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Abstract 
 

Many studies and surveys have focused on software agents and agent-oriented 

programming. This study proposes an approach towards agent programming, bridging the 

gap between the theory and the practical issues concerned with software agents’ 

programming. Based on the BDI (Belief Desire Intention) model, AgentSpeak(L) is 

considered as a language with a remarkable contribution to the ideas in the field. The 

Prolog meta-interpreter for AgentSpeak(L) proposed in the current project, tries to “exploit” 

all the features of modern logic programming system implementations in order to provide 

a practical implementation of AgentSpeak(L), that can be used in numerous applications. 

Staying close to the syntax defined by Rao in the original paper (1996), the current meta-

interpreter is capable of parsing and executing programs written in AgentSpeak(L), and 

with small modifications other similar programming languages based in the agent oriented 

programming paradigm. SWI-Prolog has been chosen as the implementation platform of 

choice, since it is very actively developed, with wide adoption in the research community. 

The interpreter’s design heavily exploits multithreading, focusing on the features of 

autonomous and parallel execution. The proposed meta-interpreter also supports 

communication between agents, allowing encoding of agents capable of exchanging 

messages following the FIPA standards. 
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CHAPTER 1 

Introduction 
 

Software agents have gained much attention among the research community in the last years. 

It is considered as a technology with many applications both in industry and in research field. 

With characteristics as autonomy, reactivity and social ability, software agents are capable of 

acting independently without requiring supervision or guidance from another higher level 

entity. However, the idea of inventing machines capable of acting like humans, has been 

accompanying people years before the inception of software agents. Thus, there has been 

developed a whole range of different theoretical models that could be used, such as BDI model, 

as well as languages that satisfy efficiently the requirements of multi-agent systems. So far, 

AgentSpeak(L), is considered as the most commonly known approach to a concrete language 

in agent-programming. Jason, an actively developed interpreter of AgentSpeak(L), is written in 

Java, seems like a contradiction, since AgentSpeak(L) was introduced as an extension of Logic 

Programming.  

In the current project a Prolog meta-interpreter of AgentSpeak(L) is presented, 

capitalizing on the features of logic programming that seem to be very close to the ideas of 

agent-oriented programming. Tackling the challenge of implementing a robust and efficient 

framework for software agents, under which they would be able to act autonomously and 

communicate with each other, this project aims to combine the features of modern logic 

programming with the agent-oriented systems. 

The proposed meta-interpreter stays close to the original syntax of AgentSpeak(L) as 

well as extends the set of features, implementing new ones, such as strong negation, belief and 

plan annotations, complicated mental rules and failure handling, as those were proposed in later 

research in the AgentSpeak(L) model. 

The communication mechanism is based on the Pedro platform, a 

subscription/notification system. Based on the server-client model, agents are able to exchange 

messages directly and in an asynchronous way. The established communication network is 

managed from an independently implemented entity, the registry, which is responsible for 

updating the agent list, including all the active agents that take part in the Multi-Agent system. 
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1.1 Aim & objectives of the thesis 

This thesis aims to provide a comprehensive approach towards agent programming, bridging 

the gap between theory and the practical issues concerned with software agents’ programming. 

Software agents and agent-oriented systems gained a great amount of attention in the 

last years. Since there is a bunch of agent-oriented languages, as well as proposed models and 

frameworks it is still under research, which should be the features of a robust and efficient 

agent-oriented platform.  

In this framework, theory and modern logic programming applications seem to be 

relative to software agents and their features. Real-world conditions and parallel execution 

compose a demanding environment for the agents, as it takes significant effort for an 

implementation to achieve monitoring, managing and controlling their actions. 

This thesis intends to work out these challenges, aiming to propose a robust and efficient 

framework for software agents, enhancing their capabilities. The meta-interpreter proposed in 

this project aims to provide such a framework. 

1.2 Thesis Structure 

A brief description of the chapters of this thesis is provided below. 

Chapter 2 describes software agents, focusing on their most indicative attributes, as they 

are referenced in the respective literature. It also presents, a categorization of agents concerning 

the basic types such as reactive agents, model-based, goal-based and utility-based ones. The 

chapter includes a short survey, of the most common in use agent oriented languages and 

concludes with a description of the main features of AgentSpeak(L) and Jason. 

Chapter 3 presents the technological background of the proposed meta-interpreter. An 

extensive analysis of the syntax of AgentSpeak(L), is also provided. A significant number of 

examples are presented, with the aim to describe the use of the language and especially the 

attributes implemented in the current project, such as strong negation, the belief and plan 

annotations and the support of complicated mental rules and higher order Prolog predicates. 

Chapter 4 describes the mechanism that the parser adopts in order to translate an 

AgentSpeak(L) program, using Prolog terms. A thorough explanation is given, along with the 

use of examples, concerning the internal representation of the basic components of the 

AgentSpeak(L), such as beliefs, mental rules and plans. A special section is dedicated to 
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describe the function of the solver. A set of examples is used to present the mechanism for the 

execution of achievement and test goals, goals pursued as separate intentions, belief 

addition/deletion goals, plans triggered by belief addition/deletion, as well as the execution of 

expressions and Prolog predicates. The chapter also presents the implemented failure handling 

mechanism and concludes with the presentation of the multithreading technique that is used, 

concerning the agent’s design. 

Chapter 5 refers to agents’ communication. Multithreading is considered as the main 

technique in use, concerning the overall communication handling mechanism. The messages 

that the agents exchange, follow the principals of ACL. The implemented set of performatives 

is presented, such as tell, untell, achieve, test and ask. The description of message processing, 

illustrates the significant role of multithreading in the overall agent’s design. Concluding this 

chapter, a set of test cases is presented, highlighting the function of each one of the implemented 

types of messages that the agents are capable of exchanging. 
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CHAPTER 2 

Literature review 
 

This chapter provides a survey of literature, in the area of agent-oriented programming. It starts 

by giving a definition of software agents, highlighting the most representative features that 

agents adopt. Consequently, the chapter presents different types of agents as they are defined 

in bibliography. Special focus is given to the BDI model and its interpretation cycle, noticing 

the model’s influence to the agent-oriented systems. The next section intends to present the 

main features of the recently proposed agent oriented languages. AgentSpeak(L) is explicitly 

analyzed, considered as a language, with a remarkable contribution to the ideas in the field. 

Also, a special section refers to Jason, an interpreter of AgentSpeak(L), with wide adoption in 

the research community and similar philosophy with the interpreter proposed in this project. 

 

2.1 Software Agents 

There is much discussion among the research community, about the definition of agents and 

the attributes that clearly distinguish them, from any other kind of program (Franklin and 

Graesser, 1996). However, the central idea is to create advanced programs, capable of acting 

on our behalf. 

The dominant attribute in agents is autonomy, which allows agents to operate in 

complex environments (e.g. planets’ exploration where human’s presence or remote control are 

not feasible), to perform exhausting, time-consuming and repetitive tasks in a fast and efficient 

way. 

Searching for the most representative features, that distinct agents from other programs, 

one could highlight the autonomy, the social ability, the reactivity and the pro-activeness, in 

line with the definition of (Wooldridge and Jennings, 1995). Hence, agents are self-contained 

programs, that could operate, requiring neither supervision nor guidance from another entity, 

they are able to communicate and as a result, to coordinate their actions and cooperate with 

each other, aiming at the achievement of desirable goals. In other approaches, we could find 
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more features, imputed to agents, such as mobility, self-adaptivity, known also as self-* 

properties  and rationality (Wooldridge, 2003). 

Agents are able to build “societies”, cooperate and negotiate with each other in a peer 

relationship, in order to achieve system’s goals. This kind of society is called Multi-Agent 

System (MAS). The great challenge for such systems, is the efficient management and control. 

Among the characteristics of a MAS, we should highlight the asynchronous computations, 

decentralized data, lack of a central control mechanism and locality, meaning that no agent has 

global view of the system. 

 

2.2 Basic types of Software Agents 

With respect to the structure of the agent, we could define four basic types of agents, such as 

simple reflex agents (i.e. reactive), model-based (i.e. agents with internal state), goal-based and 

utility-based ones. This categorization (Russell and Norvig, 2016), p.47) ranges from the simple 

to the intelligent model. Having said that, we should stress the fact that there is no useless model 

and it depends on the purposes and the nature of the system, in order for the developer to choose 

among the one agent type or the other. 

In a real-world example, consider that unmanned solar vehicles are equipped with 

sensors and effectors and controlled by agents. According to the information given from the 

sensors, the agent generates its actions, with respect to a set of rules, while each type of agent 

adopts a different kind of behavior. 

Simple reflex agent’s actions, are based on the current environment percept. So for 

example, one can naturally imagine a rule that dictates the appropriate safety distance that the 

vehicle should keep from the other vehicles or obstacles, and the agent through its effectors 

accelerates or decelerates accordingly, respecting the safety distance limit. The agent, of course, 

is responsible to cope with a large number of such rules, thus an intelligent behaviour emerges. 

Agents with internal state, have to match not only the rule conditions with the 

environmental state in order to decide for the next action, but with their internal state as well. 

Such agents are capable of maintaining a percept history, based on what they have experienced 

before and may not be observable at the current state. So, following the previous example, the 

agent is able to keep track of other solar vehicles’ position and thus avoid accidents, while 

changing its course.  

One level above, a goal based agent is able to select the action that brings it closest to 

achieving its goals. The latter describe the desired system state. A goal based agent incorporates 
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search and planning capabilities, while the decision for its next action takes into consideration, 

to an extent, any consequences of these actions. This makes the decision making process more 

complicated, since agents have to predict future changes, while they may have to cooperate 

with each other and coordinate their actions. Following the previous example, agents are able 

to find a plan to reach a given destination, if they are tasked to do so. 

In case that there are alternative actions that all satisfy the goal, it is preferable to choose 

the most “efficient” one. Utility-based agents are capable of comparing different solutions for 

the same problem, estimating certain parameters, finding the most desirable way to achieve the 

goal. Thus, a utility-based agent in the previous scenario, could search for the fastest route or 

the safest one, in case it was tasked with such a goal. 

 

2.3 BDI Agents 

Beyond these basic types of agent architectures, a particular type of rational agent, the Belief-

Desire-Intention (BDI) agent, has received a great deal of attention. BDI model has a strong 

philosophical underlying theory towards simulating human behavior that derives from the 

respectively conceived theory of (Bratman, 1987). 

The three mental attitudes of Belief, Desire and Intention represent, respectively, the 

informative, motivational and deliberative components of a system (Rao and Georgeff, 1995). 

Although research community has questioned the necessity of these three mental attitudes, it is 

widely accepted that they are determinative for the system’s behaviour. Hence, a rapidly 

updated belief base is vital for the agent to be kept, taking into account that both modern systems 

and environments are non-deterministic. It is also necessary for the system, to keep track of the 

variety of objectives that is asked to accomplish. Desires, could be viewed as a way to describe 

these objectives, expressed in an abstract way, however decomposing the latter in a hierarchical 

manner. In modern systems, environmental changes may occur faster than the execution of the 

action selection function, or the specific action determined by it. In this framework, the system 

has either to re-execute the selection function, considering the environmental changes, or 

execute the chosen course of action (plan) to completion. In any case, the agent should have a 

way to keep “stored” the current course of action and this could be achieved through the third 

component, the system’s intentions. 

One of the key points for the decision making process of the agents, is the concept of 

commitment to the agents’ intentions. Apart from the commitment condition, which the agent 
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has to maintain, the model focuses on the different termination conditions that define the 

context, under which the agent quits its commitment. 

More specifically, the model introduces three different commitment strategies that 

determine agent’s behavior. Hence, depending on the application, the user is allowed to choose 

between the blind-committed, the single-minded or the open-minded agent (Rao and Georgeff, 

1991). For example, we could imagine of three agents having to deliver the same task, each one 

of them following a different commitment strategy, from the above mentioned: agents are 

tasked to evacuate a room, but unfortunately, the main door is stuck. The blindly committed 

agent, would keep on trying to open the stuck door, refusing to drop its intention, insisting on 

its initial plan. So, this type of agent, maintains its intention, until it believes that it has been 

achieved. The single-minded agent, would quit trying to open the door, assuming the intention 

to be unachievable. Thus, a single-minded agent drops its intentions, in case it believes that 

they could not be achieved. In the same scenario, the open-minded agent would try to find 

another door to exit the room, changing its goals, dropping its commitments accordingly. 

Hence, the open-minded agent does not maintain its intentions, if the last are not compatible 

with its goals. 

 

BDI-interpreter 

initialize-state(); 

repeat 

 options := option-generator(event-queue); 

 selected-options := deliberate(options);  

 update-intentions(selected-options); 

 execute(); 

 get-new-external-events(); 

 drop-successful-attitudes();  

 drop-impossible-attitudes(); 

end repeat  

 

Figure 2.1 The BDI interpretation cycle as it is presented in the original paper from (Rao and 

Georgeff, 1995) 

 

One of the success factors of the BDI architecture is that it has led to concrete 

implementations, i.e. executable systems. The BDI interpreter follows an event-driven cycle 
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(Fig. 2.1). The selected event from the list, determines the corresponding applicable list of 

plans, with the latter being refined to take the best one, in terms of efficiency. This plan is being 

added to the intention structure. The next step is the execution of agent’s atomic action, as part 

of an intention. Any new external events are added in the event queue. After the execution, all 

the accomplished or unachievable desires and intentions are dropped, so the system is updated 

and the cycle resumes from the beginning. Although abstract, the architecture recommends a 

number of representation formats, increasing the practicality of the system such as ground set 

of literals for beliefs, plans and intention stacks. 

The BDI model has been proved as one of the most successful agent models. However, 

there is much discussion about the limitations of the model among the research community 

(Georgeff et al., 1998). Referring to some of the model’s weak points, one could highlight the 

inability of the model to distinct goals and events, to support learning agents and the fact that 

the model avoids to establish any mechanism for goal deliberation. Certain proposals could be 

found in the literature (Ancona and Mascardi, 2003; Guerra-Hernández et al., 2004), aiming to 

extend the BDI architecture, incorporating such types of behaviour. Although imperfect, the 

BDI model is a prominent model of reasoning agents, with great influence among the research 

community and thus, a significant number of implementations and successful applications. 

 

2.4 Programming Agent-Oriented Languages 

Huge research efforts have been devoted in formulating languages for programming agents. 

These efforts are reported in several proposals found in Multi-Agent Systems (MAS) literature, 

and vary from declarative, to strictly imperative approaches. 

AgentSpeak(L) is a typical paradigm of a logic-based programming language, ideal for 

encoding complex agent-based systems, with a lot of influence over several implementations 

dealing with BDI agents. Estimated as the core of the present project, the language will be 

discussed in more details, in Section 2.6.  

Beyond AgentSpeak(L), a significant number of languages have been proposed from 

researchers, referenced also in several surveys that could be found in the literature (Bordini et 

al., 2006; Mascardi et al., 2005; Wooldridge and Jennings, 1994). In the rest of the section, we 

would try to provide a high-level overview of the most recent ones, or the ones most commonly 

used. The most important and distinctive characteristics of these languages are introduced and 

discussed informally.  
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The Artificial Autonomous Agents Programming Language or 3APL (Dastani et al., 

2003; Hindriks et al., 1999)  has a combination of imperative and logic programming features. 

In 3APL, the knowledge base (beliefs) is represented in terms of a logical language. However, 

the language incorporates a procedural rather than a declarative notion of goals, also called 

goals-to-do. 3APL recognizes the fact, that goals need not necessarily be consistent, so there 

should be established a goal deliberation mechanism. In such a goal-oriented design, three types 

of goals exist: basic actions, achievement and test goals. Through basic actions, 3APL agents 

update their mental state, performing changes in their belief base and the environment. 

Achievement goals describe, in an abstract way, the system state, that the agent is tasked to 

bring about. A test goal allows the 3APL agent to check the consistency between a certain 

formula and its belief base. 

The set of plans (i.e. practical reasoning rules), is tightly coupled with goals, in the same 

way that goals are coupled with beliefs, since they enhance monitoring and planning of agent’s 

goals. Practical reasoning rules, follow the very well-known structure of head-context (here it 

is called guard) -body, providing also a mechanism for plan and goal revision, adding failure 

handling capabilities. Goal modifications are available through the use of goal variables in 

rules. Respectively, a rule classification is proposed, where failure, reactive, plan and 

optimization rules are distinguished and ordered, according to their priority. The above ordering 

is required from the nature of the system, since it is urgent for the agent first to avoid failure 

and react and then to achieve its goals. 

Focusing on control mechanisms, 3APL implements a policy following the glass-box 

assumption, concerning agents’ decision, about which goals to deal with first and which rules 

to use. The above means that the specification of selection mechanisms that agents use, is 

readily available to the programmer. An imperative, set-based language, is proposed to play the 

role of the meta-language, dealing with the control structure, which in turn, is based on the 

update-act cycle that is followed in several agent languages. The basic outline of this control 

structure, is presented in Figure 2.2, where the first two steps of the cycle refer to the application 

phase and the second two, to the execution one. 



A Prolog Meta-Interpreter for AgentSpeak(L)  

page 19 

 

Figure 2.2 The Update-act cycle of a 3APL agent 

 

The above concludes our discussion for 3APL, a language close enough to AgentSpeak 

(L), since both are based on the BDI architecture. The most important difference between the 

two languages, one could highlight is the extended set of rules of 3APL, that enables goal 

revision and modification. 

Furthermore, several implementations tried to accomplish the task of bridging the gap 

between logic theory and practice, in agent-programming. GOAL (Goal-Oriented Agent 

Language, (Hindriks et al., 2000) is a logic-based agent-programming language. In contrast 

with other agent-programming languages, GOAL uses logical terms to represent goals, as well 

as beliefs, adopting a declarative perspective. The language introduces the goals-to-be notion, 

instead of the goals-to-do one. Consequently, GOAL focuses on the description of the state, 

that the agent desires to reach and not on the actions that are required for this. 

Besides goals and beliefs, a set of basic actions is associated with the GOAL agent, 

defining its capabilities. These actions are to be considered for execution, depending on the 

mental state condition of the GOAL agent. Through the execution of these actions, GOAL 

agents are able to drop goals or adopt new ones, noted that it is not required for the new goals 

to be consistent with the old ones. GOAL agents follow the blind commitment strategy, with 

respect to which, a goal is being dropped, if and only if it is considered, from the agent, as 

achieved.  

GOAL agents follow a reasoning cycle that consists of two phases. First, they update 

their knowledge about their environment, which derives from the events, such as percepts and 

messages. Second, based on this up-to-date knowledge base, GOAL agents have to choose their 

next action through the decision making process. 
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The language allows distributed execution of the MAS implemented on multiple 

machines, communication between agents and is also supported by an IDE offering some 

debugging tools such as agent introspectors, message sniffers and breakpoints. It is worth 

mentioning that GOAL was the winner of Multi-agent Programming Contest (MAPC) for the 

year 2011 (Behrens et al., 2011), represented by the team HACTAR V2 from TU Delft, NL.  

JADE (Java Agent DEvelopment Framework, (Bellifemine et al., 1999) is a FIPA 

(Foundation for Intelligent Physical Agents (O’Brien and Nicol, 1998)) compliant software 

framework for agent applications. JADE is a distributed application platform that supports 

lightweight message exchanging, adopting a thread-per-agent concurrency model. Messages 

are encoded as Java objects. APIs are independent from the underlying network and Java 

version. A suite of graphical tools is provided, enhancing debugging and monitoring agents’ 

behaviour, at the execution phase. 

Jadex (Pokahr et al., 2005), could be viewed as an extension to the JADE agent platform. 

Hence, a variety of features of JADE, are also incorporated in Jadex, such as the communication 

infrastructure, agent management services, debugging and development tools. However, Jadex, 

as a reasoning engine, aims to deal also with the agents’ decision making process, focusing on 

internal agent concepts. 

In Jadex architecture, beliefs are represented as Java objects, while plans have to be 

implemented as Java classes. Jadex defines four different types of goals, such as perform, 

achieve, query and maintain. Perform goals refer to actions that Jadex agents have to take, 

without focusing on the overall outcome. Achieve goals describe the general scope that has to 

be reached, while the query ones are similar to the test goals defined in other languages. 

Maintain goals, allow Jadex agents to monitor the desired system state. The overall Jadex 

execution model is strongly based on the BDI interpretation cycle. Apart from the JADE tools 

already available, Jadex also supports the debugger, for introspecting agents’ behavior and the 

logger, a message sniffer, monitoring the communication between the agents.   

SRI Procedural Agent Realization Kit (SPARK, (Morley and Myers, 2004)), is another 

agent framework, based on the BDI model. The properties of SPARK agent, include the 

knowledge base, the library of procedures (i.e. plans) and the set of intentions. Similarly to 

other frameworks, a set of logic clauses is used to model SPARK agent’s knowledge base. On 

the other hand, the plans consist of the name, the event that triggers the plan, the context and 

the body. The last includes the tasks that should be achieved, represented as finite state 

machines (FSMs). During the execution cycle, the SPARK agent receives feedback from its 
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sensors, activates the applicable procedures, which in turn can cause changes in its knowledge 

base, triggering new procedures. 

 An important feature of SPARK, is agents’ guidance. Much research has gone into 

finding the most efficient way for the agents to prioritize their actions in order to avoid failure 

and maintain their autonomy, at the same time. According to this attribute, the user is allowed 

to put some limitations to this autonomy, guiding the agents on how to accomplish their tasks. 

Two types of guidance are defined, the strategy preference and adjustable autonomy. Regarding 

the first type, the user is able to implement some restrictions on agent’s procedures, concerning 

for example the sources of information to be retrieved; or to limit the range of solutions, 

managing specific parameters. According to the second type, the agent is forced to consult or 

ask for permission from the user, in order to be endorsed to proceed to the next action. 

Having clearly defined formal semantics and enhancing practicality, failure handling 

and scalability, SPARK claims to be sufficient for large-scale real-world applications. 

Although a significant number of other approaches have been proposed, we limited our 

review to the above in order to provide a context for presenting in more detail AgentSpeak(L), 

which is the main focus of the present project.  

 

2.5 AgentSpeak(L) 

AgentSpeak(L) (Rao, 1996) is a language, with a remarkable contribution to the ideas in the 

field, investigated at a time when agent programming was something of a black box and 

definitely a daunting task for the researchers. This language is with no doubts, the most 

commonly known approach to a formulated language in agent-programming.  

AgentSpeak(L) is built on and claim to be viewed as a simplified textual language of 

the Procedural Reasoning System (PRS, (Georgeff and Lansky, 1986; Ingrand et al., 1992)), 

which can be considered as an “ancestor” of the language. As a BDI implemented system, PRS 

played the role of the starting point for AgentSpeak(L), while the latter could be viewed as an 

abstraction of the former. PRS, endowed with the attitudes of BDI is a both highly reactive and 

goal-directed agent architecture, promising to be sufficiently reactive and useful in real-world 

applications. The PRS interpreter, is responsible for the execution of the entire system and aims 

to manage the sets of beliefs, knowledge areas (i.e. plans) and the process stack (i.e. intentions), 

in order to achieve goals. Multiple asynchronous PRS instances could be monitored, as 

instantiations of the basic system, which run in parallel, used for simulating the communication 
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and the message handling. A fully fledged implementation of PRS, in C++, was the distributed 

Multi-Agent Reasoning Systems (dMARS, (d’Inverno et al., 1997)). 

The mental structure of an AgentSpeak(L) agent, consists mainly of the belief base and 

the set of plans. Beliefs, are represented using ground literals, similarly to facts in the logic 

programming sense, formulating belief atoms or their negations. Some examples of beliefs, are 

showed in Figure 2.3. 

 

block(3234,5471). 

quantity(wood,23). 

~like(john,movies). 

book_price(prolog,120). 

 

Figure 2.3 Beliefs in AgentSpeak(L) 

 

Agents perceive their environment and take actions according to their plans, in order to 

achieve their goals. A goal is defined as a state of the system, which the agent wants to reach. 

Bluntly put, a goal puts the agent in an alert state, in order to accomplish a task. Two types of 

goals are distinguished, achievement (!) and test (?) goals. Concerning the first type, the agent 

has to reach certain states of affairs, desired situations. As for the second type, the agent has to 

check its belief base, for compliance with the respecting goal formula.  

Plans could be viewed as context-sensitive instruction sets, which are triggered by 

events. The syntax of a plan follows a head-context-body form, where the head defines the 

related event, the context, in which the conditions under which the plan is applicable are defined 

and finally the body, describes the primitive actions or subgoals that have to be achieved. In 

order for a plan to be applicable, the agent’s current beliefs must comply with plan’s context. 

A plan example is shown in Figure 2.4.  

 

+!sell_Flowers : flowers(Q) & price(P) & not flowers(0) 

<- broadcast(achieve, propose(Q,P)); 

wait(1500); 

!eval_proposals. 

 

Figure 2.4 An achievement plan in AgentSpeak(L) 
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The above plan (Figure 2.4) refers to the initial call of an auctioneer, addressed to the 

bidders, during a flower auction. As for the structure of the plan, the head contains plan’s related 

event, prepended by +! , which means this is an achievement plan. The context part, includes 

some checks for the sufficient quantity and the price limit, while the body includes the broadcast 

to the bidders, in order to be informed and prepare their bids, followed by the “wait” action, 

ensuring a time gap for receiving the bids. Finally, an important part is the sub-goal 

!evalproposals, which triggers a “lower” level next plan, that would describe the respective 

actions for proposal evaluating. 

Any change in the environment of the agent is denoted in the belief base, as an addition 

or a deletion of the corresponding belief. In the same way, we could have addition or deletion 

of goals. Such changes, are called triggering events and in most of the cases, result in invocation 

of respective plans. Events could be characterized as external, when triggered from an 

environmental change or another user that asked the system to adopt a goal and as internal, 

when generated by the agent itself.  

 

 

 

Figure 2.5 AgentSpeak(L) agent’s lifecycle 

 

From a point of view, in Figure 2.5 is presented the (simplified) life cycle of the 

AgentSpeak(L) agents: events trigger plans and so, actions are taken, which result in new events 

completing the cycle. 

According to the informal semantics of the language, apart from the sets of beliefs, 

plans, events, actions and intentions there are also three selection functions SE, SO, SI for 

events, options (i.e. applicable plans) and intentions respectively. The interpretation cycle is 

event-driven. Thus, events are added to the respective set, as well as selected from the respective 
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selection function (SE). Consequently, relevant plans are triggered. Provided that the belief 

base complies with plan’s context, a plan becomes applicable and available to be activated from 

the selection function (SO). Depending on the type of the event, either a new intention is created 

(in case of an external event), or a new sub-plan is pushed (in case of an internal event) to the 

intention stack. In the next step, an intention is selected (SI), in order to be executed and this, 

results in agent’s commitment with that intention. 

Hence, the interpreter has to execute the formula at the top of intention’s body. The 

above means that, for the agent, there are four different cases, in relation to the type of the goal 

or action that appears as the first literal at intention’s body. In case of an achievement goal, a 

new internal event is generated and added in the appropriate set, while the goal remains on the 

stack. If the literal is a test goal, after the potential variable binding, the system seeks to update 

the stack, as well as the rest of the plan, accordingly. In case of an atomic action, it is directly 

executed, and dropped from the stack. Finally, if the formula is true, the respective satisfied 

goal is removed and the substitution is applied to the rest of the body of the intention. 

The above described interpretation cycle is followed until all the plans are executed and 

removed from the intention stack, leaving it empty. That cycle is similar for deletion of goals, 

as well as for addition and deletion of beliefs. Further analysis of other aspects, such as non-

deterministic plans, although referred, are not thoroughly explained. 

Concluding our discussion for AgentSpeak(L), we stress once more language’s 

influence to other approaches as mentioned above. An indicative example of that influence and 

worthy to be further discussed is Jason, claiming to be a fully-fledged interpreter of the 

language. 

 

2.7 Jason 

Jason (Bordini and Hübner, 2005) is an AgentSpeak(L) interpreter, written in Java, aiming to 

extend the language, in terms of practicality. Jason implements a significant number of Prolog 

features. Among others, one can mention the use of “_” for the anonymous variables, Prolog 

lists, relational operators and rules. At the same time, other additional features are introduced, 

such as strong negation (~), as well as belief and plan annotations, with the last to redefine the 

way that unification is performed.  

 



A Prolog Meta-Interpreter for AgentSpeak(L)  

page 25 

Annotations provide a simple way to “comment” formulas, enhancing the 

communication between the agents and useful for programming purposes. An indicative 

example is given in Figure 2.6, where the belief annotations provide supplementary 

information, concerning the confidence and the source.    

 

offer(book,40)[expires(sunday),confidence(0.2)] 

have_good(price(23))[source(agent 23)] 

 

Figure 2.6 Belief annotations in Jason 

 

On the other hand, plan labels (Figure 2.7) assign symbolic names to plans, useful for 

debugging and communication purposes, associated with meta-level information. These plan 

labels, allow the programmer to yield or suspend a plan among alternative ones, interfering in 

the execution cycle.   

 

@ask_to_open_door 

+!open_door : true <- 

.send(bob, achieve, open(door)); 

.wait(1000); 

.send(bob, askOne, window(Status), Reply); 

 

Figure 2.7 Plan labels in Jason 

 

Standard and user-defined (written in Java) internal actions (Figure 2.8) for the agents 

are available with the use of symbol “.”, enhancing the controlling mechanisms in a MAS, while 

selection functions are also customizable in Java. 

 

+!list(books) : true <- 

  .findall(Book,price_book(Book,_), Books); 

  .print(Books). 

 

Figure 2.8 Internal actions in Jason 
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Another salient characteristic of Jason is failure handling: when an action fails or the 

interpreter is not able to find an applicable plan to execute, the whole failed plan triggering 

event (+!g) is replaced with an internal event (-!g), that is generated in the same intention. If 

there is not a provision (an alternative plan to be triggered) for that failure, the system discards 

the intention, throwing a warning message, otherwise the failure is handled, according to the 

plan. The last promotes an open-minded commitment strategy. 

The already known from the AgentSpeak(L) execution cycle selection functions (SE, 

SO, SI), along with Belief Update Function (BUF), Belief Revision Function (BRF), as well as 

message handling functions, manage Jason’s execution cycle. BUF deals with environmental 

percepts, updates the Jason agent’s belief base and generates the corresponding external events, 

but is unable to guarantee belief consistency, which is up to the programmer. BRF is responsible 

to catch the feedback from the environment, after the execution of Jason agent’s plans. 

The compelling reason of BRF existence (as an extension to AgentSpeak(L)’s execution 

cycle), has to do with the communication needs of the Jason agents. The last are able to send 

and receive messages in a MAS, adopting a social behaviour. The communication concept in 

MAS, is heavily influenced by speech act theory (Austin et al., 1975; Searle, 1980). This theory 

refers to the effect of speech actions that indicate speaker’s intention, with respect to their 

illocutionary force. 

The structure of the messages that are exchanged between Jason agents, follows the 

schema of Figure 2.9. The first argument provides information about the sender of the message, 

while the second one (illocutionary force), contains Knowledge Query and Manipulation 

Language (KQML) performatives (tell, achieve etc.). KQML (Finin et al., 1994), is a language 

that provides a communication protocol, defining a specific set of performatives that should be 

used from the agents. In this framework, KQML ensures that Jason agents share a common 

syntax and semantics, concerning their communication. Finally, the third component of a 

message in Jason, includes the content, which could be a Prolog literal, a triggering event, a 

plan or a list. 

 

[sender, illocutionary_force, content] 

.send(bob,achieve, close(window)); 

.send(alice,tell, nice(weather)); 

 

Figure 2.9 Message structure and message examples in Jason 
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Hence, Jason agents are able to send and receive messages, seeking or providing 

information and tasking each other. However, apart from the above mentioned, Jason agents 

are able to exchange plans, which means to consult each other, on how to accomplish a task. 

The Jason user is also allowed to create environments, directly in Java classes, that 

extend the default environment class, of Jason. The user is also endorsed to customize the 

selection functions of Jason agents, managing their behavior. The language is also supported 

by an IDE, under jedit, which enhances MAS programming and facilitates the debugging task, 

by providing the respective debugging tools (mind-inspector) for agent introspection. 

 

2.8 Summary 

Among a variety of agent-programming languages that have been implemented through the last 

decades, AgentSpeak(L) is considered as the distinguished representative in the field and the 

most common in use. Jason, is a JAVA-based AgentSpeak(L) interpreter, which has gained 

much of attention lately, among both the research and the academic community. The continuous 

research and the wide variety of implementations in the field, show the significant effort that it 

takes, to design and implement a robust and efficient platform, concerning agent oriented 

programming. The next chapter intends to address this challenge, presenting the Prolog meta-

interpreter, implemented in this project. 
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CHAPTER 3 

Syntax and Use of AgentSpeak(L) 
 

This chapter presents the technological background of the project, as well as a thorough analysis 

of the identified features of AgentSpeak(L), along with the respective syntax. Since 

AgentSpeak(L) is considered the most commonly known approach to a formulated language in 

agent-programming, it has influenced many projects in the domain. Concerning the syntax, the 

current interpreter stays close to the original one defined from Rao (1996), offering to the 

programmer the ability, to use code, written in AgentSpeak(L). As for the use, the presented 

interpreter implements an extended set of the features of the language, highlighting the ones of 

strong negation, belief and plan annotations and complicated mental rules, which are briefly 

explained in the chapter. 

 

3.1 A Prolog based meta-interpreter 

AgentSpeak(L), as described in the previous chapter, is an agent-programming language with 

a strong theoretical  background, based on the BDI model. This background has a close 

relationship with logic programming, and AgentSpeak is considered as an extension of logic 

programming. 

On the other hand, logic programming languages as Prolog, have been proven ideal to 

support programming of meta-interpreters. The fact that Prolog treats data the same way as 

program clauses, facilitates the development of meta-interpreters. The declarative nature of a 

logic programming language that focuses on the definition of the problem and not on the 

explicitly described solution steps, as it happens in the imperative programming could be 

viewed as the key point, which makes such a language useful for agent-oriented programming. 

As cognitive agents, have the ability to act, move, reason, with a high level of flexibility, the 

declarative approach seems ideal for their specification. 

Thus, building on a strong background, such as first-order logic, Prolog can be 

considered as a robust tool, tackling the challenge of filling the gap between the logical theory 

and the practical issues concerned with software agents’ programming. 
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Agents, require a precisely defined framework, inside which, beliefs, goals and real-

world’s assumptions would be clearly stated. Hence, a logic programming language, as Prolog, 

is a powerful conceptual tool, providing the ability to express the complex real-world 

environment and also to represent both agents’ beliefs and desires, in a way similar to the human 

way of thinking.  

 

3.2 Technological Background 

SWI-Prolog has been chosen as the language platform of choice, since it is a very actively 

developed with wide adoption in the research community. SWI provides a variety of 

development tools, from which, the Eclipse Plugin, a Prolog Development Tool (ProDT), has 

been chosen, aiming to support the coding, as well as the debugging of this demanding project. 

Considered as key features of SWI, connectivity, scalability and multi-threading support, could 

also be thought as the strong pillars of the project. SWI also supports DOCKER, a useful 

platform for running distributed applications. On the other hand, Pedro (Robinson, 2010), a 

platform that establishes the connection between the agents, following the server-client model, 

gives agents the ability to communicate with each other, inside the Multi-Agent System (MAS), 

respecting the FIPA standards. 

The present interpreter, allows the programer to use all the basic features, of the original 

AgentSpeak(L). Besides these basic features, our Prolog interpreter, includes all the features of 

modern logic programming system implementations. 

 

SWI-Prolog 

 

http://www.swi-prolog.org/ 

 

Docker 

 

https://www.docker.com/ 

 

http://www.swi-prolog.org/
https://www.docker.com/
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Eclipse IDE – Prolog Development Tool 

https://www.eclipse.org/eclipseide/ 

 

https://marketplace.eclipse.org/content/prolog-

development-tools-prodt 

 

FIPA 

 

http://www.fipa.org/ 

 

Pedro 

http://staff.itee.uq.edu.au/pjr/HomePages/PedroHome

.html 

 

No Logo 

 

Table 3.1 The technological background of the current project 

3.3 The AgentSpeak(L) Syntax 

Concerning the syntax, the present interpreter stays close to that defined from Rao in the 

original paper (1996) and enriched from Winikoff in his Meta-Interpreter (2006). 

 

3.3.1 Beliefs 

Regarding beliefs, they are handled the same way as facts in logic programming. Apart from 

the simple beliefs, that follow the standard form, for example light(green), the interpreter 

also supports a form of strong negation, expressed by facts prefixed with the operator tilde (~). 

This powerful feature comes to highlight the difference between a completely absent (from the 

code) belief and a strong negated one, explained further in the next Section. Following the 

extensions from Jason (Bordini et al., 2005), belief annotations, that can be used to add 

information for an existing belief, indicate the source of the information and other user defined 

attributes the beliefs may have. The infix operator that is used for annotations, is the hash (#). 

Some examples that show the belief syntax, are presented below. 

 

https://www.eclipse.org/eclipseide/
https://marketplace.eclipse.org/content/prolog-development-tools-prodt
https://marketplace.eclipse.org/content/prolog-development-tools-prodt
http://www.fipa.org/
http://staff.itee.uq.edu.au/pjr/HomePages/PedroHome.html
http://staff.itee.uq.edu.au/pjr/HomePages/PedroHome.html
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book(prolog). 

~book(erlang). 

object(front)#[source(agent1)]. 

object(front)#[source(agent2)]. 

car(volvo)#[source(ag1),color(white)]. 

(~like(cookies))#[source(nick)]. 

 

In the last example, we could notice the parenthesis, which is put to separate the belief 

from the annotation, in case that a belief is both strong negated and annotated. The parenthesis 

is necessary to distinguish between two cases: 

 

(~like(cookies))#[source(nick)]. 

~like(cookies)#[source(nick)]. 

 

In the first case, the use of the parenthesis means that the agent does not like cookies 

and the respective belief derives from nick.  In the latter case, the negation refers to the whole 

expression. That means, the agent’s belief is a negated expression of the above form, while the 

source, which is omitted, is the agent itself (source(self)). 

 

3.3.2 Mental Rules 

Mental Rules follow the same syntax as Rules in logic programming with the difference being 

the use of ampersand ‘&’, instead of comma ‘,’ that separates the relations, which form the rule. 

It is worth highlight that the programmer may use all the predicates supported in Prolog (more 

significantly in SWI-Prolog, concerning that project), as well as universal facts (beliefs) and 

recursive definitions, to formulate strong declarative rules, as in logic programming. An 

example of a mental rule could be the following: 

 

findMaxTemp(Temp):- 

temp(Temp) & 

not ( (temp(Y) & Y > Temp) ). 

 

Similarly to Rules used in logic programming that introduce a relationship and could be 

also viewed as means of expressing new or complex queries, Mental Rules in agent-oriented 
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programming could be viewed as means of extending agents’ deliberative mechanism. Agents, 

consult their mental rules, to test conditions, that may appear in the context of a plan or to 

execute test goals. 

Apart from the above mentioned example of a simple mental rule, there is also the option 

of using more complicated Prolog rules enhancing the programming procedure. This type of 

rules, available to the programmer as an extra mean, adds robustness to the code and could be 

viewed as a very powerful feature, especially for the programmers familiar with logic 

programming. The below given rule is used to gather different solutions, creating the respective 

list, using the predicate findall/3, a well-known predicate in Prolog. After gathering, it also 

orders the list, with the use of another Prolog predicate, sort/2.  

 

findAllTemp(List):- 

findall(X,temp(X),List1), 

sort(List1,List). 

 

3.3.3 Goals 

Agents act and behave, with respect to their beliefs, rules and plans, aiming to accomplish their 

intended task. That task is represented in terms of agents’ goals. There are two basic types of 

goals, as defined in AgentSpeak(L), according to the agent’s objective. 

 

Achievement goals (!g) -  They refer to actions that the agent should take, in order to achieve 

a certain state that is described. It is the most common type of goals. For example: 

 

!close_valve 

!shut_window 

!turn_left 

  

Test goals (?g) - They ask from the agent to check if the referenced formula (g), is true or not, 

i.e. represent informational tasks that the agent should carry out. For example: 

 

?has_leak 

?sufficient_funds 

?cheapest_book  
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Goals of the form ^^g - Extending the below referenced two basic types of goals, there is 

another type that also may facilitate the programming procedure. In some cases, there is a need 

to pursue the goal as a separate intention, rather than following the sequential order of achieving 

goals. This could be useful, in a large goal sequence, for the goals that are expected to be more 

time-consuming, in order to avoid delays in the sequence, or when goals should be achieved 

independently. An example could be the following: 

 

^^book_table; 

!start_car; 

!pick_up_friends; 

!go_for_dinner. 

 

3.3.4 Events 

Agents observe their environment, noticing any changes. These environmental changes are 

represented as events and trigger agents to take the appropriate actions, according to their plans. 

The function of this mechanism, will be explained in details, in the next Section. The types of 

triggering events of AgentSpeak are: 

 

+b(t) Belief Addition 

-b(t) Belief Delition 

+!g(t) Achievement Goal 

-!g(t) Achievement Goal (Failure Handling) 

+?g(t) Test Goal 

-?g(t)  Test Goal (Failure Handling) 

 

3.3.5 Plans 

Plans as defined in AgentSpeak(L), consist of three basic components, the Head, the Context 

and the Body. The Head of the plan, consists of the triggering event. Depending on the type of 

the event that triggers it, the plan is categorized accordingly. Thus, we could define achievement 

plans (+!E), test plans (+?E), but also plans triggered from a belief addition or a belief deletion 

(+E/-E). Another category of plans, is used for failure handling (-!E/-?E). The above 
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mentioned plan categories will be explained further, in the next Section. Different types of plans 

are presented through examples, as below: 

 

+!speak :: true <- actions. 

+?move :: true <- action1;action2;action3. 

-book(Prolog) :: true <- actions. 

+book(Erlang) :: true <- actions. 

-!walk :: true <- actions.  

-?check :: true <- actions. 

 

Regarding the syntax of the plan, there is a slight difference between the original 

AgentSpeak(L) syntax and our approach. The operator which is used to separate the head from 

the context of the plan is ‘::’ instead of ‘:’. On the contrary, the symbols of ‘;’ and ‘<-’, used 

for sequencing and implication correspondingly, are implemented exactly the same way as in 

Rao’s (1996) approach. This change was due to the fact that modern Prolog Systems reserve 

the “:” operator for modules. 

 

3.4 Using AgentSpeak(L) 

A typical AgentSpeak(L) program, consists of beliefs, mental rules and plans. These are the 

basic components that combined accordingly, determine the agent’s behaviour. Thus, it is of 

high importance to highlight the different behaviour that the agent adopts, depending on the 

component of the program used.  

 

3.4.1 Beliefs 

The agent uses its belief base to store all the available information for the environment, 

expressed in facts. For example, the fact weather(nice) is used to inform the agent about 

the weather conditions, while object(front) is used to warn the agent that an object is in 

front of it. These facts are formulated, as a result of the feedback from agent’s sensors. 

  However, it would be wrong to say that this is the only “type” of beliefs. Unlike the 

majority of beliefs that derive from the agent’s environment, there is another category of beliefs 

that has to do with the agent itself. This category involves “internal” beliefs of the agent and in 

most of the cases has no relation with its environment.  Such beliefs, can be used to distinguish 
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one (type of) agent from another, giving the programmer the opportunity to create different 

tribes of agents. Thus, one could include beliefs, like the following, that “characterize” the 

agents: 

 

like(cookies) 

size(small) 

gas(petrol) 

 

Agent’s belief base could be considered as a robust tool in programmer’s hands, as it is 

used as a huge storage (agent’s memory), as well as the field in which are stored the features 

that structure the agent’s profile. 

 

3.4.2 Strong Negation 

Consider chess pieces, controlled by agents. With respect to chess rules, the bishop is able to 

move only in a diagonal direction, but the rook has to make only horizontal or vertical moves. 

So, a reliable practice for the programmer of the above MAS, could be to include a belief for 

the agent bishop, of the form move(diagonally). On the contrary, bishop’s belief base 

should include a belief like ~move(vertically). Thus, agents’ beliefs should not only 

show what the agent is able to do, but also what is not able to.  

This additional attribute, that is used to bring beliefs more closely to the human way of 

thinking, is called strong negation. Another example could be the belief, ~like(cakes) 

which means that the respective agent does not like (dislike) cakes. The use of strong negation 

in beliefs, has completely different impact, from the (simple) negation (using not). For the 

previous example, in case there is no belief in the base referring to cakes, this does not mean 

that the respective agent does not like cakes. In fact, in that case there is no way to decide for 

the agent’s preferences, concerning cakes, just because the program does not include any clue 

for this. Thus, expressions of the form not(like(cakes)), that could be found inside the 

context of a plan, succeed when the respective belief (like(cakes)), is simply absent from 

the base. On the other hand, when the context includes an expression like ~like(cakes), 

the respective strong negated belief should be included in the belief base.   
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3.4.3 Belief Annotations 

One could say that every kind of information could be expressed, using facts, just like in logic 

programming. However, in agent-programming we have to go one step ahead. Consider that a 

simple belief, may come from different sources: in many cases, the source of the information 

is of great importance, as it may increase or decrease the level of trust on the information. So, 

there must be a way to separate beliefs from different sources, an attribute that is not reflected 

in simple facts. Annotated beliefs, is an efficient way to handle such belief attributes. Attributes 

like source, confidence or any other characteristics of beliefs, that may be useful in their 

handling, should be included in a list, annotating the beliefs. These attributes, could play a vital 

role, while processing belief’s content. Some examples of annotated beliefs, are given below. 

 

light(green)#[source(agent26)]. 

weather(cloudy)#[probability(0.8)]. 

champion(teamA)#[confidence(0.7)]. 

 

It is worth to notice that, especially for the case in which a belief derives from the same 

agent (source(self)), it is acceptable to write only the belief with no annotation, 

concerning the source. So, the following beliefs have exactly the same influence in the code: 

 

colour(yellow). 

colour(yellow)#[source(self)].  

   

Hence, beliefs may have several annotations, adding complexity to the unification 

procedure. With respect to the type of the annotation, beliefs with the same attribute, for 

example the source, could be unified, provided that the annotations of the one are included in 

the annotations of the other.  The treatment of the annotated beliefs, is thoroughly described, 

through the following examples.  

 

object(front)#[source(self)].  

object(front)#[source(agent22)]. 

 

object(front)#[source(agent21)].  

object(front)#[source(agent21),source(agent22)]. 
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Concerning, the first pair of beliefs, although they refer to the same content, they could 

not be unified, because of the different annotations that they have. However, concerning the 

second pair of beliefs, the annotation of the first, is included in the list of annotations of the 

second belief. Thus, the beliefs of the second pair should be unified, as the first is a subset of 

the second. 

 

3.4.4 Plans 

As stated, plan categorization is derived from the categorization of their related triggering 

events. The most commonly used are achievement plans, which are triggered from achievement 

goals and describe all the actions that are required, for the agent to reach the desired state. An 

example of an achievement plan is given below: 

 

% Bookstore Example 

% Beliefs 

bookstore_book(prolog,25). 

bookstore_book(java,23). 

bank_account(100). 

% Plans 

+!can_buy_book(Book) :: bookstore_book(Book, Price) 

<- 

?bank_account(Balance) ; 

Balance > Price ; 

write([‘You have the money to buy ‘, Book]); 

!buy_book(Book); 

+my_books(Book). 

[...] 

 

The above example presents the deliberative mechanism that the agent follows to take 

actions, in the effort to achieve its goals. The agent of the example, desires to buy a book from 

the bookstore. Thus, the initial goal that the agent has to achieve is the 

!can_buy_book(Book). Sequentially, the event that is generated is the 

+!can_buy_book(Book), which triggers the respective plan. Before the execution of the 
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plan, the agent has to check its applicability, which means that the plan’s context should be 

true. In the current example, the plan’s context is used to check if a book is available in the 

bookstore. The available books are represented with beliefs of the type 

bookstore_book(Book,Price), so what is needed for this plan to be applicable is 

simply to exist a belief (at the agent’s belief base), like the one referenced in plan’s context. 

Provided that the plan is applicable (the book exists), the agent is able to start executing what 

is written inside plan’s body.        

 

The body of a plan could include the following: 

 

 Actions 

 Internal Actions 

 Achievement Goals 

 Test Goals 

 Mental Notes 

 Expressions 

 

Actions. Actions’ syntax is similar to ground predicates, used in logic programming. Agents 

perform actions, causing changes to the environment. In case that an action fails, the whole plan 

will also fail. 

  

Internal Actions. The internal actions refer to actions that do not have impact on the external 

environment of the agent, but aim to improve the level of functionality for the whole program. 

As internal actions, could be used all the implemented Prolog predicates (the ones supported in 

the current version of SWI, that has been chosen for the current project). Examples of such 

predicates, practical for agent-programming purposes are the following: 

 

write/1 

max/2, min/2 

findall/3, setof/3, bagof/3 
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It is worth mentioning, that as in logic programming, the programmer is allowed to define new 

predicates, according to the needs of the program. An example could be the predicate wait/1, 

which causes a time delay, often useful at the agent oriented programming. 

 

%%% Internal action wait _time in milliseconds 

wait(Time):- 

get_time(T1), 

     repeat, 

     get_time(T2), 

     Z is Time/1000, 

     T2 > T1 + Z. 

 

Achievement Goals. Achievement goals inside plan’s body, trigger achieve plans accordingly, 

which are usually called sub-plans. In most cases, achievement goals are included inside plan’s 

body, as a way to divide a large task (parent plan) into other subordinate ones. Such an example 

is given below: 

 

+!make_cake :: true <- 

 !heat_oven; 

 !add_ingredients; 

 !mix; 

 !bake. 

 

The parent plan (+!make_cake) that describes the main task, is divided into sub-tasks, 

expressed as sub-plans. Also, in the previously referenced bookstore example, the plan 

!buy_book(Book), could be viewed as a sub-plan of the “parent” plan 

+!can_buy_book(Book). Such a programming practice, increases code’s readability, 

allowing the whole program to be more easily debugged. 

 

Test Goals. Unlike achievement goals that their only use is to trigger achieve plans, test goals 

could be used in several ways as referenced below: 

 

 Checking the agent’s belief base 

 Checking an agent’s mental rule   
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 Triggering a test plan 

 

The bookstore example, as presented above is helpful to analyze better the first and the 

latter case, concerning the use of test goals. As for the second case, in which test goals trigger 

the execution of mental rules, it will be analyzed in a dedicated part below, called Mental Rules.  

   Hence, in the bookstore example, the bank account balance is checked through the test 

goal ?bank_account(Balance), which seeks for the respective belief, at the agent’s base, 

returning to the variable Balance, the respective value. 

It is worth to notice, that in case of failure of such a test goal, the whole plan also fails. 

This happens because the only way for such a test goal to succeed, is to unify with the respective 

belief. Thus, if a belief of the form bank_account(Balance) does not exist in the code, 

the whole plan  (+!can_buy_book(Book)) will fail. 

However, a robust program should provision against such kind of failure. Thus, an 

efficient practice is to avoid including test goals, that have a possibility to fail, inside plan’s 

body. Instead of the previous syntax, it is more preferable to follow the one presented below: 

 

+!can_buy_book(Book) :: bookstore_book(Book, Price) 

<- 

?check_bank_ac(Balance,Price); 

Balance > Price; 

write([‘You have the money to buy ‘, Book]); 

!buy_book(Book); 

+my_books(Book). 

+?check_bank_ac(Bal,Pr) :: true  

<- 

 ?bank_account(Bal). 

 

Following the above syntax, the test goal ?check_bank_ac(Balance,Price) 

triggers the execution of another plan (+?check_bank_ac(Bal,Pr)), which is called test 

plan. During the execution of this plan, the belief bank_account(Bal) is checked and the 

appropriate value is returned to the respective variable (Bal).  The mechanism that is followed 

is exactly the same with the achieve sub-plans that described before. 
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Although the execution cycle is better arranged and everything seems to be under 

control, the possibility to face the same failure, in case that the test goal 

?bank_account(Bal) fail, should still be considered. A possible failure of the respective 

test goal would cause a failure to the test plan, driving the parent plan to fail.  

The most highly effective mean, that would efficiently decrease the possibilities of 

failure for the program, is the use of alternative plans. Once the execution mechanism follows 

the top down approach, every time a plan fails, another plan should be applicable, in order to 

handle such a failure. This mechanism will be detaily explained, in the respective chapter titled 

Failure Handling.  

As a general rule, it is preferable to avoid failure inside plan’s body, moving any test 

conditions in the context of a plan. Once the conditions inside the context fail, the whole plan 

would be considered as inapplicable and another applicable plan would be searched. Including 

(at the end of the procedure) a plan with no context (always true), could be proved an efficient 

practice to avoid failure. The version given below, of the previously presented code, is an 

example that implements such a practice. 

 

+!can_buy_book(Book) :: bookstore_book(Book, Price) 

<- 

?check_bank_ac(Balance,Price); 

write([‘You have the money to buy ‘, Book]); 

!buy_book(Book); 

+my_books(Book). 

+!can_buy_book(Book) :: true <- 

 write([‘The book ‘ ,Book, ‘ does not exist.’]). 

+?check_bank_ac(Bal,Pr) :: true <- 

 ?bank_account(Bal). 

+?check_bank_ac(Bal,Pr) :: true <- 

 alternative_actions[…] 

 

In the above program, there is provision against failure in two cases. First, in case that 

the belief bookstore_book(Book, Price) fails (book does not exist). Second, in case 

that the test goal  ?bank_account(Bal) fails (the belief does not exist).  
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Of course, the effort to decrease the possibilities of failure is endless, because always 

there should be a case for the whole program to fail. But, it is worth to take the appropriate 

measures, keeping the code robust and safe. 

Hence, although test goals has been proved a handy tool, which could be used in several 

ways, it is worthy of great attention, as it could make the code extremely fragile.     

 

Mental Notes. Bluntly put, agents’ belief base is a huge information storage, that plays the role 

of agent’s memory, that is able to change during the execution of the program. Similarly to 

humans, agents need a way to keep track of environmental or internal changes. Through mental 

notes, agents keep notice of such changes, by adding or removing information from their base.  

Mental notes are included in plan’s body and add (+belief#[annotation]) or remove (-

belief#[annotation]) beliefs. It is considered as a useful practice to keep mental notes, enhancing 

both the processing and the debugging procedure, but maintaining also a high degree of 

consistency for the whole MAS. In the example given above (Figure XX), the 

+!can_buy_book(Book) plan, after the necessary actions and sub plans that includes, for the 

“buy” procedure, it finally includes the +my_books(Book) mental node. This node plays a vital 

role, as it allows the agent to keep track of the transaction, that just took place. After adding 

such a belief, the agent keeps the evidence, which might be proved very useful for it in the 

future. 

Such mental notes, could also trigger relevant plans. Sometimes, it could be  very useful 

for the agent to take appropriate actions, depending on certain changes of the environment or 

changes regarding its beliefs. The above mechanism means, that an event of the form +/-b, 

could trigger a plan of the form +/-b :: true -> actions. The examples below, show two cases, 

where a belief’s addition or deletion, trigger relevant plans: 

 

+car(broken) :: true <-  

 !go_on_foot. 

-weather(rainy) :: true <-  

!go_for_a_ride. 

 

Expressions. Sometimes it is useful to apply mathematical calculations inside plan’s body or 

compare values, as part of the calculating process. Expressions like the one included in the plan 

below are commonly in use, not only in the body of the plan but also in the context. 
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% Beliefs 

book(anne_frank, 19). 

book(harry_potter, 25). 

book(hamlet, 28). 

money(30). 

% Plans 

+!buy_book(Book) :: book(Book,Price) <-  

?money(Amount) ; 

Amount >= Price ; 

write([‘You can afford buying’ , Book]). 

 

It should be highlighted that once the expression fails, the whole plan would fail, too. 

Thus, it is for the programmer to avoid that failure, including an alternative plan, similarly to 

the cases described earlier. 

  

3.4.5 Plan Annotations 

Annotations do not only refer to beliefs, but also to plans. Considering the basic structure of the 

plan, with head, context and body, the head refers to the (internal or external) change, called 

event that triggers the plan. Annotations could be also used, to define precisely this triggering 

event. For example, the plans below, would be triggered under different conditions. 

 

+!g#[confidence(A)] :: true <- actionsA. 

+!g#[confidence(B)] :: true <- actionsB. 

 

+b#[source(A)] :: true <- actionsA. 

+b#[source(B)] :: true <- actionsB. 

 

The first pair of achievement plans, describes the alternative courses of action, that 

would be followed, according to the case, while the second pair of plans, separates the actions 

that should take place, with respect to the source of the added belief. The use of annotated plans, 

could be proved convenient for the programmer, defining exactly the circumstances, under 

which the one or the other plan would be triggered. The use of plan annotations, increases code 

modularity and flexibility, but also allows a large program to be more easily debugged. 
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3.4.6 Mental Rules 

Apart from simple beliefs, cognitive agents can employ rules, to derive conclusions. In a way 

similar to Prolog, Mental Rules are used to express relationships and allow agents to combine 

simple beliefs to draw more complex ones. As mentioned, mental rules are useful in test 

conditions, as part of plans’ context, but also in test goal “execution”. The code below, 

illustrates the above mechanism, presenting two examples of mental rules, employed in 

different cases. 

In the first case, the mental rule is used in plan’s context 

(over_salary_limit(S)), checking if the given salary satisfies the limit, which is set in 

the belief base (limit(#)). In the latter case, the best job is chosen (from the ones given), 

through the execution of a test goal (?highest_salary(S,P)), triggering the respective 

mental rule. 

 

%% Salaries’ Example 

%% Beliefs %% 

limit(10000). 

salary(8000,cashier). 

salary(12000,employee). 

salary(18500,doctor). 

salary(25000,broker). 

%% Mental Rules %% 

over_salary_limit(S) :- 

 limit(L) & L=<S. 

highest_salary(Salary,Description) :- 

 salary(Salary,Description) & 

 not ( (salary(S2,_) & S2 > Salary) ) . 

%% Plans %% 

% The Mental rule is inside plan's context % 

+!is_good_job(S,P) :: over_salary_limit(S) <- 

write(['Job ', P , 'provides a good salary, 

offering ', S , 'per year.']),nl. 
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+!is_good_job(S,P) :: true <- 

 write('Not accepted job. Too low wages.'),nl. 

% The Mental rule's getting triggered from a test goal  

+!find_best_job :: true <- 

 ?highest_salary(S,P); 

write(['Job ', P , 'provides the best salary, 

offering ', S , 'per year.']),nl. 

 

Noticed that in the second case that the mental rule searches for the highest salary, there 

is always a case, in which the rule succeeds (provided that there is at least one given belief that 

refers to a salary and a job). However, in the first case, there is always the possibility for the 

rule to fail, so it is a good practice for the programmer to include an alternative plan (+!g2) as 

referenced before, to avoid failure. 

 

3.5 Summary 

The chapter starts be describing the technological background of this project. The proposed 

meta-interpreter, is written in SWI-Prolog, which has been chosen as the most actively 

developed version of Prolog language. Also the whole project, is based on a robust 

technological background, capitalizing on modern tools such as Docker®. 

 After a thorough description of the original syntax of AgentSpeak(L), it is provided a 

detailed analysis of the implemented features, concerning the use of the proposed meta-

interpreter. The features of strong negation, belief and plan annotations and the use of 

complicated mental rules, combined with the basic features of the language, compose a robust 

framework that extends software agents’ capabilities.    
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CHAPTER 4 

Implementation 
 

In this chapter we are going to present the implementation of the meta-interpreter. As it is 

already mentioned earlier, AgentSpeak(L)’s syntax stays close to the syntax that is used in 

modern logic programming languages as SWI-Prolog. This logic-familiar syntax, enhances the 

implementation of the parser. Thus, the parser mainly focuses on the definition of the specific 

operators that are used in AgentSpeak(L). As for the use of the meta-interpreter, it stays close 

to the one defined from Rao in the original paper ((Rao, 1996)). The basic features of 

AgentSpeak(L) are enriched with new ones, with the aim to increase the efficiency of the 

language. Examples of these new features are the implementation of a sophisticated mechanism 

for belief handling, the support of new types of goals (goals pursued as a separate intention) 

and also the use of higher order Prolog predicates.  

Section 4.4 refers to another interesting feature in agent programming, which is failure 

handling. The meta-interpreter’s implemented failure handling mechanism, aims to support the 

execution process, allowing the program to run smoothly. Finally, the design of the system is 

described in the last Section. The multithreaded model is followed for the design of the current 

project, as it enhances both parallel execution and communication between agents.  

 

4.1 The Parser 

In our implementation, the user program follows closely the syntax of AgentSpeak(L), with 

some minor differences regarding operators, as mentioned in the previous chapter. The parser 

loads the program, by creating a set of Prolog facts for every program statement it parses, using 

a failure driven loop. During parsing, we obtain the initial definition of the agent, expressed in 

beliefs, mental rules and plans.  

Aiming to achieve the highest level of compatibility with the original AgentSpeak(L) 

and at the same time exploit the parsing capabilities of Prolog, we defined a set of  operators, 

extending those already defined in Prolog (Appendix 1).  
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Thus, operators part of the AgentSpeak(L) syntax, should be defined in Prolog, 

respecting the precedence and associativity in order for the whole program to be parsed 

correctly, but also to maintain its readability. The new operators are defined, using the predicate 

op/3, with the following syntax: 

 

op(Precedence, Type, Name) 

 

The variables that are used in the predicate refer to the precedence (values between 0-

1200), the type (postfix, infix etc.) and the name of the operator. These operators are presented 

below (Table 4.1). 

 

Precedence Type Name Functionality 

1190 xfx <- as in AgentSpeak(L) 

1150 xfx :: as ‘:’ in AgentSpeak(L) 

1050 xfy & Conjunction Operator 

900 fy not,~ Negation, Strong Negation 

200 fx !,?,+?,-

? 

as in AgentSpeak(L) 

200 fx ^^ as ‘!g’ but with ‘^^g’ the goal is pursued as a separate 

intention 

190 xfx # Annotations 

Table 4.1 Operators defined in the Prolog meta-interpreter for 

AgentSpeak(L) 

Noticed also, that the ‘;’ operator, already defined in Prolog, is used for sequencing 

actions inside plan’s body. As disjunctive operator, the ‘|’ predefined in Prolog was used.  
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4.2 Internal Representation 

As mentioned, the user program is represented internally as Prolog facts. In the sections that 

follow we describe the internal representation of each AgentSpeak construct. 

 

4.2.1 Beliefs 

Beliefs are parsed, to facts of the form: belief(Belief,Annotations). A user 

statement object(front)#[source(self)] is translated by the parser to the fact: 

belief(object(front), [source(self)]).  

Notice that belief annotations should always appear as a list. In the case that the belief 

originates from the agent itself (source(self)), the annotation could be omitted. Each 

belief addition given by different sources, alters the belief annotations accordingly. For 

example, consider the following program: 

 

object(front). 

object(front)#[source(agent1)]. 

object(front)#[source(agent2)]. 

 

The parser should create a fact like the following: 

 

belief(object(front),[source(self),source(agent1),source(

agent2)]). 

 

 

4.2.2 Mental Rules 

Similar to beliefs, mental rules are parsed creating a fact of the form rule(Belief,Body). 

For example, the following rule is used to find the maximum of given temperatures, expressed 

as temp(Temp) beliefs in the program:. 

 

findMaxTemp(Temp):- 
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    temp(Temp) & 

    not ( (temp(Y) & Y > Temp) ). 

           

For the above rule, the parser would create the fact given below:  

 

rule(findMaxTemp(VAR_Temp),  temp(VAR_Temp) & not ( 

(temp(VAR_Temp_2) & VAR_Temp_2 > VAR_Temp) ). 

 

4.2.3 Plans 

As already mentioned, plans play the role of the recipes for the agent and describe the options 

that it has, according to the events that may occur.  

The basic syntax for a plan is the one that includes the event (E), the guard (context) 

and the plan’s body. Hence, every plan is parsed to a fact following the form 

plan(Event,Context,PlanBody). An example which shows the plan parsing, is the 

following: 

 

+!speak :: weather(nice) <- 

!say_hello; 

 !go_for_a_ride. 

 

The above plan written in AgentSpeak(L) should be parsed, creating a Prolog fact, like 

the one below: 

 

plan(+!speak,weather(nice),!say_hello;!go_for_a_ride). 

 

Apart from the “usual” syntax of a plan, the programmer is allowed to write 

“incomplete” plans, lacking one or more components of the three basic ones (Event, Context, 

PlanBody), as mentioned above. For example, in many cases it is useful for the programmer to 

omit the context, writing the following: 
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+!speak <- 

!say_hello.  

 

The above is equivalent to a plan that has true in its context, but more simple to be 

written. The parser would still create the following, without throwing any errors. 

 

plan(+!speak,true,!say_hello). 

 

In the same framework, acceptable forms of plans are also those which lack a body i.e. 

which consist only from the event. The last, could only be achievement plans (+!speak). 

Examples of that kind of plans, after parsed, would give the following internal representations: 

 

 

plan(+!speak,context,true). 

plan(+!speak,true,true). 

 

 

4.3 The Interpreter 

After parsing and loading the program, the interpreter is responsible to proceed with its 

execution. Once the belief and the plan base have been structured, the next step is to define the 

goals of the agent. These goals originate either from the agent itself (according to the code 

written by the programmer), or from another agent that asks for them. Additionally, the agent 

adopts goals, triggered by changes on its beliefs, while the last derive either from environmental 

percept or through communication with agents. Hence, it is critical to distinguish between these 

cases, where the agents adopt new goals: 

 

 Goals that originate from the agent itself 

 Goals asked by other agents to be achieved 

 Changes in beliefs as a result of environmental percept 

 Changes in beliefs as a result of communication with other agents 
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The mean for reaching (achieving) such goals, is the agent’s plans, which include the 

necessary actions, sub-plans or expressions, as mentioned earlier. The execution of such plans, 

reflects the agent’s intentions.  

The interpreter receives the above described events as input reacts based on the agent’s 

plans. The main part of the interpreter (solver), has been based on the meta-interpreter for the 

AgentSpeak(L), proposed by Michael Winikoff (2006) and is presented below: 

 

solve(true). 

solve(fail):- !,fail. 

% Sequencing actions in plan body 

solve(P1;P2):- 

  !,nb_setval(remaining,P2), 

  solve(P1), !, solve(P2). 

% Solving an achieve goal 

solve(!E):- 

  !, 

  find_plan(+!E,_,P), 

  %% commit to an applicable achieve plan 

  !, 

  solve(P).  

% Solving a test goal 

solve(?E):- 

 test_condition(E). 

% Solving a test goal (with test plan) 

solve(?E):- 

  !, 

  find_plan(+?E,_,P), 

  %% commit to an applicable test plan 

  !, 

  solve(P). 

% Solving a goal pursued as a separate intention 

solve(^^E):- 

 generate_agentspeak_event(achieve(!E)). 
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%%%%%%%  Adding, Removing & Updating Beliefs %%%%%%%% 

solve(+B#A):- 

 !,add_belief(B,A). 

solve(+B):- 

 !,add_belief(B,[source(self)]). 

solve(-B#A):- 

 !,remove_belief(B,A). 

solve(-B):- 

 !,remove_belief(B,[source(self)]). 

%%%% Plans Triggered from belief addition/deletion %%%% 

solve(addb(B,A)):- 

 find_plan(+B#A,_,P), 

  % commit to an applicable triggered plan 

  !,solve(P).   

%% In case there is no plan for belief addition. 

solve(addb(_,_)):-!. 

solve(delb(B,A)):- 

   find_plan(-B#A,_,P), 

   % commit to an applicable triggered plan 

   !,solve(P). 

%% In case there is no plan for belief deletion. 

solve(delb(_,_)):-!. 

solve(E):- E. 

 

The solver above, is responsible to handle the input, unifying the events with the existing 

plans in the agent’s plan library, as below: 

 

 Solve an achievement goal (!g) 

 Solve a test goal (?g) 

 Solve a goal pursued as a separate intention 

 Solve a belief addition/deletion 

 Solve a plan triggered by a belief addition/deletion 
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 Solve an action/expression/Prolog predicate 

 

 The cases listed above, cover the ones defined in AgentSpeak(L). Hence, the interpreter 

is capable of reading and executing a program written in AgentSpeak(L), with respect to the 

minor differences regarding the syntax, as already noticed earlier. Ensuring that the level of 

compatibility with AgentSpeak(L), as well as the smooth functionality were checked, through 

a wide set of test cases, it is important to present the most representative ones, along with the 

respective console output, at the end of every part, as following. 

 

4.3.1 Achievement and Test goals 

Concerning the achievement and test goals, the solver focuses on the unification of the event 

(!g, ?g) with an applicable corresponding plan (+!g, +?g). Once this applicable plan 

exists, the predicate find_plan, which is explained later on, succeeds. Sequentially, what is 

included inside plan’s body, as content, is executed (solve(P)). For example: 

 

%% Test Case 1 

%% Beliefs 

time(morning). 

day(friday). 

%% Plans 

+!test1 :: true <- 

!message(friday); 

 !testAnotPlan#[source(agent13)]; 

?is_limit(100)#[source(agent21)]. 

+!message(D) :: time(morning) & day(D) <- 

write('test 3 -ok. (Checking  Plan Conditions)');nl. 

+!testAnotPlan#[source(agent13)] :: true <- 

write("test 24 -ok. (Annotated Plan asked to be 

achieved)");nl. 

+?is_limit(L)#[source(agent21)] :: L>10 <- 

write("test 32 -ok. (Solving a test goal, by executing 

an annotated test plan) "),nl. 
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 Console output: 

 

 ?- load_agent('tester.pl'). 

true. 

?- test 3 -ok. (Checking  Plan Conditions) 

test 24 -ok. (Annotated Plan asked to be achieved) 

test 32 -ok. (Solving a test goal, by executing an annotated 

test plan) 

 

 However, as it is mentioned in the previous Chapter, test goals are not only used to 

trigger test plans, but also to check if a belief exists or to execute a mental rule. The part of the 

code that handles these cases, calls the predicate test_condition/1, which will be 

explained in detail later in the corresponding Section. The example below presents such a case, 

where a mental rule is executed: 

 

 %% Test Case 2 

%% Beliefs  

salary(10000,captain). 

salary(15000,major). 

salary(18000,colonel). 

%% Rules 

lowest_salary(Salary,Person) :- 

 salary(Salary,Person) & 

 not ( (salary(S2,_) & S2 < Salary) ) . 

%% Plans 

+!evaluate_salary :: true <- 

 ?lowest_salary(S,P); 

 S=10000; 

write("test 28 ok. (Solving a test goal following a 

mental rule) "),nl. 
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 Console output: 

 

 ?- load_agent('tester.pl'). 

true. 

?- test 28 ok. (Solving a test goal following a mental rule)  

  

4.3.2 Goals pursued as separate intentions 

Concerning the case where a goal is pursued as a separate intention, the difference is the use of 

the predicate generate_agentspeak_event (achieve(!E)). Noticed that this case 

refers only to achievement goals, as indicated by the respective event, that is generated. It is 

worth to mention, that the predicate above, is also used for the creation of a new intention stack, 

while its behaviour will be further explained, in the Design Section. The example that follows, 

shows such a case: 

 

%% Test Case 3 

%% Beliefs  

%% Plans 

+!test :: true <- 

 ^^separateIntention. 

+!separateIntention :: true <- 

write("test 33 ok. (Goal pursued as a separate 

intention)"),nl. 

 

Console output: 

 

?- load_agent('tester.pl'). 

true. 

?- test 33 ok. (Goal pursued as a separate intention) 
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4.3.3 Belief Addition/Deletion Goals 

The part of the solver that handles the changes in the agent’s belief base, refers to the events of 

+B, -B, +B#A, -B#A, in relation to a belief addition or removal, either it is annotated or not. 

Depending on the desired goal, the interpreter calls one of the respective predicates, which 

function is defined as below: 

 

%% The Belief already exists with different annotation(s) 

add_belief(B,Atts):- 

 retract(belief(B,PreviousAtts)), 

 !, 

 union(Atts,PreviousAtts,NewAtts), 

 assert(belief(B,NewAtts)), 

 generate_agentspeak_event(addb(B,Atts)). 

%% Completely New Belief 

add_belief(B,Atts):- 

 is_list(Atts),!, 

 assert(belief(B,Atts)), 

 %% this is to work with higher order predicates. 

 assert(B),add_record(B), 

 generate_agentspeak_event(addb(B,Atts)). 

%%% The belief exists 

remove_belief(B,Atts):- 

 belief(B,PreviousAtts), 

 !, 

 subtract(PreviousAtts,Atts,NewAtts), 

 retract(belief(B,PreviousAtts)), 

 !, 

 length(NewAtts,N), 

 %% if the belief has no other annotations, 

 %% there is no reason to be kept in BB 

 (N > 0 -> assert(belief(B,NewAtts)) ; retract(B)), 

 generate_agentspeak_event(delb(B,Atts)). 

%%% If the belief does not exist, then simply succeed 
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%%% without triggering any plan 

remove_belief(_,_). 

 

The behaviour of every one of the predicates above, distinguish between two cases: the 

added/removed belief already exists in the agent’s belief base, or not. 

Concerning the behaviour of the predicate add_belief/2, considering the case 

where the added belief exists, it is enough to add the new annotation in the list of the ones that 

already exist. On the other hand, if the added belief does not exist, a completely new record of 

such a belief, is added in the belief base. This new record is of the form belief(B,Atts), 

as defined in parsing.  

However, it is worth to mention a special mechanism regarding belief addition. Apart 

from the record that corresponds to the form belief(B,A), the content of the belief (B), is 

also (double) tracked at the Prolog base (assert(B)). The reason for this, is related with the 

execution of mental rules. Consider that the agent has to check the rule given below: 

 

findMaxTemp(Temp):- 

    temp(Temp) & 

    not ( (temp(Y) & Y > Temp) ). 

 

During the execution of such a rule, the interpreter seeks for records of the form 

temp(),  while the beliefs of the agent respect the form belief(B,A). So, despite the fact 

that the agent’s base might include, for example, a belief like 

belief(temp(43),source(self)), the rule would not be executed successfully, 

because of this forms’ inconsistency. Thus, by using both the two forms for the belief recording, 

the above described deficiency is resolved. Mental rules can normally be executed, when 

written following the Prolog syntax, similarly to the rules in logic programming.     

The predicate remove_belief/2 , assuming the case where the removed belief 

exists, the has as a first action is to remove the respective annotation from the set of the 

annotations that corresponds to that belief. However, after this action, it is critical to check if 

the annotation of the removed belief is the only one present in the respective list. This check is 

of great importance, because in that case, the belief should be completely removed from the 

base, since there is no reason for a belief without annotation(s), to be kept. In case that the 



Dimitrios Dimitriadis – MSc Thesis 

page 58 

removed belief does not exist, the predicate simply succeeds. It is worth to mention, that in this 

case, even if there is a plan to be triggered from such a remove (-b), it is not triggered. 

The example presented below refers to the cases where a belief is added or removed 

from the agent’s belief base: 

 

%% Test Case 4 

%% Beliefs  

obstacle(back)#[source(agent1)]. 

obstacle(back)#[source(agent99)]. 

%% Plans 

+!test :: true <- 

 +obstacle(back)#[source(agent100)]; 

write("test 16 -ok. (Add directly an annotated 

belief)");nl; 

 -obstacle(back)#[source(agent99)]; 

write("test 19 -ok. (Remove directly an annotated 

belief)");nl. 

 

Console output: 

 

load_agent('tester.pl'). 

true. 

?- test 16 -ok. (Add directly an annotated belief) 

test 19 -ok. (Remove directly an annotated belief) 

 

Noticed also, that after the execution of the code above, the agent’s belief base should 

include the belief obstacle(back)#[source(agent100), source(agent1)]. 
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4.3.4 Plans triggered by Belief Additions/Deletions 

Changes in the belief base could trigger the execution of other plans, written for this purpose. 

In this case, a special “pseudo-event” is generated, corresponding to the belief addition 

(addb(B,A)) or deletion (delb(B,A)), accordingly. A detailed explanation for this kind of 

“pseudo-events”, which are generated using the predicate generate_agentspeak 

_event,  will be given in the Design Section. 

The solver handles these events in a way similar to the one that follows for the 

achievement and test goals. It seeks for a plan (+b/-b) that unifies with the belief added or 

removed and executes it, provided that it is applicable. For example: 

 

%% Test Case 5 

%% Beliefs  

bad(mood)#[source(agentB)]. 

%% Plans 

+!test :: true <- 

+good(day)#[source(agentA)]; 

 -bad(mood)#[source(agentB)]. 

+good(day)#[source(agentA)] :: true <- 

write('test 21 -ok. (Plan triggered by an annotated 

belief addition)');nl. 

-bad(mood)#[source(agentB)] :: true <- 

write('test 23 -ok. (Plan triggered by an annotated 

belief deletion)');nl. 

 

Console output: 

 

load_agent('tester.pl'). 

true. 

?- test 21 -ok. (Plan triggered by an annotated belief 

addition) 

test 23 -ok. (Plan triggered by an annotated belief 

deletion) 
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Noticed that after the execution of the code above, the belief good(day) should have 

been added in, while the belief bad(mood) should have been removed from, the agent’s belief 

base. 

 

4.3.5 Actions/Expressions/Prolog Predicates 

Finally, for the rest of the cases, which refer to the execution of (Prolog) predicates or checking 

expressions, the solver simply evaluates the predicate or the expression as true or false and 

proceeds accordingly: 

 

?- solve(1>2). 

false. 

?- solve(3>2). 

true. 

?- solve(write("Prolog")). 

Prolog 

true. 

 

As it was mentioned above, there are two basic predicates, that play an important role 

in the interpretation of a program. These are the find_plan/3 and the 

test_condition/1.  

More significantly, the find_plan/3 predicate, takes three arguments, the head, the 

context and the body of a plan. Also, there could be distinguished three basic cases, in which 

the current predicate is used for searching for a type (test, achievement etc.) of plan. The code 

presented below, refers to test plans (the implementation of the process for the other types of 

plans is similar) and includes these basic cases: 

 

%%%% Plans getting triggered from test goals - TEST PLANS 

%% Searching for a test plan where source(self) is omitted 

find_plan(+?E#[source(self)],C,P):- 
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 plan(+?E,C,P), 

  test_condition(C), 

 !. 

%% Searching for an annotated triggered test plan  

find_plan(+?E#A,C,P):- 

 plan(+?E#Annotations,C,P), 

 subset(A,Annotations), 

  test_condition(C), 

 !. 

%% Searching for a non-annotated triggered test plan 

find_plan(+?E,C,P):- 

 plan(+?E,C,P), 

  test_condition(C), 

 !. 

  

As it can be seen in the first case, when the interpreter searches for a self-originated 

plan, it is allowed to unify with a plan with no annotations, assuming that the source is the agent 

itself.   

The second clause, refers to the case where the annotation of the plan that is searched, 

is included in the list of annotations of a corresponding plan that exists, in the agent’s plan 

library. This is adequate for such a plan, in order to be considered as applicable.   

Finally the last case, is the most straightforward, where the interpreter seeks for a single 

(non-annotated) plan. 

In any of the cases above, after the unification, the predicate test_condition is 

responsible to check plan’s applicability. This predicate takes an argument, which refers to  the 

context of the plan that is searched. Once the context is true, the predicate succeeds. Thus, once 

the predicate find_plan/3 succeeds, it delivers the body of the plan (P) back to the solver, 

in order for the last to proceed with the execution of the plan. 

Concerning the behaviour of the predicate test_condition, it is defined in the part 

of the code presented  below: 

 

%%% Testing Conditions 

test_condition(true):-!. 
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%%% Conjunction 

test_condition(G1 & G2):- 

 !, 

 test_condition(G1), 

 test_condition(G2). 

%%% Disjunction 

test_condition(G1 | G2):- 

 !, 

 (test_condition(G1) ; test_condition(G2)). 

%% Strong negation on beliefs 

test_condition(~G):- 

 !,exists_belief(~G). 

%%% Negation NOT on anything 

test_condition(not G):- 

 test_condition(G),!,fail. 

test_condition(not _):- 

 !,true. 

%%% Annotated beliefs 

test_condition(G # A):- 

 exists_belief(G,A),!. 

%%% Non-annotated Beliefs 

test_condition(G):- 

 exists_belief(G,_). 

%%% Handling a mental rule 

test_condition(G):- 

 rule(G,B), 

 test_condition(B). 

%% A belief exists in BB. 

exists_belief(B):- 

 belief(B,_). 

%% Belief Annotation on lists of annotations 

%% A belief condition holds if it is a subset of beliefs. 

exists_belief(B,Att):- 

 belief(B,Attributes), 
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 subset(Att,Attributes). 

   

The predicate test_condition/1, is used to check the argument that takes, 

evaluating it as true (succeeds) or false (fails). Although that argument in most cases refers to 

the plan’s context, it could also refer to a belief or a mental rule. This case was defined earlier, 

when describing the process for solving test goals: 

 

% Solving a test goal 

solve(?E):- 

 test_condition(E). 

 

As mentioned in the previous Chapter, the interpreter supports strong negation and 

annotated beliefs. Thus, the implementation of the predicate test_condition/1, in those 

cases is quite simple. The predicates exists_belief/1 and exists_belief/2 are 

used to check the existence of non-annotated or annotated beliefs.   

 Hence, in case the interpreter has to check the existence of an annotated belief in the 

agent’s belief base, it simply requires that the annotation should be included in the list of the 

annotations for the current belief. This practice is in line with the one already explained for the 

annotated plans above. 

Regarding the execution of mental rules, the interpreter evaluates the body of the rule, 

as in logic programming. Notice the wide variety of mental rules that could be implemented 

and therefore interpreted, as in most of the implementations of modern logic programming 

languages. 

Concluding the presentation of the solver, it is worth to highlight once more, that the 

current interpreter is capable of executing a program written in AgentSpeak(L) and since it is 

written in SWI-Prolog, all the implemented Prolog library predicates, are compatible with the 

interpreter and therefore, executable.  

 

4.4 Failure Handling 

Failure Handling is definitely a demanding aspect of agent programming, as well as a great 

challenge for the research community. There are several implementations of failure handling in 

agent programming languages (Hübner et al., 2006; Sardina and Padgham, 2011). It is the 
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nature of the agent oriented systems, where the time is considered as a critical factor, in 

combination with the complexity of such systems, concerning the parallel execution and the 

rapid changes that highlight the importance of such a feature. Although it could be limited, 

failure exists in any kind of system and thus, it should be provisioned (where it could) and 

monitored, restricting its consequences. 

Agents perform actions, causing changes to their environment and receiving feedback 

from it. These changes concern the real world environment and as a result, in many cases it 

seems complicated to estimate their impact. Thus, it is essential to monitor agents’ actions in a 

MAS, in order to avoid malfunctions that could make the whole system to adopt a chaotic 

behaviour.  

For example, consider a MAS implemented in a traffic control system, where agents are 

responsible to control the function of the traffic lights. The function of a traffic light depends 

on the traffic conditions in the area close to it and thus, the function of other traffic lights, in a 

certain radius. Once an agent that controls a traffic light fails for some reason, the respective 

light would become inoperable. Sequentially, the other lights nearby it, would be influenced. 

Rapidly, this initially estimated as a simple conflict, would drive the whole network to chaos, 

causing huge traffic delays. The loss, in such a system could be hardly estimated, while 

restoring the system and start from the beginning, where everything seems perfect, is almost 

impossible, in real-world conditions. 

Hence, it is vital to find an efficient way to recover timely from failure, since it is 

impossible to avoid it. In agent oriented programming, similarly to the logic programming, the 

level of flexibility is high. Thus, restricting agents’ actions, seems to be an inconsistent practice, 

for such a programming environment. However, it is more efficient to provision, as many cases 

as we could, aiming to protect agents from deadlocks. So, the general scope is to provide agents 

with options, preparing them to face any conditions, peculiar or not. Agents should know what 

to do, which action to perform in every moment, in any case. Options, in agent oriented 

programming, means plans.      

The failure mechanism in the current project, aims to give the opportunity to the 

programmer to provision and handle failure. Similarly to Jason approach, once a plan (+g) fails, 

another recovery plan (-g), provided by the programmer, is executed, since it is applicable. 

Thus, this plan (-g), plays the role of an alternative, for achieving g. Also, the execution of -g, 

might be used to bring the system back to a reasonable state, in which the regular plans (+g), 

could be applicable again. 
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The failure handling mechanism, expands the find_plan process, as it is defined in 

the interpreter. First, the interpreter searches for a plan of the form +g that corresponds to an 

event g. Once the process fails for some reason, the interpreter seeks for a plan of the form -

g. Of course, there are many cases, which could cause failure. Distinguishing between these 

cases, it is necessary to define the following ones: 

 

 No applicable plan exists. It describes the case where none of the provided plans 

(+g), has true context, in order to be executable.  

 No relevant plan exists. It refers to the case where there are no plans of the form 

+g, corresponded to the event g.   

 Other reasons of failure. It is also possible for a plan to fail, during its execution. 

All the contents of a plan, such as actions, internal actions, sub-plans and 

expressions run the risk of failure. 

 

Although it is possible to define the courses of failure, it depends on the programmer’s 

ability, to provision and handle failure, providing recovery to the system. Arranging the failure 

mechanism in a more efficient way, it is preferable for the programmer to use annotations, with 

respect to the case of failure. Thus, the following annotated failure handling plans could be 

used: 

-g#[error(non_applicable_plan)]  

-g#[error(no_relvevant_plan)] 

     

 Of course, the use of annotations in failure handling plans is not necessary for the 

programmer, who has also the option to use non-annotated plans of the form -g, to handle 

failure. These “naked” failure handling plans (-g), are executed in case that no other failure 

handling plan is applicable, always depending on the case of failure. 

Besides the failure handling mechanism, there is also a variety of messages, used to 

inform the user about the case of failure. The following table, presents all the possible cases 

during the execution of the program, including “regular” execution, failure and recovery (Table 

4.2).  
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Plan Executed Description Recovery 

+g Plan found and executed with 

success 

✔ 

-g#[error(non_applicable_plan)] No applicable plan found, but 

an annotated plan for that case 

was provided and executed 

✔ 

-g#[error(no_relvevant_plan)] No relevant plan found, but an 

annotated plan for that case 

was provided and executed 

✔ 

-g A (known or unknown) 

failure occurred, but an 

annotated plan was provided 

and executed  

✔ 

- Failure handling plan found 

but it is non-applicable  

✘ 

- No applicable plan found ✘ 

- No relevant plan found ✘ 

Table 4.2 Cases of Failure Handling during the execution of the program 

The part of the code, concerning both the failure handling and the message throwing 

mechanism, is presented below: 

 

%%%%%%%%%%%%% Failure Handling Mechanism%%%%%%%%%%%%%% 

%%%%%%%%%%% Failure Conditions in Achievement Plans%%%%%%%%%% 

%% Annotated Failure Handling Plan(error(non_applicable_plan)) 

find_plan(+!E,_,_):- 

 % at least one plan (+!E) exists but is not applicable 

 plan(+!E,_,_), 

 % error provisioned 



A Prolog Meta-Interpreter for AgentSpeak(L)  

page 67 

 plan(-!E#[error(non_applicable_plan)],C,P), 

 test_condition(C), 

 !, 

 solve(P). 

%% Annotated Failure Handling Plan (error(no_relevant_plan)) 

find_plan(+!E,_,_):- 

 not(plan(+!E,_,_)), 

 plan(-!E#[error(no_relvevant_plan)],C,P), 

 test_condition(C), 

 !, 

 solve(P). 

%% NON-ANNOTATED Failure Handling Plan (catch all)  

find_plan(+!E,_,_):- 

 plan(-!E,C,P), 

 nl, 

 test_condition(C), 

 solve(P), 

 !. 

%% NON-applicable Failure Handling Plan  

find_plan(+!E,_,_):- 

 plan(-!E,_,_), 

 nl, 

write(['No Applicable Plan found for goal event ',+!E]),nl, 

write(['Failure Plan found but NOT applicable for goal 

event ',+!E]),nl, 

 nb_getval(remaining,P2), 

 write(['Could not finish intention:' ,P2]),nl, 

 !, 

 fail, 

 !. 

%% In case there is NO applicable plan at all 

find_plan(+!E,_,_):- 

 plan(+!E,_,_), 

 nl, 
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write(['No Applicable Plan found for goal event ',+!E]),nl, 

 write(['No Fail event was generated for goal ',!E]),nl, 

 nb_getval(remaining,P2), 

 write(['Could not finish intention:' ,P2]),nl, 

 !, 

 fail, 

 !. 

%% In case there is NO relevant plan at all   

find_plan(+!E,_,_):- 

 not(plan(+!E,_,_)), 

 nl, 

 write(['No Relevant Plan found for goal event ',+!E]),nl, 

 nb_getval(remaining,P2), 

 write(['Could not finish intention:' ,P2]),nl, 

 !, 

 fail, 

 !. 

 

It is worth to notice that the code above, refers to the handling of the achievement plans 

(+!g). The code concerning test plans (+?g), is completely equivalent to the one presented 

above. 

As for the message throwing mechanism, it is highlighted that it provides information 

to the user not only concerning the “type” of failure, but also the remaining actions, which are 

included in the intention stack that is discarded. This is achieved through the use of the global 

variable remaining, which stores the actions that sequence the one executed, inside plan’s 

body. This storing is performed in the solver and more specifically, in the part of the code 

presented below: 

 

solve(P1;P2):- 

  !,nb_setval(remaining,P2), 

  solve(P1), !, solve(P2). 
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Finally, the example below, illustrates the function of the failure handling mechanism, 

as described above. 

 

% Plans 

+!testFailureHandlingMechanism :: true <- 

 !failureHandlingAchievePlan_NA; 

 !failureHandlingAchievePlan_NR; 

 !failureHandlingAchievePlan_. 

+!failureHandlingAchievePlan_NA :: 1>2 <- 

%this is expected to fail, the message should not appear 

write("test !! -ok. (Solving an achieve plan - )"),nl. 

-!failureHandlingAchievePlan_NA#[error(non_applicable_plan)] :: 

true <- 

write("test FH_A1 ok. Annotated failure handling plan for 

error(non_applicable_plan)"),nl. 

-!failureHandlingAchievePlan_NR#[error(no_relvevant_plan)] :: 

true <- 

write("test FH_A2 ok. Annotated failure handling plan for 

error(no_relvevant_plan)"),nl. 

-!failureHandlingAchievePlan_ :: true <- 

write("test FH_A3 ok. Non-annotated failure handling 

plan"),nl. 

 

While the console output, should be the following: 

 

?- start_agent. 

true. 

?- load_agent('failurehandling.pl'). 

true. 

?- test FH_A1 ok. Annotated failure handling plan for 

error(non_applicable_plan) 
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test FH_A2 ok. Annotated failure handling plan for 

error(no_relvevant_plan) 

test FH_A3 ok. Non-annotated failure handling plan 

 

4.5 The Agent as a Multi-Threaded Application 

In this section we describe the design of the agent as a multi-threaded application. Following 

the model of multithreading, multiple threads co-exist in the framework of a single process, 

sharing system’s resources. These threads are used either for the simultaneous execution of 

agent’s intentions or for communication purposes, as it will be explained in details later on. 

Hence, the current project capitalizes on the feature of parallel execution, as a very interesting 

one, also considered as a natural feature of the agent-oriented systems.       

Agents perform several different actions, causing changes to their environment and 

receiving feedback from it. This continuous interaction becomes seriously more complicated, 

taking into account the relations that are created between a large number of agents, in the 

context of a MAS. It takes significant effort to monitor such a volatile behaviour, that the agents 

adopt. Additionally, it is a great challenge to control and direct the great number of actions that 

take place in parallel, inside a MAS.  

Thus, an efficient agent-oriented design would be based on parallel, fast and 

autonomous execution. Additionally, such a design should be intolerant in interruptions. As 

referenced, in a MAS, there are several actions that take place simultaneously and there is no 

criterion to decide which one should be postponed or executed immediately. Parallel execution 

is the only way to address this challenge. Time is considered as the key point in a MAS, as it is 

the most critical factor in agent-oriented programming. Agents, should reason and act rapidly, 

since significant changes in the environment, that might influence their actions or plans, may 

occur every single second. Every agent has its own beliefs, desires and intentions, as it is clearly 

defined in the respective BDI model, so it is not always useful to group the agents, in order to 

manage their behaviour. Thus, autonomy is a non-negotiable characteristic of agents.  

On the other hand, multithreading allows the programmer to address the challenges 

specified above, both managing agents and allocating system’s sources. Having said that, it is 

worth to highlight that multithreading is an efficient way to increase the utilization of a single 

application by using thread-level parallelism, allocating system’s sources in a smooth way. 

Apart from the above mentioned features, multithreading allows the programmer to handle the 

communication between the agents. This aspect will be thoroughly explained in a separate 

https://en.wikipedia.org/wiki/Thread-level_parallelism
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section. Thus, multithreading is considered as a robust technique for supporting project’s design 

and especially the agent’s execution cycle.   

The part of the code that refers to thread handling, concerning the current project, is 

given below: 

 

%%% Code for thread handling - threads.pl 

%%% start_agent/0  

%%% Starts the main_agent_thread 

start_agent:- 

thread_create(main_agent,_,[alias(main_agent_thread)]). 

%%% stop_agent/0 

%%% Stops the agent 

stop_agent:- 

thread_send_message(main_agent_thread,end), 

thread_join(main_agent_thread,_). 

%%% main_agent/0 

%%% Main Agent thread.As usual this is a repeat fail loop. 

main_agent:- 

repeat, 

thread_get_message(Mess), 

once(process_message(Mess)), 

once(clear_processes), 

off(Mess). 

%%% off/0 

%%% Succeeds and exits the main failure drive loop (Shut Down) 

off(end):-!. 

%%% Message to stop agent Execution. 

process_message(end). 

%%% The role of the clear message is to do any joins 

process_message(clear). 

%%% creates a thread to handle any plans triggered from adding 

a belief in BB 

process_message(addb(X,Atts)):- 

name_thread(add_belief(X,Atts),Alias), 
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thread_create(solve(addb(X,Atts)),_,[alias(Alias)]). 

%%% creates a thread to handle any plans triggered from deleting 

a belief from BB 

process_message(delb(X,Atts)):- 

name_thread(del_belief(X,Atts),Alias), 

thread_create(solve(delb(X,Atts)),_,[alias(Alias)]). 

%%% creates a thread to handle an achieve message 

process_message(achieve(X)):- 

name_thread(achieve(X),Alias), 

thread_create(solve(X),_,[alias(Alias)]). 

%%% creates a thread to handle an ask message 

process_message(asks(X,Content)):- 

name_thread(asks(X,Content),Alias), 

thread_create(answer_message(X,Content),_,[alias(Alias)]). 

%%% name_thread/2 

%%% Create a unique alias for the thread. 

name_thread(Task,Alias):- 

get_time(T), 

term_string(iStack(Task,T),S), 

atom_string(Alias,S). 

%%% clear_processes/0 

%%% Succeeds by joining any threads that have succeeded. 

clear_processes:- 

thread_property(I,status(true)), 

thread_join(I,_), 

write([I,Status]),nl, 

fail. 

%% Clearing threads that have failed. 

clear_processes:- 

        thread_property(I,status(false)), 

        thread_join(I,_), 

        write(['***',I,failed]),nl, 

       fail. 

clear_processes. 
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%%% Predicates used by others 

generate_agentspeak_event(AGL_Event):- 

thread_send_message(main_agent_thread,AGL_Event). 

 

The code above, describes the mechanism that every agent is obligated to respect, once 

it joins the MAS. As multithreading is already implemented in SWI-Prolog, there are plenty of 

predicates, dedicated for multithreaded applications (predicates in use for the current project in 

Appendix 2). 

Hence, initially, a thread is created for every agent that enters the MAS, called 

main_agent_thread. It could be considered playing the role of the main hub, for the events 

to be handled by the agent. Thus, once the start_agent is executed, the 

main_agent_thread is running, putting the respective agent in an “alert” state, ready to 

receive “processing messages”. 

It is of high importance, to separate this type of “processing messages” from 

“communication messages”, as these messages are completely different, from the ones used in 

communication, between the agents of a MAS.  

Once a “processing message” is received from the main_agent_thread, the latter 

is responsible for generating other threads to handle it. These “processing messages” 

correspond to goals that the agent has to achieve. On the other hand, threads that are generated 

from the main thread, correspond to the intentions of the agent. The role of the predicate 

generate_agentspeak_event/1, is to send a message to the main thread, triggering it 

to start processing and therefore, to create another thread. This reflects the creation of a new 

intention stack, as in the following cases: 

 

 Goal to be achieved 

 Goal pursued as a separate intention (^^g) 

 External belief addition/deletion (through communication with other agents) 

 Internal belief addition/deletion (parsing procedure) 

 

As presented earlier in the code for thread handling, there are dedicated threads for 

handling a belief addition or deletion, as well as an achieve or an ask message. Of course, 

the “achieve” thread is used every time the agent intends to accomplish a task, either it derives 
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from an internal or an external event. Thus, this thread is generated when the agent has to 

achieve a goal, triggering the execution of an achievement or test plan (solve(X)). 

As for the second case, concerning a goal pursued as a separate intention (^^g), the 

code below is to be executed: 

 

solve(^^E):- 

 generate_agentspeak_event(achieve(!E)). 

 

It is also worth to mention the importance of the predicate clear_processes, which 

removes all the succeeded, as well as the failed threads, ensuring the sustainability of the 

system’s sources.   

By following the above described mechanism, agent’s intentions could be executed in 

parallel, autonomously, but still centrally controlled (by the main thread). The schema below, 

is used to present the vital role of multithreading in agent’s execution cycle (Figure 4.1).  

  

 

Figure 4.1 Multithreading in Agent’s Execution Cycle 

 

The example presented in the above schema, refers to the addition of the beliefs 

temp(43)and temp(54), in the belief base of the agent. This is performed by the parser, 

when a program is loaded, or when the belief is formulated as an environmental percept or sent 

as a message from another agent. Considering the first case, the program that is loaded is 

presented below, we focus on specific parts of the code that the interpreter would consult, 

executing a belief addition (Table 4.3).       
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%% Belief Addition Example add_belief.pl 

%% Beliefs  

temp(42). 

temp(54). 

%% Plans %% 

% plan triggered for every belief addition of the form temp()   

+temp(A) :: true <- 

 write(['temperature', A , 'added']),nl. 

 

Executed code  Function 

parse_term(Belief):- 

 !, 

 add_belief(Belief,[source(self)]),   

 !, 

 fail. 

parsing the belief 

add_belief(B,Atts):- 

 is_list(Atts),!, 

 assert(belief(B,Atts)), 

 assert(B),add_record(B), 

 generate_agentspeak_event 

                          (addb(B,Atts)). 

sending a “process 

message” to the 

main_agent_thread 

process_message(addb(X,Atts)):- 

 name_thread(add_belief(X,Atts),Alias), 

 thread_create 

     (solve(addb(X,Atts)),_,[alias(Alias)]

).   

creating a thread to 

execute the belief 

addition 

solve(addb(B,A)):- 

 find_plan(+B#A,_,P), 

 !, 

 solve(P). 

executing the plan that is 

triggered from the belief 

addition 
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Table 4.3 Executed Code in case of a Belief Addition 

Thus, before loading the above program, the only thread that exists, is the 

main_agent_thread (as it is created after the start_agent command execution). Once 

the program is loaded successfully, we get the message (printed in the console). Additionally, 

one could check the threads list, by executing the respective command (threads). The last 

thread that is active during the execution phase, is the one appeared in the list, under the name 

while checking the threads that have been created during the execution, we could observe the 

two new threads (named as defined in the code for thread handling) as described above. A 

console snapshot is given below: 

 

?- start_agent. 

true. 

?- threads. 

%     Thread      Status     Time  Stack use    allocated 

% -----------------------------------------------------  

% main_agent_thread running 0.000      800      120,808 

true. 

?- load_agent('add_belief.pl'). 

true. 

?- [temprature,42,added] 

[temprature,54,added] 

 

threads. 

%     Thread      Status     Time  Stack use    allocated 

% -----------------------------------------------------  

% main_agent_thread running 0.000      800      120,808 

%'iStack(add_belief(temp(54),[source(self)]),1558510406.0

96266)' true 

true. 

 

As already mentioned, during the execution, the predicate clear_processes 

removes all the succeeded threads. Thus, the thread that finally remains in the corresponding 
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list, is the last one generated. In the case above, this thread is the one used for the belief addition 

(+temp(54)). 

 

4.6 Summary 

This chapter describes the main functions of the current meta-interpreter, focusing on the parser 

and the solver. The internal representation of the basic components of an AgentSpeak(L) 

program, such as beliefs, mental rules and plans, is thoroughly explained. The next section 

refers to the solver, which is responsible to handle the input, unifying the events with the 

existing plans in the agent’s plan library. Hence, it is provided an extended analysis, as well as 

a categorization of goals, given directly or triggered to be executed through the solver. The next 

section describes the implemented failure handling mechanism, while the chapter concludes 

presenting the overall design of the agent as a multi-threaded application, focusing on the 

parallel execution ability.  
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CHAPTER 5 

Agents’ Communication 
 

Probably the most interesting feature in agent oriented architecture, is their ability to 

communicate with each other, when living in the same environment (MAS). Implementing 

agents’ communication, introduces a significant number of challenges concerning the timing 

and the control of the messages exchanged, between the agents of a MAS. Various approaches 

could be found in the literature, concerning this demanding implementation (Becker et al., 2009; 

Werner, 1989).  

In the current framework, agents might have same or similar goals and therefore, 

cooperate with each other, with the aim to achieve them. However, there are agent 

environments, where the agents compete each other, aiming to achieve individual goals. In both 

cases, a robust communication mechanism should be defined, with respect to which, the agents 

would be able to communicate, cooperating or coordinating their actions, aiming to reach their 

goals. 

Consider a traffic control system, where agents are in charge of traffic lights. In this 

MAS, agents need to cooperate with each other, sending and receiving data regarding the traffic 

conditions. This communication needs to be based on a robust and efficient specific mechanism 

that the necessary protocols will be implemented on. On the other hand, agents that control 

automated vehicles compete each other, aiming to achieve their goal(s), by reaching their 

destination, in a fast and safe way. Considering this second case, although agents are not 

cooperate, they have to coordinate their actions, exchanging communication messages, with the 

overall aim to avoid accidents. 

 

5.1 Communication Design 

As already mentioned, multithreading is considered as an efficient technique for the design of 

the agent oriented systems. It is worth to remind the role of the main_agent_thread, which 

is responsible for the creation of the intention handling threads. In a similar manner, a thread is 

responsible for communication handling, called com_thread. This thread is also responsible 

to invoke/post appropriate events to the main_agent_thread, after receiving a message. 
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The Figure below (5.1), gives an overview of the multithreaded processing, focusing on the 

agent’s communication cycle. 

 

Figure 5.1 Multithreading processing in the Agent’s Communication Cycle 

 

In the current work, communication between agents is achieved through the use of the 

messaging platform Pedro (Robinson and Clark, 2010). Pedro (ver. 1.9 Mar 2019) is a message 

subscription system that supports Prolog like messages. 

Pedro also provides a mechanism for peer-to-peer communication, along with the 

subscription framework. The communication between each agent (client) and the Pedro server 

is achieved through a pair of sockets. The one is used for notifications (message passing), while 

the other is used for the server to acknowledge messages from the client. 

Every agent of the MAS (client), is registered to Pedro, establishing connection with 

Pedro server. Once registered, the agent takes a unique name, which is also used by other 

agents, when communicating with them (peer-to-peer communication). It is vital for the system, 

to keep track of the mapping between subscriptions and names, and this is the role of another 

entity, part of the system, the Registry. 

The role of the Registry is very important for the system. Once the Registry is connected 

to Pedro, it is responsible for receiving messages from the agents that belong to the MAS and 

handling them accordingly. Registry is also responsible for keeping and updating a list of all 

registered agents. The last is vital for the connection of the agents, which is achieved following 

these simple steps: 
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 Connect to Pedro 

 Register to the Registry 

 Subscribe to the agent list 

 

For the connection to the server, it is needed the agent’s Name and the port. The default 

port that is used for the current project, is 4550. The provided Name of the agent, is used for 

the address that the agent should have, in order to be able to communicate with the other agents 

in the MAS. After registering, an address like the following is given to every agent: 

 

agent_Name@IP 

 

Registry is responsible for keeping the agent list. Every time an agent enters the MAS 

and completes its registration successfully, the Registry adds its name to the respective agent 

list, confirming the update by printing a message that refers to the last registered agent: 

 

p2pmsg(registry@10.140.5.212,bob@10.140.5.212,registering

_agent) 

 

The opposite should happen when some agent is deregistered from the MAS. The agent 

list should also be kept updated. 

Thus, both Registry and every agent included in the MAS, are defined as different 

entities, connected through Pedro server. Through this connection, the agents exchange 

messages with the registry in order to be tracked, while they are also capable of sending 

messages “directly” to each other. 

 

start_agent_communication(nocom):-!. 

 %% The default port for Pedro server is 4550 

start_agent_communication(Name):- 

  establish_connection(Name,4550), 
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thread_create(main_agent_com_code,_,[alias(com_thread)]). 

stop_agent_communication:- 

  whoami(D),pedro_send_pp_message(D,off), 

  wait(500), 

  pedro_deregister, 

  close_pedro_connection. 

main_agent_com_code:- 

  repeat, 

  once(get_pedro_message_data(Rock,Content)), 

  once(process_p_message(Rock,Content)), 

  fail. 

 

When a registered agent wants to send a message to another registered agent, it simply 

sends a notification of the form p2p(Addr,Sender,Content) to Pedro. The first 

argument (Addr) refers to the receiver of the message, the second argument (Sender) refers 

to the agent who sends the message, while the last one (Content) is the actual message. For 

example: 

 

p2pmsg(alice@192.168.43.251,bob@192.168.43.251,tell(hello)) 

p2pmsg(bob@192.168.43.251,alice@192.168.43.251,tell(speak)) 

 

Once Pedro receives such a notification, forwards it to the address of the receiver, after 

checking the respecting agent list. The code presented below, refers to this mechanism that 

handles point to point messages: 

 

%%% Sending point to point agent messages. 

pedro_send_pp_message(Receiver,Content):- 

  match_list(Receiver,Addr),Addr \= none, 

  whoami(Me), 

  send_ack_pedro_message(p2pmsg(Addr,Me,Content),suc

cess), 
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  !. 

pedro_send_pp_message(Receiver,Content):- 

  write(['Failed to send message',Receiver,Content]). 

%%% Already in correct form. 

match_list(Receiver@IP,Receiver@IP):-!. 

%%% Matching a name 

match_list(Receiver,Receiver@IP):- 

    agent_list(ListofAgents), 

    member(Receiver@IP,ListofAgents),!. 

match_list(_Receiver,none). 

 

Pedro also gives the opportunity to the client to categorize messages, according to its 

own purposes. This is achieved through the use of the variable Rock, which pairs the messages. 

In the current project, this value is used to distinguish between peer-to-peer messages and the 

ones sent to update the agents’ list. Thus, for this reason, agents exchange specific messages 

(Rock = 1), which allow them to keep always an updated copy of the list that includes the 

agents of their MAS. On the other hand, peer-to-peer messages, which allow agents to 

communicate with each other, take a different value for the respecting variable (Rock = 0).  

For example, the messages presented below illustrate the use of variable Rock:  

 

[1,agent_list([alice@192.168.43.251])] 

[1,agent_list([alice@192.168.43.251,bob@192.168.43.251])] 

 

[0,p2pmsg(alice@192.168.43.251,bob@192.168.43.251,test(ok))] 

[0,p2pmsg(bob@192.168.43.251,alice@192.168.43.251,tell(yes))] 

 

The first pair of messages, is used for updating the agents’ list, while the second pair is 

an example of peer-to-peer communication (p2pmsg). Thus, in the current project, messages 

with Rock = 1, are used to extend the agent list, by adding a new agent that is connected to 

the MAS. On the other hand, when rock is equal to 0, the message refers to communication 
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between the agents and it is processed accordingly. Details for this processing are given in the 

corresponding Section.    

 

5.2 Message Syntax 

The syntax that is followed when sending a message, it is compliant with the ACL standards, 

using performatives (i.e. tell, untell, ask etc.) and follows the form of: 

 

send(Receiver, ACT, Term). 

 

Obviously, the first argument refers to the agent that receives the message, the second 

is the action that corresponds to one of the defined KQML performatives (tell, untell etc.), while 

the third contains the term that the sender wants to deliver to the receiver. 

The code presented below is to define the syntax that the program should follow when 

sending a message:  

 

send(Receiver,ACT,Term):- 

  Content=..[ACT,Term], 

  pedro_send_pp_message(Receiver,Content). 

 

Thus, as it is defined from the code above, the variable Content, includes both the 

performative and the term to be delivered. Some examples of Content, are the following: 

 

tell(temp(42)) 

untell(weather(rainy)) 

ask(colour(green)) 
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5.3 Message Processing  

After describing the way that messages are handled from Pedro server and the syntax of the 

messages that the sender should follow, it is worth to refer to the process that takes place at the 

side of the receiver.   

Once the com_thread is created, i.e. the thread responsible for the communication, 

the agent is ready to receive messages. Depending on the content of the message received, the 

com_thread generates and sends a corresponding message to the main_agent_thread. 

This message includes the content and the id of the sender of the message that was received, 

following one of the types below: 

 

Message received from 

com_thread 

Message to the  

main_agent_thread 

tell(Content) addextb(Content,[source(Sender)]) 

untell(Content) delextb(Content,[source(Sender)]) 

achieve(Content) extachieve(Content#[source(Sender)]) 

test(Content) exttest(Content#[source(Sender)]) 

ask(Content) asks(Sender,Content) 

Table 5.1 Message processing 

The Table above (5.1), provides the correspondence between the communication 

messages and those generated internally addressed to the main agent thread. The part of the 

code below, presents the processing of the peer-to-peer messages, showing the conversion of 

the message received to the dedicated one forwarded to the main_agent_thread, as well 

as the generation of the respecting event: 

 

process_p_message(_,p2pmsg(_,Sender,Message)):- 

  fix_message_for_main(Sender,Message,ToMain), 

  generate_agentspeak_event(ToMain). 

%% Forward process messages to main agent thread 
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fix_message_for_main(Sender,tell(Content),addextb(Content

,[source(Sender)])). 

fix_message_for_main(Sender,untell(Content),delextb(Conte

nt,[source(Sender)])). 

fix_message_for_main(Sender,achieve(Content),extachieve(C

ontent#[source(Sender)])). 

fix_message_for_main(Sender,test(Content),exttest(Content

#[source(Sender)])). 

fix_message_for_main(Sender,ask(Content),asks(Sender,Cont

ent)). 

 

Every type of communication message, generates an event that triggers some agent 

action, i.e. a change in its belief base (tell/untell), execution of an achievement 

(achieve) or a test goal (test), or checking a condition (ask). The code below defines the 

procedure that is followed by the main_agent_thread of the receiving agent, concerning 

message handling: 

 

process_message(addextb(Content,Atts)):- 

        add_belief(Content,Atts). 

process_message(delextb(Content,Atts)):- 

        remove_belief(Content,Atts). 

process_message(extachieve(X)):- 

        name_thread(extachieve(X),Alias), 

        thread_create(solve(!X),_,[alias(Alias)]). 

process_message(exttest(X)):- 

        name_thread(exttest(X),Alias), 

        thread_create(solve(?X),_,[alias(Alias)]). 

process_message(asks(X,Content)):- 

        name_thread(asks(X,Content),Alias), 

   thread_create 

                 (answer_message(X,Content),_,[alias(Alias)]). 
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Below we detail how the agent behaves upon reception of the different messages.  

tell message. Messages of this type, are used to provide information to the receiver. 

Once an agent gets a tell message, it stores its content, by adding a belief on its belief base. Of 

course this annotated belief addition (add_belief(Content,Atts)) is to generate a new 

(external) event for the agent (generate_agentspeak_event(addb(B,Atts))), 

triggering any plans that may exist for this purpose.    

untell message. The untell message is used to recall the information sent previously 

to the receiver. It is very important to highlight that using this type of message, the sender is 

capable of removing a belief from the receiver’s belief base, provided that it was originated 

from it earlier. This means that the sender is not allowed to remove any beliefs from different 

sources, at the receiver’s base, even if they refer to the same content. 

achieve message. This message triggers the receiver to execute an achievement plan 

that exists in its plan library. This plan should have the respective annotation, corresponding to 

the source of the sender (+!g#[source(sender)]), otherwise it cannot be triggered. 

test message. The use of such type of message is similar to the previous one, but the test 

message refers to the case where a test plan is to be triggered (+?g#[source(sender)]).  

ask message. This message is used for the sender to check, if a condition is true, according 

to the receiver. This condition might refer to an existing belief or it may trigger a mental rule 

in the receiver’s base. If that condition is satisfied, the receiver replies to the sender, sending a 

special message (answer(Content)). Once this message is received from the sender of the 

initial message, it triggers a belief addition to its base. This belief is annotated with the source 

of the receiver of the initial message. The code presented below, refers to the handling of such 

type of messages: 

 

answer_message(Sender,Content):- 

  test_condition(Content),   

 pedro_send_pp_message(Sender,answer(Content)). 

fix_message_for_main(Sender,answer(Content),addextb(Content,[s

ource(Sender)])). 
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 The implemented types of messages, could cover a variety of communication purposes. 

Obviously this set can be extended to cover more cases, as for example tellHow, 

untellHow for plan exchanging, or broadcast for sending messages to the whole agent 

list. As for the use of the implemented types, is highlighted the next section with a test program 

that covers these cases.  

 

5.4 Test Cases 

This Section provides a test program, which includes all the appropriate test cases that 

correspond to the types of messages described earlier. For the needs of the program, the agent 

system consists of two agents (alice and bob), exchanging messages with each other. Apart 

from the two agents, the full system includes the Registry, which is used for the subscription 

and of course the Pedro server. Aiming to run the program smoothly, the following steps should 

be followed: 

 

1. Start the Pedro server. 

2. Start the Registry.  

3. Start the agent Alice.  

4. Start the agent Bob.   

 

The steps above, start four different program instances each corresponding to one of the 

different entities, as described above. Hence, the connection between the two agents and the 

Registry should be established, and the following message should be displayed in the registry 

console: 

 

Registry Ready 

Waiting 

p2pmsg(registry@192.168.1.10,alice@192.168.1.10,registeri

ng_agent) 
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Waiting 

p2pmsg(registry@192.168.1.10,bob@192.168.1.10,registering

_agent) 

Waiting 

Sequentially, the agents’ list should include both the two registered agents: 

[1,agent_list([alice@192.168.1.10,bob@192.168.1.10])] 

Every agent that belongs to the MAS, executes its own code. The code of the two agents 

(alice and bob) that are created for the needs of the testing, is presented below: 

 

%%% This is alice 

%%% Beliefs 

test(aa). 

test(bb). 

%%% Plans 

+hello#[source(S)] :: true <- 

 write([received,hello,S]); 

 send(S,tell,hithere). 

-hello#[source(S)] :: true <- 

 write([received,delbel,S]); 

 send(S,tell,delbelief). 

+!speak#[source(S)] :: true <- 

 write([received,speak,S]); 

 send(S,tell,speak).   

+?check#[source(S)] :: true <- 

 write([received,test_check,S]); 

 send(S,tell,checked). 

-------------------------------------------------------------------------------------------------------- 

%%% This is bob 

%%% Beliefs 

test(1). 

test(2). 

%%% Plans 
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+!com_test:: true <- 

 send(alice,tell,hello); 

 send(alice,untell,hello); 

 send(alice,achieve,speak); 

 send(alice,test,check); 

 send(alice,ask,test(aa)); 

 wait(300); 

 write('test 5 -ok. ask message');nl; 

+hithere#[source(_)] :: true <- 

 write('test 1 -ok. message received');nl; 

 !testBel. 

+!testBel :: hithere <- 

 write('test 2 -ok. tell message');nl. 

+!testBel::true <- 

 write('test 2 -failed. tell message'). 

+delbelief#[source(_)] ::true <- 

 write('test 3 -ok. untell message');nl. 

+speak#[source(_)] ::true <- 

 wait(200); 

 write('test 4 -ok. achieve message');nl.  

+checked#[source(_)] :: true <- 

 wait(500); 

 write('test 6 -ok. test message'). 

 

In the program above, agent bob sends a set of messages to alice, testing every 

implemented message type. After receiving these messages, alice confirms them by printing 

a special confirmation message for each one of them 

(write([received,Content,Sender])). Additionally, for every message that 

alice receives, it sends a tell message to bob, confirming that its message was received. 

The content of this tell message that alice sends back to bob, corresponds to the content 

of the initial message that was sent from bob to alice.        

On the other side, when this confirmation tell message from alice is received from 

bob, it triggers the execution of a plan, depending on the content of the belief that is added at 
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bob’s belief base. Thus, when bob receives hithere from alice, it executes the respective 

+hithere plan, printing a message to the console that informs the user for the 

accomplishment of the procedure. 

The Figure below (5.2) shows this message exchanging between the agents alice and 

bob:    

 

Figure 5.2 Message Exchanging between Agents Bob & Alice 

 

At the end of the execution, it is also useful to check agent bob’s belief base, ensuring 

that the messages exchanged, have triggered the appropriate belief additions. This is performed, 

executing the command belief(Content,Annotation) at bob’s console: 

 

Content = test(1), 

Annotation = [source(self)] ; 

Content = test(2), 

Annotation = [source(self)] ; 

Content = hithere, 

Annotation = [source(alice@'192.168.43.251')] ; 
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Content = speak, 

Annotation = [source(alice@'192.168.43.251')] ; 

Content = delbelief, 

Annotation = [source(alice@'192.168.43.251')] ; 

Content = checked, 

Annotation = [source(alice@'192.168.43.251')] ; 

Content = test(aa), 

Annotation = [source(alice@'192.168.43.251')] ; 

 

It is worth to highlight that the last printed belief, is generated as a result of the ask 

message, sent from bob to alice. That belief has the role to confirm that alice’s belief 

base includes the belief test(aa), as it was asked earlier from bob. It is automatically 

generated, as part of the ask message procedure and not as a result of a tell message sent 

from alice to bob, as it happens with the rest messages in the above program.   

The above presented test program, concludes the section referring to agent’s 

communication. As mentioned earlier, the ability of the agents to communicate with each other 

is considered as a very interesting feature. As mentioned earlier, the programmer is allowed to 

expand this capability, adding new features, message types or forms, aiming to improve agents’ 

functionality.  

 

5.5 Summary 

This chapter presented the communication design of the proposed agent framework. Significant 

focus was given in describing the multithreaded processing, concerning agents’ 

communication. Pedro, the subscription/notification server that was used for the 

implementation and its role to the overall architecture of the system, were also described. In the 

next section, the general format that is followed in message syntax is presented. Extensive 

analysis of message processing and the role of the dedicated threads is presented in the 

corresponding section. The chapter concludes with the presentation of a set of test cases that 

illustrates the agents’ message exchanging capabilities.  
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CHAPTER 6 

Discussion & Conclusions 
 

This thesis presented a Prolog meta-interpreter for AgentSpeak(L). The combination of the 

features of modern logic programming with the already implemented features of the language, 

results in a constructive approach towards modern agent programming. The meta-interpreter is 

fully compatible with programs written in AgentSpeak(L), supporting all the features defined 

in the original version, as well as implementing new ones as strong negation, belief and plan 

annotations, the support of complicated mental rules and higher order Prolog predicates and 

finally, the failure handling mechanism. The meta-interpreter’s design is based in 

multithreading, enhancing parallel execution in agent’s actions and supporting asynchronous 

communication. Finally, the operability and reliability of the current interpreter was extensively 

tested, in a wide variety of test cases, demonstrating both the single agent function and the 

communication between the agents, through message exchanging.   

 

6.1 Research contributions 

The presented Prolog meta-interpreter for AgentSeak(L), exploiting modern logic 

programming features, aims to bridge the gap between theory and the practical issues concerned 

with software agents’ programming. 

So far, the only commonly used interpreter for AgentSpeak(L), is the one implemented 

in Java, the actively developed Jason. In this project, the proposed meta-interpreter supports all 

the basic AgentSpeak(L) features, as well as intend to add new ones, such as strong negation, 

belief and plan annotations and support of complicated mental rules and higher order Prolog 

predicates. These attributes, along with the implementation of a failure handling mechanism 

intend to compose a robust and efficient framework for agent oriented programming. 

Multithreading as a widely used and efficient technique, allows the current meta-

interpreter to support parallel execution, an attribute with significant impact on the software 

agents’ design. Capitalizing on the benefits of multithreading, the agents are capable of 

handling independently and thus, executing in parallel their intentions. Consequently, with 
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respect to multithreading design, agents are able to exchange messages, supporting 

asynchronous communication.   

 

6.2 Limitations of research 

Limitations of the composed research mainly derive from the diversity that characterizes the 

field of the agent oriented programming. The variety of approaches, concerning the agent 

programming languages, as well as the significant number of theoretical models, compose a 

wide but uncertain field, concerning the implementation of a robust and efficient agent oriented 

framework. 

Another limitation derives from the nature of a meta-interpreter implementation in 

general, as it takes significant effort to overcome the inconsistency, concerning the syntax. The 

combination of features (e.g. operators, special characters etc.) of the already implemented 

language (in our case SWI-Prolog), with features of the interpreted language (in our case 

AgentSpeak(L)) is considered as a hard to be tackled challenge. In the current project, these 

incompatibility issues in some cases required the adoption of syntactic forms that differ from 

the original ones, aiming to support the whole set of both languages’ features. 

Another limitation pinpointed from the examination of the failure handling mechanism, 

was that the nature of logic programming does not allow the complete control of the program’s 

execution. This, in combination with the inherent deficiency, regarding the control of agents’ 

actions in real-world conditions inside a MAS, makes the debugging, as well as the 

implementation of a failure handling mechanism, even more demanding.       

 Finally, there are certain limitations that derive from the character of synchronous 

communication that the agents establish. Timing, is considered as a critical factor, influencing 

the execution of message exchanging process, especially when in most of the cases, there should 

be established a mechanism, enhancing automatically triggered reactions, from the agents’ side. 

Also the demanding role of the registry, in the communication design, is considered as vital, 

monitoring and updating the agents’ list.  

  

6.3 Future work 

In light of the potential and the advantages of this project and the limitations identified during the 

process, there is a number of issues that could be potentially explored. A future extension related 
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to the proposed meta-interpreter could be the use of constraint programming in agent’s belief 

base. Capitalizing on the benefits that derive from the use of Constraint Logic Programming 

(CLP), the current meta-interpreter could increase the range of problems that the interpreter 

could handle. 

The work carried out in this project, could be also further elaborated with the 

incorporation of planning from first principals, the implementation of synchronous 

communication and the extension of the semantics of the language. 

In addition, failure handling mechanism could be extended, with the aim to provide 

recovery even when an agent’s action fails. This requires explicit monitoring of the execution 

of agent’s plans, allowing the agent to track the action that triggered the failed one and therefore 

recover from failure. This multi layering architecture regarding the execution cycle, is 

considered as demanding task in agent oriented programming.  

Also, future research could focus on debugging techniques that could facilitate the use 

of the current meta-interpreter. Finally, a potential future extension could incorporate the 

implementation of testing in truly distributed cloud environments.  
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Appendix 1 
 

Precedence Type Name 

1200 xfx -->, :- 

1200  fx  :-, ?- 

1150 fx dynamic, discontiguous, initialization,meta 

predicate, module transparent, multifile, 

public, thread local, thread initialization, 

volatile 

1100 xfy ;,| 

1050 xfy ->,*-> 

1000 xfy , 

990 xfx := 

900 fy \+ 

700 xfx <, =, =.., =@=, \=@=, =:=, =<, ==, =\=, >, >=, 

@<, @=<, @>,@>=, \=, \==, as, is, >:<, :< 

600 xfy : 

500 yfx +,-,/\,\/,xor 

400 yfx *, /, //, div, rdiv, <<, >>, mod, rem 

200 xfx ** 

200 xfy ^ 

200 fy +,-,\ 



Dimitrios Dimitriadis – MSc Thesis 

page 96 

100 yfx . 

1 fx $ 

Table A1.1 System operators SWI-Prolog as defined in http://www.swi-

prolog.org 

 

http://www.swi-prolog.org/pldoc/man?section=operators
http://www.swi-prolog.org/pldoc/man?section=operators
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Appendix 2 
 

Predicate  Content  Description 

thread_create/3 Goal, Id, Alias Creates a thread to handle a specific 

task or the main_agent_thread 

thread_send_message/2 Id(Receiver),Term Communicate a “process message” to 

the respective thread 

thread_get_message/1 Term Receive a “process message” 

thread_join/2 Id, status(true) Terminates a succeeded thread, 

reclaiming all resources associated 

with it 

thread_property/2 Id,status(true) Gives the id of a thread with status 

true (used in combination with 

thread_join/2) 

Table A2.1 Multithreading Predicates in use for the current project 
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