DEVELOPMENT OF ALGORITHM LIBRARY FOR
STRING MATCHING SUPPORTED BY VISUALIZATION
AND PERFORMANCE COMPARISON USING
BENCHMARKS FOR BIOLOGICAL SEQUENCE
DATASETS

ALEXANDROS KONSTANTINOS KOKOZIDIS
2019.06.21

UNIVERSITY OF MACEDONIA
DEPARTMENT OF APPLIED INFORMATICS

DEVELOPMENT OF ALGORITHM LIBRARY FOR
STRING MATCHING SUPPORTED BY VISUALIZATION
AND PERFORMANCE COMPARISON USING
BENCHMARKS FOR BIOLOGICAL SEQUENCE
DATASETS

Introduction
Implementation
Benchmark
Visualization
Conclusion

Introduction: String searching and applications

Definition.
Pattern E X A
Text STRINGSEARCHINGEXAMPTLE

Well-known algorithms.
Brute Force, Knuth-Morris-Pratt, Boyer-Moore, Karp-Rabin, etc.

Applications.

Text editors (search help, spell check),
Plagiarism detection,

Web search engines,

System intrusion detection,

DNA/ Biological sequence matching,

Introduction: Purpose of the thesis

Observations.

e Over 80 algorithms since 1970.

e Best algorithm in all cases does not exist; each thrives in different scenarios

* Many algorithms are too complicated and hard to understand.

e Theoretical analysis focuses on upper limits; need for practical performance
testing.

» Data-heavy applications call for efficient algorithms; need for collective
benchmarks!

Purpose.

* Implement algorithms in OO paradigm.

e Visualize their functionality.

e Offer a collective benchmark focused on biological data.

Introduction: About the algorithms

35 string searching algorithms presented in C (Charras and Lecroq).

Each has a preprocessing and a searching phase.

All receive first the pattern (preprocessing) and then the text (searching).

All utilize the ‘sliding window’ approach.

pattern a ab
text caaadhb
aab
aab
aab
a ab
aab
aab
aab

e Categorized in 4 groups: left to right, right to left, specific order, any order.

Introduction: Line of work Vs. Presentation order

Line of work.

Studying

source Implementation Visualization Benchmarking
material

Presentation order.

Benchmarkin : ..
g Visualization

procedure

Algorithms &
implementation details

procedure and
results

Implementation: Points of interest

Implemented in Java; Object-Oriented approach (Sedgewick).

Common interface.
e Common public methods: constructor + search + searchAll
* C(Clean separation of preprocessing and searching, consistency.
» Efficient searching of a pattern in different texts

Optimization. Not the point of this thesis. Consistent port of C source code.

The \0’ issue. Termination character in C strings. Reason of most modifications.

Benchmarking: Decisions

Past work. Measured on # of character comparisons; only a handful of
algorithms where compared.

Algorithms? All.

Data? Biological. Escherichia coli genome sequence ({A, C, G, T}) of 4.5m chars.
https://www.ezbiocloud.net/genome/explore?puid=172783

Measure of performance? Execution times
Functions? search and searchAll

Pattern size? 2 groups:
* small{2,3,4,5,6, 7, 8,9, 10}
e large {10, 20, 40, 80, 160, 320, 640}

Results. Displayed in 3 sections:
e Individual
e Collective
e Collective (grouped)

Benchmarking: Decisions

Past work. Measured on # of character comparisons; only a handful of
algorithms where compared.

Algorithms? All.

Data? Biological. Escherichia coli genome sequence ({A, C, G, T}) of 4.5m chars.
https://www.ezbiocloud.net/genome/explore?puid=172783

Measure of performance? Execution times

Functions? search and searchAll 4 scenarios:
search for small
Pattern size? 2 groups: - search for large
* small{2,3,4,5,6,7,8,9, 10} searchAll for small

+ large {10, 20, 40, 80, 160, 320, 640} searchAll for large

—

Results. Displayed in 3 sections:
e Individual
e Collective
e Collective (grouped)

Benchmarking: Benchmark Suite

Implementation. Java. Exploits the Reflection API to automatically create and
run the tests and auto-validate the correctness of the algorithms.

Scheme. Each algorithm is measured (average) in each of the pattern sizes by
selecting randomly 10000 patterns; done for both search and searchAll.

Pattern sizes

2 3 .. 10 20 . 640 avg
Brute Force
Algs Karp-Rabin
Morris-Pratt
each cell stores the average time of finding the average time per algorithm; used in the

10000 randomly selected patterns of each pattern size comparative results of the second section

minimum time per pattern size; used in the
mir1| | | | | | | | individual results of the first section

average time per pattern size; used in the
E'VE| | | | | | | | individual results of the first section

search

searchAll

Benchmarking: Individual results

Results. For each algorithm four line charts; one for each scenario. Highlights
the performance against the minimum and average times from all the

algorithms.
Small patterns

7000000
6000000

5000000
4000000 \

3000000

e

2000000
1000000

i]

2 3 4 5] 7 8 9 10

Pattern Size Minimum AVErGEE e B V]

60000000

50000000

40000000

30000000

20000000

10000000

0

Pattern Size Minimum AVErage eegemB

25000000

20000000

15000000

10000000

5000000

0

50000000
45000000
40000000
35000000
30000000
25000000
20000000
15000000
10000000
5000000
0

Large patterns

-

— —

10 20 40 80 160 320 840

Pattern Size Pinimum AVErage egesBM

""“'-o-..___'

10 20 40 80 180 320 840

Pattern Size Mliminnum AVErage B

11

Benchmarking: Individual results, a surprising result!

7000000

6000000

5000000

4000000

3000000

2000000

1000000

3 - 5 6 7 8 9 10

Pattern Size Minimum AVEMGEE g BF

Brute Force. For small alphabet and small patterns, lack of preprocessing phase
thrives over shift tables and other preprocessing techniques.

12

Benchmarking: Collective results

Results. For each algorithm, the average time on all patterns are displayed for

each of the

BF
50
BM
RC

BNDDM

KR
BOM
SMTH

KMP55
55
MNSM

RF
DFA
KMP
MP
SMN

search

AC
TBM

GG

TRF
SMODA
BMT

BR

AG
FOM
G5

oM

four scenarios.
Small patterns

=

1000000 2000000

:
%

5000000 6000000

%

W Preprocessing M Searching

13

Benchmarking: Collective results - summary

Best performing algorithms on average of all tested pattern sizes

_ Small patterns Large patterns

“ Brute Force Zhu-Takaoka

Remarks.
In larger patterns, prevail algorithms that perform comparisons from

right to left;
Almost all algorithms of the Boyer-Moore family vastly outperform

those of Knuth-Morris-Pratt family.

14

Benchmarking: Collective results (grouped)

Each scenario’s collective result was grouped according to the character

comparison order of each algorithm.

S0

KR

MSN
DFA
KMP
P
SMN
AC
SMOOA
FDM

M5
KMP355
55

AS5
GG
G5
om

=

[=]

Left to Right
] BM
] RC
] BNDDM
] BOM
] T
] RF
] TEM
] TRF
] BR
] AG
1000000 2000000 3000000 4000000 5000000 6000000 0 1000000
m Preprocessing m Searching
In a Specific Order
BF

1000000 2000000 3000000 4000000 5000000 6DOOOOO 7000000 EO0O00000 1] 1000000

m Preprocessing m Searching

Search — small patterns

Right to Left

2000000 3000000 4000000

W Preprocessing m Searching

No Specific Order

2000000 3000000 4000000

m Preprocessing m Searching

5000000 S000000

15

Visualization: Visualization Suite

Goal. Provide an animated glimpse of the functionality of a string search
algorithm.

Implemented? HTML, CSS, JavaScript, jQuery

Advantages.
* Flexibility
e Adding a string search algorithm is simple.
e Easily and dynamically embeddable in web sites

Visualization: Visualization Suite

Basic Idea.
e All algorithms are ported to JavaScript.

* They can produce predefined queries describing the actions to be
animated

e A JavaScript module acts as a hub that receives those queries;
interprets them with respective animations.

Remarks.

* A resemblance of a controller-view model was implemented.
e A script adds dynamically functionality in all marked HTML elements.

Visualization

: Visualization Suite Preview

Pattern input
Text input

Algorithm selection

A

[

Algorithm: Quick Search

v

\

TEXT SEARCH EXAMPLE R C H E X
SEA

RESET PAUSE

Control Panel Display Panel

Published with Surge tool as a static web site at esmaj.surge.sh

Text tiles

Pattern tiles

Conclusion

* 35 string search algorithms were ported/implemented in Java; the OO
nature attempted to make the algorithms simpler to understand and reuse.

* We ranked their performance running benchmarks on huge biological
seqguence data

* Implemented a simple visualization suite to aid the visual understanding of
their functionality.

Conclusion: Future Extensions

* Focus on optimizing some of the algorithms

 Use a bigger sample on the benchmarks (run all the possible substrings of a
huge text-or several huge texts)

e Add more animations in the visualization suite

Thank youl!

Any questions?

