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INTRODUCTION

* Software Agents Attributes
Autonomy
Reactivity

Social ability
* BDI Agents (Belief — Desire — Intention)
* AgentSpeak(L)
* Jason (An AgentSpeak(L) JAVA based Meta-Interpreter)




SYNTAX OF AGENTSPEAK(L)
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SYNTAX OF AGENTSPEAK (L)

* Beliefs
* light (green)

* temperature (32)

* Mental Rules
* findMaxTemp (Temp) : —
temp (Temp) &
not ( (temp(Y) & Y > Temp) ).




SYNTAX OF AGENTSPEAK (L)

e Goals

* Achievement goals

lclose valve

lshut window

* Test goals

?has leak

?door open




SYNTAX OF AGENTSPEAK (L)

e Events
. Belief <Addition

Deletion

—1light (red)
+1light (green)

. AChIEVeMENt ~ Goal Addition

Test

t+lclose valve
+?has leak




SYNTAX OF AGENTSPEAK (L)

Plans

e Structure

Event — Context — Body

« Contents

Actions

Internal Actions
Achievement Goals
Test Goals

Mental Notes

Expressions

* Example

+!start :: light (green)

<_

lactionl; !action?.




IMPLEMENTED FEATURES

Strong Negation

~like (cakes) (different use from: not (1ike (cakes)) )

Belief Annotations

light (green) # [source (agent26) ]

Plan Annotations

+1light (green) #[source (agent3) ] :: true <-

Complicated Mental Rules

findAllTemp (List) : -
findall (X, temp (X),Listl) &
sort (Listl,List).

laction.



IMPLEMENTATION (OUTLINE)

Parser

Solver

Design of the Meta-Interpreter

Failure Handling




IMPLEMENTATION (PARSER)

* The parser loads the program, by creating a set of Prolog facts for every program
statement it parses, using a failure driven loop.

* Belief (B,Atts)
. object(front)#[source(agentl)]—\

* object (front) #[source (agent2)] &~ belief (B,Atts)

* object (front)#[alertness (high) ]

—_—

B: object (front)

Atts: [source (agentl)  source (agent2) ,alertness (high) ]



IMPLEMENTATION (PARSER)

* Rule (Head, Body)
* Head :- Bl & B2 =2 rule (Head,Bl & B2)
Head: over limit (V)

Body: limit (L) & V>=L

* Plan (Event,Context, Body)
e Event :: Context <- Body =2 plan (Event,Context,Body)
Event: +!speak
Context: mood (nice)

Body: !say hello



IMPLEMENTATION (SOLVER)

Achievement and Test Goals (+!g, +7?9)

Goals pursued as separate intentions (" " q)

Belief Addition/Deletion Goals (+b, —-b)

Plans triggered by Belief Addition/Deletion (+/-b: : true<-actions)

Expressions/Prolog Predicates



DESIGN OF THE META-INTERPRETER

Agent 23

Intention n Thread

Intention 2 Thread +temp (54)

e

Intention 1 Thread
L +temp (42)

' Solve the plan
triggered from

‘i‘
*’{ Main Agent Thread belief addition
+temp (42)




DESIGN OF THE META-INTERPRETER

* New Intention on:

* Plan Execution

* Goal Mg

 External Belief Addition/Deletion

Internal Belief Addition/Deletion




IMPLEMENTATION (FAILURE HANDLING)

Plan Executed Description Recovery
+g Plan found and executed with success

-gi#t[error (non_applicable plan)] No applicable plan found, but an
annotated plan for that case was
provided and executed

-git[error (no_relvevant plan)] No relevant plan found, but an v
annotated plan for that case was
provided and executed

-g A (known or unknown) failure
occurred, but an annotated plan was
provided and executed v

-g Failure handling plan found but it is X

non-applicable
S No applicable plan found X

—— No relevant plan found X




AGENTS’ COMMUNICATION (DESIGN)

Agent 21

Intention n Thread

Intention 2 Thread ™ +temp (54)

I

| 7 i

l‘ I _-w» Intention 1 Thread I N
’ b * | +temp (42)

C Main Agent Thread ‘

Communication Thread
tell (temp (42))

tell (temp (54))

Agent 13 REGISTRY }




AGENTS COMMUNICATION (MESSAGE TYPES)

» Adds a belief in receiver’s belief base

* Removes a belief from receiver’s belief base

* Asking the receiver for the execution of an achievement plan

* Asking the receiver for the execution of a test plan

* Asking the receiver if a condition is true or not




TEST CASES

Bob

tell (hello)

rell pith

untell (hello)

co11 (delpelict

achieve (speak)

W

test (check)

ask (test (aa))

Alice




CONCLUSIONS

¢ Combining logic with agent oriented programming features
e Strong Negation
* Belief & Plan Annotations
* Complicated Mental Rules
* Higher-order Prolog predicates
* Failure Handling mechanism
* Multithreaded Application
* Autonomous Agent’s Intention Handling
* Communication Design

* Asynchronous Communication




FUTURE WORK

CLP Implementation

Planning from 15t Principals

Semantics’ Extension

Failure Handling mechanism Extension
Synchronous Communication Implementation
Debugging Techniques Investigation

Testing in truly distributed Cloud environments
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