
DEVELOPMENT OF ALGORITHM LIBRARY FOR
STRING MATCHING SUPPORTED BY VISUALIZATION

AND PERFORMANCE COMPARISON USING
BENCHMARKS FOR BIOLOGICAL SEQUENCE

DATASETS

ALEXANDROS KONSTANTINOS KOKOZIDIS
2019.06.21

UNIVERSITY OF MACEDONIA

DEPARTMENT OF APPLIED INFORMATICS

1

DEVELOPMENT OF ALGORITHM LIBRARY FOR
STRING MATCHING SUPPORTED BY VISUALIZATION

AND PERFORMANCE COMPARISON USING
BENCHMARKS FOR BIOLOGICAL SEQUENCE

DATASETS

Introduction
Implementation
Benchmark
Visualization
Conclusion

2

Introduction: String searching and applications

Definition.
Pattern E X A

Text S T R I N G S E A R C H I N G E X A M P L E

Applications.
Text editors (search help, spell check),
Plagiarism detection,
Web search engines,
System intrusion detection,
DNA/ Biological sequence matching,
…

Well-known algorithms.
Brute Force, Knuth-Morris-Pratt, Boyer-Moore, Karp-Rabin, etc.

3

Introduction: Purpose of the thesis

Observations.
• Over 80 algorithms since 1970.
• Best algorithm in all cases does not exist; each thrives in different scenarios
• Many algorithms are too complicated and hard to understand.
• Theoretical analysis focuses on upper limits; need for practical performance

testing.
• Data-heavy applications call for efficient algorithms; need for collective

benchmarks!

Purpose.
• Implement algorithms in OO paradigm.
• Visualize their functionality.
• Offer a collective benchmark focused on biological data.

4

Introduction: About the algorithms

• 35 string searching algorithms presented in C (Charras and Lecroq).

• Each has a preprocessing and a searching phase.

• All receive first the pattern (preprocessing) and then the text (searching).

• All utilize the ‘sliding window’ approach.

• Categorized in 4 groups: left to right, right to left, specific order, any order.

pattern a a b
text c a a a b

a a b
a a b
a a b
a a b

a a b
a a b
a a b

5

Introduction: Line of work Vs. Presentation order

Line of work.

Studying
source

material
Implementation BenchmarkingVisualization

Algorithms &
implementation details

Visualization
procedure

Benchmarking
procedure and

results

Presentation order.

6

Implementation: Points of interest

Implemented in Java; Object-Oriented approach (Sedgewick).

Common interface.
• Common public methods: constructor + search + searchAll
• Clean separation of preprocessing and searching, consistency.
• Efficient searching of a pattern in different texts

Optimization. Not the point of this thesis. Consistent port of C source code.

The ‘\0’ issue. Termination character in C strings. Reason of most modifications.

7

Benchmarking: Decisions

Past work. Measured on # of character comparisons; only a handful of
algorithms where compared.

Algorithms? All.

Data? Biological. Escherichia coli genome sequence ({A, C, G, T}) of 4.5m chars.
https://www.ezbiocloud.net/genome/explore?puid=172783

Measure of performance? Execution times

Functions? search and searchAll

Pattern size? 2 groups:
• small {2, 3, 4, 5, 6, 7, 8, 9, 10}
• large {10, 20, 40, 80, 160, 320, 640}

Results. Displayed in 3 sections:
• Individual
• Collective
• Collective (grouped)

8

Benchmarking: Decisions

Past work. Measured on # of character comparisons; only a handful of
algorithms where compared.

Algorithms? All.

Data? Biological. Escherichia coli genome sequence ({A, C, G, T}) of 4.5m chars.
https://www.ezbiocloud.net/genome/explore?puid=172783

Measure of performance? Execution times

Functions? search and searchAll

Pattern size? 2 groups:
• small {2, 3, 4, 5, 6, 7, 8, 9, 10}
• large {10, 20, 40, 80, 160, 320, 640}

Results. Displayed in 3 sections:
• Individual
• Collective
• Collective (grouped)

9

4 scenarios:
• search for small
• search for large
• searchAll for small
• searchAll for large

Benchmarking: Benchmark Suite

Implementation. Java. Exploits the Reflection API to automatically create and
run the tests and auto-validate the correctness of the algorithms.

Scheme. Each algorithm is measured (average) in each of the pattern sizes by
selecting randomly 10000 patterns; done for both search and searchAll.

10

Benchmarking: Individual results

Results. For each algorithm four line charts; one for each scenario. Highlights
the performance against the minimum and average times from all the
algorithms.

Small patterns Large patterns

se
ar

ch
se

ar
ch

A
ll

11

Benchmarking: Individual results, a surprising result!

Brute Force. For small alphabet and small patterns, lack of preprocessing phase
thrives over shift tables and other preprocessing techniques.

12

Benchmarking: Collective results

Results. For each algorithm, the average time on all patterns are displayed for
each of the four scenarios.

Small patterns

se
ar

ch

13

Benchmarking: Collective results - summary

Small patterns Large patterns

search Brute Force Zhu-Takaoka

searchAll Shift Or Zhu-Takaoka

Best performing algorithms on average of all tested pattern sizes

Remarks.
• In larger patterns, prevail algorithms that perform comparisons from

right to left;
• Almost all algorithms of the Boyer-Moore family vastly outperform

those of Knuth-Morris-Pratt family.

14

Benchmarking: Collective results (grouped)

Each scenario’s collective result was grouped according to the character
comparison order of each algorithm.

Search – small patterns
15

Visualization: Visualization Suite

Goal. Provide an animated glimpse of the functionality of a string search
algorithm.

Implemented? HTML, CSS, JavaScript, jQuery

Advantages.
• Flexibility
• Adding a string search algorithm is simple.
• Easily and dynamically embeddable in web sites

16

Visualization: Visualization Suite

Basic Idea.
• All algorithms are ported to JavaScript.
• They can produce predefined queries describing the actions to be

animated
• A JavaScript module acts as a hub that receives those queries;

interprets them with respective animations.

Remarks.
• A resemblance of a controller-view model was implemented.
• A script adds dynamically functionality in all marked HTML elements.

17

Visualization: Visualization Suite Preview

Algorithm selection

Control Panel Display Panel

Pattern input

Text input

Text tiles

Pattern tiles

Published with Surge tool as a static web site at esmaj.surge.sh

18

Conclusion

• 35 string search algorithms were ported/implemented in Java; the OO
nature attempted to make the algorithms simpler to understand and reuse.

• We ranked their performance running benchmarks on huge biological
sequence data

• Implemented a simple visualization suite to aid the visual understanding of
their functionality.

19

Conclusion: Future Extensions

• Focus on optimizing some of the algorithms

• Use a bigger sample on the benchmarks (run all the possible substrings of a
huge text-or several huge texts)

• Add more animations in the visualization suite

20

Any questions?

Thank you!

21

