological evolution, which is used to find

computer programs that perform a task assigned by the user.

� Simulated annealing, Scott Kirkpatrick-Charles Gelatt-Mario Vecchi, 1983[27]

In 1983 we have the proposal of Simulated Annealing (SA) by Scott Kirkpatrick,

Charles Gelatt and Mario Vecchi. Simulated annealing is a general probabilistic

metaheuristic for the total optimization problem of placing a good approach to

the total optimal of a given function in a large search space. It is often used

when the search space is distinct. For some problems, simulated annealing may

be more effective than exhaustive enumeration, under the condition that the

purpose is to find an acceptable solution over a certain period of time, rather

than finding the optimal solution.

� Tabu search, Fred Glover, 1986[17]

In 1986, Tabu Search is introduced along with the first mention of the term

"metaheuristic" by Fred Glover. Tabu search is a metaheuristic search method

that uses local search methods of mathematical optimization. Local searches
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(or neighborhood searches) obtain a candidate solution to a problem and explore

its neighbors aiming to finding an improved solution. Local search methods

tend to ‘‘get trapped’’ to sub-optimal areas or plateaus, where many solutions

are equal. Tabu search improves the performance of these techniques by using

memory structures that describe the solutions that have been visited or the user-

provided set of rules. If a candidate solution has been visited in the past within

a certain short period of time or if it has violated a rule, then it is classified as

‘‘tabu’’ (forbidden), so that the algorithm eliminates it.

� Ant Colony optimization, Marco Doringo, 1992[11]

In 1992, Marco Doringo introduced in his PhD dissertation one of the recent

contributions, the Ant Colony Optimization (ACO) method. ACO is a probabilistic

technique for solving computational problems, aiming to reduce the intractability

of them by discovering ‘‘good’’ paths through graphs.

3.4 Interior-Point Methods

Interior-point methods are a certain class of algorithms that solve linear and non-

linear convex optimization problems. Linear programming has received significant

attention due to the extensive number of applications in science, industry, business,

and other fields.

Dantzig proposed the simplex method in 1947, making an initial step for strong

research activity in the area of linear programming and optimization in general. The

main concept of this algorithm is to ‘‘move’’ from vertex to vertex, along the edge of

a feasible region, on which the objective function is decreasing (minimize) or increas-

ing (maximize). Simplex method’s efficiency in solving practical problems led to high

popularity and years of experiments and applications, resulting gradually in better

variants of this algorithm, commonly called pivoting algorithms. Although pivoting al-

gorithms are finite processes, they are not polynomial algorithms. In 1979, Khachiyan
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presented the ellipsoid algorithm, the first polynomial algorithm for linear program-

ming. Unfortunately, computational experiments showed that this algorithm, even

with various modifications, performs worse than the simplex method on most prac-

tical problems. In 1984, Karmakar proposed a new polynomial algorithm for linear

programming, quite different than simplex algorithm. It’s iterates are calculated in

the interior of the feasible region, not on the boundary and makes use of projective

transformations and a potential function. Karmarkar’s algorithm initiated the field of

interior-point methods, high research activity in related areas and a variety of different

interior- point methods. It can be shown that Karmarkar’s algorithm achieves better

iteration complexity than the ellipsoid algorithm.

A generic interior-point algorithm for the linear programming problem is presented

below.

Considering a linear programming problem in the standard form:

min cT x (10)

s.t. Ax = b, (11)

s > 0 (12)

The interior-point algorithm can be summarized as follows:

1. Initialization

(a) Choose β ,γ ∈ (0,1) and (εP,εD,εG)> 0

Choose (x0,y0,s0) such that (x0,s0)> 0 and ||X0s0−µ0e||6 β µ0

where µ0 =
(x0)T s0

n

(b) Set k = 0
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2. Step

(a) Set rk
P = b−Axk, rk

D = c−AT yk− sk, µk =
(xk)T sk

n

(b) Check the termination. If ||rk
P||6 εP, ||rk

D||6 εD, (xk)T sk 6 εG, then terminate

(c) Compute the direction by solving the system


A 0 0

0 AT I

Sk 0 Xk




dx

dy

ds

=


rk

P

rk
D

−Xksk + γµke


(d) Compute the step size

αk = max{α ′ : ||X(α)s(α)−µ(α)e||6 β µ(α), ∀α ∈ [0,α ′]},

where x(α) = xk +αdx, s(α) = sk +αds, µ(α) = xT (α)s(α)
n

(e) Update xk+1 = xk +αkdx, yk+1 = yk +αkdy, sk+1 = sk +αkds

(f) Set k = k+1 and go to step 3

The following figure presents the graphical representation of the interior-point method.

Figure 14: Graphical representation of the interior-point method

[Lesaja (2009)][28]
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3.5 Local Search

Local search is a widely used heuristic method for solving NP-hard optimization

problems. The main technique of this method is descending from an initial solution to

another within a neighborhood until there in not a descending direction or a stopping

condition is met.

The selection of the next solution is based on the information that is derived from

the evaluation of each neighbor. Commonly, the direction that is used is best im-

provement. The next solution is chosen after exploring the whole neighborhood. How-

ever, in some cases, especially in large search spaces, this direction can be extremely

time-consuming and the first improvement technique is preferred to be used. In this

direction, the move to a new solution occurs as soon as the first ‘‘better’’ solution is

found.

Both of these directions are presented below:

function BestImprovement (x);

repeat

x′← x;

x′← argminy∈N(x) f (y)

until ( f (x)> f (x′));

end function
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function FirstImprovement (x);

repeat

x′← x; i← 0;

repeat

i← i+1;

x′← argmin{ f (x), f (xi)}, xi ∈ N(x)

until ( f (x)< f (xi) or i = |N(x)|);

until ( f (x)> f (x′));

end function

[Hansen et al. (2008)][21]

3.6 VNS algorithm

3.6.1 Introduction

Variable Neighborhood Search (VNS) is a recent metaheuristic method which was

introduced by Pierre Hansen and Nenad Mladenovic in 1997, in Computers and Op-

erations Research journal. This method constitutes a framework which provides the

capability of developing heuristic algorithms to solve combinatorial and global opti-

mization problems.

VNS manages an iterated local search procedure, exploring the neighborhoods of

the current solution (local best) and moves to a new solution if and only if it provides

an improvement. The main concept consists of the systematic neighborhood change,

which is achieved firstly through the descending phase, aiming to find a local best and

secondly the shaking phase to change neighborhood.

According to Hansen & Mladenovic [2003][20], VNS exploits systematically the

following observations:

1. A local minimum with respect to one neighborhood structure is not necessary
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so for another.

2. A global minimum is a local minimum with respect to all possible neighborhood

structures.

3. For many problems local minima with respect to one or several neighborhoods

are relatively close to each other.

This last observation, which is empirical, implies that a local optimum often

provides some information about the global one. This may for instance be several

variables with the same value in both. However, it is usually not known which

ones are such.

3.6.2 VNS description

Let Nk,k = 1, ...,kmax denote a finite set of pre-selected neighborhood structures and

Nk(x) the set of solutions in the kth neighborhood of x. The VNS algorithm includes the

following steps:

1. Initialization

(a) Select the set of neighborhood structures Nk,k = 1, ...,kmax, that will be used

in the search

(b) find an initial solution x

(c) choose a stopping condition

2. Repeat the following until the stopping condition is met

(a) Set k = 1

(b) Until k = kmax, repeat the following steps:

i. Shaking. Generate a point x′ at random from the kth neighborhood of

x (x′ ∈ Nk(x))
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ii. Local search. Apply some local search method with x′ as initial solution;

denote with x′′ the so obtained local optimum

iii. Move or not. If this local optimum is better than the incumbent, move

there (x = x′′), and continue the search with N1; otherwise, set k = k+1

[Hansen & Mladenovic (1999)][19]

The suggested stopping conditions mentioned by Hansen and Mladenovic are max-

imum CPU time allowed, maximum number of iterations, or maximum number of

iterations between two improvements. Furthermore, in the stochastic part of the

above steps, the random generated point x′, aims to avoid cycling, which could occur

whether any deterministic rule was applied.

In addition, a special mention is included by the authors, for the ease of imple-

mentation of both the basic version of VNS (with only one parameter kmax) and various

simple extensions of it. Furthermore, some problem specific questions are declared,

that need to be answered when developing VNS for solving each particular problem,

where we use more than one neighborhood:

1. what Nk should be used and how many of them?

2. what should be their order in the search?

3. what search strategy should be used in changing neighborhoods?

4. what local search routine will be used?

3.6.3 VNS variants

VNS has been proved to constitute an efficient approach for obtaining an approx-

imate solution to a variety of demanding optimization problems. However, it still

remains incapable to solve major instances. As mentioned in the related literature,

the size of the problems considered is in practice more limited by the tools available
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to solve them than by the needs of the potential users of these tools. Hence, improve-

ments appear to be highly desirable. Moreover, when heuristics are applied to very

large instances, their strengths and weaknesses become clearly apparent. [Hansen et

al. (2008)][21] Therefore, Hansen and Mladenovic presented a number of VNS variants

to improve its efficiency. These variants are resulting from the aforementioned (in the

introduction of this section) observations, used in the following different ways:

� deterministic

� stochastic

� both deterministic and stochastic

[Hansen et al. (2008)][21]

However, a common function of neighborhood change (which is applied only when an

improvement occurs) is implemented to the total of variants, which is described below:

function NeighborhoodChange (x,x′,k);

if f (x′)< f (x) then

x← x′; k← 1 /*Make a move*/;

else

k← k+1 /*Next neighborhood*/;

end if

end function

[Hansen et al. (2008)][21]

Another significant component in VNS is shaking function, which is the stochastic

addition in the procedure, as mentioned previously. The following function presents

this component:
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function Shake (x,k,N);

choose x′ ∈ Nk(x) at random;

return x′

end function

[Hansen et al. (2016)][23]

Variable Neighborhood Descent (VND)

VND is the deterministic variant of VNS. According to Duarte et al. [2016][12], VND

explores small neighborhoods until a local optimum is encountered. At that point,

the search process switches to a different (typically larger) neighborhood that might

allow further progress. This approach is based on the fact that a local optimum is

defined with respect to a neighborhood relation, such that if a candidate solution x

is locally optimal in a neighborhood Ni(x), it is not necessarily a local optimum for

another neighborhood N j(x). Thus, VND explores the solution space using several

neighborhood structures either in a (i) sequential, (ii) a nested (or composite), or (iii)

mixed nested way. VND process is described below:
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procedure VND (Given Nk, (k = 1, ...,kmax) and some x ∈ X )

repeat

k = 1;

repeat

x′← localSearch(x,Nk(x));

if f (x′)< f (x) then

x← x′

else

k← k+1;

end if

until k = kmax;

until (some stop condition is satis f ied)

end procedure

[Gomes et al. (2004)][18]

Reduced VNS (RVNS)

RVNS implements the stochastic neighborhood change by selecting a point x′ ran-

domly from Nk(x), through the shake function. As described in the neighborhood

change function, the change is applied if and only if an improvement occurs. The

algorithm is performing iteratively until a termination condition (for example the con-

ditions suggested by Hansen and Mladenovic) is met. The structure of RVNS is the

following:
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function RVNS (x,kmax, tmax);

repeat

k = 1;

repeat

x′← Shake(x,k);

NeighborhoodChange(x,x′,k);

until k = kmax;

t←CpuTime()

until t > tmax;

end function

[Hansen et al. (2008)][21]

In this case, the time condition used for example is (tmax). Hansen et al. [2008][21]

also noted: ‘‘RVNS is useful in very large instances, for which local search is costly.

It has been observed that the best value for the parameter kmax is often 2. In

addition, the maximum number of iterations between two improvements is usually

used as a stopping condition. RVNS is akin to a Monte-Carlo method, but is more

systematic (see, for example, Mladenovic et al.(2003b)) where the results obtained by

RVNS were 30% better than those of the Monte-Carlo method in solving a continuous

min−max problem).’’

Basic VNS (BVNS)

The method that combines the deterministic and stochastic approach of changing

neighborhoods is basic VNS. [Hansen et al. (2009)][22] After an initial solution is ran-

domly selected, shake function is applied, followed by local search (best improvement)

descending, which is the deterministic part of the process. Furthermore, the last step

of the process is neighborhood change, which iterates until a termination condition is

met.
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function BVNS (pmax, tmax);

S← InitialSolution();

repeat

p← 1;

while p 6 pmax do

S′← Shake(S, p) /*Shaking*/;

S′′← LocalSearch(S′) /*Local search*/;

p← p+1 /*Next neighborhood*/;

if S′′ is better than S then

S← S′′; p← 1 /*Make a move*/;

end if

end while

t←CpuTime()

until t > tmax;

return S;

end function

[Amirgaliyeva et al. (2017)][3]

The above function shows the structure of this process.

General VNS (GVNS)

GVNS is similar to VNS method. The only difference found (as presented in the func-

tion below) is in the local search, where local search of VNS is replaced with VND.

‘‘Using this general VNS (VNS/VND) approach has led to the most successful applica-

tions reported.’’ [Hansen et al. (2009)][22]
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function GVNS (x,k′max,kmax, tmax);

repeat

k← 1;

repeat

x′← Shake(x,k);

x′′←V ND(x′,k′max);

NeighborhoodChange(x,x′′,k);

until k = kmax;

t←CpuTime()

until t > tmax;

end function

[Hansen et al. (2008)][21]

Skewed VNS (SVNS)

As mentioned by Hansen et al.[2008][21], ‘‘The skewed VNS (SVNS) method addresses

the problem of exploring valleys far from the incumbent solution. Indeed, once the

best solution in a large region has been found, it is necessary to go some way to ob-

tain an improved one.’’ SVNS does not implement the common neighborhood change

function but a specific one that allows a current solution to move to the next (which is

randomly chosen) only if it is in a distant neighborhood and of similar quality. SVNS

includes the ‘‘KeepBest’’ and ‘‘NeighborhoodChangeS’’ functions, which are introduced

below, along with the SVNS function.
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function KeepBest(x,x′);

if f (x′)< f (x) then

x← x′;

end if

return x;

end function

function NeighborhoodChangeS(x,x′′,k,α );

if f (x′′)−αρ(x,x′′)< f (x) then

x← x′′; k← 1;

else

k← k+1;

end if

end function
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function SVNS (x,kmax, tmax,α );

repeat

k← 1; xbest ← x;

repeat

x′← Shake(x,k);

x′′← FirstImprovement(x′);

KeepBest(xbest ,x);

NeighborhoodChangeS(x,x′′,k,α);

until k = kmax;

x← xbest ;

t←CpuTime()

until t > tmax;

end function

[Hansen et al. (2008)][21]

Variable Neighborhood Decomposition Search (VNDS)

VNDS is a variant of BVNS and the main concept of this algorithm is the decomposition

of the problem. Having the awareness that for BVNS demanding to solve large-scale

problem, this variant is considered as an improved approach. An additional parameter

is added, td, and represents the running time given for solving decomposed (smaller

sized) problems by VNS. ‘‘For ease of presentation, but without loss of generality, we

assume that the solution x represents the set of some elements. In Step 4 we denote

with y a set of k solution attributes present in x′ but not in x(y= x′\x). In Step 5 we find

the local optimum y′ in the space of y; then we denote with x′′ the corresponding so-

lution in the whole space S(x′′ = (x′\y)∪ y′). We notice that exploiting some boundary

effects in a new solution can significantly improve the solution quality. This is why,

in Step 6, we find the local optimum x′′′ in the whole space S using x′′ as an initial

solution. If this becomes time-consuming, then at least a few local search iterations
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should be performed.’’ [Hansen et al. (2009)][22]

function VNDS (x,kmax, tmax, td);

repeat

k← 2;

repeat

x′← Shake(x,k); y← x′ \ x;

y′←V NS(y,k, td); x′′ = (x′ \ y)∪ y′;

x′′′← FirstImprovement(x′′);

NeighborhoodChange(x,x′′′,k);

until k = kmax;

until t > tmax;

end function

[Hansen et al. (2009)][22]

Parallel VNS (PVNS)

Parallelizing algorithms is normally used for decreasing computational time or in-

creasing the search space. VNS and its variants are included in the methods that

can be parallelized and are expected to increase their effectiveness. ‘‘Several ways

of parallelizing VNS have recently been proposed for solving the p-Median problem.

In Garcia-Lopez et al.[2002] three of them are tested: (i) parallelize local search; (ii)

augment the number of solutions drawn from the current neighborhood and make

a local search in parallel from each of them and (iii) do the same as (ii) but update

the information about the best solution found. The second version gives the best re-

sults. It is shown in Crainic et al. [2004] that assigning different neighbourhoods to

each processor and interrupting their work as soon as an improved solution is found

gives very good results. The best-known solutions have been found on several large
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instances taken from TSP-LIB Reinelt [1991]. Three Parallel VNS strategies are also

suggested for solving the Travelling purchaser problem in Ochi et al. [2001]. See

Moreno-Pérez et al. [2005] for details.’’ [Hansen et al. (2009)][22]

Primal-Dual VNS (PD-VNS)

Commonly, in heuristic methods, we are no aware of the optimal solution, therefore,

we cannot estimate its difference with the current solution. Whether a lower bound

on the objective function could be found, through relaxing the integrality condition

on the primal variables, we could determine the performance of the algorithm. Never-

theless, for large scale problems, it is not assured that standard commercial solvers

could achieve a solution. Hansen et al. [2009][22] suggest to solve heuristically dual

relaxed problems. ‘‘The next problem arises if we want to reach an exact solution

within a Branch and bound framework, since having the approximate value of the

relaxed dual does not allow us to branch easily, e.g., by exploiting complementary

slackness conditions. Thus, the exact value of the dual is necessary. In Primal-dual

VNS (PD-VNS) [Hansen et al. (2007a)] one possible general way to attain both the

guaranteed bounds and the exact solution is proposed.’’ The steps of the algorithms

are included in the figure bellow:

function PD-VNS (x,k′max,kmax, tmax);

BV NS(x,k′max,kmax, tmax) /*Solve primal by VNS*/ ;

DualFeasible(x,y) /*Find (infeasible) dual such that fP = fD*/;

DualV NS(y) /*Use VNS to decrease infeasibility*/;

DualExact(y) /*Find exact (relaxed) dual*/;

BandB(x,y) /*Apply branch-and-bound method*/;

end function

[Hansen et al. (2009)][22]
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Variable Neighborhood Formulation Space Search (VN-FSS)

A different approach to the problem formulation is introduced in VN-FSS algorithm by

Hansen et al. [2009][22]. Instead of one specific formulation, search could be applied

to different formulations and jump from one to another. Certainly, we refer to cases

were these formulations can be created. As the authors mention, each formulation

should lend itself to some traditional search method, its ‘‘local search’’ which works

totally within this formulation, and yields a final solution when started from some

initial solution. Any solution found in one formulation should easily be translatable

to its equivalent in any other formulation. We may then move from one formulation

to another, using the solution resulting from the former’s local search as an initial

solution for the latter’s local search. Such a strategy will, of course, be useful only in

situations where local searches in different formulations behave differently. This idea

was recently investigated in Mladenovic et al. [2005][31] using an approach which

systematically changes the formulations for solving circle packing problems (CPP). It

is shown there that the stationary point of a non-linear programming formulation of

CPP in Cartesian coordinates is not necessarily also a stationary point in a polar co-

ordinate system. A method Reformulation Descent (RD) is suggested which alternates

between these two formulations until the final solution is stationary with respect to

both. The results obtained were comparable with the best known values, but they

were achieved some 150 times faster than by an alternative single formulation ap-

proach. In the same paper, the idea suggested above of Formulation space search

(FSS) is also introduced, using more than two formulations. Some research in this

direction has been reported in Mladenovic [2005][31], Plastria et al. [2005][33], Hertz

et al. [2008][24].
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function FormulationChange (x,x′,φ ,φ ′, l);

if f (φ ′,x′)< f (φ ,x) then

φ ← φ ′; x← x′ l← lmin;

else

l← l + lstep;

end if

end function

function VNFSS (x,φ , lmax);

repeat

l← 1 /*Initialize formulation in F*/ ;

while l 6 lmax do

ShakeFormulation(x,x′,φ ,φ ′, l) /*(φ ′,x′) ∈ (Nl(φ),N(x)) at random*/;

FormulationChange(x,x′,φ ,φ ′, l) /*Change formulation*/;

end while

until some stopping condition is met;

end function

[Hansen et al. (2009)][22]
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4 Literature Review

Since the 1990s decade, there have been reports of attempts to solve the ALS prob-

lem, as it constitutes a real-life problem with gradually increasing complexity. Beyond

the analytical methods, there have also been used heuristic and metaheuristic proce-

dures to seek efficient solutions to acceptable search time for this NP-hard problem.

Although exact methods can provide optimal solutions, their computational time in-

creases exponentially as the size of the problem increases. This makes them suitable

only for small/medium sized problems.

Although FCFS is the most straightforward and frequently used method for com-

plex landing scheduling scenarios, it does not always provide the optimal solution.

Amrahov et al. [2011][4], presented a greedy algorithm and the experimental results

show that swapping the order of landings to decrease the delay leads to a 20% increase

in the landing rate, compared to FCFS in static cases. Abela et al. [1995][2] described

two methods for solving the ALS problem, an approximate solution approach using

a Genetic Algorithm (GA) and an exact, BB algorithm based on an exact formulation

of the problem as a 0-1 mixed integer programming (MIP) problem. Comparing these

methods, BB required less computational time in small cases (up to 15 aircraft) but

GA had better results in larger problems.

Beasley et al. [2000][5], presented a mixed-integer 0-1 formulation of the prob-

lem for the single runway case and extended the formulation to the multiple runway

case. They introduced the benchmark used in this thesis for up to 50 aircrafts and

four runways and presented computational results for a LP-based tree search and a

heuristic procedure. In 2004, Beasley et al.[6] introduced larger benchmarks, up to

500 aircrafts and 5 runways, and three solution approaches, one optimal and two

heuristic, for the displacement problem.

Hu & Paolo [2008][26] used GA based on a binary representation of arriving queues,

instead of permutation-representation-based GAs for aircraft arrival sequencing and

scheduling. Rather than using the order and/or arriving time of each aircraft in the

queue to construct chromosomes for GAs, the authors used the neighboring rela-
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tionship between each pair of aircraft, and the resulted chromosome is a 0-1-valued

matrix, adopting a highly efficient uniform crossover operator, which is normally not

applicable to those permutation representations. Comparative experiments proved the

advantages of the applied GA against permutation-representation-based GAs. Bing &

Wen [2010][9] introduced an improved artificial fish swarm algorithm (IAFSA), includ-

ing a mutation operator. The sequence problem of landing aircraft is solved, and the

simulation result shows that the IAFSA of ALS can decrease the total delay time by

24.1% compared to the FCFS, for the multiple runway case.

In 2013, Sama et al.[38] introduced a rolling horizon framework to manage busy

traffic situations with a large number of delayed aircrafts and compared a Branch

and Bound (BB) algorithm with a FCFS rule on practical size instances from Roma

Fiumicino and Milano Malpensa airports, in Italy. Computational results demonstrate

that, regarding the rolling horizon approach, BB achieved better results in both static

and dynamic cases, requiring also less scheduling changes on flights. Salehipour et al.

[2013][37] designed a hybrid metaheuristic applying simulated annealing framework,

with the objective of minimizing the total deviation of landing time from the target time.

The authors applied the proposed approach up to 500 aircrafts and 5 runways, a set

of 13 instances introduced by Beasley et al. The computational results demonstrate

that the proposed algorithm can obtain the optimal solution for smaller instances (up

to100 aircrafts), and also it is capable of finding high quality and comparable solutions

for the problems with up to 500 aircrafts and 5 runways in a short time.

Mokhtarimousavi et al. [2014][32] applied two metaheuristic algorithms, multi-

objective GA and multi-objective Particle Swarm Optimization (PSO) Algorithm, to

solve the ALS problem and determine the landing sequence for a group of 20 air-

crafts. Moreover, he shows that the obtained sequence does not follow FCFS law for

sequencing. Bencheikh et al. [2016][7] study the dynamic version of the ALP when

new aircrafts appear over time and propose a Memetic Algorithm (MA) combining an

Ant Colony (ACO) algorithm and a local heuristic. The choice of the ACO algorithm

resides in its constructive aspect. The algorithm has been tested on the instances by

Beasley et al. as well, involving 10-50 aircraft and 1-5 runways and the results are
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compared with three approaches presented by Beasley et al.[2004][6].

Girish [2016][15] proposed a hybrid particle swarm optimization algorithm in a

rolling horizon framework to solve the ALS problem. A schedule generation procedure

is presented in the paper that generates optimal landing schedules for the given land-

ing sequence and runway allocations. The performance of the proposed algorithm is

evaluated on Beasley’s benchmark instances involving up to 500 aircrafts and 5 run-

ways. Computational results reveal that the proposed algorithm is effective in solving

the problem in short computational time. Finally, Abduallah et al. [2017][1] proposed

a Harmony Search (HS) algorithm to solve the multiple runways ALS problem. The per-

formance of the proposed algorithm is evaluated also on the 13 benchmark instances

by Beasley et al. The results show that the proposed algorithm works considerably

well on small-sized instances.
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5 Methodology

5.1 Matheuristic approach for the ALS problem

The purpose of this section is to present the implementation of the matheuristic

approach for the ALS problem, as well as the application and computational results

on benchmarks from OR Library, since the background and theoretical details of the

topic are mentioned analytically in previous sections. Moreover, this section includes

the evaluation of the implementation, a comparison between the results along with

the results of the Gurobi optimization solver for the mathematical model and some

conclusions resulting from this study. Finally, R programming language has been

used for a statistical analysis evaluating the methods applied and their results.

For this matheuristic approach, 3 variants of the VNS metaheuristic are used and

compared (BVNS, VND and RVNS) for the sequence problem of the aircrafts. After the

sequence is found, interior- point method from mathematical programming is used

for finding the landing times of the aircrafts.

As already described in section 3, VNS algorithm includes the following steps,

which are repeated until the stopping condition is met:

1. Shaking

2. Local search (improvement)

3. Neighborhood change

Firstly, an initial feasible solution is required, which is obtained using the FCFS

method, a simple and intuitive method, as it can always provide a feasible solution.

The sequence of the aircrafts’ landings is created by pre-ordering them according

to non-decreasing arrival times. In the sequence vector, the i-th place contains the

aircraft that is assigned to land i-th.
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The next figure presents an example of FCFS method:

Figure 15: Example of FCFS method

Since the sequence of the landings has been defined and the model that is pre-

sented in subsection 2.3 is linear, interior-point method can be applied to provide the

optimal landing time between the time window for each aircraft. An example of this

process is presented in the following figure.

Figure 16: Example of landing times occurring after interior-point method
application

The representation of the solution consists of a vector which contains at the i-th

place the assigned lading time of the i-th aircraft, as shown in the next figure.
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Figure 17: Solution representation

Regarding the local search, three neighborhood structures are used: relocate, 2-

opt and swap. The same structures are used in the shaking phase when a local

minimum is found, in order to escape from it and a better solution can be achieved.

The direction that is being followed is first improvement, as best improvement can be

very costly in terms of time, especially for large instances. More specifically, as soon as

a better solution is found, it is assigned as the new solution. The stopping conditions

applied are 5 iterations between two improvements, as well as a computational time

limit of 7200 seconds (2 hours), to prevent excessive runtimes.

Relocate

Relocate method constitutes a straightforward and simple to operate neighborhood

structure. Its main operation concerns the selection of an element of the solution vec-

tor and its relocation in the position of one of the remaining elements. The elements

that are located between the initial and the final position of the aforementioned ele-

ment are shifted by one position in the opposite direction of it.

The structure of a solution after a relocate move is the following:
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Figure 18: Structure of a solution after a relocate move

2-opt

2-opt is one of the most commonly used local search operators, proposed by G.A.

Croes 1955. This method consists of dividing the solution vector in two points and

then, the element sequence between these specific points is being reversed.

The following figure includes the structure of a solution after a 2-opt move.

Figure 19: Structure of a solution after a 2-opt move
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Swap

Swap is another simple to operate neighborhood structure. Two elements of the

solution vector are selected and swap their positions and consequently, the resulting

solution vector will diverge from the initial vector by only two elements where one

replaced the other.

The structure of a solution after a swap move is presented in the figure below:

Figure 20: Structure of a solution after a swap move

5.2 VNS variants implementation for the ALS problem

The VNS variants that are implemented and compared are BVNS, VND and RVNS.

Below are summarized the steps for these algorithms, as they are also described ana-

lytically in section 3:

BVNS

1. Find an initial feasible solution

2. Shaking

3. Local search
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4. Move or not

5. Repeat from step 2 until the stopping condition is met

VND

1. Find an initial feasible solution

2. Local search

3. Move or not

4. Repeat from step 2 until the stopping condition is met

RVNS

1. Find an initial feasible solution

2. Shaking

3. Move or not

4. Repeat from step 2 until the stopping condition is met

Regarding the initial solution, neighborhood structures, direction and stopping

condition, the same techniques are implemented for all the algorithms.
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5.3 Computational study

5.3.1 Benchmarks of OR Library

OR Library[41] is a collection of test datasets for a variety of Operations Research

(OR) problems and more specifically, it contains 13 benchmarks for the ALS problem,

which are presented in the next table. They were introduced by Beasley et al.[5][6]

and are commonly used in literature. The datasets consist of eight small sets, involv-

ing from 10 to 50 airplanes, and five large sets, involving from 100 to 500 airplanes.

Although optimal results for the small instances are found, for the large instances

optimal results do not yet exist.

File name Number of aircrafts

Airland1 10

Airland2 15

Airland3 20

Airland4 20

Airland5 20

Airland6 30

Airland7 44

Airland8 50

Airland9 100

Airland10 150

Airland11 200

Airland12 250

Airland13 500

Table 1: ALS files in OR Library
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The format of these files is the following:

number of planes, freeze time,

- for each plane i (i=1,...,p):

appearance time, earliest landing time, target landing time,

latest landing time, penalty cost per unit of time for landing before target,

penalty cost per unit of time for landing after target

- for each plane j (j=1,...p):

separation time required after i lands before j can land

Some examples of OR-library’s test datasets are the following:

�� airland1.txt

10 10

54 129 155 559 10.00 10.00

99999 3 15 15 15 15 15 15

15 15

120 195 258 744 10.00 10.00

3 99999 15 15 15 15 15 15

15 15

14 89 98 510 30.00 30.00

15 15 99999 8 8 8 8 8
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8 8

21 96 106 521 30.00 30.00

15 15 8 99999 8 8 8 8

8 8

35 110 123 555 30.00 30.00

15 15 8 8 99999 8 8 8

8 8

45 120 135 576 30.00 30.00

15 15 8 8 8 99999 8 8

8 8

49 124 138 577 30.00 30.00

15 15 8 8 8 8 99999 8

8 8

51 126 140 573 30.00 30.00

15 15 8 8 8 8 8 99999

8 8

60 135 150 591 30.00 30.00

15 15 8 8 8 8 8 8

99999 8

85 160 180 657 30.00 30.00

15 15 8 8 8 8 8 8

8 99999
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� airland2.txt

15 10

54 129 155 559 10.00 10.00

99999 3 15 15 15 15 15 15

15 15 3 3 15 15 3

115 190 250 732 10.00 10.00

3 99999 15 15 15 15 15 15

15 15 3 3 15 15 3

9 84 93 501 30.00 30.00

15 15 99999 8 8 8 8 8

8 8 15 15 8 8 15

14 89 98 509 30.00 30.00

15 15 8 99999 8 8 8 8

8 8 15 15 8 8 15

25 100 111 536 30.00 30.00

15 15 8 8 99999 8 8 8

8 8 15 15 8 8 15

32 107 120 552 30.00 30.00

15 15 8 8 8 99999 8 8

8 8 15 15 8 8 15

34 109 121 550 30.00 30.00

15 15 8 8 8 8 99999 8

8 8 15 15 8 8 15
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34 109 120 544 30.00 30.00

15 15 8 8 8 8 8 99999

8 8 15 15 8 8 15

40 115 128 557 30.00 30.00

15 15 8 8 8 8 8 8

99999 8 15 15 8 8 15

59 134 151 610 30.00 30.00

15 15 8 8 8 8 8 8

8 99999 15 15 8 8 15

191 266 341 837 10.00 10.00

3 3 15 15 15 15 15 15

15 15 99999 3 15 15 3

176 251 313 778 10.00 10.00

3 3 15 15 15 15 15 15

15 15 3 99999 15 15 3

85 160 181 674 30.00 30.00

15 15 8 8 8 8 8 8

8 8 15 15 99999 8 15

77 152 171 637 30.00 30.00

15 15 8 8 8 8 8 8

8 8 15 15 8 99999 15

201 276 342 815 10.00 10.00

3 3 15 15 15 15 15 15

15 15 3 3 15 15 99999
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5.3.2 Computational experiments and results

5.3.2.1 Matheuristics results

In this subsection are presented the results of the computational experiments,

which were executed aiming to evaluate the algorithms described in the previous

subsections, implemented in Python 3.7.3 programming language. For this imple-

mentation, ‘‘Spyder’’ development environment has been used, which is part of the

‘‘Anaconda distribution’’ and offers a variety of functionalities and capabilities. ‘‘lin-

prog’’ package from ‘‘SciPy’’ library was used for applying the interior-point method.

The computational experiments were performed on a computer running Windows 10

64bit with an Intel Core i7-8665U 1.90GHz with 16GB RAM.

The experimental results are separated and presented in two different tables, the

first one with the small datasets, for which the optimal value of the objective function

and landing schedule has been found, and the second one with the large datasets,

where the results are compared with the best value that has been found by Girish

[2016][15]. The first three columns contain the file name, the number of aircrafts

(N) and the optimal/best value for each dataset. The rest columns provide for each

method (FCFS, BVNS, VND and RVNS) the best (min) value (z), based on the objective

function, achieved from the experiments, the CPU time (t) and the percentage error

(Error %) regarding the difference between the solution found and the optimal solu-

tion, as a percentage of the optimal solution, which is calculated as follows:

Percentage error = 100∗ z−optimal
optimal

Similarly, for the second table the percentage error is calculated as follows:
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Percentage error = 100∗ z−best
best

File name N Optimal
FCFS BVNS VND RVNS

z t (secs) Error % z t (secs) Error % z t (secs) Error % z t (secs) Error %

Airland1 10 700 1280 0.01 82.86 700 0.15 0 700 1.43 0 700 0.09 0

Airland2 15 1480 1740 0.02 17.56 1480 3.11 0 1480 4.14 0 1480 0.13 0

Airland3 20 820 1790 0.01 118.29 820 22.46 0 820 8.73 0 820 0.38 0

Airland4 20 2520 4490 0.01 78.17 2520 67.85 0 2520 21.50 0 2520 1.22 0

Airland5 20 3100 6410 0.01 106.77 3100 19.85 0 3100 20.32 0 3100 2.59 0

Airland6 30 24442 24442 0.01 0 24442 3.68 0 24442 0.19 0 24442 0.18 0

Airland7 44 1550 1550 0.01 0 1550 29.24 0 1550 0.31 0 1550 0.44 0

Airland8 50 1950 17980 0.02 822.05 3975 1926.37 103.85 3985 2289 104.36 6425 56.04 229.49

Table 2: Computational results of small test datasets

As the results of the small datasets show, although FCFS method can provide a

feasible solution in very short time, the quality is limited apart from Airland6 and

Airland7, where the optimal landing sequence is the FCFS one. Regarding the rest al-

gorithms, they can all achieve the optimal solution for all the instances except from the

last one with 50 aircrafts. RVNS has shown better performance, except from Airland8,

but it is worth to be mentioned that since is is based in stochastic computations,

the results could exhibit a wide variation. BVNS demonstrated better performance

than VND only for three instances, with Airland8 being the most critical where BVNS

achieved the best solution of the three algorithms in less computational time.
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File name N Best
FCFS BVNS VND RVNS

z t (secs) Error % z t (secs) Error % z t (secs) Error % z t (secs) Error %

Airland9 100 5611.70 17602.63 0.06 213.68 9818.93 6970.49 74.97 7838.85 3229.94 39.69 8202.95 240.35 46.17

Airland10 150 12292.20 27201.83 0.14 121.29 23800.50 6391.74 93.62 21788.99 6835.34 77.26 17626.07 1266.55 43.39

Airland11 200 12418.32 33405.36 0.34 169 31606.85 5137.31 154.52 28156.58 7012 126.73 19824.06 5483.33 59.63

Airland12 250 16122.18 43351.67 0.55 168.89 41664.05 6027.86 158.43 40713.93 7191.40 152.53 30422.52 7122.23 88.7

Airland13 500 37064.11 91991.72 2.82 148.2 91323.19 2289.12 146.39 89749.32 6661.51 142.15 82620.80 1216.31 122.91

Table 3: Computational results of large test datasets

Regarding the large datasets, VND has shown better performance for Airland9.

Furthermore, for the last four datasets, RVNS accomplished the best results, as ex-

pected, since these are the largest datasets and local search can be significantly time-

consuming.

5.3.2.2 Gurobi Optimizer results

The Gurobi Optimizer is a commercial optimization solver for linear programming,

quadratic programming, quadratically constrained programming, mixed integer linear

programming, mixed-integer quadratic programming, and mixed-integer quadratically

constrained programming. Gurobi supports a variety of programming and modeling

languages including C, C++, Java, Python, MATLAB, R etc. and includes a number of

features to support the building of optimization models.

In the context of this study, the mathematical model presented in section 2.3

was developed in Python programming language using Gurobi Optimizer 8.1.1, also

in ‘‘Spyder’’ environment as the previous algorithms. The table below presents the

results of the mathematical model using Gurobi Optimizer, achived within the com-

putational time limit of 7200 seconds (2 hours).
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File name N Optimal
Gurobi

z t (secs) Error %

Airland1 10 700 700 0.26 0

Airland2 15 1480 1480 0.85 0

Airland3 20 820 820 0.40 0

Airland4 20 2520 2520 5.50 0

Airland5 20 3100 3100 13.75 0

Airland6 30 24442 24442 1.82 0

Airland7 44 1550 1550 2.50 0

Airland8 50 1950 1950 4.62 0

Airland9 100 5611.70 5635.23 5985 0.42

Airland10 150 12292.20 13130.19 6881 6.81

Airland11 200 12418.32 13032.62 2101 4.95

Airland12 250 16122.18 16677.01 1054 3.44

Airland13 500 37064.11 40193.09 7168 8.44

Table 4: Computational results of Gurobi Optimizer

The results of the implementation of the mathematical model with the Gurobi

optimization solver showed that Gurobi returns quality solutions when there is enough

computational time available, but is not so effective in short periods of time.

The following graph presents the results of the followed methods for all the datasets.
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Figure 21: The results of FCFS, BVNS, VND, RVNS and Gurobi

5.3.3 Statistical analysis of the metaheuristic methods

In this subsection we present a statistical analysis for comparing the metaheuristic

methods (BVNS, VND, RVNS) applied for the matheuristic approach. During this

analysis, R programming language has been used. The benchmarks are separated

in two sets for testing: the first set contains the datasets Airland1-Airland7 and the

second set contains the remaining datasets. In the first set, since all the methods have

achieved the optimal result, the algorithms are tested regarding the computational

time. In the second set, we test the result achieved from these algorithms for each

dataset.

The followning table has been used for the first test:
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File name
Method

BVNS VND RVNS

Airland1 0.15 1.43 0.09

Airland2 3.11 4.14 0.13

Airland3 22.46 8.73 0.38

Airland4 67.85 21.50 1.22

Airland5 19.85 20.32 2.59

Airland6 3.68 0.19 0.18

Airland7 29.24 0.31 0.44

Table 5: First test set

After applying the Shapiro-Wilk test for normality, the results shown that the null

hypothesis (normal distribution) cannot be accepted. Therefore, we used the non-

parametric Friedman test instead of the parametric repeated measures ANOVA, since

we have three methods to compare. The results of this test are presented in the

following figure.

Figure 22: Friedman test (1)

According to the null hypothesis, all the group medians are equal and there is not

a difference between the methods. The p-value resulting from this test is 0.01832

< 0.05, it is therefore plausible that the three methods have statistically significant

different medians.

For further research, we applied the non-parametric Wilcoxon test, with the same
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null hypothesis as Friedman test, separating the aforementioned methods in groups

of two. The results are shown in the table below.

Methods p-value

BVNS-VND 0.2188

VND-RVNS 0.04688

BVNS-RVNS 0.01563

Table 6: Wilcoxon test (1)

According to the above results, BVNS and VND have similar distributions and so the

same mean whereas RVNS mean is probably different from the first two.

The same conclusions derived by the following descriptive statistics. RVNS has the

smalest median, range etc. and consequently it results in being more effective than

the other methods.

Figure 23: Descriptive statistics and graphics for BVNS
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Figure 24: Descriptive statistics and graphics for VND

Figure 25: Descriptive statistics and graphics for RVNS
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Regarding the datasets Airland8-Airland13, we follow the same process for testing

the effectiveness of each method, based on the best values achieved. The table used

for this test is the following:

File name
Method

BVNS VND RVNS

Airland8 3975 3985 6425

Airland9 9818.93 7838.85 8202.95

Airland10 23800.50 21788.99 17626.07

Airland11 31606.85 28156.58 19824.06

Airland12 41664.05 40713.93 30422.52

Airland13 91323.19 89749.32 82620.80

Table 7: Second test set

The Shapiro-Wilk test indicates again that we cannot accept the hypothesis for nor-

mality, hence we continue with the Friedman test. The following figure shows the

results of this test.

Figure 26: Friedman test (2)

The p-value resulting from this test is 0.1146 > 0.05, therefore we cannot assume

that the overall medians differ. Moreover, the Wilcoxon test concludes to the same

assumptions, with the p-value of each pair of methods being greater than 0.05, as

shown in the table below.
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Methods p-value

BVNS-VND 0.0625

VND-RVNS 0.1563

BVNS-RVNS 0.09375

Table 8: Wilcoxon test (2)
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6 Conclusions

6.1 Thesis overview

This thesis describes the implementation and application of a matheuristic ap-

proach as a solution method for an NP-hard problem, the static case of Aircraft Land-

ing Scheduling problem with a single runway, using Python programming language.

This approach is implemented using and comparing VNS algorithm’s variants, BVNS,

VND and RVNS, along with interior-point method from mathematical programming.

The theoretical background and the details of this topic are analytically presented

followed by the performance of the implemented algorithms, which is evaluated using

13 benchmarks from OR Library, provided by J.E. Beasley. Computational results for

all the test datasets, involving from 10 to 500 airplanes, are presented and compared.

6.2 Future work

This thesis constitutes a first attempt to solve an NP-hard problem and especially

a scheduling problem. Nevertheless, this study can certainly be subject to improve-

ments and further extensions. The primary task consists of improving or modifying

the applied procedures for reducing the runtime. For example, the initial solution

can be achieved by sorting the target landing times instead of the arrival times for the

initial solution, or even apply a different method for this step. Moreover, additional

neighborhood structures could be used, for example 3-opt. Furthermore, the applied

algorithms could be parallelized to reduce the computational time and also combined

with other metaheuristics (Genetic Algorithm, PSO etc.) for a hybrid implementation.

It is further of special interest to explore the ALS problem’s variants. Firstly, this

study for the static case can be modified to include more than one runways and,

additionally, implement these methods in a dynamic and more realistic environment,

both for the single and the multiple runways case. Finally, with minor modifications,

these implementations can include the take-offs to complete the realistic solution

suggestion.
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