A PROLOG META-INTERPRETER FOR
AGENTSPEAK(L)

M.Sc. THESIS
of

Dimitrios Dimitriadis

Thessaloniki, 21 June 2019

PRESENTATION OUTLINE

Introduction
Syntax of AgentSpeak(L)
Implemented Features
Implementation
* The Parser
* The Solver
* Design of the Meta-Interpreter
* Failure Handling Mechanism
Agents’ Communication
Test Cases

Conclusions & Future Work

INTRODUCTION

* Software Agents Attributes
Autonomy
Reactivity

Social ability
* BDI Agents (Belief — Desire — Intention)
* AgentSpeak(L)
* Jason (An AgentSpeak(L) JAVA based Meta-Interpreter)

SYNTAX OF AGENTSPEAK(L)

Cs
\

\

5
[

!

SYNTAX OF AGENTSPEAK (L)

* Beliefs
* light (green)

* temperature (32)

* Mental Rules
* findMaxTemp (Temp) : —
temp (Temp) &
not ((temp(Y) & Y > Temp)).

SYNTAX OF AGENTSPEAK (L)

e Goals

* Achievement goals

lclose valve

lshut window

* Test goals

?has leak

?door open

SYNTAX OF AGENTSPEAK (L)

e Events
. Belief <Addition

Deletion

—1light (red)
+1light (green)

. AChIEVeMENt ~ Goal Addition

Test

t+lclose valve
+?has leak

SYNTAX OF AGENTSPEAK (L)

Plans

e Structure

Event — Context — Body

« Contents

Actions

Internal Actions
Achievement Goals
Test Goals

Mental Notes

Expressions

* Example

+!start :: light (green)

<_

lactionl; !action?.

IMPLEMENTED FEATURES

Strong Negation

~like (cakes) (different use from: not (1ike (cakes)))

Belief Annotations

light (green) # [source (agent26)]

Plan Annotations

+1light (green) #[source (agent3)] :: true <-

Complicated Mental Rules

findAllTemp (List) : -
findall (X, temp (X),Listl) &
sort (Listl,List).

laction.

IMPLEMENTATION (OUTLINE)

Parser

Solver

Design of the Meta-Interpreter

Failure Handling

IMPLEMENTATION (PARSER)

* The parser loads the program, by creating a set of Prolog facts for every program
statement it parses, using a failure driven loop.

* Belief (B,Atts)
. object(front)#[source(agentl)]—\

* object (front) #[source (agent2)] &~ belief (B,Atts)

* object (front)#[alertness (high)]

—_—

B: object (front)

Atts: [source (agentl) source (agent2) ,alertness (high)]

IMPLEMENTATION (PARSER)

* Rule (Head, Body)
* Head :- Bl & B2 =2 rule (Head,Bl & B2)
Head: over limit (V)

Body: limit (L) & V>=L

* Plan (Event,Context, Body)
e Event :: Context <- Body =2 plan (Event,Context,Body)
Event: +!speak
Context: mood (nice)

Body: !say hello

IMPLEMENTATION (SOLVER)

Achievement and Test Goals (+!g, +7?9)

Goals pursued as separate intentions (" " q)

Belief Addition/Deletion Goals (+b, —-b)

Plans triggered by Belief Addition/Deletion (+/-b: : true<-actions)

Expressions/Prolog Predicates

DESIGN OF THE META-INTERPRETER

Agent 23

Intention n Thread

Intention 2 Thread +temp (54)

e

Intention 1 Thread
L +temp (42)

' Solve the plan
triggered from

‘i‘
*’{ Main Agent Thread belief addition
+temp (42)

DESIGN OF THE META-INTERPRETER

* New Intention on:

* Plan Execution

* Goal Mg

 External Belief Addition/Deletion

Internal Belief Addition/Deletion

IMPLEMENTATION (FAILURE HANDLING)

Plan Executed Description Recovery
+g Plan found and executed with success

-gi#t[error (non_applicable plan)] No applicable plan found, but an
annotated plan for that case was
provided and executed

-git[error (no_relvevant plan)] No relevant plan found, but an v
annotated plan for that case was
provided and executed

-g A (known or unknown) failure
occurred, but an annotated plan was
provided and executed v

-g Failure handling plan found but it is X

non-applicable
S No applicable plan found X

—— No relevant plan found X

AGENTS’ COMMUNICATION (DESIGN)

Agent 21

Intention n Thread

Intention 2 Thread ™ +temp (54)

I

| 7 i

l‘ I _-w» Intention 1 Thread I N
’ b * | +temp (42)

C Main Agent Thread ‘

Communication Thread
tell (temp (42))

tell (temp (54))

Agent 13 REGISTRY }

AGENTS COMMUNICATION (MESSAGE TYPES)

» Adds a belief in receiver’s belief base

* Removes a belief from receiver’s belief base

* Asking the receiver for the execution of an achievement plan

* Asking the receiver for the execution of a test plan

* Asking the receiver if a condition is true or not

TEST CASES

Bob

tell (hello)

rell pith

untell (hello)

co11 (delpelict

achieve (speak)

W

test (check)

ask (test (aa))

Alice

CONCLUSIONS

¢ Combining logic with agent oriented programming features
e Strong Negation
* Belief & Plan Annotations
* Complicated Mental Rules
* Higher-order Prolog predicates
* Failure Handling mechanism
* Multithreaded Application
* Autonomous Agent’s Intention Handling
* Communication Design

* Asynchronous Communication

FUTURE WORK

CLP Implementation

Planning from 15t Principals

Semantics’ Extension

Failure Handling mechanism Extension
Synchronous Communication Implementation
Debugging Techniques Investigation

Testing in truly distributed Cloud environments

THANK YOU FOR YOUR ATTENTION

A Prolog Meta-Interpreter for AgentSpeak(L)
M.Sc. THESIS

of

Dimitrios Dimitriadis

Thessaloniki, 2| June 2019

