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Abstract

While single objective optimization problems have been extensively studied in litera-

ture, their narrow scope and very specific field of focus remain a major limiting factor in

pragmatic and practical applications. Problems encountered in real-world scenarios are

usually a mixture of interdependent and co-relational factors that have dynamic implica-

tions in the solution process. In this thesis we examine one such complex problem, the

Travelling Thief Problem, derived from the interweaving of two component subproblems;

namely the TSP and Knapsack problems, into a coherent interdependent combinatorial

optimization problem through the use of the RVNS and VNS metaheuristic methods.

Keywords: Reduced Variable Neighborhood Search, Variable Neighborhood Search,

GRASP, Traveling Thief Problem, Travelling Salesman Problem, Knapsack Problem,

Metaheuristic Method.

iv



THANKS

I would like to thank my supervising professor for aiding significantly in the completion

of this thesis through his focused and resolute guidance. His cooperation and experience

have been invaluable in the compilation of this work.

I would also like to thank my family, whose aid, help and support have allowed me to

pursue my academic interests since an early age. None of this would have been possible

without them.

v



This work is dedicated to those researchers who have faced setbacks, sleepless nights,

difficult decisions and frustrating days to pursue their passion.

vi



CONTENTS

1 Introduction 1

1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Context of the study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Objectives and contribution . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Overview of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Theoretical Background 6

2.1 Combinatorial Optimization Problems . . . . . . . . . . . . . . . . . . . 6

2.1.1 The Cutting Stock Problem (CSP) and the Bin Packing Problem

(BPP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 The Knapsack Problem . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.3 The Travelling Salesman Problem . . . . . . . . . . . . . . . . . . 12

2.2 Meta-heuristics in Combinatorial Optimization . . . . . . . . . . . . . . . 16

2.2.1 Population Based . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.2 Single Point Search . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Variable neighborhood search . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.1 Variants of the Variable Neighborhood Search . . . . . . . . . . . 25

2.3.2 Reduced Variable Neighborhood Search . . . . . . . . . . . . . . . 29

2.4 Construction heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.1 Greedy method - Hill climbing . . . . . . . . . . . . . . . . . . . . 31

2.4.2 Semi greedy - GRASP . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5 Multi-objective Optimization . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5.1 Weighted sum method . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5.2 ε - Constrained method . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Problem description and related work 36

3.1 The traveling thief problem . . . . . . . . . . . . . . . . . . . . . . . . . 36

vii



3.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.1 First benchmark set and heuristics . . . . . . . . . . . . . . . . . 40

3.2.2 Investigating TSP and KS inter-dependency . . . . . . . . . . . . 43

3.2.3 Meta-heuristic approaches . . . . . . . . . . . . . . . . . . . . . . 44

3.2.4 Population Based vs Single Point Search . . . . . . . . . . . . . . 50

4 Methodology 55

4.1 Solution representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Objective function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.1 Illustrative example . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Neighborhood definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 Solution initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 Results and Comparison 62

5.1 Performance Evaluation - Category 1 . . . . . . . . . . . . . . . . . . . . 64

5.1.1 Performance on the eli76 dataset . . . . . . . . . . . . . . . . . . 64

5.1.2 Performance on the kroA100 dataset . . . . . . . . . . . . . . . . 66

5.1.3 Performance on the ch130 dataset . . . . . . . . . . . . . . . . . . 67

5.1.4 Performance on the u159 dataset . . . . . . . . . . . . . . . . . . 69

5.2 Performance Evaluation - Category 2 . . . . . . . . . . . . . . . . . . . . 71

5.2.1 Performance on the A1 dataset . . . . . . . . . . . . . . . . . . . 71

5.2.2 Performance on the B1 dataset . . . . . . . . . . . . . . . . . . . 73

5.2.3 Performance on the C1 dataset . . . . . . . . . . . . . . . . . . . 76

5.2.4 Performance on the A2 dataset . . . . . . . . . . . . . . . . . . . 78

5.2.5 Performance on the B2 dataset . . . . . . . . . . . . . . . . . . . 81

5.2.6 Performance on the C2 dataset . . . . . . . . . . . . . . . . . . . 83

6 Statistical Analysis 86

6.1 Analysis of errors on the eli76 dataset . . . . . . . . . . . . . . . . . . . . 86

6.2 Analysis of errors on the kroA100 dataset . . . . . . . . . . . . . . . . . . 88

6.3 Analysis of errors on the ch130 dataset . . . . . . . . . . . . . . . . . . . 89

6.4 Analysis of errors on the u159 dataset . . . . . . . . . . . . . . . . . . . . 91

7 Conclusions 93

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

viii



7.2 Study Limits - Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

ix



List of Figures

2.1.1 A graph of the Knapsack problem showing the process and possible outcomes 10

2.1.2 A tree graph showing all possible paths in a 3 node TSP problem . . . . 13

2.1.3 A tree graph showing all possible paths in a 4 node TSP problem . . . . 13

2.1.4 An illustration depicting all possible routes between four nodes, always

beginning and ending at node A . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.5 An indicative pseudocode for Tabu Search . . . . . . . . . . . . . . . . . 22

3.2.1 The Algorithm tree for the TTP in (Polyakovskiy, Bonyadi, Wagner,

Michalewicz, and Neumann 2014a) , the leaves correspond to the algo-

rithm that produces the best result among the RLS, EA, SH . . . . . . . 42

3.2.2 A simplified CoSolver framework for the TTP sourced from (El Yafrani

and Ahiod 2018) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.3 The MATLS tree as illustrated in (El Yafrani and Ahiod 2016) . . . . . . 51

3.2.4 The modified Simulated Annealing (CS2SA) tree from (El Yafrani and

Ahiod 2016) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.1 Illustration of a TTP solution. . . . . . . . . . . . . . . . . . . . . . . . . 58

5.1.1 Performance of all methods on the eli76 dataset. . . . . . . . . . . . . . . 64

5.1.2 Improvements per neighborhood yielded from all methods on the eli76

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1.3 Performance of all methods on the kroA100 dataset. . . . . . . . . . . . . 66

5.1.4 Improvements per neighborhood yielded from all methods on the kroA100

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.1.5 Performance of all methods on the ch130 dataset. . . . . . . . . . . . . . 67

5.1.6 Improvements per neighborhood yielded from all methods on the ch130

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

x



5.1.7 Performance of all methods on the u159 dataset. . . . . . . . . . . . . . . 69

5.1.8 Improvements per neighborhood yielded from all methods on the u159

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2.9 Performance of all methods on the A1 dataset. . . . . . . . . . . . . . . . 71

5.2.10Improvements per neighborhood yielded from all methods on the A1 dataset. 71

5.2.11Average score of the algorithms and standard deviation after 5 iterations

on the A1 dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2.12Performance of all methods on the B1 dataset. . . . . . . . . . . . . . . . 73

5.2.13Improvements per neighborhood yielded from all methods on the B1 dataset. 74

5.2.14Average score of the algorithms and standard deviation after 5 iterations

on the B1 dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2.15Performance of all methods on the C1 dataset. . . . . . . . . . . . . . . . 76

5.2.16Improvements per neighborhood yielded from all methods on the C1 dataset. 76

5.2.17Average score of the algorithms and standard deviation after 5 iterations

on the C1 dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2.18Performance of all methods on the A2 dataset. . . . . . . . . . . . . . . . 78

5.2.19Improvements per neighborhood yielded from all methods on the A1 dataset. 79

5.2.20Average score of the algorithms and standard deviation after 5 iterations

on the A2 dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2.21Performance of all methods on the B2 dataset. . . . . . . . . . . . . . . . 81

5.2.22Improvements per neighborhood yielded from all methods on the B2 dataset. 81

5.2.23Average score of the algorithms and standard deviation after 5 iterations

on the B2 dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2.24Performance of all methods on the C2 dataset. . . . . . . . . . . . . . . . 83

5.2.25Improvements per neighborhood yielded from all methods on the C2 dataset. 84

5.2.26Average score of the algorithms and standard deviation after 5 iterations

on the C2 dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.1.1 Offset distribution - RVNS-greedy1. . . . . . . . . . . . . . . . . . . . . . 87

6.1.2 Offset distribution - VNS-greedy1. . . . . . . . . . . . . . . . . . . . . . . 87

6.1.3 Offset distribution - RVNS-greedy2. . . . . . . . . . . . . . . . . . . . . . 87

6.1.4 Offset distribution - VNS-greedy2. . . . . . . . . . . . . . . . . . . . . . . 87

6.2.5 Offset distribution - RVNS-greedy1. . . . . . . . . . . . . . . . . . . . . . 89

6.2.6 Offset distribution - VNS-greedy1. . . . . . . . . . . . . . . . . . . . . . . 89

xi



6.2.7 Offset distribution - RVNS-greedy2. . . . . . . . . . . . . . . . . . . . . . 89

6.2.8 Offset distribution - VNS-greedy2. . . . . . . . . . . . . . . . . . . . . . . 89

6.3.9 Offset distribution - RVNS-greedy1. . . . . . . . . . . . . . . . . . . . . . 90

6.3.10Offset distribution - VNS-greedy1. . . . . . . . . . . . . . . . . . . . . . . 90

6.3.11Offset distribution - RVNS-greedy2. . . . . . . . . . . . . . . . . . . . . . 90

6.3.12Offset distribution - VNS-greedy2. . . . . . . . . . . . . . . . . . . . . . . 90

6.4.13Offset distribution - RVNS-greedy1. . . . . . . . . . . . . . . . . . . . . . 91

6.4.14Offset distribution - VNS-greedy1. . . . . . . . . . . . . . . . . . . . . . . 91

6.4.15Offset distribution - RVNS-greedy2. . . . . . . . . . . . . . . . . . . . . . 91

6.4.16Offset distribution - VNS-greedy2. . . . . . . . . . . . . . . . . . . . . . . 91

xii



List of Tables

2.1 The generic distance matrix for 3 cities . . . . . . . . . . . . . . . . . . . 12

2.2 The generic distance matrix for 4 cities . . . . . . . . . . . . . . . . . . . 12

3.1 Components of the TSP and KS subproblems in the TTP. . . . . . . . . 37

3.2 Components of the TTP. . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Results of RLS, EA, SH and PackNone algorithms - Part1 . . . . . . . . 42

3.4 Results of RLS, EA, SH and PackNone algorithms - Part2 . . . . . . . . 42

3.5 Results of RLS, EA, SH and PackNone algorithms - Part3 . . . . . . . . 43

3.6 An excerpt from the results of CS2SA* and CS2SA-R in (El Yafrani and

Ahiod 2018) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.7 An excerpt from the results of in (El Yafrani and Ahiod 2016) (category 2) 54

4.1 The input data concerning the TTP environment. . . . . . . . . . . . . . 58

4.2 The input data concerning distances between the cities. . . . . . . . . . . 58

4.3 The input data concerning the attributes of the items. . . . . . . . . . . . 59

5.1 Category 1 problem instances. The datasets used are sourced from the

IEEE CEC 2014 Competition website . . . . . . . . . . . . . . . . . . . . 63

5.2 Category 2 problem instances. The datasets used are sourced from the

Adelaide competition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3 Results of the four methods on the A1 dataset. . . . . . . . . . . . . . . . 72

5.4 Results of the four methods on the B1 dataset. . . . . . . . . . . . . . . . 74

5.5 Results of the four methods on the C1 dataset. . . . . . . . . . . . . . . . 77

5.6 Results of the four methods on the A2 dataset. . . . . . . . . . . . . . . . 79

5.7 Results of the four methods on the B2 dataset. . . . . . . . . . . . . . . . 82

5.8 Results of the four methods on the C2 dataset. . . . . . . . . . . . . . . . 84

6.1 Descriptive statistics of the errors for the eli76 dataset. . . . . . . . . . . 87

xiii



6.2 Normality test of errors for the eli76 dataset. . . . . . . . . . . . . . . . . 88

6.3 Descriptive statistics of the errors for the kroA100 dataset. . . . . . . . . 88

6.4 Normality test of errors for the kroA100 dataset. . . . . . . . . . . . . . . 88

6.5 Descriptive statistics of the errors for the ch130 dataset. . . . . . . . . . 89

6.6 Normality test of errors for the ch130 dataset. . . . . . . . . . . . . . . . 90

6.7 Descriptive statistics of the errors for the u159 dataset. . . . . . . . . . . 92

6.8 Normality test of errors for the u159 dataset. . . . . . . . . . . . . . . . . 92

xiv



CHAPTER 1

Introduction

1.1 Motivations

Combinatorial optimization is a novel and under-researched field with numerous real-

world applications that have gathered significant research interest over the last few years.

The practical importance of such problems in a wide variety of fields including, but not

limited to, industry, transport, logistics, scheduling etc. have the potential to produce

significant contributions in every one of those fields.

This research was motivated by an active interest in investigating how heuristic meth-

ods can effectively contribute to the realization of rapid and efficient solutions to problems

that are difficult and very resource demanding, by investigating the production of good

and efficient solutions under the prism of VNS.

1.2 Context of the study

This thesis was authored in partial fulfilment of the requirements for the Master in

Applied Informatics of the University of Macedonia graduate program. The code for all

heuristic methods utilized in this research was authored in Python and run locally without

parallelization considerations. The datasets used were provided by the inventors of the

Travelling Thief problem in the University of Adelaide in Australia and no modifications

whatsoever have taken place in order to allow future research to exploit the outcome of

this research to hopefully further the insight into advancing heuristic methods for the

solution of combinatorial optimization problems.
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1.3 Objectives and contribution

The present study has been undertaken in order to enhance the researcher’s under-

standing of hard combinatorial optimization problems and with the hope of producing a

worthwhile contribution to other researchers and students in the fields of heuristics and

hard problem solving. Some of the most up to date research is utilised and select compo-

nents from the datasets of the inventors of TTP are utilized to craft an RVNS approach

to drawing efficient and rapid solutions for these complex problems.

1.4 Overview of the thesis

This thesis is organised in seven chapters, Chapter 1 presents the introduction to

the thesis, the motivation of the researcher and some organizing principles behind this

document.

Chapter 2 dwells into the theoretical background, presenting a building-block ap-

proach to the Travelling Thief Problem which is the main problem examined in this

thesis by elaborating on how it evolved through a process of natural evolution through

its component subproblems. Subsequently some of the most prevalent metaheuristic

methods that are used to tackle such hard problems are being introduced in short form

with some of their prevalent characteristics being enumerated in a brief manner.

VNS which is the main heuristic method utilized in the experimental and theoretical

phase of the present study is examined in more detail in its own subsection and the dif-

ferences between it and RVNS are presented in the form of pseudocode as well as in a

theoretical sense, drawing upon the relevant literature. A limited number of approaches

to the construction function heuristics is presented including the three main ones utilized

in constructing the initial solutions of this study, i.e. a random heuristic, a greedy/hill

climbing approach and a more advanced probabilistic greedy heuristic based on the con-

struction function of the GRASP heuristic which is the one that, as will be detailed in

the relevant section, produces the most efficient initial solutions. Closing this subsection

some methods for multi-objective optimization, namely the Weighted Sum method and

the ε-constraint method are presented.

Chapter 3 begins by introducing the Travelling Thief Problem, the inspiration behind

its creation and how the motivation of introducing an interdependency factor between

difficult problems has led to a melding of components from both constituent problems into

2



a unified problem with a combined dataset whose solution is the result of contributions

from factors of both problems.

The inderdependency is further examined in its own special subsection where the

critical importance of understanding and unifying the solutions to the Travelling Salesman

Problem and the Knapsack Problem are being investigated through the prism of relevant

research literature, drawing upon the significant body of research suggesting that solutions

to co-related problems should not be examined on a per-problem base but rather as a

unified and dynamic problem that constantly changes. Similar arguments which are

found in the bibliography for the Vehicle Routing Problem, which is also a combinatorial

optimization problem facing the same challenges and demands, are also presented to

further enhance the author’s position.

Subsequently, the chapter concludes by examining in great detail some of the main

Metaheuristic approaches followed in the relevant literature for the Travelling Thief Prob-

lem and presenting some of the most significant methods that have been utilized by other

researchers who have undertaken research into the same problem as this current work.

Chapter 4 dwells in detail on the exact methodology the present thesis has utilized in

a top-down approach. Initially the solution representation that is utilised is introduced,

and the way each of the the solutions to the subproblems is represented in the thesis

is explained. After the representation of the solution for both the Travelling Salesman

Problem and the Knapsack problem has been presented, the Objective Function (OF) of

the unified Travelling Thief problem, as has been introduced in various versions from the

original researchers and adapted for use in this current thesis, is elaborated in great detail.

Every constituent part of the relevant components in which the TTP objective function is

comprised of is meticulously explained allowing the reader to gain a deep understanding

in the way the objective function is constructed upon. An illustrated example is provided,

including the detailed actions for some indicative small problem with purposefully chosen

convenient numbers. The entire process is elaborated with these numbers, presenting a

methodical approach to solving a small Travelling Thief Problem by hand to allow the

reader to deeply engage with the way these components interact in the objective function

and make clear how the interdependency of the two component problems is achieved

through the intertwining of their respective elements that comprise the related OF parts.

As VNS utilizes neighborhoods of solutions as integral components of the method, the

selections of three specific neighborhoods that have been accepted and incorporated into

the current approach are demonstrated. The exact modification that each of the neigh-

3



borhoods is introducing to the solution is presented and indicative practical examples of

deliberately small 4x4 and 5x5 solutions are demonstrated to enhance the quality of the

explanation.

The chapter concludes by elaborating into the construction function heuristic ap-

proaches that have been utilised. Three main construction heuristics have been chosen

for the construction of an initial solution that will serve as further input into being the

main starting point for the RVNS metaheuristic which will improve upon these initial

solutions. While a random heuristic has also been used to construct initial solutions dur-

ing the testing phases of the algorithm, it has ultimately been dropped from the thesis

as the initial solutions it provided were exceptionally bad and have almost without fail

always led to rapid improvement but with terrible final outcomes in the set number or

iterations of the algorithm. The other two construction function heuristics that have

been used, namely the Greedy and GRASP approaches, have yielded significantly bet-

ter outcomes and are the main construction functions utilized in obtaining the results.

However the results of the random initial solution approach are also presented as an aid

to the reader and to demonstrate how a sufficiently bad initial solution can hamper any

heuristic, regardless of its own efficiency, to a significant degree.

Chapter 5 presents the results of the experiments. Six characteristic datasets from the

Adelaide Travelling Thief competition are utilised. These datasets have been purposely

selected to be representative of a very wide variety of problems in order to demonstrate

the efficiency of RVNS in various conditions and with a multitude of factors involved.

This is also significantly important because the variations in the number of components

also greatly affect the speed of the construction heuristics which can become a significant

and important issue to consider when dealing with larger datasets. For an objective and

extensive approach to properly demonstrate the efficiency of the method, the datasets

were chosen to include either few or many cities, with a fixed number of items per city

unique in each dataset as well as taking into account the degree of correlation between

the value and weight of the items. Performance charts illustrating the performance of

all methods, including each separate construction heuristic in the total performance for

each of the datasets are presented with some commentary on the specifics of every graph.

Because RVNS has an inherit component of randomness and especially in the case where

the GRASP heuristic is utilised, which also incorporates stochastic elements, in order to

enhance the reproducability of the results and avoid the pitfall of accidentally accepting

solution that happened to be exceptionally favorable because of randomness alone each of

4



the experiments was run five times to better normalise the outcomes of these stochastic

processes. A unified table presenting the results of these five combined runs for each

of the methods is located after the graphs to better illustrate how each of the datasets

compares to the others using these combinations.

Chapter 6 presents a statistical analysis of the results in a smaller category of

datasets detailing the observed improvement per dataset and breaking down the indi-

vidual datasets on the basis of the initial construction function used to also demonstrate

the effect of proper selection of a construction heuristic in enhancing the solutions. The

effectiveness of the method in each dataset is debated and presented in order to com-

pare the suitability of RVNS and each construction heuristic to the size and degree of

correlation in each dataset.

Chapter 7 presents the concluding remarks of the thesis, establishes the comparative

quality of the method compared to other results for the same datasets utilised in the

relevant research literature and advocates for the importance of further research into

combinatorial optimization problems and the necessity of implementing dynamic and

efficient heuristics that will adapt to the demanding nature of these uniquely interesting

and practical problems. Admittances for the limitations of the current study are presented

to the readers and a line of future work related to both the applications of RVNS in

combinatorial optimization as well as the construction function selection and building

process is proposed.

5



CHAPTER 2

Theoretical Background

In this chapter, we briefly discuss how Combinatorial Optimization problems are

related to Decision Problems and introduce the issue of computational complexity. Sub-

sequently we proceed to examine how the Knapsack problem is created from the Cutting

Stock Problem and the Bin Packing Problem and advance to introduce the Travelling

Salesman Problem and some of its variants.

2.1 Combinatorial Optimization Problems

The Entscheidungsproblem, meaning “Decision Problem” in German, was a question

posed by David Hilbert, one of the most influential modern mathematicians, in 1928 in

The International Congress of Mathematicians. The essence of Hilbert’s question was

whether Mathematics was “decidable”, the question posed was:

“Is there an algorithm which when fed any statement in the formal language of first-

order arithmetic, determines in a finite number of steps whether or not the statement is

provable from Peano’s axioms for arithmetic, using the usual rules of first-order logic?”

In 1936, both Church and Turing were able to prove that the Entscheidungsproblem

posed by Hilbert is unsolvable. There are therefore two basic types of problems pertaining

to their fundamental nature, problems that can be characterized as decision problems and

undecidable problems. In undecidable problems, it is impossible to construct an algorithm

that always leads to a correct yes-or-no answer in a finite time.

In fundamental computational complexity theory, decidable problems are further sub-

divided in multiple complexity classes based on their related resource-based complexity.

Two fundamental complexity classes are P, the class of problems that can be solved by

a deterministic machine in polynomial time, and NP, the class of problems that can be
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solved by a non-deterministic machine in polynomial time (Hoos and Stützle 2004) and

(Huang, Lai, and Cheng 2009). P is contained in NP in the sense that a non-deterministic

machine can be used as a deterministic machine and the hardest problems in NP are called

NP-complete. A search problem X is NP-Hard if for some NP-complete problem Y there

is a polynomial-time Turing reduction from Y to X. An obvious consequence of the defini-

tion above is that that an NP-hard problem cannot be solvable in polynomial time unless

P = NP (Leeuwen, Meyer, Nival, et al. 1990). Please note that while below we will be

examining problems that are indeed considered NP-hard, for the purposes of this research

thesis we will be ignoring the P versus NP problem, since the practical computational

complexity of the problems examined is enormous.

While the class of NP is limited to decision problems and applies directly to them, a

decision problem can be turned into an optimization problem by introducing a threshold

value. From a complexity standpoint, the decision problem is “no harder” corresponding

to the equivalent optimization problem.

Single-objective optimization problems are the simplest form of optimization prob-

lems encountered: Depending on the constraints imposed, the researcher aims to find the

best solution in terms of minimum or maximum value to the modeled objective func-

tion describing the solution to the problem. Some problems are more linear while others

are non-linear and their solution requires a more advanced approach and more detailed

problem modeling.

While the study of single-objective optimization problems is a precious academic

resource, multi-objective optimization is more a appropriate tool for approaching real-

world problems. Indeed problems encountered in a practical scenario rarely lend them-

selves to optimizing only a single objective. Furthermore the very type of some problems is

contradictory, they are not always single-scope problems (minimization or maximization),

but very often are a mixture blending minimizing one part while maximizing another, in

an intricate balance that requires a well-organized approach.

2.1.1 The Cutting Stock Problem (CSP) and the Bin Packing

Problem (BPP)

The Cutting Stock Problem is a simple problem that gives rise to some of the more

interesting problems we will be dealing with in this thesis. It is however valuable to give

an insight into how many of the practical problems encountered in real-world conditions
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are linked and interconnected among them. Given a starting stock material, the classical

CSP asks for finding a way of cutting standard sized pieces from that starter material

minimizing the material wasted in the process. Whether it is cutting boards from a log,

or pieces of clothing from fabrics, the aim is always to minimize the material wasted,

which simultaneously leads to the maximization of the material utilized.

In mathematical terms, the formulation of the problem would be as follows:

Starting with a list of m orders, each requiring qj pieces, where j ∈ (1,2,...,m). If n

is the number of all possible combinations of cuts. Mapping x ∈ N? to each combination

where i indicates the number of times each combination will be utilized and i ∈ (1, 2, ..., n)

then:

min

n∑
i=1

cixi

s.t.
n∑
i=1

aijxi ≥ qj, ∀j ∈ (1, 2, ...,m)

xi ∈ N?

where ai,j is the number of times order j appears in combination i and ci is the cost

(frequently considered as waste) of combination i

By replacing the constrain for the quantity from an inequality to an equality and

setting ci = 1 to minimize the use of the source material the Cutting Stock Problem is

converted into a different problem, a special case called the Bin Packing Problem.

The Bin Packing Problem (BPP) is one of the most well-known optimization problems:

in the generalized form we are given a number of items and bins that can hold up to a

specific weight or volume. the goal is to assign the items in the bins so as no bin will

contain any items with weight/volume more than c and the total number of bins used is

minimized.

A formalization of the Bin Packing problem can be found in [here goes the book in the

comment]

Given n items and n knapsacks, with

wj=weight of item j
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c = capacity of each bin

assign each item to one bin so that the total weight of the items in each bin does not

exceed c and the number of bins used is a minimum.

minimize z =
n∑
i=1

yi

s.t.
n∑
j=1

wjxij ≤ cyi, i ∈ N = {1, 2, ..., n}

n∑
i=1

xij = 1, j ∈ N

and yi, xij are binary variables where:

yi =

1 , if bin i is used

0 , if bin i is not used
, xij =

1 , if item j is assigned to bin i

0 , otherwise

In the special case where the number of bins are limited to one, and given a value

metric to each item, the BPP is referred as the Knapsack Problem, which will be presented

next.

2.1.2 The Knapsack Problem

The knapsack problem is one of the most studied problems of combinatorial optimiza-

tion, mostly because of the enormous practical application in the field of logistics and

transports. Essentially, a knapsack of finite capacity (usually in terms of weight) is given,

along with items of different value and weight. The aim is to pick the combination of

items maximizing the total value under the constraint that it still fits in the bag.
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Figure 2.1.1: A graph of the Knapsack problem showing the process and possible out-
comes

While the decision problem for KS is NP-complete, the optimization problem is NP-

hard. A commonly occurring variation of the common KS problem includes defining

the capacity by volumetric limitations (alone or in conjunction with weight), this can be

further generalized into the multi-dimensional knapsack problem where a knapsack has

dimensional limitations in each dimension and the items themselves are described by vec-

tors of said dimensions. In the latter case, as each item can be rotated on a d-dimensional

axis, loading is significantly complicated and a polynomial-time approximation scheme

does not exist unless P=NP.

We can easily model the integer linear programming approach to the binary form of
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the Knapsack problem for single items:

Given n cities and n items

maximize
n∑
i=1

pixi

subject to:

i, n ∈ N

While an integer linear programming approach to the multidimensional Knapsack

problem can be formulated as follows:

maximize
n∑
j=1

pjxj

subject to:
n∑
j=1

wijxj ≤ ci, i = 1, ...,m;

xj ∈ {0, 1}, j = 1, ..., n;

pj, wi,j, ci ∈ Z+

wij ≤ ci, j = 1, ..., n;
n∑
j=1

wij ≥ ci i = 1, ...,m;

where:

pj : profit of project j

wij : consumption of project j from resource i

ci : capacity of resource i

xj :

1 , if project j is selected

0 , otherwise

11



2.1.3 The Travelling Salesman Problem

One of the most studied problems in combinatorial optimization encountered within

the field of Operations Research is the Travelling Salesman Problem (TSP). In its

quintessential form, a traveling salesman is given a starting city, i.e. starting node, a set

of other cities to visit and the intercity distances, and then has to decide which is the

shortest route that crosses each city exactly once and ends back to starting city. The

aim of the problem is minimizing the distance travelled, expressed in terms of cost.

Typically, distances are stored into a matrix as shown below:

A B C

A 0 cab cac
B cba 0 cbc
C cca ccb 0

Table 2.1: The generic distance matrix for 3 cities

A B C D

A 0 cab cac cad
B cba 0 cbc cbd
C cca ccb 0 ccd
D cda cdb cdc 0

Table 2.2: The generic distance matrix for 4 cities

It is easily observable that in case the TSP is symmetric, the matrix is also symmetric,

i.e. A = AT . In more detail, the mathematical formulation of the problem is as follows:
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Figure 2.1.2: A tree graph showing all possible paths in a 3 node TSP problem

Compared to the figure above, the tree in figure 2.1.3 below only has one more node,

yet the increase in complexity is becoming obvious:

Figure 2.1.3: A tree graph showing all possible paths in a 4 node TSP problem
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Figure 2.1.4: An illustration depicting all possible routes between four nodes, always
beginning and ending at node A

Integer Linear Programming Formulations:

These are two popular formulations of the TSP in an Integer Linear Programming Form

encountered in relevant literature:

• The Miller-Tucker-Zemlin formulation

xij=

1 , the path goes from city i to city j

0 , otherwise

For i=1,2,...,n, let ui be a variable, and finally take cij to be the distance from city i

to city j. Then the TSP can be written as the following integer linear programming
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problem:

min
n∑
i=1

n∑
j 6=i,j=1

cijxij :

0 ≤ xij ≤ 1 i, j = 1, ..., n;

ui ∈ Z i = 1, ..., n;
n∑

i=1,i 6=j

xij = 1 j = 1, ..., n;

n∑
j=1,j 6=i

xij = 1 i = 1, ..., n;

ui − uj + nxij ≤ n− 1 2 ≤ i 6= j ≤ n;

0 ≤ ui ≤ n− 1 2 ≤ i ≤ n.

• The Dantzig-Fulkerson-Johnson formulation:

Label the cities with the numbers 1,...,n and define:

xij =

1 , the path goes from city i to city j

0 , otherwise

Take cij to be the the distance from city i to city j. Then the TSP can be written

as the following linear integer programming problem:
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min

n∑
i=1

n∑
j 6=i,j=1

cijxij :

0 ≤ xij ≤ 1 i, j = 1, ..., n;
n∑

i=1,i 6=j

xij = 1 j = 1, ..., n;

n∑
j=1,j 6=i

xij = 1 i = 1, ..., n;

∑
i∈Q

∑
j∈Q

xij ≤ |Q| − 1 ∀Q ⊆ {2, ..., n}

2.2 Meta-heuristics in Combinatorial Optimization

In this subsection we delve into some of the more popular metaheuristics utilized in

combinatorial optimization approaches, present their main features and examine some of

the drawbacks for each method.

2.2.1 Population Based

Genetic Algorithms A Genetic Algorithm (GA) is a meta-heuristic in the class of

evolutionary algorithms that was introduced in 1960 by John Holland. The concept of a

GA is to represent the solution of an optimization problem as genes and to approximate

the solution by continuous evolution through inheritance and mutation. By creating sets

of “parents” and deriving “children” from the combinations of their genome. Enabling

some degree of gene mutation during the generation of children allows leaps in various

directions to explore the possibility of finding a better solution elsewhere in the space of

all feasible solutions and allowing the mutated genes of a successful subject to spread.

To gain a more complete insight in this context, it is important to reference some

of the some distinctive disadvantages GAs possess compared to alternative optimization

algorithms:

• Complexity scaling is difficult with Genetic Algorithms. In particular, where the

number of elements which are exposed to mutation is sufficiently extensive, there
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is often an exponential increase in search space size. This makes it extremely

difficult to use the technique on problems with multicomponent interdependent

variables. To facilitate evolutionary search approach in such problems, they must

be reduced into as simple a representation as possible. A related limitation is the

issue of protecting genome parts that have evolved to represent good solutions from

detrimental mutations, particularly when there are imposed fitness limitation that

require them to combine with other parts.

• Rating a solution as being “better” is implemented in comparison to other solutions

resulting in the stop criterion not being straightforward in every problem.

• GAs have difficulty sacrificing short-term fitness to balance the gains in longer-term

fitness. The critical factor in determining the likelihood of this scenario is the shape

of the fitness landscape.

• Genetic Algorithms face difficulties operating on dynamic data sets. Early prema-

ture convergence may derail the algorithm towards operating on solutions which

may no longer be valid for data acquired subsequently. This is often countered by

increasing genetic diversity either through a method called triggered hypermutation

or by periodically introducing elements termed random immigrants, which are new,

randomly generated elements, into the gene pool.

• In practical terms, GAs are inefficient in solving decision problems, problems where

the only fitness measure is a binary true/false measure. This is because there is no

way to converge on the solution though hill climbing.

• The suitability of Genetic Algorithms, as for all optimization algorithms, is not

universal. While genetic algorithms are generally efficient, advanced understanding

or design of the components of a problem may facilitate the use of other optimization

approaches, or even hybrid approaches, that converge faster and more efficiently.

Particle Swarm Optimization Particle Swarm Optimization (PSO) is an advanced

population based meta-heuristic for optimizing a solution through iterative improvement

of candidate solutions (particles), which are individually characterized by their position

and velocity. The principle behind this approach lies in the utilization of the swarm

movement of particles to converge towards local minima in the search space, interactively

influencing the swarm around them while being influenced by it themselves.
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Some disadvantages of PSO have been noted by (Abdmouleh, Gastli, Ben-Brahim,

Haouari, and Al-Emadi 2017), which focus their criticism on three key points:

• Inherent difficulty in defining the initial design parameters

• Significant difficulty in dealing with problems of Scattering

• Potential for prematurely convergence and entrapment in local minima, especially

with complex problem

Their third point, premature convergence, is of course a universal challenge faced by

the entirety of heuristics and metaheuristics as the lack of complete information on the

terrain of the search space in conjunction with imperfect convergence criteria inherent

to all stochastic heuristic processes possesses the inherent risk of trapping algorithms in

local minima.

Ant Colony Optimization Ant Colony Optimization (ACO) was proposed by M.

Dorigo in his PhD thesis during the ’90s and published in (Dorigo and Caro 1999). It is

a nature-inspired, stochastic, swarm-intelligent metaheuristic and the inspiration for this

method came from the natural behavior of ants when they are looking for food.

Essentially the method is inspired by the approach ants take to finding short paths

between sources of food and their colony. When ant scouts detect a potential source of

food, they return to their nest while leaving a pheromone trace on the way back. The

other ants are attracted by the smell of the pheromone and choose to follow a path set

by one of the scouts based on the intensity of the smell. The ants taking the longer path

will return later than the ants taking a shorter path and hence the levels of evaporation

of the pheromone trail will be less for shorter paths and more for longer paths. Hence

shorter paths will gain a stronger pheromone trail and lead more ants to prefer them over

time, creating a positive feedback loop that creates a preference for the shortest path.

The mathematical modelling of the ACO algorithm for the TSP that is presented

below allows a greater understanding of the ACO principle. It was proposed by (Stützle,

Dorigo, et al. 1999) in their paper ’ACO Algorithms for the Traveling Salesman Problem’

and focuses on the Ant System (AS). For the tour construction, each of the starting

ants is initially placed at random in a chosen city. For each next step, the ant applies a

probabilistic action choice rule to move to a city using the following formula:
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pkij(t) =
[τij(t)]

a · [ηij]β∑
l∈N k

i
[τil(t)]a · [ηβil]

if j ∈ N k
i

The parameter α corresponds to the selection of closer cities by the ants, acting like

a classic greedy heuristic, while parameter β affects the pheromone amplification. An

improper balance of these parameters will result in stagnation by rapid convergence to

sub-optimal solutions.

After ants have constructed their tours, the pheromone trail strength is lowered in all

arcs and each ant is adding pheromone to the arcs it has visited based on the formula

below:

τij(t+ 1) = (1− ρ) · τij(t) +
m∑
k=1

∆τ kij(t) ρ ∈ (0, 1]

Where

∆τ kij(t) =

 1
Lk(t)

, if arc (i,j) is used by ant k

0 , otherwise

The parameter ρ deals with the evaporation of the pheromone trails. The pheromone

strength in arcs which were not chosen decreases exponentially. The ∆τ kij(t) part is the

amount of pheromone ant k puts on the arcs it has visited while Lk(t) refers to the length

of the kth ant’s tour. From the equation above defining the amount of pheromone, it is

easy to observe that the better tours receive more pheromone and hence the probability

of them being chosen from other ants in later iterations is greater.

However, according to the authors the Ant System provides rather poor solution

quality for TSP instances with over 75 cities and later research has been mostly focused

on improving ACO over the initial form of AS. One such notable improvement, the Ant

Colony System (ACS) was later introduced to improve the performance of Ant System,

based of a previous algorithm called Ant-Q. According to the authors, the Ant System

and the Ant Colony System approaches differ in three key areas. The implementation

of a more aggressive action choice rule, adding the pheromone only in arcs belonging to

the global-best solution and ants removing some pheromone from each arc they choose

to use.
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2.2.2 Single Point Search

Some of the more popular heuristic methods, frequently applied to real-world prob-

lems, are Single Point Search meta-heuristics, also known as trajectory-based meta-

heuristics. The name comes from the characteristic pattern of the trajectory they follow

in the search space. This is usually one of the two main categories used to subdivide meta-

heuristic methods based on their approach, the other being population-based methods

which were described above. Below we are introducing some of the most popular sin-

gle point search methods encountered in published research with their distinctive char-

acteristics and drawbacks, and ending the section with the methods applicable to the

implementation proposed in this thesis.

Simulated Annealing is a very interesting and unique among meta-heuristics, the

approach to this method is frequently being cited to have been inspired by the metonym

process in the craft of metallurgy. The basic premise is heating a material to a point above

its recrystallization temperature, and exposing it to a slow and controlled cooldown, keep-

ing the temperature at a controlled rate with the aim to produce a crystalline structure

with particular properties.

Simulated Annealing implements the same concept by utilising a factor introduced

as temperature, which is essentially a plasticity factor. This term controls the varying

probabilities of a) accepting a new worse solution and b) accepting a new better solution

while navigating the search space. Temperature is gradually decreased, altering these

two probabilities, with case (a) gradually decreasing while case (b) gradually increasing.

One interesting element that sets this method apart is that it is very well suited

to estimating the global optimum, making it valuable in cases where an approximation

of the position of the global optimum is more important than finding a good-enough

solution that might happen to be a local minimum. However there are important limiting

factors to Simulated Annealing that need to be considered. Repeated annealing is slow

and compared to other methods is disproportionately affected by the complexity of the

objective function. Furthermore it is less suited to exploring relatively “smooth” areas

where the positions of local minima are located inside dense regions of uniformly low

fitness.
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Algorithm 1: A pseudocode for Simulated Annealing, (Ferentinos, Arvanitis,
and Sigrimis 2002)

Initialize (temperature T, random starting point)
while cool iteration <= max iterations do

cool iteration=cool iteration+1
temp iteration=0
while temp iteration<=nrep do

temp iteration=temp iteration+1
select a new point from the neighborhood
compute current cost (of this new point)
δ = current cost - previous cost
if δ < 0 then

accept neighbor
else

accept with a probability exp(-δ/T)
end

end
T = a*T (0 < a < 1)

end

Tabu search is a metaheuristic method utilizing local search methods. A defining

characteristic of this method is the introduction of prohibitions restricting the algorithm’s

ability to visit past solutions.

Essentially Tabu search utilizes a common approach in local search, that is, after

establishing an initial solution, it proceeds to further examine neighboring solutions:

neighboring being defined as solutions that are quite similar in their structure except

for some minor differences, relating to the initial problem and the representation of the

solution. Like most metaheuristic methods, it initially allows for some tolerance when it

comes to accepting potentially ’worse’ (less fit) solutions to facilitate escaping from local

minimum traps and broaden the scope of the search in the field of the solutions space.

A problem-specific memory structure, often referred simply as the ’tabu list’, is a

set of previously visited solutions or neighborhoods of solutions and defined rules that

determine the behavior of the algorithm. An item that in some previous iterations has

been introduced into the list is considered to be ’tabu’ (prohibited) and the algorithm

does not consider it a viable option during the evaluation. In general the status of the a

solution being in the tabu list is dynamic, allowing them to enter and exit the structure

often and according to the queuing approach that has been selected for the structure, the
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implementation of which can vary.

Figure 2.2.5: An indicative pseudocode for Tabu Search

Another single-point search method utilizing local search is the Variable Neighborhood

Search metaheuristic. VNS and one of it’s variants, Reduced VNS (RVNS), constitutes

the foundations of our approach to the TTP and as such it is further examined in detail

below.

2.3 Variable neighborhood search

Variable Neighborhood Search, abbreviated as VNS, is an advanced metaheuristic for

solving Combinatorial Optimization and Global Optimization problems (Cafieri, Hansen,

and Mladenović 2014). It was proposed by Mladenović and Hansen in 1997 and has since

been incorporated into a large volume of research by various authors in the fields of

heuristics, optimization and operational research.

According to (Hansen, Mladenović, and Pérez 2010), VNS exploits systematically

the following observations:
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Fact 1 A local minimum with respect to one neighborhood structure is

not necessary so for another;

Fact 2 A global minimum is a local minimum with respect to all possible

neighborhood structures.

Fact 3 For many problems local minima with respect to one or several

neighborhoods are relatively close to each other.

Surmising from the latter point, which according to the same paper is an empirical

observation, that some information about the global optimum can be often be provided

by a local optimum.

While VNS belongs to the class of local search heuristics like Simulated Annealing

and Tabu search which were referenced above, unlike them it is not a trajectory based

method[1] although it has mistakenly been claimed to be in some publications. Rather,

the core concept of VNS is to pick an initial solution, discover a direction of descent from

that solution (assuming the problem has been converted into a proper minimized form)

within a neighborhood of that solution, and descend towards the minimum value of the

evaluated function within that neighborhood. A perturbation phase follows the descent

phase to enable the algorithm to escape from the corresponding ’valley’, if we assume a

graphical representation of a local minimum to be a depression point. It is interesting to

note that no prior knowledge of the landscape is assumed or exploited in VNS. Further-

more it has to be noted that local search in problems with very large instances is very

computationally intensive and might not be an intuitively efficient approach.

A summary of the way VNS operates was written in (Pérez, Mladenović, Batista, and

del Amo 2006) in the journal of Metaheuristic Procedures for Training Neural Networks,

and bears exceptional importance because of the contribution of Mladenović, the inventor

of VNS:

“VNS proceeds by a descent method to a local minimum exploring then, sys-

tematically or at random, increasingly distant neighbourhoods of this solution.

Each time, one or several points within the current neighbourhood are used

as initial solutions for a local descent. The method jumps from the current

solution to a new one if and only if a better solution has been found.” (Pérez,

Mladenović, Batista, and del Amo 2006).
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Normally, at each step the neighborhood of a solution is explored completely. However,

there are factors that can make this option computationally expensive. Considerations

like the complexity of the problem, whether the form of the problem is discrete or con-

tinuous, run-time parameters or even hardware limitations, all play an important part in

determining whether complete exploration is needed or can be substituted for a different

approach. An alternative to exploring the entire neighborhood is to use a different heuris-

tic method to select a criterion for the descent. One such approach is the use of the first

descent heuristic, suggested for that very reason from Hansen and Mladenović (Cordeau,

Gendreau, Hertz, Laporte, Cordeau, and Sormany 2004) which enumerates vectors x’ in

the neighborhood N(x) of the solution and immediately selects the first to descend.

The steps which describe the operating principles of VNS as pertaining to a mini-

mization problem are presented in the following pseudocode:

Algorithm 2: VNS pseudocode for a minimization problem

initialize solution x

while stopping criteria are not met do

k = 1

while k ≤ kmax do

generate x′ a random solution from neighborhood Nk(x)

x′′ = localSearch(x′)

if evaluate(x′′) < evaluate(x) then

x = x′′

k = 1

else

k = k + 1

end

end

end

return x;

According to (Cordeau, Gendreau, Hertz, Laporte, Cordeau, and Sormany 2004) the

main ingredients of the VNS metaheuristic are:

• Definition of a neighbourhood of the current solution;
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• Neighbourhood changes;

• Local search;

• Shaking, i.e., a procedure to perturb the current solution;

• Update of the current solution

2.3.1 Variants of the Variable Neighborhood Search

VNS is a very flexible metaheuristic that since its introduction has be extended in

numerous ways to complement and reinforce it. Some of the extensions frequently en-

countered in relative literature are presented here, finishing with the actual method that

has been used in this thesis.

Variable Neighborhood Descent (VND) Variable Neighborhood Descent (VND)

is a variant of VNS. The concept behind this approach is based on the observation that

diverse neighborhood structures have inherently different local minima and attempts to

resolve this though switching among the neighborhoods. Thus the process undertaken in

this variant is to explore a neighborhood until a local minimum is encountered and then

switch to a different neighborhood that may allow the algorithm to proceed farther.

According to (Duarte, Sánchez-Oro, Mladenović, and Todosijević 2018), there are

three possible ways to design a VND-based local search routine:

(i) Sequential VND, where neighborhoods are placed in the list with a given order and

always explored in that order.

(ii) Nested or composite VND, where neighborhood operators are nested, i.e., N1(N2(N3(...(x))),

which can be considered as neighborhood one of neighborhood two of neighborhood

three, etc. of x.

(iii) Mixed Nested VND, a hybrid approach of the two methods above where the two

previous strategies are combined.
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Algorithm 3: A pseudocode for VND by (Lusa and Potts 2008)

x is the initial solution for VND

while no final condition do

u = 1

while u ≤ umax do

x′ is the best solution in Nu(x)

if f(x′) < f(x) then

x = x′

u = 1

else

u = u+ 1

end

end

end

Return S

VND is often utilized as a local search function within other metaheuristics.

Variable Neighbourhood Decomposition Search (VNDS) According to (Hansen,

Mladenović, and Perez-Britos 2001) Variable Neighbourhood Decomposition Search is a

two-level VNS where the main VNS method is enhanced by decomposition. Essentially
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the main VNS method is run within a successive approximations decomposition method.

Algorithm 4: VNDS pseudocode (Hansen, Mladenović, and Perez-Britos 2001)

Initialization: Select the set of neighborhood structures Nk, k = 1, ..., kmax that

will be used in the search;

find an initial solution x; choose a stopping condition;

while stopping criteria are not met do

Set k ← 1

while k 6= kmax do

(a) Shaking: generate a point x′ at random from kth neighborhood of x

(x′ ∈ Nk(x)); in other words let y be a set of k solution attributes

present in x′ but not in x (y = x′ \ x)

(b) Local Search: Find the local optimum in the space of y either by

inspection or by some heuristic; denote the best solution found with y′

and with x′′ the corresponding solution in the whole space S

(x′′ = (x′ \ y) ∪ y′);
(c) Move or not: If the solution thus obtained is better than the

incumbent, move where x← x and continue the search with N1(k ← 1);

otherwise set k ← k + 1;

end

end

return x;

The difference between VNS and VNDS according to the authors of the heuristic is in

step (b) in the internal loop of the above pseudocode, where instead of applying a local

search method that would encompass the entire solution space, a subproblem in some

subspace is solved at each iteration (Hansen, Mladenović, and Perez-Britos 2001)

Skewed VNS While some problems or specific datasets present with clustered local

optima, this is not always not necessarily the case. While VNS gives equal or better

solutions to the multistart method and even better ones in the case of multiple of local

optima, in the cases where neighborhoods are larger and far apart valleys containing

near-optimal solutions, VNS degenerates into multistart (Burke and Kendall 2013)
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Skewed VNS is therefore a modified VNS scheme, a method for avoiding the issues

created by the existence of very large valleys near x, which would otherwise create a

possible entrapment scenario, infinitely recentering the algorithm to searching near a

local optimum. According to (Burke and Kendall 2013), this is achieved by allowing for

recentering of the search when a solution is found that is close to the current best, albeit

not necessarily a better one, with the additional admission that it is situated far from it.

Algorithm 5: Pseudocode for Skewed VNS by Hansen, P. and Mladenović, N.

via (Burke and Kendall 2013)

Initialization: Select the set of neighborhood structures Nk, k = 1, ..., kmax that

will be used in the search;

find an initial solution x and its value f(x); set xopt ← x, fopt ← f(x);

choose a stopping condition and a parameter value α;

while stopping criteria are not met do

Set k ← 1

while k 6= kmax do

(a) Shaking: generate a point x′ at random from kth neighborhood of x

(b) Local Search: Apply some local search method with x′ as initial

solution; denote with x′′ the so obtained local optimum

(c) Improvement or not: If f(x′′) < fopt set fopt ← f(x) and xopt ← x′′;

(d) Move or not: If f(x′′)− αρ(x, x′′) < f(x) set x← x′′ and k ← 1;

otherwise set k ← k + 1.

end

end

Another very popular variant of the VNS in academic research and the very one used in

this thesis is Reduced Variable Neighborhood Search (RVNS), the major difference among

it and classic VNS is the introduction of stochastic elements to circumvent the need for

a complete exploration of the neighborhood, making it a valuable tool for problems with

large instances where exhaustive local search can be counterproductive. RVNS is one of

the main components of this thesis and is examined in more detail below.
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2.3.2 Reduced Variable Neighborhood Search

Reduced Variable Neighborhood Search (RVNS) is a stochastic variant of the basic

VNS heuristic. The basic premise of the RVNS approach focuses on introducing elements

of randomness in the exploration of a series of neighborhoods by starting with an incum-

bent solution x, evaluating a stochastically chosen solution x’ in the first neighborhood

and when focusing the local search around this new solution if it is value is evaluated

to be a better fit than the current i.e., if f(x′) < f(x) for minimization problems. This

is based on the premise that in many optimization problems, there is some empirically

observable congregation of local optima, which tend to be situated in close proximity to

one another and situated in one or several small parts of the search space. The neighbor-

hoods considered by RVNS are often nested, focusing the search closer to neighborhoods

N(x) of x, rather than others further away.

Essentially RVNS introduces an element of stochasticity in the basic VNS scheme,

enabling the exploration of nested neighborhoods and utilizing the realization that in

many problems local optima tend to congregate. An obvious observation is that unlike

VNS, RVNS does not utilize local search and instead replaces it with local stochastic

jumps. This is especially valuable in very large instances where local search can be very

computationally costly.

Choosing the direction of movement differs depending on the type of the problem. In

0-1 variable type problems, like the Knapsack problem which is examined in this thesis,

simple complementation of some variables can be enough. In permutation problems,

like the TSP, changing the direction of movement may be done with simple swaps but

depending on limitations (e.g., in the directed TSP problem) some solutions might be

infeasible and thus outside the search space. In continuous Euclidean problems, selecting

a random spot in a sphere surrounding x and using that to create a vector that enables

that construction of random angles is another way to incorporate stochastic elements in

the direction of movement.

Having mentioned above that RVNS places a strong emphasis on the exploration of

neighborhoods close to x, exploring its vicinity first, one may wonder on effective ways to

deal with cases such as when a very large ’valley’ surrounds the local optimum, or when
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The pseudo-code of the flow of RVNS for a minimization problem is presented below:

Algorithm 6: RVNS pseudocode for a minimization problem by (Resende and

Ribeiro 2010)

initialize solution x

while stopping criteria are not met do

k = 1

while k ≤ kmax do

generate x′ a random solution from neighborhood Nk(x)

if evaluate(x′) < evaluate(x) then

x = x′

k = 1

else

k = k + 1

end

end

end

return x;

2.4 Construction heuristics

On a fundamental level we can distinguish three basic types of functions in heuristic

methods:

• Construction Heuristics

• Improvement Heuristics

• Hybrid Heuristics

The object of pure construction heuristics is to determine an initial solution to the

problem. The extent to which this solution will be accepted as-is or be passed on for

further improvement frequently determines the type of heuristic method selected as the

initial construction heuristic. In a theoretical sense, even a random walk can be a con-

struction heuristic, producing solutions very quickly with little regard as to the quality of
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the output. More advanced construction heuristics require more time but as a rule tend

to produce better solutions. In practice, a frequently occurring approach is to implement

greedy construction heuristics, i.e. methods that form a solution by taking the best deci-

sion having only partial knowledge of the solution’s performance. However the drawback

to this approach is that local optimality does not necessarily yield solutions close to a

global optimum and may in fact lead to a path of rapid stagnation. Furthermore making

the locally optimal choice can require a great number of calculations and memory space,

making the use of the greedy heuristic questionably applicable the more the size of the

problem increases.

Improvement heuristics on the other hand are methods that receive a solution as an

input and try to improve on that solution. The quality of the initial input and the runtime

parameters of the improvement method significantly effect the speed of convergence, the

quality of the output and the resource utilization of the algorithm. Some improvement

heuristics are significantly better suited to solving specific types of problems.

Hybrid heuristics are algorithms that incorporate their own construction and improve-

ment heuristic, not having to rely on receiving an input of the initial solution externally.

An example of this can be identified the Ant System approach which is briefly examined

in this thesis and incorporates its own construction function.

2.4.1 Greedy method - Hill climbing

Among the popular techniques for traversing a space encountered in the relevant

literature are the hill-climbing methods, which traverse by moving from one point to

the adjacent point having the highest elevation. In essence hill-climbing is a greedy

search technique, under a given evaluation function, it selects the best successor node

and commits the search to it. The resulting successor serves as the actual node, and the

search continues. While this method proves to be extremely efficient for some problems,

it can be trapped in state space problem graphs with dead-ends, making the selection of

this technique a sub-optimal choice for problems where the graph might be directed (one

such case being directed or TSP). Hill-climbing methods typically terminate when there

is no adjacent point having a higher elevation than the current point.

A more popular, yet more conservative form, which is also a more stable version
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Algorithm 7: The pseudocode for a greedy algorithm for a minimization prob-
lem by (Resende and Ribeiro 2010)

S ← 0
Initialize the candidate set: C ← E
while C 6= ∅ do

Select an element s ∈ C with the smallest incremental cost c(s)
Incorporate s into the current solution S ← S∪{s}
Update the candidate set C
Reevaluate the incremental cost c(e) for all e ∈ C

end
Return S

of hill-climbing search, is enforced hill-climbing. It picks a successor node, only if it

has a strictly better evaluation than the current node. Since this node might not be

in the immediate neighborhood of the current node, enforced hill-climbing searches for

that node in a breadth-first manner. Besides being incomplete in directed graphs the

algorithm has other drawbacks. There is evidence that when the heuristic estimation is

not very accurate, enforced hill-climbing easily suffers from stagnation or is led astray.

The traditional greedy approach for the nearest neighbor heuristic is essentially a

modified enforced hill-climbing technique where the next node with the highest elevation

is the one in which the distance to the nearest neighbor is a minimum. In cases where

similar distances are found, causing multiple ’peaks’ to have the same value, some selec-

tion technique needs to be implemented to differentiate and select among the multiple

candidates.

2.4.2 Semi greedy - GRASP

Stochastic greedy algorithms (SGA) differ from the classic greedy approach in that

instead of making the locally optimal choice, they defer to a stochastic method to make

that selection, utilizing a probability distribution to select the next one. When imple-

mented as a complete heuristic, and not as a construction function alone, SGA algorithms

generate a multitude of solutions, the best of which is returned as the result. The intro-

duction of stochastic elements allow greater flexibility in dealing with escaping from local

minima.

GRASP, which stands for Greedy Randomized Adaptive Search Procedure, is a com-

plete meta-heuristic algorithm. The basic principle of the algorithm is to iterate through
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stochastically greedy solutions while applying a local search procedure seeking to con-

verge to a local optima. The construction function of the GRASP technique is essentially

an SGA, combining greedy techniques with probabilistic elements.

The basic construction function of the GRASP approach, which is also utilized as one

of the construction heuristics used in this thesis is exemplified below:

Algorithm 8: Greedy randomized algorithm pseudocode for minimization by

(Resende and Ribeiro 2010)

S ← 0

Initialize the candidate set: C ← E

while C 6= ∅ do
Build a list with the candidate elements having the smallest incremental

costs

Select an element s from the restricted candidate list at random

Incorporate s into the solution S ← S∪{s}
Update the candidate set C

Reevaluate the incremental cost c(e) for all e ∈ C
end

Return S

Obviously the step where we select an element from the restricted candidate list at

random can be modified in various ways to accommodate for different stochastic ap-

proaches. Without delving into greater detail, the approach used in this thesis for the

creation of the applicable greedy construction function utilizes an attenuating probability

approach where closer neighbors are given a greater potential for selection compared to

the more distant neighbors, with a decreasing probability depending on their ranking

from closest to furthest.

2.5 Multi-objective Optimization

While selecting only one parameter of a problem to examine is a useful approach for

academic environments, real problems are rarely if ever defined by a single parameter or

are limited to one objective. More commonly, real-world scenarios are an interweaved

function of a number of variables that need to be examined as a unified block, each

33



variable influencing and being influenced by the others. As such many of the problems

encountered in operations research are essentially multi-objective optimization problems

and the actual optimised value for all variables might be very different than the optimal

solutions for each of the sub-problems alone.

This can be demonstrated to be the case in the specific scenario being evaluated

in this thesis, even under the assumption that the exact best solutions for the TSP

and Knapsack problems are known. Indeed, even if the best TSP is selected, there is

no guarantee that the knapsack found to be optimal when examined alone is actually

optimal for that particular instance of the TSP. Likewise, even the optimal knapsack

selection contributes little when the selection is such that it distorts the value of the TSP

that would be optimal were it being examined in isolation. Indeed, the actually optimal

solution to the combined problem would be the one that would yield the best value for

a combination of both problems, depending on their definitions in the objective function

and the interdependence of both variables.

Since problems met in real-life scenarios appertain to the MOOP category, extended

research has been conducted upon this domain. Next, we briefly discuss two well-known

methods commonly used for tackling MOOPs.

2.5.1 Weighted sum method

According to (Deb 2014), the weighted sum method scalarizes a set of objectives

into a single objective by pre-multiplying each objective with a user-supplied weight. In

essence, what this method implies can be seen in equation 1.

minimize F (x) =
M∑
m=1

wmfm(x)

subject to:

...

(1)

where each wi acts as an importance factor on the objective fi. Worth to note that,

typically, weights add to one.

Despite the simplest one and most widely used, the author points out some of the

said method’s drawbacks, also. In more detail, setting the value of wi’s is a tricky, error-

prone procedure and, in fact, imposes an extra optimization problem, that of choosing the
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best weight values. Furthermore, concerning problems with a non-convex Pareto optimal

front, more adversities can possibly come out. The interested reader is referred to (Deb

2014) for more information on this topic.

2.5.2 ε - Constrained method

The ε - Constrained method resulted from (Haimes 1971). The proposal in this re-

search work was to keep only one objective in the objective function and restrict remaining

objectives,i.e., fis, by some parameter εi. Essentially, εis act as upper or lower bounds

for fis and, as a consequence, turn the ε - Constrained method suitable for problems

with both a convex and a non-convex Pareto optimal front. However, the solution to a

problem defined by the discussed method largely depends on the chosen ε vector which

can drive the Pareto optimal front to both whole (the restriction did not have any effect)

and empty (the restriction resulted in searching only for sub-optimal solutions), as (Deb

2014) highlights.
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CHAPTER 3

Problem description and related work

In this chapter, we briefly discuss and introduce some of the most applicable related

work pertaining to the subject of the thesis. All of the research utilized for this chapter is

very recent and is considered cutting-edge in multi-objective combinatorial optimization.

3.1 The traveling thief problem

Combining the Travelling Salesman problem with the Knapsack problem is not a novel

idea, however the relationship of their interdependence and subsequent generalization to

a more substantial body of work is introduced in the work of (Bonyadi, Michalewicz,

and Barone 2013). In their paper, the authors argue that despite the complexity growth

of real-world problems has accelerated, researchers have continued to experiment using

benchmark problems that are, in essence, similar to those used 50 years ago, having

mostly substantially increased the dimensions of the problems studied.

They further indicate a gap has been observed between research and practice in meta-

heuristic methods, the focus of research has been mostly targeted on providing effec-

tive metaheuristics for solving well-known benchmark NP-hard problems, whereas these

benchmark problems do not reflect the characteristics of real-world problems. Likewise,

they elaborate that the use of the term ‘complexity’ as has been utilized until now, has

mostly been to refer to the scale of the problems, while ignoring the actual implication

of what complexity entails relating to the fundamental nature of the structure of prob-

lems. Based on that assumption, and providing some relevant examples to support this

position, they extract what they believe to be two important characteristics:

• Combination - the real-world problems usually consist of two or more

sub-problems that are “combined together”, and
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• Interdependence - in real-world problems these sub-problems are inter-

dependent to each other in a sense that a solution for one sub-problem

influences the quality of the solutions for other sub-problems.

Based on these two characteristics, they proceed to expand on their position that in

complex scenarios where problems are not conforming to a standalone benchmark-style

scenario, but are in fact consisting of two or more interdependent subproblems, solving one

of the sub-problems in isolation, even to optimality, is not useful. Citing other studies

which indicate that “many real-world problems are modelled by interdependent sub-

problems. However, this aspect of interdependence is missing in the current benchmark

of optimization problems”. Drawing upon the facts presented up to that point, they

proceed by introducing a new benchmark problem, named the Travelling Thief Problem,

in an effort to provide a better approximation for real world problems, incorporating the

two important characteristics itemized above, namely Combination and Interdependence.

The TTP is constructed around the TSP and KS parts, some of the characteristics of

these component subproblems are summarized in the table below:

Table 3.1: Components of the TSP and KS subproblems in the TTP.

TSP subproblem KS subproblem

Parameters:
n - the number of cities
dij - the distance between city i and city j
vc - velocity

Parameters:
m - the number of items
wk - weight of each item
pk - the value of each item
W - total knapsack capacity

Solution representation:
A tour, consisting of a permutation of the vector
x̄ = (x1, x2, ..., xn) where each xi is a city.

Solution representation:
A binary (0/1) vector of picked items
ȳ = (y1, y2, ..., ym) where each yk represents
whether the item was picked (1) or not (0).

For the TTP problem a similar description of the parameters and solution represen-

tation would be as in the following table:
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Table 3.2: Components of the TTP.

TTP
Parameters:
Availability of each item Ii in each city (node) Ai ∈ (1, ..., n)
Problem-specific TSP/KS interdependency

Solution representation:
The solution to the TTP is represented by two vectors, one for the TSP
which is characterized by the tour vector (x̄) as described in the table above
and one for the KS characterized by the picking plan (z̄), a binary vector where
z̄ = (z1, ..., zm), zi ∈ {0 ∪ Ai}∀ i. By extension if zi = 0 the item was not picked.

After these elements constituting the problem are introduced, two variations of the

Travelling Thief Problem, TTP1 and TTP2 are presented. While each of these variations

is using a different approach, they both attempt to balance the TSP and KS problems

by introducing interdependency between them.

TTP1, is the first of two variations that have been introduced in this paper. In this case,

two new parameters are introduced in order to make the two problems interdependent:

speed and a renting rate. Speed, which is represented by vc = vmax − wc
vmax−vmin

w
is

a variable factor depending on the weight of the knapsack and decreases the more the

knapsack is loaded to capacity. vc stands for the current velocity, vmax the maximum

speed, vmin in the minimum speed, wc for the current weight of the knapsack and w for

the maximum capacity, so as when wc = w the speed is limited to a minimum. Likewise,

the renting rate is also an interdependency factor, increasing the cost by “charging” the

thief for having the knapsack in their possession and is defined as a currency unit of R

per unit of time. TTP1 aims to maximize the following objective function:

G(x, z) = g(z)−R ∗ f(x, z) where

g: the total value of picked items

R: the renting rate per time unit in currency units

f: the total time of the tour, a function of both x̄ and z̄

(1)

Note that there have been two connections of the subproblems in this case: in the first

case the travel time and weight have been connected through the utilization of speed as
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a factor, and in the second, the total value g(z̄) of the items has been connected to the

travel time via the renting rate R.

TTP2, is different than TTP1, instead of minimizing or maximizing a single objective

function, it tries to minimize the modified TSP and maximize the modified knapsack at

the same time. Unlike in the case of TTP1, where only the TSP part was actually a

multivariable function while the Knapsack subproblem was affected by the renting rate

which is a constant, in this case both the TSP and the KS have been modified with the

inclusion of new interdependency elements which turns then into multivariable functions.

The new objective function for the TTP2 is as follows:

G(x, z) =

{
min f(x, z)

max g(x, z)

}
(2)

As in the case of TTP1, the functions f and g refer to the TSP and KS parts respec-

tively.

The new elements that have been introduced in the case of TTP2 are: speed (velocity),

which is defined like in the case of the previous implementation of TTP1, and a dropping

rate which is a value depreciation factor as a function of time for the items of the Knapsack

subproblem. Namely, the dropping rate is defined as Dr
[
Ti
c

]
in the paper of (Bonyadi,

Michalewicz, and Barone 2013) where Ti is the amount of time item i is carried by the

thief and C is a constant. After the tour is completed, the new value of each item i in

the thief’s knapsack is evaluated by the function pi ∗Dr
[
Ti
c

]
.

From the formulation above it is trivial to extrapolate that, like in the case of TTP1,

the speed of the subject (here the thief) is affected by the weight of the picked items,

hence the selections for the knapsack affect the TSP part of the problem by increasing

the costs, interpreted as reduced crossing speed. The depreciation factor, implemented

as a dropping rate penalty, is also influencing the value of the knapsack based on creating

diminishing returns the earlier an items is selected, which in turn is also based the on

position of the items in the TSP path. All other things being equal and for the same path,

an item selected earlier will suffer heavier individual depreciation on its value and will

simultaneously slow down the speed in which the thief crosses between nodes, whereas an

item picked later will have less (average) impact on the speed and suffer less depreciation

until the conclusion of the tour.
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Much like in the previous case, note that there have also been two connections of the

subproblems here: the travel time and weight have been connected through the utilization

of speed as a factor, and the value g(z̄) of each item has been connected to the travel

time each has been carried for via the dropping rate Dr
[
Ti
c

]
.

3.2 Related work

In this section, we provide a detailed overview of the related work on the TTP. In

particular, we aim at pointing out the variety of methods proposed for solving TTP

which, in essence, utilize well-established methods from the domain of Combinatorial

Optimization. Moreover, our main focus lies in revealing the way each research work

attempts to address the interoperability of the TSP and the KS problems, since this is

the real challenge the TTP brings.

3.2.1 First benchmark set and heuristics

In an attempt to advance the research on NP-hard problems that interact with one

another, authors in (Polyakovskiy, Bonyadi, Wagner, Michalewicz, and Neumann 2014a)

form the first benchmark set that can be used to evaluate the performance of a solver for

the TTP. This benchmark set is shaped from a combination of well-known TSP and KS

benchmark instances.

However, the process of finding the appropriate pairs of problem instances is not a

simple one, as authors imply in the same work. That is, the combined TSP and KS

instances should form a new problem instance for the TTP that well-enough balances the

individual values with respect to the objective function of the TTP. Essentially, this means

that the optimal solution for the respective TSP problem must not be a good solution

for the TTP (same with the optimal KS solution). In extension, existing algorithmic

implementations for the individual problem instances must be impractical for the overall

TTP and, as a result, novel algorithms should be developed.

To overcome this challenge, Polyakovskiy et. al used as a starting point the collection

of Reinelt (Reinelt 1991), i.e., the TSPLIB, for TSP instances. According to the authors,

the TSPLIB can be considered the most reliable TSP problem instance collection due to

(1) its variety in problem sizes, (2) nodes in instances represent real-life elements and (3)

since TSPLIB is one of the oldest libraries, all problems have been exhaustively tackled to
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their optimum solution. Collectively, 81 TSP instances were gathered from the TSPLIB.

Similarly, they depend on the work of (Martello, Pisinger, and Toth 1999) to select the

most appropriate KS instances, all meticulously examined by Martello et. al. Researchers

in (Martello, Pisinger, and Toth 1999) have conducted a very detailed study on what

aspects of a KS instance affects the performance of a respective solver, thus generating

crucial insights to Polyakovskiy et. al which leverage on these insights to form their final

benchmark dataset. They end up with uncorrelated, uncorrelated with similar weights

and bounded strongly correlated item types.

More specifically, for the uncorrelated item types, authors determine the weight and

the profit values as random floats within [1, 103]. This scenario might yield easily solved

KS problem instances. However, authors proceed in retaining such instances in order

to investigate the behavior of the respective TTP algorithms that perform well under

such instances. For the uncorrelated with similar weights item types, weight values are

in the range of [103, 103 + 10], while profits lie within [1, 103]. Last, bounded strongly

correlated items share a weight within [1, 103] and their respective profit is 100 more

(profiti = weighti + 100, in order to enforce correlation).

In the same work, authors propose some heuristics to challenge the TTP problems

instances comprising their newly formed benchmark dataset. In particular, they utilize

the Chained Lin-Kernighan heuristic (Applegate, Cook, and Rohe 2003) to construct the

first tour that remains untapped during the rest of the improvement procedure. Next, a

Simple Heuristic (SH), a Random Local Search (RLS) and an Evolutionary Algorithm

(EA) are employed to work on the KS solution. More specifically, the three methods

improve the KS solution in terms of the TTP objective function and not the KS typical

one. Results on some of the datasets are depicted in Tables 3.3, 3.4 and 3.5 from

(Polyakovskiy, Bonyadi, Wagner, Michalewicz, and Neumann 2014a).
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Figure 3.2.1: The Algorithm tree for the TTP in (Polyakovskiy, Bonyadi, Wagner,
Michalewicz, and Neumann 2014a) , the leaves correspond to the algorithm that pro-
duces the best result among the RLS, EA, SH

Algorithm eil51 eil76 kroA100 u159 ts225 a280 u574 u724

RLS (mean) 8.21e3 1.16e4 1.93e4 4.03e4 5.70e4 6.32e4 1.36e5 1.67e5
RLS (std) 1.58e1 2.68e1 1.20e1 1.42e1 1.41e1 1.11e1 3.10 3.12
EA (mean) 8.22e3 1.16e4 1.93e4 4.03e4 5.70e4 6.32e4 1.36e5 1.67e5
EA (std) 1.38e1 2.49e1 9.68 1.74e1 1.01e1 1.12e1 4.42 2.72
SH -3.03e3 -3.65e3 -4.83e3 -5.37e3 -7.49e3 -2.05e4 1.99e4 -5.16e4
PackNone -1.46e4 -2.35e4 -2.58e4 -4.04e4 -5.57e4 -7.37e4 -1.46e5 -1.92e5

Table 3.3: Results of RLS, EA, SH and PackNone algorithms - Part1

Algorithm dsj1000 rl1304 fl1577 d2103 pcb3038 fnl4461 rl5934 rl11849

RLS (mean) 1.11e5 3.12e5 3.57e5 4.80e5 6.50e5 9.08e5 1.44e6 2.69e6
RLS (std) 4.10e-1 6.23e1 1.66e2 1.55e2 2.21e2 1.99e2 5.11e2 1.51e3
EA (mean) 1.11e5 3.12e5 3.57e5 4.80e5 6.50e5 9.08e5 1.43e6 2.29e6
EA (std) 2.20e1 3.30e1 1.26e1 8.92e1 5.11e1 2.03e2 1.36e4 3.46e5
SH -1.90e5 -9.69e4 -1.30e5 -2.17e5 -2.94e5 -4.23e5 -3.97e5 -1.07e6
PackNone -3.75e5 -3.62e5 -4.53e5 -5.78e5 -9.09e5 -1.36e6 -1.67e6 -3.45e6

Table 3.4: Results of RLS, EA, SH and PackNone algorithms - Part2
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Algorithm d15112 d18512 pla33810 pla85900

RLS (mean) 3.44e6 3.53e6 2.02e6 -1.40e7
RLS (std) 4.96e4 1.82e5 4.61e5 6.18e5
EA (mean) 2.18e6 1.37e6 -2.16e6 -1.80e7
EA (std) 6.01e5 1.88e5 8.52e5 1.91e5
SH -1.23e6 -1.74e6 -3.35e6 -7.49e6
PackNone 4.17e6 5.72e6 -9.28e6 -2.43e7

Table 3.5: Results of RLS, EA, SH and PackNone algorithms - Part3

3.2.2 Investigating TSP and KS inter-dependency

The rapid growth and persistent need for versatile and efficient heuristics is proof

enough for the value that can be gained by implementing fast but efficient solutions to

applied problems. Real world problems, however, rarely lend themselves to the idealised

and isolated academic criteria we have been utilizing in their study. Importantly, while the

entire branch of heuristics is contributing significantly to dynamic and scalable problem

solving, much less research effort has been dedicated to developing models that can

address systems where a number of combined sub-problems interact with each other

to produce a combined value function that evaluates precisely this interdependency and

how it affects problems with more than one objectives.

In this section we will draw upon some observations, notes and research encountered

in the bibliography about the current state of research and industry demands for complex

interdependent problems and present the case made for the importance multi-objective

optimization in general. Furthermore we will examine how the interdependency between

the TSP and KS problems as demonstrated on the TTP acts as an indicator of the

complex nature of actual industry demands and how the demand for applied problem

solving is shaping the direction of future research.

In (Bonyadi, Michalewicz, Przybylek, and Wierzbicki 2014) the complexity of real-

world problems is referred as a great obstacle in achieving effectiveness in contemporary

business enterprises. The authors elaborate that even relatively small companies are

frequently confronted in their daily operational procedures with problems of very high

complexity. Several studies in real-world combinatorial optimization problems and their

hardness are cited as references. However, the authors point that the reasons listed

and discussed were more related to the issues of the solvers rather than the hardness of

the problems themselves.Another paper is presented (Michalewicz 2012) in which real-
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world problems are assigned to two broader categories: (1) design/static problems, and

(2) operational/dynamic problems. The authors of the latter paper argue in part that

some of the problems are first category are really hard and most of the current academic

research has been concentrated on providing solutions for those problems, whereas the

problems from the second category are much harder. Furthermore they also state that

“the value of addressing the problems in the first category does not have

significant influence on solving the problems in the second category”.

(Bonyadi, Michalewicz, and Barone 2013) allege that

“the sources of complexity in real-world problems in the first group is somehow

different from the ones in the second group.”

The argument posed in (Bonyadi, Michalewicz, Przybylek, and Wierzbicki 2014) is that

real-life problems are essentially a combination of a variety of NP-Hard problems, inter-

acting with each other, forming what they characterise as “multi-component” problems.

They further argue that “current researches have been concentrated on single compo-

nent problems” and “that interdependency among components in operational/dynamic

problems plays a key rule in the complexity of the problems”. (Bonyadi, Michalewicz,

Przybylek, and Wierzbicki 2014) also present the TTP problem, a composition of two

of the most famous NP-Hard and well-researched problems in the field of combinatorial

optimization research, as a problem that was proposed to illustrate the complexity that

arises by interdependency in multi-component problems like the TSP and KS problems

that constitute its fundamental building blocks.

The authors proceed to further support their position that the real-world combina-

torial optimization problems the industry is looking to solve like the Vehicle Routing

problem (VRP) and Capacitate VRP (CVRP), or the KP are invariably never found

as single-problem instances, and that solving the separate component problems “even

to optimality” has become of less interest to the industry, leading to less interest in

problem solving. They point out that apparently “the new industries are after optimiza-

tion methods for multi-component problems and the methods that can only deal with

single-component problems are not in interest”.

3.2.3 Meta-heuristic approaches

The paper of (Wagner, Lindauer, Mısır, Nallaperuma, and Hutter 2018) at the Jour-

nal of Heuristics is a rather interesting case study of algorithms selected for approaching
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the TTP problem. The paper begins by referencing that since introduction of the TTP,

many algorithms have been introduced for solving it. While the initial approaches were

rather generic hill-climbers, researchers incorporated more and more domain knowledge

into the algorithms. As a matter of course, this resulted in deterministic, constructive

heuristics, in restart strategies, and also in problem-specific hill-climbers that try to solve

the TTP holistically. While the use of insights typically resulted in an increase in the

objective scores, the computational complexity also increased. In their exact words “Con-

sequently, which one of the algorithms performs best is highly dependent on the TTP

instance at hand”. The great number of complementarity among existing algorithms

allows the authors to proceed to studying the applicability of algorithm selection to the

TTP. What they put significant emphasis upon is that none of the currently proposed

algorithm is significantly outperforming the others.

They continue by introducing the problem and proceeding to explain the fundamental

elements that comprise the commonly accepted basic structure to what we have come

to expect as the main objective from the relevant bibliography, which is also the matter

being investigated in this current thesis. This will be utilised as a stepping stone in

presenting the evolution of proposed algorithms for the solution of the TTP.

Polyakovskiy and his colleagues in (Polyakovskiy, Bonyadi, Wagner, Michalewicz,

and Neumann 2014a) were also those who proposed the first set of heuristics for solving

the TTP. Their general approach was to solve the problem using two steps: The first step

involved generating a “good” TSP tour by using the classical Chained Lin-Kernighan

heuristic, a very well evaluated construction algorithm generally considered to be a refer-

ence point as a construction heuristic algorithm for the symmetric TSP. The second step

involved keeping the tour immutable while applying a packing heuristic for improving the

solution. Their first approach was with the use of simple heuristic (SH) which constructs

solutions by processing and picking items that maximize the objective value according to

a given tour. In this specific case Items were picked based on a score value that was cal-

culated for each item to estimate how good it was according to the tour provided. They

further proposed two iterative heuristics, namely the Random Local Search (RLS) and

(1+1)-EA, which probabilistically flipped a number of packing bits. After each iteration

the solution was evaluated and if an improvement was noted, the changes were accepted

and maintained, otherwise they were ignored.

After presenting the work of the original authors, they proceed to the next paper that

was presented in chronological order and was investigating the TTP, which is the work
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of (Bonyadi, Michalewicz, Przybylek, and Wierzbicki 2014). In this paper the authors

experimentally investigated the interdependency between the TSP and knapsack compo-

nents of the TTP. They proposed two heuristic approaches named Density-based Heuristic

(DH) and CoSolver. DH is once more a two-phased approach similar to the SH that had

been utilized from Polyakovskiy, and it too ignores any dependencies between the TSP

and Knapsack components. The second approach however utilizes CoSolver which is very

different. CoSolver is “a method inspired by coevolution based approaches”: The way

it operates is that it divides the problem into sub-problems where each sub-problem is

solved by a different module of the CoSolver. The algorithm revises the solution through

“negotiation” between the incorporated modules. The communication between the dif-

ferent modules and sub-problems gives a means for the TTP interdependencies as defined

by (Polyakovskiy, Bonyadi, Wagner, Michalewicz, and Neumann 2014a) to be consid-

ered. A comparison across several benchmark problems demonstrated the superiority of

their second approach, CoSolver, over DH. This was rather more demonstrative in the

case of larger instances. A simplified graph for the CoSolver framework for the TTP from

(El Yafrani and Ahiod 2018) can be seen in figure 3.2.2.

Figure 3.2.2: A simplified CoSolver framework for the TTP sourced from (El Yafrani
and Ahiod 2018)

In 2016, Mei et al. in (Mei, Li, and Yao 2016) intrigued by the concepts of combi-

nation and interdependance that had been introduced by (Bonyadi, Michalewicz, and

Barone 2013), also investigated the interdependencies between the TSP and knapsack

components. Initially they analysed the mathematical formulation to show that the TTP

problem is not additively separable into individual unrelated subcomponents. Demon-

strating that since the objectives of the TSP and knapsack components are not fully

correlated, one cannot expect to achieve competitive results by solving each component

in isolation. The authors used two separate approaches for solving the TTP: a cooper-

ative coevolution based approach (similar to CoSolver), and a memetic algorithm called

MATLS which attempts to solve the problem as a whole. The memetic algorithm, which
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considered the interdependencies in more depth, outperformed the cooperative coevolu-

tion results of the CoSolver that had been published by Bonyadi et al. two years prior.

Below are tables demonstrating the advantage of MATLS over CoSolver (and hence the

original SH and Random Local Search approaches) as found in (Mei, Li, and Yao 2016).

A little before the publication of (Mei, Li, and Yao 2016) however, Faulkner et al.

in (Faulkner, Polyakovskiy, Schultz, and Wagner 2015), investigated multiple heuristic

search operators and did a comprehensive comparison with existing approaches. They

also proposed a number of operators, such as Bitflip and PackIterative, for optimising the

Knapsack packing plan given a particular tour and also proposed Insertion for iteratively

optimising the tour given a particular packing. They combined these operators in a

number of simple (S1-S5) and complex (C1-C6) heuristics that outperformed existing

approaches. The main observation of their research was that there did not yet seem to be

a single best algorithmic paradigm for the TTP. According to Wagner et al. (Wagner,

Lindauer, Mısır, Nallaperuma, and Hutter 2018) the individual operators were quite

beneficial in improving the quality of results. Wagner however also stresses that while

the operators that were proposed in that paper seemed to have certain benefits, the

simple and complex heuristics did not consider the interdependencies between the TTP

components, since all of these approaches were multi-step heuristics. The best approach

that the paper from (Faulkner, Polyakovskiy, Schultz, and Wagner 2015) seemed to find

was, surprisingly according to Wagner, a rather simple restart approach name S5 that

combined good TSP tours with the fast PackIterative heuristic search operator.

A different approach was followed by of (El Yafrani and Ahiod 2018), they proposed

two algorithms, namely; CS2SA* and CS2SA-R, an approach combining Hill Climbing

and Simulated Annealing, implementing the CoSolver framework. In their approach,

the initial tour is generated using the Concorde’s implementation of the Lin-Kernighan

heuristic, while the picking plan is initialized using The insertion heuristic proposed

in (Mei, Li, and Yao 2014). After applying the insertion heuristic, they utilize a bit-

flip search on the generated knapsack to eliminate some items considered to be of low

quality. To further improve the outcome, they also utilize some performance enhancement

techniques: TSKP neighborhood reduction, the Delaunay triangulation as a candidate

generator for the 2-OPT, as well as Objective value recovery where they keep track of

time and weight information at each city of a given tour to accelerate the recovery of

objective value without using the objective function to evaluate neighbors. For larger

instances, according to the authors “2-OPT and the bit-flip search take too long” and
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2-OPT with early break and insertion without elimination were used utilized instead.

The instances used to evaluate the performance of CS2SA* and CS2SA-R in (El Yafrani

and Ahiod 2018) were split into three categories with 1, 5 and 10 items respectively that

also shared similar properties as pertaining to the correlation between their weights and

values:

• Category 1 (F=1, T=3, C=1) : 1 item per city, item values and weights are bounded

and strongly correlated, small knapsack capacity.

• Category 2 (F=5, T=2, C=5) : 5 items per city, KP uncorrelated but items have

similar weights, average knapsack capacity.

• Category 3 (F=10, T=1, C=10) : 10 items per city, KP uncorrelated, high knapsack

capacity.
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3.2.4 Population Based vs Single Point Search

Yafrani and Alhiod (El Yafrani and Ahiod 2016) quite accurately mention that the

TTP, despite being an artificial problem, can serve as a benchmark problem for the inves-

tigation of inter-dependency between sub-problems. According to the authors, promoting

research in this direction, i.e., studying the inter-dependency of problems, can narrow

down the distance that separates real-life problems and theoretical ones. To this end,

they examine the behavior of what they conceive as the state-of-the-are methods for the

TTP, namely a memetic algorithm (MATLS ) and the PACKITERATIVE heuristic. De-

spite both of them are not devised by (El Yafrani and Ahiod 2016), we consider that

this is a good opportunity to briefly discuss their search mechanisms for completeness

reasons.

The MATLS algorithm is driven by four core elements. The population initialization

phase, where 30 solutions are generated. The tours of the first 10 individuals are obtained

by the Chained Lin-Kernighan Heuristic (Applegate, Cook, and Rohe 2003) and a Mini-

mum Spanning Tree for the remaining 20, while a 2-OPT local search follows that shapes

the final tour sub-solutions. The picking plan is generated using a greedy algorithm that

uses a goodness score to sort items. For further information about the greedy algorithm,

authors point to (Mei, Li, and Yao 2014). The crossover operator used is the Order

Crossover (Goldberg, Lingle, et al. 1985) and is only applied upon the tour sub-solution.

The Inner Local Search is the same as in the initialization step, however it here happens

with a small probability. A child solution is kept and replaces an offspring solution if

and only if the former scores better than the latter. Last, the stopping criterion of the

algorithm is set to 10 minutes. Figure 3.2.3 illustrates the process the MATLS follows

to obtain the best solution.
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Figure 3.2.3: The MATLS tree as illustrated in (El Yafrani and Ahiod 2016)

The PACKITERATIVE heuristic (for short, S5) was initially introduced in (Faulkner,

Polyakovskiy, Schultz, and Wagner 2015). It is a single-point search heuristic that forms

the initial tour, once again, with the Chained Lin-Kernighan Heuristic. In addition, it

utilizes an iterative greedy algorithm that determines the packing plan. More specifically,

each item is assigned a score that depends on its profit, weight and distance from the last

city of the tour, while the profit and weight are strengthened using an exponent, which

are varied iteratively. As for the stopping criterion, it is set to 10 minutes of exploration

time.

Before diving into the new methodologies proposed in (El Yafrani and Ahiod 2016),

we should point out a short discussion authors pose about ways of evaluating neighboring

solutions in the TTP. Since the latter is proved a computationally extremely expensive

problem, the computation of an objective value is quite time consuming. Therefore, some

techniques are usually applied to reduce the search space or to speed up the computation

of a neighboring solution. For instance, in MATLS, information of the initial solution’s

objective value is used to calculate a neighboring one, while in S5 the calls to the objective
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function occur based on some frequency value, skipping consecutive evaluations.

The first algorithmic proposal of Yafrani and Alhiod is a single-point search algorithm

that they name CS2SA. Essentially, CS2SA forms an initial solution of the TSP with the

Chained Lin-Kernighan Heuristic and, for the picking plan, they utilize a similar heuristic

as in (Mei, Li, and Yao 2014). Concerning the improvement of the initial obtained TSP

solution, a neighborhood is defined under the 2-OPT neighborhood operator and the best

solution is chosen. We should note that, authors deploy Delaunay triangulation in order to

reduce the search space. The KS sub-solution is improved with an appropriate Simulated

Annealing metaheuristic utilizing the bit-flip neighborhood operator. An illustration of

the steps CS2SA follows are given in Figure 3.2.4.

Figure 3.2.4: The modified Simulated Annealing (CS2SA) tree from (El Yafrani and
Ahiod 2016)

For a population-based TTP solver, authors implement a memetic algorithm called

MA2B. For brevity reasons, we will describe only the key-concepts of this algorithm.

According to the authors, the initial tour plays a crucial part in the search process of a
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TTP algorithm. Therefore, for the initial TTP solution, they utilize the Chained Lin-

Kernighan Heuristic only for a limited amount of iterations, they apply a greedy heuristic

for a picking plan and, finally, they apply a Restrictive Local Search algorithm that uses

2-OPT and bit-flip to improve the tour and the packing plan, respectively. This process

is restricted to only 50 iterations, since in population-based algorithms local search is

considered very expensive. Last, two parent solutions are selected with the tournament

technique, while the Maximal Preservative Crossover (Mühlenbein 1991) is utilized as the

crossover operator.

The four methods described above were tested on a multitude of TTP problem in-

stances. The results are shown in Table 3.7.
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CHAPTER 4

Methodology

This chapter accommodates the procedure we followed in order to engage the TTP

problem. We start by presenting the notion of a solution representation as well as the

definition of a fitness function. Afterwards, we determine the composition of the neigh-

borhood structures, an integral part of every VNS algorithm, and introduce construction

heuristics that improve the performance of our algorithm. Finally, we substantiate the

selection of some core parameters used in the frame of our work, e.g., termination criteria.

4.1 Solution representation

As considered in Chapter 3, the TTP concerns a combination of the TSP and the KS

problems. Therefore, an intuitive representation of a TTP solution would be the aggrega-

tion of the typical TSP solution representation, i.e., an array consisting of a permutation

of n different non-negative integers, and the characteristic KS solution representation,

i.e., a binary array with ones denoting the selection of an item and zeros the opposite.

Example 1. Consider a TTP with four nodes (cities) and let city 1 be the starting

node. Each node is associated with a single item, except for the first. Let us also denote

with s a random solution of the TTP. Then:

s = {s1, s2} with s1 = [1, 2, 4, 3] and s2 = [0, 1, 0, 1]

is interpreted as the traveling thief following the route 1→ 2→ 4→ 3→ 1 and picking

the items of cities 2 and 4.

The example above is indicative and aims to illustrate the extreme computational

complexity of the TTP problem. Even in this simple scenario consisting of four nodes
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and three items (since, by definition, no item is assigned to the first city), the solution

space includes

3!× 23 = 48

possible permutations.

4.2 Objective function

An appropriate evaluation function should consider both the route traversed by the

traveling thief and the value of the items reside in the knapsack. The special part about

the TTP, however, is that a heavy knapsack slows down the thief. That is, the knapsack

weight directly affects the cost (e.g., time) of each edge between two cities. Formally,

the cost ci,j of the edge i→ j should be conceived as a function of wi which denotes the

weight of the knapsack being carried up to city i. This peculiarity demonstrates the need

for a specialized objective function for the TTP.

Polyakovskiy et.al (Polyakovskiy, Bonyadi, Wagner, Michalewicz, and Neumann

2014a) within their work, introduced an appropriate objective function that considers all

of these preceding parameters. Let N = {1, ..., n} be the set of cities and dij, i, j ∈ N ,

the given distance between any pair of cities. Each city i, except for the first one, is

assigned a set of items Mi = {1, ...,mi} and, furthermore, each item k within city i is

assigned the properties of value pik and weight wik. Then, Equation 1 can be used as our

objective function.

maximize Z(Π, P ) =
n∑
i=1

mi∑
k=1

pikyik −R(
dxnx1

umax − vWxn

+
n−1∑
i=1

dxixi+1

umax − vWxi

) (1)

where:
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Π = the tour, i.e., {x1, ..., xn}, xi ∈ N
P = the packing plan, i.e., {y21, ..., ynmi

}
yik = binary variable, selection of item k from city i

R = the renting rate paid each time unit being on a way

v = vmax − vmin
Wi = the knapsack weight when leaving city i

W = the maximum knapsack’s weight

Quoting from the same work:

“The minuend is the sum over all packed items’ profits and the subtrahend

is the amount that the thief pays for the knapsack’s rent equal to the total

traveling time along Π multiplied by R.”

The apparent objective is to minimize Equation 1.

4.2.1 Illustrative example

Assume a TTP comprised of four nodes (cities) comprised of one item per node, the

route 1 → 4 → 2 → 3 → 1 and the selection of items in cities 3 and 4, as demonstrated

in Figure 4.2.1. Moreover, consider the Tables 4.1, 4.2 and 4.3 depicting the input of

the problem.
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Figure 4.2.1: Illustration of a TTP solution.

Table 4.1: The input data concerning the TTP environment.

Parameter Value
R 1
vmax 1
vmin 0.1
W 12

Table 4.2: The input data concerning distances between the cities.

City coordinate x coordinate y
1 0 0
2 2 1
3 1 -3
4 4 -2
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Table 4.3: The input data concerning the attributes of the items.

Item weight value
2 8 5
3 4 3
4 2 3

Then, the solution:

s = {s1, s2}, s1 = Π = {1, 4, 2, 3, 1}, s2 = P = {0, 1, 1}

described above will yield:

Z(Π, P ) = Z({1, 4, 2, 3, 1}, {0, 1, 1}) =

=
4∑
i=1

1∑
k=1

pikyik − 1(
d4,1

1− 0.9 · 6
+

3∑
i=1

dxixi+1

1− 0.9 ·Wxi

) =

4∑
i=1

1∑
k=1

pikyik − 1(
d4,1

1− 0.9 · 6
+

dx1x2
1− 0.9 ·Wx1

+
dx2x3

1− 0.9 ·Wx2

+
dx3x4

1− 0.9 ·Wx4

) =

... = −9.724223572153782

(2)

4.3 Neighborhood definition

In Chapter 2 we adduce how VNS algorithms utilize multiple neighborhood structures

to improve upon an existing solution. In this section, we describe the two neighborhoods

we implement to tackle the TTP.

First neighborhood Given a solution s, the set of N1(s) contains every solution s′

that has one item flipped from the existing packing plan (s2). For instance, if s =

{[1, 2, 3, 4], [0, 0, 1, 0]}, then s′ = {[1, 2, 3, 4], [0, 1, 1, 0]} ∈ N1(s).

Second neighborhood Given a solution s, the set of N2(s) contains every solution s′

that has one selected item removed from a city at the beginning of the route and one item

from a city added at the end of the route. Cities pertaining to the first half of the route

are considered to be at the beginning while the rest are considered to be at the end. For

instance, if s = {[1, 2, 3, 4, 5], [0, 1, 1, 0, 0]}, then s′ = {[1, 2, 3, 4, 5], [0, 0, 1, 0, 1]} ∈ N2(s).
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According to the neighborhood definitions above, we can sufficiently explore and evaluate

a wide variety of solutions.

4.4 Solution initialization

During our experimentation, two separate construction methods are used, a typical

greedy and a custom greedy approach.

Greedy The greedy procedure utilizes some heuristic criteria to construct an initial

solution. More specifically for the permutation of the nodes (cities), for every city i it

selects the next city j, with j being city the closest to i.

Item-wise, we rank items with respect to their r = value
weight

ratio. We ostensibly want

to favor items with high r. After sorting items in descending order according to their

r-value we sequentially fill the knapsack with the highest rated of them until it cannot

accommodate any more items.

Custom Greedy The custom greedy construction heuristic utilizes an array of more

sophisticated criteria compared to the greedy heuristic. Although it initiates with a

permutation of cities structured by the nearest neighbor rule, our own greedy algorithm

implementation that incorporates the risc factor associates the position of each city in

the permutation to assign a risk factor of selecting a particular item in conjunction with

its r value, as described in the previous paragraph, in an inverted way.

The risk factor value of selecting item i is calculated as:

riski = (1 + ps) ·
1

ri

where ps denotes the number of outstanding cities to reach at the last city of the permu-

tation, counting from city s. For instance, consider the city permutation s1 = [1, 3, 4, 2]

and the item ratios vector r = [1, 1
2
, 1
3
]. Then,

risk3 = (1 + p3) ·
1
1
2

= (1 + 2) · 2 = 6

We implement both solution initialization techniques described above in order to examine

the extent of which our proposed VNS and RVNS algorithms can improve the given solu-
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tions. In Chapter 5 we present all of our findings including tables and graphs regarding

these performance measurements.
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CHAPTER 5

Results and Comparison

This chapter assesses the performance of the methodologies proposed, on the Travel-

ling Thief problem. The tables containing the results follow the presentation format of

the algorithmic approaches in (Polyakovskiy, Bonyadi, Wagner, Michalewicz, and Neu-

mann 2014a), (Mei, Li, and Yao 2016), (El Yafrani and Ahiod 2016), (El Yafrani and

Ahiod 2017), (El Yafrani and Ahiod 2018) and (Wu, Wagner, Polyakovskiy, and Neu-

mann 2017) while for the presentation of the graphs of the larger datasets we opted to

utilize the approach followed by (Mei, Li, and Yao 2016) which presents the evolution

of the value of the objective function on the y axis and the algorithm runtime in the x

axis. We further incorporate the results for both algorithms which were implemented;

namely RVNS and VNS, for each of the two construction function heuristics, greedy1

and greedy2, in the same graphs. This is to facilitate the comparison between the two

methods and the effect of the construction functions in enhancing both the value of the

final outcome, as well as the time required to achieve it.

Results varied significantly depending on the size of the dataset, the solutions for

larger datasets demonstrating notable deviation from the optimal solutions as presented

in the relevant literature referenced in the previous paragraph. This can be attributed to

the authors of these algorithms utilizing methods to reduce the size of the solution space

and improve efficiency. Such techniques, like Delaunay triangulation in both (El Yafrani

and Ahiod 2016) and (El Yafrani and Ahiod 2018) and TSKP neighborhood reduction

and Objective value recovery on the latter, were referenced in Chapter 3. In this work

we separate the datasets that will be examined into two subcategories, presenting the

results in the smaller datasets in more detail.

• Category 1 - contains the results obtained in the smaller eil76, kroA100, ch130

and u159 instances comparing them to the corresponding best values presented in
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(El Yafrani and Ahiod 2018) under their category 1 classification, with 1 item per

city, item values and weights bounded and strongly correlated as well as a small

knapsack capacity. The specifics of each dataset are presented in Table 5.1

• Category 2 - includes two larger datasets, a280 and fnl4461, with variations in

the number of items (i.e. 1, 5 and 10) that significantly raises complexity. The

performance of both VNS and RVNS in this category is not efficient and we have

instead opted to utilize it mostly to demonstrate the differences between our meth-

ods rather than as a competitive approach to the TTP. The exact composition of

the variations on these problems is presented in Table 5.2. For reasons of clarity

and brevity we label the datasets (see Id column). The datasets are sourced from

the IEEE CEC 2014 Competition as described in (Polyakovskiy, Bonyadi, Wagner,

Michalewicz, and Neumann 2014b).

To further document the specifics of our RVNS implementation, we have opted to

generate and include figures that present the absolute number of improvements yielded

from each of the two neighborhoods for each of the construction heuristics and methods

in both categories. This allows us to observe how the selection of neighborhoods in this

particular local search context contributes to the solutions generated.

Id Cities Items per city Correlation Weight/Profit
eli76 76 1 strongly correlated
kroA100 100 1 strongly correlated
ch130 130 1 strongly correlated
u159 159 1 strongly correlated

Table 5.1: Category 1 problem instances. The datasets used are sourced from the IEEE
CEC 2014 Competition website

Id Cities Items per city Correlation Weight/Profit
A1 280 1 strongly correlated
B1 280 5 uncorrelated but similar
C1 280 10 uncorrelated
A2 4461 1 strongly correlated
B2 4461 5 uncorrelated but similar
C2 4461 10 uncorrelated

Table 5.2: Category 2 problem instances. The datasets used are sourced from the Ade-
laide competition.
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It is worth noting that, the last column in Table 5.2 introduces information that

might prove to be of considerable importance from a performance standpoint, since it has

a significant effect on the quality of the solutions yielded by the construction heuristics we

deploy. That is, strongly correlated weight and profit values (per item), which essentially

translates to that the more valuable an item is the more it weighs. Hence, by applying

the greedy1 heuristic to acquire the knapsack solution initialization, we are dealing with

a limited range of results in profit/weight ratios and, therefore, the policy we follow is not

exploited to its full potential. In the other two cases though, things are more favourable

for the greedy1 heuristic since ratios span both ranges (0,1) and [1,..).

5.1 Performance Evaluation - Category 1

5.1.1 Performance on the eli76 dataset

Figure 5.1.1: Performance of all methods on the eli76 dataset.

64



Figure 5.1.2: Improvements per neighborhood yielded from all methods on the eli76
dataset.

From Figure 5.1.1 we can observe that by t = 5 seconds all four algorithms have

converged. The improvement over the double span of t = 10 seconds is negligible. This

demonstrates rapid convergence that falls, however, far from the known competitive so-

lution cited in (El Yafrani and Ahiod 2018) found with the CS2SA-R algorithm. RVNS-

greedy1 converges faster than all methods, in under t = 1 second, while VNS-greedy2

converges last, in around t = 5 seconds. It will become clear below that this seems to be a

consistent trend. Figure 5.1.2 demonstrates all neighborhoods contribute to the solution

with the majority of contributions, however, coming from the first neighborhood.
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5.1.2 Performance on the kroA100 dataset

Figure 5.1.3: Performance of all methods on the kroA100 dataset.

Figure 5.1.4: Improvements per neighborhood yielded from all methods on the kroA100
dataset.
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The bigger dataset used here does not seem to make the convergence of our algorithms

slower. Figure 5.1.3 shows rapid convergence among all methods up to t = 4 seconds and

a continued improvement at a much slower rate afterwards. Once again RVNS-greedy1

converges faster than all methods just after t = 1 second. RVNS-greedy2 starts slowly

but after t = 2 seconds it surpasses both VNSs. Once more VNS-greedy2 is the last

one to reach convergence. The contributions from neighborhood 2 however seem to have

declined compared to the eli76 dataset across all algorithms but especially in the case of

RVNS-greedy2.

5.1.3 Performance on the ch130 dataset

Figure 5.1.5: Performance of all methods on the ch130 dataset.
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Figure 5.1.6: Improvements per neighborhood yielded from all methods on the ch130
dataset.

With 130 nodes, complexity has increased significantly and the longer time to visible

convergence in Figure 5.1.5 demonstrates that. Ultimately convergence between all four

implementations seems to be achieved between t = 13 and t = 14 seconds. RVNS-greedy1

once again seems to be the fastest, achieving the majority of the improvement under

t = 1 second, despite the longer runtime until all methods begin to reach an equilibrium

of minimal improvement for every unit of time. VNS-greedy2 is once again the slowest

of the three. Figure 5.1.6 indicates that is the first test where neighborhood 2 appears

to make significant contributions, reaching up to almost 30% of the total neighborhood

contributions in some cases.
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5.1.4 Performance on the u159 dataset

Figure 5.1.7: Performance of all methods on the u159 dataset.

Figure 5.1.8: Improvements per neighborhood yielded from all methods on the u159
dataset.
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In this last of the smaller datasets, the increase in the complexity caused by the

introduction of more nodes and items significantly widens the timespan required until we

can observe a relative convergence bewteen the methods. For a fourth consecutive time,

RVNS-greedy1 demonstrates itself to be the fastest of the methods reaching a threshold

of minimal improvement after between t = 3 and t = 4 seconds, outperforming all the

others. Interestingly, while VNS-greedy1 begins with the slowest convergence out of the

four, following the evolution of the graph we notice that eventually it outperforms all the

others after t = 20. VNS-greedy2 is once more the slowest of all methods. Neighborhood

contributions for neighborhood 2 are unreliable and the majority of improvements seem

to be mostly generated from neighborhood 1.

In summary, RVNS-greedy1 appears to consistently converge much faster than the

other three methods with significant increases in complexity imposing a lighter burden

on it. However we were unable to approach closer than 50% to the competitive values

of (El Yafrani and Ahiod 2018) but reliably reached the 100% threshold within a very

short time window and in every test. Regardless of the dataset, neighborhood 1 reliably

yielded the most contributions.
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5.2 Performance Evaluation - Category 2

5.2.1 Performance on the A1 dataset

Figure 5.2.9: Performance of all methods on the A1 dataset.

Figure 5.2.10: Improvements per neighborhood yielded from all methods on the A1
dataset.
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method initial final (mean) std. dev. rsd

RVNS-greedy1 -8560 10524 73 144.16
VNS-greedy1 -8560 10518 76 138.39
RVNS-greedy2 2282 9841 383 25.69
VNS-greedy2 2282 10297 252 40.86

Table 5.3: Results of the four methods on the A1 dataset.

Figure 5.2.11: Average score of the algorithms and standard deviation after 5 iterations
on the A1 dataset.

Table 5.3 and Figure 5.2.11 demonstrate that the best performance on the A1 dataset

is achieved with the RVNS-greedy1 algorithm. However, the superiority of RVNS-greedy1

against the two VNS algorithms is only marginal at best. By considering the standard

deviation of the four algorithms, we can observe that starting with the greedy1 construc-

tion heuristic results in lower standard deviation. That is, algorithms starting with a

solution obtained by the greedy2 are less consistent in terms of the final outcome.

We begin by evaluating the performance of the four hybridizations formed on the

A1 dataset, which can be perceived to be the simplest of them. From Figure 5.2.9,

it becomes obvious that the greedy2 heuristic (custom) obtains better quality solutions

than the greedy1 (grey and blue lines coincide), scoring about 2500 and -8500 respectively.
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However, it is worth pointing out that both VNS and RVNS manage to improve the greedy

1 solution to a similar extend, finally reaching the same score values as if they had started

with the greedy 2 solution. Moreover, the overall difference in the performance of VNS

and RVNS is negligible.

Concerning the time interval needed for the algorithms to converge, we observe that

the RVNS gets more easily trapped into local optima compared to the VNS. The time to

convergence is about 20 seconds for the RVNS algorithms, while it is two to four times

as much for the respective VNS algorithms.

Figure 5.2.10 indicates that both neighborhood structures contribute towards the

improvement procedure. However, we can not omit to point out the fact that in all

algorithms, the first neighborhood structure has proven to be more helpful. Moreover,

algorithms initiated with the greedy2 heuristic benefited less from the second neighbor-

hood compared to their respective algorithms initiated with the solution that was yielded

from greedy1. This, though, is to be expected, since the greedy2 heuristic already assim-

ilates the information about the risk of taking a heavy item from a city in the beginning

of the route.

5.2.2 Performance on the B1 dataset

Figure 5.2.12: Performance of all methods on the B1 dataset.
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Figure 5.2.13: Improvements per neighborhood yielded from all methods on the B1
dataset.

method initial final (mean) std. dev. rsd

RVNS-greedy1 -225758 13735 384 35.77
VNS-greedy1 -225758 4609 996 4.63
RVNS-greedy2 -161349 13779 210 65.61
VNS-greedy2 -161349 1815 2343 0.77

Table 5.4: Results of the four methods on the B1 dataset.

Table 5.4, combined with Figure 5.2.14, indicate that the search driven by RVNS

algorithms is more fruitful than the one driven by VNS algorithms. Besides the supremacy

of both of them compared to their respective algorithms in terms of the quality of the

final solution, which is plainly illustrated, the high standard deviation of VNS methods

constitutes yet another disadvantage that RVNS algorithms seem to avoid. Moreover, it

should be noticed that the standard deviation of the VNS that incorporated the greedy2

heuristic is far worse than the respective VNS combined with the greedy1.

On the B1 dataset, which comprises 280 cities and 1395 items, i.e., 5 items per city,

the performance of the two construction heuristics is similar to that of the A1 dataset.

Again, greedy2 yields a better initial solution than greedy1 does. Nevertheless, at the
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Figure 5.2.14: Average score of the algorithms and standard deviation after 5 iterations
on the B1 dataset.

end of the experiment (after 600 seconds), both VNS and RVNS that started with the

greedy2 solution seem to obtain only marginally better final solutions than their respective

algorithms that started with greedy1.

Concerning the behavior of VNS against RVNS algorithms, in Figure 5.2.12, it be-

comes apparent that RVNS achieves better results during the 600 second time interval.

However, VNS seems to demonstrate an aptness to further improve the incumbent solu-

tion when both RVNSs seem to be trapped.

Regarding the improvements yielded per neighborhood, again, both of them are proven

valuable for all algorithms, with an obvious imbalance that favors the first neighborhood.

Nevertheless, in Figure 5.2.13, a more meaningful insight that can be drawn is the fact

that both VNSs, generally, achieve less improvement than RVNSs do. However, this

translates only into a marginal difference with respect to the final solution.
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5.2.3 Performance on the C1 dataset

Figure 5.2.15: Performance of all methods on the C1 dataset.

Figure 5.2.16: Improvements per neighborhood yielded from all methods on the C1
dataset.
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method initial final (mean) std. dev. rsd

RVNS-greedy1 -704805 81086 13065 6.21
VNS-greedy1 -704805 40744 6081 6.70
RVNS-greedy2 -666935 83824 11655 7.19
VNS-greedy2 -666935 60397 8780 6.88

Table 5.5: Results of the four methods on the C1 dataset.

Figure 5.2.17: Average score of the algorithms and standard deviation after 5 iterations
on the C1 dataset.

The insights drawn from Table 5.5 and Figure 5.2.17 demonstrate, once more, that

the RVNS algorithms perform generally better on the C1 dataset and, by extension, in all

datasets comprising of 280 cities. In this instance, however, we can observe that RVNS

algorithms exhibit higher standard deviation compared to what we derive in previous

analyses. Within the 600 second interval, the improvement on the initial solution is

substantial under all four algorithms. In our opinion, this fact is certainly noteworthy.

The C1 dataset contains 280 cities and 2790 items, i.e., 10 items per city. Conse-

quently, the computational load the solvers have to process is critically increased. This

is the reason why no obvious convergence of the four algorithms in Figure 5.2.15 is

observed. What is interesting to point out though, is once again the superiority of the

greedy2 heuristic against greedy1. The same applies for the RVNSs over VNSs.
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Another insight that can be drawn from the same figure is the extraordinary improve-

ment of the initial solution, with the latter scoring -750,000 (greedy1) and, after the

application of the algorithms, scoring 150,000 (RVNS-greedy1).

Figure 5.2.16 demonstrates the efficient utilization of the two neighborhood struc-

tures. In line with the analysis on the B2 dataset, RVNSs yield more improvements.

However, in this instance of the problem, an analogous behavior of the RVNSs is clearly

observed, with improvements obtained from the first and second neighborhoods being

almost the same. This is also true for VNSs.

5.2.4 Performance on the A2 dataset

Figure 5.2.18: Performance of all methods on the A2 dataset.
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Figure 5.2.19: Improvements per neighborhood yielded from all methods on the A1
dataset.

method initial final (mean) std. dev. rsd

RVNS-greedy1 -349964 -48182 4897 9.84
VNS-greedy1 -349964 -146246 20296 7.21
RVNS-greedy2 -371981 -146173 12589 11.61
VNS-greedy2 -371981 -168414 6895 24.43

Table 5.6: Results of the four methods on the A2 dataset.

A2 is the first dataset where the greedy1 heuristic obtains a better solution than the

greedy2 algorithm, as depicted in Figure 5.2.18. In fact, this directly translates into

a superiority of the RVNS-greedy1 over the rest of the algorithms. However, since the

A2 dataset is comprised of 4461 cities, the time interval of 600 seconds appears to be

too short for any algorithmic convergence to become apparent. Such problem instances

would strongly benefit from parallelization techniques which are, however, are outside

the scope of this thesis.

Concerning the improvements per neighborhood, neighborhood 1 is, apparently, the

one that most frequently yields improvements to the incumbent solution. We can not

ignore, though, the difference in total improvements being achieved with RVNS-greedy1

79



Figure 5.2.20: Average score of the algorithms and standard deviation after 5 iterations
on the A2 dataset.

and the rest of the methodologies; despite the latter managing dramatically fewer than

the first, as Figure 5.2.19 clearly illustrates.
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5.2.5 Performance on the B2 dataset

Figure 5.2.21: Performance of all methods on the B2 dataset.

Figure 5.2.22: Improvements per neighborhood yielded from all methods on the B2
dataset.
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method initial final (mean) std. dev. rsd

RVNS-greedy1 -4583529 -4266576 5451 782.71
VNS-greedy1 -4583529 -4313695 21888 197.08
RVNS-greedy2 -5146634 -4848423 33557 144.48
VNS-greedy2 -5146634 -4868431 28857 168.71

Table 5.7: Results of the four methods on the B2 dataset.

Figure 5.2.23: Average score of the algorithms and standard deviation after 5 iterations
on the B2 dataset.

Yet again, according to Figure 5.2.21, the greedy1 construction heuristic yields better

solutions than greedy2 and, more specifically, this is the biggest difference in solution

quality between them that has been observed this far. Out of all four algorithms, RVNS-

greedy1 performs substantially better, while both RVNSs obtain a higher quality solution

within the fixed 600 second time interval than the respective VNS counterparts that

started from the same point.

Regarding the distribution of improvements per neighborhood structure, it is clearly

demonstrated that the first neighborhood yields more improvements during the search

phase, with the second neighborhood contributing less. This, however, does not indicate

that the second neighborhood is less useful that the first. On the contrary, in VNS

algorithms, neighborhood structures act collaboratively and, should either of those be
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omitted, the final outcome will be considerably worse.

5.2.6 Performance on the C2 dataset

Figure 5.2.24: Performance of all methods on the C2 dataset.
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Figure 5.2.25: Improvements per neighborhood yielded from all methods on the C2
dataset.

method initial final (mean) std. dev. rsd

RVNS-greedy1 -12985558 -12838346 41604 308.58
VNS-greedy1 -12985558 -12594274 168483 74.75
RVNS-greedy2 -12865814 -12716186 8034 1582.80
VNS-greedy2 -12865814 -12676728 36301 349.21

Table 5.8: Results of the four methods on the C2 dataset.

According to Figure 5.2.24, the greedy2 heuristic obtains a significantly better so-

lution than greedy1 does. More importantly, both algorithms that initiated from the

greedy2 solution seem to outperform their greedy1 counterparts. Additionally, within

the 600 second time interval, RVNSs yield higher quality solutions than VNSs do. How-

ever, it should be noted that the selected time interval is, once again, too short to tackle

such an enormous problem instance. Parallelization techniques will be significantly useful

in overcoming the limitations imposed if the time interval is required to remain within

the boundaries of such a short span.

As per Figure 5.2.25, the improvements on the incumbent solution resulting from

the two neighborhoods are vastly favoring the first. However, as can be seen in the same
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Figure 5.2.26: Average score of the algorithms and standard deviation after 5 iterations
on the C2 dataset.

Figure, the absolute number of improvements under all four approaches is quite low.

If we were to select only one among the four algorithms, the RVNS-greedy1 would

probably be our choice. That is, in addition to its good performance on the smaller

datasets with 280 cities, RVNS-greedy1 also outperforms the rest of the algorithms in

the bigger problem instances. In terms of standard deviation, once again RVNS-greedy1

proves to outperform the other algorithms, except for the final and larger dataset, i.e.,

the C2 dataset. It is quite notable that in the same dataset the VNS-greedy1 manages

to improve the initial solution by almost 400,000 on average. However, according to

the values that were acquired from our experimentation, the same algorithm consistently

yields the highest standard deviation, quadruple that of the algorithm with the second

highest.
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CHAPTER 6

Statistical Analysis

This chapter intends to analyze the behavior of our algorithmic implementations from

a statistical standpoint. In particular, we focus the analysis on the four datasets pertain-

ing to Category 1; namely, the eli76, kroA100, ch130 and u159 datasets. We intentionally

omit a thorough examination of our the performance of our algorithm on the rest of the

datasets of Category 2 since, as already cited in Chapter 5, competitive algorithms for the

latter category utilize sophisticated techniques for acceleration and to reduce the solution

space, an aspect that extends beyond the scope of this thesis.

Performance-wise, approximate algorithms are used to analyze their distances from

the optimal values (if there exist), or from a decent known value. This distance is usually

expressed as in terms of percentage and in our particular case this distance constitutes

the variable under examination.

For statistical validity reasons, we run all four of our algorithms for a total of 50

iterations on each dataset. The runtime was determined by convergence indications

drawn from Figures 5.1.1, 5.1.3, 5.1.5 and 5.1.7 in Chapter 5. The approach we follow

is (1) to present some descriptive statistical measures on the datasets produced, (2) to

graphically represent the distribution of errors (i.e., distance) from a competitive value

and (3) to conduct a normality test that informs us whether the samples follow the normal

distribution or not. The coefficient of significance α that we used during this test was set

to 0.05.

6.1 Analysis of errors on the eli76 dataset

According to Table 6.1, distances from the competitive value are similar among all

algorithms. In particular, the minimum values are almost identical, while slight alter-
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Figure 6.1.1: Offset distribution -
RVNS-greedy1.

Figure 6.1.2: Offset distribution - VNS-
greedy1.

Figure 6.1.3: Offset distribution -
RVNS-greedy2.

Figure 6.1.4: Offset distribution - VNS-
greedy2.

method min max mean variance skewness kurtosis

RVNS-greedy1 99.45 103.57 100.40 0.93 1.23 1.18
VNS-greedy1 99.45 105.06 100.79 1.51 1.41 2.35
RVNS-greedy2 99.60 102.71 101.26 0.78 -0.20 -0.91
VNS-greedy2 99.58 107.02 101.83 1.90 0.95 2.46

Table 6.1: Descriptive statistics of the errors for the eli76 dataset.

ations are noticeable for the maximum values. Moreover, variance seems to be quite low

in all cases. Skewness and Kurtosis metrics are used to further enhance the verdict of

the statistical test for normality, presented in Table 6.2. We can observe that only the

RVNS-greedy2 heuristic passes this test, i.e., we cannot reject the null hypothesis that

the sample follows a normal distribution. However, such verdicts cannot be taken for
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method Statistic value p-value null hypothesis

RVNS-greedy1 14.37 7× 10−4 rejected
VNS-greedy1 20.38 3.75× 10−5 rejected
RVNS-greedy2 3.99 0.14 not rejected
VNS-greedy2 14.55 7× 10−4 rejected

Table 6.2: Normality test of errors for the eli76 dataset.

granted, since Figure 6.1.3 is not aligned with this outcome. In general, Figures 6.1.1 to

6.1.4 demonstrate that errors follow distributions which, in most cases, demonstrate a

right tail. This indicates the existence of outlier values that represent experiments where

algorithms performed worse than the average.

6.2 Analysis of errors on the kroA100 dataset

method min max mean variance skewness kurtosis

RVNS-greedy1 95.30 100.59 97.06 1.34 0.86 0.91
VNS-greedy1 95.56 109.25 98.65 5.44 2.20 7.06
RVNS-greedy2 95.30 101.78 98.16 2.55 0.01 -0.65
VNS-greedy2 96.38 108.67 99.75 5.66 1.52 2.76

Table 6.3: Descriptive statistics of the errors for the kroA100 dataset.

method Statistic value p-value null hypothesis

RVNS-greedy1 8.73 0.01 rejected
VNS-greedy1 41.32 1.06× 10−9 rejected
RVNS-greedy2 1.02 0.6 not rejected
VNS-greedy2 23 1.01× 10−5 rejected

Table 6.4: Normality test of errors for the kroA100 dataset.

In the kroA100 dataset the four algorithms, again, perform similarly in terms of

mean values. However, a careful examination of Table 6.3 reveals that the two VNS

algorithms have a considerably higher variance compared to the RVNS algorithms. This

might indicate that VNS takes a little longer than RVNS to converge. The fact that errors

produced by RVNS-greedy2 seem once again to follow a normal distribution, as per Table

6.4, is quite interesting. This time, however, this fact is also supported by Figure 6.2.7.

88



Figure 6.2.5: Offset distribution -
RVNS-greedy1.

Figure 6.2.6: Offset distribution - VNS-
greedy1.

Figure 6.2.7: Offset distribution -
RVNS-greedy2.

Figure 6.2.8: Offset distribution - VNS-
greedy2.

The rest of the error distributions (see Figures 6.2.5, 6.2.6, 6.2.8) demonstrate similar

results as previously, i.e., in the eli76 dataset.

6.3 Analysis of errors on the ch130 dataset

method min max mean variance skewness kurtosis

RVNS-greedy1 49.61 59.04 53.51 4.52 0.78 0.49
VNS-greedy1 50.56 72.01 55.84 20.58 1.77 3.02
RVNS-greedy2 49.65 99.12 54.42 46.57 5.81 35.41
VNS-greedy2 52.45 103.29 61.81 115.51 2.11 4.10

Table 6.5: Descriptive statistics of the errors for the ch130 dataset.
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Figure 6.3.9: Offset distribution -
RVNS-greedy1.

Figure 6.3.10: Offset distribution -
VNS-greedy1.

Figure 6.3.11: Offset distribution -
RVNS-greedy2.

Figure 6.3.12: Offset distribution -
VNS-greedy2.

method Statistic value p-value null hypothesis

RVNS-greedy1 6.59 0.03 rejected
VNS-greedy1 27.17 1.25× 10−6 rejected
RVNS-greedy2 100.58 1.44× 10−22 rejected
VNS-greedy2 34.26 3.62× 10−8 rejected

Table 6.6: Normality test of errors for the ch130 dataset.

The performance of our algorithms in the ch130 dataset is most promising, except

from the large variance values depicted in Table 6.5. In the same table, it can be easily

observed that the mean errors are close to 50% in most cases. This is a quite encouraging

result, especially considering that our algorithms run for just a few seconds to produce

these outcomes. The large fluctuations, though, prevent the error populations from fol-
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lowing a normal distribution, as indicated in both Table 6.6 and Figures 6.3.9 to 6.3.12.

Finally, it is worth noting that algorithms that have started with the greedy2 solution

yield a substantially higher variance. That indicates, either these algorithms required a

bigger time-interval to converge, their performance is less stable or that the latter is a

product of the former.

6.4 Analysis of errors on the u159 dataset

Figure 6.4.13: Offset distribution -
RVNS-greedy1.

Figure 6.4.14: Offset distribution -
VNS-greedy1.

Figure 6.4.15: Offset distribution -
RVNS-greedy2.

Figure 6.4.16: Offset distribution -
VNS-greedy2.

The performance of our algorithms is also encouraging on the u159 dataset. Except

from the VNS-greedy2 metaheuristic, all of our methods yield errors that follow the

normal distribution, as Table 6.8 demonstrates. That can be interpreted as, the time

interval selected (30 seconds) being adequate to achieve algorithmic convergence, while

competitive values in the literature are obtained after much longer intervals. As per
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method min max mean variance skewness kurtosis

RVNS-greedy1 88.31 93.04 90.13 1.72 0.64 -0.39
VNS-greedy1 89.02 95.89 92.12 2.82 0.33 -0.48
RVNS-greedy2 88.54 95.89 91.51 3.04 0.55 -0.39
VNS-greedy2 89.41 101.20 93.43 6.38 0.78 0.57

Table 6.7: Descriptive statistics of the errors for the u159 dataset.

method Statistic value p-value null hypothesis

RVNS-greedy1 3.93 0.14 not rejected
VNS-greedy1 1.40 0.49 not rejected
RVNS-greedy2 2.94 0.23 not rejected
VNS-greedy2 6.81 0.03 rejected

Table 6.8: Normality test of errors for the u159 dataset.

Figures 6.4.13 to 6.4.16, we can observe the phenomenon of significant presence of

outliers being absent, further supporting the statements above.
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CHAPTER 7

Conclusions

Drawing from the statistical analysis in Chapter 6 it appears that both VNS and RVNS

can be successfully applied to the Travelling Thief Problem, the latter performing slightly

better in most, including large, problem instances and frequently passing the normality

test in smaller datasets. Thus, the instance of the problem, and more specifically the

size of the instance, seem to be the major limiting factors when unmodified RVNS is

applied under the scope of strict time limitations. The starting conditions also appear to

play a significant role in the quality of the outcome, since in our tests the different initial

heuristic solutions, which are generated as in input, seem to narrow down the search

space exploration capabilities.

7.1 Summary

In this thesis we provide a preliminary basis to demonstrate the concept of applying

RVNS to the Travelling Thief Problem. While the obtained results are lacking in com-

parison to those obtained in relevant literature for the same datasets with more advanced

performance enhancement methods, our approach is significantly simpler as it only re-

quires the implementation of a construction heuristic and RVNS while achieving decent

results in the span of the same timeframes. Furthermore we observe that RVNS, espe-

cially when combined with a construction heuristic like greedy1, is, in our particular case,

very efficient in achieving results that, while not up to competitive solution standards,

can be obtained remarkably fast. This demonstrates a potential for RVNS in areas where

frequent and rapid re-calculation of efficient solutions is more important that the actual

target value of the objective function.

93



7.2 Study Limits - Constraints

In the interest of objectivity and reproducibility of the results, some of the more

technical aspects concerning the code implementation for the obtainment of the results

need to be presented.

All experimentation was done with Python 3.7.3 which at the time was the most

recent stable version of the 3.x series available. No attempt for Parallelization has been

undertaken, although because of the prevalence of loop control flow structures in the

implementation of RVNS, the author believes it could greatly benefit the processing

speed in multicore and multi-socket systems.

7.3 Future Work

As the resulting figures in Chapter 5 demonstrate, the quality of the initial solution

obtained by the construction function has a decisive effect of the outcome of the main

heuristic. We therefore consider that further research on the construction function heuris-

tics to establish a ”good” starting point possesses significant potential to greatly improve

the quality and outcomes in the Travelling Thief Problem. Drawing inspiration from the

limitations of the current study, another area which presents great potential for future

research is the utilization of parallel processing to increase the total processing done per

unit of time. Considering that RVNS iterates through many loop flow structures there is

significant potential for parallelization. While this will not demonstrate a significant ef-

fect in loop-limited repetition scenarios, it has great potential in improving the outcomes

in time-based scenarios by reaching a better solution in the same units of time. Lastly,

a combination of the two research directions identified above also presents a promising

area for significant contributions in future research with potential industry applications.

The combination of more advanced construction functions, possibly tailored to the prob-

lem, with parallelization in the main solver heuristic could yield significantly improved

solutions in a fraction of the time, translating to appreciable improvement in efficiency

in scenarios where the variables of the problem are dynamic and new solutions need to

be retroactively calculated.
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