

UNIVERSITY OF MACEDONIA

MASTER OF SCIENCE

IN APPLIED INFORMATICS

EXPLORATION OF NEO4J GRAPH DATABASE

Thesis by

Penteridou Nikolina

Thessaloniki, June 2020

EXPLORATION OF NEO4J GRAPH DATABASE

Penteridou Nikolina

Bachelor of Applied Informatics

Thesis to partly discharge the

MSc of Applied informatics obligations

Supervisor

Koloniari Georgia

Approved by the three-member committee on 26/06/2020

Koloniari Georgia Xinogalos Stilianos Evaggelidis Georgios

Penteridou Nikolina

Abstract

The purpose of this project was the development of a web application that offers

users with no specialized knowledge of a Neo4j Graph Database queries the

capability of exploring it through an interactive interface. Taking into consideration

that the program should be able to function properly with any Neo4j Dataset, the

first step I took was to find and then take advantage of those Neo4j queries that

shape the fundamental structure of the Database. After the structure definition the

entire program runs based on the defined components that are used as parameters

for the corresponding functional part.

Keywords: Neo4j, Graph Database

Acknowledgements

I would like to thank my supervisor prof. Koloniari Georgia for her valuable help and

the constant support she offered to me in order to complete my thesis.

Table of Contents

1 Introduction ... 11

1.2 Aim statement ... 11

1.4 Contribution .. 11

1.5 Project structure .. 12

2 Bibliography review – theory .. 13

2.1 Data Graph Model ... 13

2.2 Graph Database ... 14

2.3 Neo4j Graph Database .. 14

2.4 Why neo4j? .. 15

2.5 Neo4j Use cases ... 16

3 Methodology ... 17

3.1 Introduction ... 17

3.2 Technologies used ... 18

3.2.1 Neo4j Graph Database ... 18

3.2.2 Java Language ... 18

3.2.3 JavaScript / JQuery ... 18

3.2.4 Spring Framework / Spring Boot .. 19

3.3 Technologies Integration ... 19

3.3.1 Maven .. 19

3.3.2 Object Graph Mapper .. 19

3.3.3 Spring MVC ... 20

3.4 Building the domain model ... 20

3.4.1 Data Acknowledgment ... 20

3.4.2 Plain Old Java Objects ... 22

3.4.3 Driver .. 22

3.4.4 Types of annotations used ... 23

3.5 Functionality .. 24

3.5.1 Spring MVC flow .. 25

3.5.1 Fundamental queries .. 28

3.5.2 Interacting with the elements .. 30

3.5.3. Responses handling ... 47

3.5.4 Developer guide ... 60

4 Epilogue ... 63

4.1 Summary and Conclusion .. 63

4.2 Future improvements .. 63

Bibliography ... 64

Appendix .. 65

The end .. 66

Catalog of images

Image 1: White board hand written initial graph model .. 13

Image 2: The full-stack image of the project ... 27

Image 3: home page screenshot ... 31

Image 4: visualization page screenshot ... 34

Image 5: Displayed result buttons with “properties” option selected 35

Image 6: Displayed result buttons with “nodes” option selected... 35

Image 7: Displayed result buttons with “relationships” option selected 35

Image 8: search result screenshot with category keyword ... 38

Image 9: Search result screenshot with label keyword ... 38

Image 10: search result screenshot with specific value keyword ... 39

Image 11: search result screenshot with combined keywords including value 40

Image 12: search result screenshot with combined keywords including relationship 40

Image 13: search result screenshot with combined keywords including category “properties”

 ... 41

Image 14: search result screenshot with combined keywords including category

“relationships” ... 41

Image 15: search result screenshot with combined node label keywords 41

Image 16: Displayed result buttons after interacting with node result buttons..................... 55

Image 17: Displayed result table after clicking the “check all nodes” button 56

Image 18: Displayed result table after clicking the “check relationships” row button 56

Image 19: Displayed result table after clicking the “check relationships” row button 57

Image 20: Displayed result buttons after interacting with property result button 57

Image 21: Displayed result buttons after interacting with relationship result button 58

Image 22: Displayed result table after clicking the “involved nodes” button......................... 58

file:///C:/Users/Acer/Desktop/thesis_Penteridou.docx%23_Toc43907375
file:///C:/Users/Acer/Desktop/thesis_Penteridou.docx%23_Toc43907376
file:///C:/Users/Acer/Desktop/thesis_Penteridou.docx%23_Toc43907377
file:///C:/Users/Acer/Desktop/thesis_Penteridou.docx%23_Toc43907378
file:///C:/Users/Acer/Desktop/thesis_Penteridou.docx%23_Toc43907379
file:///C:/Users/Acer/Desktop/thesis_Penteridou.docx%23_Toc43907380
file:///C:/Users/Acer/Desktop/thesis_Penteridou.docx%23_Toc43907381
file:///C:/Users/Acer/Desktop/thesis_Penteridou.docx%23_Toc43907383
file:///C:/Users/Acer/Desktop/thesis_Penteridou.docx%23_Toc43907384
file:///C:/Users/Acer/Desktop/thesis_Penteridou.docx%23_Toc43907385
file:///C:/Users/Acer/Desktop/thesis_Penteridou.docx%23_Toc43907386
file:///C:/Users/Acer/Desktop/thesis_Penteridou.docx%23_Toc43907387
file:///C:/Users/Acer/Desktop/thesis_Penteridou.docx%23_Toc43907387
file:///C:/Users/Acer/Desktop/thesis_Penteridou.docx%23_Toc43907388
file:///C:/Users/Acer/Desktop/thesis_Penteridou.docx%23_Toc43907388
file:///C:/Users/Acer/Desktop/thesis_Penteridou.docx%23_Toc43907389
file:///C:/Users/Acer/Desktop/thesis_Penteridou.docx%23_Toc43907390
file:///C:/Users/Acer/Desktop/thesis_Penteridou.docx%23_Toc43907391
file:///C:/Users/Acer/Desktop/thesis_Penteridou.docx%23_Toc43907392
file:///C:/Users/Acer/Desktop/thesis_Penteridou.docx%23_Toc43907393
file:///C:/Users/Acer/Desktop/thesis_Penteridou.docx%23_Toc43907394
file:///C:/Users/Acer/Desktop/thesis_Penteridou.docx%23_Toc43907395
file:///C:/Users/Acer/Desktop/thesis_Penteridou.docx%23_Toc43907396

Catalog of tables

Table 1: Fundamental queries ... 28

Table 2: Keyword cases .. 39

Table 3: Combined keywords cases .. 42

Catalog of diagrams

Diagram 1: Neo4j Graph Model .. 15

Diagram 2: Schema for Book Management dataset ... 21

Diagram 3: Spring MVC flow when a request occurs .. 25

Diagram 4: Request – response call flow .. 30

Diagram 5: User interface interaction flow ... 59

Diagram 6: Schema for testing dataset ... 61

file:///C:/Users/Acer/Desktop/thesis_Penteridou.docx%23_Toc43907590
file:///C:/Users/Acer/Desktop/thesis_Penteridou.docx%23_Toc43907591
file:///C:/Users/Acer/Desktop/thesis_Penteridou.docx%23_Toc43907593

1 Introduction

Data that are presented in a graph form way are able to extract clear image

and very important insights for the involved dataset. Neo4j Graph Database is

getting more and more popular due to its high potentials and has been inserted

in a lot of big companies’ implemented technologies like Walmart, eBay, Adobe.

Combining neo4j queries offers accuracy and allows developer to satisfy high

level logic requirements although it needs experience in order someone to take

advantage of them in the best possible way.

1.2 Aim statement

The main idea of the project is a web application development which will

provide the user the possibility to navigate to a Neo4j database through an

interactive interface that creates the idea of exploration. Particularly, the user,

starting from a point of his or her choice, is able to proceed to the next database

information based on his or her option through given “answers”, sequentially

The challenging part of the current project is that the information needs to be

retrieved from the Neo4j database without the knowledge of the data type and

structure. That means that all the retrieved data need to arise through an

abstract way during the user navigation with an Socratic method procedure.

 Inspired by the Neo4j browser, which offers user the opportunity to check

the graph visualization and the result tables, I tried to develop a user interface

for Neo4j datasets that not only works via neo4j queries but also gives the

capability to users with limited knowledge of neo4j queries to explore a dataset

through navigation and interaction with options and buttons.

1.4 Contribution

 The said project presents the combination for all the technologies needed

in order to develop a full stack application that satisfies the initial aim. In

addition, it includes tools used for the technologies and software integration.

Moreover, there is summed up information about mandatory Neo4j queries that

conclude to the final result of abstraction according to the initial goal. The

program could be used for educational reasons as its functionality is able to

enhance Neo4j Datagraph understanding of structure for new users.

1.5 Project structure

Chapter 2 includes a Graph Database general review ending up to the Neo4j

definition and relative information sourced by the Neo4j organizational. The project

methodology is described in details in chapter 3. The said chapter describes the

order that were followed in order the initial idea to be completed. In particular, it

introduces the technologies that were used, their integration and the way the

domain model was built step by step. Furthermore, it describes the fundamental

queries used and the algorithmic logic behind the functionality that is triggered

through User Interface as well as the developer guide so that requirements and

restrictions to be cleared. The last chapter titled Epilogue sums up the total

information including potential future improvements.

2 Bibliography review – theory

2.1 Data Graph Model

Data graph model is the process of “humanizing” the visualization of

connected data.

The entire graph model is based on the fundamental units of the given data

which are called nodes. All the relationships refer to the connections between

those nodes. Adding properties and labels, the connected nodes form the graph

data model which represents the database.

Actually, a data graph model considers the relationships of the nodes and

emphasizes as a mandatory priority on the need of leveraging those

relationships in a direct and easy way.

As Jim Webber & Ian Robinson [1] say in their report for the top Neo4j use

cases “Graphs are the future. Not only do graph databases effectively store the

relationships between data points, but they’re also flexible in adding new kinds

of relationships or adapting a data model to new business requirements.”

The idea of data graph models was initially inspired by the written

whiteboards that people use in order to design the connection between data to a

clarified and logical model [2]. The following picture show the hand written

graph model that was firstly designed on a white board.

Image 1: White board hand written initial graph model

2.2 Graph Database

The general difference between relational and graph databases lies upon the

way each database stores and retrieves data. As Miller said “the requirements of

the system should be taken into consideration if there is a need for a dynamic

data model that represents highly connected data then a graph database is the

best solution. [3]”

Graph databases demonstrate their data with nodes and edges [4]; hence the

final structure looks like a mathematical graph. This structure allows the easier

handling of the connected data compared to the structure of the tables that are

used in the case of the relational database. The relationships are described more

clearly through their own properties and this straightforward model is able to

focus on the use cases the entire project aims at.

Concerning the volume and the velocity, graph databases are better

optimized to handle huge amount of data and to deal with big numbers of read

and write executions. Scalability is one of the most important disciplines of

project development and graph databases are very efficient due to their simple

and clear structure as distinct from the relational table data stores. Last but not

least, the cypher statement enables an easy and shorter way of querying the

database in order to retrieve data, avoiding the potential need of multiple join in

sql statement [2]

2.3 Neo4j Graph Database

Neo4j is a non-relational graph database that provides its own

implementation of graph theory concepts. The Labeled Property Graph Model in

the Neo4j database consists of the following components:

 Nodes.

Nodes comprise the main data elements of the graph. They are

interconnected through relationships and they owe labels and properties. A node

can have one or more labels, properties and relationships.

 Relationships.

A relationship represents the type of connection between two nodes.

Relationships can have one or more properties and also a node is able to have

multiple relationships.

Every node is characterized by one or more labels. This is how nodes are

grouped in the same category. A node can have just one or many labels. Labels

can be indexed to speed up finding nodes in a graph.

Both nodes and relationships owe properties. They are attributes with a key-

value pair form. Properties can be any type of data (String, Integer, Boolean etc.).

Diagram 1: Neo4j Graph Model

2.4 Why neo4j?

NoSQL databases are simpler and easier to handle over the relational

databases. In case of Neo4j graph database though the perquisites also include

scalability and flexibility.

Scalability: The clear demonstration of Neo4j database through nodes and

relationships allows constant time traversals in big graphs for both depth and

breadth.

company
place

employee
address

{years: workingfYears}

{firm: companyName}

{estYear: yearOfEstabishment}

{

{name: employeeName}

{age: employeeAge}

{

Flexibility: The structure of neo4j schema enables the efficient adaptation of

the database to the requested goal. The user can add and remove nodes,

relationships and properties effortlessly in order to adjust the information to his

or her business changes and needs.

In addition Neo4j is able to provide a real-time image of the information and

form extremely useful insights.

The formal neo4j organization definition is the following :

 “Neo4j is an open-source, NoSQL, native graph database that provides an ACID1-

compliant transactional backend for your applications. Initial development began

in 2003, but it has been publicly available since 2007. The source code, written in

Java and Scala, is available for free on GitHub or as a user-friendly desktop

application download. Neo4j is referred to as a native graph database because it

efficiently implements the property graph model down to the storage level. This

means that the data is stored exactly as you whiteboard it, and the database uses

pointers to navigate and traverse the graph. In contrast to graph processing or in-

memory libraries, Neo4j also provides full database characteristics, including ACID

transaction compliance, cluster support, and runtime failover – making it suitable

to use graphs for data in production scenarios.”

 Neo4j.com

2.5 Neo4j Use cases

Neo4j top use cases according to the neo4j organization white paper involve:

 Fraud detection

Neo4j present a clear image of node relatedness and consequently increase the

possibilities of uncovering patterns designed by the connections between data

that imply a potential fraud.

 Real-time Recommendations (Walmart, Adidas)

Neo4j is built to “understand” the strength of connections between the entities.

As a result identifying the individual interests eventuates from the node

interactions which gives a very meaningful insight into the market needs and

trends.

1
 atomicity, consistency, isolation and durability

 Master data Management (Pitney Bowes)

Storing the master data at a graph database demands cheaper resources

compared to the relational ones and also it is less complex to relate them and

design the final model.

 Network & IT Operations (eBay)

The neo4j graph visualizes the type of nodes and their connections. A lot of

visualization tools are available so that IT managers are able to give entities

colors , sizes and labels in order to have the image that helps them to separate

the database units and report their conclusions.

 Identity & Access Management (Telenor)

A graph database can store complex data connections and provide dynamic

structure and environment. This structured data model supports both

hierarchical and non-hierarchical structures, while its extensible property model

allows for capturing rich metadata regarding every element in the system. [1]

3 Methodology

3.1 Introduction

Starting with my thesis it was a necessity to obtain the mandatory knowledge

of Neo4j Graph database queries. Consequently, I began to discover some of the

main database potentials. Due to the fact that the project should be based on

flexibility and abstraction when it comes to the data schema, my goal was to use

the appropriate queries that work efficiency without including specific data

information, but only taking into account the main schema structure of any

Neo4j database. After being familiar with the Neo4j query syntax, I installed the

Neo4j Desktop to build my data. Following up the successful installation , I

connected the database to my java code using the Spring Boot in order to

simplify the entire procedure of building a web application. My effort to connect

the schema to my java code led me to the necessity of using the Object Graph

Mapping tool. With this tool I managed the easy and effective mapping of my

classes to the database entities. My next step was to parse the information to the

User Interface. In order to do this, I used get request which were called inside

JQuery AJAX calls and are displayed after being filtered through some JavaScript

logic in the application front end.

3.2 Technologies used

In order to develop a full-stack application project, I discovered and used

technologies, tools and libraries that helped me build mappings and connections

easier and also to reduce my project size satisfyingly without reducing the

optative efficiency. The technologies used for this project development are

presented in the following part.

3.2.1 Neo4j Graph Database

Starting from the application back end, neo4j Graph database were used to

store and retrieve the information the user ask for. Entities, their properties and

the relationships between them are stored in a Neo4j Database which is

integrated with the java code using the Object Graph Mapper (OGM)[explained

lower].

3.2.2 Java Language

Java programming language used as the back end software of the project

implementation. The object- oriented nature of java fosters the database schema

representation with classes and properties.

3.2.3 JavaScript / JQuery

JavaScript was the programming language used for the front end project

implementation combined with the jQuery Library which made the handling of

the document object model (DOM2) in HTML file easier.

2
 Defines a tree-like data structure for representing the HTML document regarding the elements it

includes.

3.2.4 Spring Framework / Spring Boot

Spring is a java framework ideal for building web applications. It was used to

support the restful web services by providing an easy way to handle them with

dedicated annotations usage.

Spring Boot is a Spring framework implementation used to provide faster and

shorter project development. It needs less dependencies and provides effortless

micro services building. Spring Boots annotations used on this project are

described later one by one.

3.3 Technologies Integration

Technologies and tools are able to consist a completed web application only

when they are connected and combined. To succeed this it is needed to use

integration tools and software. The supporting software I used to make the said

technologies work and cooperate together is described below.

3.3.1 Maven

Maven is a build automation and management tool. It requires dependencies

in order to integrate the requested functionality effortlessly. It simplifies the

technologies combination while it manages to make all the necessary

information available through a few lines of code. Maven functionality occurs in

an xml file that is includes to the project.

Below, you can see the required dependency in order to be able to access data

with Neo4j.

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-neo4j</artifactId>
</dependency>

3.3.2 Object Graph Mapper

Object graph mapper Library used for relating the graph entities to java class

in order to build the domain model.

Particularly, it maps nodes and relationships in the graph to objects and

references in a domain model using annotations. Object instances are mapped to

nodes while object references are mapped using relationships, or serialized to

properties.

Neo4j-OGM dependencies consist of neo4j-ogm-core, together with the relevant

dependency declarations on the driver you want to use. The driver used in the

specific project is the neo4j-ogm-bolt-driver which uses native Bolt protocol to

communicate between Neo4j-OGM and a remote Neo4j instance.

In order to use the OGM library, we first need to add the following dependency

using Maven.

<dependency>
 <groupId>org.neo4j</groupId>
 <artifactId>neo4j-ogm-bolt-driver</artifactId>
 <version>3.2.4</version>
</dependency>

3.3.3 Spring MVC
The Spring MVC is a Java framework that provides Model-View-Controller (MVC)

architecture and is used for building web applications. It offers ready

components that can be used to develop flexible and loosely coupled web

applications [5] .

The way Spring MVC is used for the current project implementation is described

in chapter 3.5.1 in details.

3.4 Building the domain model

3.4.1 Data Acknowledgment
The data model I worked on demonstrates a book management system which

includes books, authors, editors, and users who interact with each other.

The Book Managements system is going to have the following nodes (with

attributes in parentheses):

 Book (title, price)

 Author (name)

 Genre (type)

 Editor (name, address)

 User(name, surname, birthday)

Those nodes represent the node entities of the model and the relationships

between them are the following:

 Author :WROTE Book

 Editor :PUBLISHED Book

 Book :HAS_CATEGORY Genre

 User :RATED(rank) Book

The final schema based on nodes and relationships is demonstrated in the

diagram below:

In order to convert our data graph model into a class centered model, so that we

can use object-oriented programming language, we need to adjust the previous

nodes to java classes and to their relationships using composition. Before the

said step though, from the above information about relationships arises the

necessity for two more classes except for the obvious ones which are Book,

Author, Genre, Editor and User. Those two classes are the Borrowing class and

the Rating class from the “rated” relationship . This relationship class represents

the graph “rich” relationships while it owns attributes. Hence, the creation of this

Diagram 2: Schema for Book Management dataset

classes is related to the relationship attribute it is followed by which in this case

is: rank .

As a consequence, the added relationship entity is:

 Rating(rank)

After the last important addition the java classes occur with their attributes and

relationships are:

 Book (title: string, price: double, author: Author.)

 Author (name)

 Genre (type)

 Editor (name, address)

 User(name, surname, birthday)

 Rating(rank)

3.4.2 Plain Old Java Objects

The Plain Old Java Objects (POJOs) gives the possibility to manage the properties

of graph’s relationships. Neo4j-OGM is able to be used in non-annotated objects

models as well. It is capable of saving any POJO with no annotations to the graph,

as the framework applies conventions to decide what to do. This is useful in

cases when there is no or limited control over the classes that we want to persist.

The recommended approach from the neo4j org [2], however, is to use

annotations wherever possible, since this gives greater control and means that

code can be refactored safely without risking breaking changes to the labels and

relationships in your graph.

3.4.3 Driver

The driver is considered as main prerequisite in order to allow communication

between Neo4j-OGM and a remote Neo4j instance.

For this application building I used the neo4j-ogm-bolt-driver via adding the

following dependency for maven:

<dependency>
 <groupId>org.neo4j</groupId>
 <artifactId>neo4j-ogm-bolt-driver</artifactId>

 <version>3.2.4</version>
</dependency>

3.4.4 Types of annotations used

There are a lot of annotations used inside the Java code during the project

implementation. The next section describes the way I took advantage from each

of them.

Spring Boot annotations

@RestController: The class that handles the requests and calls the corresponding

function to satisfy them.

@GetMapping: declares a “get” method request.

@PathVariable: declares any parsed variable via URL for the request

requirements.

@Repository: annotates a class to define it as storage for the results of queries

executions.

@Service: the classes of code that include all the company logic of the program.

Each service represent a specific requirements satisfaction within the project

goal.

Neo4j-ogm annotations

@NodeEntity: The java classes which represent the graph nodes (Book, Author

etc.).

@Query: it is used to annotate a function which triggers the following query

when it is executed.

@Property: Nodes and relationships attributes(name, date etc.). They support

types of String, Long, Date, any Object etc.

@Relationship: It annotates the composed attributes of the current class which

are another class’ objects. For example Author will be annotates with this tag as a

Book’s composed attribute followed by the type of the relationship into a

parenthesis (type = "WROTE") and there is the possibility of defining the

direction as incoming/outgoing as well. The type of relationship can be

represented with an array if we want to create a "to many" relationship.

@RelationshipEntity: It concerns what we call rich relationships. That means

relationships that need some more attention while they “carry” important

information with their attributes and their values. This tag is followed by the

type of the relationship entity into parenthesis(type = "BORROWING").

@StartNode/@EndNode : Define relationship’s direction. These annotations are

used inside the class annotated with @RelationshipEntity.

@NotNull: this annotation not allows any property to have null value. The

program will throw a nullpointer exception error?

@Id / @GeneratedValue: Id annotation defines the entity id. @GeneratedValue

annotation discharges the developer of using any existed ids and fills them in

automatically with an increasing by one rate. A good practice that involves the

@Id and @GeneratedValue annotation is to include them in an abstract entity

class which all of the node entities will inherit.

@JsonIgnoreProperties: Spring Boot initially creates all the existed beans while

the program starts running. As a result , composed entities-classes that are

connected with relationships throw an error: what error?? By using

JsonIgnoreProperties annotation you actually “tell” the system to ignore the

current property and keep on initializing the program, so that you can avoid the

infinity loop that would make the functionality unable.

@DateLong: this annotation is used to convert the neo4j Long date information

to Java Date type.

3.5 Functionality

This chapter demonstrates the code functionality flow that is followed after the

triggering by the user that interacts with the program through buttons and

elements on screen. From the user action and the queries execution to the final

results display, the process cycle is described in details step by step.

3.5.1 Spring MVC flow

The diagram below shows the spring MVC flow when a request occurs in the

present application. The rest controller initially receives the request. Through

methods annotated as request mapping or at ones get mapping the URI

information passes to the respective service method. Services include the

business logic part of the project. That means that all the queries which retrieve

data are implemented in methods inside services. In case we want to run a query

and store the information we need to use repositories. Regarding to the current

project those repositories extends the neo4j repository in order to store the data

in a way compatible to the Neo4j schema structure.

Below, you can find the source code which represents the mentioned flow

process. In the first case the request is about a simple question to the database,

whether in the second one we need to store the result information in the

database by using a repository annotation.

Case 1: Retrieving data

@RestController

Java Class that
handles the
request

@RequestMapping

triggers the
annotated
method which
calls the
corresponding
service
method

@Service

Buisness logic
implementatio
n which
returns a
query result

@Repository

stores query
result
information
when
neccessary

Diagram 3: Spring MVC flow when a request occurs

The Rest controller class receives the request due to the annotated method

@RestController
public class NodeController<T> {
[…]
 @GetMapping("/node/count/{node}")
 public Object getNodeCount(@PathVariable String
node){
 return nodeService.getNodeCount(node);
 }
[…]
}

The nodeService Service class contains the method which implements the

relative query and returns the result.

//COUNT a node instances
public Result getNodeCount(String node){
 Map<String,Object> params = new HashMap<>();
 String query="MATCH (n:" + node + ") RETURN count(n) as
value";
 return
Neo4jSessionFactory.getInstance().getNeo4jSession().query(quer
y,params);
}

Case 2: storing the data by using a repository in case of import:

The Rest controller class receives the request due to the annotated method

@RestController
public class BookController {
[…]

 @GetMapping("/importbooks")
 public String importBooks() {
 bookImportService.importBooks();
 }

[…]
}

The bookImportService Service class which extends the Neo4jRepository

contains the method that calls the Repository method importBooks()

//import books
public void importBooks(){
 bookRepository.importBooks();

}

Annotated by @Query the query result is stored in a Collection of Book objects.

@Query("LOAD CSV WITH HEADERS FROM \"file:///books.csv\" AS
Line\n" +
 "MERGE (b:Book {title: Line.title, year:
toInteger(Line.year) , price: Line.price})" +
 "MERGE (e:Editor {publisher: Line.edition })\n" +
//checked ok --> csv works fine , the problem is the entity
 "MERGE (a:Author {writer: Line.author})\n"+
 "MERGE (a)-[:WROTE]->(b)\n" +
 "merge (e)-[:PUBLISHED]->(b)")
Collection<Book> importBooks();

The image below portraits the general image of the project as a multiple leveled

burger from the bottom to the top, like a full stack project that uses the referred

technologies and tools.

Image 2: The full-stack image of the project

3.5.1 Fundamental queries
Neo4j database provides user a big range of potentials through logical queries.

Once the project development started, it was mandatory all the fundamental

queries to be collected in order to:

 Provide a better understanding of the data graph structure and

 be combined the way they fulfill the project needs.

The main goal during the neo4j queries studying was those queries which would

be used in an abstract way regarding the data to be found. In particular, the

effort was focused in queries usage and combination that do not include a

specific node or a specific relationship, but only general entities and functions.

What is of grave importance is that the entire project is based on flexibility and

abstraction.

On the table below there are some fundamental queries and their description.

Table 1: Fundamental queries

Query
Result description

call db.schema()

Get the schema with indexes and

constraints

MATCH (n) RETURN distinct labels(n)
Get all nodes’ labels

MATCH (n) return collect(distinct labels(n))
Get all nodes’ labels in a table

match (n)

with keys(n) as nested

unwind nested as x

return distinct x

Get all properties unnested

MATCH p=()-[r:RATED]->() RETURN distinct

keys(r)

Get all relationships properties

match (n)

with keys(n) as nested

unwind nested as x

with collect(distinct x) as properties_list

return properties_list

Get all properties unnested in a list

match (n)

with keys(n) as properties, labels(n) as entities

unwind properties as prop

with prop, entities

unwind entities as ent

return distinct prop, ent

Return unwinded properties with the nodes

they belong

MATCH (n) RETURN distinct labels(n), count(*) To get the node count for each label

MATCH (n) RETURN DISTINCT keys(n)
Properties of ALL nodes distinct (no values)

MATCH (n) RETURN DISTINCT keys(n) , labels(n) Properties of ALL nodes distinct (no values)

and the node they belong

MATCH (n)-[r]->(m) RETURN distinct type(r);
Relationship types distinct

MATCH (n)-[r]-(m) RETURN distinct type(r),

count(type(r)) order by count(type(r)) desc;
Relationship types and count

MATCH (n)-[r]->(m) RETURN distinct type(r) as

relat_type,labels(n)as label1 ,labels(m) as label2,

count(*) as num_of_relat order by count(*) desc

;

Relationship types for couples (distinct) ,

related nodes , and count of types

(neighboring nodes) .

MATCH (n)

RETURN DISTINCT labels(n) as Label,keys(n) as

properties,size(keys(n))as num_of_prop

,count(*)as count order by count(*) desc;

See the properties of each node , the num

of properties and the counter.

MATCH (n:Node)

RETURN DISTINCT keys(n)
Properties of A node DISTINCT (no values)

MATCH (c:Node)

RETURN DISTINCT keys(c), size(keys(c))

ORDER BY size(keys(c)) DESC

Properties of a node once and their num of

prop in desc order (no values)

MATCH (c:Node) return ID(c), keys(c),

size(keys(c))

see ALL the nodes properties’ names and

id’s with VALUES

3.5.2 Interacting with the elements

The entire functionality of the program is implemented inside functions that Java

and JavaScript execute. In this chapter section you can see the entire flow the

program follows in order to satisfy any user request triggered through the user

interface. The following diagram describes the general flow when a request call

occurs:

Diagram 4: Request – response call flow

Most of the request handling is being serviced by the NodeController class which

is annotated as a @RestController. This class is generic in order to satisfy any

type of class imported as an entity. The NodeController functions call the

responsible services to run the related code that completes the request as the

user interacts with an
element

query dynamically
formed based on user

options
request call sent

Java @RestController
maps request to the

corresponding
method

method calls the
responsible @Service

method

method runs and
returns the query

Result

(data are stored via
Repository method if

neccessary)

returned results are
being handled by

JavaScript functions

results are displayed
on screen

diagram described. Next sections analyze the previous flow using more specific

cases of requests.

3.5.2.1. Home page

After opening the page the program is ready to accept and response to user

actions. The first path of user choice will run some of the referred fundamental

queries that will define the schema structure regarding to the nodes, the

relationships and their both properties. Those queries are totally abstract and

return the main composition of the data set as it is explained later.

In particular, entering the home page, user is able to interact with the following

elements:

 A 3.5.2.1 Clear button

 A 3.5.2.2. Data import button

 A 3.5.2.3 Graph Visualization

 A 3.5.2.4 Drop down list with three options : nodes, properties, relationships

 A 3.5.2.5 Search input (up to two keywords inserted)

In general, environment that includes the elements just referred:

Image 3: home page screenshot

3.5.2.1 Clear button

Starting from the top, the clear button refreshes the page and brings the user

back to the initial home screen anytime. It works same way as the browser

refresh button. It loads the entire page from the beginning.

3.5.2.2. Data import

 The mandatory step in order to use the application is the dataset import. The

import button on click starts the function that sends the “/importschema” get

request and the code below is being executed in the program back end:

@GetMapping("/importschema")
public String importschema() {
 schemaImportService.importSchema();
 return "Schema Imported";
}

The function of “schemaImportService” @Service that is called runs another part

of code that communicates with a @Repository class’ function. This is necessary

so that the data to be stored.

@Service
public class SchemaImportService {

 @Autowired
 NodeRepository nodeRepository;
 //import books
 public void importSchema(){
 nodeRepository.importSchema();

 }
}

Finally, the “nodeRepository” @Repository runs the corresponding function

“importScehma()” which is annotated by @Queryand its type is a Collection with

EntityNode objects as you can see in the code below:

public interface NodeRepository<T> extends Neo4jRepository<T, Long> {

 Optional<T> findById(Long id);
//---------IMPORT SCHEMA---

 @Query("LOAD CSV WITH HEADERS FROM \"file:///books.csv\" AS Line\n" +
 "MERGE (b:Book {title: Line.title, year: toInteger(Line.year)
, price: Line.price})" +

 "MERGE (e:Editor {publisher: Line.edition })\n" +
 "MERGE (a:Author {writer: Line.author})\n"+
 "MERGE (a)-[:WROTE]->(b)\n" +
 "merge (e)-[:PUBLISHED]->(b)")
 Collection<EntityNode> importSchema();

The EntityNode class is used to add abstraction to the code. The main function of

this class is described in later chapter.

3.5.2.3 Graph Visualization

The visualization button opens a new page where the user has the opportunity to

get a general image of the data structure and information through a graph

visualization. The library used inside the JavaScript code for drawing the graph is

Neovis.js and the script used is:

<script src="https://cdn.neo4jlabs.com/neovis.js/v1.3.0/neovis.js">

<script>

The visualization button triggers the function that includes the configuration

which is shown in the code below:

function(){
console.log("vis script running")
 var config = {
 container_id :"viz",
 server_url:"bolt://localhost:7687",
 server_user:"neo4j",
 server_password:"pass",
 labels: {
 "Genre": {
 caption: "user_key",
 size: "pagerank",
 community: "community"
 }

 },
 relationships:{
 "HAS_CATEGORY": {
 caption: "user_key" ,
 thickness: "count"
 }

 },
 initial_cypher: "MATCH p=(a)-[r]-(b) return p"
 }

 var viz = new NeoVis.default(config);
 viz.render();

});

As you can see the way the data will be demonstrated and most important the

query that extracts the graph are defined in one line inside the configuration and

in this case is:

"MATCH p=(a)-[r]-(b) return p"

Next picture demonstrates the HTML page opened with the final graph

visualization based on the Book management data sample.

3.5.2.4 Drop down list

The drop down list element helps the user to start exploring. The given options

of the list are: nodes, relationships and properties. All the returned results are

buttons so that the user chooses the next data to proceed. The following images

show the screen after choosing nodes, properties and relationships, respectively.

Image 4: visualization page screenshot

The drop down list functionality depends on the user option but the main goal of

each function is common. Regarding the option the program executes a function

that sends the relative request to the server in order to run the required query so

that the correct information from the database to be retrieved. The list options

are nodes, relationships and types and the way the program sends the respective

request and the data handling is shown it the code below.

$(document).ready(function(){
 $("#mainList").change(function() {

 […]

1) assign the selected option’s value to the option variable
 var option = $("#mainList option:selected").val(); //option
values: shownodes, showrelationshiptypes, showproperties,

Image 6: Displayed result buttons with “nodes” option selected

Image 5: Displayed result buttons with “properties” option selected

Image 7: Displayed result buttons with “relationships” option selected

 $.ajax({
 type: 'GET',

2) form the request by using the parsed option value as a path
variable
 url: 'http://localhost:8080/' + option,
 dataType : "json",
 contentType:"application/json",
 success: function(data){

 3)response handling (check next chapter)
 […]
 }
 }
 });
 });
});

where #mainList id represents the said drop down list.

The “option” variable represents any of the three options and is included in the

URL line that defines the request. The “option” variable value is filled in by the

selected value of each option as it is defined in the html file:

<select id="mainList" class="prop-container">
 <option value="none" selected disabled hidden>Choose category</option>
 <option value="shownodes" id="nodesOption"> nodes </option>
 <option value="showrelationshiptypes" id="relOption">
relationships</option>
 <option value="showproperties" id="propOption"> properties </option>
</select>

Thus, the potential ajax requests that can be responded from the Controller for

nodes , relationship types, and properties are the following:

@GetMapping("/shownodes")
public List<Object> getTheSchemaNodes(){ return (List<Object>)
nodeRepository.getAllNodes();}

@GetMapping("/showrelationshiptypes")
public List<Object> getTheSchemaRelTypes(){ return (List<Object>)
nodeRepository.showRelTypes();}

@GetMapping("/showproperties")
 public List<Object> getTheSchemaProperties(){ return (List<Object>)
nodeRepository.getAllProperties();}

Once more the NodeController needs to call the @Repository “NodeRepository”

where the data are stored in order to execute the abstract fundamental query

and the information to be retrieved. The following code section includes the

implementation of the called functions, respectively:

public interface NodeRepository<T> extends Neo4jRepository<T, Long> {

Optional<T> findById(Long id);

[…]

//get node labels
@Query("MATCH (n) \n" +
 "with labels(n) as nested \n" +
 "unwind nested as x \n" +
 "return distinct x")
Collection<Object> getAllNodes();

//get relationship types
@Query("MATCH (a)-[r]-(b) RETURN distinct type(r) as rel_types")
Collection<Object> showRelTypes();

//get properties (names)
@Query("match (n) \n" +
 "with keys(n) as nested\n" +
 "unwind nested as x\n" +
 "return distinct x\n")
Collection<Object> getAllProperties();

}

3.5.2.5 Search input

The search input gives the user the possibility to explore the graph information

in a direct way. The user is able to start interacting with the graph based on the

keywords of his or her choice. The input field can accept one or two keywords in

order to work properly.

In case of one keyword the user can potentially type any general or specific word

related to the schema and the data. That means that he or she can search from

general schema entities to specific values.

Specifically, typing the keyword “nodes”, “relationships” or “properties” could

return all the node labels ,the relationship types or the properties exist

,respectively.

The image below shows the result after inserting the word “nodes” as a keyword.

On the bottom darker blue frame Book, Author and Editor label nodes are

displayed as buttons to interact with.

Image 8: search result screenshot with category keyword

On the other hand, the specific label of a node would return the node itself

with the available buttons to proceed based on the said node as the picture

below displays.

Finally, typing any value of any node attribute would return the entire

specific node that includes this value in a table row, like in the following picture

after typing the value “Potter”.

Image 9: Search result screenshot with label keyword

The following table sums up all the keyword possibilities regarding the case, the

expected result described and an example with a represented keyword.

Table 2: Keyword cases

Keyword case Output info
Example keyword

inserted

Node(s)
node labels (buttons) to

proceed
Node(s)

Relationship(s)
relationship types (buttons) to

proceed
Relationship(s)

Property(ies)
properties (buttons) to

proceed
Properties/property

Node label
node labels (buttons) to

proceed
Book

Relationship type
relationship types (buttons) to

proceed
writer

Property title
properties (buttons) to

proceed
price

Property value
entire node (table row) that

includes the value
HarryPotter

In case of two keywords inserted the types and the combination of them

compose the result. If any attribute value is typed the result will be focused on

the value inserted regardless of the second keyword. That happens because of

Image 10: search result screenshot with specific value keyword

the priority of the value itself as it is the most specific way of search. Hence, the

search will work as in the case of one value keyword inserted.

The combination of node label with any property name would return the values

of this node property in a table as it is shown in the next picture after using the

example of Book price.

Inserting node label with any type of relationship will give the user the chance to

see the involved nodes and the direction of the relationship. Moreover, the

returned result is displayed in buttons in order to let user continue the

exploration. Next picture was shot after inserting “Book WROTE”.

Image 11: search result screenshot with combined keywords including value

Image 12: search result screenshot with combined keywords including relationship

Another case of combining keywords is about a node label and general schema

words as properties or relationships. This would return the obvious information

in buttons to let the user continue. The results of this case are displayed in the

following pictures.

Last but not least, the user is able to see any potential relationship between two

node labels by typing them as keywords together. The result shows which the

starter node is and the type of the relationship as it is shown in the picture

where Book and Editor node labels used as keywords.

Image 13: search result screenshot with combined keywords including category “properties”

Image 14: search result screenshot with combined keywords including category “relationships”

Image 15: search result screenshot with combined node label keywords

Next table gives a completed image of all keyword combinations supported by

the application followed by example inputs and result descriptions

Table 3: Combined keywords cases

Keyword 1 Keyword 2 Example input Result description

value * Show entire node (table row) that includes the value

Node label Specific Property title Book price Show book price values

Node label
Specific Relationship

type
Book wrote The relationship with the Book node involved

Node label Property(ies) Book properties The book properties(buttons to interact with)

Node label Relationship(s) Book relationships The book relationships(buttons to interact with)

Node Node Book Editor Relationship between them and the startnode

Search input functionality is based on the number of keywords input.

When the “search” button is triggered the first thing to be done is the number of

keywords to be defined as one or two. In both cases the code tries to figure out

the type of keyword(s) using some other JavaScript functions in order to send

the right request. In addition, the code is able to recognize the null value and

show an alert message to the user.

After declaring the number and the type of keywords the program calls the

corresponded function that executes the request including the keyword input as

path variable.

In case of one keyword

 If the word typed belongs to any category like nodes, relationships or

properties, the program declares and sends the same request as in the

case of the drop down list described previously:

@GetMapping("/shownodes")

[…]
@GetMapping("/showrelationshiptypes")

[…]
@GetMapping("/showproperties")

[…]

 Else If the word typed is any value and not a category as referred just

before , the request that is sent includes the said value through “keyword”

variable as you can see in the following code :

$.ajax({
 type: 'GET',
 url: 'http://localhost:8080/search/' + keyword,
 dataType : "json",
 contentType:"application/json",
 success: function(data){

 […]

 }
});

The @RestController NodeController receives the request and runs the function

including the keyword transferred as a @PathVariable :

@GetMapping("/search/{keyword}")
public Object getObject(@PathVariable String keyword) {
 return objectRecognitionService.setParamsAndSearch(keyword); }

The function setParamsAndSearch with keyword as a parameter is implemented

inside the @Service ObjectRecognitionService which is the most critical part

behind the entire search functionality. Let us have a better look of this @Service

function’s code logic by using pseudocode and comments instead of the java

commands:

Result setParamsAndSearch(keyword){
 //check the type of the keyword

 if(keyword is any property title)){

 1)Get all the properties listed inside a Map collection

 2)Run a query that unwinds these properties one by one and matches

 the node if any of these properties equals the keyword value and
 finally returns the result of the matched property as
 “showproperties”.

 "unwind {props} as prop" +
 "MATCH (n) WHERE prop =~ '(?i).*"+keywordInserted+".*' " +
 "RETURN distinct prop as showproperties"

 3) Return the query Result.

 }else if (keyword is any node title){

 1)Get all the node labels listed inside a Map collection

 2)Run a query that unwinds these node labels one by one and matches
 the node if any of these node labels equals the keyword value and
 finally returns the result of the matched node as “shownodes”.

 "MATCH (n) " +
 "unwind $nodes as node" +
 "match (n) where node=~ '(?i).*"+keywordInserted+".*' " +
 "RETURN distinct node as shownodes "

 3)Return the query Result.

 }else if (keyword is any relationship type title){

 1)Run a query that matches the type of relationship if the second
 one equals to the keyword value and returns the result of the
 matched relationship type as “showrelationshiptypes”

 "MATCH (a)-[r]-(b) " +
 "WHERE type(r)=~ '(?i).*"+keywordInserted+"*'" +
 "RETURN distinct type(r) as showrelationshiptypes "

 2)Return the query Result.

 }else { //the keyword probably matches any property value

 1)Get all the properties listed inside a Map collection

 2)Run a query that unwinds these properties one by one and matches
 the node if any of these properties values’ equals the keyword
 value and finally returns the result of the matched value as
 “NodeLabel” and the involved node as info.

 "MATCH (n)" +
 "unwind keys(n) as prop" +
 "MATCH (n) WHERE n[prop] =~ '(?i).*"+keywordInserted+".*'" +
 "RETURN labels(n) as NodeLabel, n as info"

 3)Return the query Result.

 }

In case of two keywords

 JavaScript code separates the keywords and puts them in an array in

order to handle them one by one.

 Now the code executes similar functions to the case of one inserted word

for each keyword. It actually recognizes and defines the kind of keyword.

 The added functionality needed in this case is the handling of keywords

combination after receiving the results and types are known. For this

handling there is a specific function called keywordHandling inside the

JavaScript code that accepts an array with keyword types and an array

with the corresponded values in order to proceed.

You can get an idea of this function code logic from the following section

in which the JavaScript commands have been replaced by pseudocode and

comments instead to make the flow more clear.

function keywordHandling(arrayTypes,arrayValues){
 console.log("inside the handling: ", arrayTypes, arrayValues);
 if(if the combined keywords are : node label & property name)){
 //ex. Book price

 1) assign the node label value to the node variable

 2) assign the property name value to the prop variable

 3) make the corresponded request call passing the node and
 prop values as path variables

 $.ajax({
 type: 'GET',
 url:
'http://localhost:8080/property/propertyOfnode/'+ node +'/' +prop,
 dataType : "json",
 contentType:"application/json",
 success: function(data){

 […]
 }
 });
 }else if(if the combined keywords are : node label & relationship
type){ //ex. Book WRITED

 Similar steps to the first “if” case

 }else if(if the combined keywords are : node label & node label){
 //ex. Book Author
 Similar steps to the first “if” case

 }else if(if the combined keywords are : node label & “nodes”){
 //ex. Book nodes
 1) assign the node label value to the node variable

 2) call the corresponded function (to apply the request)
 passing the node as parameter

 }else if(if the combined keywords are : node label & “properties”){
 //ex. Book properties
 1) assign the node label value to the node variable

 2) call the corresponded function (to apply the request)
 passing the node as parameter

 }else if(if the combined keywords are : node label &
“relationships”){){ //ex. Book relationships

 1) assign the node label value to the node variable

 2) call the corresponded function (to apply the request)
 passing the node as parameter

 }
// >>>>>>>>>>>>> CONTINUE WITH ELSE IF FOR MORE CASES

After filtering keywords with “if conditions” the program recognizes in which

category they belong and keeps the keyword. In case of search element the

category is not defined in the front end of the application. A function needs to

be executed in the back end in order to return the category as string instead.

The category types remain the same with one more added:

 Shownodes – if the keyword is a node label

 Showrelationshiptypes – if the keyword is a relationship type

 Showproperties – if the keyword is a property name

and the category that we did not see as an option in the drop down list :

 NodeLabel – it represents the keyword with any property value.

3.5.3. Responses handling

Now that the request formation is described it is the time to be explained the

way the results are being handled in order to be functional and help the user to

explore the dataset through interaction.

Due to the fact that all the information is being dynamically retrieved according

to the user options, the functionality that is invoked by the request responses

need to obtain characteristics once the request had being successfully

responded. Practically, that means that any data retrieved is immediately

connected to a specific functionality by obtaining the ideal class which already

has been implemented to satisfy the core functionality. This class is delegated

based on the category recognition we mentioned in the previous section.

The response for both search input element and drop down list triggers

the function that is responsible for sending the request according to the user

option or keyword typed as was described earlier. The corresponding request is

formed according to the defined category which can be: shownodes,

showrelationshiptypes or showproperties and in case of search input

NodeLabel, as well.

Let us see for each of those categories’ calls the information returned:

 Shownodes returns the dataset node labels

 Showrelationshiptypes returns the dataset relationship types

 Showproperties returns the dataset properties

The “success” part of the AJAX call includes the function that handles the

successfully retrieved data, this function is implemented as below:

success: function(data){
 console.log(data);
 for (let nodeTitle in data) {
 $("<button>" + data[nodeTitle] + " </button>"
).addClass(option).appendTo($("#result"));
 }
}

As you can see above, each data retrieved, which in this case is:

 each node in case of “shownodes” case

 each relationship type in case of “showrelationshiptypes” case

 each property in case of “showproperties” case

is wrapped into a new (button) element with text information populated by the

current data retrieved. For example, if the data parameter refers to nodes the

query returns all the node labels so the button texts will get their names from

each node label. Next, the element is assigned to a class in a dynamic way as well,

while the addClass() method parameter is a variable instead of a specific value.

The potential main classes to be set on the retrieved data depend on the category

type once again. Hence, the possibilities of class assignments are:

1. addClass(shownodes)

2. addClass(showrelationshiptypes)

3. addClass(showproperties)

Consequently, when the user selects any drop down list option or type keywords,

the program keeps this value to use it dynamically for both request call and

response handling when it comes to the class that needs to be set in the front

end.

After the class assignment every button element behaves according to the set

class’s functions triggered by user event such as click. Below you can see each

button class “on click” function with comments and steps for a better

understanding of JavaScript and JQuery code.

1. “Shownodes” class on click function:

function(){
 1) assign the clicked button’s text to a node variable
 var node = $(this).text();

 2)store currentNode to the localStorage
 localStorage.setItem("currentNode", node);

 […]

 3)create 3 new buttons dynamically based on the node variable value

 $("<button>" + node + " node properties</button>"
).addClass("nodeProperties").attr("value", node).appendTo($("#result2"));

 $("<button>" + node + " node relationships</button>"
).addClass("nodeRelationships").attr("value", node).appendTo(
$("#result2"));

 $("<button>check all " + node +" nodes</button>"
).addClass("allNodes").attr("value", node).appendTo($("#result2"));

4)call the function countNode to count and present the number of node
instances
 countNode(node);
 }

As you can notice in the code above three new buttons are created using the

node variable to form their displayed texts. In this case the classes set to these

new buttons are specific:

 nodeProperties class

 nodeRelationships class

 allNodes class

 Below you can check the common steps followed for the three said classes when

on click function is triggered:

function(){
 […]

1) assign the clicked button’s text to a variable
 node = $(this).val();
 //the variable value could be any node label

2) call the responsible function parsing the node variable
 callTheResponsibleFunction(node);

// callTheResponsibleFunction function implementation

function callTheResponsibleFunction (node) {

 $.ajax({
 type: 'GET',
3) form the request by using the parsed node value as a path variable
 url: 'http://localhost:8080/node/---/' + node,

 […]
4) the corresponding query runs at the back-end function that is being
executed to respond to the request that is sent

 success: function(data){

 […]

 $.each(data, function(key, val) {

 5) set the corresponding class on every data retrieved so

 that the button to obtain this class’ functionality and
 form the displayed text according to the returned value

 });

6) append the elements in order to be displayed
 }
 });
}
//end of callTheResponsibleFunction function implementation

 }

In case of allNodes class there is some more functionality to be referenced.

AllNodes class’ on click function creates a table in which every row represents a

node instance and adds two new button element at the end of each row,

dynamically. When the new buttons are created they store as attribute the id of

the same row node. In this way their entire functionality is based on the specific

instance. Particularly, the buttons are:

 Check relationship button which returns another dynamically created

table with two similar buttons for each row and

 Visualize relationship button which draws the graph related to the

current node’s relationships using neovis.js library.

The user is able to ‘jump’ from table to table by pressing the check

relationship buttons sequentially.

Check relationship button on click function implementation

function(){

 1) Get the current (row) node id via button’s attribute
 var nodeId = $(this).attr("vid");

 2)Get the current node stored
 var node = localStorage.getItem("currentNode");

 3)Form the query that involves all the relationships of current node
var cypher = "MATCH p=(a:" + node+")-[r]-(b) where ID(a)=" +nodeId+"
RETURN p"

 var config = {

 […]

 labels: {

 },
 relationships:{

 },
4) parse the formed query to draw the graph
 initial_cypher: cypher
 }

 […]

 }

Visualize relationship button on click function implementation

function(){

 […]

1) Get the current (row) node id via button’s attribute
 var nodeId = $(this).attr("id");

2)Get the current node stored
 var node = localStorage.getItem("currentNode");
 $.ajax({
 type: 'GET',
3) form the request by using the parsed node value and node id as path
variables
 url: 'http://localhost:8080/node/relationships/' + node+ '/'+
nodeId ,

 […]

 $.each(data, function(key, val) {

4) create a table which stores each relationship retrieved (from the query
that ran in the back end) in a row and adds same way two new element
buttons in the end of each row.

 });

 […]

 }
 });
 }

2. “showrelationshiptypes” class on click function:

function(){
1) assign the clicked button’s text to a rel variable
 var rel = $(this).text()

 […]

2) create 2 new buttons dynamically based on the rel variable value

 $("<button>" + rel + " properties</button>"
).addClass("relProperties").appendTo($("#result2"));
 $("<button>" + rel+ " involved nodes</button>"
).addClass("relativeNodes").appendTo($("#result2"));

3) call the function countNode to count and present the number of
relationships type instances

 countRel(rel);
 }

The code above shows that 2 new buttons are created using the rel variable to

form their displayed texts. In this case the classes set to these new buttons are

specific:

 relProperties class

 relativeNodes class

Below you can check the common steps for the two said classes on click

functions:

 buttons created by “showrelationshiptypes” classes’ on click common

function:

function(){
 […]
1) assign the clicked button’s text to a variable
 var rel = $(this).text().replace("properties", "").replace(/[^a-zA-
 Z]/g, "");
 //the variable value could be any relationship type

2) call the responsible function parsing the node variable
 callTheResponsibleFunction(rel);

// callTheResponsibleFunction function implementation

function callTheResponsibleFunction (rel) {

 $.ajax({
 type: 'GET',
3) form the request by using the parsed rel value as a path variable
 url: 'http://localhost:8080/relationship/---/' + rel,

 […]

4) the corresponding query runs at the back-end function that is being
executed to respond to the request that is sent

 success: function(data){

 […]

 $.each(data, function(key, val) {

 5) set the corresponding class on every data retrieved so
 that the button to obtain this class’ functionality and
 form the displayed text according to the returned value

 });

6) append the elements in order to be displayed
 }
 });
}
// end of callTheResponsibleFunction function implementation

}

3. “showproperties” class on click function:

function(){

1) keep the clicked button’s text as prop variable
 var prop = $(this).text();

2)store currentProperty to the localStorage
 localStorage.setItem("currentProperty", prop);

3) create 1 new button dynamically based on the prop variable value

 $("<button>" + prop + " property involved nodes</button>"
).addClass("propNodes").appendTo($("#result2"));

4) create another new button dynamically based on the prop variable value
and relate it to the currentNode if exists or to the

 if(localStorage.getItem("currentNode")!=""){
 $("<button>" + prop+ " property of
"+localStorage.getItem("currentNode")+" node</button>"
).addClass("propOfCurrentNode").appendTo($("#result2"));
 }
}

The code just presented creates 2 new buttons using the prop variable to form

their displayed texts. In this case the classes set to these new buttons are

specific:

 propNodes class

 propOfCurrentNode class

 buttons created by “showproperties” classes’ on click common

function:

function(){
 […]
 1) assign the clicked button’s text to a variable
 prop = $(this).text().replace("property involved nodes",
"").replace(/[^a-zA-Z]/g, "");

 $.ajax({
 type: 'GET',
2) form the request by using the parsed prop value as a path variable
 url: 'http://localhost:8080/property/---/' + prop,
 […]

3) the corresponding query runs at the back-end function that is being
executed to respond to the request that is sent

 success: function(data){

 […]

 $.each(data, function(key, val) {

 4) set the corresponding class on every data retrieved so
 that the button to obtain this class’ functionality and
 form the displayed text according to the returned value
 });

5) append the elements in order to be displayed
 }
 });
}

3.5.3.1 Types of results

This chapter describes the application functionality from the side of User

experience. All the functionality flow that were described in the previous is

triggered by the user interface elements. There are two types of results returned

categorized by the capability of interacting with them .

When the results regard to specific values of the dataset they have an

information form and display the data. The user can learn the desired

information but cannot interact with the result itself.

On the contrary, when the results include more general and category like

information (node labels, relationship types and properties) the user can keep

interacting with the graph data in order to retrieve more information about it. In

this chapter the user possibilities are presented and explained step by step.

3.5.3.2 Interacting with node buttons

After selecting to interact with the node labels, each result button pressed offers

the user three options through three buttons to check the node properties,

relationships or instances, as well as the information about the existed instances

of the node, like in the picture:

Image 16: Displayed result buttons after interacting with node result buttons

The user is able to proceed the way he or she prefers. In case of “ _ node

properties” and “_ node relationships” the application will show the requested

information in interactive buttons to let the user choose next steps again.

If the “check all _ nodes” button be pressed, the result will be a table with all the

instances of the node displayed. In addition, two more buttons will be created for

each table row that represents an instance. Those buttons are the “Check

Relationship” button and the “Visualize” button. You can have an image of the

above description due to the following picture.

3.5.3.3 Interacting with the table buttons

Every pair of the “check relationships” and “viz relationships” buttons represents

each node instance.

The first button leads to another table that includes all the information about

nodes that have any type of connection with the selected row node. An example

of the “check relationships” result table of the “Tom Sawyer” node involved is

shown below:

Image 17: Displayed result table after clicking the “check all nodes” button

Image 18: Displayed result table after clicking the “check relationships” row button

The same pair of buttons keeps being created for every row and lets the user

keep interacting sequentially.

The second button visualizes the involved relationships of the selected node row.

The next graph picture was drawn after clicking the “Tom Sawyer” node‘s

“visualize relationships” button.

3.5.5.4 Interacting with property buttons

Selecting any property button consequences to a button “[property] property

involved nodes” display that when pressed shows the node labels that are

related to the property the user chose. Then, the user can pick the node he or she

wants in order to proceed and interact with the nodes buttons. The button as

displayed in the screen are the following:

Image 19: Displayed result table after clicking the “check relationships” row button

Image 20: Displayed result buttons after interacting with property result button

3.5.5.5 Interacting with relationship type buttons

When a relationship type button is pressed the user has two options available

through the buttons created as in the picture below, and also the number

relationship instances as information on bottom:

The “[relationship] properties” button shows the relationship properties in

interactive buttons in the described regular way . The “[relationship] involved

nodes” button displays the relationship using symbols with both the involved

nodes and the relationship type as buttons to interact with. Next picture helps to

the said description better understanding:

Image 21: Displayed result buttons after interacting with relationship result button

Image 22: Displayed result table after clicking the “involved nodes” button

homescreen.html

2 options

visualization
button

vis.html page

search input

up to 2 keywords

result according to the
input(check 3.5.2.5

chapter)

(buttons or list table)

explore list(start
with)

drop down list

nodes

select a node label

node properties

select property of the

selected node

node relationships

select rel of the
selected node

count(how many
node insances)

label

relationships
select a rel type

rel properties

select prop to interact

rel involved

click & interact with nodes

 count(how many
existed rel of this

type)

label

properties

select one

property involved
nodes

click and interact
with nodes

3.5.5.6 The general navigation

The following diagram describes the flow of interaction through user interface

elements and user’s options. Starting from the initial screen, the user has two

different ways to begin exploring as it was analyzed in the previous chapters.

Each element gives user the chance to proceed the way he or she wants. The

main displayed frame describes the available interaction sources while the white

field description gives the details about user’s choices.

Diagram 5: User interface interaction flow

3.5.4 Developer guide
In order to use this project source code as developer for implementing another

neo4j database sample we need to take into consideration some necessities and

restrictions.

3.5.4.1 Prerequisites

First of all, we have to transfer neo4j schema could Java objects. After figuring

out the final domain model, the next Step is to create all the necessary classes

that will be used as node entities and their respective controllers and

repositories. All the node entities should extend the EntityNode existed class

which ensures the correct id usage. Inside the node entity annotated classes we

define the object properties. The object properties need to have same name as

the import variables so that they will be mapped correctly during the import

phase. It is preferred not to use any existed id. If it is inevitable the class should

not extend the EntityNode and the id should be Long type.

Last but most important is to implement very detailed query that implies all the

needed information inside their respective import service.

3.5.4.2 Restrictions

There are some restrictions while implementing another database sample inside

the project. There are several reserved words that could cause functionality

breakdown. This happens because these words are used as variables in both

front and back end. Consequently, the program will crush or provide a wrong

result to the user. You can see these words that are involved at the source code

and should not be used as variables, entities or values inside the imported data

in the following table.

RESERVED WORDS: value, result, nodelabel, details, node, property, relationship

3.5.4.3 Simplicity

 The Rest API used only for retrieving data from the database and not for

creating new information or updating them. This helps the fact that the imported

data is not necessary to be mapped to the java objects in order to be used. The

requests for rendering data use the “GET” method which has been implemented

combined with the java functions that return “Result” type after executing the

queries that also only retrieve database information (except for the import

cases). The following chapter is about a small sample of data to be imported with

one by one mapping to POJO’s. The entire process is explained step by step.

Testing

The database schema includes Songs, Artists and Categories. You can see the

schema in the graph below:

Diagram 6: Schema for testing dataset

The first step is to fill in the import neo4j query to the corresponding function.

The function is inside the generic NodeRepository interface which extends the

Neo4jRepository. The Collection stores EntityNode objects so the imports

entities obtain a unique id due to this class’ functionality.

public interface NodeRepository<T> extends Neo4jRepository<T, Long> {

[…]

 @Query("LOAD CSV WITH HEADERS FROM 'file:///songs.csv' AS Line\n" +
 "merge (s:Song{title:Line.title})\n" +
 "merge (a:Artist{name:Line.artist})\n" +
 "merge (g:Genre{category:Line.genre})\n" +
 "create (a)-[:SINGS{ releasedYear: Line.releasedYear }]->(s)-[:IS]-
>(g)")
 Collection<EntityNode> importSchema();

[…]

}

Next, we need to create the POJOs that will be mapped to the entities to be

imported via OGM. We can adapt relationship types with @Relationship

annotation and add or change attributes names. For simplicity reasons in this

example the only added functionality after importing the data is in regard to the

id as mentioned earlier.

@NodeEntity
public class Song extends EntityNode {

 @Property("title")
 private String title;
 public Song() {
 }
 public String getTitle() {
 return title;
 }
}

@NodeEntity
public class Artist extends EntityNode {

 @Property("name")
 private String name;
 public Artist(){
 }
 public String getName() {
 return name;
 }
}

@NodeEntity
public class Category extends EntityNode {

 @Property("category")
 private String category;
 public Category() {
 }
 public String getCategory() {
 return category;
 }
}

After this process we can run the import function in order to make data available

for exploration by pressing the “import” button on home screen.

4 Epilogue

4.1 Summary and Conclusion

 This project implementation combined Neo4J Graph Database with a lot of

popular technologies in a simple and direct way. There is plenty of available

tools for neo4j integration and usage. OGM and Spring MVC provide enormous

flexibility considering to Neo4j Database integration. Neo4j cypher potentials are

huge and clear for any kind of data retrieving.

4.2 Future improvements

There is a plenty of future improvements that could make this project better

regarding the user interface, the functionality and the code clarity for both

developer and user side.

In general, the program is difficult to run with a large volume of data and it slows

down importantly when the information to be retrieved is a lot. The data

rendering could be enhanced by using software engineering tools, libraries and

best practices.

From the side of developer, the limitations should be less in order to

make the integration easier and faster. The keyword field can be improved so

that it will accept more keywords at the same time and convert the total input

into a “query like” result. Also, the input could use auto complete in order to help

user with suggested words options and recognize any invalid value.

On the other hand, user should have more descriptions available to

understand the entire logic of the program even if he or she is not familiar with

graph databases. Furthermore, the results could be interactive in any case. Table

results could give more interaction via more buttons. An import form could be

placed to give the user the possibility to import datasets the way he or she wants.

Bibliography

[1] J. Webber και I. Robinson, «The Top 5 Use Cases - Unlocking New Possibilities with

Connected Data,» neo4j.com, 2017.

[2] Neo4j, «https://neo4j.com/,» [Ηλεκτρονικό]. Available: https://neo4j.com/. [Πρόσβαση

20 06 2020].

[3] J. J. Miller, «Graph Database Applications and Concepts with Neo4j,» Atlanta US, 2013.

[4] M. Rodriguez και P. Neubauer, «“Constructions from Dots and Lines” Bulletin of the

American Society for,» American Society for Information Science and Technology,, τόμ.

36, pp. 35-41, 2010.

[5] S. org, «https://docs.spring.io,» [Ηλεκτρονικό]. Available:

https://docs.spring.io/spring/docs/current/spring-framework-reference/web.html.

[Πρόσβαση 2 6 2020].

Appendix

Github link for the project code:

https://github.com/Penteridou/neo4jexploration

https://github.com/Penteridou/neo4jexploration

The end

