
A PROLOG META-INTERPRETER FOR
AGENTSPEAK(L)

M.Sc. THESIS

of

Dimitrios Dimitriadis

Thessaloniki, 21 June 2019

PRESENTATION OUTLINE

• Introduction

• Syntax of AgentSpeak(L)

• Implemented Features

• Implementation

• The Parser

• The Solver

• Design of the Meta-Interpreter

• Failure Handling Mechanism

• Agents’ Communication

• Test Cases

• Conclusions & Future Work

INTRODUCTION

• Software Agents Attributes

• Autonomy

• Reactivity

• Social ability

• BDI Agents (Belief – Desire – Intention)

• AgentSpeak(L)

• Jason (An AgentSpeak(L) JAVA based Meta-Interpreter)

SYNTAX OF AGENTSPEAK(L)

Beliefs

Mental Rules

Goals

Events

Plans

b

H:-b

!g

?g

+!g

+b

E::C

<-B

SYNTAX OF AGENTSPEAK(L)

• Beliefs

• light(green)

• temperature(32)

• Mental Rules

• findMaxTemp(Temp):-

temp(Temp) &

not ((temp(Y) & Y > Temp)).

SYNTAX OF AGENTSPEAK(L)

• Goals

• Achievement goals

!close_valve

!shut_window

• Test goals

?has_leak

?door_open

• Events

• Belief

-light(red)

+light(green)

• Goal Addition

+!close_valve

+?has_leak

SYNTAX OF AGENTSPEAK(L)

Addition

Deletion

Achievement

Test

SYNTAX OF AGENTSPEAK(L)

• Plans

• Structure

• Event – Context – Body

• Contents

• Actions

• Internal Actions

• Achievement Goals

• Test Goals

• Mental Notes

• Expressions

• Example

+!start :: light(green) <- !action1;!action2.

IMPLEMENTED FEATURES

• Strong Negation

~like(cakes) (different use from: not(like(cakes)))

• Belief Annotations

light(green)#[source(agent26)]

• Plan Annotations

+light(green)#[source(agent3)]:: true <- !action.

• Complicated Mental Rules

findAllTemp(List):-

findall(X,temp(X),List1) &

sort(List1,List).

IMPLEMENTATION (OUTLINE)

• Parser

• Solver

• Design of the Meta-Interpreter

• Failure Handling

IMPLEMENTATION (PARSER)

• The parser loads the program, by creating a set of Prolog facts for every program

statement it parses, using a failure driven loop.

• Belief(B,Atts)

• object(front)#[source(agent1)]

• object(front)#[source(agent2)] belief(B,Atts)

• object(front)#[alertness(high)]

B: object(front)

Atts: [source(agent1),source(agent2),alertness(high)]

IMPLEMENTATION (PARSER)

• Rule(Head,Body)

• Head :- B1 & B2  rule(Head,B1 & B2)

Head: over_limit(V)

Body: limit(L) & V>=L

• Plan(Event,Context,Body)

• Event :: Context <- Body  plan(Event,Context,Body)

Event: +!speak

Context: mood(nice)

Body: !say_hello

IMPLEMENTATION (SOLVER)

• Achievement and Test Goals (+!g, +?g)

• Goals pursued as separate intentions (^^g)

• Belief Addition/Deletion Goals (+b,-b)

• Plans triggered by Belief Addition/Deletion (+/-b::true<-actions)

• Expressions/Prolog Predicates

DESIGN OF THE META-INTERPRETER

DESIGN OF THE META-INTERPRETER

• New Intention on:

• Plan Execution

• Goal ^^g

• External Belief Addition/Deletion

• Internal Belief Addition/Deletion

IMPLEMENTATION (FAILURE HANDLING)

Plan Executed Description Recovery

+g Plan found and executed with success ✔

-g#[error(non_applicable_plan)] No applicable plan found, but an

annotated plan for that case was

provided and executed

✔

-g#[error(no_relvevant_plan)] No relevant plan found, but an

annotated plan for that case was

provided and executed

✔

-g A (known or unknown) failure

occurred, but an annotated plan was

provided and executed ✔

-g Failure handling plan found but it is

non-applicable

✘

--- No applicable plan found ✘

--- No relevant plan found ✘

AGENTS’ COMMUNICATION (DESIGN)

AGENTS’ COMMUNICATION (MESSAGE TYPES)

tell(Content)

• Adds a belief in receiver’s belief base

untell(Content)

• Removes a belief from receiver’s belief base

achieve(Content)

• Asking the receiver for the execution of an achievement plan

test(Content)

• Asking the receiver for the execution of a test plan

ask(Content)

• Asking the receiver if a condition is true or not

TEST CASES

CONCLUSIONS

• Combining logic with agent oriented programming features

• Strong Negation

• Belief & Plan Annotations

• Complicated Mental Rules

• Higher-order Prolog predicates

• Failure Handling mechanism

• Multithreaded Application

• Autonomous Agent’s Intention Handling

• Communication Design

• Asynchronous Communication

FUTURE WORK

• CLP Implementation

• Planning from 1st Principals

• Semantics’ Extension

• Failure Handling mechanism Extension

• Synchronous Communication Implementation

• Debugging Techniques Investigation

• Testing in truly distributed Cloud environments

THANK YOU FOR YOUR ATTENTION

A Prolog Meta-Interpreter for AgentSpeak(L)

M.Sc. THESIS

of

Dimitrios Dimitriadis

Thessaloniki, 21 June 2019

