

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ

ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΑΝΑΠΤΥΞΗ ΒΙΒΛΙΟΘΗΚΗΣ ΑΛΓΟΡΙΘΜΩΝ ΓΙΑ ΤΑΙΡΙΑΣΜΑ

ΑΛΦΑΡΙΘΜΗΤΙΚΩΝ ΥΠΟΣΤΗΡΙΖΟΜΕΝΗ ΑΠΟ

ΟΠΤΙΚΟΠΟΙΗΣΗ ΚΑΙ ΣΥΓΚΡΙΣΗ ΤΩΝ ΑΠΟΔΟΣΕΩΝ ΤΟΥΣ ΜΕ

BENCHMARKS ΣΕ ΒΙΟΛΟΓΙΚΑ ΔΕΔΟΜΕΝΑ

Διπλωματική Εργασία

του

Αλέξανδρου Κοκοζίδη

Θεσσαλονίκη, Ιούνιος 2019

iii

ΑΝΑΠΤΥΞΗ ΒΙΒΛΙΟΘΗΚΗΣ ΑΛΓΟΡΙΘΜΩΝ ΓΙΑ ΤΑΙΡΙΑΣΜΑ

ΑΛΦΑΡΙΘΜΗΤΙΚΩΝ ΥΠΟΣΤΗΡΙΖΟΜΕΝΗ ΑΠΟ

ΟΠΤΙΚΟΠΟΙΗΣΗ ΚΑΙ ΣΥΓΚΡΙΣΗ ΤΩΝ ΑΠΟΔΟΣΕΩΝ ΤΟΥΣ ΜΕ

BENCHMARKS ΣΕ ΒΙΟΛΟΓΙΚΑ ΔΕΔΟΜΕΝΑ

Αλέξανδρος Κοκοζίδης

Πτυχίο Εφαρμοσμένης Πληροφορικής, Πανεπιστήμιο Μακεδονίας, 2013

Διπλωματική Εργασία

υποβαλλόμενη για τη μερική εκπλήρωση των απαιτήσεων του

ΜΕΤΑΠΤΥΧΙΑΚΟΥ ΤΙΤΛΟΥ ΣΠΟΥΔΩΝ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ

ΠΛΗΡΟΦΟΡΙΚΗ

Επιβλέπουσα Καθηγήτρια

κα Μαρία Σατρατζέμη

Εγκρίθηκε από την τριμελή εξεταστική επιτροπή την ηη/μμ/εεεε

κα Σατρατζέμη Μαρία

Καθηγήτρια

κ. Κασκάλης Θεόδωρος

Αναπληρωτής Καθηγητής

κα Κολωνιάρη Γεωργία

Επίκουρη Καθηγήτρια

...................................

ΑΛΕΞΑΝΔΡΟΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΚΟΚΟΖΙΔΗΣ, ΑΜ: 029/18

...................................

iv

Abstract

String searching, the act of finding a string in an even larger text, is an important

and well-studied field in computer science, with applications ranging from simple tasks

such as finding words in a text editor or performing a spell check, to more complex ones

like system intrusion detection systems and DNA sequence matching. Their importance

creates the need for easily understandable, efficient implementations of those algorithms.

This thesis attempts to provide an in-depth insight in the 35 string search algorithms

presented by Charras and Lecroq, by presenting their underlying functionality,

implementing them according to the object-oriented paradigm in the Java programming

language, comparing them on a custom, Java-based benchmark suite on huge biological

sequence data and animating them by implementing a visualization suite.

Keywords: String searching, Pattern matching, String searching algorithms,

Pattern matching algorithms, Java, Benchmarks, Bioinformatics benchmark,

Visualization, Javascript, Brute Force, Deterministic Finite Automaton, Karp Rabin,

Shift Or, Morris Pratt, Knuth Morris Pratt, Simon, Colussi, Galil Giancarlo, Apostolico

Crochemore, Not So Naïve, Boyer Moore, Turbo Boyer Moore, Apostolico Giancarlo,

Reverse Colussi, Horspool, Quick Search, Tuned Boyer Moore, Zhu Takaoka, Berry

Ravindran, Smith, Raita, Reverse Factor, Turbo Reverse Factor, Forward DAWG

Matching, Backward Nondeterministic DAWG Matching, Backward Oracle Matching,

Galil Seiferas, Two Way, String Matching On Ordered Alphabets, Optimal Mismatch,

Maximal Shift, Skip Search, KMP Skip Search, Alpha Skip Search

v

vi

Contents

Contents vi

1 Introduction 1

1.1 Problem Definition 1

1.2 Structure 2

2 Algorithm presentation 3

2.1 Introduction 3

2.2 Terms 5

2.3 Brute-Force 6

2.3.1 Description 6

2.3.2 Implementation Details 7

2.4 Deterministic Finite Automaton 8

2.4.1 Description 8

2.4.2 Implementation Details 9

2.5 Karp-Rabin 10

2.5.1 Description 10

2.5.2 Implementation Details 11

2.6 Shift Or 12

2.6.1 Description 12

2.6.2 Implementation Details 13

2.7 Morris-Pratt 14

2.7.1 Description 14

2.7.2 Implementation Details 16

2.8 Knuth-Morris-Pratt 16

2.8.1 Description 16

2.8.2 Implementation Details 17

2.9 Simon 17

2.9.1 Description 17

2.10 Colussi 18

2.10.1 Description 18

2.10.2 Implementation Details 20

2.11 Galil-Giancarlo 20

vii

2.11.1 Description 20

2.11.2 Implementation Details 21

2.12 Apostolico-Crochemore 21

2.12.1 Description 21

2.12.2 Implementation Details 23

2.13 Not So Naive 23

2.13.1 Description 23

2.13.2 Implementation Details 24

2.14 Boyer-Moore 25

2.14.1 Description 25

2.15 Turbo Boyer-Moore 27

2.15.1 Description 27

2.16 Apostolico-Giancarlo 28

2.16.1 Description 28

2.16.2 Implementation Details 29

2.17 Reverse Colussi 30

2.17.1 Description 30

2.17.2 Implementation Details 30

2.18 Horspool 31

2.18.1 Description 31

2.18.2 Implementation Details 32

2.19 Quick Search 32

2.19.1 Description 32

2.19.2 Implementation Details 33

2.20 Tuned Boyer-Moore 34

2.20.1 Description 34

2.21 Zhu-Takaoka 35

2.21.1 Description 35

2.21.2 Implementation Details 36

2.22 Berry-Ravindran 36

2.22.1 Description 36

2.22.2 Implementation Details 37

2.23 Smith 37

viii

2.23.1 Description 37

2.23.2 Implementation Details 38

2.24 Raita 38

2.24.1 Description 38

2.24.2 Implementation Details 40

2.25 Reverse Factor 41

2.25.1 Description 41

2.26 Turbo Reverse Factor 42

2.26.1 Description 42

2.27 Forward Dawg Matching 43

2.27.1 Description 43

2.28 Backward Nondeterministic Dawg Matching 44

2.28.1 Description 44

2.29 Backward Oracle Matching 44

2.29.1 Description 44

2.30 Galil-Seiferas 45

2.30.1 Description 45

2.30.2 Implementation Details 46

2.31 Two Way 47

2.31.1 Description 47

2.32 String Matching on Ordered Alphabets 48

2.32.1 Description 48

2.32.2 Implementation Details 49

2.33 Optimal Mismatch 49

2.33.1 Description 49

2.33.2 Implementation Details 50

2.34 Maximal Shift 52

2.34.1 Description 52

2.35 Skip Search 52

2.35.1 Description 52

2.36 KMP Skip Search 54

2.36.1 Description 54

2.37 Alpha Skip Search 55

ix

2.37.1 Description 55

3 Benchmarks 57

3.1 Methodology 57

3.2 Technical Details 58

3.3 Individual results 59

3.3.1 Brute Force 59

3.3.2 Deterministic Finite Automaton 60

3.3.3 Karp-Rabin 61

3.3.4 Shift-Or 62

3.3.5 Morris-Pratt 63

3.3.6 Knuth-Morris-Pratt 64

3.3.7 Simon 65

3.3.8 Colussi 66

3.3.9 Galil-Giancarlo 67

3.3.10 Apostolico-Crochemore 67

3.3.11 Not So Naïve 68

3.3.12 Boyer Moore 70

3.3.13 Turbo Boyer-Moore 71

3.3.14 Apostolico-Giancarlo 71

3.3.15 Reverse Colussi 72

3.3.16 Horspool 73

3.3.17 Quick Search 74

3.3.18 Tuned Boyer-Moore 74

3.3.19 Zhu-Takaoka 75

3.3.20 Berry-Ravindran 76

3.3.21 Smith 77

3.3.22 Raita 77

3.3.23 Reverse Factor 78

3.3.24 Turbo Reverse Factor 79

3.3.25 Forward DAWG Matching 80

3.3.26 Backward Nondeterministic DAWG Matching 81

3.3.27 Backward Oracle Matching 82

3.3.28 Galil-Seiferas 82

x

3.3.29 Two Way 83

3.3.30 String Matching on Ordered Alphabets 84

3.3.31 Optimal Mismatch 85

3.3.32 Maximal Shift 86

3.3.33 Skip Search 87

3.3.34 KMP Skip Search 88

3.3.35 Alpha Skip Search 88

3.4 Collective results 89

3.4.1 First occurrence – Small Patterns 89

3.4.2 First occurrence – Large Patterns 91

3.4.3 All occurrences – Small Patterns 92

3.4.4 All occurrences – Large Patterns 93

3.5 Collective results grouped by order of comparison 94

3.5.1 First occurrence – Small Patterns 94

3.5.2 First occurrence – Large Patterns 96

3.5.3 All occurrences – Small Patterns 99

3.5.4 All occurrences – Large Patterns 101

4 Visualization 103

4.1 Basic Description 103

4.2 Technical Details 104

4.2.1 script.js 105

4.2.2 esmajs.js 105

4.2.3 view.js 105

4.2.4 controller.js 106

4.2.5 AnimationControlPanel.js 106

4.2.6 AnimationController.js 106

4.2.7 constants.js 106

4.2.8 query.js 107

4.2.9 utils.js 107

5 Conclusion 109

6 References 112

7 Appendix 115

7.1 Algorithm Implementations 115

xi

7.1.1 Brute Force 115

7.1.2 Deterministic Finite Automaton 116

7.1.3 Karp-Rabin 119

7.1.4 Shift Or 122

7.1.5 Morris-Pratt 125

7.1.6 Knuth-Morris-Pratt 127

7.1.7 Simon 129

7.1.8 Colussi 132

7.1.9 Galil-Giancarlo 136

7.1.10 Apostolico-Crochemore 141

7.1.11 Not So Naïve 145

7.1.12 Boyer-Moore 148

7.1.13 Turbo Boyer-Moore 151

7.1.14 Apostolico-Giancarlo 155

7.1.15 Reverse Colussi 159

7.1.16 Horspool 163

7.1.17 Quick Search 166

7.1.18 Tuned Boyer-Moore 168

7.1.19 Zhu-Takaoka 171

7.1.20 Berry-Ravindran 174

7.1.21 Smith 177

7.1.22 Raita 180

7.1.23 Reverse Factor 182

7.1.24 Turbo Reverse Factor 186

7.1.25 Forward DAWG Matchinng 191

7.1.26 Backward Nondeterministic DAWG Matching 195

7.1.27 Backward Oracle Matching 198

7.1.28 Galil-Seiferas 201

7.1.29 Two Way 205

7.1.30 String Matching on Ordered Alphabets 209

7.1.31 Optimal Mismatch 213

7.1.32 Maximal Shift 218

7.1.33 Skip Search 223

xii

7.1.34 KMP Skip Search 225

7.1.35 Alpha Skip Search 230

xiii

Images

Figure 1: A Brute-Force execution example .. 7

Figure 2: Automaton array ... 8

Figure 3: State diagram .. 9

Figure 4: The memcmp Java implementation ... 11

Figure 5: The Karp Rabin search method in Java with the added check that prevents

OutOfBoundsException ... 12

Figure 6: How the search state is expressed as a bit vector ... 13

Figure 7: A search state array example. ... 13

Figure 8: The searchLarge method .. 14

Figure 9: Example of Brute-Force backtracking after mismatch 14

Figure 10: Window shifting in Morris-Pratt ... 15

Figure 11: Window shifting in Morris-Pratt example .. 15

Figure 12: Mismatch case ... 16

Figure 13: Knuth-Morris-Pratt window shift ... 16

Figure 14: Additional check in KnuthMorrisPratt preprocessing method preKmp. 17

Figure 15: Simon algorithm state diagram example for the pattern ‘gcagct’ 18

Figure 16: Shift after a mismatch with a nohole (nh). Comparisons are performed from

left to right. ... 19

Figure 17: Shift after a mismatch with a hole (h). Comparisons are performed from right

to left. .. 19

Figure 18: Comparison between C and Java implementations of Colussi 20

Figure 19: Scanning with the triad (i, j, k) in Apostolico-Crochemore 22

Figure 20: Apostolico-Crochemore different condition between C and Java

implementation ... 23

Figure 21: Not So Naive shifts after mismatch (left) and after pattern match (right) when

P[0] = P[1]. ... 24

Figure 22: Not So Naive shifts after mismatch (left) and after pattern match (right) when

P[0] ≠ P[1] (Figure 22). .. 24

Figure 23: Not So Naive added condition .. 25

Figure 24: Good-suffix shift, portion u reoccurs in pattern with a different preceding

character. .. 25

xiv

Figure 25: Good-suffix shift, portion u does not reoccur in pattern with a different

preceding character. .. 26

Figure 26: Bad-character shift, the window shifts to the rightmost occurrence in P[0..m-

2]. .. 26

Figure 27: Bad-character shift, no other occurence of b. ... 26

Figure 28: A turbo-shift can be enabled only when |v| < |u| ... 27

Figure 29: c is different from d so it won't be aligned with the same character in v 28

Figure 30: Typical situation in AG. Dark grey areas are factors that have been compared

in the current attempt, and light grey ones are factors that have been skipped [2]. . 28

Figure 31: Implementation of memcpy. ... 29

Figure 32: Implementation of memset. .. 29

Figure 33: Horspool searching example. .. 31

Figure 34: Quick Search searching example. ... 33

Figure 35: Added condition in Quick Search that prevents an OutOfBoundsException. 34

Figure 36: Tuned Boyer-Moore searching example. .. 35

Figure 37: Zhu-Takaoka: differences in searching phase between C and Java

implementations. .. 36

Figure 38: Berry-Ravindran: difference in the scan loop during the searching phase. 37

Figure 39: C implementation of Smith's search phase. .. 38

Figure 40: Java implementation of Smith's searching phase. ... 38

Figure 41: Raita searching example. .. 40

Figure 42: Middle character is checked before first character in Raita's C implementation.

 .. 41

Figure 43: Middle character is checked after first character in Raita's Java

implementation. .. 41

Figure 44: Smallest suffix automaton in Reverse Factor. ... 42

Figure 45: A perfect factorization. ... 46

Figure 46: Dependent calls from each method in Galil-Seiferas. 47

Figure 47: Example of sorting the pattern characters after Optimal Mismatch

preprocessing. ... 50

Figure 48: Comparison of the auxiliary structure patternScanOrder between C (left) and

Java (right). ... 50

xv

Figure 49: Comparison of the comparison functionality implementation between C (up)

and Java (down). ... 51

Figure 50: Example of buckets used in Skip Search for pattern = tcacaga. 52

Figure 51: Data structure implementing of Skip Search buckets using an array of linked

lists for pattern = tcacaga. .. 53

Figure 52: The searching phase of Skip Search. .. 53

Figure 53: Organization of data in the benchmark suite. ... 58

Figure 54: Brute Force - results of finding the first occurrence of small patterns (left) and

large patterns (right). .. 59

Figure 55: Brute Force - results of finding all occurrences of small patterns (left) and

large patterns (right). .. 60

Figure 56: Deterministic Finite Automaton - results of finding the first occurrence of

small patterns (left) and large patterns (right). ... 61

Figure 57: Deterministic Finite Automaton - results of finding all occurrences of small

patterns (left) and large patterns (right). ... 61

Figure 58: Karp-Rabin - results of finding the first occurrence of small patterns (left) and

large patterns (right). .. 61

Figure 59: Karp-Rabin - results of finding all occurrences of small patterns (left) and

large patterns (right). .. 62

Figure 60: Shift-Or - results of finding the first occurrence of small patterns (left) and

large patterns (right). .. 62

Figure 61: Shift-Or - results of finding all occurrences of small patterns (left) and large

patterns (right). ... 63

Figure 62: Morris-Pratt - results of finding the first occurrence of small patterns (left) and

large patterns (right). .. 63

Figure 63: Morris-Pratt - results of finding all occurrences of small patterns (left) and

large patterns (right). .. 64

Figure 64: Knuth-Morris-Pratt - results of finding the first occurrence of small patterns

(left) and large patterns (right). .. 64

Figure 65: Knuth-Morris-Pratt - results of finding all occurrences of small patterns (left)

and large patterns (right). ... 65

Figure 66: Simon - results of finding the first occurrence of small patterns (left) and large

patterns (right). ... 65

xvi

Figure 67: Simon - results of finding all occurrences of small patterns (left) and large

patterns (right). ... 65

Figure 68: Colussi - results of finding the first occurrence of small patterns (left) and

large patterns (right). .. 66

Figure 69: Colussi - results of finding all occurrences of small patterns (left) and large

patterns (right). ... 66

Figure 70: Galil-Giancarlo - results of finding the first occurrence of small patterns (left)

and large patterns (right). ... 67

Figure 71: Galil-Giancarlo - results of finding all occurrences of small patterns (left) and

large patterns (right). .. 67

Figure 72: Apostolico-Crochemore - results of finding the first occurrence of small

patterns (left) and large patterns (right). ... 68

Figure 73: Apostolico-Crochemore - results of finding all occurrences of small patterns

(left) and large patterns (right). .. 68

Figure 74: Not So Naive - results of finding the first occurrence of small patterns (left)

and large patterns (right). ... 69

Figure 75: Not So Naive - results of finding all occurrences of small patterns (left) and

large patterns (right). .. 69

Figure 76: Boyer-Moore - results of finding the first occurrence of small patterns (left)

and large patterns (right). ... 70

Figure 77: Boyer-Moore - results of finding all occurrences of small patterns (left) and

large patterns (right). .. 70

Figure 78: Turbo Boyer-Moore - results of finding the first occurrence of small patterns

(left) and large patterns (right). .. 71

Figure 79: Turbo Boyer-Moore - results of finding all occurrences of small patterns (left)

and large patterns (right). ... 71

Figure 80: Apostolico-Giancarlo - results of finding the first occurrence of small patterns

(left) and large patterns (right). .. 71

Figure 81: Apostolico-Giancarlo - results of finding all occurrences of small patterns

(left) and large patterns (right). .. 72

Figure 82: Reverse Colussi - results of finding the first occurrence of small patterns (left)

and large patterns (right). ... 72

xvii

Figure 83: Reverse-Colussi - results of finding all occurrences of small patterns (left) and

large patterns (right). .. 72

Figure 84: Horspool - results of finding the first occurrence of small patterns (left) and

large patterns (right). .. 73

Figure 85: Horspool - results of finding all occurrences of small patterns (left) and large

patterns (right). ... 73

Figure 86: Quick Search - results of finding the first occurrence of small patterns (left)

and large patterns (right). ... 74

Figure 87: Quick Search - results of finding all occurrences of small patterns (left) and

large patterns (right). .. 74

Figure 88: Tuned Boyer-Moore - results of finding the first occurrence of small patterns

(left) and large patterns (right). .. 74

Figure 89: Tuned Boyer-Moore - results of finding all occurrences of small patterns (left)

and large patterns (right). ... 75

Figure 90: Zhu-Takaoka - results of finding the first occurrence of small patterns (left)

and large patterns (right). ... 75

Figure 91: Zhu-Takaoka - results of finding all occurrences of small patterns (left) and

large patterns (right). .. 75

Figure 92: Berry-Ravindran - results of finding the first occurrence of small patterns

(left) and large patterns (right). .. 76

Figure 93: Berry-Ravindran - results of finding all occurrences of small patterns (left)

and large patterns (right). ... 76

Figure 94: Smith - results of finding the first occurrence of small patterns (left) and large

patterns (right). ... 77

Figure 95: Smith - results of finding all occurrences of small patterns (left) and large

patterns (right). ... 77

Figure 96: Raita - results of finding the first occurrence of small patterns (left) and large

patterns (right). ... 77

Figure 97: Raita - results of finding all occurrences of small patterns (left) and large

patterns (right). ... 78

Figure 98: Reverse Factor - results of finding the first occurrence of small patterns (left)

and large patterns (right). ... 78

xviii

Figure 99: Reverse Factor - results of finding all occurrences of small patterns (left) and

large patterns (right). .. 79

Figure 100: Turbo Reverse Factor - results of finding the first occurrence of small

patterns (left) and large patterns (right). ... 79

Figure 101: Turbo Reverse Factor - results of finding all occurrences of small patterns

(left) and large patterns (right). .. 79

Figure 102: Forward DAWG Matching - results of finding the first occurrence of small

patterns (left) and large patterns (right). ... 80

Figure 103: Forward DAWG Matching - results of finding all occurrences of small

patterns (left) and large patterns (right). ... 80

Figure 104: Backward Nondeterministic DAWG Matching - results of finding the first

occurrence of small patterns (left) and large patterns (right). 81

Figure 105: Backward Nondeterministic DAWG Matching - results of finding all

occurrences of small patterns (left) and large patterns (right). 81

Figure 106: Backward Oracle Matching - results of finding the first occurrence of small

patterns (left) and large patterns (right). ... 82

Figure 107: Backward Oracle Matching - results of finding all occurrences of small

patterns (left) and large patterns (right). ... 82

Figure 108: Galil-Seiferas - results of finding the first occurrence of small patterns (left)

and large patterns (right). ... 83

Figure 109: Galil-Seiferas - results of finding all occurrences of small patterns (left) and

large patterns (right). .. 83

Figure 110: Two Way - results of finding the first occurrence of small patterns (left) and

large patterns (right). .. 83

Figure 111: Two Way - results of finding all occurrences of small patterns (left) and

large patterns (right). .. 84

Figure 112: String Matching on Ordered Alphabets - results of finding the first

occurrence of small patterns (left) and large patterns (right). 84

Figure 113: String Matching on Ordered Alphabets - results of finding all occurrences of

small patterns (left) and large patterns (right). ... 84

Figure 114: Optimal Mismatch - results of finding the first occurrence of small patterns

(left) and large patterns (right). .. 85

xix

Figure 115: Optimal Mismatch - results of finding all occurrences of small patterns (left)

and large patterns (right). ... 85

Figure 116: Maximal Shift - results of finding the first occurrence of small patterns (left)

and large patterns (right). ... 86

Figure 117: Maximal Shift - results of finding all occurrences of small patterns (left) and

large patterns (right). .. 86

Figure 118: Skip Search - results of finding the first occurrence of small patterns (left)

and large patterns (right). ... 87

Figure 119: Skip Search - results of finding all occurrences of small patterns (left) and

large patterns (right). .. 87

Figure 120: KMP Skip Search - results of finding the first occurrence of small patterns

(left) and large patterns (right). .. 88

Figure 121: KMP Skip Search - results of finding all occurrences of small patterns (left)

and large patterns (right). ... 88

Figure 122: Alpha Skip Search - results of finding the first occurrence of small patterns

(left) and large patterns (right). .. 88

Figure 123: Alpha Skip Search - results of finding all occurrences of small patterns (left)

and large patterns (right). ... 89

Figure 124: Comparative results for searching the first occurrence of a small pattern. ... 90

Figure 125: Comparative results for searching the first occurrence of a large pattern. ... 91

Figure 126: Comparative results for searching all the occurrences of a small pattern..... 92

Figure 127: Comparative results for searching all the occurrences of a large pattern. 93

Figure 128: Searching the first occurrence of small patterns by comparing from left to

right. ... 94

Figure 129: Searching the first occurrence of small patterns by comparing from right to

left. .. 95

Figure 130: Searching the first occurrence of small patterns by comparing in a specific

order. ... 95

Figure 131: Searching the first occurrence of small patterns by comparing in no specific

order. ... 96

Figure 132: Searching the first occurrence of large patterns by comparing from left to

right. ... 97

xx

Figure 133: Searching the first occurrence of large patterns by comparing from right to

left. .. 97

Figure 134: Searching the first occurrence of large patterns by comparing in a specific

order. ... 98

Figure 135: Searching the first occurrence of large patterns by comparing in no specific

order. ... 98

Figure 136: Searching all occurrences of small patterns by comparing from left to right.

 .. 99

Figure 137: Searching all occurrences of small patterns by comparing from right to left.

 .. 99

Figure 138: Searching all occurrences of small patterns by comparing in a specific order.

 .. 100

Figure 139: Searching all occurrences of small patterns by comparing in no specific

order. ... 100

Figure 140: Searching all occurrences of large patterns by comparing from left to right.

 .. 101

Figure 141: Searching all occurrences of large patterns by comparing from right to left.

 .. 101

Figure 142: Searching all occurrences of large patterns by comparing in a specific order.

 .. 102

Figure 143: Searching all occurrences of large patterns by comparing in a specific order.

 .. 102

Figure 144: The visualization program's interface. .. 103

Figure 145: Best performing algorithms in each scenario for each character comparison

order group. .. 111

xxi

1

 1 Introduction

 1.1 Problem Definition

String searching, or string matching, is the process of finding the occurrences of

one or more, smaller strings, called patterns, in a larger string, called the text. String

searching algorithms are an important class of string algorithms that implement above

process. Assuming there is a text T of n characters and a pattern P of m characters, both

of which are constructed of a finite set of characters called the alphabet Σ of size σ, the

string searching algorithm aims to return the position of the first occurrence, or even the

positions of all the occurrences, of P in T.

With more than 80 algorithms discovered since 1970 [1] and a continuous

emergence of improved versions of them in academic literature, string searching

algorithms are one of the most extensively studied branches of computer science. Their

field of applications is broad. Ranging from simpler ones, like the word search

functionality or the automated spell checker in a text editor, to more complex ones, such

as plagiarism detection software, web search engines, system intrusion detection systems

and DNA sequence matching in bioinformatics. The sheer amount and accelerating pace

of growth of data found in those applications has made imperative the design of time-

efficient string search algorithms.

Several aspects of the input data in a string searching procedure can impact the

performance an algorithm can have in carrying out the process. Attributes such as the

length of the pattern and the size of the alphabet (ASCII, english: {A..Za..z}, binary:

{0,1}, biological: {A, C, G, T}) are exploited differently by various algorithms yielding

different execution times. Additionally, most of the theoretical work in this field appears

to concentrate on analyzing the asymptotic behavior of an algorithm with respect to the

number of character comparisons performed in the searching process. The above two

points showcase the need to perform comparative tests of the execution time of the

algorithms on different scenarios in order to determine which algorithms are more

efficient in each one of the presented situations.

In this thesis we are presenting the ported implementations of the 35 string

searching algorithms, included in http://www-igm.univ-mlv.fr/~lecroq/string/ [2] in C

language, using the Java programming language according to the object-oriented pattern

presented by Sedgewick in https://algs4.cs.princeton.edu/home/ [3]. The object-

http://www-igm.univ-mlv.fr/~lecroq/string/
https://algs4.cs.princeton.edu/home/

2

oriented environment showcases the distinct phases of the string searching procedure,

namely preprocessing and searching. The implementations are also supported with a

visualization suite, developed with web-technologies, which aims to provide an animated

glimpse on how each algorithm behaves during execution. Finally, we use a string search

benchmark suite, developed also in Java, to test the time efficiency of all implemented

algorithms on a large amount of biological sequence data.

 1.2 Structure

This thesis begins by introducing the basic notions of string searching algorithms

in Chapter 2. This chapter also includes compact description of each one of the

algorithms coupled with remarks regarding notable differences or additions in their

implementations with respect to their C counterparts in the source web site. The full

source code is available at the Appendix. In Chapter 3, the method for conducting the

benchmarks is discussed, followed by the results, on individual and collective level, and

their interpretation. Chapter 4 provides an overview of the general structure of the

visualization suite, as well as certain notable implementation details regarding its

components. Finally, Chapter 5 wraps up with conclusions concerning the whole process

of understanding, implementing in Java, benchmarking and visualizing the string search

algorithms provided.

3

 2 Algorithm presentation

 2.1 Introduction

In this chapter, we present the algorithms retrieved from [2] and considered in the

process of creating their respective implementations in Java, comparing their time-

efficiency with a benchmark suite and attempting to animate their functionality by

implementing a visualization suite. Each algorithm has its own section consisting of a

general description segment focusing in the key points behind its functionality.

Additionally, an implementation-specific part is included. It attempts to highlight notable

implementation details between our Java implementations and their respective C source

code segments given also in [2]. Those details may refer to modifications performed on

some parts of the C code for the sake of adapting each algorithm to the object-oriented

development pattern, as well as to alterations for the sake of correctness of results.

Generally, two approaches are followed when an algorithm attempts to provide a

solution for the string searching algorithm. They are differentiated by whether the pattern

or the text is given first as input to the algorithm. Here we consider the first case, where

the pattern is given as the sole argument to each algorithm’s constructor, with the

purpose of being preprocessed. The text is then provided as an argument to a search

method that applies the searching procedure.

Another common point between the algorithms presented here is that they all

follow the same general framework during execution. Specifically, the string searching

procedure is split into two phases, the preprocessing and the searching. The

preprocessing phase performs calculations that aim to speed up the actual searching. The

searching phase comprises of utilizing what is often referred to as the sliding window.

That window has the length of the pattern and is placed at the start of the text. Then the

text characters aligned in the window are compared to their respective ones from the

pattern. In case of mismatch the window slides to the right. This procedure is repeated

until the window has reached the end of the text. The position of the window is denoted

by the position of the left-most character of the text that is included by the window.

The most common way to categorize those algorithms is by the order the

characters between the window and the pattern are compared. There are four distinct

categories: from left to right, from right to left, in a specific order and in any order.

4

Generally, it is considered that the best results are extracted from algorithms that perform

the comparisons from right to left. In the benchmarking section of this thesis, the results

will be grouped also according to those categories. The algorithms are separated into the

four groups as follows:

 From left to right: Deterministic Finite Automaton, Karp-Rabin, Shift Or,

Morris-Pratt, Knuth-Morris-Pratt, Simon, Apostolico-Crochemore, Not So

Naïve, Forward DAWG Matching, String Matching on Ordered

Alphabets.

 For right to left: Boyer-Moore, Turbo Boyer-Moore, Apostolico-

Giancarlo, Reverse Colussi, Zhu-Takaoka, Berry-Ravindran, Reverse

Factor, Turbo Reverse Factor, Backward Nondeterministic DAWG

Matching, Backward Oracle Matching.

 In a specific order: Colussi, Galil-Giancarlo, Galil-Seiferas, Two Way,

Optimal Mismatch, Maximal Shift, Skip Search, KMP Skip Search, Alpha

Skip Search.

 In no specific order (order does not matter): Brute Force, Horspool, Quick

Search, Tuned Boyer-Moore, Smith, Raita.

All algorithms were implemented in Java in accordance with an object-oriented

design pattern resembling the one presented in https://algs4.cs.princeton.edu/home/ by

Sedgewick. A separate class was created for each algorithm. For the sake of consistency,

each one has the same interface of public methods. Specifically, each class provides:

 a constructor that accepts a String type argument corresponding to the

pattern and eventually performs all the preprocessing phase of the

algorithm

 a search method that accepts a String type argument corresponding to the

text and that performs the searching procedure; it returns an integer-

corresponding to the position of the first occurrence of the pattern in the

text

 a searchAll method that accepts a String type argument corresponding to

the text and that performs the searching procedure; it returns a List of

integers, containing the positions of all the occurrences of the pattern in

the text

https://algs4.cs.princeton.edu/home/

5

Notably, there was not performed any kind of extensive optimization, since this was not

the purpose of this thesis. However, several modifications were performed in most of the

algorithms to compensate for a distinct aspect of the C language. Specifically, in C, each

string of length x contains x+1 symbols, since the last symbol is always the termination

symbol (‘\0’). Since this does not hold for Java, several alterations had to be made to

avoid the algorithms from crushing from indexes that would have been out of bounds.

More specific details about where those modifications took place is mentioned in the

implementation details segments of each algorithm in this chapter.

 2.2 Terms

Some of the terms used during in this thesis are described below:

 The positions of the characters of a string s of length len are 0, 1, .. , len -

2, len-1.

 Σ denotes the alphabet of which the text and pattern are built and σ is the

size of said alphabet.

 P or pattern is the string that we are searching for; the patterns length is

denoted by m.

 T or text is the source string where we search for the pattern; the texts

length is denoted by n.

 P[i] refers to the character of the pattern in position i; similarly, for T[i].

 Window, or search window refers to the positions of the text where the

pattern is currently aligned.

 Attempt refers to the action of comparing all the text characters included

by the window with their respective ones from the pattern.

 Substring or factor of a string s is a string z if there exist strings u,v such

that s = uzv.

 Prefix of a string s is a substring u of s such that s = uv, where v is also a

(possibly empty) substring of s.

 Suffix of a string s is a substring u of s such that s = xv, where v is also a

(possibly empty) substring of s.

 Period of a string s is an integer p such that s[i] = s[i+p] for 0 ≤ i < m-p.

 Per(s) is the minimum period of string s.

6

 A string s is basic if it cannot be expressed as a power of another string;

that is there is no string z and integer k such that s = zk.

 A string s of length len is periodic if its minimum period len(s) is less or

equal to len/2; it is non-periodic otherwise.

 A string b is a border of a string s if it is both a prefix and a suffix of s.

 A reverse of a string s, denoted with sR, is the string s[m-1]s[m-

2]..s[1]s[0].

 2.3 Brute-Force

 2.3.1 Description

The Brute-Force (BF) [2] algorithm can be regarded as the simplest approach to

solving the substring search problem. Its straightforward principal consists of scanning

all the text characters sequentially from left to right, starting at the first character, and

checking if the next m sequential characters, starting from the current character, match

the pattern.

This procedure can be visualized, by placing a ‘window’ that has the same length

as the pattern and is initially positioned at the first character of the text. Two actions can

be triggered by the window; an attempt and a shift. During an attempt the pattern

characters are compared one by one, from left to right with the text characters aligned

with the window. If a mismatch occurs, the attempt stops and the window performs a

shift. During a shift the window shifts one character to the left and triggers an attempt.

This procedure is repeated until a match is found or the end of the text is reached. An

execution example can be viewed in Figure 1.

This algorithm has a worst-case time complexity of O(nm) which can be

witnessed when, at each attempt, the mismatch always occurs at the m-th character. For

example, we can consider the text T: ‘AAAAAA’ and the pattern P: ‘AAAB’, where the

first (m-1) characters of the pattern always match and there is always a mismatch at the

last one.

Its advantages can be considered the lack of a pre-processing phase as well as the

fact that it has no need for extra memory, however its inefficiency becomes apparent due

to the backup that occurs after a mismatch, forcing the algorithm to compare the pattern

again from its start after each shift.

7

Figure 1: A Brute-Force execution example

 2.3.2 Implementation Details

The Java implementation for BF does not include any notable changes in

comparison with its C counterpart. The constructor’s only responsibility is to store the

pattern as an instance variable for multiple future searches, while the search method

implements the searching logic by utilizing two loops. The outer that scans the text

positions thus simulating the shifting window, and the inner that attempts to match the

window to the pattern.

8

 2.4 Deterministic Finite Automaton

 2.4.1 Description

The Deterministic Finite Automaton (DFA) string search algorithm consists of

two phases; a preprocessing phase, that includes building a deterministic finite automaton

by preprocessing the pattern P, and a searching phase during which the text T is scanned

with the constructed deterministic finite automaton [2].

A deterministic finite automaton is a finite state machine that outputs a unique

run of the automaton for each input string, described by a set of transitions that connect

each state and each symbol of the string, and expressed as a directed graph. Each state

can be represented as a node and expresses a match of the symbol sequence up to this

state. A transition can be represented as an edge and is assigned to a symbol, expressing

the jump to the state representing the maximum prefix of the pattern that has been

matched up to this symbol [4].

When building the automaton the number of states is (m + 1) consisting of the

values [0 .. m]; the initial state is 0 and the final state is m. The automaton can be

represented as a 2D array with columns the characters of the alphabet and rows the states

the elements, with each cell denoting the next state transition resulting by the current

character and the current state. The time complexity to construct the automaton is O(mσ).

 An example of an automaton array for the pattern P = ‘abacaba’ and for alphabet

Σ = {a, b, c}, and its state diagram are illustrated in Figure 2 and Figure 3 respectively.

Figure 2: Automaton array

9

Figure 3: State diagram

In the automaton array, the entry for character ‘a’ and current state 0 contains the

next state (1), which indicates that we have successfully matched the first letter of the

pattern, and so on for every other entry.

Regarding the state diagram, there is an edge for each array entry except for the

zero entries, which denote edges that point to the initial state (0) and are omitted for

simplicity reasons in the state diagram.

Based on the above one can notice that, for example, state 3 indicates a match of

the pattern prefix ‘aba’ up until the current scanned character in text T. In case the next

character in T is ‘c’ then there is a match and the algorithm proceeds to the next state (4)

and to the next character in T. If the next character is ‘a’ then the algorithm returns to

state 1, meaning the maximum prefix of P that has been matched in T is ‘a’, and so we

can move to the next character in T without having to back up in P. Similarly, if the next

character is ‘b’ then we jump to state 2 as the maximum prefix of the pattern that has

been matched is ‘ab’.

The searching phase begins from the initial state 0 and the first character of T.

The characters of T are scanned sequentially only once and the next state is found, given

the previous state and the currently scanned character. If the final state is reached, then

there is a match. The time complexity for searching is O(n).

 2.4.2 Implementation Details

To implement DFA in Java, the Automaton class was created to simulate the

automaton data structure. The 2D transition array mentioned in the description is

implemented with a one-dimensional array (target) and the appropriate mapping to access

10

its entries, implemented in the setTarget and getTarget methods. Also there are getter

and setter methods for the boolean terminal array that denotes whether a state is terminal

or not.

The constructor includes the initialization of the automaton as well as the

preprocessing phase where the automaton is built. The search method scans T, passed as

an argument, using the automaton for an occurrence of P.

 2.5 Karp-Rabin

 2.5.1 Description

The Karp-Rabin (KR) string matching algorithm has a similar premise to the BF

algorithm, however it avoids the latter’s quadratic number of character comparisons by

first checking for each text position if the contents of the window resemble the contents

of the pattern, and then comparing the characters one by one to confirm a match [5].

To perform this resemblance check it uses a hashing function. The hashing

function for a string s of length m is calculated as follows [2]:

In this calculation, q is a very big integer.

The algorithm also includes a rehash function that efficiently ‘rolls’ along with

the shifting window and avoids recalculating the whole new window when it shifts by

one character. This is achieved by removing the hash value of the first character of the

previous window and adding the hash value of the last character of the new window. The

rehash function for a hash value ‘h’ of a string s of length ‘m’ with a previous first letter

‘a’ and new last letter ‘b’ is calculated as follows:

During the preprocessing phase, the hash value of the pattern is calculated once.

The time complexity is O(m) and no extra space is needed.

11

 2.5.2 Implementation Details

Regarding the implementation of the algorithm in Java there are three notable

points to be made.

The hash value of the pattern is calculated at the constructor, while the hash value

of the first m characters of the text is in the search function, since there is the point where

the text is passed as a parameter.

The C function memcmp (Figure 4) was implemented as a static boolean method

which returns true if the sequences of two specified character arrays starting from

specified starting points and spanning a specified length are equal.

Figure 4: The memcmp Java implementation

A check was added that prevents an OutOfBoundsException. In the C language,

all character arrays include a termination character ‘\0’ at the last position, something

that the C implementation takes into consideration. Contrary, in Java this is not the case,

resulting in the insertion of this check in the search method to avoid accessing a position

that is out of bounds (Figure 5).

12

Figure 5: The Karp Rabin search method in Java with the added check that

prevents OutOfBoundsException

 2.6 Shift Or

 2.6.1 Description

The Shift-Or (SO) string search algorithm utilizes bitwise operations to calculate

and depict the search state as a number at each step. Its search phase is independent of

the alphabet and pattern size, and for patterns smaller or equal to the word size of the

machine doesn’t require text buffering [2]. Like many known string search algorithms, it

scans the positions of the text sequentially from left to right. Unlike most, it avoids the

costly character comparisons by checking whether the state number indicates a match [6].

Specifically, this algorithm maintains the state of each position j of the text T in a

bit vector state of length m. Each position i of the vector holds the value 0 if there is a

match between prefix P[0..i] and T[j–i..j] (Figure 6). When the m-th bit is equal to 0 in

text position j, a match is reported at position j – m + 1. In the example illustrated at

Figure 7, we can see that state7[2] = 0 and state13[2] = 0 indicates matches at positions 7

– 3 + 1 = 5 and 13 – 3 + 1 = 11 respectively. In order to calculate the transition between

13

search states an auxiliary array S of size σ is needed, that stores the positions of each

character of the alphabet in the pattern as a bit vector of length m.

Assuming the pattern is not greater than the word size of the machine, each bit

vector of the state and S arrays can be calculated at constant time. Thus the preprocessing

step including the construction of the S array takes time proportional to O(m + σ), and the

searching phase consisting of transitioning between search states takes time proportional

to O(n).

Figure 6: How the search state is expressed as a bit vector

Figure 7: A search state array example.

 2.6.2 Implementation Details

Regarding the implementation, in comparison with the C counterpart, there are 2

notable differences.

The word size has been declared as a static variable equal to 31, as after extensive

testing the algorithm as is produces correct results for pattern size, up to and including,

31.

In case of a pattern greater than the word size, the algorithm is directed to the use

of a private method searchLarge (Figure 8). According to this method, when the word

sized prefix of the pattern has been matched, then the rest m – WORD_SIZE letters are

checked sequentially [1].

14

Figure 8: The searchLarge method

 2.7 Morris-Pratt

 2.7.1 Description

The Morris-Pratt (MP) algorithm is based on the same simple principle of step by

step comparison that the BF algorithm relies on. However, it aims to exploit information

gathered during the text scan, which is wasted in the case of the latter, by improving the

length of the window shifts [2][7].

In the following example (Figure 9) of BF, we can see that after the mismatch the

window shifts by only one character causing the algorithm to backtrack for the

comparison attempt.

Figure 9: Example of Brute-Force backtracking after mismatch

15

The MP algorithm speeds up the searching process by increasing the size of the

shifts whenever possible. Let’s consider a common mismatch case. A prefix u of P has

already been matched until a mismatch occurs between character a of T and character b

P. Then we can find the longest suffix v of u that is also a prefix of u and shift the search

window to the start of the suffix v (Figure 10). A portion like v is called a border, since it

occurs at both ends of the text portion. The result of applying this logic to the example in

Figure 9 is in Figure 11.

Figure 10: Window shifting in Morris-Pratt

Figure 11: Window shifting in Morris-Pratt example

The process of finding v can be done by preprocessing the pattern. Specifically,

we can maintain an array mpNext of size m, where for each position i: 0 < i < m we store

the greatest j: P[0..j - 1] is the greatest suffix of P[0..i - 1] (or, put more simply, j is the

maximal sequence of characters that is both a prefix and a suffix in P[0..i - 1]).

mpNext[0] is initialized to 0.

This algorithm’s preprocessing phase has an O(m) space and time complexity due

to calculating mpNext, while the searching phase has an O(n + m) time complexity that is

independent of alphabet size.

16

 2.7.2 Implementation Details

There is one notable difference between the Java implementation and its C

counterpart. The length of the array mpNext has been set to m + 1 instead of m to avoid

an OutOfBoundsException, something that is not necessary in the C implementation due

to the termination character ‘\0’ at the end of each string.

 2.8 Knuth-Morris-Pratt

 2.8.1 Description

The Knuth-Morris-Pratt (KMP) algorithm follows the same logic as Morris-Pratt.

It offers a linear way of scanning the text just as the latter, aiming to further improve the

length of the shifts [2].

Let’s consider the case where the search window is placed at the T[j..j+m-1]

factor of the text and the first mismatch happens between T[j+i] = a and P[i] = b, while

the previous i characters (portion u) have already been matched (Figure 12).

Figure 12: Mismatch case

Similarly, to Morris-Pratt, we can find the longest prefix v of u that is also a suffix of u

(that is the border of u) and shift the window at the start of the suffix v. However, the

length of the shift can be further improved by finding the border v that is succeeded by a

character different from b, thus avoiding an immediate mismatch (Figure 13). Such a

border is called a tagged border; that is a border that occurs at both ends of a text portion

but succeeded by different characters.

Figure 13: Knuth-Morris-Pratt window shift

17

The shifts can be calculated during preprocessing and stored in an array (namely

kmpNext) of size m, taking time and space proportional to m. The searching phase

consists of scanning the text sequentially from its first character and shifting

appropriately in case of mismatch, and can be performed in time proportional to n + m.

 2.8.2 Implementation Details

Implementation-wise, there are two differences between the Java and C programs.

The length of the array kmpNext has been increased from m to m + 1 to avoid an

OutOfBoundsException resulting from the lack of ‘\0’ character from the end of the

strings in Java.

Additional boolean conditions have been added during the preprocessing of the

algorithm, that also prevent OutOfBoundsExceptions (Figure 14).

Figure 14: Additional check in KnuthMorrisPratt preprocessing method preKmp.

 2.9 Simon

 2.9.1 Description

The Simon (S) algorithm is a memory efficient implementation of Deterministic

Finite Automaton (DFA) algorithm. Its principal relies on storing only a few significant

edges of the automaton. Simon noticed that the significant edges can be grouped as

follows [2]:

18

 Forward edges, that connect a prefix of P of length k to the prefix of

length k+1; there are exactly m such edges.

 Backward edges, that connect a prefix of P of length k to a smaller non-

zero prefix of P; there are at most m such edges.

The edges leading back to initial state, which are associated with a complete backtrack in

the pattern after a mismatch, can be easily deduced and thus omitted.

 Each state i indicates a match of a prefix of P of length i+1. This can be apparent

from the example at Figure 15, where, indicatively, state 0 indicates a match of prefix ‘g’

of length 1, and so on. This means that state i can be labeled by P[i] (the last letter of the

matched prefix of P). Thus, the forward edges can be easily deduced and need not to be

stored. Finally, only the backward non-zero edges need to be stored, reducing the

memory requirement from O(mσ) in DFA to O(m).

Figure 15: Simon algorithm state diagram example for the pattern ‘gcagct’

 To keep those edges, an array L of linked lists will be used. Since the initial state

doesn’t have backward edges, only m linked lists can be used. Each linked list will store

the targets of their respective states’ backward edges. Also, an integer variable ell is

calculated such that ell+1 indicates the longest border of P. When searching for all

occurrences of P in T, after a pattern match, the state will be updated with ell.

 The preprocessing phase consists of calculating L and ell taking time and space

proportional to O(m). The searching phase is like the DFA search and can be done in

O(m+σ) time complexity.

 2.10 Colussi

 2.10.1 Description

The Colussi (C) [2][8] string search algorithm is an improvement of the Knuth-

Morris-Pratt (KMP) algorithm. In preprocessing, it groups the pattern’s positions into

19

two disjoint subsets: noholes, which are the positions for which kmpNext[i] is greater

than -1, and holes, which are the remaining ones. In searching, each comparison attempt

consists of two steps.

 First, the pattern positions of the noholes subset are scanned from left to

right performing comparisons with the aligned text characters.

 Then, if there is no mismatch, comparisons are performed from right to

left between the text characters aligned with the pattern positions of the

holes subset.

This searching procedure has two advantages.

 If a mismatch occurs during the first step, the shift ensures that the text

characters aligned with nohole pattern positions, which were compared

during the previous attempt, will not be compared again (Figure 16).

 When a mismatch occurs during the second step it indicates that a suffix

of the pattern matches a portion of the text. After the next shift it is

ensured that the pattern prefix, which will still match a portion of the text,

will not be compared again (Figure 17).

Figure 16: Shift after a mismatch with a nohole (nh). Comparisons are performed

from left to right.

Figure 17: Shift after a mismatch with a hole (h). Comparisons are performed from

right to left.

Colussi’s preprocessing step takes time and space proportional to O(m)and its searching

step takes time O(n), while it performs at most 1.5n text character comparisons.

20

 2.10.2 Implementation Details

Porting Colussi algorithm from its C implementation to Java required some

notable changes.

The sizes of the arrays h, next, shift, hmax, kmin, nhd0, rmin have been changed

from m to m+1 to avoid an OutOfBoundsException.

In the do..while loop in the computation of hmax some boolean conditions were

added to also prevent an OutOfBoundsException (Figure 18).

Figure 18: Comparison between C and Java implementations of Colussi

 2.11 Galil-Giancarlo

 2.11.1 Description

The Galil-Giancarlo algorithm is an improvement of the Colussi algorithm. It

varies at the way the searching phase is performed for a pattern P that is not a power (not

comprised) of a single character.

Specifically, let’s assume that l is the greatest index in P such that P[0..l] is the

longest prefix of the pattern that is comprised of the same character. Also, assume that in

the previous comparison attempt, all the pattern nohole positions as well as a suffix of the

pattern have been matched, indicating that, after the next shift, a prefix of the pattern will

still match a factor of the text. So if the window is placed on T[j..j+m-1], P[0..last] will

match T[j..j+last]. After that in the next attempt, the characters starting from T[last + 1]

will be scanned sequentially until the end is reached or a character T[j+k]≠P[0]. In the

last case there are two courses of action [2]:

 P[l+1] ≠T[j+k] or only few of P[0] have been found(k ≤ l). In this case

the window will be placed on T[k+1..k+m] and the search will continue

similarly to Colussi starting from the first nohole position. At that point

the memorized prefix of the pattern will be the empty string.

21

 P[l+1] =T[j+k] and enough of P[0] have been found (k > l). In this case

the window will be placed on T[k-l-1..k-l+m-2] and the search will

continue similarly to Colussi, staring from the second nohole position

since P[l+1] is the first one. The memorized prefix will be P[0..l+1].

Just like Colussi, this algorithm’s preprocessing and searching phases take time

proportional to O(m) and O(n) respectively, however the number of character

comparisons is now reduced to 4n/3.

 2.11.2 Implementation Details

Implementation-wise, there were some changes, regarding not only the

correctness of the algorithm in the Java language but also its performance.

Since Galil-Giancarlo utilizes the same preprocessing method preColussi from

the Colussi algorithm, the same changes were applied, regarding the change of all the

size of the arrays in preColussi from m to m+1, to avoid an OutOfBoundsException.

Additionally, the call of the preprocessing method preColussi, was moved into

the constructor of the class from its initial position inside the main body of the GG

function from the C implementation. Also, three of the arrays constructed in preColussi

(h, shift, next) are declared as instance variables as they are used in the search method.

Those changes were carried out for performance reasons, since the three arrays as well as

the integer value that preColussi returns are not changed throughout the searching phase

and thus recalculating them at every search step would obviously impact negatively the

execution time.

 2.12 Apostolico-Crochemore

 2.12.1 Description

The Apostolico-Crochemore [2][9] algorithm depends on the kmpNext table, from

Knuth-Morris-Pratt, to perform the shifts, however utilizing a more sophisticated way of

scanning the text. It introduces the variable l which is equal to the smallest pattern

position of the different from P[0], or 0 if the pattern is a power of a single character. At

each attempt the comparisons are performed in the order: l, l+1, l+2, … , m-2, m-1, 0, 1,

22

l-1. In the searching phase, each step is described by a triad of indices (i, j, k) (Figure

19), where:

 j indicates that the window is placed on the text factor T[j..j+m-1].

 k is responsible for comparisons between P[0..k] and T[j..j+k] for 0 ≤ k <

l.

 i is responsible for comparisons between P[l..i] and T[j..j+i] for l ≤ i < m

Figure 19: Scanning with the triad (i, j, k) in Apostolico-Crochemore

The transition to the next triad (i, j, k) is computed based on the value of i:

 i = l

o if P[i] = T[j+i] then the next triad is (i+1, j, k)

o else (l, j+1, max{0, k-1})

 l < i < m

o if P[i] = T[j+i] then the next triad is (i+1, j, k)

o else the outcome depends on the value of kmpNext

 if kmpNext[i] ≤ l then (l, j+i-kmpNext[i], l)

 else (kmpNext[i], j+i-kmpNext[i], l)

 i = m

o if k < l and P[k] = T[j+k] then (i, j, k+1)

o else if k < l and P[k] ≠ T[j+k] then compute the triad as in the case where

l < i < m

o else report a match and compute the triad as in the case where l < i < m

23

The preprocessing phase consists of constructing kmpNext and computing l in time and

space proportional to O(m). The searching phase can be done in O(n). The algorithm’s

number of total character comparisons is bounded by 1.5n.

 2.12.2 Implementation Details

During the implementation of the algorithm in Java 2 changes were performed in

comparison to its C counterpart, that prevent an OutOfBoundsException:

 The size of array kmpNext has been changed from m to m+1.

 A condition has been added in the computation of the l value

(Figure 20)

Figure 20: Apostolico-Crochemore different condition between C and Java

implementation

 2.13 Not So Naive

 2.13.1 Description

The Not So Naïve algorithm is a variant of the Brute-force algorithm. It

differentiates in the searching phase, where at each attempt the character comparisons are

performed in the following order: 1, 2, .., m-2, m-1, 0. During preprocessing it

calculates, in constant time, two shift values; k for after a mismatch and ell for after a

pattern match. There are two distinct cases [2]:

 If P[0] = P[1] then k = 2, ell = 1, meaning that if P[1] ≠ T[j+1] then the

window shifts by 2, while if there is a pattern match then the window

shifts by 1 (Figure 21).

 If P[0] ≠ P[1] then k = 1, ell = 2, meaning that if P[1]≠T[j+1] then the

window shifts by 1, while if there is a pattern match then the window

shifts by 2.

24

Figure 21: Not So Naive shifts after mismatch (left) and after pattern match (right)

when P[0] = P[1].

Figure 22: Not So Naive shifts after mismatch (left) and after pattern match (right)

when P[0] ≠ P[1] (Figure 22).

 Not So Naïve performs the preprocessing in constant time and its searching phase

takes time similar to the Brute-Force’s O(mn), however on average its performance is by

coefficient sublinear.

 2.13.2 Implementation Details

Regarding the algorithm’s implementation in Java there were some noteworthy

changes:

 The algorithm utilizes the static boolean method memcmp that was

introduced in Karp-Rabin (Figure 4).

 The C implementation does not work correctly for patterns of length 1.

This was resolved by reducing the searching for single character patterns

to a simple Brute-Force search.

 A check was added in the constructor during the calculation of k and ell,

that prevents an OutOfBoundsException for patterns of length 1 (Figure

23).

25

Figure 23: Not So Naive added condition

 2.14 Boyer-Moore

 2.14.1 Description

Boyer-Moore is regarded the most performant string search algorithm in usual

applications. Various simplifications of the algorithm are utilized in text editors to

implement basic ‘search’ and ‘substitute’ functionality. Its principal relies on the idea

that greater information is gained by performing the character comparisons of the pattern

from right to left, beginning with the rightmost character [2][10]. This results to longer

shifts and less character comparisons. The algorithm uses two shift tables for cases of

mismatch or cases of pattern match.

 The good-suffix shift (or matching shift) table bmGs. Let’s assume the

window is placed on text factor T[j..j+m-1] and the first mismatch

happens between P[i]=a and T[j+i]=b, meaning P[i+1..m-

1]=T[j+i+1..j+m-1]. Then the shift table aligns the factor T[j+i+1..j+m-

1] with its rightmost occurrence in P preceded by a character different

from a (Figure 24). If there is no such occurrence then a suffix of the text

factor is aligned with a prefix of the pattern (Figure 25).

Figure 24: Good-suffix shift, portion u reoccurs in pattern with a different

preceding character.

26

Figure 25: Good-suffix shift, portion u does not reoccur in pattern with a different

preceding character.

 The bad-character (or mismatch shift) table bmBc. Let’s assume the

window is placed on text factor T[j..j+m-1] and the first mismatch

happens between P[i]=a and T[j+i]=b, meaning P[i+1..m-

1]=T[j+i+1..j+m-1]. Then the shift table aligns b with its rightmost

occurrence in P[0..m-2] (Figure 26). If there is no such occurrence then

the left end of the window is aligned with the character succeeding b

(Figure 27).

Figure 26: Bad-character shift, the window shifts to the rightmost occurrence in

P[0..m-2].

Figure 27: Bad-character shift, no other occurence of b.

Since the bad-character shift can be negative, after each mismatch the maximum between

the good-suffix shift and the bad-character shift is taken.

 The tables can be constructed during preprocessing taking time and space

proportional to O(m+σ). The searching phase maybe quadratic but the number of text

27

character comparisons is bounded by 3n.the algorithm is quite performant when dealing

with large alphabets in comparison with the length of the pattern, and in searching

patterns like am-1b.

 2.15 Turbo Boyer-Moore

 2.15.1 Description

Turbo Boyer-Moore is an improvement of Boyer-Moore. The main idea is to

maintain in memory the text factor that matched a suffix of the pattern in the last

comparison attempt, only after a good-suffix shift. Thus, the algorithm does not require

extra preprocessing, just some constant extra space to save the text factor [2].

When such a factor is found, it can enable a regular shift or a turbo shift. A turbo

shift may occur when the currently matched pattern’s suffix v is shorter than the one

from the previous attempt u (Figure 28). In this case let uzv be a suffix of the pattern and

a and b be the characters that cause the current mismatch in the pattern and text

respectively. This means that av is a suffix of both P and u. Let p be the distance between

a, b in the text, then the uzv suffix of the pattern has a period of length p=|zv|, since u is a

border of uzv, thus it cannot cover both occurrences of a,b at distance p in the text. The

shortest possible shift is |u|-|v| is a turbo shift. If in the same case the bad-character shift

is greater even than turbo-shift, the actual shift must be greater or equal than |u|+1.In the

example in Figure 29 we assume that a good-suffix shift occurred therefore characters c,

d are different. Given a shift greater than the turbo-shift and smaller than |u|+1 would

align c and d with the same character in v. Thus here the shift length should be |u|+1.

The time and space complexity during preprocessing and searching is O(m+σ)

and O(n) respectively, but the number of text character comparisons bound is reduced to

2n.

Figure 28: A turbo-shift can be enabled only when |v| < |u|

28

Figure 29: c is different from d so it won't be aligned with the same character in v

 2.16 Apostolico-Giancarlo

 2.16.1 Description

Figure 30: Typical situation in AG. Dark grey areas are factors that have been

compared in the current attempt, and light grey ones are factors that have been

skipped [2].

The Apostolico-Giancarlo [11] algorithm is a variant of the Boyer-Moore that is

designed to store information about the suffix matches from previous attempts. It keeps

the length of the longest suffix of the pattern that has been matched after each attempt, in

a skip array. In a typical situation of Apostolico-Giancarlo (Figure 30), during an attempt

for a window placed on T[j’..j’+m-1], there is a match of a suffix of the pattern of length

k ending at i+j, meaning P[m-k..m-1] = T[j’+m-k..j’+m-1]. Then, in a later attempt at

position j > j’ a match occurs between P[j-j’+m..m-1] and T[j’+m-k..j+m-1]. As seen in

the Boyer-Moore chapter, the suff[i] for 0≤i<m holds the length of the longest pattern

suffix ending in i. Thus, after each matching of the text factor T[j+i+1..j+m-1], there are

four possible outcomes:

 k > suff[i] and suff[i] = i+1: Meaning an occurrence of the pattern has

been located at j. Then we set skip[j+m-1]=m and the window is shifted

by bmGs[0] (the good-suffix shift array from Boyer-Moore).

29

 k > suff[i] and suff[i]≤ i: Meaning P[i-suff[i]] ≠ T[j+i-suff[i]]. We set

skip[j+m-1] = m – 1 – I + suff[i] and shift using bmBc[T[i+j-

suff[i]]] and bmGs[i-suff[i]+1].

 k < suff[i]: Meaning P[i-k] ≠ T[i+j-k]. Then we set skip[j+m-1] = m-1-

i+k and shift using bmBc[T[i+j-k]] and bmGs[i-k+1].

 k = suff[i]: In this occasion, the text factor T[j+i-k+1..j+i] needs to be

skipped, so the comparisons may continue for characters T[j+i-k] and P[i-

k].

Since only the latest m suffix lengths are needed each time, the size of the skip array can

be reduced to m. The preprocessing phase’s complexity is O(m+σ), similar to Boyer-

Moore’s and the number of text character comparisons is bounded by 1.5n.

 2.16.2 Implementation Details

During porting the algorithm from C to Java, two static methods were

implemented, equivalents for C’s memcpy (Figure 31) and memset (Figure 32), regarding

only the data types needed by the algorithm.

Figure 31: Implementation of memcpy.

Figure 32: Implementation of memset.

30

 2.17 Reverse Colussi

 2.17.1 Description

Reverse Colussi [2][12] is an amelioration of the Boyer-Moore algorithm. It

performs the comparisons in a specific order indicated by a preprocessed array h.

Specifically, for each i where 0≤i≤m, two disjoint sets are defined:

 Pos(i)={k: 0≤k≤i and P[i] = P[i-k]}

 Neg(i)={k: 0≤k≤i and P[i] ≠ P[i-k]}

Three auxiliary arrays are defined:

 hmin[k], for 1 ≤ k ≤ m, is the minimum integer l: l ≥ k-1 and Neg(i) not

containing k for l ≤ i ≤ m-1.

 kmin[l], for 0 ≤ l ≤ m-1, is the minimum integer k: hmin[k]=l ≥ k if such k

exists; 0 otherwise.

 Rmin[l], for 0 ≤ l ≤ m-1, is the minimum integer k: r > l and hmin[r]=r–1.

After h[0] is initialized to m-1, we increasingly select all indexes h[0], .. , h[d] in

increasing order of kmin[l] such that kmin[h[i]] ≠ 0 and set rcGs[i] = kmin[h[i]] for all

1≤i≤d. Then the indexes h[d+1], .. , h[m-1] are increasingly selected setting rcGs[i] =

rmin[h[i]] for d < I < m. Finally, we set rcGs[m] to the period of the pattern.

The array rcGs is defined as: rcGs[a, s] = min {k: (k=m or P[m-k-1] = a) and (k

> m–s-1 or P[m-k-s-1]=P[m-s-1])}. To compute rcGc we define array locc such that for

each alphabet character c, locc[c] is the position of its rightmost occurrence in P[0..m-2];

-1 if there is none. An array link indicates downward all the positions of the pattern

characters.

Reverse Colussi’s preprocessing phase takes O(m2) time and O(mσ) space, while

its searching phase is linear.

 2.17.2 Implementation Details

Regarding the implementation of the algorithm in Java from C, to remedy the

issue of the absence of the termination character ‘\0’ and avoid an

OutOfBoundsException the lengths of the auxiliary arrays have been altered. Specifically

the size of the arrays h, rcGs, hmin, kmin, link, locc, rmin has been changed to m+1 from

m, and the array rcBc’s number of columns has been extended to m+1 from m.

31

 2.18 Horspool

 2.18.1 Description

The Horspool algorithm [2][13] is a simplification of Boyer-Moore. It utilizes

only the bad-character shift bmBc from the latter, while keeping the same right-to-left

comparison order during attempts. This results in a quite simple to implement and

efficient algorithm for large alphabets compared to the length of the pattern, like the

ASCII table. The preprocessing can be done in O(m + σ) time and O(σ) space. The

searching phase may be quadratic at worst case, however the average number of text

character comparisons is between 1/σ and 2/(σ + 1). A searching example is illustrated at

Figure 33. Here the algorithm performs 4 + 2 + 1 + 1 + 6 = 14 character comparisons in

total.

Figure 33: Horspool searching example.

32

 2.18.2 Implementation Details

The Java implementation of the Horspool algorithm utilizes the memcmp static

Boolean method that was introduced in the Karp-Rabin section (Figure 4).

 2.19 Quick Search

 2.19.1 Description

The Quick Search algorithm [2][14] is yet another simplification of Boyer-Moore

that is quite performant regarding large alphabets and smaller patterns. Just as Horspool,

it uses only the bad-character shift, but it allows the character comparisons to be

performed at any order. Assuming the window is placed on text factor T[j..j+m-1] and

since the length of a shift is always positive, one may notice that the character T[j+m]

will be involved in the following attempt. This can be exploited by modifying the bad-

character shift table bmBc of size σ, to take into account the last pattern character.

Specifically, the shift table is calculated as follows: for each c in σ, bmBc[c] = m – i,

such that i = max{pos: 0≤pos<m: P[pos] = c}; m+1 otherwise. Now, after a character

mismatch, the shift will depend on the text character right after the rightmost end of the

window. Compared to Horspool, Quick Search may produce shorter shifts however it

compensates by performing fewer character comparisons. The preprocessing and

searching phases have the same time and space complexities as their respective ones in

Horspool. The example presented in the Horspool section (Figure 33) is revisited in

Figure 34.The number of text character comparisons performed here are 1 + 1 +1 + 1 + 1

+ 6 = 11, fewer that those performed in Horspool (14).

33

Figure 34: Quick Search searching example.

 2.19.2 Implementation Details

The Java implementation of Quick Search utilizes the static boolean method

memcmp introduced in the Karp-Rabin section, which returns true if two specified

sequences of characters are identical. During the implementation, an additional condition

(Figure 35) was added in the searching phase of the algorithm, which exits the scanning

34

loop after the attempt at position j = n-m. This is essential to avoid an out of bounds

index, as the next shift is performed for the character at position j + m, which regarding

the above position is out of bounds.

Figure 35: Added condition in Quick Search that prevents an

OutOfBoundsException.

 2.20 Tuned Boyer-Moore

 2.20.1 Description

Tuned Boyer-Moore [2][15] is another performant, simplified version of Boyer-

Moore. It attempts to reduce the most expensive part of a string search algorithm, the

character comparisons, by doing several consecutive shifts at once using only the bad-

character shift table bmBc. The algorithm focuses on trying to quickly find a match for

the last pattern character P[m-1] by performing three shifts at once. To achieve this, the

text is padded at its end with m occurrences of P[m-1] character. Additionaly, the actual

shift of the last character, bmBc[m-1], is stored separately in a variable shift, and then set

to zero. This ensures that, in case one of the shifts matches the last character of the

pattern, the following shifts will not skip it. When the last character is matched after the

triad of shifts, an attempt follows in any order. In case of a mismatch the window shifts

by bmBc[c] for each In case of a pattern match the window shifts by shift. Just like the

previous variants of Boyer-Moore, this algorithm has a quadratic worst case time

complexity but is quite efficient in practical terms. A searching example is illustrated in

Figure 36.

35

Figure 36: Tuned Boyer-Moore searching example.

 2.21 Zhu-Takaoka

 2.21.1 Description

The Zhu-Takaoka [2][16] is an implementation of a variant of the Boyer-Moore

algorithm. It utilizes the good-suffix shift table along with a differentiated bad-character

shift table ztBc, which contains the shift for two consecutive characters.

The algorithm performs the attempt comparisons from right to left. Assuming the

window is positioned on text factor T[j..j+m-1] and a mismatch occurs between P[m-k]

and T[j+m-k] (meaning P[m-k+1..m-1] = T[j+m-k+1..j+m-1]) the shift is based on the

two consecutive characters T[j+m-2], T[j+m-1]. Zhu-Takaoka’s bad character shift table

is represented by a two-dimensional array that computes the rightmost occurrence of ab

in P[0..m-2], for each pair a,b from σ. Then ztBc[a][b] = k iff:

 k < m-2 and P[m-k..m-k+1] = ab and ab does not exist in P[m-k+2..m-2]

or

 k = m-1 and P[0] = b and ab does not occur in P[0..m-2]

 k = m and P[0] ≠ b and ab does not occur in P[0..m-2]

The algorithm performs the preprocessing phase in O(m+σ2) time and space complexity,

and the searching phase in quadratic time complexity in the worst case.

36

 2.21.2 Implementation Details

The Java implementation of Zhu-Takaoka has a major difference with respect to

its C counterpart. During the searching phase, in the case of a mismatch when the next

shift as calculated as the maximum between the good-suffix shift and the bad-character

shift of the two consecutive characters P[j+m-2], P[j+m-1], the if..else has been

modified as shown in Figure 37 to avoid an out of bounds index for j+m-2.

Figure 37: Zhu-Takaoka: differences in searching phase between C and Java

implementations.

 2.22 Berry-Ravindran

 2.22.1 Description

The Berry-Ravindran algorithm [2][17] is a simplification of the Zhu-Takaoka

algorithm, resembling the simplified variant Quick Search of the Boyer-Moore algorithm

that uses only the bad-character shift table. Berry-Ravindran differentiates by using a

modified bad-character shift table brBc for the two consecutive characters immediately

after the right end of the window. During preprocessing, brBc is constructed by setting

for each pair ab, for a, b in σ, brBc[a][b] to:

 1, if P[m-1] = a

 m – i – 1, if P[i]P[i+1] = ab

 m + 1, if P[0] = b

 m + 2, otherwise

During the searching phase, assuming the window is placed on text factor T[j..j+m-1] a

shift brBc[T[j+m]][T[j+m+1]] will be performed. The bad-character shift can be

preprocessed in space and time proportional to O(m+ σ2) and the searching can be done

in O(mn) in worst case.

37

 2.22.2 Implementation Details

As mentioned above, during the searching phase the algorithm scans the text

sequentially from the leftmost character applying the shift of the two consecutive

characters, following the rightmost edge of the window in case of mismatch. The C

implementation, in order to prevent an out of bounds text index, adds at the end of the

string the null character (‘\0’), just right after the similar termination character. In the

Java implementation, only one null character is added at the end of the character array of

the text string. Also, the while loop that scans the text is modified as shown in Figure

38.This change performs the scan up to text position n-m-1 and, right after its

termination, it performs an attempt on T[n-m..n-2] (n-1 is the added null character). The

algorithm has a O(m+σ2) time and space complexity and a O(mn) searching complexity.

Figure 38: Berry-Ravindran: difference in the scan loop during the searching phase.

 2.23 Smith

 2.23.1 Description

Smith algorithm [2][18] is a hybrid of Horspool and Quick Search, which

combines the best features of each. As mentioned above, Horspool’s shift is based on the

first character in the window where a mismatch occurs, while Quick Search’s shift is

done according to the first text character after the rightmost end of the window.

However, as mentioned in the Quick Search section, Quick Search’s skip lengths might

be shorter than those of Horspool. Smith remedies that by taking the maximum of the

two shifts. The preprocessing phase of the algorithm consists of computing the two shift

tables in O(m+σ) time and O(σ) space. The searching phase is quadratic but with a good

practical behavior.

38

 2.23.2 Implementation Details

Since the Smith algorithm uses the Quick Search bad-character shift table which

is accessed for the character immediately after the end of he right end of the window, the

scan loop of the algorithm must be careful not to access an index out of bounds. In the C

implementation one can notice that the scan loop reaches up until the position n-m, at

which it will access the Quick Search shift table for T[n] (Figure 39). Since the strings in

C end with the termination character ‘\0’, this won’t be a problem, however that is not

the case in Java. The java implementation (Figure 40) has been slightly modified to scan

up to n-m-1 and then, right after loop termination to perform an attempt at text factor

T[n-m..n-1]. This ensures that no OutOfBoundsException will be thrown.

Figure 39: C implementation of Smith's search phase.

Figure 40: Java implementation of Smith's searching phase.

 2.24 Raita

 2.24.1 Description

The Raita [2][19] is an implementation of a variant of the Boyer-Moore algorithm

that is quite performant when searching in a non-random text like an English text. Its

main idea relies on taking advantage of the dependencies, which can form between

successive characters in existing words, to plan the order of comparison during attempts.

Noticeably, there are the stronger dependencies between close, neighboring characters

39

and weaker ones at word boundaries. Essentially, the algorithm, after a successful

character match, aims to compare the character the dependencies of which are the

weakest with respect to the already matched characters. Practically, the algorithm avoids

comparing the characters of the window sequentially from left to right or from right to

left, but aims to compare the last character, the first character and the middle character of

the window, with the respective characters of the pattern in that order, and then all the

rest characters. For the shifts the Boyer-Moore bad-character shift table is used. The

algorithm performs the searching phase in quadratic time but is very efficient in practice

on English texts. A searching example is illustrated in Figure 41.

40

Figure 41: Raita searching example.

 2.24.2 Implementation Details

Implementation-wise there was an important modification with respect to the

program in C, regarding not the correctness of the algorithm but its efficiency as it was

presented. The C implementation performs the character comparisons in the following

order: last, middle, first, the rest (Figure 42). However, the order presented in [19] is the

41

following: last, first, middle, the rest; the latter is what has been implemented in Java

(Figure 43).

Figure 42: Middle character is checked before first character in Raita's C

implementation.

Figure 43: Middle character is checked after first character in Raita's Java

implementation.

 2.25 Reverse Factor

 2.25.1 Description

The Reverse Factor [2][20] is an implementation of a string search algorithm,

efficient when dealing with long patterns and small alphabets. While Boyer-Moore and

its variants attempt to match some suffixes of the pattern, this algorithm is designed to

match prefixes of the pattern by scanning the window from right to left. This is achieved

by constructing a smallest suffix automaton (or DAWG for Directed Acyclic Word

Graph) for the reversed pattern.

During preprocessing, the smallest suffix automaton S(PR) for the reversed

pattern is computed. That is a deterministic finite automaton, which recognizes all the

suffixes of a string w and is denoted as S(w) = {Σ, S, s, F, δ}, where:

42

 Σ is the alphabet

 S is the set of states

 s is the initial state

 F is the set of final states

 δ: S x Σ = S is the transition function

Its main difference with the automaton presented in the Deterministic Finite Automaton

algorithm is that there are no forward edges. An example is illustrated in Figure 44,

where all the omitted edges are undefined. It can be constructed in time and space

proportional to O(m).

 During searching, the scanning of the window is performed by the smallest suffix

automaton from right to left beginning from the initial state, proceeding as long as there

is a defined transition for the current character in the current state. In case of a mismatch,

the shift is easily computed to be the length of the longest prefix of the pattern that has

been matched. This phase takes quadratic time in the worst case but it behaves optimally

on average.

Figure 44: Smallest suffix automaton in Reverse Factor.

 2.26 Turbo Reverse Factor

 2.26.1 Description

The Turbo Reverse Factor [2] is an amelioration of the Reverse Factor algorithm

that performs the searching phase in linear time in worst case. It takes advantage the fact

that, after having matched a prefix u of P in the last attempt, in the next attempt when the

right end of u has been reached, it is only needed to scan the rightmost half characters of

u at worst case.

43

The preprocessing phase of the algorithm is the same as in Reverse Factor in

computing the smallest suffix automaton. During the searching phase, let disp(z, w)= d >

0 be the displacement of z in w, where d is the minimum position such that w[m-d-|z|-1]

= z. In a typical situation, a prefix u has been matched in the text in the last attempt and

in the current attempt the m-|u| characters right of u are about to be matched. Then there

are four cases:

 v is not a factor of P, the shift is computed just like in Reverse Factor.

 v is a suffix of P, then the pattern has been matched.

 v is a factor but not a suffix of P, then it is needed to scan only the

min{|per(u)|, |u|/2} rightmost characters of u.

As mentioned above, the searching phase is done in O(n), by performing at most 2n

character inspections.

 2.27 Forward Dawg Matching

 2.27.1 Description

Forward Dawg Matching [2] is a string search algorithm that uses the smallest

suffix automaton (or DAWG), introduced in the Reverse Factor section, to compute and

store the largest factor of the pattern that ends at each position of the text. The

preprocessing phase is similar to the one in Reverse Factor and consists of constructing

the automaton, which also introduces the notion of longest state paths and suffix links.

For every state p, let length(p) be the longest path from the initial state q0 to p. Also let

S[p] be the suffix link of state p. For p let Path(p)=(p0,p1, .. , pl), be the suffix path such

that p0= p, where 1 ≤ i ≤ l, pi = S[pi-1] and pl = q0. During searching phase, the text

characters are scanned from left to right with p being the state of the current character.

The state is updated with the target state of the first defined transition of the current

character in Path(p); if there is no such transition the state is updated with the initial state

q0. A pattern match is reported when length(p) = m.

The preprocessing phase takes time proportional to O(m) and the searching phase

takes time O(n) performing exactly n character comparisons.

44

 2.28 Backward Nondeterministic Dawg Matching

 2.28.1 Description

Backward Nondeterministic Dawg Matching [2][21] is a variant of the Reverse

Factor algorithm. It combines the advantages of the suffix automaton, which permits a

search of a substring of the pattern and not only of a prefix or a suffix, with the efficiency

of bit-parallelism similarly to the Shift-Or algorithm, making it quite performant when

the pattern size is less than the word size of the computer. This achieved by computing

the automaton in its simpler, nondeterministic form and can be simulated with bit-

parallelism which intrinsically allows many operation to be performed at once.

Specifically, the algorithm uses a bit mask array B for each character of the

alphabet c such that the i-th bit of Bc is set only if P[i] = c. Just like in Shift-Or, the state

is stored in a bit vector d of size m, which should be less than the word size for the

algorithm to be efficient. The bit di is activated when P[m-i..m-1-i-k] = T[j+m-k..j+m-1].

At each text position j, d id initialized to 1m-1 and updated with the formula d = (d &

B[T[j]]) << 1. If dm-1 – 1 at the m-th iteration then a pattern match is reported. When dm-1

= 1 during any iteration other than the m-th iteration, then a prefix of the pattern has been

matched in the current window position j. The longest such prefix provides the next shift

of the window.

 2.29 Backward Oracle Matching

 2.29.1 Description

Backward Oracle Matching [2][22] is another variant of the reverse Factor

algorithm. It utilizes an elaborate structure called the factor oracle, which has m+1 states,

is acyclic, recognizes at least all the suffixes of P and stores a linear number of

transitions. The factor oracle is a compact deterministic finite automaton which

recognizes all the suffixes of a string w and is denoted as O(w) = {Σ, Q, q0, F, δ}, where:

 Σ is the alphabet

 Q is the set of states

 q0 is the initial state

 F is the set of final states

45

 δ: Q x Σ = Q is the transition function

During preprocessing, the suffix oracle is constructed for the reverse pattern.

Although it recognizes also some words that are not factors of the pattern, the only word

of length greater or equal than m that it contains is the reverse pattern itself and thus can

be used for pattern matching. This process is done is linear time and space.

The searching phase consists of scanning the characters of the window from right

to left with the factor oracle staring from the initial state and it proceeds until no more

transitions are defined for the current character. At this point, the prefix of the pattern

that has been matched is a suffix of the scanned window, and is less than the path taken

in the factor oracle from the initial state to the last defined state encountered. Thus the

next shift can be easily computed. The searching process has a quadratic worst time

complexity but is efficient in practice.

 2.30 Galil-Seiferas

 2.30.1 Description

Galil and Seiferas designed a linear time string search algorithm [23][2], which

just as Karp-Rabin does not require dynamic storage allocation but also does not require

any high level computational capabilities.

The algorithm introduces the use of variable k, which is proportional to its worst

case running time, thus practically it should be a small value (k=4 is suggested by Galil,

Seiferas). Also, let reach be a function such that reach(i) = i + max{i’ ≤ m – i: P[0..i’] =

P[i+1..i’+i+1]} for 0 ≤ i < m. Then a prefix P[0..p] is considered to be a prefix period if

it is basic, that is it cannot be written as a power of another word, and reach(p) ≥ kp.

During the preprocessing phase, the algorithm attempts f uses methods newP1,

newP2 and parse to find a perfect factorization. That is a decomposition uv of P such

that u = P[0..s-1], v = P[s..m-1]. Method newP1 stores the shortest prefix period of

P[s..m-1], method newP2 stores the second shortest prefix period of P[s..m-1] and

method parse increments s. Thus right before searching we have:

 P[s..m-1] has one prefix period at most.

 If P[s..m-1] does not have a prefix period , its length is p1.

 P[s..s+p1+q1-1] contains the shortest period of length p1.

46

 P[s..s+p1+q1] does not contain the shortest period of length p1.

An example of a perfect factorization is illustrated in Figure 45, where the pattern

consists of P[0..s-1] and P[s..m-1], P[s..m-1] consists of zlz’az’’, z is basic, |z| = p1, z’ is

a prefix of z, z’a is not a prefix of z, and |zlz’| = p1 + q1.

Figure 45: A perfect factorization.

 During the searching phase, given the perfect factorization uv, the text is scanned

for occurrences of v and for each one of them it looks if it is preceded by u. If

P[s..s+p1+q1-1] has been matched then the window is shifted by p1 and the attempt

resumes with P[s+q1]; otherwise if a mismatch occurs on P[s+q], where q ≠ p1+q1 then

the window is shifted by q/k+1 and the attempt resumes with P[0]. This phase yields a

linear number of text character comparisons, bounded by 5n.

 2.30.2 Implementation Details

Regarding the implementation of the algorithm in Java, the structure of the C

code was maintained as is, with functions newP1, newP2, parse and search (search as

private method to differentiate its signature from the public method search that returns

the first occurrence) all implemented as methods. However, since we include two search

methods, one that finds the first occurrence (search) and one that finds all the

occurrences (searchAll), some modifications were included in order to avoid duplicated

code. Both methods call the same init method that is the implementation of the function

GS. Also, two instance variables have been introduced, an integer one for the result of

search and a list of integers for the result of searchAll. The basic idea here is to use the

same methods (newP1, newP2, parse, search) either we call search or searchAll,

returning the appropriate result based on the public method that was called. To keep track

of the called method, two flag variables were utilized.

A flag variable searchAll, that is true if we call the searchAll method and false if

we call the search.

47

A flag variable goOn was introduced that defaults as true and becomes false

when, during a call of the search method, the first match has been found. In the latter

case, by checking this flag, the algorithm forces the method to stop the search and return.

Since methods newP1, newP2, parse and search are heavily dependent on each other

(Figure 46), a check for this flag has been added after each call on each of those methods,

allowing for the searching procedure to end when a first match has been found.

Figure 46: Dependent calls from each method in Galil-Seiferas.

 2.31 Two Way

 2.31.1 Description

The Two Way algorithm [2][24] presents an approach similar to Galil-Seiferas

algorithm, but is conceptually simpler and needs only constant extra space. Its main

principal is to factorize the pattern P in two parts, the left one (Pl) and the right one (Pr).

Then, during the search phase the right part is scanned from left to right and then, if no

mismatch occurs, the left part is scanned from right to left. The preprocessing phase aims

to find a good factorization. This algorithm uses some notions in order to achieve this.

A repetition of a factorization uv is a factor w such that the two following

properties hold:

 w is suffix of u or u is a suffix of w

 w is prefix of v or v is a prefix of w

This means that w occurs at both sides of the cutting point between u and v. the length of

a repetition in uv is a local period and the minimum such value is the global period and

48

symbolized as r(u, v). Each factorization has at least one repetition, and one can see that

1 ≤ r(u,v) ≤ m. When r(u,v) = per(P) then we have a critical factorization. The algorithm

chooses a critical factorization for the minimal |Pl| such that |Pl| < per(P). This

computation requires finding the maximal suffixes for both orders ≤ and ~≤ and defining

the length of the left factor Pl as the maximum of the lengths of the two suffixes. This can

be done in linear time regarding the pattern size.

 During the searching phase, as mentioned above, first the right part is scanned

from left to right; in case of mismatch on the k-th character then the window shifts by k.

Otherwise the algorithm proceeds scanning the left part from right to left, shifting the

window by per(P) in case of mismatch. This phase runs in linear time performing at most

2n – m text character comparisons.

 2.32 String Matching on Ordered Alphabets

 2.32.1 Description

The String matching on Ordered Alphabets algorithm [2][25] exploits an ordered

alphabet to offer a linear string search algorithm using only constant extra space. In a

typical situation the window is placed on T[j..j+m-1], a prefix u has been matched and

mismatch occurs between P[i] and T[j+i]. In that case the algorithm attempts to find the

period of uT[j+i], or find an approximate value if it doesn’t succeed.

The algorithm utilizes the notion of Maximal-Suffix decomposition (MS-

decompositon). The MS-decomposition of a word P is defined to be twew’, meaning that

 wew’ = v is the maximal suffix of P in alphabetical order.

 w is basic

 e ≥ 1

 w’ is a proper prefix od w.

If u is a suffix of w then per(P) = per(v) = |w|, otherwise per(P) > max {|u|, min{|v|,

|twe|}} ≥ |P|/2.

The algorithm does not require a preprocessing step. Rather at each attempt it

computes the maximal suffix of the matched prefix followed by the text character that

49

triggered the mismatch. In case of a mismatch of length per(w), the maximal suffix does

not need to be recalculated.

 2.32.2 Implementation Details

One notable change in the implementation of the algorithm in Java from The C

program, is that the variables ip, jp, k, p have been declared as arrays of integers of size 1

instead of integers, so that they can be passed by reference in the nextMaximalSuffix

private method. This allows the method to change them without needing to declare them

as instance variables, since they are different at every search step and are not reused.

 2.33 Optimal Mismatch

 2.33.1 Description

Optimal Mismatch [2][14] is another variant of the Quick Search algorithm that is

quite efficient when dealing with large alphabets. Its main principle lies in choosing a

scanning order that maximizes the possibility of a character mismatch at each text

position. To achieve this, unlike the other algorithms stemming from the Boyer-Moore

algorithm, where the scanning of the window is from right to left or can be done in any

order, this one scans the pattern characters from the least frequent one to the most

frequent one. This results in earlier mismatches and quicker shifts, and thus greater

efficiency.

The preprocessing phase consists several steps. Initially, the frequencies of the

letters of the alphabet in the text are calculated and the positions of the characters of the

pattern are stored. Then the pattern characters are sorted according to two criteria;

primarily in ascending order based on their individual frequency and, in case of a tie, in

descending order based on their positions in the pattern (Figure 47). Finally, the bad-

character shift table from Quick Search is constructed.

50

Figure 47: Example of sorting the pattern characters after Optimal Mismatch

preprocessing.

 The searching phase is similar to Quick Search consisting of scanning the text

positions and comparing following the order of the characters computed above. In case of

a mismatch the bad-character table provides the next shift. This phase is quadratic in the

worst case, but quite efficient in practice when dealing with large alphabets.

 2.33.2 Implementation Details

Implementation-wise, several modifications where applied to the original C code,

regarding not only the adaptation of the algorithm in Java but also its structure in general.

Since the algorithms in this thesis are implemented by preprocessing the pattern

in the constructor and then providing the text as a parameter to the search method to

launch a string search, the step of calculating the frequencies and sorting the characters

was placed in the search method () and not in the constructor where the preprocessing

usually takes place. Of course, the algorithm can be modified to preprocess first the text

and then receive the pattern as a search parameter reducing the preprocessing time and

allowing to search for multiple patterns in a source text more efficiently.

Concerning the implementation, the C structure patternScanOrder was

implemented as a private static class patternScanEmement (Figure 48).

Figure 48: Comparison of the auxiliary structure patternScanOrder between C (left)

and Java (right).

51

To manage the sorting part, a private static comparator class ByFreqLoc was

created that implements the Comparator interface for sorting patternScanEmement

instances, replacing the C function optimalPcmp (Figure 49).The comparator

constructor takes a integer array of frequencies based on which it sorts the

patternScanEmement instances first in ascending order based on their characters’ (c)

frequencies (freq[c]) and then in descending order according to their positions (loc) in

the pattern in case of a tie.

Figure 49: Comparison of the comparison functionality implementation between C

(up) and Java (down).

.

Finally, since the bad-character shift array qsBc from Quick Search is utilized

here, the same modification of the length of the array from m to m+1 applies here as

well.

52

 2.34 Maximal Shift

 2.34.1 Description

Maximal Shift [2][14] is the implementation of another variant of the Quick

Search algorithm. Its approach is similar to the one mentioned in the Optimal Shift

section. The window characters are scanned with a particular order aiming to increase

efficiency and the shifts are performed according to the bad-character shift table

introduced in the Quick Search section. The algorithm differentiates in the order that it

employs to perform the comparisons in the window. Specifically, it sorts the characters

of the pattern from the one that can lead to a longer shift, to the one that can lead to the

shorter shift.

The preprocessing phase takes time and space proportional to O(m2+σ) and

O(m+σ) respectively, while the searching phase can be quadratic in the worst case.

 2.35 Skip Search

 2.35.1 Description

The Skip Search algorithm [2][26] utilizes buckets of character positions in the

pattern to minimize work during each attempt and to maximize shift lengths.

During preprocessing phase, it creates a bucket for each character of the alphabet

with its positions in the pattern in descending order (Figure 50). If a character c occurs k

times in the pattern, then its bucket will contain all k values of its positions. This data

structure can be represented by an array of linked lists, where each linked list is a bucket

(Figure 51). This implementation is efficient for small alphabets, otherwise many buckets

remain empty. The preprocessing step can be done in O(m+σ) time and space

complexity.

Figure 50: Example of buckets used in Skip Search for pattern = tcacaga.

53

Figure 51: Data structure implementing of Skip Search buckets using an array of

linked lists for pattern = tcacaga.

The searching phase consists of traversing each text position starting from

position m-1 up to n-1. For each current character in position j, the positions are retrieved

from their respective bucket to indicate the starting point of the window, meaning that if

a character is located in positions pos1, pos2 and pos3 of the pattern then, during the

window scanning, those positions will be considered in descending order to help

determine the starting position of the window according to the formula j – pos. A

searching example is illustrated at Figure 52. The searching phase is quadratic in worst

case though efficient on practice.

Figure 52: The searching phase of Skip Search.

54

 2.36 KMP Skip Search

 2.36.1 Description

KMP Skip Search [2][26] is an amelioration of the Skip Search algorithm,

achieving a linear time searching performance. This is possible by utilizing the Morris-

Pratt array mpNext and the Knuth-Morris-Pratt array kmpNext.

The preprocessing phase involves the construction of the two shift arrays. As

mentioned in their respective sections, mpNext[i] (1 ≤ i ≤ m) contains the length of the

longest border of P[0..i-1] with mpNext[0] = -1, while kmpNext[i] (1 ≤ i ≤ m) represents

the length of the longest border of P[0..i-1] followed by a character different than P[i]

with kmpNext[0] = -1. Finally the bucket list is computed. This phase runs in time and

space proportional to O(m+σ).

During the searching phase, in a typical situation of KMP Skip Search, the

algorithm is on the text position j with P[i] = T[j] and start = j – I is the start of the

window of the current attempt. Now let wall be the rightmost current scanned position

meaning the previous wall-start-1 characters of the window have been matched. From

that position the comparisons between the pattern and the text are performed from left to

right. Let k be the least position such that k ≥ wall – start and P[k] ≠ T[start+k] or k = m

if a pattern match has been reported in position start. Then we set wall = start + k. The

algorithm then computes two new start positions for the window; a skipStart position,

computed according to the AdvancedSkip algorithm and a start position kmpStart based

on kmpNext. This results in one of the following cases:

 skipStart < kmpStart, resulting in computing a new skipStart value and the

two start values are compared again.

 kmpStart < skipStart < wall, a new value kmpStart is computed from

mpNext and the two start values are compared again.

 skipStart = kmpStart, results in a new attempt for start = skipStart.

 kmpStart < wall < skipStart, results in a new attempt for start = skipStart.

This phase is done in linear time proportional to the length of the text.

55

 2.37 Alpha Skip Search

 2.37.1 Description

Alpha Skip Search [1][2] is another improvement of the Skip Search algorithm,

which achieves a linear time and space preprocessing phase regarding the length of the

pattern. Just like Skip Search the algorithm uses buckets of positions. It differentiates,

however, by using the buckets to store the positions of all factors of length l = logσm of

the pattern. In order to store the factors a trie structure is used, the leaves of which

represent the pattern factors of length l and store the list of positions they appear on. This

is achieved in linear time. During the searching phase, the algorithm inspects the lists of

the text factors T[j..j+l-1] for all j = k..(m-l+1) for k in the range T[1, floor{ (n-l)/ m }].

This phase is quadratic but efficient in practice for small alphabets and large patterns.

56

57

 3 Benchmarks

 3.1 Methodology

To compare the algorithms presented we consider their execution time for finding

a pattern in a larger text. The text used in the benchmarks is a genome sequence [27]

consisting of 4 distinct characters A, C, G, T and containing about 4.5 million characters.

A text of that scale was selected to stretch and challenge the performance capabilities of

the algorithms.

Since each patterns size’s impact varies during the searching phase of a string

matching algorithm, this benchmark considers multiple pattern sizes grouped into two

categories, the small sizes consisting of {2, 3, 4, 5, 6, 7, 8, 9, 10} and the larger sizes

consisting of {10, 20, 40, 80, 160, 320, 640}. Each algorithm, for each pattern size, is

tested against 10000, randomly selected form the above source text, patterns of current

pattern size. A pattern sample of this size aims to compensate for the position factor

impact, meaning that in the case we tested, for each pattern size, only one randomly

selected pattern in such a large text, for one pattern size the random pattern could be

located towards the end of the text, while for another it could be located in the beginning

of the text resulting in misleading (as to the comparison of the algorithms) execution

times. For each pattern size, all algorithms were tested on the same sequence of (10000)

randomly generated patterns and the average of the respective execution times was stored

referring to the current algorithm and the current pattern size (Figure 53).

The above procedure was applied twice, once for searching the first occurrence of

each pattern in the text and once for searching all occurrences, yielding data for four

major scenarios:

 Finding the first occurrence for small pattern sizes

 Finding the first occurrence for large pattern sizes

 Finding all occurrences for small patterns sizes

 Finding all occurrences for large patterns sizes

The results were organized and displayed in three sections. In the first section of

individual results, the time of each algorithm on the above four scenarios is displayed in

a line graph along with the minimum and average times of all algorithms per pattern size.

In the second section, the comparative results of all algorithms are displayed in a bar

58

graph, sorted from fastest to slowest. Each bar corresponds to its corresponding

algorithm’s average performance on all pattern sizes. This bar chart has been done for

each one of the previously mentioned four major scenarios. In the third section, the same

collective results of each scenario were organized into the four categories according to

which the algorithms are grouped concerning the order of comparisons performed (left to

right, right to left, in a specific order, in any order).

Figure 53: Organization of data in the benchmark suite.

 3.2 Technical Details

To execute the above benchmarking procedure a benchmark suite was

implemented in Java. The suite automatically tests all algorithms on all pattern sizes, as

previously described, and, right after, automatically confirms the correctness of the

results from each benchmark run. To achieve this the Java Reflection API has been

utilized, which allows to modify the behavior of classes and methods in runtime.

Essentially, the benchmark program loops at each pattern size and produces a

sequence of randomly selected patterns, substrings of the source text, of length equal to

the current pattern size. Then it tests each algorithm on this sequence of patterns and

stores the average time for each. Each algorithm instance is created at runtime via

Reflection by looping in a String array that stores all the class names of the algorithms

implemented in Java. Similarly, each search method call is performed via Reflection.

Right before each algorithm executes a string search for a pattern, a result

correctness check occurs. Specifically, two instances are created with reflection, one for

59

the current algorithm and one for the Brute Force algorithm, the simplest string matching

algorithm. Then the search of the pattern is executed, again with Reflection for both

instances and the results are compared. If there is a mismatch, an Exception with a

descriptive message is thrown and the execution of the whole benchmark procedure

stops; otherwise, right after, the current algorithm is again tested on the pattern and the

execution is timed. This part was no necessary for the benchmarking procedure, however

it proved significantly useful in debugging the more complex string matching algorithm

implementations.

Finally, all the results were exported in separate .csv files for each algorithm, as

well as for the minimum and average values per pattern size and for the average time of

each algorithm on all patterns.

The technical characteristics of the machine that performed the benchmarks were:

 Processor: AMD FX(tm)-6350 6 Core Processor @ 3.9 GHz

 RAM: 8 GB

 OS: Windows 10

 System type: 64-bit Operating System, x64-based precessor

 3.3 Individual results

 3.3.1 Brute Force

Figure 54: Brute Force - results of finding the first occurrence of small patterns

(left) and large patterns (right).

60

Figure 55: Brute Force - results of finding all occurrences of small patterns (left)

and large patterns (right).

The Brute Force algorithm seems to be the most efficient approach when

searching for the first occurrence of small patterns of length ranging from 2 to 9, while

for larger patterns it performs similarly to the algorithms’ average performance (Figure

54Figure 54: Brute Force - results of finding the first occurrence of small patterns (left)

and large patterns (right).). This can be attributed to the lack of a preprocessing phase and

the small size of the alphabet (σ = 4). Brute Force lacks preprocessing computations in

contrary to almost all the other benchmark’s algorithms. Also, most of the benchmark’s

algorithms use a shift table to perform jumps in the text when a mismatch occurs, the

impact of which is relative to the size of the alphabet in the strings, since more distinct

letters offer more shifts. The small alphabet used here presents only a few shifts, the

effect of which is countered by the complex precomputations that add excessive

overhead for small patterns.

Concerning the search for all occurrences, the algorithm performs a little better

than the average algorithms’ performance for small patterns but becomes slower for

pattern sizes greater than 10, although not in an increasing factor (Figure 55).

 3.3.2 Deterministic Finite Automaton

61

Figure 56: Deterministic Finite Automaton - results of finding the first occurrence

of small patterns (left) and large patterns (right).

Figure 57: Deterministic Finite Automaton - results of finding all occurrences of

small patterns (left) and large patterns (right).

 The Deterministic Finite Automaton algorithm appears to be following closely

the average algorithms’ performance for either searching the first occurrence or searching

for all occurrences of the pattern. One can notice that for large patterns (>160) the

performance improves compared to the average.

 3.3.3 Karp-Rabin

Figure 58: Karp-Rabin - results of finding the first occurrence of small patterns

(left) and large patterns (right).

62

Figure 59: Karp-Rabin - results of finding all occurrences of small patterns (left)

and large patterns (right).

 One can notice that Karp-Rabin is more performant when searching for all

occurrences of a pattern, especially for large patterns (Figure 59). It also presents a

steady efficiency when searching for the first occurrence for large patterns compared to

the increasing average (Figure 58). This can be attributed to its linear scanning of the text

using the hash function that avoids quadratic comparisons, rendering the algorithm ideal

for tasks as plagiarism detection.

 3.3.4 Shift-Or

Figure 60: Shift-Or - results of finding the first occurrence of small patterns (left)

and large patterns (right).

63

Figure 61: Shift-Or - results of finding all occurrences of small patterns (left) and

large patterns (right).

Shift-Or implementation’s use of bitwise operations render it the most efficient

string search algorithm for finding all the occurrences of small patterns of length 2 to 10

and one of the fastest for up to word size length patterns (in this case 31). It seems also to

be one of the most efficient approaches for searching the first appearance of patterns the

length of which ranges from 8 to the word size. Since this implementation handles larger-

than-the-word-size patterns by matching the first word-size characters and then

sequentially comparing the rest, just like the Brute Force algorithm, its performance for

patterns that exceed the word size in length, highly resembles Brute Force’s.

 3.3.5 Morris-Pratt

Figure 62: Morris-Pratt - results of finding the first occurrence of small patterns

(left) and large patterns (right).

64

Figure 63: Morris-Pratt - results of finding all occurrences of small patterns (left)

and large patterns (right).

 The Morris-Pratt algorithm seems to perform well in searching for the first or all

the appearances of large patterns, but appears relatively slow in finding all the

occurrences of small patterns. This can be attributed to the fact that its preprocessing

shift values are restricted by the small alphabet (σ = 4) encountered in this benchmark,

since for a mismatch there are only 3 possible shifts.

 3.3.6 Knuth-Morris-Pratt

Figure 64: Knuth-Morris-Pratt - results of finding the first occurrence of small

patterns (left) and large patterns (right).

65

Figure 65: Knuth-Morris-Pratt - results of finding all occurrences of small patterns

(left) and large patterns (right).

 The Knuth-Morris-Pratt (KMP) seems to perform better that its predecessor

Morris-Pratt regarding small patterns (Figure 65) being considerably faster than the

average time of the benchmark in finding all the occurrences of a pattern. This can be

attributed to the fact that KMP produces better shifts by considering tagged borders.

Apart from that it appears to have the same efficiency in the other situation.

 3.3.7 Simon

Figure 66: Simon - results of finding the first occurrence of small patterns (left) and

large patterns (right).

Figure 67: Simon - results of finding all occurrences of small patterns (left) and

large patterns (right).

66

 Although it mainly aims to be a more memory-efficient implementation of the

Deterministic Finite Automaton (DFA) algorithm, Simon performs slightly better than

the former during all occurrences searches regardless of pattern size (Figure 67), being in

fact faster than the respective average benchmark time. This can be due to the algorithm

storing only the significant edges that cannot be deduced otherwise. The performance

remains approximately the same with DFA in the rest cases.

 3.3.8 Colussi

Figure 68: Colussi - results of finding the first occurrence of small patterns (left)

and large patterns (right).

Figure 69: Colussi - results of finding all occurrences of small patterns (left) and

large patterns (right).

 The Colussi algorithm improves the Knuth-Morris-Pratt (KMP), by applying

tighter conditions regarding selecting and performing the shifts. However it appears it

performs slightly slower than KMP when searching for all occurrences of patterns

(Figure 69), which may be due to its considerably more computational heavy

preprocessing phase.

67

 3.3.9 Galil-Giancarlo

Figure 70: Galil-Giancarlo - results of finding the first occurrence of small patterns

(left) and large patterns (right).

Figure 71: Galil-Giancarlo - results of finding all occurrences of small patterns (left)

and large patterns (right).

 One can notice that Galil-Giancarlo’s performance resembles Colussi’s regarding

matching the first occurrence of a pattern regardless its size (Figure 70). Its efficiency

however seems to slightly deteriorate during searching for all occurrences of a pattern,

except for large patterns (>320) when it seems to be more efficient than Colussi (Figure

71).

 3.3.10 Apostolico-Crochemore

68

Figure 72: Apostolico-Crochemore - results of finding the first occurrence of small

patterns (left) and large patterns (right).

Figure 73: Apostolico-Crochemore - results of finding all occurrences of small

patterns (left) and large patterns (right).

 The Apostolico-Crochemore algorithm splits the pattern into two parts, the

biggest prefix that is a power of a single character and the rest of the pattern, performing

the comparisons first in the latter and lastly in the former, and utilizing the shift table

from Knuth-Morris-Pratt (KMP) to perform the jumps. Generally it seems to perform

better than the benchmark average in most of the occasions, especially when searching

for all the occurrences for large patterns (Figure 73), outperforming KMP in this case.

 3.3.11 Not So Naïve

69

Figure 74: Not So Naive - results of finding the first occurrence of small patterns

(left) and large patterns (right).

Figure 75: Not So Naive - results of finding all occurrences of small patterns (left)

and large patterns (right).

 Not So Naïve (NSN) is a variant of the Brute Force algorithm that slightly

differentiates in the order the comparisons are performed. Notably, compared the latter,

NSN doesn’t exhibit the same efficiency in matching the first occurrence of small

patterns (Figure 74), but it prevails in all the other cases (Figure 74, Figure 75).

Specifically it behaves more efficiently in searching for all occurrences for small patterns

and achieves times less than the benchmark average concerning searching for the first or

all occurrences of large patterns.

70

 3.3.12 Boyer Moore

Figure 76: Boyer-Moore - results of finding the first occurrence of small patterns

(left) and large patterns (right).

Figure 77: Boyer-Moore - results of finding all occurrences of small patterns (left)

and large patterns (right).

 The Boyer-Moore algorithm is considered one of the most efficient string search

algorithms. Indeed, the algorithm’s performance approaches the benchmark’s minimum

times in almost all the cases, improving as the length of the pattern increases (Figure 76,

Figure 77). Remarkably, the algorithm’s times are not so close to the minimum ones in

the case of the first occurrence matching for small patterns (Figure 76), which have been

recorded by Brute Force (Figure 54). As mentioned in the latter’s results, its simple loop

operations and lack of preprocessing phase prevail over Boyer-Moore’s computationally

heavier shift tables construction and overhead for small patterns representing a small

alphabet (σ = 4).

71

 3.3.13 Turbo Boyer-Moore

Figure 78: Turbo Boyer-Moore - results of finding the first occurrence of small

patterns (left) and large patterns (right).

Figure 79: Turbo Boyer-Moore - results of finding all occurrences of small patterns

(left) and large patterns (right).

Although Turbo Boyer-Moore is an improvement of the Boyer-Moore algorithm, it

seems to perform slightly slower than the latter when searching for small patterns.

Nevertheless, its performance still appears to improve as the size of the pattern increases.

 3.3.14 Apostolico-Giancarlo

Figure 80: Apostolico-Giancarlo - results of finding the first occurrence of small

patterns (left) and large patterns (right).

72

Figure 81: Apostolico-Giancarlo - results of finding all occurrences of small

patterns (left) and large patterns (right).

 One can notice that the Apostolico-Giancarlo algorithm, a variant of the Boyer

Moore algorithm that can remember matched suffixes of the window, a quite slow

performance when searching for large patterns (Figure 78, Figure 79); a performance that

seems to rapidly deteriorate as long as the pattern length increases. During search for

small patterns the performance of the algorithm approaches more the benchmark’s

average.

 3.3.15 Reverse Colussi

Figure 82: Reverse Colussi - results of finding the first occurrence of small patterns

(left) and large patterns (right).

Figure 83: Reverse-Colussi - results of finding all occurrences of small patterns

(left) and large patterns (right).

73

 Reverse Colussi, which is an improved version of the Boyer-Moore algorithm,

seems to clearly outperform the latter regarding medium to medium-large pattern sizes;

specifically it approaches the benchmark’s fastest times for pattern lengths ranging from

10 to 160. However its performance seems to rapidly deteriorate for any patterns larger

than the aforementioned range.

 3.3.16 Horspool

Figure 84: Horspool - results of finding the first occurrence of small patterns (left)

and large patterns (right).

Figure 85: Horspool - results of finding all occurrences of small patterns (left) and

large patterns (right).

 The Horspool algorithm, a simplified implementation of Boyer-Moore which

constructs and utilizes only the bad-character shift table, appears to not perform any

better than Boyer-Moore in any of the cases of the benchmark. Nevertheless, it offers

well below average searching times that don’t increase as the pattern length increases.

74

 3.3.17 Quick Search

Figure 86: Quick Search - results of finding the first occurrence of small patterns

(left) and large patterns (right).

Figure 87: Quick Search - results of finding all occurrences of small patterns (left)

and large patterns (right).

 Quick Search, yet another simplification of the Boyer-Moore algorithm, exhibits

a performance behavior that seems more similar to the latter’s in comparison with

Horspool. The algorithm is quite efficient in all pattern sizes for the small alphabet size

that is used in this benchmark, displaying a stable performance as long as the pattern size

increases.

 3.3.18 Tuned Boyer-Moore

Figure 88: Tuned Boyer-Moore - results of finding the first occurrence of small

patterns (left) and large patterns (right).

75

Figure 89: Tuned Boyer-Moore - results of finding all occurrences of small patterns

(left) and large patterns (right).

 The Tuned Boyer-Moore algorithm, another simplified version of Boyer-Moore

that unrolls 3 shifts in a row before each attempt and uses only the bad-character shift

table, displays a slightly worse behavior in the first occurrence search scenario for small

patterns (Figure 88). Other than that, its performance in the rest of the cases resembles

Boyer-Moore’s, in that it offers search times well below the benchmark’s average.

 3.3.19 Zhu-Takaoka

Figure 90: Zhu-Takaoka - results of finding the first occurrence of small patterns

(left) and large patterns (right).

Figure 91: Zhu-Takaoka - results of finding all occurrences of small patterns (left)

and large patterns (right).

76

 Zhu Takaoka is another simplified implementation of the Boyer-Moore algorithm

that uses the bad-character shift table at each mismatch for the two last consecutive

characters of the window. One can notice it outperforms Boyer-Moore during large

pattern searches as well as in all occurrences searches for small patterns (Figure 90,

Figure 91). Additionally this algorithm appears to be the ideal option for first-occurrence

search of patterns of size ranging between 10 and 80, as well as for all-occurrences

search of patterns of size 9 and 160.

 3.3.20 Berry-Ravindran

Figure 92: Berry-Ravindran - results of finding the first occurrence of small

patterns (left) and large patterns (right).

Figure 93: Berry-Ravindran - results of finding all occurrences of small patterns

(left) and large patterns (right).

 Berry-Ravindran is a hybrid of Quick Search and Zhu-Takaoka that uses the bad-

character shift for the two consecutive characters right after the end of the window. It

performs well in all benchmark cases except for first-occurrence matching of small

patterns, where it displays times slower that the benchmark’s average. However, in the

rest cases it becomes more efficient as the pattern length increases.

77

 3.3.21 Smith

Figure 94: Smith - results of finding the first occurrence of small patterns (left) and

large patterns (right).

Figure 95: Smith - results of finding all occurrences of small patterns (left) and

large patterns (right).

 The Smith algorithm is a hybrid of Horspool and Quick Search takes the

maximum shift of both bad-character shift tables. It seems to perform exactly the same as

its two predecessors. Specifically, it is quite efficient with small sized patterns for either

first-occurrence or all-occurrences searches.

 3.3.22 Raita

Figure 96: Raita - results of finding the first occurrence of small patterns (left) and

large patterns (right).

78

Figure 97: Raita - results of finding all occurrences of small patterns (left) and large

patterns (right).

 The Raita algorithm appears to be quite performant in any kind of search

regardless of pattern size. Just like Horspool it utilizes only Boyer-Moore’s bad-character

table to perform the shifts, but also employs a specific order of comparisons during an

attempt starting from the last character on to the first, the middle and finally the rest

characters of the pattern. Notably, it performs, if not more, just as efficiently as Boyer-

Moore using only one shift table and certainly outperforms Horspool that uses the same

shift table. The algorithm seems to thrive particularly during searching all the

occurrences of small patterns.

 3.3.23 Reverse Factor

Figure 98: Reverse Factor - results of finding the first occurrence of small patterns

(left) and large patterns (right).

79

Figure 99: Reverse Factor - results of finding all occurrences of small patterns (left)

and large patterns (right).

The Reverse Factor algorithm is a variant of Boyer-Moore implemented using a suffix

automaton to store the most significant edges of the reversed pattern, thus avoiding using

character comparisons, which are the most costly operations in a string search algorithm.

This is reflected by its benchmark results, where for medium to large sized patterns

(Figure 98, Figure 99) it performs the best searching times along with Zhu-Takaoka.

 3.3.24 Turbo Reverse Factor

Figure 100: Turbo Reverse Factor - results of finding the first occurrence of small

patterns (left) and large patterns (right).

Figure 101: Turbo Reverse Factor - results of finding all occurrences of small

patterns (left) and large patterns (right).

80

 The Turbo Reverse Factor algorithm is quite performant in medium and large

patterns of small alphabets (σ=4 here) and not so in cases with small patterns, just as its

relative Reverse Factor. However although it is introduced as an amelioration to Reverse

Factor there is no indication in the benchmark results of a notable improvement.

 3.3.25 Forward DAWG Matching

Figure 102: Forward DAWG Matching - results of finding the first occurrence of

small patterns (left) and large patterns (right).

Figure 103: Forward DAWG Matching - results of finding all occurrences of small

patterns (left) and large patterns (right).

 Although the Forward DAWG Matching algorithm uses the suffix automaton that

Reverse Factor introduced, it performs remarkably slow in almost all the cases except for

the smaller patterns in a first-occurrence search.

81

 3.3.26 Backward Nondeterministic DAWG Matching

Figure 104: Backward Nondeterministic DAWG Matching - results of finding the

first occurrence of small patterns (left) and large patterns (right).

Figure 105: Backward Nondeterministic DAWG Matching - results of finding all

occurrences of small patterns (left) and large patterns (right).

 Since the Backward Nondeterministic DAWG Matching algorithm relies on a

bitwise mask, where each bit corresponds to a character of the pattern, in order to store

the current search state, and since the mask has to be stored as a number for

computational efficiency, it is actually constricted by the word size of the computer (in

this case 32). Meaning the algorithm can be used only for patterns of length up to the

word size. Regarding its performance, one can notice that the algorithm approaches near

to optimal efficiency in any search up until the word size pattern length, which can be

attributed to the usage of bitwise operations to move between search states, similarly to

the Shift Or algorithm.

82

 3.3.27 Backward Oracle Matching

Figure 106: Backward Oracle Matching - results of finding the first occurrence of

small patterns (left) and large patterns (right).

Figure 107: Backward Oracle Matching - results of finding all occurrences of small

patterns (left) and large patterns (right).

 The Backward Oracle matching is a variant of the Reverse Factor algorithm. It

performs relatively efficiently, well below average, for small patterns. However just as

Reverse Factor it thrives in large patterns, as it logged the best performance for patterns

of length greater than 40, outperforming Reverse Factor for sizes over 320 where the

latter slightly deteriorates.

 3.3.28 Galil-Seiferas

83

Figure 108: Galil-Seiferas - results of finding the first occurrence of small patterns

(left) and large patterns (right).

Figure 109: Galil-Seiferas - results of finding all occurrences of small patterns (left)

and large patterns (right).

 One can notice that the Galil-Seiferas algorithm is probably the least performant

of the algorithms included in this benchmark. Notably, its performance is quite slow

when searching for all occurrences of a pattern (Figure 109) as well as when looking for

the first occurrence of a large pattern (Figure 108). Finally it manages to keep up with the

average benchmark performance only for the smaller pattern sizes ranging from 2 to 8

(Figure 108).

 3.3.29 Two Way

Figure 110: Two Way - results of finding the first occurrence of small patterns (left)

and large patterns (right).

84

Figure 111: Two Way - results of finding all occurrences of small patterns (left) and

large patterns (right).

 The Two Way algorithm ranks rather averagely concerning first-occurrence

searches (Figure 110), although it behaves well for larger patterns (>160). Additionally,

its strength seems to lie in all-occurrences searches for small patterns ranging from 2 to

10, as well as for larger patterns (> 160).

 3.3.30 String Matching on Ordered Alphabets

Figure 112: String Matching on Ordered Alphabets - results of finding the first

occurrence of small patterns (left) and large patterns (right).

Figure 113: String Matching on Ordered Alphabets - results of finding all

occurrences of small patterns (left) and large patterns (right).

 Concerning first-occurrence searches, the String Matching on Ordered Alphabets

algorithm performs averagely for smaller patterns (2-9) and for very large patterns

85

(>320), and not so efficiently for medium to large sized patterns (10-320) (Figure 112).

Similarly, when searching for all pattern occurrences, it performs near the benchmark’s

average for very small patterns (2-4) and for very large patterns (>320) while it

deteriorates for medium sized patterns (Figure 113).

 3.3.31 Optimal Mismatch

Figure 114: Optimal Mismatch - results of finding the first occurrence of small

patterns (left) and large patterns (right).

Figure 115: Optimal Mismatch - results of finding all occurrences of small patterns

(left) and large patterns (right).

 The Optimal Mismatch algorithm seems to be efficient for looking for all

occurrences of a pattern regardless of pattern size and appears to execute faster as the

pattern grows (Figure 115). Regarding searching for the first occurrence of a text, the

algorithm achieves times above benchmark average for small patterns, and well below

average for larger patterns (Figure 114).

86

 3.3.32 Maximal Shift

Figure 116: Maximal Shift - results of finding the first occurrence of small patterns

(left) and large patterns (right).

Figure 117: Maximal Shift - results of finding all occurrences of small patterns (left)

and large patterns (right).

 The Maximal Shift algorithm is quite efficient when searching for the first

occurrence of a pattern, especially for large ones, where it almost approaches the

benchmark’s best performances (Figure 116). It ranks better than Optimal Mismatch in

this case as it starts comparing the characters starting from the one that offers the largest

shift and not the one that has the largest frequency (the impact of which is negated by the

small alphabet size in this benchmark). The algorithm also performs relatively well for

matching all the occurrences of a pattern regardless of size (Figure 117).

87

 3.3.33 Skip Search

Figure 118: Skip Search - results of finding the first occurrence of small patterns

(left) and large patterns (right).

Figure 119: Skip Search - results of finding all occurrences of small patterns (left)

and large patterns (right).

 The Skip Search algorithm appears to be quite efficient regarding searching for

all occurrences of a pattern, regardless of size (Figure 119). Furthermore, its performance

seems to improve as the pattern length increases. The same can be said in the case of

first-occurrence pattern searching, particularly for large patterns (Figure 118). Since the

alphabet size is small (σ = 4), each character’s position bucket is rarely empty, meaning

that rarely there will be unused memory references.

88

 3.3.34 KMP Skip Search

Figure 120: KMP Skip Search - results of finding the first occurrence of small

patterns (left) and large patterns (right).

Figure 121: KMP Skip Search - results of finding all occurrences of small patterns

(left) and large patterns (right).

 The fact that KMP Skip Search is an improvement of the Skip Search algorithm,

does not reflect in the benchmark results. Specifically, the algorithm seems notably

slower when searching for large patterns and when performing an all-occurrences search

with small patterns (Figure 121). However it is still a quite efficient algorithm ranking

considerably better that the benchmark’s average performance.

 3.3.35 Alpha Skip Search

Figure 122: Alpha Skip Search - results of finding the first occurrence of small

patterns (left) and large patterns (right).

89

Figure 123: Alpha Skip Search - results of finding all occurrences of small patterns

(left) and large patterns (right).

 The Alpha Skip Search is another yet amelioration of Skip Search. One can notice

that this version performs slightly better than KMP Skip Search for medium to very large

patterns, while it seemingly deteriorates for the smaller ones (Figure 122, Figure 123).

 3.4 Collective results

 3.4.1 First occurrence – Small Patterns

90

Figure 124: Comparative results for searching the first occurrence of a small

pattern.

 Regarding searching for the first occurrence of a small pattern, one can notice,

that the Brute Force (BF) algorithm is a clear winner. This can be attributed to its lack of

preprocessing phase and computational simplicity as well as the length of the patterns

and the small size of the alphabet (σ = 4), which appear to negate the impact from

whatever preprocessing computation from the rest of the algorithms. Notably, the most of

the other algorithms seem to perform pretty close to each other, the frontrunners of which

are Shift Or (SO) and Backward Nondeterministic DAWG Matching (BNDDM), which

utilize bitwise operations, Boyer-Moore (BM) and its variants Reverse Colussi (RC),

Maximal Shift (MS), Horspool (H) and Quick Search (QS), the hash function string

search algorithm Karp-Rabin (KR) and Backward Oracle Matching (BOM). The least

performant algorithms seem to be String Matching on Ordered Alphabets (SMOOA),

Forward DAWG Matching (FDM), Galil-Seiferas (GS) as well as some of the variants of

91

Boyer-Moore: Tuned Boyer-Moore (BMT), Berry-Ravindran (BR), Apostolico-

Giancarlo (AG) and Optimal Mismatch (OM).

 3.4.2 First occurrence – Large Patterns

Figure 125: Comparative results for searching the first occurrence of a large

pattern.

 Contrary to the previous results for small patterns, searching the first occurrence

for large patterns does not seem to have a clear winner. Again, one can distinguish

classes of performances, the algorithms of which have relatively similar performances.

The algorithms that appear to prevail are Zhu-Takaoka (ZT), Backward Nondeterministic

DAWG Matching (BNDDM), Backward Oracle Matching (BOM) and Reverse Factor

(RF). It has to be mentioned that BNDDM is restricted by the word size of the computer

(here 32) so the performance shown above is only for pattern sizes 10 and 20.

Remarkably, Brute Force algorithm, which prevailed for searching first-occurrences of

small patterns, is now spotted in the at the bottom end of the second half of the

92

performance rankings. Regarding the least efficient algorithms, those are String

Matching on Ordered Alphabets (SMOOA), Forward DAWG Matching (FDM),

Apostolico-Giancarlo (AG) and Galil-Seiferas (GS).

 3.4.3 All occurrences – Small Patterns

Figure 126: Comparative results for searching all the occurrences of a small

pattern.

 In the case of finding all occurrences of a small pattern seem to perform similarly

except for a few outliers. The most efficient algorithm appears to be Shift Or (SO)

followed closely by Zhu-Takaoka (ZT), Tuned Boyer-Moore (BMT), Raita (R) and

Reverse Colussi (RC). Notably, Boyer-Moore and all of its variants (Raita (R), Turbo

93

Boyer-Moore (TBM), Reverse Colussi (RC), Horspool (H), Quick Search (QS), Smith

(SMTH), Tuned Boyer-Moore (BMT), Zhu-Takaoka(ZT), Berry-Ravindran (BR),

Optimal Mismatch (OM), Maximal Shift (MS)) except from Apostolico-Giancarlo (AG)

are ranked in the first half of the performance comparison while Morris-Pratt and its

variants (Knuth-Morris-Pratt (KMP), Colussi (C), Galil-Giancarlo (GG), Apostolico-

Crochemore (AC)) are placed lower, in the second half. The worst performances have

been logged by Galil-Seiferas (GS), Forward DAWG Matching (FDM) and Apostolico-

Giancarlo (AG).

 3.4.4 All occurrences – Large Patterns

Figure 127: Comparative results for searching all the occurrences of a large

pattern.

94

 The algorithms that prevail in this case are Zhu-Takaoka (ZT), backward Oracle

Matching (BOM), Backward Nondeterministic DAWG Matching (BNDDM) and

Reverse Factor (RF). On the other side, the less efficient algorithms include Galil-

Seiferas (GS), Apostolico-Giancarlo (AG), Forward DAWG Matching (FDM), String

Matching on Ordered Alphabets (SMOOA) and Brute Force (BF). Notably, similarly to

the case of the smaller patterns the algorithms of the Boyer-Moore family prevail over

those of the Morris-Pratt family.

 3.5 Collective results grouped by order of comparison

 3.5.1 First occurrence – Small Patterns

Figure 128: Searching the first occurrence of small patterns by comparing from left

to right.

95

Figure 129: Searching the first occurrence of small patterns by comparing from

right to left.

Figure 130: Searching the first occurrence of small patterns by comparing in a

specific order.

96

Figure 131: Searching the first occurrence of small patterns by comparing in no

specific order.

 When searching for the first occurrence of small patterns, the size of which

ranges between 2 and 10, the best algorithms in each category of order of character

comparison are the following:

 Left to right: Shift Or

 Right to left: Boyer-Moore

 In a specific order: Maximal Shift

 In no specific order: Brute Force

 3.5.2 First occurrence – Large Patterns

97

Figure 132: Searching the first occurrence of large patterns by comparing from left

to right.

Figure 133: Searching the first occurrence of large patterns by comparing from

right to left.

98

Figure 134: Searching the first occurrence of large patterns by comparing in a

specific order.

Figure 135: Searching the first occurrence of large patterns by comparing in no

specific order.

When searching for the first occurrence of large patterns, the size of which ranges

between 10 and 640, the best algorithms in each category of order of character

comparison are the following:

 Left to right: Karp-Rabin

 Right to left: Zhu-Takaoka

 In a specific order: Maximal Shift

 In no specific order: Raita

99

 3.5.3 All occurrences – Small Patterns

Figure 136: Searching all occurrences of small patterns by comparing from left to

right.

Figure 137: Searching all occurrences of small patterns by comparing from right to

left.

100

Figure 138: Searching all occurrences of small patterns by comparing in a specific

order.

Figure 139: Searching all occurrences of small patterns by comparing in no specific

order.

When searching for all occurrences of small patterns, the size of which ranges between 2

and 10, the best algorithms in each category of order of character comparison are the

following:

 Left to right: Shift Or

 Right to left: Zhu-Takaoka

 In a specific order: Skip Search

 In no specific order: Tuned Boyer-Moore

101

 3.5.4 All occurrences – Large Patterns

Figure 140: Searching all occurrences of large patterns by comparing from left to

right.

Figure 141: Searching all occurrences of large patterns by comparing from right to

left.

102

Figure 142: Searching all occurrences of large patterns by comparing in a specific

order.

Figure 143: Searching all occurrences of large patterns by comparing in a specific

order.

When searching for all occurrences of large patterns, the size of which ranges between 10

and 640, the best algorithms in each category of order of character comparison are the

following:

 Left to right: Apostolico-Crochemore

 Right to left: Zhu-Takaoka

 In a specific order: Skip Search

 In no specific order: Raita

103

 4 Visualization

 4.1 Basic Description

This section offers an insight in the visualization software project regarding the

string matching algorithms included in this thesis. The end program offers a simple

visual representation of the string searching process for a specified algorithm (Figure

144). It was implemented using the web technologies HTML, CSS, JavaScript and the

jQuery library, due to their flexibility in visualization purposes and the simplicity they

offer in embedding their functionality in web pages.

Figure 144: The visualization program's interface.

 The interface of the visualization program consists of a header on top, a control

panel to the left and a display panel to the right. The header contains a dropdown list that

allows the selection of the algorithm, the functionality of which will be visualized. The

control panel contains two input fields, one for the text and one for the pattern. It also

offers two buttons; a reset button that initializes the used inputs in the display panel, and

a start button that triggers the animation. The latter, once pressed changes to a pause

button that, as it suggests, pauses the animation and reverts back to a start button and so

on. The display panel is the view of the visualization process. It contains two rows of

letter panels, the upper for the text characters and the lower for the pattern ones. The key

actions that are visualized correspond to the following actions:

 Character match, denoted by changing the background to green of the letters that

were matched between text and pattern.

104

 Character mismatch, denoted by changing the background to red of the letters that

were mismatched between text and pattern.

 Window shift, indicated by sliding the pattern character row to the new window

position.

 Pattern found, indicated by applying green background to all pattern letters.

 Pattern not found, indicated by applying red background to all pattern letters.

To perform the animations, contrary to what is displayed, the program does not

execute the string search and the visualization in parallel. That would require severe

interventions in each algorithm and applying a lot of logic in several points of their

implementations resulting in complicated, unmaintainable and error-prone code. Instead,

the key idea efficiently enabling the animation relies on first completing the execution of

the algorithm, making it produce simple string queries that indicate one of the key

actions to-be-visualized, mentioned above, and finally pass those queries in the sequence

they were logged to the animation routine.

Specifically, at first, the string search algorithms are ported in JavaScript, which is

relatively simple since it comes from the same programming language family as C and

Java. Then, at key points the algorithm produces simple, predefined string queries (i.e.

match 10 3) that describe the action to be visualized, and stores them in an array that is

retrievable with a method (i.e. getQueries). All this happens when the reset button is

pressed. When the start button is pressed the program traverses through the queries and

visualizes them in the display panel.

 4.2 Technical Details

As mentioned above the visualization suite was implemented in HTML, CSS,

JavaScript and jQuery. In order to embed its functionality in a web page, the

prerequisites are for the HTML file to load jQuery and the script.js file, the latter with a

type = “module” attribute causing it to be treated as a module, and have one or more div

container elements with the class esmajs. The program will then dynamically construct

the previously mentioned structure in each one of those div elements. The script.js file is

stored along with the other scripts in the web page project directory js/Visualization/

except for the algorithm JavaScript files that are stored in the js/Algorithms directory.

105

The functionality of the whole visualization process starts in the script.js file, and

is organized in various script files that act as modules by exporting their necessary

functionality. To achieve separate visualization construction and control for different

container elements, a very simplified version of the view-controller model was attempted

to be created, by creating a ‘view’ for each container that constructs the appropriate

structure and assigning it with a ‘controller’ that is restricted in managing only its

functionality.

A brief description of the JavaScript modules used in this project follows below.

 4.2.1 script.js

The script where it triggers the whole dynamic procedure of constructed the basic

structure for any div containers that have the class esmajs and adding the visualization

functionality. This script must be loaded in the HTML file of the web page using the

script tag with the type=”module” attribute. Practically it contains an anonymous

function call that executes the ESMAJS function of the esmajs.js module.

 4.2.2 esmajs.js

This module exports the ESMAJS function. Practically it locates every div

element in the HTML file with the target class esmajs and for each one of them, it creates

a ‘view’ by creating a View object (view.js) and a ‘controller’ by creating a Controller

object (controller.js) based on the view, and finally it starts the ‘controller’.

 4.2.3 view.js

This module exports a View function. The latter can be called with a valid, not

self-enclosing tag element as an argument, appending in it the basic structure of the

visualization interface. Specifically, it initializes the text and pattern either from the

attributes data-text and data-pattern, if they exist in the element passed as argument, or

from the constants defaultText, defaultPattern otherwise. Eventually it returns an object

offering three functions related to each view, a get function that receives a selector as an

argument and returns its correspondent element(s) from this specific view only, a getText

106

function that returns the text of the view and a getPattern function that returns the pattern

of the view.

 4.2.4 controller.js

This module exports a Controller function. It receives a View object as an

argument and creates the general functionality for this specific object only. It returns an

object that offers the function start which triggers the dynamic construction of the

functionality. Practically, it dynamically fills the dropdown list with the available

algorithms, sets up the letter panels for the current text and pattern and creates an

AnimationControlPanel (AnimationControlPanel.js) object that offers functionality to

the control panel’s buttons, reset, start and pause.

 4.2.5 AnimationControlPanel.js

This module exports an AnimationControlPanel function, which receives as

argument a View object and returns an object offering 2 methods, start and stop which

correspond to the start and pause buttons. Specifically, the function creates an

AnimationController (AnimationController.js) object with its View object as argument.

The function additionally retrieves the queries array for the current algorithm and

processes each query string into a Query (query.js) object. Finally, it keeps track of

which query should be executed each time.

 4.2.6 AnimationController.js

This script exports an AnimationController function which takes a View object as

an argument and returns an object providing the function animate. This function receives

a Query (query.js) object and executes the corresponding animation in the display panel.

All possible animation sub-functions are implemented here.

 4.2.7 constants.js

This module stores all global constants, such as the target element class name

(esmajs), the selectors and class names of the key components in the dynamically created

107

view and the HTML string of the view structure itself. Notably, the use of id’s is avoided

so that the functionality can be applicable in multiple target elements in the same page

(since only an element can have a specific id in the same page). All these constants are

stored as attributes of a constant object, which has been subjected to the Object.freeze

function that prevents its contents to change afterwards.

 4.2.8 query.js

This module exports the class Query. Its constructor takes a query string as an

argument, which is then parsed and stored in an array. The keyword of the query as well

as the rest arguments are retrievable from outside the class with the function get.

 4.2.9 utils.js

As its name suggests, this module provides utility functions throughout the whole

execution phase. Those consist mainly of type checking function like isString, isNumber

and similar others.

108

109

 5 Conclusion

This thesis attempted to provide an in-depth, software-development-focused

insight in understanding the functionality and measuring the efficiency of 35 string

searching algorithms presented by Charras and Lecroq. This was achieved by applying

the multilevel process of presenting each algorithm’s underlying functionality,

implementing them in Java programming language, implementing a benchmark suite to

compare their performance on biological data and implementing a visualization platform

to animate their functionality.

The algorithms considered here follow the string searching method that receives

first the pattern as input and then the text. Their process consists of two phases; first

preprocessing the pattern and then performing the search on the text. During the

searching phase they utilize the ‘sliding window’ mechanism, where the pattern is

initially aligned with the leftmost end of the text. Then the corresponding characters are

compared and in case of mismatch the window slides to the right, repeating above

procedure until a match is found or the end of the text is reached.

All algorithms were ported to Java programming language from their C

counterparts. All the implementations follow the object-oriented design pattern presented

by Sedgewick. Besides the constructor, the algorithms share a common interface of

public classes, including search-which returns the position of the first occurrence of the

pattern in the text-and searchAll-which returns a list of the positions of all occurrences.

The preprocessing phase was encapsulated in the constructors while the searching phase

was placed in the two search methods. Several modification were made and logged,

regarding the adaptation of the algorithms in the object-oriented paradigm as well as the

correctness of the results.

The efficiency of the algorithms was measured according to their execution times.

To run the intended tests, a benchmark suite was implemented, also in Java, which

automatically subjects each algorithm class to the designed tests, confirms the

correctness of the results and finally exports the results in an organized format to the

appropriate files. The benchmark suite relies on Java’s Reflection API which allows one

to modify and manipulate the behavior of classes and methods during runtime. This

approach was preferred because it saved a remarkable amount of code and development

110

time, as otherwise it would be required to inject a benchmark segment of code in each

one of the algorithms.

The benchmark algorithm tested the algorithms on huge biological sequences data

consisting of the small alphabet (A, C, G, T) on 4 general scenarios:

 Finding the first occurrence of small patterns

 Finding the first occurrence of large patterns

 Finding all occurrences of small patterns

 Finding all occurrences of large patterns

The results were displayed in three sections; an individual one, which showcases in a line

graph the performance of each algorithm along with the minimum and average

performances of all algorithms included; a collective one, where the average performance

of each algorithm is presented in a bar chart; and finally a repetition of the collective one

where the results of each of the four scenarios are grouped according to how the

algorithm performs the character comparisons at each attempt (left to right, right to left,

in a specific order, in no specific order).

 The individual results included the following results. When searching for the first

occurrence of small patterns up to 10 length, the Brute Force algorithm clearly is the

winner, while for larger patterns (length between 10 -640) Reverse Colussi, Zhu-

Takaoka, Reverse Factor, Turbo Reverse Factor, Backward Nondeterministic DAWG

Matching and Backward Oracle Matching logged the best times. When searching for all

occurrences for small patterns (up to 10 length) Shift Or prevails over every other

algorithm, while for large patterns of length between 10 and 640, Reverse Colussi, Zhu-

Takaoka, , Reverse Factor, Turbo Reverse Factor, Backward Nondeterministic DAWG

Matching and Backward Oracle Matching appear to be the most performant.

 The collective results, which were based on the average execution time of each

algorithm on every pattern size used, produced the following results. When searching for

the first occurrence of small patterns of length up to 10, the best average performance

was logged by Brute Force, Shift Or, Boyer-Moore, Reverse Colussi and Maximal Shift.

Searching for the first occurrence of large patterns, of length between 10 and 640, on

average, proved Zhu-Takaoka, Backward Nondeterministic DAWG Matching, Backward

Oracle Matching, Reverse Factor and Maximal Shift to be the frontrunners. Regarding

searching for all occurrences of small patterns of length up to 10, the best choices would

be Shift Or , Zhu-Takaoka, Tuned Boyer-Moore, Raita and Reverse Colussi. While

111

searching for all occurrences in large patterns of size between 10 and 640, Zhu-Takaoka,

Reverse Factor, Turbo Reverse Factor, Backward Nondeterministic DAWG Matching

and Backward Oracle Matching seem to be more efficient.In this last case the Backward

Nondeterministic DAWG Matching algorithm can be applied only for patterns up to the

length of computer’s word size (here 32). Remarkably, it has to be mentioned that all the

algorithms of the Boyer-Moore family, besides Apostolico-Giancarlo clearly

outperformed all the algorithms of the Morris-Pratt family.

The collective results for each scenario, where grouped into the four categories

concerning the character comparison order of each algorithm. The best results are

displayed in the following table:

Figure 145: Best performing algorithms in each scenario for each character

comparison order group.

 Finally, in order to provide a better glimpse of the functionality of the string

searching algorithms, a visualization suite was implemented that offers an animated view

of the string searching process. The suite was developed using the web technologies

HTML, CSS, JavaScript and jQuery, making it easily embeddable in web pages. A demo

view can be seen in the static web page esmaj.surge.sh, which was deployed using

Surge, a tool that simplifies publishing static web pages.

112

 6 References

[1] Faro, Simone and Lecroq, Thierry. SMART, String Matching Algorithms Research

Tool - http://www.dmi.unict.it/~faro/smart/algorithms.php

[2] Charras, Christian and Lecroq, Thierry. ESMAJ - http://www-igm.univ-

mlv.fr/~lecroq/string/

[3] Sedgewick, R and Wayne, K. (2011). Algorithms. 4th ed. Addison-Wesley

Professional - https://algs4.cs.princeton.edu/home/

[4] Deterministic Finite Automaton. In Wikipedia. Retrieved February 1, 2019, from:

https://en.wikipedia.org/wiki/Deterministic_finite_automaton#cite_note-Cai-9

[5] KARP R.M., RABIN M.O., 1987, Efficient randomized pattern-matching algorithms.

IBM J. Res. Dev. 31(2):249-260.

[6] BAEZA-YATES, R.A., GONNET, G.H., 1992, A new approach to text searching,

Communications of the ACM . 35(10):74-82.

[7] MORRIS (Jr) J.H., PRATT V.R., 1970, A linear pattern-matching algorithm,

Technical Report 40, University of California, Berkeley.

[8] COLUSSI L., 1991, Correctness and efficiency of the pattern matching algorithms,

Information and Computation 95(2):225-251

[9] APOSTOLICO A., CROCHEMORE M., 1991, Optimal canonization of all

substrings of a string, Information and Computation 95(1):76-95.

[10] BOYER R.S., MOORE J.S., 1977, A fast string searching algorithm.

Communications of the ACM. 20:762-772.

[11] Maxime Crochemore, Christophe Hancart, Thierry Lecroq. A unifying look at the

ApostolicoGiancarlo string-matching algorithm. Journal of Discrete Algorithms,

Elsevier, 2003, 1 (1), pp.37-52. ff10.1016/S1570-8667(03)00005-4ff. ffhal-00619563

[12] COLUSSI L., 1994, Fastest pattern matching in strings, Journal of Algorithms.

16(2):163-189.

[13] HORSPOOL R.N., 1980, Practical fast searching in strings, Software - Practice &

Experience, 10(6):501-506.

[14] SUNDAY D.M., 1990, A very fast substring search algorithm

[15] HUME A. and SUNDAY D.M. , 1991. Fast string searching. Software - Practice &

Experience 21(11):1221-1248.

http://www.dmi.unict.it/~faro/smart/algorithms.php
http://www-igm.univ-mlv.fr/~lecroq/string/
http://www-igm.univ-mlv.fr/~lecroq/string/
https://algs4.cs.princeton.edu/home/
https://en.wikipedia.org/wiki/Deterministic_finite_automaton#cite_note-Cai-9

113

[16] ZHU R.F., TAKAOKA T., 1987, On improving the average case of the Boyer-

Moore string matching algorithm, Journal of Information Processing 10(3):173-177.

[17] BERRY, T., RAVINDRAN, S., 1999, A fast string matching algorithm and

experimental results, in Proceedings of the Prague Stringology Club Workshop`99, J.

Holub and M. Simánek ed., Collaborative Report DC-99-05, Czech Technical

University, Prague, Czech Republic, 1999, pp 16-26.

[18] SMITH P.D., 1991, Experiments with a very fast substring search algorithm,

Software - Practice & Experience 21(10):1065-1074.

[19] RAITA T., 1992, Tuning the Boyer-Moore-Horspool string searching algorithm,

Software - Practice & Experience, 22(10):879-884.

[20] LECROQ T., 1992, A variation on the Boyer-Moore algorithm, Theoretical

Computer Science 92(1):119--144.

[21] NAVARRO G., RAFFINOT M., 1998. A Bit-Parallel Approach to Suffix Automata:

Fast Extended String Matching, In Proceedings of the 9th Annual Symposium on

Combinatorial Pattern Matching, Lecture Notes in Computer Science 1448, Springer-

Verlag, Berlin, 14-31.

[22] ALLAUZEN C., CROCHEMORE M., RAFFINOT M., 1999, Factor oracle: a new

structure for pattern matching, in Proceedings of SOFSEM'99, Theory and Practice of

Informatics, J. Pavelka, G. Tel and M. Bartosek ed., Milovy, Czech Republic, Lecture

Notes in Computer Science 1725, pp 291-306, Springer-Verlag, Berlin.

[23] GALIL Z., SEIFERAS J., 1983, Time-space optimal string matching, Journal of

Computer and System Science 26(3):280-294.

[24] CROCHEMORE M., PERRIN D., 1991, Two-way string-matching, Journal of the

ACM38(3):651-675.

[25] CROCHEMORE M., 1992, String-matching on ordered alphabets, Theoretical

Computer Science 92(1):33-47.

[26] CHARRAS C., LECROQ T., PEHOUSHEK J.D., 1998, A very fast string matching

algorithm for small alphabets and long patterns, in Proceedings of the 9th Annual

Symposium on Combinatorial Pattern Matching , M. Farach-Colton ed., Piscataway,

New Jersey, Lecture Notes in Computer Science 1448, pp 55-64, Springer-Verlag,

Berlin.

[27] Yoon, S. H., Ha, S. M., Kwon, S., Lim, J., Kim, Y., Seo, H. and Chun, J. (2017).

Introducing EzBioCloud: A taxonomically united database of 16S rRNA and whole

114

genome assemblies. Int J Syst Evol Microbiol. 67:1613-1617.

https://www.ezbiocloud.net/genome/explore?puid=172783

115

 7 Appendix

 7.1 Algorithm Implementations

 7.1.1 Brute Force

package com.accel.stringsearch;

import java.util.*;

/**

 * The {@code BruteForce} class finds the occurrencies of a pattern

string in a

 * text string.

 * <p>

 * This implementation provides methods for retrieving the first

occurence of

 * the pattern in the text and for retrieving all the occurencies of

the pattern

 * in the text. This implementation takes time proportional to

nm,

 * where n is the length of the text and m is the

length of

 * the pattern. The expected text characters comparisons are

2n.

 * </p>

 *

 */

public class BruteForce {

 private final String pat;

 /**

 * Preprocesses the pattern string.

 *

 * @param pat the pattern string

 */

 public BruteForce(String pat) {

 if (pat == null)

 throw new IllegalArgumentException("pattern is

null");

 if (pat.equals(""))

 throw new IllegalArgumentException("pattern is

empty");

 this.pat = pat;

 }

 /**

 * Returns the index of the first occurrence of the pattern

string in the text

 * string.

 *

 * @param txt the text string

 * @return the index of the first occurrence of the pattern

string in the text

 * string; n if no such match

 */

 public int search(String txt) {

116

 if (txt == null) throw new IllegalArgumentException("text

is null");

 if (txt.equals("")) throw new

IllegalArgumentException("text is empty");

 final int m = pat.length();

 final int n = txt.length();

 for (int i = 0; i <= n - m; ++i) {

 int j;

 for (j = 0; j < m && pat.charAt(j) == txt.charAt(i +

j); ++j)

 ;

 if (j >= m) {

 return i;

 }

 }

 return n;

 }

 /**

 * Returns the indices of all the occurrences of the pattern

string in the text

 * string.

 *

 * @param txt the text string

 * @return the indices of all the occurrences of the pattern

string in the text

 * string

 */

 public List<Integer> searchAll(String txt) {

 if (txt == null) throw new IllegalArgumentException("text

is null");

 if (txt.equals("")) throw new

IllegalArgumentException("text is empty");

 List<Integer> list = new ArrayList<>();

 final int m = pat.length();

 final int n = txt.length();

 for (int i = 0; i <= n - m; ++i) {

 int j;

 for (j = 0; j < m && pat.charAt(j) == txt.charAt(i +

j); ++j)

 ;

 if (j >= m) {

 list.add(i);

 }

 }

 return list;

 }

}

 7.1.2 Deterministic Finite Automaton

package com.accel.stringsearch;

import java.util.*;

import com.accel.utils.Automaton;

/**

117

 * The {@code DeterministicFiniteAutomaton} class finds the

occurrences of a

 * pattern string in a text string.

 * <p>

 * This implementation uses a minimal deterministic automaton.

This

 * implementation provides methods for retrieving the first

occurRence of the

 * pattern in the text and for retrieving all the occurrences of

the pattern in

 * the text. This implementation takes time proportional to

n, where

 * n is the text's length. The preprocessing phase takes

space and time

 * proportional to mσ, where m is the length of

the pattern

 * and σ is the length of the alphabet.

 * </p>

 *

 */

public class DeterministicFiniteAutomaton {

 private static final int ASIZE = 256; // alphabet size

 private final char[] pattern; // pattern

 private final Automaton automaton; // automaton

 /**

 * Preprocesses the pattern string.

 *

 * @param pat

 * the pattern string

 */

 public DeterministicFiniteAutomaton(String pat) {

 if (pat == null) throw new

IllegalArgumentException("pattern is null");

 if (pat.equals("")) throw new

IllegalArgumentException("pattern is empty");

 this.pattern = pat.toCharArray();

 final int m = pattern.length;

 this.automaton = new Automaton(m + 1, (m + 1) *

ASIZE);

 preAut();

 }

 /**

 * Returns the index of the first occurrence of the pattern

string in the text

 * string.

 *

 * @param txt

 * the text string

 * @return the index of the first occurrence of the pattern

string in the text

 * string; n if no such match

 */

 public int search(String txt) {

 if (txt == null) throw new

IllegalArgumentException("text is null");

118

 if (txt.equals("")) throw new

IllegalArgumentException("text is empty");

 final char[] text = txt.toCharArray();

 final int n = txt.length();

 final int m = pattern.length;

 for (int state = automaton.getInitial(), i = 0; i <

n; ++i) {

 state = automaton.getTarget(state, text[i]);

 if (automaton.isTerminal(state)) {

 return i - m + 1;

 }

 }

 return n;

 }

 /**

 * Returns the indices of all the occurrences of the

pattern string in the text

 * string.

 *

 * @param txt

 * the text string

 * @return the indices of all the occurrences of the

pattern string in the text

 * string

 */

 public List<Integer> searchAll(String txt) {

 if (txt == null) throw new

IllegalArgumentException("text is null");

 if (txt.equals("")) throw new

IllegalArgumentException("text is empty");

 final List<Integer> list = new ArrayList<>();

 final char[] text = txt.toCharArray();

 final int n = txt.length();

 final int m = pattern.length;

 for (int state = automaton.getInitial(), i = 0; i <

n; ++i) {

 state = automaton.getTarget(state, text[i]);

 if (automaton.isTerminal(state)) {

 list.add(i - m + 1);

 }

 }

 return list;

 }

 /**

 * Builds the automaton from the pattern.

 */

 private void preAut() {

 final int m = pattern.length;

 int state = automaton.getInitial();

 for (int i = 0; i < m; ++i) {

 int oldTarget = automaton.getTarget(state,

pattern[i]);

119

 int target = automaton.newVertex();

 automaton.setTarget(state, pattern[i], target);

 automaton.copyVertex(target, oldTarget);

 state = target;

 }

 automaton.setTerminal(state);

 }

}

 7.1.3 Karp-Rabin

package com.accel.stringsearch;

import java.util.ArrayList;

import java.util.List;

/**

 * The {@code KarpRabin} class finds the occurrencies of a

pattern string in a

 * text string.

 * <p>

 * This implementation provides methods for retrieving the first

occurence of

 * the pattern in the text and for retrieving all the occurencies

of the pattern

 * in the text. This implementation uses a hashing function. It

takes time

 * proportional to nm, where n is the length of

the text and

 * m is the length of the pattern. The expected running

time is

 * proportional to n + m. The preprocessing phase takes

m time

 * and constant space.

 * </p>

 *

 */

public class KarpRabin {

 private final char[] pattern;

 private final int d;

 private final int patHash;

 /**

 * Preprocesses the pattern string.

 *

 * @param pat the pattern string

 */

 public KarpRabin(String pat) {

 if (pat == null)

 throw new IllegalArgumentException("pattern is

null");

 if (pat.equals(""))

 throw new IllegalArgumentException("pattern is

empty");

 this.pattern = pat.toCharArray();

 final int m = pattern.length;

 /* compute d = 2^(m-1) with the left-shift operator

*/

 int d = 1;

120

 for (int i = 1; i < m; ++i) {

 d = d << 1;

 }

 this.d = d;

 // compute the hash code of the pattern

 int patHash = 0;

 for (int i = 0; i < m; ++i) {

 patHash = (patHash << 1) + pattern[i];

 }

 this.patHash = patHash;

 }

 /**

 * Returns the index of the first occurrence of the pattern

string in the text

 * string.

 *

 * @param txt the text string

 * @return the index of the first occurrence of the pattern

string in the text

 * string; n if no such match

 */

 public int search(String txt) {

 if (txt == null)

 throw new IllegalArgumentException("text is

null");

 if (txt.equals(""))

 throw new IllegalArgumentException("text is

empty");

 final char[] text = txt.toCharArray();

 final int m = pattern.length;

 final int n = text.length;

 /* compute the hash code of the first m text

characters */

 int txtHash = 0;

 for (int i = 0; i < m; ++i) {

 txtHash = (txtHash << 1) + text[i];

 }

 /* searching */

 for (int i = 0; i <= n - m; ++i) {

 if (patHash == txtHash) {

 if (memcmp(pattern, 0, text, i, m)) {

 return i;

 }

 }

 if (i == n - m) break; // prevents

OutOfBoundsException

 txtHash = rehash(text[i], text[i + m],

txtHash);

 }

 return n;

 }

 /**

 * Returns the indices of all the occurrences of the

pattern string in the text

 * string.

 *

121

 * @param txt the text string

 * @return the indices of all the occurrences of the

pattern string in the text

 * string

 */

 public List<Integer> searchAll(String txt) {

 if (txt == null)

 throw new IllegalArgumentException("text is

null");

 if (txt.equals(""))

 throw new IllegalArgumentException("text is

empty");

 List<Integer> list = new ArrayList<>();

 final char[] text = txt.toCharArray();

 final int m = pattern.length;

 final int n = text.length;

 /* compute the hash code of the first m text

characters */

 int txtHash = 0;

 for (int i = 0; i < m; ++i) {

 txtHash = (txtHash << 1) + text[i];

 }

 /* searching */

 for (int i = 0; i <= n - m; ++i) {

 if (patHash == txtHash) {

 if (memcmp(pattern, 0, text, i, m)) {

 list.add(i);

 }

 }

 if (i == n - m) break; // prevents

OutOfBoundsException

 txtHash = rehash(text[i], text[i + m],

txtHash);

 }

 return list;

 }

 // rehashing function

 private int rehash(char c1, char c2, int oldHash) {

 return ((oldHash - (c1) * d) << 1) + c2;

 }

 // Returns true if the sequential characters of two arrays,

starting from

 // specified indices to a common specified length, are

equal; false otherwise.

 private boolean memcmp(char[] x, int startX, char[] y, int

startY, int length) {

 if (x == null)

 throw new IllegalArgumentException("first array

is null");

 if (y == null)

 throw new IllegalArgumentException("second

array is null");

 if (startX < 0 || startX >= x.length)

 throw new IllegalArgumentException(

 "start index of first array: " +

startX + "should be between 0 and " + (x.length - 1));

122

 if (startY < 0 || startY >= y.length)

 throw new IllegalArgumentException(

 "start index of second array: " +

startY + "should be between 0 and " + (y.length - 1));

 if (startX + length > x.length || startY + length >

y.length)

 return false;

 for (int i = 0; i < length; ++i) {

 if (x[startX + i] != y[startY + i]) {

 return false;

 }

 }

 return true;

 }

}

 7.1.4 Shift Or

package com.accel.stringsearch;

import java.util.ArrayList;

import java.util.List;

/**

 * The {@code ShiftOr} class finds the occurrences of a pattern

string in a text

 * string.

 * <p>

 * This implementation provides methods for retrieving the first

occurrence of

 * the pattern in the text and for retrieving all the occurrences

of the pattern

 * in the text. This implementation is efficient if the pattern

length is no

 * longer than the memory-word size of the machine. It takes time

proportional

 * to n, where n is the length of the text. The

preprocessing

 * phase takes m + σ time and space where m is

the length of

 * the pattern and σ is the alphabet size.

 * </p>

 *

 */

public class ShiftOr {

 private static final int WORD_SIZE = 31; // word size

 private static final int ASIZE = 256; // radix

 private final char[] pattern;

 private final int m; // pattern length

 private final int[] S; // positions of the characters in

the pattern

 private int lim; // limit

 /**

 * Preprocesses the pattern string.

 *

 * @param pat the pattern string

 */

 public ShiftOr(String pat) {

 if (pat == null)

123

 throw new IllegalArgumentException("pattern is

null");

 if (pat.equals(""))

 throw new IllegalArgumentException("pattern is

empty");

 this.pattern = pat.toCharArray();

 this.m = pat.length();

 this.S = new int[ASIZE];

 // preprocessing

 for (int i = 0; i < ASIZE; ++i) {

 S[i] = ~0;

 }

 this.lim = 0;

 for (int i = 0, j = 1; i < m; ++i, j <<= 1) {

 S[pat.charAt(i)] &= ~j;

 this.lim |= j;

 }

 this.lim = ~(this.lim >> 1);

 }

 /**

 * Returns the index of the first occurrence of the pattern

string in the text

 * string.

 *

 * @param txt the text string

 * @return the index of the first occurrence of the pattern

string in the text

 * string; n if no such match

 */

 public int search(String txt) {

 if (txt == null)

 throw new IllegalArgumentException("text is

null");

 if (txt.equals(""))

 throw new IllegalArgumentException("text is

empty");

 if (m > WORD_SIZE)

 return searchLarge(txt);

 final char[] text = txt.toCharArray();

 int n = text.length;

 int state = ~0;

 for (int i = 0; i < n; ++i) {

 state = (state << 1) | S[text[i]];

 if (state < lim)

 return i - m + 1;

 }

 return n;

 }

 /**

 * Returns the indices of all the occurrences of the

pattern string in the text

 * string.

 *

 * @param txt the text string

 * @return the indices of all the occurrences of the

pattern string in the text

124

 * string

 */

 public List<Integer> searchAll(String txt) {

 if (txt == null)

 throw new IllegalArgumentException("text is

null");

 if (txt.equals(""))

 throw new IllegalArgumentException("text is

empty");

 if (m > WORD_SIZE)

 return searchAllLarge(txt);

 List<Integer> list = new ArrayList<>();

 final char[] text = txt.toCharArray();

 int n = text.length;

 int state = ~0;

 for (int i = 0; i < n; ++i) {

 state = (state << 1) | S[text[i]];

 if (state < lim)

 list.add(i - m + 1);

 }

 return list;

 }

 private int searchLarge(String txt) {

 if (txt == null)

 throw new IllegalArgumentException("text is

null");

 if (txt.equals(""))

 throw new IllegalArgumentException("text is

empty");

 final char[] text = txt.toCharArray();

 int n = text.length;

 int state = ~0;

 for (int i = 0; i < n; ++i) {

 state = (state << 1) | S[text[i]];

 if (state < lim) {

 int k = 0;

 int h = i - WORD_SIZE + 1;

 while (k < m && h + k >= 0 && pattern[k]

== text[h + k])

 ++k;

 if (k == m)

 return i - WORD_SIZE + 1;

 }

 }

 return n;

 }

 private List<Integer> searchAllLarge(String txt) {

 if (txt == null)

 throw new IllegalArgumentException("text is

null");

 if (txt.equals(""))

 throw new IllegalArgumentException("text is

empty");

 List<Integer> list = new ArrayList<>();

 final char[] text = txt.toCharArray();

125

 int n = text.length;

 int state = ~0;

 for (int i = 0; i < n; ++i) {

 state = (state << 1) | S[text[i]];

 if (state < lim) {

 int k = 0;

 int h = i - WORD_SIZE + 1;

 while (k < m && h + k >= 0 && pattern[k]

== text[h + k])

 ++k;

 if (k == m)

 list.add(i - WORD_SIZE + 1);

 }

 }

 return list;

 }

}

 7.1.5 Morris-Pratt

package com.accel.stringsearch;

import java.util.*;

/**

 * The {@code MorrisPratt} class finds the occurrences of a

pattern string in a

 * text string.

 * <p>

 * This implementation provides methods for retrieving the first

occurrence of

 * the pattern in the text and for retrieving all the occurrences

of the pattern

 * in the text. It takes time proportional to n + m,

where n

 * is the length of the text and m is the length of the

pattern. It

 * performs at most 2n - 1 character comparisons. The

preprocessing

 * phase takes m time and space.

 * </p>

 *

 */

public class MorrisPratt {

 private char[] pattern; // pattern

 private int[] next; // shift array

 /**

 * Preprocesses the pattern string.

 *

 * @param pat

 * the pattern string

 */

 public MorrisPratt(String pat) {

 if (pat == null) throw new

IllegalArgumentException("pattern is null");

 if (pat.equals("")) throw new

IllegalArgumentException("pattern is empty");

 this.pattern = pat.toCharArray();

 preMp();

126

 }

 /**

 * Returns the index of the first occurrence of the pattern

string in the text

 * string.

 *

 * @param txt

 * the text string

 * @return the index of the first occurrence of the pattern

string in the text

 * string; n if no such match

 */

 public int search(String txt) {

 if (txt == null) throw new

IllegalArgumentException("text is null");

 if (txt.equals("")) throw new

IllegalArgumentException("text is empty");

 final char[] text = txt.toCharArray();

 final int m = pattern.length;

 final int n = txt.length();

 int i = 0;

 int j = 0;

 while (j < n) {

 while (i > -1 && pattern[i] != text[j])

 i = next[i];

 i++;

 j++;

 if (i >= m) {

 return j - i;

 }

 }

 return n;

 }

 /**

 * Returns the indices of all the occurrences of the

pattern string in the text

 * string.

 *

 * @param txt

 * the text string

 * @return the indices of all the occurrences of the

pattern string in the text

 * string

 */

 public List<Integer> searchAll(String txt) {

 if (txt == null) throw new

IllegalArgumentException("text is null");

 if (txt.equals("")) throw new

IllegalArgumentException("text is empty");

 List<Integer> list = new ArrayList<>();

 final char[] text = txt.toCharArray();

 final int m = pattern.length;

 final int n = txt.length();

 int i = 0;

 int j = 0;

127

 while (j < n) {

 while (i > -1 && pattern[i] != text[j])

 i = next[i];

 i++;

 j++;

 if (i >= m) {

 list.add(j - i);

 i = next[i];

 }

 }

 return list;

 }

 private final void preMp() {

 final int m = pattern.length;

 next = new int[m + 1];

 next[0] = -1;

 int j = -1;

 int i = 0;

 while (i < m) {

 while (j > -1 && pattern[i] != pattern[j]) {

 j = next[j];

 }

 next[++i] = ++j;

 }

 }

}

 7.1.6 Knuth-Morris-Pratt

package com.accel.stringsearch;

import java.util.*;

/**

 * The {@code KnuthMorrisPratt} class finds the occurrences of a

pattern string

 * in a text string.

 * <p>

 * This implementation provides methods for retrieving the first

occurrence of

 * the pattern in the text and for retrieving all the occurrences of

the pattern

 * in the text. It takes time proportional to n + m, where

n

 * is the length of the text and m is the length of the

pattern, and it

 * ia independent of the alphabet size. The preprocessing phase takes

m

 * time and space.

 * </p>

 *

 */

public class KnuthMorrisPratt {

 private char[] pattern; // pattern

 private int[] kmpNext; // shift array

 /**

 * Preprocesses the pattern string.

 *

 * @param pat

 * the pattern string

128

 */

 public KnuthMorrisPratt(String pat) {

 if (pat == null) throw new

IllegalArgumentException("pattern is null");

 if (pat.equals("")) throw new

IllegalArgumentException("pattern is empty");

 this.pattern = pat.toCharArray();

 final int m = pattern.length;

 kmpNext = new int[m + 1];

 preKmp();

 }

 /**

 * Returns the index of the first occurrence of the pattern

string in the text

 * string.

 *

 * @param txt

 * the text string

 * @return the index of the first occurrence of the pattern

string in the text

 * string; n if no such match

 */

 public int search(String txt) {

 if (txt == null) throw new IllegalArgumentException("text

is null");

 if (txt.equals("")) throw new

IllegalArgumentException("text is empty");

 final char[] text = txt.toCharArray();

 final int m = pattern.length;

 final int n = text.length;

 int i = 0;

 int j = 0;

 while (j < n) {

 while (i > -1 && pattern[i] != text[j])

 i = kmpNext[i];

 i++;

 j++;

 if (i >= m) {

 return j - i;

 }

 }

 return n;

 }

 /**

 * Returns the indices of all the occurrences of the pattern

string in the text

 * string.

 *

 * @param txt

 * the text string

 * @return the indices of all the occurrences of the pattern

string in the text

 * string

 */

 public List<Integer> searchAll(String txt) {

129

 if (txt == null) throw new IllegalArgumentException("text

is null");

 if (txt.equals("")) throw new

IllegalArgumentException("text is empty");

 List<Integer> list = new ArrayList<>();

 final char[] text = txt.toCharArray();

 final int m = pattern.length;

 final int n = text.length;

 int i = 0;

 int j = 0;

 while (j < n) {

 while (i > -1 && pattern[i] != text[j])

 i = kmpNext[i];

 i++;

 j++;

 if (i >= m) {

 list.add(j - i);

 i = kmpNext[i];

 }

 }

 return list;

 }

 // preprocessing

 private void preKmp() {

 final int m = pattern.length;

 int i, j;

 i = 0;

 j = -1;

 kmpNext[0] = -1;

 while (i < m) {

 while (j > -1 && pattern[i] != pattern[j]) {

 j = kmpNext[j];

 }

 i++;

 j++;

 if (i < m && j < m && pattern[i] == pattern[j]) { //

CHANGED:: if(pattern[i) == pattern[j))

 kmpNext[i] = kmpNext[j];

 } else {

 kmpNext[i] = j;

 }

 }

 }

}

 7.1.7 Simon

package com.accel.stringsearch;

import java.util.*;

/**

 * The {@code Simon} class finds the occurrences of a pattern string in

a text

 * string.

 * <p>

 * This implementation is an economical implementation of the minimal

 * Deterministic Finite Automaton. This implementation provides methods

for

130

 * retrieving the first occurrence of the pattern in the text and for

retrieving

 * all the occurrences of the pattern in the text. This implementation

takes

 * time proportional to m + n, where n is the length

of the

 * text and m is the length of the pattern, and is independent

from the

 * alphabet size.There are at most 2n + 1text character *

comparisons

 * during the search phase. The preprocessing phase takes space and

time

 * proportional to m.

 * </p>

 *

 */

public class SiMoN {

 private final char[] pattern;

 private final int ell;

 private final Cell[] L;

 private static class Cell {

 int element;

 Cell next;

 }

 /**

 * Preprocesses the pattern string.

 *

 * @param pat

 * the pattern string

 */

 public SiMoN(String pat) {

 if (pat == null) throw new

IllegalArgumentException("pattern is null");

 if (pat.equals("")) throw new

IllegalArgumentException("pattern is empty");

 this.pattern = pat.toCharArray();

 final int m = pattern.length;

 this.L = new Cell[m];

 /* Preprocessing */

 this.ell = preSimon();

 }

 /**

 * Returns the index of the first occurrence of the pattern

string in the text

 * string.

 *

 * @param txt

 * the text string

 * @return the index of the first occurrence of the pattern

string in the text

 * string; n if no such match

 */

 public int search(String txt) {

 if (txt == null) throw new IllegalArgumentException("text

is null");

131

 if (txt.equals("")) throw new

IllegalArgumentException("text is empty");

 final char[] text = txt.toCharArray();

 final int n = text.length;

 final int m = pattern.length;

 for (int state = -1, i = 0; i < n; ++i) {

 state = getTransition(state, text[i]);

 if (state >= m - 1) {

 state = ell;

 return (i - m + 1);

 }

 }

 return n;

 }

 /**

 * Returns the indices of all the occurrences of the pattern

string in the text

 * string.

 *

 * @param txt

 * the text string

 * @return the indices of all the occurrences of the pattern

string in the text

 * string

 */

 public List<Integer> searchAll(String txt) {

 if (txt == null) throw new IllegalArgumentException("text

is null");

 if (txt.equals("")) throw new

IllegalArgumentException("text is empty");

 final List<Integer> list = new ArrayList<>();

 final char[] text = txt.toCharArray();

 final int n = text.length;

 final int m = pattern.length;

 for (int state = -1, i = 0; i < n; ++i) {

 state = getTransition(state, text[i]);

 if (state >= m - 1) {

 list.add(i - m + 1);

 state = ell;

 }

 }

 return list;

 }

 // preprocessing

 private int preSimon() {

 final int m = pattern.length;

 int ell;

 Cell cell;

 for (int i = 0; i < m - 2; ++i) {

 L[i] = null;

 }

 ell = -1;

 for (int i = 1; i < m; ++i) {

 int k = ell;

 cell = (ell == -1 ? null : L[k]);

132

 ell = -1;

 if (pattern[i] == pattern[k + 1]) {

 ell = k + 1;

 } else {

 setTransition(i - 1, k + 1);

 }

 while (cell != null) {

 k = cell.element;

 if (pattern[i] == pattern[k]) {

 ell = k;

 } else {

 setTransition(i - 1, k);

 }

 cell = cell.next;

 }

 }

 return ell;

 }

 private int getTransition(int p, char c) {

 final int m = pattern.length;

 Cell cell = new Cell();

 if (p < m - 1 && pattern[p + 1] == c) {

 return p + 1;

 } else if (p > -1) {

 cell = L[p];

 while (cell != null) {

 if (pattern[cell.element] == c) {

 return cell.element;

 } else {

 cell = cell.next;

 }

 }

 return -1;

 } else {

 return -1;

 }

 }

 private void setTransition(int p, int q) {

 Cell cell = new Cell();

 cell.element = q;

 cell.next = L[p];

 L[p] = cell;

 }

}

 7.1.8 Colussi

package com.accel.stringsearch;

import java.util.*;

/**

 * The {@code Colussi} class finds the occurrences of a pattern string

in a text

 * string.

 * <p>

133

 * This implementation is a refinement of the Knuth, Morris and Pratt

algorithm.

 * This implementation provides methods for retrieving the first

occurrence of

 * the pattern in the text and for retrieving all the occurrences of

the pattern

 * in the text. This implementation takes time proportional to

n, where

 * n is the length of the text. The preprocessing phase takes

space and

 * time proportional to m, where m is the length of

the

 * pattern. There are at most (3/2)n character comparisons.

 * </p>

 *

 */

public class Colussi {

 private final char[] pattern; // pattern

 private final int[] h;

 private final int[] next;

 private final int[] shift;

 private int nd;

 /**

 * Preprocesses the pattern string.

 *

 * @param pat

 * the pattern string

 */

 public Colussi(String pat) {

 if (pat == null)

 throw new IllegalArgumentException("pattern is

null");

 if (pat.equals(""))

 throw new IllegalArgumentException("pattern is

empty");

 this.pattern = pat.toCharArray();

 final int m = pattern.length;

 this.h = new int[m + 1];

 this.next = new int[m + 1];

 this.shift = new int[m + 1];

 /* Processing */

 this.nd = preColussi();

 }

 /**

 * Returns the index of the first occurrence of the pattern

string in the text

 * string.

 *

 * @param txt

 * the text string

 * @return the index of the first occurrence of the pattern

string in the text

 * string; n if no such match

 */

 public int search(String txt) {

 if (txt == null)

134

 throw new IllegalArgumentException("text is null");

 if (txt.equals(""))

 throw new IllegalArgumentException("text is empty");

 final char[] text = txt.toCharArray();

 final int n = text.length;

 final int m = pattern.length;

 int i, j, last;

 i = 0;

 j = 0;

 last = -1;

 while (j <= n - m) {

 while (i < m && last < j + h[i] && pattern[h[i]] ==

text[j + h[i]]) {

 i++;

 }

 if (i >= m || last >= j + h[i]) {

 i = m;

 return j;

 }

 if (i > nd) {

 last = j + m - 1;

 }

 j += shift[i];

 i = next[i];

 }

 return n;

 }

 /**

 * Returns the indices of all the occurrences of the pattern

string in the text

 * string.

 *

 * @param txt

 * the text string

 * @return the indices of all the occurrences of the pattern

string in the text

 * string

 */

 public List<Integer> searchAll(String txt) {

 if (txt == null)

 throw new IllegalArgumentException("text is null");

 if (txt.equals(""))

 throw new IllegalArgumentException("text is empty");

 final List<Integer> list = new ArrayList<>();

 final char[] text = txt.toCharArray();

 final int n = text.length;

 final int m = pattern.length;

 int i, j, last;

 i = 0;

 j = 0;

 last = -1;

 while (j <= n - m) {

 while (i < m && last < j + h[i] && pattern[h[i]] ==

text[j + h[i]]) {

 i++;

 }

 if (i >= m || last >= j + h[i]) {

135

 i = m;

 list.add(j);

 }

 if (i > nd) {

 last = j + m - 1;

 }

 j += shift[i];

 i = next[i];

 }

 return list;

 }

 // preprocessing

 private int preColussi() {

 final int m = pattern.length;

 int i, k, nd, q, r, s;

 int[] hmax = new int[m + 1];

 int[] kmin = new int[m + 1];

 int[] nhd0 = new int[m + 1];

 int[] rmin = new int[m + 1];

 /* Computation of hmax */

 i = 1;

 k = 1;

 do {

 while (i < m && i - k < m && pattern[i] == pattern[i

- k])

 i++;

 hmax[k] = i;

 q = k + 1;

 while (hmax[q - k] + k < i) {

 hmax[q] = hmax[q - k] + k;

 q++;

 }

 k = q;

 if (k == i + 1) {

 i = k;

 }

 } while (k <= m);

 /* Computation of kmin */

 for (int j = 0; j < m; ++j) {

 kmin[j] = 0;

 }

 for (i = m; i >= 1; --i) {

 if (hmax[i] < m) {

 kmin[hmax[i]] = i;

 }

 }

 /* Computation of rmin */

 r = 0;

 for (i = m - 1; i >= 0; --i) {

 if (hmax[i + 1] == m) {

 r = i + 1;

 }

 if (kmin[i] == 0) {

 rmin[i] = r;

 } else {

 rmin[i] = 0;

 }

136

 }

 /* Computation of h */

 s = -1;

 r = m;

 for (i = 0; i < m; ++i) {

 if (kmin[i] == 0) {

 h[--r] = i;

 } else {

 h[++s] = i;

 }

 }

 nd = s;

 /* Computation of shift */

 for (i = 0; i <= nd; ++i) {

 shift[i] = kmin[h[i]];

 }

 for (i = nd + 1; i < m; ++i) {

 shift[i] = rmin[h[i]];

 }

 shift[m] = rmin[0];

 /* Computation of nhd0 */

 s = 0;

 for (i = 0; i < m; ++i) {

 nhd0[i] = s;

 if (kmin[i] > 0) {

 ++s;

 }

 }

 /* Computation of next */

 for (i = 0; i <= nd; ++i) {

 next[i] = nhd0[h[i] - kmin[h[i]]];

 }

 for (i = nd + 1; i < m; ++i) {

 next[i] = nhd0[m - rmin[h[i]]];

 }

 next[m] = nhd0[m - rmin[h[m - 1]]];

 return nd;

 }

}

 7.1.9 Galil-Giancarlo

package com.accel.stringsearch;

import java.util.*;

/**

 * The {@code GalilGiancarlo} class finds the occurrences of a pattern

string in

 * a text string.

 * <p>

 * This implementation is a refinement of the Colussi algorithm. This

 * implementation provides methods for retrieving the first occurrence

of the

 * pattern in the text and for retrieving all the occurrences of the

pattern in

137

 * the text. This implementation takes time proportional to n,

where

 * n is the length of the text. The preprocessing phase takes

space and

 * time proportional to m, where m is the length of

the

 * pattern. There are at most (4/3)n character comparisons.

 * </p>

 *

 */

public class GalilGiancarlo {

 private final char[] pattern; // pattern

 private final int[] h;

 private final int[] next;

 private final int[] shift;

 private final int nd;

 /**

 * Preprocessing.

 *

 * @param pat

 * the pattern string

 */

 public GalilGiancarlo(String pat) {

 if (pat == null) throw new

IllegalArgumentException("pattern is null");

 if (pat.equals("")) throw new

IllegalArgumentException("pattern is empty");

 this.pattern = pat.toCharArray();

 final int m = pattern.length;

 this.h = new int[m + 1]; // CHANGED FROM: int[m]

 this.next = new int[m + 1]; // CHANGED FROM: int[m]

 this.shift = new int[m + 1]; // CHANGED FROM: int[m]

 nd = preColussi(); // moved here in preprocessing

 }

 /**

 * Returns the index of the first occurrence of the pattern

string in the text

 * string.

 *

 * @param txt

 * the text string

 * @return the index of the first occurrence of the pattern

string in the text

 * string; n if no such match

 */

 public int search(String txt) {

 if (txt == null) throw new IllegalArgumentException("text

is null");

 if (txt.equals("")) throw new

IllegalArgumentException("text is empty");

 final char[] text = txt.toCharArray();

 final int n = text.length;

 final int m = pattern.length;

 int i, j, k, ell, last;

 boolean heavy;

138

 for (ell = 0; ell < m - 1 && pattern[ell] == pattern[ell +

1]; ell++)

 ;

 if (ell == m - 1) {

 /* Searching for a power of a single character */

 for (j = ell = 0; j < n; ++j) {

 if (pattern[0] == text[j]) {

 ++ell;

 if (ell >= m) {

 return j - m + 1;

 }

 } else {

 ell = 0;

 }

 }

 } else {

 /* Searching */

 i = 0;

 j = 0;

 heavy = false;

 last = -1;

 while (j <= n - m) {

 if (heavy && i == 0) {

 k = last - j + 1;

 while (pattern[0] == text[j + k]) {

 k++;

 }

 if (k <= ell || pattern[ell + 1] !=

text[j + k]) {

 i = 0;

 j += (k + 1);

 last = j - 1;

 } else {

 i = 1;

 last = j + k;

 j = last - (ell + 1);

 }

 heavy = false;

 } else {

 while (i < m && last < j + h[i] &&

pattern[h[i]] == text[j + h[i]]) {

 ++i;

 }

 if (i >= m || last >= j + h[i]) {

 i = m;

 return j;

 }

 if (i > nd) {

 last = j + m - 1;

 }

 j += shift[i];

 i = next[i];

 }

 heavy = (j > last ? false : true);

 }

 }

 return n;

 }

139

 /**

 * Returns the indices of all the occurrences of the pattern

string in the text

 * string.

 *

 * @param txt

 * the text string

 * @return the indices of all the occurrences of the pattern

string in the text

 * string

 */

 public List<Integer> searchAll(String txt) {

 if (txt == null) throw new IllegalArgumentException("text

is null");

 if (txt.equals("")) throw new

IllegalArgumentException("text is empty");

 List<Integer> list = new ArrayList<>();

 final char[] text = txt.toCharArray();

 final int n = text.length;

 final int m = pattern.length;

 int i, j, k, ell, last;

 boolean heavy;

 for (ell = 0; ell < m - 1 && pattern[ell] == pattern[ell +

1]; ell++)

 ;

 if (ell == m - 1) {

 /* Searching for a power of a single character */

 for (j = ell = 0; j < n; ++j) {

 if (pattern[0] == text[j]) {

 ++ell;

 if (ell >= m) {

 list.add(j - m + 1);

 }

 } else {

 ell = 0;

 }

 }

 } else {

 /* Searching */

 i = 0;

 j = 0;

 heavy = false;

 last = -1;

 while (j <= n - m) {

 if (heavy && i == 0) {

 k = last - j + 1;

 while (pattern[0] == text[j + k]) {

 k++;

 }

 if (k <= ell || pattern[ell + 1] !=

text[j + k]) {

 i = 0;

 j += (k + 1);

 last = j - 1;

 } else {

 i = 1;

 last = j + k;

 j = last - (ell + 1);

140

 }

 heavy = false;

 } else {

 while (i < m && last < j + h[i] &&

pattern[h[i]] == text[j + h[i]]) {

 ++i;

 }

 if (i >= m || last >= j + h[i]) {

 list.add(j);

 i = m;

 }

 if (i > nd) {

 last = j + m - 1;

 }

 j += shift[i];

 i = next[i];

 }

 heavy = (j > last ? false : true);

 }

 }

 return list;

 }

 // preprocessing

 private int preColussi() {

 final int m = pattern.length;

 int i, k, nd, q, r, s;

 int[] hmax = new int[m + 1]; // CHANGED FROM: int[m]

 int[] kmin = new int[m + 1]; // CHANGED FROM: int[m]

 int[] nhd0 = new int[m + 1]; // CHANGED FROM: int[m]

 int[] rmin = new int[m + 1]; // CHANGED FROM: int[m]

 /* Computation of hmax */

 i = 1;

 k = 1;

 do {

 while (i < m && i - k < m && pattern[i] == pattern[i

- k]) {

 i++;

 }

 hmax[k] = i;

 q = k + 1;

 while (hmax[q - k] + k < i) {

 hmax[q] = hmax[q - k] + k;

 q++;

 }

 k = q;

 if (k == i + 1) {

 i = k;

 }

 } while (k <= m);

 /* Computation of kmin */

 for (int j = 0; j < m; ++j) {

 kmin[j] = 0;

 }

 for (i = m; i >= 1; --i) {

 if (hmax[i] < m) {

 kmin[hmax[i]] = i;

 }

141

 }

 /* Computation of rmin */

 r = 0;

 for (i = m - 1; i >= 0; --i) {

 if (hmax[i + 1] == m) {

 r = i + 1;

 }

 if (kmin[i] == 0) {

 rmin[i] = r;

 } else {

 rmin[i] = 0;

 }

 }

 /* Computation of h */

 s = -1;

 r = m;

 for (i = 0; i < m; ++i) {

 if (kmin[i] == 0) {

 h[--r] = i;

 } else {

 h[++s] = i;

 }

 }

 nd = s;

 /* Computation of shift */

 for (i = 0; i <= nd; ++i) {

 shift[i] = kmin[h[i]];

 }

 for (i = nd + 1; i < m; ++i) {

 shift[i] = rmin[h[i]];

 }

 shift[m] = rmin[0];

 /* Computation of nhd0 */

 s = 0;

 for (i = 0; i < m; ++i) {

 nhd0[i] = s;

 if (kmin[i] > 0) {

 ++s;

 }

 }

 /* Computation of next */

 for (i = 0; i <= nd; ++i) {

 next[i] = nhd0[h[i] - kmin[h[i]]];

 }

 for (i = nd + 1; i < m; ++i) {

 next[i] = nhd0[m - rmin[h[i]]];

 }

 next[m] = nhd0[m - rmin[h[m - 1]]];

 return nd;

 }

}

 7.1.10 Apostolico-Crochemore

package com.accel.stringsearch;

142

import java.util.ArrayList;

import java.util.List;

/**

 * The {@code ApostolicoCrochemore} class finds the occurrences

of a pattern

 * string in a text string.

 * <p>

 * This implementation provides methods for retrieving the first

occurrence of

 * the pattern in the text and for retrieving all the occurrences

of the pattern

 * in the text. This implementation takes time proportional to

n, where

 * n is the length of the text.There are at most

n(3/2) text

 * character * comparisons during the search phase. The

preprocessing phase

 * takes space and time proportional to m, where

m is the

 * length of the pattern.

 * </p>

 *

 */

public class ApostolicoCrochemore {

 private final int[] kmpNext;

 private final char[] pattern;

 private final int ell;

 /**

 * Preprocesses the pattern string.

 *

 * @param pat the pattern string

 */

 public ApostolicoCrochemore(String pat) {

 if (pat == null)

 throw new IllegalArgumentException("pattern is

null");

 if (pat.equals(""))

 throw new IllegalArgumentException("pattern is

empty");

 final int m = pat.length();

 this.pattern = pat.toCharArray();

 int ell;

 this.kmpNext = new int[m + 1]; // CHANGED :: new

int[m]

 /* Preprocessing */

 preKmp();

 for (ell = 1; ell < m && pattern[ell - 1] ==

pattern[ell]; ell++);

 if (ell == m)

 ell = 0;

 this.ell = ell;

 }

 /**

143

 * Returns the index of the first occurrence of the pattern

string in the text

 * string.

 *

 * @param txt the text string

 * @return the index of the first occurrence of the pattern

string in the text

 * string; n if no such match

 */

 public int search(String txt) {

 if (txt == null)

 throw new IllegalArgumentException("text is

null");

 if (txt.equals(""))

 throw new IllegalArgumentException("text is

empty");

 int i, j, k;

 final char[] text = txt.toCharArray();

 final int m = pattern.length;

 final int n = text.length;

 /* Searching */

 i = ell;

 j = 0;

 k = 0;

 while (j <= n - m) {

 while (i < m && pattern[i] == text[i + j]) {

 ++i;

 }

 if (i >= m) {

 while (k < ell && pattern[k] == text[j +

k]) {

 ++k;

 }

 if (k >= ell)

 return j;

 }

 j += (i - kmpNext[i]);

 if (i == ell) {

 k = Math.max(0, k - 1);

 } else {

 if (kmpNext[i] <= ell) {

 k = Math.max(0, kmpNext[i]);

 i = ell;

 } else {

 k = ell;

 i = kmpNext[i];

 }

 }

 }

 return n;

 }

 /**

 * Returns the indices of all the occurrences of the

pattern string in the text

 * string.

 *

 * @param txt the text string

144

 * @return the indices of all the occurrences of the

pattern string in the text

 * string

 */

 public List<Integer> searchAll(String txt) {

 if (txt == null)

 throw new IllegalArgumentException("text is

null");

 if (txt.equals(""))

 throw new IllegalArgumentException("text is

empty");

 List<Integer> list = new ArrayList<>();

 int i, j, k;

 final char[] text = txt.toCharArray();

 final int m = pattern.length;

 final int n = text.length;

 /* Searching */

 i = ell;

 j = 0;

 k = 0;

 while (j <= n - m) {

 while (i < m && pattern[i] == text[i + j]) {

 ++i;

 }

 if (i >= m) {

 while (k < ell && pattern[k] == text[j +

k]) {

 ++k;

 }

 if (k >= ell)

 list.add(j);

 }

 j += (i - kmpNext[i]);

 if (i == ell) {

 k = Math.max(0, k - 1);

 } else {

 if (kmpNext[i] <= ell) {

 k = Math.max(0, kmpNext[i]);

 i = ell;

 } else {

 k = ell;

 i = kmpNext[i];

 }

 }

 }

 return list;

 }

 // preprocessing

 private void preKmp() {

 final int m = pattern.length;

 int i, j;

 i = 0;

 j = -1;

 kmpNext[0] = -1;

 while (i < m) {

 while (j > -1 && pattern[i] != pattern[j]) {

145

 j = kmpNext[j];

 }

 i++;

 j++;

 if (i < m && j < m && pattern[i] == pattern[j])

{ // CHANGED:: if(pat.charAt(i) == pat.charAt(j))

 kmpNext[i] = kmpNext[j];

 } else {

 kmpNext[i] = j;

 }

 }

 }

}

 7.1.11 Not So Naïve

package com.accel.stringsearch;

import java.util.*;

/**

 * The {@code NotSoNaive} class finds the occurrences of a

pattern string in a

 * text string.

 * <p>

 * This implementation provides methods for retrieving the first

occurrence of

 * the pattern in the text and for retrieving all the occurrences

of the pattern

 * in the text. This implementation takes time proportional to

nm,

 * where n is the length of the text and m is

the length of

 * the pattern. On average it is slightly (by coefficient) sub-

linear.

 * </p>

 *

 */

public class NotSoNaive {

 private final char[] pattern; // pattern

 private final int ell;

 private final int k;

 /**

 * Preprocesses the pattern string.

 *

 * @param pat

 * the pattern string

 */

 public NotSoNaive(String pat) {

 if (pat == null)

 throw new IllegalArgumentException("pattern is

null");

 if (pat.equals(""))

 throw new IllegalArgumentException("pattern is

empty");

 this.pattern = pat.toCharArray();

 final int m = pattern.length;

 int ell, k;

 /* Preprocessing */

146

 if (m > 1 && pattern[0] == pattern[1]) {

 k = 2;

 ell = 1;

 } else {

 k = 1;

 ell = 2;

 }

 this.ell = ell;

 this.k = k;

 }

 /**

 * Returns the index of the first occurrence of the pattern

string in the text

 * string.

 *

 * @param txt

 * the text string

 * @return the index of the first occurrence of the pattern

string in the text

 * string; n if no such match

 */

 public int search(String txt) {

 if (txt == null)

 throw new IllegalArgumentException("text is

null");

 if (txt.equals(""))

 throw new IllegalArgumentException("text is

empty");

 if (pattern.length == 1) {

 return new

BruteForce(String.copyValueOf(pattern)).search(txt);

 }

 final char[] text = txt.toCharArray();

 final int m = pattern.length;

 final int n = text.length;

 int skip = 0;

 for (int i = 0; i <= n - m; i += skip) {

 if (m == 1 && pattern[0] == text[i]) {

 return i;

 }

 if (pattern[1] != text[i + 1]) {

 skip = k;

 } else {

 if (memcmp(pattern, 2, text, i + 2, m -

2) && pattern[0] == text[i]) {

 return i;

 }

 skip = ell;

 }

 }

 return n;

 }

 /**

 * Returns the indices of all the occurrences of the

pattern string in the text

 * string.

 *

147

 * @param txt

 * the text string

 * @return the indices of all the occurrences of the

pattern string in the text

 * string

 */

 public List<Integer> searchAll(String txt) {

 if (txt == null)

 throw new IllegalArgumentException("text is

null");

 if (txt.equals(""))

 throw new IllegalArgumentException("text is

empty");

 if (pattern.length == 1) {

 return new

BruteForce(String.copyValueOf(pattern)).searchAll(txt);

 }

 List<Integer> list = new ArrayList<>();

 final char[] text = txt.toCharArray();

 final int m = pattern.length;

 final int n = text.length;

 int skip = 0;

 for (int i = 0; i <= n - m; i += skip) {

 if (pattern[1] != text[i + 1]) {

 skip = k;

 } else {

 if (memcmp(pattern, 2, text, i + 2, m -

2) && pattern[0] == text[i]) {

 list.add(i);

 }

 skip = ell;

 }

 }

 return list;

 }

 // Returns true if the sequential characters of two arrays,

starting from

 // specified indices to a common specified length, are

equal; false otherwise.

 private boolean memcmp(char[] x, int startX, char[] y, int

startY, int length) {

// if (x == null)

// throw new IllegalArgumentException("first array

is null");

// if (y == null)

// throw new IllegalArgumentException("second

array is null");

// if (startX < 0 || startX >= x.length)

// throw new IllegalArgumentException(

// "start index of first array: " +

startX + " should be between 0 and " + (x.length - 1));

// if (startY < 0 || startY >= y.length)

// throw new IllegalArgumentException(

// "start index of second array: " +

startY + " should be between 0 and " + (y.length - 1));

// if (startX + length > x.length || startY + length >

y.length)

148

// return false;

 for (int i = 0; i < length; ++i) {

 if (x[startX + i] != y[startY + i]) {

 return false;

 }

 }

 return true;

 }

}

 7.1.12 Boyer-Moore

package com.accel.stringsearch;

import java.util.*;

/**

 * The {@code BoyerMoore} class finds the occurrences of a

pattern string in a

 * text string.

 * <p>

 * This implementation provides methods for retrieving the first

occurrence of

 * the pattern in the text and for retrieving all the occurrences

of the pattern

 * in the text. It takes time proportional to nm in the

worst case and

 * n/m in the best case, where n is the length

of the text and

 * m is the length of the pattern. The preprocessing

phase takes m

 * + σ time and space, where σ is the size of the alphabet.

The character

 * comparisons are 3n in the worst case when searching

for a non

 * periodic pattern.

 * </p>

 *

 */

public class BoyerMoore {

 private static final int ASIZE = 256;

 private final char[] pattern;

 private final int[] bmGs;

 private final int[] bmBc;

 private final int[] suff;

 /**

 * Preprocesses the pattern string.

 *

 * @param pat

 * the pattern string

 */

 public BoyerMoore(String pat) {

 if (pat == null) throw new

IllegalArgumentException("pattern is null");

 if (pat.equals("")) throw new

IllegalArgumentException("pattern is empty");

 this.pattern = pat.toCharArray();

 final int m = pattern.length;

149

 this.bmGs = new int[m];

 this.bmBc = new int[ASIZE];

 this.suff = new int[m];

 /* Preprocessing */

 preBmGs();

 preBmBc();

 }

 /**

 * Returns the index of the first occurrence of the pattern

string in the text

 * string.

 *

 * @param txt

 * the text string

 * @return the index of the first occurrence of the pattern

string in the text

 * string; n if no such match

 */

 public int search(String txt) {

 if (txt == null) throw new

IllegalArgumentException("text is null");

 if (txt.equals("")) throw new

IllegalArgumentException("text is empty");

 final char[] text = txt.toCharArray();

 final int m = pattern.length;

 final int n = text.length;

 int i, j;

 j = 0;

 while (j <= n - m) {

 for (i = m - 1; i >= 0 && pattern[i] == text[i

+ j]; --i)

 ;

 if (i < 0) {

 return j;

 } else {

 j += Math.max(bmGs[i], bmBc[text[i + j]]

- m + 1 + i);

 }

 }

 return n;

 }

 /**

 * Returns the indices of all the occurrences of the

pattern string in the text

 * string.

 *

 * @param txt

 * the text string

 * @return the indices of all the occurrences of the

pattern string in the text

 * string

 */

 public List<Integer> searchAll(String txt) {

 if (txt == null) throw new

IllegalArgumentException("text is null");

150

 if (txt.equals("")) throw new

IllegalArgumentException("text is empty");

 List<Integer> list = new ArrayList<>();

 final char[] text = txt.toCharArray();

 final int m = pattern.length;

 final int n = text.length;

 int i, j;

 j = 0;

 while (j <= n - m) {

 for (i = m - 1; i >= 0 && pattern[i] == text[i

+ j]; --i)

 ;

 if (i < 0) {

 list.add(j);

 j += bmGs[0];

 } else {

 j += Math.max(bmGs[i], bmBc[text[i + j]]

- m + 1 + i);

 }

 }

 return list;

 }

 // construct bad character shift array

 private void preBmBc() {

 final int m = pattern.length;

 for (int i = 0; i < ASIZE; ++i) {

 bmBc[i] = m;

 }

 for (int i = 0; i < m - 1; ++i) {

 bmBc[pattern[i]] = m - i - 1;

 }

 }

 private void suffixes() {

 final int m = pattern.length;

 int f, g;

 suff[m - 1] = m;

 g = m - 1;

 f = 0;

 for (int i = m - 2; i >= 0; --i) {

 if (i > g && suff[i + m - 1 - f] < i - g) {

 suff[i] = suff[i + m - 1 - f];

 } else {

 if (i < g) {

 g = i;

 }

 f = i;

 while (g >= 0 && pattern[g] == pattern[g

+ m - 1 - f]) {

 --g;

 }

 suff[i] = f - g;

 }

 }

151

 }

 // construct good suffix shift array

 private void preBmGs() {

 final int m = pattern.length;

 int i, j;

 suffixes();

 for (i = 0; i < m; ++i) {

 bmGs[i] = m;

 }

 j = 0;

 for (i = m - 1; i >= 0; --i) {

 if (suff[i] == i + 1) {

 for (; j < m - 1 - i; ++j) {

 if (bmGs[j] == m) {

 bmGs[j] = m - 1 - i;

 }

 }

 }

 }

 for (i = 0; i <= m - 2; ++i) {

 bmGs[m - 1 - suff[i]] = m - 1 - i;

 }

 }

}

 7.1.13 Turbo Boyer-Moore

package com.accel.stringsearch;

import java.util.*;

/**

 * The {@code TurboBM} class finds the occurrences of a pattern

string in a text

 * string.

 * <p>

 * This implementation is a variant of the Boyer-Moore algorithm.

This

 * implementation provides methods for retrieving the first

occurrence of the

 * pattern in the text and for retrieving all the occurrences of

the pattern in

 * the text. It takes time proportional to n in the

worst case, where

 * n is the length of the text. The preprocessing phase

takes m +

 * � time and space, where � is the size of the alphabet.
The character

 * comparisons are 2n in the worst case.

 * </p>

 *

 */

public class TurboBM {

 private static final int ASIZE = 256;

 private final char[] pattern;

 private final int[] bmGs;

 private final int[] bmBc;

 private final int[] suff;

152

 /**

 * Preprocesses the pattern string.

 *

 * @param pat

 * the pattern string

 */

 public TurboBM(String pat) {

 if (pat == null) throw new

IllegalArgumentException("pattern is null");

 if (pat.equals("")) throw new

IllegalArgumentException("pattern is empty");

 this.pattern = pat.toCharArray();

 final int m = pattern.length;

 this.bmGs = new int[m];

 this.bmBc = new int[ASIZE];

 this.suff = new int[m];

 /* Preprocessing */

 preBmGs();

 preBmBc();

 }

 /**

 * Returns the index of the first occurrence of the pattern

string in the text

 * string.

 *

 * @param txt

 * the text string

 * @return the index of the first occurrence of the pattern

string in the text

 * string; n if no such match

 */

 public int search(String txt) {

 if (txt == null) throw new

IllegalArgumentException("text is null");

 if (txt.equals("")) throw new

IllegalArgumentException("text is empty");

 final char[] text = txt.toCharArray();

 final int m = pattern.length;

 final int n = text.length;

 int i, j, u, v, bcShift, shift, turboShift;

 j = u = 0;

 shift = m;

 while (j <= n - m) {

 i = m - 1;

 while (i >= 0 && pattern[i] == text[i + j]) {

 --i;

 if (u != 0 && i == m - 1 - shift) {

 i -= u;

 }

 }

 if (i < 0) {

 return j;

 } else {

 v = m - 1 - i;

153

 turboShift = u - v;

 bcShift = bmBc[text[i + j]] - m + 1 + i;

 shift = Math.max(turboShift, bcShift);

 shift = Math.max(shift, bmGs[i]);

 if (shift == bmGs[i])

 u = Math.min(m - shift, v);

 else {

 if (turboShift < bcShift)

 shift = Math.max(shift, u +

1);

 u = 0;

 }

 }

 j += shift;

 }

 return n;

 }

 /**

 * Returns the indices of all the occurrences of the

pattern string in the text

 * string.

 *

 * @param txt

 * the text string

 * @return the indices of all the occurrences of the

pattern string in the text

 * string

 */

 public List<Integer> searchAll(String txt) {

 if (txt == null) throw new

IllegalArgumentException("text is null");

 if (txt.equals("")) throw new

IllegalArgumentException("text is empty");

 List<Integer> list = new ArrayList<>();

 final char[] text = txt.toCharArray();

 final int m = pattern.length;

 final int n = text.length;

 int i, j, u, v, bcShift, shift, turboShift;

 j = u = 0;

 shift = m;

 while (j <= n - m) {

 i = m - 1;

 while (i >= 0 && pattern[i] == text[i + j]) {

 --i;

 if (u != 0 && i == m - 1 - shift) {

 i -= u;

 }

 }

 if (i < 0) {

 list.add(j);

 shift = bmGs[0];

 u = m - shift;

 } else {

 v = m - 1 - i;

 turboShift = u - v;

 bcShift = bmBc[text[i + j]] - m + 1 + i;

 shift = Math.max(turboShift, bcShift);

154

 shift = Math.max(shift, bmGs[i]);

 if (shift == bmGs[i])

 u = Math.min(m - shift, v);

 else {

 if (turboShift < bcShift)

 shift = Math.max(shift, u +

1);

 u = 0;

 }

 }

 j += shift;

 }

 return list;

 }

 // construct bad character shift array

 private void preBmBc() {

 final int m = pattern.length;

 for (int i = 0; i < ASIZE; ++i) {

 bmBc[i] = m;

 }

 for (int i = 0; i < m - 1; ++i) {

 bmBc[pattern[i]] = m - i - 1;

 }

 }

 private void suffixes() {

 final int m = pattern.length;

 int f, g;

 suff[m - 1] = m;

 g = m - 1;

 f = 0;

 for (int i = m - 2; i >= 0; --i) {

 if (i > g && suff[i + m - 1 - f] < i - g) {

 suff[i] = suff[i + m - 1 - f];

 } else {

 if (i < g) {

 g = i;

 }

 f = i;

 while (g >= 0 && pattern[g] == pattern[g

+ m - 1 - f]) {

 --g;

 }

 suff[i] = f - g;

 }

 }

 }

 // construct good suffix shift array

 private void preBmGs() {

 final int m = pattern.length;

 int i, j;

 suffixes();

 for (i = 0; i < m; ++i) {

 bmGs[i] = m;

 }

 j = 0;

155

 for (i = m - 1; i >= 0; --i) {

 if (suff[i] == i + 1) {

 for (; j < m - 1 - i; ++j) {

 if (bmGs[j] == m) {

 bmGs[j] = m - 1 - i;

 }

 }

 }

 }

 for (i = 0; i <= m - 2; ++i) {

 bmGs[m - 1 - suff[i]] = m - 1 - i;

 }

 }

}

 7.1.14 Apostolico-Giancarlo

package com.accel.stringsearch;

import java.util.ArrayList;

import java.util.List;

/**

 * The {@code ApostolicoGiancarlo} class finds the occurrences of

a pattern

 * string in a text string.

 * <p>

 * This implementation is a variant of the Boyer-Moore algorithm.

This

 * implementation provides methods for retrieving the first

occurrence of the

 * pattern in the text and for retrieving all the occurrences of

the pattern in

 * the text. It takes time proportional to n, where

n is the

 * length of the text. The preprocessing phase takes m +

σ time and

 * space, where σ is the size of the alphabet. The character

comparisons are

 * 3n/2 in the worst case.

 * </p>

 *

 */

public class ApostolicoGiancarlo {

 private static final int ASIZE = 256;

 private final char[] pattern;

 private final int[] bmGs;

 private final int[] bmBc;

 private final int[] suff;

 private final int[] skip;

 /**

 * Preprocesses the pattern string.

 *

 * @param pat the pattern string

 */

 public ApostolicoGiancarlo(String pat) {

156

 if (pat == null)

 throw new IllegalArgumentException("pattern is

null");

 if (pat.equals(""))

 throw new IllegalArgumentException("pattern is

empty");

 this.pattern = pat.toCharArray();

 final int m = pattern.length;

 this.bmGs = new int[m];

 this.bmBc = new int[ASIZE];

 this.suff = new int[m];

 this.skip = new int[m];

 /* Preprocessing */

 preBmGs();

 preBmBc();

 }

 /**

 * Returns the index of the first occurrence of the pattern

string in the text

 * string.

 *

 * @param txt the text string

 * @return the index of the first occurrence of the pattern

string in the text

 * string; n if no such match

 */

 public int search(String txt) {

 if (txt == null)

 throw new IllegalArgumentException("text is

null");

 if (txt.equals(""))

 throw new IllegalArgumentException("text is

empty");

 final char[] text = txt.toCharArray();

 final int m = pattern.length;

 final int n = text.length;

 int i, j, k, s, shift;

 j = 0;

 while (j <= n - m) {

 i = m - 1;

 while (i >= 0) {

 k = skip[i];

 s = suff[i];

 if (k > 0)

 if (k > s) {

 if (i + 1 == s)

 i = (-1);

 else

 i -= s;

 break;

 } else {

 i -= k;

 if (k < s)

 break;

 }

157

 else {

 if (pattern[i] == text[i + j])

 --i;

 else

 break;

 }

 }

 if (i < 0) {

 return j;

 // skip[m - 1] = m;

 // shift = bmGs[0];

 } else {

 skip[m - 1] = m - 1 - i;

 shift = Math.max(bmGs[i], bmBc[text[i +

j]] - m + 1 + i);

 }

 j += shift;

 memcpy(skip, 0, skip, shift, (m - shift));

 memset(skip, m - shift, shift, 0);

 }

 return n;

 }

 /**

 * Returns the indices of all the occurrences of the

pattern string in the text

 * string.

 *

 * @param txt the text string

 * @return the indices of all the occurrences of the

pattern string in the text

 * string

 */

 public List<Integer> searchAll(String txt) {

 if (txt == null)

 throw new IllegalArgumentException("text is

null");

 if (txt.equals(""))

 throw new IllegalArgumentException("text is

empty");

 List<Integer> list = new ArrayList<>();

 final char[] text = txt.toCharArray();

 final int m = pattern.length;

 final int n = text.length;

 int i, j, k, s, shift;

 j = 0;

 while (j <= n - m) {

 i = m - 1;

 while (i >= 0) {

 k = skip[i];

 s = suff[i];

 if (k > 0)

 if (k > s) {

 if (i + 1 == s)

 i = (-1);

 else

 i -= s;

 break;

158

 } else {

 i -= k;

 if (k < s)

 break;

 }

 else {

 if (pattern[i] == text[i + j])

 --i;

 else

 break;

 }

 }

 if (i < 0) {

 list.add(j);

 skip[m - 1] = m;

 shift = bmGs[0];

 } else {

 skip[m - 1] = m - 1 - i;

 shift = Math.max(bmGs[i], bmBc[text[i +

j]] - m + 1 + i);

 }

 j += shift;

 memcpy(skip, 0, skip, shift, (m - shift));

 memset(skip, m - shift, shift, 0);

 }

 return list;

 }

 // construct bad character shift array

 private void preBmBc() {

 final int m = pattern.length;

 for (int i = 0; i < ASIZE; ++i) {

 bmBc[i] = m;

 }

 for (int i = 0; i < m - 1; ++i) {

 bmBc[pattern[i]] = m - i - 1;

 }

 }

 private void suffixes() {

 final int m = pattern.length;

 int f, g;

 suff[m - 1] = m;

 g = m - 1;

 f = 0;

 for (int i = m - 2; i >= 0; --i) {

 if (i > g && suff[i + m - 1 - f] < i - g) {

 suff[i] = suff[i + m - 1 - f];

 } else {

 if (i < g) {

 g = i;

 }

 f = i;

 while (g >= 0 && pattern[g] == pattern[g

+ m - 1 - f]) {

 --g;

 }

 suff[i] = f - g;

159

 }

 }

 }

 // construct good suffix shift array

 private void preBmGs() {

 final int m = pattern.length;

 int i, j;

 suffixes();

 for (i = 0; i < m; ++i) {

 bmGs[i] = m;

 }

 j = 0;

 for (i = m - 1; i >= 0; --i) {

 if (suff[i] == i + 1) {

 for (; j < m - 1 - i; ++j) {

 if (bmGs[j] == m) {

 bmGs[j] = m - 1 - i;

 }

 }

 }

 }

 for (i = 0; i <= m - 2; ++i) {

 bmGs[m - 1 - suff[i]] = m - 1 - i;

 }

 }

 // memcpy

 private void memcpy(int[] dest, int d_i, int[] src, int

s_i, int l) {

 int[] temp = new int[l];

 for (int i = 0; i < l; ++i) {

 temp[i] = src[s_i + i];

 }

 for (int i = 0; i < l; ++i) {

 dest[d_i + i] = temp[i];

 }

 }

 // memset

 private void memset(int[] dest, int start, int length, int

val) {

 for (int i = 0; i < length; ++i) {

 dest[start + i] = val;

 }

 }

}

 7.1.15 Reverse Colussi

package com.accel.stringsearch;

import java.util.*;

/**

 * The {@code ReverseColussi} class finds the occurrences of a

pattern string in

 * a text string.

160

 * <p>

 * This implementation is a refinement of the Boyer-Moore

algorithm. This

 * implementation provides methods for retrieving the first

occurrence of the

 * pattern in the text and for retrieving all the occurrences of

the pattern in

 * the text. This implementation takes time proportional to

n, where

 * n is the length of the text. The preprocessing phase

takes space

 * proportional to mσ, where m is the length of

the pattern

 * and σ is the alphabet size, and time proportional to

m^2. There are

 * at most 2n character comparisons.

 * </p>

 *

 */

public class ReverseColussi {

 private static final int ASIZE = 256; // alphabet size

 private final char[] pattern; // pattern

 private final int[] h;

 private final int[][] rcBc;

 private final int[] rcGs;

 /**

 * Preprocesses the pattern string.

 *

 * @param pat

 * the pattern string

 */

 public ReverseColussi(String pat) {

 if (pat == null) throw new

IllegalArgumentException("pattern is null");

 if (pat.equals("")) throw new

IllegalArgumentException("pattern is empty");

 this.pattern = pat.toCharArray();

 final int m = pattern.length;

 this.h = new int[m + 1]; // CHANGED FROM: int[m]

 this.rcBc = new int[ASIZE][m + 1]; // CHANGED FROM:

int[m]

 this.rcGs = new int[m + 1]; // CHANGED FROM: int[m]

 /* Processing */

 preRc();

 }

 /**

 * Returns the index of the first occurrence of the pattern

string in the text

 * string.

 *

 * @param txt

 * the text string

 * @return the index of the first occurrence of the pattern

string in the text

 * string; n if no such match

 */

161

 public int search(String txt) {

 if (txt == null) throw new

IllegalArgumentException("text is null");

 if (txt.equals("")) throw new

IllegalArgumentException("text is empty");

 final char[] text = txt.toCharArray();

 final int n = text.length;

 final int m = pattern.length;

 int i, j, s;

 j = 0;

 s = m;

 while (j <= n - m) {

 while (j <= n - m && pattern[m - 1] != text[j +

m - 1]) {

 s = rcBc[text[j + m - 1]][s];

 j += s;

 }

 for (i = 1; i < m && j + h[i] < n &&

pattern[h[i]] == text[j + h[i]]; ++i)

 ;

 if (i >= m && j <= n - m) // CHANGED :: (i >=

m)

 return j;

 s = rcGs[i];

 j += s;

 }

 return n;

 }

 /**

 * Returns the indices of all the occurrences of the

pattern string in the text

 * string.

 *

 * @param txt

 * the text string

 * @return the indices of all the occurrences of the

pattern string in the text

 * string

 */

 public List<Integer> searchAll(String txt) {

 if (txt == null) throw new

IllegalArgumentException("text is null");

 if (txt.equals("")) throw new

IllegalArgumentException("text is empty");

 final List<Integer> list = new ArrayList<>();

 final char[] text = txt.toCharArray();

 final int n = text.length;

 final int m = pattern.length;

 int i, j, s;

 j = 0;

 s = m;

 while (j <= n - m) {

 while (j <= n - m && pattern[m - 1] != text[j +

m - 1]) {

 s = rcBc[text[j + m - 1]][s];

162

 j += s;

 }

 for (i = 1; i < m && j + h[i] < n &&

pattern[h[i]] == text[j + h[i]]; ++i)

 ;

 if (i >= m && j <= n - m) // CHANGED :: (i >=

m)

 list.add(j);

 s = rcGs[i];

 j += s;

 }

 return list;

 }

 // preprocessing

 private void preRc() {

 final int m = pattern.length;

 int a, i, j, k, q, r, s;

 int[] hmin = new int[m + 1];

 int[] kmin = new int[m + 1];

 int[] link = new int[m + 1];

 int[] locc = new int[ASIZE];

 int[] rmin = new int[m + 1];

 /* Computation of link and locc */

 for (a = 0; a < ASIZE; ++a)

 locc[a] = -1;

 link[0] = -1;

 for (i = 0; i < m - 1; ++i) {

 link[i + 1] = locc[pattern[i]];

 locc[pattern[i]] = i;

 }

 /* Computation of rcBc */

 for (a = 0; a < ASIZE; ++a)

 for (s = 1; s <= m; ++s) {

 i = locc[a];

 j = link[m - s];

 while (i - j != s && j >= 0)

 if (i - j > s)

 i = link[i + 1];

 else

 j = link[j + 1];

 while (i - j > s)

 i = link[i + 1];

 rcBc[a][s] = m - i - 1;

 }

 /* Computation of hmin */

 k = 1;

 i = m - 1;

 while (k <= m) {

 while (i - k >= 0 && pattern[i - k] ==

pattern[i])

 --i;

 hmin[k] = i;

 q = k + 1;

 while (hmin[q - k] - (q - k) > i) {

 hmin[q] = hmin[q - k];

163

 ++q;

 }

 i += (q - k);

 k = q;

 if (i == m)

 i = m - 1;

 }

 /* Computation of kmin */

 for (i = 0; i < m; i++)

 kmin[i] = 0;

 for (k = m; k > 0; --k)

 kmin[hmin[k]] = k;

 /* Computation of rmin */

 r = 0;

 for (i = m - 1; i >= 0; --i) {

 if (hmin[i + 1] == i)

 r = i + 1;

 rmin[i] = r;

 }

 /* Computation of rcGs */

 i = 1;

 for (k = 1; k <= m; ++k)

 if (hmin[k] != m - 1 && kmin[hmin[k]] == k) {

 h[i] = hmin[k];

 rcGs[i++] = k;

 }

 i = m - 1;

 for (j = m - 2; j >= 0; --j)

 if (kmin[j] == 0) {

 h[i] = j;

 rcGs[i--] = rmin[j];

 }

 rcGs[m] = rmin[0];

 }

}

 7.1.16 Horspool

package com.accel.stringsearch;

import java.util.*;

/**

 * The {@code Horspool} class finds the occurrences of a pattern

string in a

 * text string.

 * <p>

 * This implementation is a simplification of the Boyer-Moore

algorithm. This

 * implementation provides methods for retrieving the first

occurrence of the

 * pattern in the text and for retrieving all the occurrences of

the pattern in

 * the text. It takes time proportional to nm in the

worst case and

 * n/m in the best case, where n is the length

of the text and

164

 * m is the length of the pattern. The preprocessing

phase takes m

 * + σ time and σ space, where σ is the size of the

alphabet. The

 * character comparisons are between 1/σ and

2/(σ+1) on

 * average.

 * </p>

 *

 */

public class Horspool {

 private static final int ASIZE = 256;

 private final char[] pattern;

 private final int[] bmBc;

 /**

 * Preprocesses the pattern string.

 *

 * @param pat

 * the pattern string

 */

 public Horspool(String pat) {

 if (pat == null) throw new

IllegalArgumentException("pattern is null");

 if (pat.equals("")) throw new

IllegalArgumentException("pattern is empty");

 this.pattern = pat.toCharArray();

 this.bmBc = new int[ASIZE];

 preBmBc();

 }

 /**

 * Returns the index of the first occurrence of the pattern

string in the text

 * string.

 *

 * @param txt

 * the text string

 * @return the index of the first occurrence of the pattern

string in the text

 * string; n if no such match

 */

 public int search(String txt) {

 if (txt == null) throw new

IllegalArgumentException("text is null");

 if (txt.equals("")) throw new

IllegalArgumentException("text is empty");

 final char[] text = txt.toCharArray();

 final int m = pattern.length;

 final int n = text.length;

 char cPat, cTxt;

 for (int i = 0; i <= n - m; i += bmBc[cTxt]) {

 cPat = pattern[m - 1];

 cTxt = text[i + m - 1];

165

 if (cPat == cTxt && memcmp(pattern, 0, text, i,

m - 1))

 return i;

 }

 return n;

 }

 /**

 * Returns the indices of all the occurrences of the

pattern string in the text

 * string.

 *

 * @param txt

 * the text string

 * @return the indices of all the occurrences of the

pattern string in the text

 * string

 */

 public List<Integer> searchAll(String txt) {

 if (txt == null) throw new

IllegalArgumentException("text is null");

 if (txt.equals("")) throw new

IllegalArgumentException("text is empty");

 List<Integer> list = new ArrayList<>();

 final char[] text = txt.toCharArray();

 final int m = pattern.length;

 final int n = text.length;

 char cPat, cTxt;

 for (int i = 0; i <= n - m; i += bmBc[cTxt]) {

 cPat = pattern[m - 1];

 cTxt = text[i + m - 1];

 if (cPat == cTxt && memcmp(pattern, 0, text, i,

m - 1))

 list.add(i);

 }

 return list;

 }

 // construct bad character shift array

 private void preBmBc() {

 final int m = pattern.length;

 for (int i = 0; i < ASIZE; ++i) {

 bmBc[i] = m;

 }

 for (int i = 0; i < m - 1; ++i) {

 bmBc[pattern[i]] = m - i - 1;

 }

 }

 private boolean memcmp(char[] x, int startX, char[] y, int

startY, int length) {

 for (int i = 0; i < length; ++i) {

 if (x[startX + i] != y[startY + i]) {

 return false;

 }

 }

 return true;

 }

166

}

 7.1.17 Quick Search

package com.accel.stringsearch;

import java.util.*;

/**

 * The {@code QuickSearch} class finds the occurrences of a

pattern string in a

 * text string.

 * <p>

 * This implementation is a simplification of the Boyer-Moore

algorithm. This

 * implementation provides methods for retrieving the first

occurrence of the

 * pattern in the text and for retrieving all the occurrences of

the pattern in

 * the text. It takes time proportional to nm in the

worst case and

 * n/m in the best case, where n is the length

of the text and

 * m is the length of the pattern. The preprocessing

phase takes m

 * + σ time and σ space, where σ is the size of the

alphabet. It

 * is very fast in practice for short patterns and large

alphabets.

 * </p>

 *

 */

public class QuickSearch {

 private static final int ASIZE = 256;

 private final char[] pattern;

 private final int[] qsBc;

 /**

 * Preprocesses the pattern string.

 *

 * @param pat

 * the pattern string

 */

 public QuickSearch(String pat) {

 if (pat == null) throw new

IllegalArgumentException("pattern is null");

 if (pat.equals("")) throw new

IllegalArgumentException("pattern is empty");

 this.pattern = pat.toCharArray();

 this.qsBc = new int[ASIZE];

 preQsBc();

 }

 /**

 * Returns the index of the first occurrence of the pattern

string in the text

 * string.

167

 *

 * @param txt

 * the text string

 * @return the index of the first occurrence of the pattern

string in the text

 * string; n if no such match

 */

 public int search(String txt) {

 if (txt == null) throw new

IllegalArgumentException("text is null");

 if (txt.equals("")) throw new

IllegalArgumentException("text is empty");

 final char[] text = txt.toCharArray();

 final int m = pattern.length;

 final int n = text.length;

 for (int i = 0; i <= n - m; i += qsBc[text[i + m]]) {

 if (memcmp(pattern, 0, text, i, m)) {

 return i;

 }

 if (i == n - m) {

 break;

 }

 }

 return n;

 }

 /**

 * Returns the indices of all the occurrences of the

pattern string in the text

 * string.

 *

 * @param txt

 * the text string

 * @return the indices of all the occurrences of the

pattern string in the text

 * string

 */

 public List<Integer> searchAll(String txt) {

 if (txt == null) throw new

IllegalArgumentException("text is null");

 if (txt.equals("")) throw new

IllegalArgumentException("text is empty");

 List<Integer> list = new ArrayList<>();

 final char[] text = txt.toCharArray();

 final int m = pattern.length;

 final int n = text.length;

 for (int i = 0; i <= n - m; i += qsBc[text[i + m]]) {

 if (memcmp(pattern, 0, text, i, m)) {

 list.add(i);

 }

 if (i == n - m) {

 break;

 }

 }

 return list;

 }

 // preprocessing

168

 private void preQsBc() {

 final int m = pattern.length;

 for (int i = 0; i < ASIZE; ++i)

 qsBc[i] = m + 1;

 for (int i = 0; i < m; ++i)

 qsBc[pattern[i]] = m - i;

 }

 // returns true if elements of two arrays-starting from

specified indices to a

 // common length- are equal; false otherwise

 private boolean memcmp(char[] x, int startX, char[] y, int

startY, int length) {

 for (int i = 0; i < length; ++i) {

 if (x[startX + i] != y[startY + i]) {

 return false;

 }

 }

 return true;

 }

}

 7.1.18 Tuned Boyer-Moore

package com.accel.stringsearch;

import java.util.*;

/**

 * The {@code TunedBoyerMoore} class finds the occurrences of a

pattern string in a

 * text string.

 * <p>

 * This implementation provides methods for retrieving the first

occurrence of

 * the pattern in the text and for retrieving all the occurrences

of the pattern

 * in the text. It takes quadratic time in the worst case, but

has a very good

 * practical behaviour.

 * </p>

 *

 */

public class BoyerMooreTuned {

 private static final int ASIZE = 256;

 private final char[] pat;

 private final int[] bmBc;

 private final int shift;

 /**

 * Preprocesses the pattern string.

 *

 * @param pat the pattern string

 */

 public BoyerMooreTuned(String pat) {

 if (pat == null) throw new

IllegalArgumentException("pattern is null");

169

 if (pat.equals("")) throw new

IllegalArgumentException("pattern is empty");

 this.pat = pat.toCharArray();

 final int m = pat.length();

 this.bmBc = new int[ASIZE];

 preBmBc();

 shift = bmBc[this.pat[m - 1]];

 bmBc[this.pat[m - 1]] = 0;

 }

 /**

 * Returns the index of the first occurrence of the pattern

string in the text

 * string.

 *

 * @param txt the text string

 * @return the index of the first occurrence of the pattern

string in the text

 * string; n if no such match

 */

 public int search(String txt) {

 if (txt == null) throw new IllegalArgumentException("text

is null");

 if (txt.equals("")) throw new

IllegalArgumentException("text is empty");

 final int m = pat.length;

 final int n = txt.length();

 int j, k;

 final char[] txtArr = new char[n + m];

 for (int i = 0; i < n; ++i) {

 txtArr[i] = txt.charAt(i);

 }

 Arrays.fill(txtArr, n, n + m, pat[m - 1]);

 j = 0;

 while (j < n) {

 k = bmBc[txtArr[j + m -1]];

 while (k != 0) {

 j += k;

 k = bmBc[txtArr[j + m - 1]];

 j += k;

 k = bmBc[txtArr[j + m - 1]];

 j += k;

 k = bmBc[txtArr[j + m - 1]];

 }

 if (memcmp(pat, 0, txtArr, j, m - 1) && j < n) { //

CHANGED :: j < n - m CHANGED :: j < n

 return j;

 }

 j += shift; /* shift */

 }

 return n;

 }

 /**

 * Returns the indices of all the occurrences of the pattern

string in the text

170

 * string.

 *

 * @param txt the text string

 * @return the indices of all the occurrences of the pattern

string in the text

 * string

 */

 public List<Integer> searchAll(String txt) {

 if (txt == null) throw new IllegalArgumentException("text

is null");

 if (txt.equals("")) throw new

IllegalArgumentException("text is empty");

 List<Integer> list = new ArrayList<>();

 final int m = pat.length;

 final int n = txt.length();

 int j, k;

 final char[] txtArr = new char[n + m];

 for (int i = 0; i < n; ++i) {

 txtArr[i] = txt.charAt(i);

 }

 Arrays.fill(txtArr, n, n + m, pat[m - 1]);

 j = 0;

 while (j < n) {

 k = bmBc[txtArr[j + m -1]];

 while (k != 0) {

 j += k;

 k = bmBc[txtArr[j + m - 1]];

 j += k;

 k = bmBc[txtArr[j + m - 1]];

 j += k;

 k = bmBc[txtArr[j + m - 1]];

 }

 if (memcmp(pat, 0, txtArr, j, m - 1) && j < n) { //

CHANGED :: j < n - m CHANGED :: j < n

 list.add(j);

 }

 j += shift; /* shift */

 }

 return list;

 }

 // construct bad character shift array

 private void preBmBc() {

 final int m = pat.length;

 for (int i = 0; i < ASIZE; ++i) {

 bmBc[i] = m;

 }

 for (int i = 0; i < m - 1; ++i) {

 bmBc[pat[i]] = m - i - 1;

 }

 }

 // returns true if elements of two arrays-starting from

specified indices to a common length- are equal; false otherwise

 private boolean memcmp(char[] x, int startX, char[] y, int

startY, int length) {

 for (int i = 0; i < length; ++i) {

 if (x[startX + i] != y[startY + i]) {

171

 return false;

 }

 }

 return true;

 }

}

 7.1.19 Zhu-Takaoka

package com.accel.stringsearch;

import java.util.*;

/**

 * The {@code ZhuTakaoka} class finds the occurrences of a

pattern string in a

 * text string.

 * <p>

 * This implementation is a variant of the Boyer-Moore algorithm.

 * This implementation provides methods for retrieving the first

occurrence of

 * the pattern in the text and for retrieving all the occurrences

of the pattern

 * in the text. It takes time proportional to nm in the

worst case and

 * n/m in the best case, where n is the length

of the text and

 * m is the length of the pattern. The preprocessing

phase takes m

 * + σ^2 time and space, where σ is the size of the

alphabet.

 * </p>

 *

 */

public class ZhuTakaoka {

 private static final int ASIZE = 256;

 private final char[] pattern;

 private final int[] bmGs;

 private final int[] suff;

 private final int[][] ztBc;

 /**

 * Preprocesses the pattern string.

 *

 * @param pat the pattern string

 */

 public ZhuTakaoka(String pat) {

 if (pat == null) throw new

IllegalArgumentException("pattern is null");

 if (pat.equals("")) throw new

IllegalArgumentException("pattern is empty");

 final int m = pat.length();

 this.pattern = pat.toCharArray();

 this.bmGs = new int[m];

 this.suff = new int[m];

 this.ztBc = new int[ASIZE][ASIZE];

172

 /* Preprocessing */

 preZtBc();

 preBmGs();

 }

 /**

 * Returns the index of the first occurrence of the pattern

string in the text

 * string.

 *

 * @param txt the text string

 * @return the index of the first occurrence of the pattern

string in the text

 * string; n if no such match

 */

 public int search(String txt) {

 if (txt == null) throw new IllegalArgumentException("text

is null");

 if (txt.equals("")) throw new

IllegalArgumentException("text is empty");

 final char[] text = txt.toCharArray();

 final int m = pattern.length;

 final int n = text.length;

 int i, j;

 j = 0;

 while (j <= n - m) {

 i = m - 1;

 while (i >= 0 && pattern[i] == text[i + j]) {

 --i;

 }

 if (i < 0) {

 return j;

 }

 else if (j + m - 2 >= 0) {

 j += Math.max(bmGs[i],

 ztBc[text[j + m - 2]][text[j + m - 1]]);

 }

 else {

 j += bmGs[i];

 }

 }

 return n;

 }

 /**

 * Returns the indices of all the occurrences of the pattern

string in the text

 * string.

 *

 * @param txt the text string

 * @return the indices of all the occurrences of the pattern

string in the text

 * string

 */

 public List<Integer> searchAll(String txt) {

 if (txt == null) throw new IllegalArgumentException("text

is null");

173

 if (txt.equals("")) throw new

IllegalArgumentException("text is empty");

 List<Integer> list = new ArrayList<>();

 final char[] text = txt.toCharArray();

 final int m = pattern.length;

 final int n = text.length;

 int i, j;

 j = 0;

 while (j <= n - m) {

 i = m - 1;

 while (i >= 0 && pattern[i] == text[i + j]) {

 --i;

 }

 if (i < 0) {

 list.add(j);

 j += bmGs[0];

 }

 else if (j + m - 2 >= 0) {

 j += Math.max(bmGs[i],

 ztBc[text[j + m - 2]][text[j + m - 1]]);

 }

 else {

 j += bmGs[i];

 }

 }

 return list;

 }

 private void preZtBc() {

 final int m = pattern.length;

 for (int i = 0; i < ASIZE; ++i) {

 for (int j = 0; j < ASIZE; ++j) {

 ztBc[i][j] = m;

 }

 }

 for (int i = 0; i < ASIZE; ++i) {

 ztBc[i][pattern[0]] = m - 1;

 }

 for (int i = 1; i < m - 1; ++i) {

 ztBc[pattern[i - 1]][pattern[i]] = m - 1 - i;

 }

 }

 private void suffixes() {

 final int m = pattern.length;

 int f, g;

 suff[m - 1] = m;

 g = m - 1;

 f = 0;

 for (int i = m - 2; i >= 0; --i) {

 if (i > g && suff[i + m - 1 - f] < i - g) {

 suff[i] = suff[i + m - 1 - f];

 } else {

 if (i < g) {

 g = i;

 }

 f = i;

174

 while (g >= 0 && pattern[g] == pattern[g + m - 1

- f]) {

 --g;

 }

 suff[i] = f - g;

 }

 }

 }

 // construct good suffix shift array

 private void preBmGs() {

 int j;

 final int m = pattern.length;

 suffixes();

 for (int i = 0; i < m; ++i) {

 bmGs[i] = m;

 }

 j = 0;

 for (int i = m - 1; i >= 0; --i) {

 if (suff[i] == i + 1) {

 for (; j < m - 1 - i; ++j) {

 if (bmGs[j] == m) {

 bmGs[j] = m - 1 - i;

 }

 }

 }

 }

 for (int i = 0; i <= m - 2; ++i) {

 bmGs[m - 1 - suff[i]] = m - 1 - i;

 }

 }

}

 7.1.20 Berry-Ravindran

package com.accel.stringsearch;

import java.util.*;

/**

 * The {@code BerryRavindran} class finds the occurrences of a

pattern string in

 * a text string.

 * <p>

 * This implementation is a hybrid of the Quick Search and Zhu-

Takaoka

 * algorithms. This implementation provides methods for

retrieving the first

 * occurrence of the pattern in the text and for retrieving all

the occurrences

 * of the pattern in the text. It takes time proportional to

nm in the

 * worst case and n/m in the best case, where n

is the length

 * of the text and m is the length of the pattern. The

preprocessing

175

 * phase takes m + σ^2 time and space, where σ is the

size of the

 * alphabet.

 * </p>

 *

 */

public class BerryRavindran {

 private static final int ASIZE = 256;

 private static char NULL_CHARACTER = '\0';

 private final char[] pattern;

 private final int[][] brBc;

 /**

 * Preprocesses the pattern string.

 *

 * @param pat

 * the pattern string

 */

 public BerryRavindran(String pat) {

 if (pat == null) throw new

IllegalArgumentException("pattern is null");

 if (pat.equals("")) throw new

IllegalArgumentException("pattern is empty");

 this.pattern = pat.toCharArray();

 this.brBc = new int[ASIZE][ASIZE];

 /* Preprocessing */

 preBrBc();

 }

 /**

 * Returns the index of the first occurrence of the pattern

string in the text

 * string.

 *

 * @param txt

 * the text string

 * @return the index of the first occurrence of the pattern

string in the text

 * string; n if no such match

 */

 public int search(String txt) {

 if (txt == null) throw new

IllegalArgumentException("text is null");

 if (txt.equals("")) throw new

IllegalArgumentException("text is empty");

 final int n = txt.length();

 final char[] text = new char[n + 1];

 for (int i = 0; i < n; ++i) {

 text[i] = txt.charAt(i);

 }

 text[n] = NULL_CHARACTER;

 final int m = pattern.length;

 int j;

176

 j = 0;

 while (j < n - m) {

 if (memcmp(pattern, 0, text, j, m)) {

 return j;

 }

 j += brBc[text[j + m]][text[j + m + 1]];

 }

 if (j == n - m) {

 if (memcmp(pattern, 0, text, j, m)) {

 return j;

 }

 }

 return n;

 }

 /**

 * Returns the indices of all the occurrences of the

pattern string in the text

 * string.

 *

 * @param txt

 * the text string

 * @return the indices of all the occurrences of the

pattern string in the text

 * string

 */

 public List<Integer> searchAll(String txt) {

 if (txt == null) throw new

IllegalArgumentException("text is null");

 if (txt.equals("")) throw new

IllegalArgumentException("text is empty");

 List<Integer> list = new ArrayList<>();

 final int n = txt.length();

 final char[] text = new char[n + 1];

 for (int i = 0; i < n; ++i) {

 text[i] = txt.charAt(i);

 }

 text[n] = NULL_CHARACTER;

 final int m = pattern.length;

 int j;

 j = 0;

 while (j < n - m) {

 if (memcmp(pattern, 0, text, j, m)) {

 list.add(j);

 }

 j += brBc[text[j + m]][text[j + m + 1]];

 }

 if (j == n - m) {

 if (memcmp(pattern, 0, text, j, m)) {

 list.add(j);

 }

 }

 return list;

 }

 private void preBrBc() {

 final int m = pattern.length;

177

 for (int a = 0; a < ASIZE; ++a) {

 for (int b = 0; b < ASIZE; ++b) {

 brBc[a][b] = m + 2;

 }

 }

 for (int a = 0; a < ASIZE; ++a) {

 brBc[a][pattern[0]] = m + 1;

 }

 for (int i = 0; i < m - 1; ++i) {

 brBc[pattern[i]][pattern[i + 1]] = m - i;

 }

 for (int a = 0; a < ASIZE; ++a) {

 brBc[pattern[m - 1]][a] = 1;

 }

 }

 // returns true if elements of two arrays-starting from

specified indices to a

 // common length- are equal; false otherwise

 private boolean memcmp(char[] x, int startX, char[] y, int

startY, int length) {

 for (int i = 0; i < length; ++i) {

 if (x[startX + i] != y[startY + i]) {

 return false;

 }

 }

 return true;

 }

}

 7.1.21 Smith

package com.accel.stringsearch;

import java.util.*;

/**

 * The {@code Smith} class finds the occurrences of a pattern

string in a

 * text string.

 * <p>

 * This implementation is a hybrid of the Horspool and the

QuickSearh algorithms;

 * it takes the maximum of the Horspool bad-character shift

function and the

 * Quick Search bad-character shift function.

 * This implementation provides methods for retrieving the first

occurrence of

 * the pattern in the text and for retrieving all the occurrences

of the pattern

 * in the text. The preprocessing phase takes m

 * + σ time and σspace, where σ is the size of the

alphabet.

 * </p>

 *

 */

public class SMiTH {

 private static final int ASIZE = 256;

178

 private final char[] pattern;

 private final int[] bmBc;

 private final int[] qsBc;

 /**

 * Preprocesses the pattern string.

 *

 * @param pat the pattern string

 */

 public SMiTH(String pat) {

 if (pat == null) throw new

IllegalArgumentException("pattern is null");

 if (pat.equals("")) throw new

IllegalArgumentException("pattern is empty");

 this.pattern = pat.toCharArray();

 this.bmBc = new int[ASIZE];

 this.qsBc = new int[ASIZE];

 preBmBc();

 preQsBc();

 }

 /**

 * Returns the index of the first occurrence of the pattern

string in the text

 * string.

 *

 * @param txt the text string

 * @return the index of the first occurrence of the pattern

string in the text

 * string; n if no such match

 */

 public int search(String txt) {

 if (txt == null) throw new IllegalArgumentException("text

is null");

 if (txt.equals("")) throw new

IllegalArgumentException("text is empty");

 final char[] text = txt.toCharArray();

 final int m = pattern.length;

 final int n = text.length;

 int i;

 i = 0;

 while (i < n - m) {

 if (memcmp(pattern, 0, text, i, m)){

 return i;

 }

 i += Math.max(bmBc[text[i + m - 1]], qsBc[text[i +

m]]);

 }

 if (i == n - m) {

 if (memcmp(pattern, 0, text, i, m)){

 return i;

 }

 }

 return n;

 }

179

 /**

 * Returns the indices of all the occurrences of the pattern

string in the text

 * string.

 *

 * @param txt the text string

 * @return the indices of all the occurrences of the pattern

string in the text

 * string

 */

 public List<Integer> searchAll(String txt) {

 if (txt == null) throw new IllegalArgumentException("text

is null");

 if (txt.equals("")) throw new

IllegalArgumentException("text is empty");

 List<Integer> list = new ArrayList<>();

 final char[] text = txt.toCharArray();

 final int m = pattern.length;

 final int n = text.length;

 int i;

 i = 0;

 while (i < n - m) {

 if (memcmp(pattern, 0, text, i, m)){

 list.add(i);

 }

 i += Math.max(bmBc[text[i + m - 1]], qsBc[text[i +

m]]);

 }

 if (i == n - m) {

 if (memcmp(pattern, 0, text, i, m)){

 list.add(i);

 }

 }

 return list;

 }

 // construct bad character shift array

 private void preBmBc() {

 final int m = pattern.length;

 for (int i = 0; i < ASIZE; ++i) {

 bmBc[i] = m;

 }

 for (int i = 0; i < m - 1; ++i) {

 bmBc[pattern[i]] = m - i - 1;

 }

 }

 // preprocessing

 private void preQsBc() {

 final int m = pattern.length;

 for (int i = 0; i < ASIZE; ++i)

 qsBc[i] = m + 1;

 for (int i = 0; i < m; ++i)

 qsBc[pattern[i]] = m - i;

 }

 // returns true if elements of two arrays-starting from

specified indices to a common length- are equal; false otherwise

180

 private boolean memcmp(char[] x, int startX, char[] y, int

startY, int length) {

 for (int i = 0; i < length; ++i) {

 if (x[startX + i] != y[startY + i]) {

 return false;

 }

 }

 return true;

 }

}

 7.1.22 Raita

package com.accel.stringsearch;

import java.util.*;

/**

 * The {@code Raita} class finds the occurrencies of a pattern

string in a

 * text string.

 * <p>

 * This implementation first compares the last pattern character,

then the

 * first and finally the middle one before actually comparing the

others.

 * This implementation provides methods for retrieving the first

occurence of

 * the pattern in the text and for retrieving all the occurencies

of the pattern

 * in the text. It takes time proportional to nm in the

worst case and

 * n/m in the best case, where n is the length

of the text and

 * m is the length of the pattern. The preprocessing

phase takes m

 * + σ time and σ space, where σ is the size of the

alphabet.

 * </p>

 *

 */

public class Raita {

 private static final int ASIZE = 256;

 private final char[] pattern;

 private final int[] bmBc;

 private final int firstChar, middleChar, lastChar;

 /**

 * Preprocesses the pattern string.

 *

 * @param pat the pattern string

 */

 public Raita(String pat) {

 if (pat == null) throw new

IllegalArgumentException("pattern is null");

 if (pat.equals("")) throw new

IllegalArgumentException("pattern is empty");

181

 final int m = pat.length();

 this.pattern = pat.toCharArray();

 this.bmBc = new int[ASIZE];

 /* Preprocessing */

 preBmBc();

 this.firstChar = pattern[0];

 this.middleChar = pattern[m / 2];

 this.lastChar = pattern[m - 1];

 }

 /**

 * Returns the index of the first occurrence of the pattern

string in the text

 * string.

 *

 * @param txt the text string

 * @return the index of the first occurrence of the pattern

string in the text

 * string; n if no such match

 */

 public int search(String txt) {

 if (txt == null) throw new IllegalArgumentException("text

is null");

 if (txt.equals("")) throw new

IllegalArgumentException("text is empty");

 final char[] text = txt.toCharArray();

 final int m = pattern.length;

 final int n = text.length;

 int i;

 i = 0;

 while (i <= n - m) {

 char c = text[i + m - 1];

 if (lastChar == c && firstChar == text[i] &&

middleChar == text[i + m / 2] && memcmp(pattern, 1, text, i + 1, m -

2)) {

 return i;

 }

 i += bmBc[c];

 }

 return n;

 }

 /**

 * Returns the indices of all the occurrences of the pattern

string in the text

 * string.

 *

 * @param txt the text string

 * @return the indices of all the occurrences of the pattern

string in the text

 * string

 */

 public List<Integer> searchAll(String txt) {

 if (txt == null) throw new IllegalArgumentException("text

is null");

 if (txt.equals("")) throw new

IllegalArgumentException("text is empty");

182

 List<Integer> list = new ArrayList<>();

 final char[] text = txt.toCharArray();

 final int m = pattern.length;

 final int n = text.length;

 int i;

 i = 0;

 while (i <= n - m) {

 char c = text[i + m - 1];

 if (lastChar == c && firstChar == text[i] &&

middleChar == text[i + m / 2] && memcmp(pattern, 1, text, i + 1, m -

2)) {

 list.add(i);

 }

 i += bmBc[c];

 }

 return list;

 }

 // construct bad character shift array

 private void preBmBc() {

 final int m = pattern.length;

 for (int i = 0; i < ASIZE; ++i) {

 bmBc[i] = m;

 }

 for (int i = 0; i < m - 1; ++i) {

 bmBc[pattern[i]] = m - i - 1;

 }

 }

 // returns true if elements of two arrays-starting from

specified indices to a common length- are equal; false otherwise

 private boolean memcmp(char[] x, int startX, char[] y, int

startY, int length) {

 for (int i = 0; i < length; ++i) {

 if (x[startX + i] != y[startY + i]) {

 return false;

 }

 }

 return true;

 }

}

 7.1.23 Reverse Factor

package com.accel.stringsearch;

import java.util.*;

import com.accel.utils.Graph;

import com.accel.utils.SuffixAutomaton;

/**

 * The {@code ReverseFactor} class finds the occurrences of a

pattern string in

 * a text string.

 * <p>

 * This implementation provides methods for retrieving the first

occurrence of

 * the pattern in the text and for retrieving all the occurrences

of the pattern

183

 * in the text. It takes time proportional to nm, where

n is

 * the length of the text and m is the length of the

pattern. The

 * preprocessing phase takes m time and space. The

algorithm is optimal

 * at average.

 * </p>

 *

 */

public class ReverseFactor {

 private static final int ASIZE = 256;

 private final char[] pattern;

 private final char[] patternR;

 private final int init;

 private final SuffixAutomaton aut;

 /**

 * Preprocesses the pattern string.

 *

 * @param pat the pattern string

 */

 public ReverseFactor(String pat) {

 if (pat == null)

 throw new IllegalArgumentException("pattern is

null");

 if (pat.equals(""))

 throw new IllegalArgumentException("pattern is

empty");

 final int m = pat.length();

 this.pattern = pat.toCharArray();

 /* Preprocessing */

 aut = new SuffixAutomaton(2 * (m + 2), 2 * (m + 2) *

ASIZE);

 patternR = reverse();

 buildSuffixAutomaton();

 init = aut.getInitial();

 }

 /**

 * Returns the index of the first occurrence of the pattern

string in the text

 * string.

 *

 * @param txt the text string

 * @return the index of the first occurrence of the pattern

string in the text

 * string; n if no such match

 */

 public int search(String txt) {

 if (txt == null)

 throw new IllegalArgumentException("text is

null");

 if (txt.equals(""))

 throw new IllegalArgumentException("text is

empty");

184

 final char[] text = txt.toCharArray();

 final int m = pattern.length;

 final int n = text.length;

 int i, j, state, shift;

 /* Searching */

 j = 0;

 while (j <= n - m) {

 i = m - 1;

 state = init;

 shift = m;

 while (i + j >= 0 && aut.getTarget(state,

text[i + j]) != Graph.UNDEFINED) {

 state = aut.getTarget(state, text[i +

j]);

 if (aut.isTerminal(state)) {

 shift = i;

 }

 --i;

 }

 if (i < 0) {

 return j;

 }

 j += shift;

 }

 return n;

 }

 /**

 * Returns the indices of all the occurrences of the

pattern string in the text

 * string.

 *

 * @param txt the text string

 * @return the indices of all the occurrences of the

pattern string in the text

 * string

 */

 public List<Integer> searchAll(String txt) {

 if (txt == null)

 throw new IllegalArgumentException("text is

null");

 if (txt.equals(""))

 throw new IllegalArgumentException("text is

empty");

 List<Integer> list = new ArrayList<>();

 final char[] text = txt.toCharArray();

 final int m = pattern.length;

 final int n = text.length;

 int i, j, state, shift, period;

 /* Searching */

 period = m;

 j = 0;

 while (j <= n - m) {

 i = m - 1;

 state = init;

 shift = m;

185

 while (i + j >= 0 && aut.getTarget(state,

text[i + j]) != Graph.UNDEFINED) {

 state = aut.getTarget(state, text[i +

j]);

 if (aut.isTerminal(state)) {

 period = shift;

 shift = i;

 }

 --i;

 }

 if (i < 0) {

 list.add(j);

 shift = period;

 }

 j += shift;

 }

 return list;

 }

 private void buildSuffixAutomaton() {

 final int m = pattern.length;

 int art, init, last, p, q, r;

 char c;

 init = aut.getInitial();

 art = aut.newVertex();

 aut.setSuffixLink(init, art);

 last = init;

 for (int i = 0; i < m; ++i) {

 c = patternR[i];

 p = last;

 q = aut.newVertex();

 aut.setLength(q, aut.getLength(p) + 1);

 aut.setPosition(q, aut.getPosition(p) + 1);

 while (p != init && aut.getTarget(p, c) ==

Graph.UNDEFINED) {

 aut.setTarget(p, c, q);

 aut.setShift(p, c, aut.getPosition(q) -

aut.getPosition(p) - 1);

 p = aut.getSuffixLink(p);

 }

 if (aut.getTarget(p, c) == Graph.UNDEFINED) {

 aut.setTarget(init, c, q);

 aut.setShift(init, c, aut.getPosition(q)

- aut.getPosition(init) - 1);

 aut.setSuffixLink(q, init);

 } else {

 if (aut.getLength(p) + 1 ==

aut.getLength(aut.getTarget(p, c))) {

 aut.setSuffixLink(q,

aut.getTarget(p, c));

 } else {

 r = aut.newVertex();

 aut.copyVertex(r, aut.getTarget(p,

c));

 aut.setLength(r, aut.getLength(p) +

1);

 aut.setSuffixLink(aut.getTarget(p,

c), r);

 aut.setSuffixLink(q, r);

186

 while (p != art &&

aut.getLength(aut.getTarget(p, c)) >= aut.getLength(r)) {

 aut.setShift(p, c,

aut.getPosition(aut.getTarget(p, c)) - aut.getPosition(p) - 1);

 aut.setTarget(p, c, r);

 p = aut.getSuffixLink(p);

 }

 }

 }

 last = q;

 }

 aut.setTerminal(last);

 while (last != init) {

 last = aut.getSuffixLink(last);

 aut.setTerminal(last);

 }

 }

 private char[] reverse() {

 final int m = pattern.length;

 final char[] patternR = new char[m + 1];

 for (int i = 0; i < m; ++i) {

 patternR[i] = pattern[m - 1 - i];

 }

 patternR[m] = '\0';

 return patternR;

 }

}

 7.1.24 Turbo Reverse Factor

package com.accel.stringsearch;

import java.util.*;

import com.accel.utils.Graph;

import com.accel.utils.SuffixAutomaton;

/**

 * The {@code TurboReverseFactor} class finds the occurrences of

a pattern

 * string in a text string.

 * <p>

 * This implementation is a refinement of the Reverse Factor

algorithm. This

 * implementation provides methods for retrieving the first

occurrence of the

 * pattern in the text and for retrieving all the occurrences of

the pattern in

 * the text. It takes time proportional to n, where

n is the

 * length of the text.The preprocessing phase takes m

time and space,

 * where m is the length of the pattern. At worst case

2n text

 * character comparisons are performed but the algorithm is

optimal at average.

 * </p>

 *

 */

public class TurboReverseFactor {

187

 private static final int ASIZE = 256;

 private final char[] pattern;

 private final char[] patternR;

 private int[] mpNext; // shift array

 private final int init;

 private final int period;

 private final SuffixAutomaton aut;

 /**

 * Preprocesses the pattern string.

 *

 * @param pat

 * the pattern string

 */

 public TurboReverseFactor(String pat) {

 if (pat == null) throw new

IllegalArgumentException("pattern is null");

 if (pat.equals("")) throw new

IllegalArgumentException("pattern is empty");

 final int m = pat.length();

 this.pattern = pat.toCharArray();

 this.mpNext = new int[m + 1]; // TODO :: check if

needs to be m

 aut = new SuffixAutomaton(2 * (m + 2), 2 * (m + 2) *

ASIZE);

 patternR = reverse();

 buildSuffixAutomaton();

 init = aut.getInitial();

 preMp();

 period = m - mpNext[m];

 }

 /**

 * Returns the index of the first occurrence of the pattern

string in the text

 * string.

 *

 * @param txt

 * the text string

 * @return the index of the first occurrence of the pattern

string in the text

 * string; n if no such match

 */

 public int search(String txt) {

 if (txt == null) throw new

IllegalArgumentException("text is null");

 if (txt.equals("")) throw new

IllegalArgumentException("text is empty");

 final char[] text = txt.toCharArray();

 final int m = pattern.length;

 final int n = text.length;

 int i, j, shift, u, periodOfU, disp, state, mu;

 i = 0;

 shift = m;

 j = 0;

188

 while (j <= n - m) {

 i = m - 1;

 state = init;

 u = m - 1 - shift;

 periodOfU = (shift != m ? m - shift - mpNext[m

- shift] : 0);

 shift = m;

 disp = 0;

 while (i > u && aut.getTarget(state, text[i +

j]) != Graph.UNDEFINED) {

 disp += aut.getShift(state, text[i + j]);

 state = aut.getTarget(state, text[i +

j]);

 if (aut.isTerminal(state)) {

 shift = i;

 }

 --i;

 }

 if (i <= u) {

 if (disp == 0) {

 return j;

 // shift = period;

 } else {

 mu = (u + 1) / 2;

 if (periodOfU <= mu) {

 u -= periodOfU;

 while (i > u &&

aut.getTarget(state, text[i + j]) != Graph.UNDEFINED) {

 disp +=

aut.getShift(state, text[i + j]);

 state =

aut.getTarget(state, text[i + j]);

 if

(aut.isTerminal(state)) {

 shift = i;

 }

 --i;

 }

 if (i <= u) {

 shift = disp;

 }

 } else {

 u = u - mu - 1;

 while (i > u &&

aut.getTarget(state, text[i + j]) != Graph.UNDEFINED) {

 disp +=

aut.getShift(state, text[i + j]);

 state =

aut.getTarget(state, text[i + j]);

 if

(aut.isTerminal(state)) {

 shift = i;

 }

 --i;

 }

 }

 }

 }

 j += shift;

 }

189

 return n;

 }

 /**

 * Returns the indices of all the occurrences of the

pattern string in the text

 * string.

 *

 * @param txt

 * the text string

 * @return the indices of all the occurrences of the

pattern string in the text

 * string

 */

 public List<Integer> searchAll(String txt) {

 if (txt == null) throw new

IllegalArgumentException("text is null");

 if (txt.equals("")) throw new

IllegalArgumentException("text is empty");

 List<Integer> list = new ArrayList<>();

 final char[] text = txt.toCharArray();

 final int m = pattern.length;

 final int n = text.length;

 int i, j, shift, u, periodOfU, disp, state, mu;

 i = 0;

 shift = m;

 j = 0;

 while (j <= n - m) {

 i = m - 1;

 state = init;

 u = m - 1 - shift;

 periodOfU = (shift != m ? m - shift - mpNext[m

- shift] : 0);

 shift = m;

 disp = 0;

 while (i > u && aut.getTarget(state, text[i +

j]) != Graph.UNDEFINED) {

 disp += aut.getShift(state, text[i + j]);

 state = aut.getTarget(state, text[i +

j]);

 if (aut.isTerminal(state)) {

 shift = i;

 }

 --i;

 }

 if (i <= u) {

 if (disp == 0) {

 list.add(j);

 shift = period;

 } else {

 mu = (u + 1) / 2;

 if (periodOfU <= mu) {

 u -= periodOfU;

 while (i > u &&

aut.getTarget(state, text[i + j]) != Graph.UNDEFINED) {

 disp +=

aut.getShift(state, text[i + j]);

190

 state =

aut.getTarget(state, text[i + j]);

 if

(aut.isTerminal(state)) {

 shift = i;

 }

 --i;

 }

 if (i <= u) {

 shift = disp;

 }

 } else {

 u = u - mu - 1;

 while (i > u &&

aut.getTarget(state, text[i + j]) != Graph.UNDEFINED) {

 disp +=

aut.getShift(state, text[i + j]);

 state =

aut.getTarget(state, text[i + j]);

 if

(aut.isTerminal(state)) {

 shift = i;

 }

 --i;

 }

 }

 }

 }

 j += shift;

 }

 return list;

 }

 private void buildSuffixAutomaton() {

 final int m = pattern.length;

 int art, init, last, p, q, r;

 char c;

 init = aut.getInitial();

 art = aut.newVertex();

 aut.setSuffixLink(init, art);

 last = init;

 for (int i = 0; i < m; ++i) {

 c = patternR[i];

 p = last;

 q = aut.newVertex();

 aut.setLength(q, aut.getLength(p) + 1);

 aut.setPosition(q, aut.getPosition(p) + 1);

 while (p != init && aut.getTarget(p, c) ==

Graph.UNDEFINED) {

 aut.setTarget(p, c, q);

 aut.setShift(p, c, aut.getPosition(q) -

aut.getPosition(p) - 1);

 p = aut.getSuffixLink(p);

 }

 if (aut.getTarget(p, c) == Graph.UNDEFINED) {

 aut.setTarget(init, c, q);

 aut.setShift(init, c, aut.getPosition(q)

- aut.getPosition(init) - 1);

 aut.setSuffixLink(q, init);

191

 } else {

 if (aut.getLength(p) + 1 ==

aut.getLength(aut.getTarget(p, c))) {

 aut.setSuffixLink(q,

aut.getTarget(p, c));

 } else {

 r = aut.newVertex();

 aut.copyVertex(r, aut.getTarget(p,

c));

 aut.setLength(r, aut.getLength(p) +

1);

 aut.setSuffixLink(aut.getTarget(p,

c), r);

 aut.setSuffixLink(q, r);

 while (p != art &&

aut.getLength(aut.getTarget(p, c)) >= aut.getLength(r)) {

 aut.setShift(p, c,

aut.getPosition(aut.getTarget(p, c)) - aut.getPosition(p) - 1);

 aut.setTarget(p, c, r);

 p = aut.getSuffixLink(p);

 }

 }

 }

 last = q;

 }

 aut.setTerminal(last);

 while (last != init) {

 last = aut.getSuffixLink(last);

 aut.setTerminal(last);

 }

 }

 private char[] reverse() {

 final int m = pattern.length;

 final char[] patternR = new char[m + 1];

 for (int i = 0; i < m; ++i) {

 patternR[i] = pattern[m - 1 - i];

 }

 patternR[m] = '\0';

 return patternR;

 }

 private void preMp() {

 final int m = pattern.length;

 mpNext[0] = -1;

 int j = -1;

 int i = 0;

 while (i < m) {

 while (j > -1 && pattern[i] != pattern[j]) {

 j = mpNext[j];

 }

 mpNext[++i] = ++j;

 }

 }

}

 7.1.25 Forward DAWG Matchinng

package com.accel.stringsearch;

import java.util.*;

192

import com.accel.utils.Graph;

import com.accel.utils.SuffixAutomaton;

/**

 * The {@code ForwardDawgMatching} class finds the occurrences of

a pattern

 * string in a text string.

 * <p>

 * This implementation provides methods for retrieving the first

occurrence of

 * the pattern in the text and for retrieving all the occurrences

of the pattern

 * in the text. It takes time proportional to n, where

n * is

 * the length of the text. It performs exactly n text character

inspections.

 * </p>

 *

 */

public class ForwardDawgMatching {

 private static final int ASIZE = 256;

 private final char[] pattern;

 private final int init;

 private final SuffixAutomaton aut;

 /**

 * Preprocesses the pattern string.

 *

 * @param pat

 * the pattern string

 */

 public ForwardDawgMatching(String pat) {

 if (pat == null) throw new

IllegalArgumentException("pattern is null");

 if (pat.equals("")) throw new

IllegalArgumentException("pattern is empty");

 final int m = pat.length();

 this.pattern = pat.toCharArray();

 aut = new SuffixAutomaton(2 * (m + 2), 2 * (m + 2) *

ASIZE);

 buildSuffixAutomaton();

 init = aut.getInitial();

 }

 /**

 * Returns the index of the first occurrence of the pattern

string in the text

 * string.

 *

 * @param txt

 * the text string

 * @return the index of the first occurrence of the pattern

string in the text

 * string; n if no such match

 */

193

 public int search(String txt) {

 if (txt == null) throw new

IllegalArgumentException("text is null");

 if (txt.equals("")) throw new

IllegalArgumentException("text is empty");

 final char[] text = txt.toCharArray();

 final int m = pattern.length;

 final int n = text.length;

 int j, ell, state;

 /* Searching */

 ell = 0;

 state = init;

 for (j = 0; j < n; ++j) {

 if (aut.getTarget(state, text[j]) !=

Graph.UNDEFINED) {

 ++ell;

 state = aut.getTarget(state, text[j]);

 } else {

 while (state != init &&

aut.getTarget(state, text[j]) == Graph.UNDEFINED) {

 state = aut.getSuffixLink(state);

 }

 if (aut.getTarget(state, text[j]) !=

Graph.UNDEFINED) {

 ell = aut.getLength(state) + 1;

 state = aut.getTarget(state,

text[j]);

 } else {

 ell = 0;

 state = init;

 }

 }

 if (ell == m) {

 return j - m + 1;

 }

 }

 return n;

 }

 /**

 * Returns the indices of all the occurrences of the

pattern string in the text

 * string.

 *

 * @param txt

 * the text string

 * @return the indices of all the occurrences of the

pattern string in the text

 * string

 */

 public List<Integer> searchAll(String txt) {

 if (txt == null) throw new

IllegalArgumentException("text is null");

 if (txt.equals("")) throw new

IllegalArgumentException("text is empty");

 List<Integer> list = new ArrayList<>();

 final char[] text = txt.toCharArray();

194

 final int m = pattern.length;

 final int n = text.length;

 int j, ell, state;

 /* Searching */

 ell = 0;

 state = init;

 for (j = 0; j < n; ++j) {

 if (aut.getTarget(state, text[j]) !=

Graph.UNDEFINED) {

 ++ell;

 state = aut.getTarget(state, text[j]);

 } else {

 while (state != init &&

aut.getTarget(state, text[j]) == Graph.UNDEFINED) {

 state = aut.getSuffixLink(state);

 }

 if (aut.getTarget(state, text[j]) !=

Graph.UNDEFINED) {

 ell = aut.getLength(state) + 1;

 state = aut.getTarget(state,

text[j]);

 } else {

 ell = 0;

 state = init;

 }

 }

 if (ell == m) {

 list.add(j - m + 1);

 }

 }

 return list;

 }

 private void buildSuffixAutomaton() {

 final int m = pattern.length;

 int art, init, last, p, q, r;

 char c;

 init = aut.getInitial();

 art = aut.newVertex();

 aut.setSuffixLink(init, art);

 last = init;

 for (int i = 0; i < m; ++i) {

 c = pattern[i];

 p = last;

 q = aut.newVertex();

 aut.setLength(q, aut.getLength(p) + 1);

 aut.setPosition(q, aut.getPosition(p) + 1);

 while (p != init && aut.getTarget(p, c) ==

Graph.UNDEFINED) {

 aut.setTarget(p, c, q);

 aut.setShift(p, c, aut.getPosition(q) -

aut.getPosition(p) - 1);

 p = aut.getSuffixLink(p);

 }

 if (aut.getTarget(p, c) == Graph.UNDEFINED) {

 aut.setTarget(init, c, q);

 aut.setShift(init, c, aut.getPosition(q)

- aut.getPosition(init) - 1);

195

 aut.setSuffixLink(q, init);

 } else {

 if (aut.getLength(p) + 1 ==

aut.getLength(aut.getTarget(p, c))) {

 aut.setSuffixLink(q,

aut.getTarget(p, c));

 } else {

 r = aut.newVertex();

 aut.copyVertex(r, aut.getTarget(p,

c));

 aut.setLength(r, aut.getLength(p) +

1);

 aut.setSuffixLink(aut.getTarget(p,

c), r);

 aut.setSuffixLink(q, r);

 while (p != art &&

aut.getLength(aut.getTarget(p, c)) >= aut.getLength(r)) {

 aut.setShift(p, c,

aut.getPosition(aut.getTarget(p, c)) - aut.getPosition(p) - 1);

 aut.setTarget(p, c, r);

 p = aut.getSuffixLink(p);

 }

 }

 }

 last = q;

 }

 aut.setTerminal(last);

 while (last != init) {

 last = aut.getSuffixLink(last);

 aut.setTerminal(last);

 }

 }

}

 7.1.26 Backward Nondeterministic DAWG Matching

package com.accel.stringsearch;

import java.util.ArrayList;

import java.util.List;

import com.accel.exceptions.ExceedingWordSizeException;

/**

 * The {@code BackwardNonDeterministicDawgMatching} class finds

the occurrences

 * of a pattern string in a text string.

 * <p>

 * This implementation is a variant of the Reverse Factor

algorithm. This

 * implementation provides methods for retrieving the first

occurrence of the

 * pattern in the text and for retrieving all the occurrences of

the pattern in

 * the text. It is efficient if the pattern length is no longer

than the

 * memory-word size of the machine.

 * </p>

 *

 */

public class BackwardNonDeterministicDawgMatching {

196

 private static final int ASIZE = 256;

 private static final int WORD_SIZE = 31;

 private final char[] pattern;

 private final int[] B;

 /**

 * Preprocesses the pattern string.

 *

 * @param pat

 * the pattern string

 */

 public BackwardNonDeterministicDawgMatching(String pat) {

 if (pat == null)

 throw new IllegalArgumentException("pattern is

null");

 if (pat.equals(""))

 throw new IllegalArgumentException("pattern is

empty");

 if (pat.length() > WORD_SIZE)

 throw new ExceedingWordSizeException(

 "pattern length: " + pat.length() +

" is greater than word size: " + WORD_SIZE);

 this.pattern = pat.toCharArray();

 this.B = new int[ASIZE];

 preBNDDM();

 }

 /**

 * Returns the index of the first occurrence of the pattern

string in the text

 * string.

 *

 * @param txt

 * the text string

 * @return the index of the first occurrence of the pattern

string in the text

 * string; n if no such match

 */

 public int search(String txt) {

 if (txt == null)

 throw new IllegalArgumentException("text is

null");

 if (txt.equals(""))

 throw new IllegalArgumentException("text is

empty");

 final char[] text = txt.toCharArray();

 final int m = pattern.length;

 final int n = text.length;

 int i, j, last, d;

 /* Searching phase */

 j = 0;

 while (j <= n - m) {

 i = m - 1;

 last = m;

 d = ~0;

197

 while (i >= 0 && d != 0) {

 d &= B[text[j + i]];

 i--;

 if (d != 0) {

 if (i >= 0) {

 last = i + 1;

 } else {

 return j;

 }

 }

 d <<= 1;

 }

 j += last;

 }

 return n;

 }

 /**

 * Returns the indices of all the occurrences of the

pattern string in the text

 * string.

 *

 * @param txt

 * the text string

 * @return the indices of all the occurrences of the

pattern string in the text

 * string

 */

 public List<Integer> searchAll(String txt) {

 if (txt == null)

 throw new IllegalArgumentException("text is

null");

 if (txt.equals(""))

 throw new IllegalArgumentException("text is

empty");

 List<Integer> list = new ArrayList<>();

 final char[] text = txt.toCharArray();

 final int m = pattern.length;

 final int n = text.length;

 int i, j, last, d;

 /* Searching phase */

 j = 0;

 while (j <= n - m) {

 i = m - 1;

 last = m;

 d = ~0;

 while (i >= 0 && d != 0) {

 d &= B[text[j + i]];

 i--;

 if (d != 0) {

 if (i >= 0) {

 last = i + 1;

 } else {

 list.add(j);

 }

 }

 d <<= 1;

 }

198

 j += last;

 }

 return list;

 }

 private void preBNDDM() {

 final int m = pattern.length;

 int s, i;

 s = 1;

 for (i = m - 1; i >= 0; --i) {

 B[pattern[i]] |= s;

 s <<= 1;

 }

 }

}

 7.1.27 Backward Oracle Matching

package com.accel.stringsearch;

import java.util.ArrayList;

import java.util.List;

import com.accel.utils.Graph;

/**

 * The {@code BackwardOracleMatching} class finds the occurrences

of a pattern

 * string in a text string.

 * <p>

 * This implementation provides methods for retrieving the first

occurrence of

 * the pattern in the text and for retrieving all the occurrences

of the pattern

 * in the text. It takes time proportional to nm, where

n is

 * the length of the text and m is the length of the

pattern. The

 * preprocessing phase takes m time and space. The

algorithm is optimal

 * at average.

 * </p>

 *

 */

public class BackwardOracleMatching {

 private final char[] pattern;

 private final boolean[] T;

 private final Cell[] L;

 private static class Cell {

 private int element;

 private Cell next;

 }

 /**

 * Preprocesses the pattern string.

 *

 * @param pat the pattern string

 */

 public BackwardOracleMatching(String pat) {

 if (pat == null)

199

 throw new IllegalArgumentException("pattern is

null");

 if (pat.equals(""))

 throw new IllegalArgumentException("pattern is

empty");

 final int m = pat.length();

 this.pattern = pat.toCharArray();

 /* Preprocessing */

 T = new boolean[m + 1];

 L = new Cell[m + 1];

 oracle();

 }

 /**

 * Returns the index of the first occurrence of the pattern

string in the text

 * string.

 *

 * @param txt the text string

 * @return the index of the first occurrence of the pattern

string in the text

 * string; n if no such match

 */

 public int search(String txt) {

 if (txt == null)

 throw new IllegalArgumentException("text is

null");

 if (txt.equals(""))

 throw new IllegalArgumentException("text is

empty");

 final char[] text = txt.toCharArray();

 final int m = pattern.length;

 final int n = text.length;

 int i, j, p, q, shift;

 /* Searching */

 j = 0;

 while (j <= n - m) {

 i = m - 1;

 p = m;

 shift = m;

 while (i + j >= 0 && (q = getTransition(p,

text[i + j])) != Graph.UNDEFINED) {

 p = q;

 if (T[p] == true) {

 shift = i;

 }

 --i;

 }

 if (i < 0) {

 return j;

// shift = period;

 }

 j += shift;

 }

 return n;

 }

200

 /**

 * Returns the indices of all the occurrences of the

pattern string in the text

 * string.

 *

 * @param txt the text string

 * @return the indices of all the occurrences of the

pattern string in the text

 * string

 */

 public List<Integer> searchAll(String txt) {

 if (txt == null)

 throw new IllegalArgumentException("text is

null");

 if (txt.equals(""))

 throw new IllegalArgumentException("text is

empty");

 List<Integer> list = new ArrayList<>();

 final char[] text = txt.toCharArray();

 final int m = pattern.length;

 final int n = text.length;

 int i, j, p, q, shift, period;// , state, shift/* ,

period */;

 /* Searching */

 j = 0;

 period = 0;

 while (j <= n - m) {

 i = m - 1;

 p = m;

 shift = m;

 while (i + j >= 0 && (q = getTransition(p,

text[i + j])) != Graph.UNDEFINED) {

 p = q;

 if (T[p] == true) {

 period = shift;

 shift = i;

 }

 --i;

 }

 if (i < 0) {

 shift = period;

 list.add(j);

 }

 j += shift;

 }

 return list;

 }

 private void oracle() {

 final int m = pattern.length;

 int i, p, q;

 int[] S = new int[m + 1];

 char c;

 q = 0;

 S[m] = m + 1;

 for (i = m; i > 0; --i) {

 c = pattern[i - 1];

201

 p = S[i];

 while (p <= m && (q = getTransition(p, c)) ==

Graph.UNDEFINED) {

 setTransition(p, i - 1);

 p = S[p];

 }

 S[i - 1] = (p == m + 1 ? m : q);

 }

 p = 0;

 while (p <= m) {

 T[p] = true;

 p = S[p];

 }

 }

 private int getTransition(int p, char c) {

 Cell cell;

 if (p > 0 && pattern[p - 1] == c)

 return (p - 1);

 else {

 cell = L[p];

 while (cell != null)

 if (pattern[cell.element] == c)

 return (cell.element);

 else

 cell = cell.next;

 return (Graph.UNDEFINED);

 }

 }

 private void setTransition(int p, int q) {

 Cell cell = new Cell();

 cell.element = q;

 cell.next = L[p];

 L[p] = cell;

 }

}

 7.1.28 Galil-Seiferas

package com.accel.stringsearch;

import java.util.*;

/**

 * The {@code GalilSeiferas} class finds the occurrences of a

pattern string in

 * a text string.

 * <p>

 * This implementation provides methods for retrieving the first

occurrence of

 * the pattern in the text and for retrieving all the occurrences

of the pattern

 * in the text. It takes time proportional to n, where

n is

 * the length of the text and. The preprocessing phase takes

m time and

 * constant space, where m is the length of the pattern.

There are at

 * most 5n character comparisons at worst case.

 * </p>

202

 *

 */

public class GalilSeiferas {

 private static final int K = 4;

 private final char[] pattern;

 private char[] text;

 private final int m;

 private int n, p, p1, p2, q, q1, q2, s;

 private List<Integer> list;

 private int result;

 private boolean findAll, goOn;

 /**

 * Preprocesses the pattern string.

 *

 * @param pat

 * the pattern string

 */

 public GalilSeiferas(String pat) {

 if (pat == null) throw new

IllegalArgumentException("pattern is null");

 if (pat.equals("")) throw new

IllegalArgumentException("pattern is empty");

 m = pat.length();

 pattern = pat.toCharArray();

 }

 /**

 * Returns the index of the first occurrence of the pattern

string in the text

 * string.

 *

 * @param txt

 * the text string

 * @return the index of the first occurrence of the pattern

string in the text

 * string; n if no such match

 */

 public int search(String txt) {

 if (txt == null) throw new

IllegalArgumentException("text is null");

 if (txt.equals("")) throw new

IllegalArgumentException("text is empty");

 text = txt.toCharArray();

 n = text.length;

 findAll = false;

 result = n;

 goOn = true;

 init();

 return result;

 }

 /**

 * Returns the indices of all the occurrences of the

pattern string in the text

 * string.

203

 *

 * @param txt

 * the text string

 * @return the indices of all the occurrences of the

pattern string in the text

 * string

 */

 public List<Integer> searchAll(String txt) {

 if (txt == null) throw new

IllegalArgumentException("text is null");

 if (txt.equals("")) throw new

IllegalArgumentException("text is empty");

 list = new ArrayList<>();

 text = txt.toCharArray();

 n = text.length;

 findAll = true;

 goOn = true;

 init();

 return list;

 }

 private void init() {

 p = q = s = q1 = p2 = q2 = 0;

 p1 = 1;

 newP1();

 }

 private void newP1() {

 while (s + p1 + q1 < m && pattern[s + q1] ==

pattern[s + p1 + q1]) {

 ++q1;

 }

 if (p1 + q1 >= K * p1) {

 p2 = q1;

 q2 = 0;

 newP2();

 if (!goOn) {

 return;

 }

 } else {

 if (s + p1 + q1 == m) {

 search();

 if (!goOn) {

 return;

 }

 } else {

 p1 += (q1 / K + 1);

 q1 = 0;

 newP1();

 }

 }

 }

 private void newP2() {

 while (s + p2 + q2 < m && pattern[s + q2] ==

pattern[s + p2 + q2] && p2 + q2 < K * p2) {

 ++q2;

 }

 if (p2 + q2 == K * p2) {

204

 parse();

 if (!goOn) {

 return;

 }

 } else if (s + p2 + q2 == m) {

 search();

 if (!goOn) {

 return;

 }

 } else {

 if (q2 == p1 + q1) {

 p2 += p1;

 q2 -= p1;

 } else {

 p2 += (q2 / K + 1);

 q2 = 0;

 }

 newP2();

 }

 }

 private void parse() {

 while (true) {

 while (s + p1 + q1 < m && pattern[s + q1] ==

pattern[s + p1 + q1]) {

 ++q1;

 }

 while (p1 + q1 >= K * p1) {

 s += p1;

 q1 -= p1;

 }

 p1 += (q1 / K + 1);

 q1 = 0;

 if (p1 >= p2) {

 break;

 }

 }

 newP1();

 }

 private void search() {

 while (p <= n - m) {

 while (s + q < m && p + s + q < n && pattern[s

+ q] == text[p + s + q]) {

 ++q;

 }

 if (q == m - s && memcmp(pattern, 0, text, p, s

+ 1)) {

 if (findAll) {

 list.add(p);

 } else {

 result = p;

 goOn = false;

 return;

 }

 }

 if (q == p1 + q1) {

 p += p1;

 q -= p1;

 } else {

205

 p += (q / K + 1);

 q = 0;

 }

 }

 }

 // returns true if elements of two arrays-starting from

specified indices to a

 // common length- are equal; false otherwise

 private boolean memcmp(char[] x, int startX, char[] y, int

startY, int length) {

 for (int i = 0; i < length; ++i) {

 if (pattern[startX + i] != y[startY + i]) {

 return false;

 }

 }

 return true;

 }

}

 7.1.29 Two Way

package com.accel.stringsearch;

import java.util.*;

/**

 * The {@code TwoWay} class finds the occurrences of a pattern

string in a text

 * string.

 * <p>

 * This implementation provides methods for retrieving the first

occurrence of

 * the pattern in the text and for retrieving all the occurrences

of the pattern

 * in the text. It takes time proportional to n, where

n is

 * the length of the text. The preprocessing phase takes

m time and

 * constant space, where m is the size of the pattern. The

maximum number of

 * text character comparisons. is 2n - m. This algorithm

requires an

 * ordered alphabet.

 * </p>

 *

 */

public class TwoWay {

 private final char[] pattern;

 private final int ell;

 private int per;

 /**

 * Preprocesses the pattern string.

 *

 * @param pat

 * the pattern string

 */

 public TwoWay(String pat) {

 if (pat == null) throw new

IllegalArgumentException("pattern is null");

206

 if (pat.equals("")) throw new

IllegalArgumentException("pattern is empty");

 this.pattern = pat.toCharArray();

 int[] maxSuf = maxSuf();

 int[] maxSufTilde = maxSufTilde();

 if (maxSuf[0] > maxSufTilde[0]) {

 ell = maxSuf[0];

 per = maxSuf[1];

 } else {

 ell = maxSufTilde[0];

 per = maxSufTilde[1];

 }

 }

 /**

 * Returns the index of the first occurrence of the pattern

string in the text

 * string.

 *

 * @param txt

 * the text string

 * @return the index of the first occurrence of the pattern

string in the text

 * string; n if no such match

 */

 public int search(String txt) {

 if (txt == null) throw new

IllegalArgumentException("text is null");

 if (txt.equals("")) throw new

IllegalArgumentException("text is empty");

 final char[] text = txt.toCharArray();

 final int m = pattern.length;

 final int n = text.length;

 int i, j, memory;

 if (memcmp(pattern, 0, pattern, per, ell + 1)) {

 j = 0;

 memory = -1;

 while (j <= n - m) {

 i = Math.max(ell, memory) + 1;

 while (i < m && pattern[i] == text[i +

j])

 ++i;

 if (i >= m) {

 i = ell;

 while (i > memory && pattern[i] ==

text[i + j])

 --i;

 if (i <= memory)

 return j;

 j += per;

 memory = m - per - 1;

 } else {

 j += (i - ell);

 memory = -1;

 }

 }

 } else {

 per = Math.max(ell + 1, m - ell - 1) + 1;

207

 j = 0;

 while (j <= n - m) {

 i = ell + 1;

 while (i < m && pattern[i] == text[i +

j])

 ++i;

 if (i >= m) {

 i = ell;

 while (i >= 0 && pattern[i] ==

text[i + j])

 --i;

 if (i < 0)

 return j;

 j += per;

 } else

 j += (i - ell);

 }

 }

 return n;

 }

 /**

 * Returns the indices of all the occurrences of the

pattern string in the text

 * string.

 *

 * @param txt

 * the text string

 * @return the indices of all the occurrences of the

pattern string in the text

 * string

 */

 public List<Integer> searchAll(String txt) {

 if (txt == null) throw new

IllegalArgumentException("text is null");

 if (txt.equals("")) throw new

IllegalArgumentException("text is empty");

 List<Integer> list = new ArrayList<>();

 final char[] text = txt.toCharArray();

 final int m = pattern.length;

 final int n = text.length;

 int i, j, memory;

 if (memcmp(pattern, 0, pattern, per, ell + 1)) {

 j = 0;

 memory = -1;

 while (j <= n - m) {

 i = Math.max(ell, memory) + 1;

 while (i < m && pattern[i] == text[i +

j])

 ++i;

 if (i >= m) {

 i = ell;

 while (i > memory && pattern[i] ==

text[i + j])

 --i;

 if (i <= memory)

 list.add(j);

 j += per;

 memory = m - per - 1;

208

 } else {

 j += (i - ell);

 memory = -1;

 }

 }

 } else {

 per = Math.max(ell + 1, m - ell - 1) + 1;

 j = 0;

 while (j <= n - m) {

 i = ell + 1;

 while (i < m && pattern[i] == text[i +

j])

 ++i;

 if (i >= m) {

 i = ell;

 while (i >= 0 && pattern[i] ==

text[i + j])

 --i;

 if (i < 0)

 list.add(j);

 j += per;

 } else

 j += (i - ell);

 }

 }

 return list;

 }

 /* Computing of the maximal suffix for <= */

 private int[] maxSuf() {

 final int m = pattern.length;

 int ms, p; // the two variables that are returned

 int j, k;

 char a, b;

 int[] ret = new int[2];

 ms = -1;

 j = 0;

 k = p = 1;

 while (j + k < m) {

 a = pattern[j + k];

 b = pattern[ms + k];

 if (a < b) {

 j += k;

 k = 1;

 p = j - ms;

 } else if (a == b)

 if (k != p)

 ++k;

 else {

 j += p;

 k = 1;

 }

 else { /* a > b */

 ms = j;

 j = ms + 1;

 k = p = 1;

 }

 }

 ret[0] = ms;

209

 ret[1] = p;

 return ret;

 }

 /* Computing of the maximal suffix for >= */

 private int[] maxSufTilde() {

 final int m = pattern.length;

 int ms, p; // the two variables that are returned

 int j, k;

 char a, b;

 int[] ret = new int[2];

 ms = -1;

 j = 0;

 k = p = 1;

 while (j + k < m) {

 a = pattern[j + k];

 b = pattern[ms + k];

 if (a > b) {

 j += k;

 k = 1;

 p = j - ms;

 } else if (a == b)

 if (k != p)

 ++k;

 else {

 j += p;

 k = 1;

 }

 else { /* a < b */

 ms = j;

 j = ms + 1;

 k = p = 1;

 }

 }

 ret[0] = ms;

 ret[1] = p;

 return ret;

 }

 // returns true if elements of two arrays-starting from

specified indices to a

 // common length- are equal; false otherwise

 private boolean memcmp(char[] x, int startX, char[] y, int

startY, int length) {

 for (int i = 0; i < length; ++i) {

 if (x[startX + i] != y[startY + i]) {

 return false;

 }

 }

 return true;

 }

}

 7.1.30 String Matching on Ordered Alphabets

package com.accel.stringsearch;

import java.util.*;

210

/**

 * The {@code StringMatchingOnOrderedAlphabets} class finds the

occurrences of a

 * pattern string in a text string.

 * <p>

 * This implementation provides methods for retrieving the first

occurrence of

 * the pattern in the text and for retrieving all the occurrences

of the pattern

 * in the text. It takes time proportional to n, where

n is

 * the length of the text. The maximum number of text character

comparisons is

 * 6n + 5. This algorithm requires an ordered alphabet.

 * </p>

 *

 */

public class StringMatchingOnOrderedAlphabets {

 private final char[] pattern;

 /**

 * Preprocesses the pattern string.

 *

 * @param pat

 * the pattern string

 */

 public StringMatchingOnOrderedAlphabets(String pat) {

 if (pat == null) throw new

IllegalArgumentException("pattern is null");

 if (pat.equals("")) throw new

IllegalArgumentException("pattern is empty");

 this.pattern = pat.toCharArray();

 }

 /**

 * Returns the index of the first occurrence of the pattern

string in the text

 * string.

 *

 * @param txt

 * the text string

 * @return the index of the first occurrence of the pattern

string in the text

 * string; n if no such match

 */

 public int search(String txt) {

 if (txt == null) throw new

IllegalArgumentException("text is null");

 if (txt.equals("")) throw new

IllegalArgumentException("text is empty");

 final char[] text = txt.toCharArray();

 final int m = pattern.length;

 final int n = text.length;

 int i, j;

 int[] ip, jp, k, p;

 ip = new int[1];

211

 jp = new int[1];

 k = new int[1];

 p = new int[1];

 /* Searching */

 ip[0] = -1;

 jp[0] = 0;

 k[0] = 1;

 p[0] = 1;

 i = j = 0;

 while (j <= n - m) {

 while (i + j < n && i < m && pattern[i] ==

text[i + j])

 ++i;

 if (i == 0) {

 ++j;

 ip[0] = -1;

 jp[0] = 0;

 k[0] = p[0] = 1;

 } else {

 if (i >= m)

 return j;

 nextMaximalSuffix(text, j, i + 1, ip, jp,

k, p);

 if (ip[0] < 0 || (ip[0] < p[0] &&

memcmp(text, j, text, j + p[0], ip[0] + 1))) {

 j += p[0];

 i -= p[0];

 if (i < 0)

 i = 0;

 if (jp[0] - ip[0] > p[0])

 jp[0] -= p[0];

 else {

 ip[0] = -1;

 jp[0] = 0;

 k[0] = p[0] = 1;

 }

 } else {

 j += (Math.max(ip[0] + 1,

Math.min(i - ip[0] - 1, jp[0] + 1)) + 1);

 i = jp[0] = 0;

 ip[0] = -1;

 k[0] = p[0] = 1;

 }

 }

 }

 return n;

 }

 /**

 * Returns the indices of all the occurrences of the

pattern string in the text

 * string.

 *

 * @param txt

 * the text string

 * @return the indices of all the occurrences of the

pattern string in the text

 * string

 */

 public List<Integer> searchAll(String txt) {

212

 if (txt == null) throw new

IllegalArgumentException("text is null");

 if (txt.equals("")) throw new

IllegalArgumentException("text is empty");

 List<Integer> list = new ArrayList<>();

 final char[] text = txt.toCharArray();

 final int m = pattern.length;

 final int n = text.length;

 int i, j;

 int[] ip, jp, k, p;

 ip = new int[1];

 jp = new int[1];

 k = new int[1];

 p = new int[1];

 /* Searching */

 ip[0] = -1;

 k[0] = p[0] = 1;

 i = j = jp[0] = 0;

 while (j <= n - m) {

 while (i + j < n && i < m && pattern[i] ==

text[i + j])

 ++i;

 if (i == 0) {

 ++j;

 ip[0] = -1;

 jp[0] = 0;

 k[0] = p[0] = 1;

 } else {

 if (i >= m)

 list.add(j);

 nextMaximalSuffix(text, j, i + 1, ip, jp,

k, p);

 if (ip[0] < 0 || (ip[0] < p[0] &&

memcmp(text, j, text, j + p[0], ip[0] + 1))) {

 j += p[0];

 i -= p[0];

 if (i < 0)

 i = 0;

 if (jp[0] - ip[0] > p[0])

 jp[0] -= p[0];

 else {

 ip[0] = -1;

 jp[0] = 0;

 k[0] = p[0] = 1;

 }

 } else {

 j += (Math.max(ip[0] + 1,

Math.min(i - ip[0] - 1, jp[0] + 1)) + 1);

 i = jp[0] = 0;

 ip[0] = -1;

 k[0] = p[0] = 1;

 }

 }

 }

 return list;

 }

 /* Compute the next maximal suffix. */

213

 private void nextMaximalSuffix(char[] x, int xIndex, int m,

int[] i, int[] j, int[] k, int[] p) {

 char a, b;

 int xLength = x.length;

 if (i.length != 1 || j.length != 1 || k.length != 1

|| p.length != 1) {

 throw new IllegalArgumentException("all array

arguments must have exactly one element");

 }

 while (j[0] + k[0] < m && xIndex + i[0] + k[0] <

xLength && xIndex + j[0] + k[0] < xLength) {

 a = x[xIndex + i[0] + k[0]];

 b = x[xIndex + j[0] + k[0]];

 if (a == b)

 if (k[0] == p[0]) {

 (j[0]) += p[0];

 k[0] = 1;

 } else

 ++(k[0]);

 else if (a > b) {

 (j[0]) += k[0];

 k[0] = 1;

 p[0] = j[0] - i[0];

 } else {

 i[0] = j[0];

 ++(j[0]);

 k[0] = p[0] = 1;

 }

 }

 }

 // returns true if elements of two arrays-starting from

specified indices to a

 // common length- are equal; false otherwise

 private boolean memcmp(char[] x, int startX, char[] y, int

startY, int length) {

 for (int i = 0; i < length; ++i) {

 if (x[startX + i] != y[startY + i]) {

 return false;

 }

 }

 return true;

 }

}

 7.1.31 Optimal Mismatch

package com.accel.stringsearch;

import java.util.ArrayList;

import java.util.Arrays;

import java.util.Comparator;

import java.util.List;

/**

 * The {@code OptimalMismatch} class finds the occurrences of a

pattern string in a

 * text string.

 * <p>

214

 * This implementation is a variant of the QuickSearch algorithm.

This

 * implementation provides methods for retrieving the first

occurrence of the

 * pattern in the text and for retrieving all the occurrences of

the pattern in

 * the text. It takes time proportional to nm in the

worst case and

 * n/m in the best case, where n is the length

of the text and

 * m is the length of the pattern. The preprocessing

phase takes

 * m^2 + σ time and m + σ space, where σ is the

size of the

 * alphabet.

 * </p>

 *

 */

public class OptimalMismatch {

 private static final int ASIZE = 256;

 private final char[] pattern;

 private final int[] qsBc;

 private static class PatternScanElement {

 private char c;

 private int loc;

 }

 private static class ByFreqLoc implements

Comparator<PatternScanElement> {

 private final int[] freq;

 public ByFreqLoc(int[] freq) {

 this.freq = freq;

 }

 public int compare(PatternScanElement pse1,

PatternScanElement pse2) {

 if (freq[pse1.c] > freq[pse2.c])

 return 1;

 if (freq[pse1.c] < freq[pse2.c])

 return -1;

 if (pse1.loc > pse2.loc)

 return -1;

 if (pse1.loc < pse2.loc)

 return 1;

 return 0;

 }

 }

 /**

 * Preprocesses the pattern string.

 *

 * @param pat

 * the pattern string

 */

 public OptimalMismatch(String pat) {

 if (pat == null) throw new

IllegalArgumentException("pattern is null");

215

 if (pat.equals("")) throw new

IllegalArgumentException("pattern is empty");

 this.pattern = pat.toCharArray();

 this.qsBc = new int[ASIZE];

 preQsBc();

 }

 /**

 * Returns the index of the first occurrence of the pattern

string in the text

 * string.

 *

 * @param txt

 * the text string

 * @return the index of the first occurrence of the pattern

string in the text

 * string; n if no such match

 */

 public int search(String txt) {

 if (txt == null) throw new

IllegalArgumentException("text is null");

 if (txt.equals("")) throw new

IllegalArgumentException("text is empty");

 final char[] text = txt.toCharArray();

 final int m = pattern.length;

 final int n = text.length;

 final int[] freq = new int[ASIZE];

 final Comparator<PatternScanElement> byFreqLoc;

 final PatternScanElement[] pse = new

PatternScanElement[m];

 final int[] adaptedGs = new int[m + 1];

 int i, j;

 /* Preprocessing */

 // get frequencies

 for (char c : text) {

 freq[c]++;

 }

 // create comparator based on frequencies

 byFreqLoc = new ByFreqLoc(freq);

 orderPattern(pattern, pse, byFreqLoc);

 preAdaptedGs(pattern, adaptedGs, pse);

 /* Searching */

 j = 0;

 while (j <= n - m) {

 i = 0;

 while (i < m && pse[i].c == text[j +

pse[i].loc])

 ++i;

 if (i >= m)

 return j;

 if (j < n - m)

 j += Math.max(adaptedGs[i], qsBc[text[j +

m]]);

216

 else

 j += adaptedGs[i];

 }

 return n;

 }

 /**

 * Returns the indices of all the occurrences of the

pattern string in the text

 * string.

 *

 * @param txt

 * the text string

 * @return the indices of all the occurrences of the

pattern string in the text

 * string

 */

 public List<Integer> searchAll(String txt) {

 if (txt == null) throw new

IllegalArgumentException("text is null");

 if (txt.equals("")) throw new

IllegalArgumentException("text is empty");

 List<Integer> list = new ArrayList<>();

 final char[] text = txt.toCharArray();

 final int m = pattern.length;

 final int n = text.length;

 final int[] freq = new int[ASIZE];

 final Comparator<PatternScanElement> byFreqLoc;

 final PatternScanElement[] pse = new

PatternScanElement[m];

 final int[] adaptedGs = new int[m + 1];

 int i, j;

 /* Preprocessing */

 // get frequencies

 for (char c : text) {

 freq[c]++;

 }

 // create comparator based on frequencies

 byFreqLoc = new ByFreqLoc(freq);

 orderPattern(pattern, pse, byFreqLoc);

 preAdaptedGs(pattern, adaptedGs, pse);

 /* Searching */

 j = 0;

 while (j <= n - m) {

 i = 0;

 while (i < m && pse[i].c == text[j +

pse[i].loc])

 ++i;

 if (i >= m)

 list.add(j);

 if (j < n - m)

 j += Math.max(adaptedGs[i], qsBc[text[j +

m]]);

 else

217

 j += adaptedGs[i];

 }

 return list;

 }

 /* Construct an ordered pattern from a string. */

 private static void orderPattern(char[] pattern,

PatternScanElement[] pse, Comparator<PatternScanElement> cmptor) {

 final int m = pattern.length;

 for (int i = 0; i < m; ++i) {

 PatternScanElement x = new

PatternScanElement();

 x.c = pattern[i];

 x.loc = i;

 pse[i] = x;

 }

 Arrays.sort(pse, cmptor);

 }

 /*

 * Constructs the good-suffix shift table from an ordered

string.

 */

 private static void preAdaptedGs(char[] pattern, int[]

adaptedGs, PatternScanElement[] pse) {

 final int m = pattern.length;

 int lshift, i, ploc;

 adaptedGs[0] = lshift = 1;

 for (ploc = 1; ploc <= m; ++ploc) {

 lshift = matchShift(pattern, ploc, lshift,

pse);

 adaptedGs[ploc] = lshift;

 }

 for (ploc = 0; ploc < m; ++ploc) { //

 lshift = adaptedGs[ploc];

 while (lshift < m) {

 i = pse[ploc].loc - lshift;

 if (i < 0 || pse[ploc].c != pattern[i])

 break;

 ++lshift;

 lshift = matchShift(pattern, ploc,

lshift, pse);

 }

 adaptedGs[ploc] = lshift;

 }

 }

 /*

 * Find the next leftward matching shift for the first ploc

pattern elements

 * after a current shift or lshift.

 */

 private static int matchShift(char[] pattern, int ploc, int

lshift, PatternScanElement[] pse) {

 final int m = pattern.length;

 int i, j;

 for (; lshift < m; ++lshift) {

 i = ploc;

218

 while (--i >= 0) {

 if ((j = (pse[i].loc - lshift)) < 0)

 continue;

 if (pse[i].c != pattern[j])

 break;

 }

 if (i < 0)

 break;

 }

 return (lshift);

 }

 // preprocessing

 private void preQsBc() {

 final int m = pattern.length;

 for (int i = 0; i < ASIZE; ++i)

 qsBc[i] = m + 1;

 for (int i = 0; i < m; ++i)

 qsBc[pattern[i]] = m - i;

 }

}

 7.1.32 Maximal Shift

package com.accel.stringsearch;

import java.util.ArrayList;

import java.util.Arrays;

import java.util.Comparator;

import java.util.List;

/**

 * The {@code MaximalShift} class finds the occurrences of a

pattern string in a

 * text string.

 * <p>

 * This implementation is a variant of the QuickSearch algorithm.

This

 * implementation provides methods for retrieving the first

occurrence of the

 * pattern in the text and for retrieving all the occurrences of

the pattern in

 * the text. It takes time proportional to nm in the

worst case and

 * n/m in the best case, where n is the length

of the text and

 * m is the length of the pattern. The preprocessing

phase takes

 * m^2 + σ time and m + σ space, where σ is the

size of the

 * alphabet. It has a quadratic waorst case time complexity.

 * </p>

 *

 */

public class MaximalShift {

 private static final int ASIZE = 256;

 private final char[] pattern;

 private final int[] qsBc;

 private final int[] minShift;

219

 private static class PatternScanElement implements

Comparable<PatternScanElement> {

 private char c;

 private int loc;

 public int compareTo(PatternScanElement that) {

 if (this.c > that.c)

 return 1;

 if (this.c < that.c)

 return -1;

 if (this.loc > that.loc)

 return -1;

 if (this.loc < that.loc)

 return 1;

 return 0;

 }

 }

 private static class ByFreqLoc implements

Comparator<PatternScanElement> {

 private final int[] minShift;

 public ByFreqLoc(int[] minShift) {

 this.minShift = minShift;

 }

 public int compare(PatternScanElement pse1,

PatternScanElement pse2) {

 if (minShift[pse1.c] > minShift[pse2.c])

 return -1;

 if (minShift[pse1.c] < minShift[pse2.c])

 return 1;

 if (pse1.loc > pse2.loc)

 return -1;

 if (pse1.loc < pse2.loc)

 return 1;

 return 0;

 }

 }

 /**

 * Preprocesses the pattern string.

 *

 * @param pat

 * the pattern string

 */

 public MaximalShift(String pat) {

 if (pat == null) throw new

IllegalArgumentException("pattern is null");

 if (pat.equals("")) throw new

IllegalArgumentException("pattern is empty");

 this.pattern = pat.toCharArray();

 final int m = pattern.length;

 this.minShift = new int[m];

 computeMinShift();

 this.qsBc = new int[ASIZE];

 preQsBc();

 }

220

 /**

 * Returns the index of the first occurrence of the pattern

string in the text

 * string.

 *

 * @param txt

 * the text string

 * @return the index of the first occurrence of the pattern

string in the text

 * string; n if no such match

 */

 public int search(String txt) {

 if (txt == null) throw new

IllegalArgumentException("text is null");

 if (txt.equals("")) throw new

IllegalArgumentException("text is empty");

 final char[] text = txt.toCharArray();

 final int m = pattern.length;

 final int n = text.length;

 final Comparator<PatternScanElement> byShiftLoc;

 final PatternScanElement[] pse = new

PatternScanElement[m];

 final int[] adaptedGs = new int[m + 1];

 int i, j;

 /* Preprocessing */

 // create comparator based on frequencies

 byShiftLoc = new ByFreqLoc(minShift);

 orderPattern(pattern, pse, byShiftLoc);

 preAdaptedGs(pattern, adaptedGs, pse);

 /* Searching */

 j = 0;

 while (j <= n - m) {

 i = 0;

 while (i < m && pse[i].c == text[j +

pse[i].loc])

 ++i;

 if (i >= m)

 return j;

 if (j < n - m)

 j += Math.max(adaptedGs[i], qsBc[text[j +

m]]);

 else

 j += adaptedGs[i];

 }

 return n;

 }

 /**

 * Returns the indices of all the occurrences of the

pattern string in the text

 * string.

 *

 * @param txt

 * the text string

221

 * @return the indices of all the occurrences of the

pattern string in the text

 * string

 */

 public List<Integer> searchAll(String txt) {

 if (txt == null) throw new

IllegalArgumentException("text is null");

 if (txt.equals("")) throw new

IllegalArgumentException("text is empty");

 List<Integer> list = new ArrayList<>();

 final char[] text = txt.toCharArray();

 final int m = pattern.length;

 final int n = text.length;

 final int[] freq = new int[ASIZE];

 final Comparator<PatternScanElement> byFreqLoc;

 final PatternScanElement[] pse = new

PatternScanElement[m];

 final int[] adaptedGs = new int[m + 1];

 int i, j;

 /* Preprocessing */

 // get frequencies

 for (char c : text) {

 freq[c]++;

 }

 // create comparator based on frequencies

 byFreqLoc = new ByFreqLoc(freq);

 orderPattern(pattern, pse, byFreqLoc);

 preAdaptedGs(pattern, adaptedGs, pse);

 /* Searching */

 j = 0;

 while (j <= n - m) {

 i = 0;

 while (i < m && pse[i].c == text[j +

pse[i].loc])

 ++i;

 if (i >= m)

 list.add(j);

 if (j < n - m)

 j += Math.max(adaptedGs[i], qsBc[text[j +

m]]);

 else

 j += adaptedGs[i];

 }

 return list;

 }

 /* Construct an ordered pattern from a string. */

 private static void orderPattern(char[] pattern,

PatternScanElement[] pse, Comparator<PatternScanElement> cmptor) {

 final int m = pattern.length;

 for (int i = 0; i < m; ++i) {

 PatternScanElement x = new

PatternScanElement();

 x.c = pattern[i];

222

 x.loc = i;

 pse[i] = x;

 }

 Arrays.sort(pse, cmptor);

 }

 /*

 * Constructs the good-suffix shift table from an ordered

string.

 */

 private static void preAdaptedGs(char[] pattern, int[]

adaptedGs, PatternScanElement[] pse) {

 final int m = pattern.length;

 int lshift, i, ploc;

 adaptedGs[0] = lshift = 1;

 for (ploc = 1; ploc <= m; ++ploc) {

 lshift = matchShift(pattern, ploc, lshift,

pse);

 adaptedGs[ploc] = lshift;

 }

 for (ploc = 0; ploc < m; ++ploc) { //

 lshift = adaptedGs[ploc];

 while (lshift < m) {

 i = pse[ploc].loc - lshift;

 if (i < 0 || pse[ploc].c != pattern[i])

 break;

 ++lshift;

 lshift = matchShift(pattern, ploc,

lshift, pse);

 }

 adaptedGs[ploc] = lshift;

 }

 }

 /*

 * Find the next leftward matching shift for the first ploc

pattern elements

 * after a current shift or lshift.

 */

 private static int matchShift(char[] pattern, int ploc, int

lshift, PatternScanElement[] pse) {

 final int m = pattern.length;

 int i, j;

 for (; lshift < m; ++lshift) {

 i = ploc;

 while (--i >= 0) {

 if ((j = (pse[i].loc - lshift)) < 0)

 continue;

 if (pse[i].c != pattern[j])

 break;

 }

 if (i < 0)

 break;

 }

 return (lshift);

 }

 // preprocessing

223

 private void preQsBc() {

 final int m = pattern.length;

 for (int i = 0; i < ASIZE; ++i)

 qsBc[i] = m + 1;

 for (int i = 0; i < m; ++i)

 qsBc[pattern[i]] = m - i;

 }

 private void computeMinShift() {

 final int m = pattern.length;

 int i, j;

 for (i = 0; i < m; ++i) {

 for (j = i - 1; j >= 0; --j)

 if (pattern[i] == pattern[j])

 break;

 minShift[i] = i - j;

 }

 }

}

 7.1.33 Skip Search

package com.accel.stringsearch;

import java.util.ArrayList;

import java.util.List;

/**

 * The {@code SkipSearch} class finds the occurrences of a

pattern string in a

 * text string.

 * <p>

 * This implementation uses buckets of positions for each

character of the

 * alphabet. This implementation provides methods for retrieving

the first

 * occurrence of the pattern in the text and for retrieving all

the occurrences

 * of the pattern in the text. It takes time proportional to

nm in the

 * worst case and n/m in the best case, where n

is the length

 * of the text and m is the length of the pattern. The

preprocessing

 * phase takes m + σ time and space, where σ is the size

of the

 * alphabet. There are O(n) expected text character

comparisons.

 * </p>

 *

 */

public class SkipSearch {

 private static final int ASIZE = 256;

 private final char[] pattern;

 private final Cell[] z;

 private static class Cell {

 private int element;

 private Cell next;

224

 }

 /**

 * Preprocesses the pattern string.

 *

 * @param pat

 * the pattern string

 */

 public SkipSearch(String pat) {

 if (pat == null) throw new

IllegalArgumentException("pattern is null");

 if (pat.equals("")) throw new

IllegalArgumentException("pattern is empty");

 this.pattern = pat.toCharArray();

 this.z = new Cell[ASIZE];

 preSs();

 }

 /**

 * Returns the index of the first occurrence of the pattern

string in the text

 * string.

 *

 * @param txt

 * the text string

 * @return the index of the first occurrence of the pattern

string in the text

 * string; n if no such match

 */

 public int search(String txt) {

 if (txt == null) throw new

IllegalArgumentException("text is null");

 if (txt.equals("")) throw new

IllegalArgumentException("text is empty");

 final char[] text = txt.toCharArray();

 final int m = pattern.length;

 final int n = text.length;

 int i;

 /* Searching */

 for (i = m - 1; i < n; i += m)

 for (Cell ptr = z[text[i]]; ptr != null; ptr =

ptr.next)

 if (memcmp(pattern, 0, text, i -

ptr.element, m))

 return i - ptr.element;

 return n;

 }

 /**

 * Returns the indices of all the occurrences of the

pattern string in the text

 * string.

 *

 * @param txt

 * the text string

 * @return the indices of all the occurrences of the

pattern string in the text

 * string

225

 */

 public List<Integer> searchAll(String txt) {

 if (txt == null) throw new

IllegalArgumentException("text is null");

 if (txt.equals("")) throw new

IllegalArgumentException("text is empty");

 List<Integer> list = new ArrayList<>();

 final char[] text = txt.toCharArray();

 final int m = pattern.length;

 final int n = text.length;

 int i;

 /* Searching */

 for (i = m - 1; i < n; i += m)

 for (Cell ptr = z[text[i]]; ptr != null; ptr =

ptr.next)

 if (memcmp(pattern, 0, text, i -

ptr.element, m))

 list.add(i - ptr.element);

 return list;

 }

 // preprocessing

 private void preSs() {

 final int m = pattern.length;

 for (int i = 0; i < m; ++i) {

 Cell ptr = new Cell();

 ptr.element = i;

 ptr.next = z[pattern[i]];

 z[pattern[i]] = ptr;

 }

 }

 private boolean memcmp(char[] x, int startX, char[] y, int

startY, int length) {

 int i;

 for (i = 0; i < length && startX + i < x.length &&

startY + i < y.length; ++i) {

 if (x[startX + i] != y[startY + i]) {

 return false;

 }

 }

 if (i < length && x.length - startX != y.length -

startY) {

 return false;

 }

 return true;

 }

}

 7.1.34 KMP Skip Search

package com.accel.stringsearch;

import java.util.ArrayList;

import java.util.List;

/**

 * The {@code KMPSkipSearch} class finds the occurrences of a

pattern string in

226

 * a text string.

 * <p>

 * This implementation is an improvement of the SkipSearch

algorithm. It uses

 * buckets of positions for each character of the alphabet. This

implementation

 * provides methods for retrieving the first occurrence of the

pattern in the

 * text and for retrieving all the occurrences of the pattern in

the text. It

 * takes time proportional to nm in the worst case and

n/m in

 * the best case, where n is the length of the text and

m is

 * the length of the pattern. The preprocessing phase takes m

+ σ time

 * and space, where σ is the size of the alphabet.

 * </p>

 *

 */

public class KMPSkipSearch {

 private static final int ASIZE = 256;

 private final char[] pattern;

 private final int[] mpNext;

 private final int[] kmpNext;

 private final int[] list;

 private final int[] z;

 /**

 * Preprocesses the pattern string.

 *

 * @param pat

 * the pattern string

 */

 public KMPSkipSearch(String pat) {

 if (pat == null) throw new

IllegalArgumentException("pattern is null");

 if (pat.equals("")) throw new

IllegalArgumentException("pattern is empty");

 this.pattern = pat.toCharArray();

 final int m = pattern.length;

 this.mpNext = new int[m + 1];

 preMp();

 this.kmpNext = new int[m + 1];

 preKmp();

 this.list = new int[m];

 for (int i = 0; i < list.length; ++i) {

 list[i] = -1;

 }

 this.z = new int[ASIZE];

 for (int i = 0; i < z.length; ++i) {

 z[i] = -1;

 }

 z[pattern[0]] = 0;

 for (int i = 1; i < m; ++i) {

 list[i] = z[pattern[i]];

 z[pattern[i]] = i;

 }

227

 }

 /**

 * Returns the index of the first occurrence of the pattern

string in the text

 * string.

 *

 * @param txt

 * the text string

 * @return the index of the first occurrence of the pattern

string in the text

 * string; n if no such match

 */

 public int search(String txt) {

 if (txt == null) throw new

IllegalArgumentException("text is null");

 if (txt.equals("")) throw new

IllegalArgumentException("text is empty");

 final char[] text = txt.toCharArray();

 final int m = pattern.length;

 final int n = text.length;

 int i, j, k, kmpStart, per, start, wall;

 /* Searching */

 wall = 0;

 per = m - kmpNext[m];

 i = j = -1;

 do {

 j += m;

 } while (j < n && z[text[j]] < 0);

 if (j >= n)

 return n;

 i = z[text[j]];

 start = j - i;

 while (start <= n - m) {

 if (start > wall)

 wall = start;

 k = attempt(text, pattern, start, wall);

 wall = start + k;

 if (k == m) {

 return start;

 } else

 i = list[i];

 if (i < 0) {

 do {

 j += m;

 } while (j < n && z[text[j]] < 0);

 if (j >= n)

 return n;

 i = z[text[j]];

 }

 kmpStart = start + k - kmpNext[k];

 k = kmpNext[k];

 start = j - i;

 while (start < kmpStart || (kmpStart < start &&

start < wall)) {

 if (start < kmpStart) {

 i = list[i];

 if (i < 0) {

228

 do {

 j += m;

 } while (j < n && z[text[j]]

< 0);

 if (j >= n)

 return n;

 i = z[text[j]];

 }

 start = j - i;

 } else {

 kmpStart += (k - mpNext[k]);

 k = mpNext[k];

 }

 }

 }

 return n;

 }

 /**

 * Returns the indices of all the occurrences of the

pattern string in the text

 * string.

 *

 * @param txt

 * the text string

 * @return the indices of all the occurrences of the

pattern string in the text

 * string

 */

 public List<Integer> searchAll(String txt) {

 if (txt == null) throw new

IllegalArgumentException("text is null");

 if (txt.equals("")) throw new

IllegalArgumentException("text is empty");

 List<Integer> result = new ArrayList<>();

 final char[] text = txt.toCharArray();

 final int m = pattern.length;

 final int n = text.length;

 int i, j, k, kmpStart, per, start, wall;

 /* Searching */

 wall = 0;

 per = m - kmpNext[m];

 i = j = -1;

 do {

 j += m;

 } while (j < n && z[text[j]] < 0);

 if (j >= n)

 return result;

 i = z[text[j]];

 start = j - i;

 while (start <= n - m) {

 if (start > wall)

 wall = start;

 k = attempt(text, pattern, start, wall);

 wall = start + k;

 if (k == m) {

 result.add(start);

 i -= per;

229

 } else

 i = list[i];

 if (i < 0) {

 do {

 j += m;

 } while (j < n && z[text[j]] < 0);

 if (j >= n)

 return result;

 i = z[text[j]];

 }

 kmpStart = start + k - kmpNext[k];

 k = kmpNext[k];

 start = j - i;

 while (start < kmpStart || (kmpStart < start &&

start < wall)) {

 if (start < kmpStart) {

 i = list[i];

 if (i < 0) {

 do {

 j += m;

 } while (j < n && z[text[j]]

< 0);

 if (j >= n)

 return result;

 i = z[text[j]];

 }

 start = j - i;

 } else {

 kmpStart += (k - mpNext[k]);

 k = mpNext[k];

 }

 }

 }

 return result;

 }

 // builds mpNext

 private final void preMp() {

 final int m = pattern.length;

 mpNext[0] = -1;

 int j = -1;

 int i = 0;

 while (i < m) {

 while (j > -1 && pattern[i] != pattern[j]) {

 j = mpNext[j];

 }

 mpNext[++i] = ++j;

 }

 }

 // builds kmpNext

 private void preKmp() {

 final int m = pattern.length;

 int i, j;

 i = 0;

 j = -1;

 kmpNext[0] = -1;

 while (i < m) {

 while (j > -1 && pattern[i] != pattern[j]) {

230

 j = kmpNext[j];

 }

 i++;

 j++;

 if (i < m && j < m && pattern[i] == pattern[j])

{ // CHANGED:: if(pattern[i) == pattern[j))

 kmpNext[i] = kmpNext[j];

 } else {

 kmpNext[i] = j;

 }

 }

 }

 private static int attempt(char[] y, char[] x, int start,

int wall) {

 final int m = x.length;

 int k;

 k = wall - start;

 while (k < m && x[k] == y[k + start])

 ++k;

 return k;

 }

}

 7.1.35 Alpha Skip Search

package com.accel.stringsearch;

import java.util.ArrayList;

import java.util.List;

import com.accel.utils.Graph;

import com.accel.utils.Trie;

/**

 * The {@code AlphaSkipSearch} class finds the occurrences of a

pattern string

 * in a text string.

 * <p>

 * This implementation is an improvement of the Skip Search

Algorithm; it uses

 * buckets of positions for each factor of length log(base �)m.
This

 * implementation provides methods for retrieving the first

occurrence of the

 * pattern in the text and for retrieving all the occurrences of

the pattern in

 * the text. It takes time proportional to nm, where

n is the

 * length of the text and m is the length of the

pattern. The

 * preprocessing phase takes m time . There are

O(log(base �)m*(n /

 * (m - log(base �)m))) expected text character comparisons.
 * </p>

 *

 */

public class AlphaSkipSearch {

 private static final int ASIZE = 256;

231

 private final char[] pattern;

 private final Graph trie;

 private final Cell[] z;

 private int logM, root, node;

 private static class Cell {

 private int element;

 private Cell next;

 }

 /**

 * Preprocesses the pattern string.

 *

 * @param pat the pattern string

 */

 public AlphaSkipSearch(String pat) {

 if (pat == null)

 throw new IllegalArgumentException("pattern is

null");

 if (pat.equals(""))

 throw new IllegalArgumentException("pattern is

empty");

 this.pattern = pat.toCharArray();

 final int m = pattern.length;

 int i, temp, size, pos;

 int art, childNode, lastNode;

 logM = 0;

 temp = m;

 while (temp > ASIZE) {

 ++logM;

 temp /= ASIZE;

 }

 if (logM == 0)

 logM = 1;

 /* Preprocessing */

 size = 2 + (2 * m - logM + 1) * logM;

 trie = new Trie(size, size * ASIZE);

 z = new Cell[size];

 root = trie.getInitial();

 art = trie.newVertex();

 trie.setSuffixLink(root, art);

 node = trie.newVertex();

 trie.setTarget(root, pattern[0], node);

 trie.setSuffixLink(node, root);

 for (i = 1; i < logM; ++i)

 node = addNode(trie, art, node, pattern[i]);

 pos = 0;

 setZ(node, pos);

 pos++;

 for (i = logM; i < m - 1; ++i) {

 node = trie.getSuffixLink(node);

 childNode = trie.getTarget(node, pattern[i]);

 if (childNode == Graph.UNDEFINED)

 node = addNode(trie, art, node,

pattern[i]);

 else

 node = childNode;

232

 setZ(node, pos);

 pos++;

 }

 node = trie.getSuffixLink(node);

 childNode = trie.getTarget(node, pattern[i]);

 if (childNode == Graph.UNDEFINED) {

 lastNode = trie.newVertex();

 trie.setTarget(node, pattern[m - 1], lastNode);

 node = lastNode;

 node = addNode(trie, art, node, pattern[i]);

 } else

 node = childNode;

 setZ(node, pos);

 }

 /**

 * Returns the index of the first occurrence of the pattern

string in the text

 * string.

 *

 * @param txt the text string

 * @return the index of the first occurrence of the pattern

string in the text

 * string; n if no such match

 */

 public int search(String txt) {

 if (txt == null)

 throw new IllegalArgumentException("text is

null");

 if (txt.equals(""))

 throw new IllegalArgumentException("text is

empty");

 final char[] text = txt.toCharArray();

 final int m = pattern.length;

 final int n = text.length;

 int shift, j, k, b;

 Cell current;

 /* Searching */

 shift = m - logM + 1;

 for (j = m + 1 - logM; j < n - logM; j += shift) {

 node = root;

 for (k = 0; node != Graph.UNDEFINED && k <

logM; ++k)

 node = trie.getTarget(node, text[j + k]);

 if (node != Graph.UNDEFINED)

 for (current = z[node]; current != null;

current = current.next) {

 b = j - current.element;

 if (pattern[0] == text[b] &&

memcmp(pattern, 1, text, b + 1, m - 1))

 return b;

 }

 }

 return n;

 }

 /**

233

 * Returns the indices of all the occurrences of the

pattern string in the text

 * string.

 *

 * @param txt

 * the text string

 * @return the indices of all the occurrences of the

pattern string in the text

 * string

 */

 public List<Integer> searchAll(String txt) {

 if (txt == null) throw new

IllegalArgumentException("text is null");

 if (txt.equals("")) throw new

IllegalArgumentException("text is empty");

 List<Integer> list = new ArrayList<>();

 final char[] text = txt.toCharArray();

 final int m = pattern.length;

 final int n = text.length;

 int shift, j, k, b;

 Cell current;

 /* Searching */

 shift = m - logM + 1;

 for (j = m + 1 - logM; j < n - logM; j += shift) {

 node = root;

 for (k = 0; node != Graph.UNDEFINED && k <

logM; ++k)

 node = trie.getTarget(node, text[j + k]);

 if (node != Graph.UNDEFINED)

 for (current = z[node]; current != null;

current = current.next) {

 b = j - current.element;

 if (pattern[0] == text[b] &&

memcmp(pattern, 1, text, b + 1, m - 1))

 list.add(b);

 }

 }

 return list;

 }

 private void setZ(int node, int i) {

 Cell cell = new Cell();

 cell.element = i;

 cell.next = z[node];

 z[node] = cell;

 }

 /*

 * Create the transition labelled by the character c from

node node. Maintain

 * the suffix links accordingly.

 */

 private int addNode(Graph trie, int art, int node, char c)

{

 int childNode, suffixNode, suffixChildNode;

 childNode = trie.newVertex();

 trie.setTarget(node, c, childNode);

 suffixNode = trie.getSuffixLink(node);

234

 if (suffixNode == art)

 trie.setSuffixLink(childNode, node);

 else {

 suffixChildNode = trie.getTarget(suffixNode,

c);

 if (suffixChildNode == Graph.UNDEFINED)

 suffixChildNode = addNode(trie, art,

suffixNode, c);

 trie.setSuffixLink(childNode, suffixChildNode);

 }

 return (childNode);

 }

 private boolean memcmp(char[] x, int startX, char[] y, int

startY, int length) {

 int i;

 for (i = 0; i < length && startX + i < x.length &&

startY + i < y.length; ++i) {

 if (x[startX + i] != y[startY + i]) {

 return false;

 }

 }

 if (i < length && x.length - startX != y.length -

startY) {

 return false;

 }

 return true;

 }

}

	Contents
	1 Introduction
	1.1 Problem Definition
	1.2 Structure

	2 Algorithm presentation
	2.1 Introduction
	2.2 Terms
	2.3 Brute-Force
	2.3.1 Description
	2.3.2 Implementation Details

	2.4 Deterministic Finite Automaton
	2.4.1 Description
	2.4.2 Implementation Details

	2.5 Karp-Rabin
	2.5.1 Description
	2.5.2 Implementation Details

	2.6 Shift Or
	2.6.1 Description
	2.6.2 Implementation Details

	2.7 Morris-Pratt
	2.7.1 Description
	2.7.2 Implementation Details

	2.8 Knuth-Morris-Pratt
	2.8.1 Description
	2.8.2 Implementation Details

	2.9 Simon
	2.9.1 Description

	2.10 Colussi
	2.10.1 Description
	2.10.2 Implementation Details

	2.11 Galil-Giancarlo
	2.11.1 Description
	2.11.2 Implementation Details

	2.12 Apostolico-Crochemore
	2.12.1 Description
	2.12.2 Implementation Details

	2.13 Not So Naive
	2.13.1 Description
	2.13.2 Implementation Details

	2.14 Boyer-Moore
	2.14.1 Description

	2.15 Turbo Boyer-Moore
	2.15.1 Description

	2.16 Apostolico-Giancarlo
	2.16.1 Description
	2.16.2 Implementation Details

	2.17 Reverse Colussi
	2.17.1 Description
	2.17.2 Implementation Details

	2.18 Horspool
	2.18.1 Description
	2.18.2 Implementation Details

	2.19 Quick Search
	2.19.1 Description
	2.19.2 Implementation Details

	2.20 Tuned Boyer-Moore
	2.20.1 Description

	2.21 Zhu-Takaoka
	2.21.1 Description
	2.21.2 Implementation Details

	2.22 Berry-Ravindran
	2.22.1 Description
	2.22.2 Implementation Details

	2.23 Smith
	2.23.1 Description
	2.23.2 Implementation Details

	2.24 Raita
	2.24.1 Description
	2.24.2 Implementation Details

	2.25 Reverse Factor
	2.25.1 Description

	2.26 Turbo Reverse Factor
	2.26.1 Description

	2.27 Forward Dawg Matching
	2.27.1 Description

	2.28 Backward Nondeterministic Dawg Matching
	2.28.1 Description

	2.29 Backward Oracle Matching
	2.29.1 Description

	2.30 Galil-Seiferas
	2.30.1 Description
	2.30.2 Implementation Details

	2.31 Two Way
	2.31.1 Description

	2.32 String Matching on Ordered Alphabets
	2.32.1 Description
	2.32.2 Implementation Details

	2.33 Optimal Mismatch
	2.33.1 Description
	2.33.2 Implementation Details

	2.34 Maximal Shift
	2.34.1 Description

	2.35 Skip Search
	2.35.1 Description

	2.36 KMP Skip Search
	2.36.1 Description

	2.37 Alpha Skip Search
	2.37.1 Description

	3 Benchmarks
	3.1 Methodology
	3.2 Technical Details
	3.3 Individual results
	3.3.1 Brute Force
	3.3.2 Deterministic Finite Automaton
	3.3.3 Karp-Rabin
	3.3.4 Shift-Or
	3.3.5 Morris-Pratt
	3.3.6 Knuth-Morris-Pratt
	3.3.7 Simon
	3.3.8 Colussi
	3.3.9 Galil-Giancarlo
	3.3.10 Apostolico-Crochemore
	3.3.11 Not So Naïve
	3.3.12 Boyer Moore
	3.3.13 Turbo Boyer-Moore
	3.3.14 Apostolico-Giancarlo
	3.3.15 Reverse Colussi
	3.3.16 Horspool
	3.3.17 Quick Search
	3.3.18 Tuned Boyer-Moore
	3.3.19 Zhu-Takaoka
	3.3.20 Berry-Ravindran
	3.3.21 Smith
	3.3.22 Raita
	3.3.23 Reverse Factor
	3.3.24 Turbo Reverse Factor
	3.3.25 Forward DAWG Matching
	3.3.26 Backward Nondeterministic DAWG Matching
	3.3.27 Backward Oracle Matching
	3.3.28 Galil-Seiferas
	3.3.29 Two Way
	3.3.30 String Matching on Ordered Alphabets
	3.3.31 Optimal Mismatch
	3.3.32 Maximal Shift
	3.3.33 Skip Search
	3.3.34 KMP Skip Search
	3.3.35 Alpha Skip Search

	3.4 Collective results
	3.4.1 First occurrence – Small Patterns
	3.4.2 First occurrence – Large Patterns
	3.4.3 All occurrences – Small Patterns
	3.4.4 All occurrences – Large Patterns

	3.5 Collective results grouped by order of comparison
	3.5.1 First occurrence – Small Patterns
	3.5.2 First occurrence – Large Patterns
	3.5.3 All occurrences – Small Patterns
	3.5.4 All occurrences – Large Patterns

	4 Visualization
	4.1 Basic Description
	4.2 Technical Details
	4.2.1 script.js
	4.2.2 esmajs.js
	4.2.3 view.js
	4.2.4 controller.js
	4.2.5 AnimationControlPanel.js
	4.2.6 AnimationController.js
	4.2.7 constants.js
	4.2.8 query.js
	4.2.9 utils.js

	5 Conclusion
	6 References
	7 Appendix
	7.1 Algorithm Implementations
	7.1.1 Brute Force
	7.1.2 Deterministic Finite Automaton
	7.1.3 Karp-Rabin
	7.1.4 Shift Or
	7.1.5 Morris-Pratt
	7.1.6 Knuth-Morris-Pratt
	7.1.7 Simon
	7.1.8 Colussi
	7.1.9 Galil-Giancarlo
	7.1.10 Apostolico-Crochemore
	7.1.11 Not So Naïve
	7.1.12 Boyer-Moore
	7.1.13 Turbo Boyer-Moore
	7.1.14 Apostolico-Giancarlo
	7.1.15 Reverse Colussi
	7.1.16 Horspool
	7.1.17 Quick Search
	7.1.18 Tuned Boyer-Moore
	7.1.19 Zhu-Takaoka
	7.1.20 Berry-Ravindran
	7.1.21 Smith
	7.1.22 Raita
	7.1.23 Reverse Factor
	7.1.24 Turbo Reverse Factor
	7.1.25 Forward DAWG Matchinng
	7.1.26 Backward Nondeterministic DAWG Matching
	7.1.27 Backward Oracle Matching
	7.1.28 Galil-Seiferas
	7.1.29 Two Way
	7.1.30 String Matching on Ordered Alphabets
	7.1.31 Optimal Mismatch
	7.1.32 Maximal Shift
	7.1.33 Skip Search
	7.1.34 KMP Skip Search
	7.1.35 Alpha Skip Search

