
UNIVERSITY OF MACEDONIA

GRADUATE PROGRAM

DEPARTMENT OF APPLIED INFORMATICS

A REDUCED VARIABLE NEIGHBORHOOD SEARCH APPROACH

FOR GENE SELECTION IN CANCER CLASSIFICATION

Master Thesis

of

Pentelas Angelos

Thessaloniki, 06/2019

A REDUCED VARIABLE NEIGHBORHOOD SEARCH APPROACH FOR GENE

SELECTION IN CANCER CLASSIFICATION

Pentelas Angelos

Bachelor in Mathematics, Aristotle University of Thessaloniki, 2015

Master Thesis

submitted for the partial fulfillment of the demands of the

MASTER OF SCIENCE IN APPLIED INFORMATICS

Supervisor Professor

Sifaleras Angelo

Approved by the three-member committee 25/06/2019

Sifaleras Angelo Samaras Nikolaos Hristu-Varsakelis Dimitris

. .

Pentelas Angelos

. .

iii

Abstract

In this work we propose a Reduced Variable Neighborhood Search (RVNS) metaheuristic algo-

rithm, to handle the gene selection problem in cancer classification. RVNS is utilized as the

primary search method and gene subsets obtained are evaluated by three learning algorithms,

namely support vector machine, k-nearest neighbors, and random forest. Experiments are con-

ducted on five publicly available cancer-related datasets, all characterized by a small sample

size and high dimensionality. Since RVNS seeks gene subsets that yield accurate predictions for

all three aforementioned classifiers, the proposed results can be considered more reliable. To

the best of our knowledge, the said methodology is innovative due to the fact that, it combines

the Recursive Feature Elimination (RFE) heuristic with an RVNS algorithm. Despite the large

size of the problem instances, the proposed FS scheme converges within reasonably short time.

Results indicate high performance of RVNS that, is further improved when the RFE method is

applied as a pre-processing step. Moreover, our approach seems to outperform similar recent

algorithms in both terms of accuracy and run-time.

Keywords: Reduced Variable Neighborhood Search, Feature Selection, Cancer Classifica-

tion.

iv

THANKS

I would like to thank my supervisor professor, Dr. Angelo Sifaleras, for his unreserved help

and support during my work on this thesis. His suggestions and comments were more than

insightful. In addition, I am thankful for Dr. Georgia Koloniari’s guidance on topics related to

her expertise that my thesis bears on. Last, I want to thank my parents who, discretely, always

support me.

v

This work is dedicated to my family.

vi

CONTENTS

1 Introduction 1

1.1 Problem Statement - Significance . 3

1.2 Purpose - Goal . 4

1.3 Assumptions . 4

1.4 Contribution . 4

1.5 Thesis Structure . 5

2 Theoretical Background 6

2.1 The Need for Efficient Search . 6

2.2 Metaheuristic Methods in Combinatorial Optimization 8

2.2.1 Variable Neighborhood Search . 9

2.2.2 Reduced Variable Neighborhood Search 11

2.2.3 Parallel schemes of Variable Neighborhood Search 12

2.3 Machine Learning . 13

2.3.1 k-Nearest Neighbors . 14

2.3.2 Support Vector Machine . 14

2.3.3 Random Forest . 15

2.4 Feature Selection . 16

2.4.1 Filter Technique . 16

2.4.2 Wrapper Technique . 18

2.4.3 Embedded Technique . 19

2.4.4 Ensemble Technique . 21

3 Related Work 24

3.1 Genetic Algorithm and Geometrical Particle Swarm Optimization (2007) 24

3.1.1 Overview . 24

3.1.2 Parameters and Results . 25

3.2 Recursive Feature Elimination - MRMR (2010) 25

3.2.1 Overview . 26

vii

3.2.2 Parameters and Results . 26

3.3 Correlation Based Feature Selection - Taguchi-Genetic Algorithm (2011) 27

3.3.1 Overview . 27

3.3.2 Parameters and Results . 29

3.4 Genetic Bee Colony Optimization (2015) . 29

3.4.1 Overview . 29

3.4.2 Parameters and Results . 30

3.5 Binary Particle Swarm Optimization - Backward Generation (2019) 31

3.5.1 Overview . 31

3.5.2 Parameters and Results . 32

3.6 Summary and thoughts . 33

4 Research Methodology 34

4.1 Parameter Settings . 34

4.1.1 Solution Representation . 34

4.1.2 RVNS . 36

4.1.3 Learning Algorithms . 37

4.1.4 RFE . 37

4.2 Evaluation Function . 37

4.3 Data Description and Preprocessing . 39

4.4 Materials . 41

5 Results and Comparison 42

5.1 Performance of RFE-RVNS and RVNS . 42

5.2 Comparison . 45

6 Statistical Analysis 47

6.1 Convergence . 47

6.2 Class Imbalance Influence . 49

6.3 Gene Correlation . 50

6.4 Improvements per Neighborhood Structure . 50

6.5 Statistical Difference of RVNS and RFE-RVNS 54

7 Conclusion 55

7.1 Summary . 55

7.2 Study Limits - Constraints . 56

7.3 Future Work . 57

7.4 Thoughts on Combinatorial Optimization . 57

viii

7.4.1 Combinatorial Optimization Industry Infiltration 58

7.4.2 Future Directions of Combinatorial Optimization 60

ix

List of Figures

1.0.1 General scheme of the current applications of machine learning techniques in

bioinformatics. 2

2.2.1 Illustration of the VNS procedure. 10

2.3.2 The majority of the neighbor classes will determine the new instance’s class. . . 14

2.3.3 SVM finding the optimal hyperplane in a 2-dimensional space 15

2.3.4 Random Forest consults both trees before moving to a decision 16

2.4.5 A typical Filter FS procedure. 17

2.4.6 The wrapper FS procedure. 18

2.4.7 The SVM-RFE method. 20

2.4.8 The Ensemble FS method. 22

3.1.1 The methodology proposed in the discussed work 25

3.3.2 The CFS-TGA method. 28

3.4.3 The main phases of the GBC algorithm. 30

3.5.4 The BPSO - Backward Generation process. 32

4.0.1 The RFE-RVNS flowchart. The value of k indicates the neighborhood structure

the algorithm is searching into. 35

4.2.2 The process of evaluating a candidate solution. 38

4.3.3 A segment of the Ovarian dataset. 40

5.1.1 SVM, kNN and RF mean accuracy in each dataset with RFE-RVNS. 44

5.1.2 SVM, kNN, RF and average accuracy values from a typical execution of RVNS

on the Colon dataset. 45

6.1.1 Boxplot with the number of iterations needed for RVNS convergence. 48

6.1.2 Boxplot with the number of iterations needed for RVNS convergence (omitted

outliers). 48

6.1.3 Boxplot with the number of iterations needed for RFE-RVNS convergence. . . . 49

x

6.4.4 Improvements per neighborhood after 10 independent runs on the Leukemia can-

cer dataset. 52

6.4.5 Improvements per neighborhood after 10 independent runs on the Lung cancer

dataset. 52

6.4.6 Improvements per neighborhood after 10 independent runs on the Ovarian cancer

dataset. 53

6.4.7 Improvements per neighborhood after 10 independent runs on the Breast cancer

dataset. 53

6.4.8 Improvements per neighborhood after 10 independent runs on the Colon cancer

dataset. 53

7.4.1 Worldwide interest based on google’s search engine for the terms OR, AI and

ML from 2004-01 until 2019-06. 58

7.4.2 Indicative Gurobi Solver clients. 59

7.4.3 The need for more computing power. 61

xi

List of Tables

3.1 GPSO and GA parameters for gene subset selection and classification. 25

3.2 Mean accuracy and average number of selected genes in parenthesis. Values

obtained after 10 independent runs. 26

3.3 Number of selected genes, mean accuracy and standard deviation in parenthesis

with the SVM-RFE MRMR method. Values obtained after 100 independent runs. 27

3.4 The parameters of the Taguchi-Genetic Algorithm. 29

3.5 Results obtained after ten independent runs. 29

3.6 Control parameters for GBC. 30

3.7 Best accuracy obtained by gene subsets found by GBC. Numbers in parenthesis

denote the number of genes. 31

3.8 Control parameters for BPSO. 32

3.9 Accuracy, number of genes and execution time of BPSO-based methods. 33

4.1 Dataset characteristics . 39

5.1 The performance of RFE - RVNS and RVNS algorithms when applied with the

SVM, kNN and RF classifiers on the Leukemia dataset after ten independent runs. 42

5.2 The performance of RFE - RVNS and RVNS algorithms when applied with the

SVM, kNN and RF classifiers on the Lung cancer dataset after ten independent

runs. 42

5.3 The performance of RFE - RVNS and RVNS algorithms when applied with the

SVM, kNN and RF classifiers on the Ovarian cancer dataset after ten independent

runs. 43

5.4 The performance of RFE - RVNS and RVNS algorithms when applied with the

SVM, kNN and RF classifiers on the Colon cancer dataset after ten independent

runs. 43

5.5 The performance of RFE - RVNS and RVNS algorithms when applied with the

SVM, kNN and RF classifiers on the Breast cancer dataset after ten independent

runs. 43

xii

5.6 The performance of RFE-RVNS and RVNS algorithms when applied only with

the SVM classifier compared to similar methods. 46

6.1 Correlation of the M -value with the respective metrics for RFE-RVNS. 50

6.2 Correlation of the M -value with the respective metrics for RVNS. 50

6.3 Correlation of gene values per two. Genes are obtained by a typical execution of

RVNS on the Leukemia dataset. Mean accuracy with reported genes is 94%. . . 51

6.4 Correlation of gene values per two. Genes are obtained randomly on the Leukem-

ia dataset. Mean accuracy with reported genes is 80%. 51

6.5 Correlation of gene values per two. Genes are obtained by a typical execution of

RVNS on the Colon dataset. Mean accuracy with reported genes is 88%. 51

6.6 Correlation of gene values per two. Genes are obtained randomly on the Colon

dataset. Mean accuracy with reported genes is 60%. 51

6.7 p-values after a t-test of equal means on RVNS and RFE-RVNS performance

metrics. 54

xiii

CHAPTER 1

Introduction

Machine intelligence is an achievement humans have been seeking to reach for centuries.

The advancements in computing performance along with a well-established theoretical back-

ground have been proven decisive towards that goal. Thus, Artificial Intelligence (AI) altered

from a completely theoretical scientific field to both theoretical and applied. Due to the new

circumstances, Artificial (or Machine) Intelligence was, and still is, a very tempting scientific

area for a wide range of researchers and industries originating from quite diverse domains. The

phenomenal scientific and business focus on AI resulted in partitioning this vast field. Thus,

terms like Machine Learning (ML) and Deep Learning emerged.

At the same time, other technological achievements and industry needs resulted in a tremen-

dous rise on data generation. The feeling that data-driven decisions carry less bias motivated

people to develop devices and techniques that enable them to store information about, almost,

everything. That led to the introduction of a new term called Big Data. Within the spectrum

of Big Data lie datasets that can be described by the, so called, four V’s. They stand for volume

(i.e., data scale), velocity (e.g., streaming data), veracity (i.e., uncertainty of data) and variety

(i.e., different forms of data).

In the aftermath of the aforementioned facts, AI and ML applications usually take advantage

of Big Data and many experts nowadays consider them intertwined. Such applications can be

found in many aspects of modern societies. In retail, where a common task is to uncover

potential clients; in finance, where stock market analysis has been reinvented under the recent

developments; in transportation, where major steps towards autonomous vehicles have been

made; in healthcare, where ML algorithms enhance doctors’ judgment on whether a person is

sick or not, are only a few indicative examples.

However, applying the available techniques rarely is a piece of cake. Despite all the helpful

software solutions that have been developed (e.g., python’s machine learning libraries, WEKA,

tensorflow, keras etc.) some datasets remain complex enough and hard to manipulate or mine

knowledge from. To ease the manipulation of complex datasets, experts like data scientists and

1

machine learning engineers use to apply data pre-processing methods whose purpose, among

others, is to produce simpler and more comprehensible datasets.

Bioinformatics is one of the many scientific domains leveraging modern data manipulation

techniques and, in fact, many processes within the said field strongly rely on the latter. As Figure

1.0.1 illustrates, there is a wide variety of ML applications within the world of bioinformatics.

During the present thesis, we specifically address challenges and offer solutions within the

diagnosis and prognosis domain.

Figure 1.0.1: General scheme of the current applications of machine learning techniques in
bioinformatics.

Source: https://twitter.com/gp pulipaka

Diagnosis and Prognosis, essentially, encompasses the microarray based diagnosis and prog-

nosis and the mass spectra based diagnosis and prognosis. Microarrays can be used to measure

the relative quantities of specific mRNAs in two or more tissue samples for thousands of genes

simultaneously (Kerr, Martin, and Churchill 2000), while mass spectrometry is a central ana-

lytical technique for protein research and for the study of biomolecules in general (Domon and

Aebersold 2006). It is worth to point out that, in this thesis, we mainly focus on the compu-

tational aspects of diagnosis and prognosis, therefore, we will not further elaborate on the said

terms.

A common characteristic of the two approaches is the fact that they both yield datasets

2

with thousands of features (genes), while, at the same time, a high degree of gene redundancy is

believed to be an issue (Yu and Liu 2004). Yu and Liu also mention that, most of the time, such

datasets involve measurements from just a few patients, which in statistical terms means they

consist of a small sample size. It is the combination of both a vast feature space and the small

sample size that diminishes our effort in analyzing this kind of datasets. Luckily, ML utilizes

techniques from statistics and combinatorial optimization that help towards the direction of

simplifying them.

1.1 Problem Statement - Significance

An indispensable segment of data pre-processing and ML is Feature Selection (FS). FS is

the process of selecting a subset of the dataset’s attributes (i.e., features) that is considered

relevant to the imminent analysis’ scope. For instance, let’s assume someone wants to analyze

the semester’s grade of ten students in a class given information about their actual grade

(Feature A or class/target variable), how much time they spend studying per week (Feature B),

how much time they spend on social media per week (Feature C) and if they own a pet or not

(Feature D). A FS method would probably end up with the subset {Feature B, Feature C} in

order to extract only relevant information concerning students’ grades.

The aforementioned example might seem a simple one. However, in most challenging

datasets it is prohibitive to judge a-priory the importance of a feature. Even in this naive

example, someone could find a strong correlation between students’ grades and their owner-

ship of a pet. Thus, FS is a process that can’t be treated in an offhand way since valuable

insights might come from any possible subset of the initial feature set. Mathematically speak-

ing, in a dataset with d available features there are 2d − 1 possible subsets that need to be

evaluated in some way before selecting the final one, meaning that the problem’s complexity

grows exponentially to the number of initial features. In fact, FS has been proven an NP-hard

problem (Narendra and Fukunaga 1977) and traditional commercial solvers fail to produce good

results in a reasonable amount of time.

It is also valuable to underline the benefits of FS in a more formal manner. Typically, the

significance of FS lies on the following four points:

1. model simplification,

2. shorter computing time,

3. curse of dimensionality avoidance,

4. enhance generalization by avoiding overfit

3

While the point of (2) is obvious, a short commenting is needed for (1), (3) and (4). The

perks of a simple model are mainly related to the model’s easier interpretation by experts. It is

also our belief that, the simpler a model, the better. Concerning the third allegation, curse of

dimensionality is a term that describes the difficulty to identify data points that are distant or

close to each other in a high dimensional space (i.e., the concept of distance deteriorates as the

dimensions grow). Finally, ideal ML models can be generalized, meaning that they can make

right predictions even on a wide range of unknown/future data. Overfitting depicts the state of

a model that is only capable of producing correct predictions on data it was trained with (i.e.,

data known to the model) and is unable to do the same with unknown/future data.

1.2 Purpose - Goal

The scope of this thesis is to develop and examine the behavior of a Wrapper and an

Embedded-Wrapper hybrid FS technique on five well known public cancer-related datasets which

consist of thousands of attributes but only a few samples (i.e., high dimensional/small sample

size datasets). Most of these datasets have been extensively used from researchers in an attempt

to obtain genes that, based upon their values, someone will be able to predict patients with

malignant cancer or to classify cancer types. The proposed FS schemes utilize the Variable

Neighborhood Search metaheuristic algorithm as a baseline for the selection of the genes.

The methodology that is used aims to overcome some of the greatest drawbacks of wrap-

per techniques that, as we will later see, are model overfitting and extensive computing time.

Hopefully, the proposed algorithms will end up discovering few but informative features from

each dataset and the final results will enable studies in cancer research move forward.

1.3 Assumptions

During this work, we take three points for granted. The first is related with the objective of

our approach. According to previous work on the field, we go after implementing a methodology

that is able to produce as smaller gene subsets as possible, while keeping the learning algorithms’

accuracy high enough. The second assumption that we considerate regards the correctness of

the datasets that we later use to evaluate our methods. Finally, for the rest of this thesis, the

terms feature, gene, attribute and variable have the same meaning within the scope of FS.

1.4 Contribution

Variable Neighborhood Search and its variants have been slightly studied within the FS

process and, especially, on cancer-related data. To the contrary, other metaheuristic algorithms

4

like genetic algorithms, simulated annealing or particle swarm optimization have been overused.

Thus, this thesis contributes to the scientific community in terms of expanding the set of known

FS methods and their performance within the cancer classification domain.

1.5 Thesis Structure

The remaining of this thesis is structured as follows. In Chapter 2 we state the necessary

theoretical background on which our algorithmic development relies. More specifically, in this

chapter we describe the class of combinatorial optimization problems, their computational com-

plexity and the need of efficient intelligent-searching algorithms. Moreover, we give a high-level

overview of ML and some widely used and known algorithms that are later integrated into our

method. We then unfold the gains metaheuristics bring into the class of combinatorial optimiza-

tion problems and, more specifically, we describe the variable neighborhood search algorithm

along with its variant, the reduced variable neighborhood search, the core of both of our algo-

rithms. Finally, we proceed in defining the FS problem and thoroughly present the categories

FS algorithms are divided into according to the literature.

We move on in detailing some of the most recent research work in the field of cancer classi-

fication in Chapter 3. Here, we are concerned about the FS category each method lies in, the

search methods used, the learning algorithms that evaluate each gene subset, as well as the final

results regarding accuracy and computational time.

Next comes Chapter 4. It is within this chapter that we meticulously mention each step and

intuition of the proposed methodology. In addition to algorithmic specifications and parameter

settings, the reader is also referenced to the technical stack used during this thesis.

Having discussed about the methodology that we follow, we proceed in presenting the re-

sults and the overall performance of our methodologies both separately in each dataset and in

comparison with other well-performing recent approaches. All of the above can be found in

Chapter 5.

Chapter 6 addresses the fundamental statistical analysis of our algorithms. This analysis

aims at giving insights on performance metrics (e.g., accuracy, gene subset size) and search

efficiency factors (e.g., computational time, improvements per neighborhood).

Finally, in Chapter 7, we comment both on our approach to tackle the gene selection problem

and the gains of recent trends applied in the field. We conclude in the same chapter by presenting

some general thoughts and future directions regarding combinatorial optimization.

5

CHAPTER 2

Theoretical Background

Before diving into the proposed methodology’s technical details, it is useful and insightful

to set the necessary theoretical background. In this chapter, we introduce the Machine Learn-

ing (ML) field and some, widely used, ML algorithms that are involved in our work. We also

discuss the concept of metaheuristics and their applications, especially within the Combina-

torial Optimization context. Emphasis is given on the background of a specific metaheuristic

algorithm called Variable Neighborhood Search (VNS) along with its variant, Reduced VNS,

which is moreover integrated in our methodology. Last, the Feature Selection (FS) problem

and the categorization of FS techniques are presented. For the reader’s convenience, we start

the background overview from some fundamental aspects this thesis deals with, which are the

computational concerns and issues that, eventually, helped the beautiful scientific area of com-

binatorial optimization grow.

2.1 The Need for Efficient Search

This thesis would be deficient without introducing the reader to the scientific area of Com-

binatorial Optimization (CO). Tightly attached to the computational complexity domain, CO

encompasses a wide variety of problems met in real life, that demand fast and effective solutions,

while most of them belonging in the class of NP-hard problems. The latter, essentially indi-

cates that such problems have a vast solution space that grows exponentially with the problem

size and, most importantly, there is no known algorithm that gives an exact solution within

polynomial time. For more on this topic, we reference the reader to (Papadimitriou 2003).

According to cs.cmu.edu glossary, CO is the process of searching for maxima (or minima)

of an objective function F whose domain is a discrete but large configuration space. Examples

of combinatorial optimization problems are:

1. The Travelling Salesman Problem: given the (x,y) positions of N different cities, find the

shortest possible path that visits each city exactly once, starting from a certain one.

6

2. The Bin-Packing Problem: given a set of N objects, each with a specified size si, fit them

into as few bins (each of size B) as possible.

3. The Assignment Problem: given N employees, N jobs and cij the cost of employee i

performing job j, find the less costly mapping between employees and jobs.

4. The Job-Shop Scheduling Problem: given N jobs of varying processing times, which need

to be scheduled on M machines with varying processing power, minimize the makespan,

i.e., the time between the initialization of the first job and the termination of the last one.

5. The p-median Problem: given a set L of candidate location points and a set D of demand

nodes, locate p facilities to minimize the demand weighted average distance between

demand nodes and the nearest of the selected facilities.

It can be easily observed that, this kind of problems have a wide applicability within many

industries. For instance, consider a typical problem most cloud data-centers have to deal with.

They receive a continuous stream of virtual machine instantiation requests that need to be placed

into the data-center’s servers. Ultimately, this is a Bin-Packing problem, where servers represent

the bins and virtual machines the items. Beloglazov et. al., in (Beloglazov, Abawajy, and

Buyya 2012) challenge this problem targeting an energy efficient consolidation policy. Another

example, this time in the logistics industry, is the the need of an optimal vehicle routing policy

for trucks delivering goods in warehouses or stores. This problem is called the vehicle routing

problem and consists a generalization of the Travelling Salesman Problem. Further information

can be found in (Toth and Vigo 2002).

A substantial difference of CO Problems (COPs) with other optimization ones is that, algo-

rithms developed to exactly solve them require a huge amount of computational time, even with

modern hardware materials. With the term exactly, we refer to the capability of an algorithm

to obtain the mathematically best, among trillions, quadrillions or more, of feasible solutions

for a problem. Naturally comes the question; given a problem and an algorithm that exactly

solves it, is the problem practically solvable if the algorithm takes years to compute a solution?.

Today’s situation is that, companies striving for solutions to their COPs, are, in fact, willing

to sacrifice their optimality with a reasonable computing time. Reasonable computing time is

subjective, of course, and significantly varies among problem domains. A couple of hours might

do the job for a hospital trying to assign shifts to its doctors, but the same amount of time is

extremely large for a network route planning for an internet package to traverse.

An initial approach to the said issue, i.e., of finding good but not necessarily the best

solutions, is to run exact algorithms in any COP and terminate them whenever it suits us.

However, following this technique someone would likely acquire a poor solution and the reason

7

of it is that exact algorithms are not developed to behave that way, meaning that, even at their

penultimate execution step, there is no guarantee that they carry a good enough solution.

That led to the adoption of a special kind of algorithms, capable of finding acceptable

solutions within short computing times. Their name is heuristics, reminding the Greek word

used for finding. As their name implies, heuristics are a separate category of algorithms that

obtain feasible solutions to problems fast, by finding a solution according to a certain search

policy. Their main characteristic is that they are problem dependent, meaning that they are

developed to tackle a specific COP. As such, they cannot be generally used to any kind of COP.

Heuristics do not guarantee, by any means, a convergence to an optimal solution. Thereby,

they pertain to the family of approximate algorithms.

Several heuristic techniques have been implemented to tackle NP-hard COPs. In the lit-

erature, one can find the savings algorithm (Paessens 1988), which was developed to produce

acceptable solutions to the vehicle routing problem, the recursive feature elimination heuris-

tic (Guyon, Weston, Barnhill, and Vapnik 2002) for the feature selection problem, that is also

later used in our work and the best-fit heuristic which performs impressively in some applica-

tions of the bin-packing problem. Those are just three among, perhaps, hundreds or thousands

of heuristics especially developed to face difficult COPs.

There comes the queries, though, of how good do eventually these heuristics perform and

how they behave with respect to the objective function they try to optimize. The answer to

the first question is that the goodness of a solution is again subjective and problem dependent.

The interested individual has to decide whether they are happy or not with a solution and,

in any case, they should stay always motivated to improve their heuristics. In our opinion,

heuristics’ greatest flaw comes from the second concern. Since they usually follow a certain,

pre-determined, policy to find or construct a solution, they get easily trapped into local optima

and have no means of escaping from them. An extensive research towards keeping the good and

avoiding the bad from heuristics led to a new kind of algorithms, metaheuristics.

2.2 Metaheuristic Methods in Combinatorial Optimization

Metaheuristics are the most recent development in approximate search methods for solving

complex optimization problems that arise in business, commerce, engineering, industry and

many other areas. A metaheuristic guides a subordinate heuristic using concepts derived from

artificial intelligence, biological, mathematical, natural and physical sciences to improve their

performance (Osman and Kelly 1996). Given a complex problem, their purpose is to obtain

a fairly good solution within a reasonable amount of time. Thus, metaheuristics do not guar-

antee optimal solutions but they utilize intelligent search techniques to quickly find acceptable

8

solutions within the solution space and, moreover, they encompass mechanisms to escape from

local optima.

Depending on the characteristics selected to differentiate among them, several classifications

of metaheuristics are possible, each of them being the result of a specific viewpoint (Blum and

Roli 2003). From a number of solutions used at the same time standpoint, metaheuristics

can be divided in population-based and single point search. Algorithms working on single

solutions are called trajectory methods and encompass local search-based metaheuristics like

Tabu Search, Simulated Annealing and Iterated Local Search. On the other hand, population-

based metaheuristics will perform search processes which describe the evolution of a set of points

in the search space (Blum and Roli 2003). Genetic Algorithms, Particle Swarm Optimization

and Ant Colony Optimization are three well-known algorithms that lie in the population-based

category.

For the FS problem, which can be described as a COP, Variable Neighborhood Search (VNS)

is the metaheuristic algorithm selected to be studied. In the next three sections, VNS, a VNS

variant called Reduced VNS and a number of VNS parallel schemes are described.

2.2.1 Variable Neighborhood Search

In (Mladenović and Hansen 1997), N. Mladenović and P. Hansen proposed a new metaheuris-

tic algorithm called Variable Neighborhood Search (VNS). As authors suggest, the novelty of

the new algorithm lies on the fact that, while other local search methods follow a trajectory,

VNS explores increasingly distant neighborhoods of the current incumbent solution and jumps

from there to a new one if and only if an improvement is made. Following this pattern, favorable

characteristics of the incumbent solution will be kept and used to obtain promising neighboring

solutions.

Let Nk, (k = 1, ..., kmax), be a finite set of pre-selected neighborhood structures and Nk(x)

the set of solutions in the kth neighborhood of a solution x. The VNS pseudocode is given in

Algorithm 1 while Figure 2.2.1 illustrates the said search process of VNS.

VNS is an effective metaheuristic used for solving many kinds of problems. In (Kytöjoki,

Nuortio, Bräysy, and Gendreau 2007), authors propose VNS for confronting very large scale

vehicle routing problems, while in (Sifaleras, Konstantaras, and Mladenović 2015) it was used

to manage the lot sizing problem. Besides considered a relatively new algorithm and further

applications are yet to be explored, VNS utilizes only a few parameters and that is a great

advantage compared to other metaheuristics, where parameter tuning can be proved quite time

consuming.

Researchers that invented VNS posed three questions regarding the search in multiple neigh-

borhoods:

9

Figure 2.2.1: Illustration of the VNS procedure.

Source: https://link.springer.com/referenceworkentry/10.1007%2F978-0-387-74759-0 694

Algorithm 1: VNS pseudocode for a minimization problem

initialize solution x;
while stopping criteria are not met do

k = 1;
while k < kmax do

generate x′ a random solution from neighborhood Nk(x);
x′′ = LocalSearchProcedure(x′);
if evalutate(x′′) < evaluate(x′) then

x = x′′;
k = 1;

else
k = k + 1;

end

end

end
return x;

10

1. What Nk should be used and how many of them?

2. What should be their order in the search?

3. What search strategy should be used in changing neighborhoods?

Answering the first one, there seems to be no general rule about the number and the structure

of neighborhoods. In the literature, authors usually come up with two-four problem-specific

neighborhood structures. Concerning their order in the search, again it is something problem-

dependent. Worth mentioning that the third question led to many VNS variants like Skewed

VNS and VN Descent.

2.2.2 Reduced Variable Neighborhood Search

The Reduced VNS (RVNS) method is obtained if random points are selected from Nk(x)

and no local search is applied. Instead, the values of the new points are computed with that of

the incumbent and an update takes place in case of improvement. Algorithm 2 describes the

said process.

Algorithm 2: RVNS pseudocode for a minimization problem

initialize solution x;
while stopping criteria are not met do

k = 1;
while k < kmax do

generate x′ a random solution from neighborhood Nk(x);
if evalutate(x′) < evaluate(x) then

x = x′;
k = 1;

else
k = k + 1;

end

end

end
return x;

RVNS has been proved quite useful in very large instances, for which local search is costly.

Although it looks similar to a Monte-Carlo method, it searches in a more systematic manner.

In (Xiao, Kaku, Zhao, and Zhang 2011) researchers applied RVNS on several multilevel lot-

sizing benchmark problems and obtained, in many cases, new best solutions. RVNS is the main

search method used during this work and, as we later show, it performs exceptionally in the FS

problem for cancer-related datasets.

11

2.2.3 Parallel schemes of Variable Neighborhood Search

The application of parallelism to a metaheuristic can and must allow to reduce the compu-

tational time (by partitioning the sequential algorithm) or to increase the exploration in the

search space (by applying independent search threads) (Hansen, Mladenović, and Pérez 2010).

Parallelizations of VNS proposed in the literature can be divided into simple and more complex

ones.

Within the category of the simple parallelization strategies someone can find Synchronous

Parallel VNS (SPVNS) and Replicated Parallel VNS (RPVNS). The first one attempts to reduce

computational time by parallelizing the local search in the sequential VNS while RPVNS tries

to search for a better solution by means of the exploration of a wider zone of the solution

space, using multistart strategies. Authors in (Hansen, Mladenović, and Pérez 2010) consider

the aforementioned techniques simple since they don’t utilize sophisticated parallel computing

concepts and are pretty easy to implement code-wise.

On the contrary, Replicated-Shaking VNS (RSVNS) and Cooperative Neighborhood VNS

(CNVNS) use cooperation (i.e., communication) mechanisms, through a master-worker ap-

proach, to improve the performance.

Briefly, in RSVNS, a sequential VNS is being executed in the master processor and the

current solution is sent to each worker processor. Workers shake this solution to avoid being

trapped in local optima and start a local search from the new neighboring candidate solutions.

The final step of RSVNS includes the pass of these improved solutions to the master which

selects the best among them and continues the algorithm.

A detailed overview of CNVNS is quoted, since it is a more complex algorithm and the

reader might get easily confused:

1. The master process:

(a) Executes parallel RVNS.

(b) Sends initial solutions to the individual VNS processes.

(c) After each communication from an individual VNS process, updates the best overall

and communicates it back to the requesting VNS process.

(d) Verifies the stopping condition.

2. Each VNS process:

(a) Receives the initial solution, selects randomly a neighborhood and explores it by

shaking and local search.

(b) If the solution is improved, the search proceeds from the first neighborhood with

shaking and local search.

12

(c) If the solution can not be improved, the process:

i. Communicates its solution to the master.

ii. Requests the overall best from the master.

iii. Continues the search from the current solution.

Worth noting that, communication between master and workers happens asynchronously

(i.e., not at the same time).

2.3 Machine Learning

As mentioned in Chapter 1, advances in computer technology allow individuals, businesses

and organizations to store and process large amounts of data. These stored data become useful

only when they are analyzed and turned into information that people can make use of (Alpaydin

2009). Human’s intuition that there might be hidden patterns within the observed datasets

and that such patterns are impossible to get recognized by the human eye, resulted in the

development of ML.

ML is programming computers to optimize a performance criterion using example data or

past experience (Alpaydin 2009). The process always involves a mathematical model that is

defined up to some parameters, and learning is the execution of a computer program to optimize

the parameters of the model using the training data or past experience. Since ML models are

all about learning from training (i.e., existing) data, it becomes obvious that the same models

will be applied to future data under the assumption that future will not be much different from

the past.

ML applications are divided into two main categories, supervised and unsupervised learning.

For supervised learning, classification and regression are the most typical tasks. Classification

handles the task of predicting discrete values from a known value set while regression is applied

in predicting continuous values. They both use the given values of some attributes in order

to predict the value of an unknown one. On the other hand, the major representative of

unsupervised learning is clustering. Given a metric, the goal of clustering is to produce groups

that are well separated one from another, i.e., maximum inter-distance, and each group should

consist of members that are close enough, i.e., minimum intra-distance.

Within this thesis’ scope, and since features will be selected for predicting if a patient has

cancer or not and the cancer’s type, classification is the ML task that will be applied. Next,

there is given a short description of the algorithms that are used in the proposed methodology

so as the reader gets a full picture of the processes and tools structuring it.

13

2.3.1 k-Nearest Neighbors

k-Nearest Neighbors algorithm, abbreviated as kNN, is one of the simplest learning algo-

rithms and one of the most frequently used. kNN is a non-parametric (i.e., it does not make

any assumptions on the underlying data distribution), lazy learning (i.e., it does not use the

training data points to do any generalization) algorithm. Its purpose is to use a database in

which the data points are separated into several classes to predict the classification of a new

sample point. kNN algorithm is based on feature similarity: How closely out-of-sample features

resemble the training set determines how a given data point is classified. In Figure 2.3.2, the

critical importance of the parameter k becomes obvious.

Figure 2.3.2: The majority of the neighbor classes will determine the new instance’s class.

Several studies on the FS problem have utilized kNN as their learning algorithm. In (Chuang,

Yang, Wu, and Yang 2011), authors state that some major advantages of the kNN method are

its simplicity and ease of implementation, while in (Cover, Hart, et al. 1967) it is mentioned

that kNN is not negatively affected by large training data, and is furthermore indifferent to

noisy training data.

2.3.2 Support Vector Machine

Support Vector Machine, abbreviated as SVM, can be used for both regression and classifi-

cation tasks. However, it is mainly used for the second one. The objective of the SVM algorithm

is to find a hyperplane in an N -dimensional space(where N denotes the number of features)

that distinctly classifies the data points. To separate the two classes of data points, there are

many possible hyperplanes that could be chosen. The objective is to find a plane that has the

14

maximum margin, i.e, the maximum distance, between data points of both classes. Maximizing

the margin distance provides some reinforcement so that future data points can be classified

with more confidence.

Figure 2.3.3: SVM finding the optimal hyperplane in a 2-dimensional space

Concerning the discussed subject, many researchers have used SVM for microarray data

classification. For instance, in (Alba, Garcia-Nieto, Jourdan, and Talbi 2007) it was combined

with a Particle Swarm Optimization variant and with a Genetic Algorithm that were searching

the solution space. In fact, SVM has been utilized within the FS problem so extensively,

that some of the state-of-the-art methods carry its signature, e.g., SVM-RFE (Guyon, Weston,

Barnhill, and Vapnik 2002).

2.3.3 Random Forest

Random Forest is as supervised learning algorithm. As its name implies, it builds multiple

decision trees, i.e., forest, and merges them together to get a more accurate and stable prediction.

The term Random is justified by the fact that, while Random Forest growing the trees, instead

of searching for the most important feature while splitting a node, it searches for the best feature

among a random subset of features. This results in a wide diversity that generally leads to a

better model.

Wu et. al. (Wu, Kumar, Quinlan, Ghosh, Yang, Motoda, McLachlan, Ng, Liu, Philip, et al.

2008) underlines that C4.5 algorithm (i.e., a decision tree implementation), is among the top ten

most influential data mining algorithms in the research community. This implies that Random

Forest is also a popular and safe choice for classification tasks, since it consults with many C4.5

trees to make a decision. In (Saeys, Abeel, and Van de Peer 2008), Random Forest managed to

obtain good results within the study’s perspective.

15

Figure 2.3.4: Random Forest consults both trees before moving to a decision

Source: https://towardsdatascience.com/the-random-forest-algorithm-d457d499ffcd

2.4 Feature Selection

The FS problem is a combinatorial one with O(2d) computational complexity, where d

denotes the number of Features. In (Narendra and Fukunaga 1977) it has been proved that it

is an NP-hard problem, meaning that it belongs to the class of problems that are at least as

hard as the hardest problems in NP(not-deterministic polynomial) class. In such problems, an

exhaustive search of the solution space is prohibited, even for small problem instances.

FS methods are constantly emerging and, for this reason, there is a wide suite of methods

that deal with microarray data (Bolón-Canedo, Sánchez-Marono, Alonso-Betanzos, Beńıtez,

and Herrera 2014). However, experts in the field have not come to an answer when asked which

method is the best. Thus, new FS methods will continue to emerge and compete with each

other on certain evaluation criteria such as robustness, time complexity, etc..

In this study, a Wrapper FS method is developed, with an effort of overcoming some of

wrappers’ major drawbacks, e.g., overfitting risk. However, in the following sections, brief

descriptions of Filters, Embedded and Ensemble FS methods are also given, so as the reader

gets an overview of the up-to-date techniques and concepts in the discussed domain.

2.4.1 Filter Technique

The Filter approach incorporates an independent measure for evaluating feature subsets

without involving a learning algorithm. Thus, filter methods evaluate the goodness of feature

16

subsets by observing only the intrinsic data characteristics (e.g., statistical measures), in which

typically a single feature or a subset of features is evaluated against the class label (Bolón-

Canedo, Sánchez-Marono, Alonso-Betanzos, Beńıtez, and Herrera 2014). Figure 2.4.5 depicts

a scheme of a typical Filter FS procedure for a classification task.

Figure 2.4.5: A typical Filter FS procedure.

In the case of microarray data, Correlation-Based Feature Selection (Hall 1999a), Fast

Correlation-Based Filter (Yu and Liu 2003), ReliefR (Kira and Rendell 1992) or the Consistency-

Based Filter (Dash and Liu 2003) are some of the classical Filter algorithms that have been

successfully implemented in the literature.

Most of the time, filters are easy to implement and manage to obtain good results in a short

time. However, their major drawback is that while trying to reduce the dimensions (i.e., feature

elimination), they might label a feature as redundant when in fact, combined with some other

features, it might be proved informative. Since most cancer-related datasets have a relative

small sample size (e.g., order of tens) and the sample can not be considered representative of

17

the overall population, the risk of meeting the aforementioned scenario is greater. Moreover,

Filter methods, as we later present, tend to return somewhat large feature subsets within the

gene selection domain.

2.4.2 Wrapper Technique

Opposed to the Filter, the Wrapper method incorporates a search strategy (e.g., metaheuris-

tics) that constantly selects some features, communicates the feature subset with a learning al-

gorithm, retrieves a metric (e.g., accuracy) that usually is part of a score function and proceeds

in obtaining a different subset that might result in a better metric value. The process stops

when certain termination criteria are met. It becomes clear that the search process is tightly

attached to the learning model. Figure 2.4.6 illustrates how a Wrapper method is applied:

Figure 2.4.6: The wrapper FS procedure.

18

The Wrapper technique has been given less attention compared to the Filter method. That

is mainly due to the high computational effort needed and the high risk of overfitting. However,

wrappers seem to obtain significantly less genes than popular filters in many cancer-related FS

applications, e.g., (Alba, Garcia-Nieto, Jourdan, and Talbi 2007, Alshamlan, Badr, and Alohali

2015, Chuang, Yang, Wu, and Yang 2011). Thus, experts have to study the interaction of a

reasonable number of genes, a fact that becomes more tricky, even impossible, from most Filter

feature selectors’ results. Finally, Wrapper methods do not label a-priory genes as redundant or

relevant. In that way, each feature has a non-zero probability to participate in the final feature

subset.

Popular mechanisms utilized to explore the solution space have typically been metaheuris-

tics. Genetic Algorithms, Particle Swarm Optimization, Bee Colony Optimization and their

variants have shown notable results within the FS problem. We reference the interested reader

to (Alshamlan, Badr, and Alohali 2015, Alba, Garcia-Nieto, Jourdan, and Talbi 2007, Chuang,

Yang, Wu, and Yang 2011).

2.4.3 Embedded Technique

Trying to balance the pros and cons of the aforementioned FS classes, the Embedded methods

emerged. As stated in (Bolón-Canedo, Sánchez-Marono, Alonso-Betanzos, Beńıtez, and Herrera

2014), such methods use the core of the classifier to establish a criteria to rank features. However,

Embedded methods are generally driven by heuristic approaches, thus leading to insufficient

exploration of the solution space. We proceed in describing a particular method, appertaining

to the said FS methods, that we later use within our methodology.

SVM - Recursive Feature Elimination

Recursive Feature Elimination (RFE) is a FS method that fits a model and removes the

weakest feature (or features) until the specified number of features is reached. Features are

usually ranked by the model’s coefficients, and by recursively eliminating a small number of

features per loop, RFE attempts to eliminate dependencies and collinearity that may exist in

the model. In the case where the model is a Support Vector Machine classifier, RFE is typically

referenced as SVM-RFE.

RFE requires a specified number of features to keep, however it is often not known in advance

how many features are valid. To find the optimal number of features cross-validation is used

with RFE to score different feature subsets and select the best scoring collection of features.

Figure 2.4.7 illustrates the procedure that the algorithm follows to reach to a final feature

subset. In each iteration, SVM model’s coefficients are checked and features with the smallest,

by absolute value, ones are eliminated. Subset 1, thus, is a subset of the initial feature set and

19

Figure 2.4.7: The SVM-RFE method.

20

in general,

Si+1 ⊂ Si, ∀i ∈ {0, 1, ..., k − 1} (1)

, where S0 is the initial feaure set and Sk is the final feature subset. The pseudocode of SVM-

RFE is given in Algorithm 3.

Algorithm 3: SVM-RFE pseudocode

Input: X0 = [x1, x2, ..., xk, ..., xl]
T ; // training examples

Input: y = [y1, y2, ..., yk, ..., yl]
T ; // class labels

initialize subset of surviving features s = [1, 2, ..., n];
initialize feature ranked list r = [];
while s 6= ∅ do

X = X0(:, s); // restrict training examples

α = SVM-train(X,y); // train the classifier

w =
∑

k αkykxk; // compute the weight vector

ci = (wi)
2,∀i; // compute the ranking criteria

f = argmin(c); // find the feature with the smallest ranking

r = [s(f), r]; // update feature ranked list

s = s(1 : f − 1, f + 1 : length(s)); // eliminate the feature with smallest

ranking criterion

end
return r;

Since SVM-RFE takes the learning algorithm’s parameters, e.g., coefficients, into consider-

ation, it is classified as an Embedded FS method. In the thesis’ context, SVM-RFE will only be

used in order to reduce the feature space, i.e., as a pre-processing step, and not as the primary

search strategy.

2.4.4 Ensemble Technique

The Ensemble method, by definition, involves the usage of a multitude of FS methods.

Essentially, this technique tries to take advantage of many expert (FS methods) opinions, by

combining their results. For instance, someone could apply two Filters and a Wrapper on the

same dataset, and reach to a final feature subset by unifying the three individual feature subsets

each method obtained.

As shown in Figure 2.4.8, besides the selection of individual FS techniques, the Ensemble

method needs a module we call Subset Handling Level that, actually, determines how to ma-

nipulate each outcome. We mentioned earlier that an obvious way would be to yield, as a final

21

Figure 2.4.8: The Ensemble FS method.

22

solution, the union of all subsets. However, another usual approach is to insert a unique weight

attribute to each FS method. Consequently, the contribution of each method to the final sub-

set build will not be equal. In their paper (Bolón-Canedo, Sánchez-Marono, Alonso-Betanzos,

Beńıtez, and Herrera 2014), Bolano et. al. note that the Ensemble FS scheme is inspired from

the ensemble of classifiers in the ML domain, e.g., the Random Forest Algorithm we introduced

in subsection 2.3.3.

23

CHAPTER 3

Related Work

Before diving into our methodology’s details, it would be quite valuable to examine how the

FS problem was tackled by other researchers in the previous years. More specifically, in this

chapter we focus on selected and competitive Wrapper and Hybrid FS techniques developed and

published within our century. Among others, some aspects that will concern us are the search

strategy used, the choice of learning algorithms that evaluated feature subsets, the final results

and a metric that measures the complexity of each method, e.g., number of classifications, time,

etc.. The related work that is quoted below follows an ascending chronological order and each

section, related to a unique paper study, is named after the algorithms used.

3.1 Genetic Algorithm and Geometrical Particle Swarm Opti-

mization (2007)

In (Alba, Garcia-Nieto, Jourdan, and Talbi 2007), authors implemented two Wrapper meth-

ods, namely a Genetic Algorithm (GA) and a Geometrical Particle Swarm Optimization (GPSO)

to face the Gene Selection problem. These methods were tested on six well-known datasets is-

sued of microarray experiments.

3.1.1 Overview

The basic scheme of how features are selected out from the original microarray dataset using

a particle with binary encoding is illustrated in Figure 3.1.1.

Some basic points we need to keep regarding 3.1.1 are that both GA and GPSO seek for

gene subsets in the entire microarray initial dataset and they do not apply any kind of pre-

processing steps in order to reduce the vast solution space in contrast with similar work. In

addition to that, someone can notice that each gene subset shapes a new dataset with less genes

and a Support Vector Machine (SVM) classifier along with a 10-fold cross validation is applied

24

Figure 3.1.1: The methodology proposed in the discussed work

on it. Finally, worth to mention that the fitness function takes both SVM’s accuracy and the

subset size into consideration.

3.1.2 Parameters and Results

Researchers that conducted the discussed study have chosen the following parameters for

their algorithms:

Table 3.1: GPSO and GA parameters for gene subset selection and classification.

GPSO GA

Parameter Value Parameter Value

Swarm size 40 Population size 40
Number of generations 100 Number of generations 100
Neighborhood size 20 Probability of crossover 0.9
Probability of mutation 0.1 Probability of mutation 0.1
(w1,w2,w3) (0.33,0.33,0.44) - -

From a complexity point of view, the two algorithms evaluate 40 ∗ 100 = 4, 000 solutions

in order to converge, a number that can be considered large enough compared to our approach

that will be later analyzed. Regarding the results obtained, both methods manage to yield

remarkable solutions with high accuracy values and small gene subsets.

Datasets marked as bold in Table 3.2 were used on the current thesis as well.

3.2 Recursive Feature Elimination - MRMR (2010)

Studying the work in (Mundra and Rajapakse 2010), the reason of combining FS methods

becomes more clear. In this research paper, authors suggest that relevant and redundant features

can not be determined independent of the classifier. To this end, they incorporated both

outcomes of two feature ranking methods; the Maximum Relevance Minimum Redundancy

25

Table 3.2: Mean accuracy and average number of selected genes in parenthesis. Values obtained
after 10 independent runs.

Dataset GPSOsvm GAsvm

Leukemia 97.83(3) 97.27(4)
Breast 86.35(4) 95.86(4)
Colon 100(2) 100(3)
Lung 99.00(4) 99.49(4)
Ovarian 99.44(4) 98.83(4)
Prostate 98.66(4) 98.65(4)

(MRMR) Filter technique and the Support Vector Machine - Recursive Feature Elimination

(SVM-RFE) Embedded method.

3.2.1 Overview

As stated above, the novelty of the said research is that genes are ranked by a convex

combination of the relevancy given by SVM weights and the MRMR criterion. More specifically,

the ranking measure ri is given by:

ri = β ∗ |wi|+ (1− β) ∗
RS,i

QS,i
(1)

, where β ∈ [0, 1] determines the trade-off between ranking terms |wi| and
RS,i

QS,i
, i.e., expression

of SVM and MRMR insights, respectively.

3.2.2 Parameters and Results

Concerning the parameters used, the β value was determined empirically from the set {0.2,

0.4, 0.6, 0.8} and SVM-RFE eliminated 100 genes per iteration if genes where equal to or greater

than 10,000, 10 genes per iteration, if genes where less than 10,000 but more than 1,000 and

1 gene per iteration, if genes where less than or equal to 1,000. Next, Table 3.3 with results

found follows.

It becomes obvious that the proposed methodology performs well in terms of accuracy.

However, the number of genes that takes to yield such accuracy values can be characterized as

large in comparison with other methods. Especially from an interpretation point of view, it is

extremely difficult to analyze the association of tens of genes with a target variable.

26

Table 3.3: Number of selected genes, mean accuracy and standard deviation in parenthesis with
the SVM-RFE MRMR method. Values obtained after 100 independent runs.

#Genes Accuracy

Colon 78 91.68 (5.13)
Leukemia 37 98.35 (1.93)
Hepato 11 88.15 (4.59)
Prostate 10 98.29 (2.30)

3.3 Correlation Based Feature Selection - Taguchi-Genetic Al-

gorithm (2011)

In (Chuang, Yang, Wu, and Yang 2011), L-Y. Chang et al. developed a hybrid feature selec-

tion method for DNA microarray data. Their idea was to apply the Correlation Based Feature

Selection (CFS) Filter method as a pre-processing step so as to reduce the solution space. The

search mechanism that would offer the final solutions was a Genetic Algorithm variant called

Taguchi-Genetic Algorithm (TGA). This method was developed by Genichi Taguchi and, in

short, as stated in the abstract section of (Tsai, Liu, and Chou 2004), the systematic reasoning

ability of the Taguchi method is incorporated in the crossover operations to select the better

genes to achieve crossover, and consequently, enhance the Genetic Algorithm.

3.3.1 Overview

Before quoting the basic schema of the method under discussion, it would be insightful to

mention the simple, yet effective, idea behind CFS technique which relies on the hypothesis

that good feature subsets contain features highly correlated with the class, yet uncorrelated with

each other (Hall 1999b). Mathematically, this idea is supported by:

MeritS =
k ∗ γcf√

k + k(k − 1) ∗ γff
(2)

, with MeritS being the merit of a feature subset S containing k features, γcf being the average

feature-class correlation and, finally, γff denoting the average feature-feature inter-correlation

(f ∈ S). Figure 3.3.2 depicts the steps of the procedure in more detail.

It is worth to note that authors used the kNN algorithm (with k=1) and the Leave One Out

Cross Validation (LOOCV) technique to evaluate the fitness of each candidate solution.

27

Figure 3.3.2: The CFS-TGA method.

28

3.3.2 Parameters and Results

Someone can affirm that the proposed algorithm evaluates the fitness of 30 ∗ 60 = 1, 800

candidate solutions, as shown in table 3.4.

Table 3.4: The parameters of the Taguchi-Genetic Algorithm.

Generations Population size Probability of crossover/mutation

30 60 1.0/0.01

Table 3.5: Results obtained after ten independent runs.

Dataset Accuracy(std.dev.) #Genes(std.dev.)

9 tumors 90.50(0.81) 24.6(2.55)
11 tumors 100(0.00) 137.5(4.35)
14 tumors 74.39(0.67) 53.7(4.03)
Brain Tumor1 99.45(0.59) 44.7(3.68)
Brain Tumor2 100(0.00) 33.1(2.64)
Leukemia1 100(0.00) 22.4(1.78)
Leukemia2 100(0.00) 35.9(2.92)
Lung Cancer 98.42(0.31) 195.2(5.41)
SRBCT 100(0.00) 29.0(2.40)
Prostate Tumor 99.22(0.41) 24.7(1.42)
DLBCL 100(0.00) 17.1(2.33)

Even from a glimpse upon figures in 3.5 it is apparent that CFS-TGA performs really well

in almost all datasets, although the number of selected genes is still large enough.

3.4 Genetic Bee Colony Optimization (2015)

A more recent study on the FS field is the one in (Alshamlan, Badr, and Alohali 2015). In a

nutshell, H.M. Alshamlan et al. handled the gene selection problem by combining the MRMR

Filter method with a Genetic Bee Colony (GBC) optimization Wrapper technique.

3.4.1 Overview

In this work, authors mention that in high-dimensional microarray datasets, due to the

existence of a set of several thousands of genes, it is inefficient to adopt evolutionary algorithms

directly to the microarray dataset. Therefore, they add a pre-processing step, i.e., the MRMR

algorithm, as shown in 3.4.3. Afterwards, they apply their search mechanism into a reduced

solution space. The reduction is determined by a subset of the initial genes that yielded 100%

29

accuracy with the MRMR method, with the subset usually comprising of a few hundreds of

genes.

Figure 3.4.3: The main phases of the GBC algorithm.

3.4.2 Parameters and Results

The fundamental parameters of the GBC algorithm are presented in table 3.7. The Colony

size, i.e., population, and the Max cycle, i.e., generations, indicate that the algorithm requires

at least 8,000 classification trials. Worth noticing that the true number of classifications is way

bigger, if someone thoroughly examines Algorithm 1 in (Alshamlan, Badr, and Alohali 2015).

Table 3.6: Control parameters for GBC.

Parameter Value

Colony Size 80
Max cycle 100
Number of run 30
Limit 5
Crossover/Mutation propriety level 0.8/0.01

As mentioned in the introduction of this chapter, the choice of the learning algorithm used

in each work is something that concern us. In the discussed study, researchers selected the SVM

classifier which obtained the accuracy that follows in Table 3.7.

30

Table 3.7: Best accuracy obtained by gene subsets found by GBC. Numbers in parenthesis
denote the number of genes.

Datasets Colon Leukemia1 Lung SRBCT Lymphoma Leukemia2

Accuracy 98.38(10) 100(4) 100(4) 100(6) 100(4) 100(8)

In general, the GBC algorithm performs well in both terms of accuracy and number of

selected genes. Worth noticing that in this paper someone can find a variety of final results,

depending mainly on different gene subset sizes. A typical trend that we have noticed is that

larger gene subset sizes yielded more accurate results, which was something anticipated in the

problem that we discuss.

The caption of table 3.7 witnesses that values from the same table are the best ones. In the

comparison section of Chapter 5, we mark the mean accuracy of the GBC algorithm with gene

subset sizes relatively close to ours. Datasets in bold, which are the Colon and the Leukemia1

datasets, are the ones that we also used in our study and can compare upon.

3.5 Binary Particle Swarm Optimization - Backward Genera-

tion (2019)

One of the most recent studies within the field is (Bir-Jmel, Douiri, and Elbernoussi 2019),

where authors present two hybrid approaches for the gene selection in DNA microarray data.

The two proposed approaches consist of a pre-selection phase carried out using the Fisher and

ReliefF filter methods for FBPSO-SVM (Binary Particle Swarm Optimization combined with

Fisher algorithm and Support Vector Machine) and RBPSO-1NN (Particle Swarm Optimiza-

tion combined with ReliefF algorithm and 1-Nearest Neighbors) respectively, and a search phase

that determines a good subset of genes for the classification. The latter is based on two meta-

heuristics, BPSO and a local search method (Backward Generation). These approaches aim to

select an optimal subset of relevant genes from a dataset which contains redundant, noisy or

irrelevant data.

3.5.1 Overview

Figure 3.5.4 presents the process that Bir-Jmel et al. follow to conclude to a final gene

subset. Step 1, characterized as the filtration module, applies a Filter technique to the initial

dataset that yields a new gene dataset consisting of 300 genes. In step 2, the BPSO searches

for informative gene subsets into the new, smaller, dataset. Finally, a heuristic criterion named

Backward Generation is responsible for eliminating genes that do not worsen the learning algo-

31

rithm’s accuracy. This sums up the entire flow that researchers came up with.

Figure 3.5.4: The BPSO - Backward Generation process.

3.5.2 Parameters and Results

As far as the parameters are concerned, and without getting too detailed, the swarm size

was set to 30 and the numbers of generations was set to 100, which leads to 3,000 classification

attempts. In addition to that, another 200 iterations will take for Backward Generation to yield

the final gene subset.

Table 3.8: Control parameters for BPSO.

Parameters Value

Swarm size 30
Generations 100
c1, c2 2
w 1
vmax 4
vmin -4
Backward generation, itmax 200

32

Result-wise, the Table 3.9 witnesses acceptable results in terms of accuracy, although the

time needed for the process to complete is considered too long and the gene subset sizes, in

some cases, considerably large.

Table 3.9: Accuracy, number of genes and execution time of BPSO-based methods.

RBPSO-1NN FBPSO-SVM

Dataset Accuracy(%) Genes Time(h) Accuracy(%) Genes Time(h)

9 tumors 81.83 29.1 0.69 92.99 45 4.22
Brain Tumor1 94.00 24.7 1.48 97.22 22.4 4.20
Brain Tumor2 92.80 24.5 0.52 100 14.3 1.91
Leukemia1 99.72 11.7 0.76 100 8.4 1.60
Leukemia2 100 13.1 0.84 100 8.6 1.99
SRBCT 100 11.7 0.85 100 12.4 3.02
Prostate Tumor98.24 11.2 1.01 100 8.3 3.46
BLBCL 100 12.5 1.30 100 6.7 1.49

Unfortunately, we did not test our methods in any of the above datasets, so a direct com-

parison is impossible at this point.

3.6 Summary and thoughts

A brief overview on some recent papers regarding the FS problem indicates a strong trend;

combination of FS techniques, for instance Filters and Wrappers, is extensively under study,

producing good results. Filters are usually the first ones applied in order to reduce the vast

solution space, and Wrappers search later into that smaller space leveraging their mechanisms

for not getting trapped into local optima.

Concerning the tools and parameters used, most FS schemes have selected SVM as their

classifier, with k-NN also being a choice for some studies. In most cases, the performance of the

respective classifier was satisfying, with 100% accuracy being not a surprise. However, in terms

of final gene subset sizes and classifications required, the results are not so encouraging. In many

research papers, despite authors avoid to explicitly mention the time that their algorithms run,

it was easy to extract the thousands of required classifications that would lead to a not so

manageable gene subset size.

33

CHAPTER 4

Research Methodology

The purpose of this work is to propose an efficient search mechanism for gene selection in

cancer classification, that limits the drawbacks of wrapper FS techniques, i.e., the risk of model

overfitting and the high computational cost, while manages to obtain accurate results. To

achieve that, we implement an RVNS algorithm that searches the solution space in a systematic,

yet computationally light, manner. Solutions provided by RVNS are shared across SVM, k-NN

and RF classifiers for evaluation and their average accuracy, along with the solution’s number

of selected genes, are taken into consideration from an evaluation function. As a result, the final

gene subsets obtained by our algorithm yield accurate predictions for more than one learning

algorithms and findings can be further used with more reliability.

In an attempt of enhancing the RVNS’s performance, we apply the RFE heuristic approach

as a pre-processing step. In that way, a significant number of possibly redundant genes are

eliminated and the resulted solution space is given to RVNS to search into. Therefore, a new

hybrid search strategy is formed that we will refer to as RFE-RVNS. Figure 4.0.1 depicts the

aforementioned process.

4.1 Parameter Settings

4.1.1 Solution Representation

Each candidate solution s is conceived as a binary, 1-dimensional array of length N , with N

denoting the number of genes in each dataset. For instance, a candidate solution in a dataset

with 5 genes can be:

s = [0, 1, 1, 0, 1]

, which means that the second, the third and the fifth genes of the dataset are selected while

the first and the fourth are not.

34

Figure 4.0.1: The RFE-RVNS flowchart. The value of k indicates the neighborhood structure
the algorithm is searching into.

35

4.1.2 RVNS

A substantial step when implementing a VNS algorithm is the neighborhood structures’ def-

inition. In both RFE-RVNS and RVNS, we choose the three following neighborhood structures:

1. Replace a selected gene of the incumbent solution with an un-selected one.

2. Replace two selected genes of the incumbent solution with an un-selected one. If the

incumbent solution has only one gene selected, return the incumbent solution.

3. Add an un-selected gene to the incumbent solution. If there are no more genes to add,

return the incumbent solution.

The neighborhood order, which is also decisive, is as indicated above. Worth noticing that,

in all experiments, the initial solution is generated arbitrarily with two randomly selected genes.

Therefore, according to the neighborhood definitions above, no exception-handling is required

for the case of zero selected genes.

Example 3.1 Assuming there is a microarray dataset with 5 genes and s the incumbent

solution, where s = [0, 1, 1, 0, 1]. Let us denote with Ni(s), i ∈ {1, 2, 3}, the sets of neigh-

boring solutions of s. Considering the three neighborhood structures as defined above, s1 =

[0, 1, 1, 1, 0] ∈ N1(s), s2 = [1, 0, 1, 0, 0] ∈ N2(s) and s3 = [1, 1, 1, 0, 1] ∈ N3(s).

Claim: Given a random solution s and the neighborhood structures Ni, i ∈ {1, 2, 3}, both as

defined in 4.1.2, then N1(s) ∩N2(s) ∩N3(s) = ∅, ∀s ∈ S, with S being the solution space.

Proof: Let us consider a dataset with N features and s a random solution. Then, s will have k

1s, 1 ≤ k ≤ N, k ∈ {1, ..., N}, and N − k 0s. Moreover, we denote with si whichever solution

within the neighborhood Ni(s). In the case where 1 < k < N , s1 will count k 1s and N − k 0s,

s2 will count k− 1 1s and N − k+ 1 0s and s3 will count k+ 1 1s and N − k− 1 0s. Therefore,

si, i ∈ {1, 2, 3} will be different per two. Consequently, N1(s) ∩ N2(s) ∩ N3(s) = ∅. Similar

approach proves our claim for the cases where k = 1 and k = N . �

The aforementioned claim ensures that search within different neighborhood structures will lead

to evaluation of different solutions. Therefore, our algorithms hold the capability of escaping

from local optima.

36

4.1.3 Learning Algorithms

Core parameters of the learning algorithms are empirically selected with two ends in mind;

the accuracy performance and the computational efficiency. Seeking for a balance between

these two, we tested k-NN with k in {1,3,5,7,9}. Additionally, various RF implementations,

with number of DT’s in {10,20,30,40,50} and depth of pruning value in {10,15,20}, helped us

proceed to our final choice.

The number of neighboring classes that k-NN takes into consideration before classifying an

unknown patient is set to 5 and the RF classifier predicts class labels consulting with 20 10-

depth pruned decision trees. Moreover, the SVM classifier is implemented with a linear kernel,

meaning that it searches for the best linear hyper-plane that is able to discriminate the data.

The accuracy obtained from each learning algorithm is averaged after a 10-fold cross-validation.

4.1.4 RFE

The RFE heuristic is applied with an SVM classifier. In each dataset, the SVM-RFE

method eliminates 95% of the genes that are considered irrelevant, with a 10% step. Worth

mentioning that, in a typical RFE execution, such a step is considered quite large. In an

attempt of maintaining the computational complexity low, and since RFE is not the primary

search method, we apply it with the aforementioned parameters.

4.2 Evaluation Function

Each candidate solution is evaluated by four metrics; the accuracy of the three classifiers

and the cardinality of the incumbent gene subset. Consequently, the evaluation function is a

multi-objective one and is described below:

F (s) = α ∗ 3

a1(s) + a2(s) + a3(s)︸ ︷︷ ︸
a(s)

+(1− α) ∗ g(s) (1)

where a1(s), a2(s), and a3(s) denote the accuracy the SVM, k-NN and RF classifiers yield

from solution s, respectively, and g(s) indicates the number of selected genes. Assuming each

predictive model performs at least as good as a random classification, ai(s) ∈ [0.5, 1.0],∀i ∈
{1, 2, 3} (binary classification), thus 3∑

i=1,3 ai(s)
∈ [1, 2], while g(s) is a positive integer restricted

by the number of genes in each dataset. Parameter α acts as weight to the average accuracy of

the three classifiers, while 1− α acts similarly to the gene subset size. Figure 4.2.2 illustrates

the process of evaluating a solution.

37

Figure 4.2.2: The process of evaluating a candidate solution.

38

The evaluation function in Equation 1 is selected since it can offer a good trade-off between

the overall accuracy and the final number of selected genes. Experimentation led us to setting

α to 0.99; a value that, is consistent both with our objective of finding informative gene subsets

and with the co-domains of 3
a(s) and g(s) in Equation 1.

A similar fitness function is used in (Alba, Garcia-Nieto, Jourdan, and Talbi 2007) and

manages to balance accurate predictions and small gene subsets, although with different weight

values and using only the accuracy of a single learning algorithm.

4.3 Data Description and Preprocessing

The proposed methodology is tested on five publicly available cancer-related datasets; the

Leukemia (Golub, Slonim, Tamayo, Huard, Gaasenbeek, Mesirov, Coller, Loh, Downing, Calig-

iuri, et al. 1999), Lung (Gordon, Jensen, Hsiao, Gullans, Blumenstock, Ramaswamy, Richards,

Sugarbaker, and Bueno 2002), Ovarian (Petricoin III, Ardekani, Hitt, Levine, Fusaro, Steinberg,

Mills, Simone, Fishman, Kohn, et al. 2002), Colon (Alon, Barkai, Notterman, Gish, Ybarra,

Mack, and Levine 1999) and Breast (CGAN et al. 2012) cancer datasets. The first four were

originally taken from the public Kent Ridge Bio-medical Data Repository and hosted in ELVIRA

Biomedical Data Repository with url http://leo.ugr.es/elvira/DBCRepository/, while the

Breast Cancer Dataset was found under https://data.mendeley.com/datasets/v3cc2p38hb/

1. Sample size, dimensionality and the number of classes of each dataset are depicted in Table

4.1.

Table 4.1: Dataset characteristics

Dataset Sample size Number of genes Number of classes

Leukemia 72 7,129 2
Lung 181 12,533 2
Ovarian 253 15,154 2
Colon 62 2,000 2
Breast 590 17,814 2

Figure 4.3.3 gives an insight of what kind of data values our method deals with, illustrating

the tail of the Ovarian dataset. Each row represents a single patient’s attribute values, while

each column is a different gene. The last column, though, is the class column and, essentially

represents the value our learning algorithms want to predict. All data values are normalized and

missing ones are replaced by zeros, i.e., their mean. It should be noticed that the only dataset

which suffered from a few missing values (less than ten) was the Breast cancer one. Worth to

note that, the normalization technique we use does not affect the already normalized datasets

like the ones in Figure 4.3.3.

39

Figure 4.3.3: A segment of the Ovarian dataset.

40

4.4 Materials

All learning algorithms mentioned, the RFE heuristic, as well as the data normalization

leveraged the scikit-learn library’s (Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel,

Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, and

Duchesnay 2011), i.e., a Python’s library developed for data science purposes, built-in features.

41

CHAPTER 5

Results and Comparison

5.1 Performance of RFE-RVNS and RVNS

Tables 5.1 through 5.5 depict the performance of the proposed algorithms on five publicly

available well-known cancer-related datasets. The metrics measured are the Best, Mean and

Worst values of the classifiers’ accuracy, along with the respective #Genes, i.e., number of

genes, values. The Average accuracy metric should not be interpreted as a typical learning

algorithm’s accuracy, rather the ability of our algorithms to obtain informative genes for all

classifiers.

Table 5.1: The performance of RFE - RVNS and RVNS algorithms when applied with the SVM,
kNN and RF classifiers on the Leukemia dataset after ten independent runs.

Metrics RFE-RVNS RVNS

Best Mean Worst Best Mean Worst

Average accuracy 99.58 98.88 97.64 97.44 94.26 89.35
SVM accuracy 100 98.75 94.58 100 95.18 86.67
k-NN accuracy 100 99.58 97.08 97.5 93.84 87.56
RF accuracy 100 98.32 97.08 97.5 93.76 87.2
#Genes 3 3.8 5 2 4.7 8

Table 5.2: The performance of RFE - RVNS and RVNS algorithms when applied with the SVM,
kNN and RF classifiers on the Lung cancer dataset after ten independent runs.

Metrics RFE-RVNS RVNS

Best Mean Worst Best Mean Worst

Average accuracy 99.44 98.65 97.22 98.55 95.67 91.88
SVM accuracy 99.44 98.73 97.22 98.36 95.75 91.17
k-NN accuracy 100 98.67 97.22 98.36 95.19 91.14
RF accuracy 100 98.56 97.22 98.92 96.07 93.33
#Genes 2 2.2 3 2 2.5 3

42

Table 5.3: The performance of RFE - RVNS and RVNS algorithms when applied with the SVM,
kNN and RF classifiers on the Ovarian cancer dataset after ten independent runs.

Metrics RFE-RVNS RVNS

Best Mean Worst Best Mean Worst

Average accuracy 100 99.18 97.87 98.67 96.94 94.77
SVM accuracy 100 99.49 97.62 99.6 98.06 95.63
k-NN accuracy 100 99.21 98 98.4 97.04 94.52
RF accuracy 100 98.85 97.6 95.74 95.74 91.39
#Genes 2 2.4 3 3 4.1 7

Table 5.4: The performance of RFE - RVNS and RVNS algorithms when applied with the SVM,
kNN and RF classifiers on the Colon cancer dataset after ten independent runs.

Metrics RFE-RVNS RVNS

Best Mean Worst Best Mean Worst

Average accuracy 93.73 91.23 88.57 89.68 87.72 85.24
SVM accuracy 96.90 93.36 88.57 93.33 89.50 84.05
k-NN accuracy 96.90 92.69 89.05 90.00 87.79 84.05
RF accuracy 90.24 87.64 84.05 88.57 85.88 80.48
#Genes 4 5.5 8 3 5.5 8

Table 5.5: The performance of RFE - RVNS and RVNS algorithms when applied with the SVM,
kNN and RF classifiers on the Breast cancer dataset after ten independent runs.

Metrics RFE-RVNS RVNS

Best Mean Worst Best Mean Worst

Average accuracy 99.27 98.83 98.37 99.1 98.35 97.06
SVM accuracy 99.32 98.83 98.47 99.32 98.39 96.95
k-NN accuracy 99.32 98.97 98.31 99.32 98.39 97.12
RF accuracy 99.32 98.7 98.14 99.16 98.29 97.12
#Genes 1 1.7 2 2 2.5 3

43

Commenting upon figures in Tables 5.1, 5.2, 5.3 and 5.5, RFE-RVNS managed to obtain

a maximum, i.e., the maximum of Bests, of 100% accuracy and a minimum, i.e., the minimum

of Worst, of 97.22%, while the corresponding figures for RVNS are 99.10% and 89.35%. In the

case of the Colon dataset, both RFE-RVNS and RVNS faced some adversities in finding small

and informative gene subsets with Mean accuracy 91.23% and 87.22%, respectively.

Concerning the gene subset size, the Mean number of selected genes is impressively small

under both approaches, with 3.8-gene and 4.7-gene subsets being the largest average ones for

RFE-RVNS and RVNS, respectively. Again, in the Colon dataset, the behavior differs a little

with slightly larger gene subsets.

While both methods perform worthy, not only in terms of yielding informative, to all classi-

fiers, gene subsets, but also small sized ones, the dominance of RFE-RVNS over RVNS cannot

be overlooked.

Questioning whether one learning algorithm is favored over the others, or whether their

predictive ability significantly varies, Figure 5.1.1 shows that only in the case of the Colon

cancer dataset, the RF model performs somewhat worst than the other two.

Figure 5.1.1: SVM, kNN and RF mean accuracy in each dataset with RFE-RVNS.

In an attempt of deciphering our method’s behavior on the Colon dataset, we illustrated

the classifiers’ accuracy on current best solutions found every 15 iterations of a typical RVNS

execution. Graphs observed in Figure 5.1.2 indicate that gene subsets obtained often improve

one learning algorithm’s performance but worsen another, e.g., iterations 40 and 145. That

44

phenomenon adds to our intention of implementing a gene selection strategy that returns infor-

mative gene subsets for more than one classifiers, in the sense of quality and reliability.

Elaborating on our latter statement, we expect that an expert would prefer to study a gene

subset that is considered informative for more than one different learning classifiers, rather a

single one. The fact that SVM, kNN and RF do not learn with the same manner can be justified

again by Figure 5.1.2

Figure 5.1.2: SVM, kNN, RF and average accuracy values from a typical execution of RVNS
on the Colon dataset.

5.2 Comparison

As stated earlier, the proposed fitness function tries to achieve high performance on three

learning algorithms while maintaining a small gene subset size. However, most related work

was conducted by targeting one or two ends. Thereby, within the context of a search strategy

comparison, the objective function of RFE-RVNS and RVNS is modified in order to take only

the SVM’s accuracy into consideration, meaning that only a third of the classifications originally

made will occur. That allows us to intensify the search capability of RFE-RVNS and RVNS by

increasing the iterations from 300 to 500 and 1,000 respectively. Comparatively, in most related

studies, Wrapper methods tend to evaluate a few thousands candidate solutions as mentioned

45

in Chapter 3.

It is also in the same section that we refer to the Genetic Algorithm (GA) (Alba, Garcia-

Nieto, Jourdan, and Talbi 2007), the Geometrical Particle Swarm Optimization (GPSO) (Alba,

Garcia-Nieto, Jourdan, and Talbi 2007), the Genetic Bee Colony (GBC) (Alshamlan, Badr, and

Alohali 2015) and the Maximum Relevance Minimum Redundancy - SVM-RFE (MRMR+SVM)

(Mundra and Rajapakse 2010) algorithms. Furthermore, in Table 5.6, performance of FS

schemes like the Multiple Filter Multiple Wrapper (MFMW) (Leung and Hung 2010) and the

Ensemble Neural Network (ENN) (Liu, Cui, Jiang, and Ma 2004) is presented. Lastly, it must

be pointed out that, the Feature Selection - Random Projection (FS+RP) (Xie, Li, Zhang,

and Wang 2016) method does not appertain to typical FS techniques presented in this thesis;

instead, it is associated with the feature extraction ones. However, we proceed to a comparison

with it since, to the best of our knowledge, no other FS methods tested on the exact Breast

cancer dataset can be found in the literature.

Table 5.6: The performance of RFE-RVNS and RVNS algorithms when applied only with the
SVM classifier compared to similar methods.

Reference Leukemia Lung Ovarian Breast Colon

RFE-RVNS 99.86[4] 99.51[3] 99.80[3] 99.12[2] 96.69[5]
RVNS 98.84[5] 98.67[3] 98.55[4] 98.66[2] 93.74[6]
GA 95.86[4] 99.49[4] 98.83[4] - 100[3]
GPSO 97.38[3] 99.00[4] 99.44[4] - 100[2]
GBC 96.43[5] - - - 91.51[5]
MFMW - 98.34[6] - - 95.16[6]
SVM-RFE 98.35[37] - - - 91.68[78]
ENN - - 99.21[75] - 81.48[-]
FS+RP* - - - 98.97[>100] -

In Table 5.6, results indicate that RFE-RVNS outperforms well-known gene selection meth-

ods in all datasets except for the Colon one, while RVNS also obtains notable results. Thus, a

small, yet informative, gene subset can be successfully obtained under a VNS strategy. Com-

pared to similar methods, our algorithms perform better in terms of computational time since

they evaluate significantly less candidate solutions.

46

CHAPTER 6

Statistical Analysis

In this chapter we present an analysis of RVNS and RFE-RVNS from a statistical point of

view. Besides the key performance metrics, which are depicted in tables 5.1 to 5.5, we also

consider other metrics such as the number of iterations needed for the algorithms to converge

and how the class imbalance in the datasets affects our methods. Next, we examine the cor-

relation between gene values from the final gene subsets obtained after a typical execution of

RFE-RVNS. An interesting insight is to discover the neighborhood structure which yields the

most improvements. Finally, we apply a Mean Equality Test to check whether the difference

between mean performances of the two methodologies, mainly from an accuracy’s perspective,

are statistically significant.

6.1 Convergence

In Figure 6.1.1 it becomes obvious that 50% of the time, RVNS converges in less than

250 iterations, with the biggest average at around 230 iterations for the Leukemia dataset.

Therefore, and in conjunction with the satisfying results we presented in Chapter 5, our intuition

of setting the maximum iterations to 300 is a reasonable choice.

Another interesting fact is that, with outliers omitted from the data, the average number

of iterations, i.e., the black crosses within the boxes, tend to coincide with the median, i.e., the

black horizontal lines within the boxes, and all boxplots indicate that the number of iterations

required for the algorithm’s convergence resemble the ones from a normal distribution, as shown

in Figure 6.1.2.

Finally, Figure 6.1.3 depicts the number of iterations needed in order for RFE-RVNS to

converge. Similarly with the RVNS method, a threshold of 300 iterations consists a justifiable

choice.

47

Figure 6.1.1: Boxplot with the number of iterations needed for RVNS convergence.

Figure 6.1.2: Boxplot with the number of iterations needed for RVNS convergence (omitted
outliers).

48

Figure 6.1.3: Boxplot with the number of iterations needed for RFE-RVNS convergence.

6.2 Class Imbalance Influence

In this section we will elaborate on the effect of the class imbalance in the datasets, if any,

on the learning algorithms’ performance. More specifically, we will define a metric M as follows:

M =
|ClassA|
|ClassB|

, where |ClassA| and |ClassB| denote the number of samples in class A and class B, respectively.

The formulation above suits our case, since all datasets are two-class. An assumption we need

to make, though, is that the nominator will always be formed by the most populated class, i.e.,

M ≥ 1. Knowing the M value for each dataset, we move on to a Pearson correlation check

between the latter and each performance metric (mean values) as shown in Tables 6.1 and ??.

The last line of Table 6.1 indicates no significant correlation between the M -value and accu-

racy metrics, since correlation values lie within [−0.5, 0.5] and can be considered unimportant.

However, the number of genes seems to interact with the M -value and, more specifically, the

bigger the M -value, the smaller the number of genes. The same pattern is observed for RVNS

in Table 6.2, with slightly more correlated values. Therefore, the performance of RFE-RVNS is

less affected by the class imbalance issue, when compared to RVNS. Of course, we should point

out that our sample is restricted to the number of datasets we used in this thesis; thereby, the

49

Table 6.1: Correlation of the M -value with the respective metrics for RFE-RVNS.

RFE - RVNS

Dataset M-value Average SVM k-NN RF #Genes

Leukemia 1.88 98.88 98.75 99.58 98.32 3.8
Lung 4.84 98.65 98.73 98.76 98.56 2.2
Ovarian 1.78 99.18 99.49 99.21 98.85 2.4
Colon 1.82 91.23 93.36 92.69 87.64 5.5
Breast 8.67 98.83 98.83 98.97 98.7 1.7
Correlation - 0.34 0.31 0.30 0.37 -0.67

Table 6.2: Correlation of the M -value with the respective metrics for RVNS.

RVNS

Dataset M-value Average SVM k-NN RF #Genes

Leukemia 1.88 94.26 95.18 93.84 93.76 4.7
Lung 4.84 95.67 95.75 95.19 96.07 2.5
Ovarian 1.78 96.94 98.06 97.04 95.74 4.1
Colon 1.82 87.72 89.50 87.79 85.88 5.5
Breast 8.67 98.35 98.39 98.39 98.29 2.5
Correlation - 0.58 0.50 0.59 0.62 -0.83

said allegations are not accompanied by a statistical significance. However, they can be used as

some first insights whose gravity is to be further examined.

6.3 Gene Correlation

An ideal FS scheme should maintain insignificantly correlated features in the rationale that

correlated ones carry the same information about the imminent analysis’ scope. Thus, it is

interesting to see if the final gene subsets, obtained by our methods, consist of genes un-

correlated with each other. To benchmark the results, we compare the correlation of gene

values obtained by RVNS with those of random gene subsets of the same size. Experiments are

conducted on two datasets, namely the Leukemia and the Colon dataset.

As expected, Figures in Tables 6.3 through 6.6 witness that the correlation of gene expres-

sion values obtained by RVNS is insignificant. Random ones, on the other hand, seem to be

slightly correlated in some cases.

6.4 Improvements per Neighborhood Structure

Another insightful analysis of our methods is to figure out how were the different neigh-

borhood structures utilized. In particular, we are interested to see if, during a typical search,

50

Table 6.3: Correlation of gene values per two. Genes are obtained by a typical execution of
RVNS on the Leukemia dataset. Mean accuracy with reported genes is 94%.

Gene id 1673 5846 1749 3778 3644 5156

1673 1 0.01 0.16 -0.03 0.21 0.07
5846 - 1 -0.01 0.05 -0.19 0.16
1749 - - 1 -0.08 0.23 -0.04
3778 - - - 1 -0.12 -0.12
3644 - - - - 1 0.10
5156 - - - - - 1

Table 6.4: Correlation of gene values per two. Genes are obtained randomly on the Leukemia
dataset. Mean accuracy with reported genes is 80%.

Gene id 4697 4649 6312 5920 2667 736

4697 1 -0.10 0.10 0.17 0.09 0.39
4649 - 1 -0.02 -0.30 0.14 -0.21
6312 - - 1 -0.01 -0.01 0.00
5920 - - - 1 -0.25 0.02
2667 - - - - 1 -0.34
736 - - - - - 1

Table 6.5: Correlation of gene values per two. Genes are obtained by a typical execution of
RVNS on the Colon dataset. Mean accuracy with reported genes is 88%.

Gene id 491 49 1555

491 1 0.04 0.07
49 - 1 0.39
1555 - - 1

Table 6.6: Correlation of gene values per two. Genes are obtained randomly on the Colon
dataset. Mean accuracy with reported genes is 60%.

Gene id 1976 1474 648

1976 1 0.54 0.58
1474 - 1 0.57
648 - - 1

51

there are neighborhoods being overused, i.e., obtaining a better than the incumbent solution

is more frequent when searching within them, while others are underused. At this point, it is

convenient to remember the three neighborhood structures as defined in Chapter 4:

1. Replace a selected gene of the incumbent solution with an un-selected one.

2. Replace two selected genes of the incumbent solution with an un-selected one. If the

incumbent solution has only one gene selected, return the incumbent solution.

3. Add an un-selected gene to the incumbent solution. If there are no more genes to add,

return the incumbent solution.

All data are collected after ten independent runs of both algorithms. Results are presented

in pie charts and values upon them are the absolute values of improvements per neighborhood

and not percentages.

Figure 6.4.4: Improvements per neighborhood after 10 independent runs on the Leukemia
cancer dataset.

Figure 6.4.5: Improvements per neighborhood after 10 independent runs on the Lung cancer
dataset.

Two are the obvious findings depicted in all pie charts. First, all neighborhood structures

can be considered necessary for the search process, since each of them possess a statistically

52

Figure 6.4.6: Improvements per neighborhood after 10 independent runs on the Ovarian cancer
dataset.

Figure 6.4.7: Improvements per neighborhood after 10 independent runs on the Breast cancer
dataset.

Figure 6.4.8: Improvements per neighborhood after 10 independent runs on the Colon cancer
dataset.

53

significant share of improvements. Second is the fact that, yet again, our algorithms’ behavior

does not follow the same trend in the Colon dataset, as compared to the rest. The fundamental

difference in our algorithms’ behavior is that, in the Colon dataset, neighborhood structure 3

offers more improvements than it does in the other datasets, where neighborhood structure 1

prevails. That can be interpreted as a tendency of algorithms to ask for more information, i.e.,

genes, in order for the classifiers to obtain more accurate predictions for the Colon dataset.

6.5 Statistical Difference of RVNS and RFE-RVNS

Despite we have already observed some notable differences between RVNS and RFE-RVNS

in Section 5.1, a statistical evaluation on major metrics is essential. In order to obtain reliable

results, we ran our algorithms 30 times on each dataset. Metrics under examination are SVM,

kNN and RF accuracy, as well as their average one. Moreover, the number of genes in the final

gene subsets is also a measure we statistically compare.

Table 6.7: p-values after a t-test of equal means on RVNS and RFE-RVNS performance metrics.

Metric Leukemia Lung Ovarian Breast Colon

Average 7.02× 10−11 1.26× 10−9 1.56× 10−9 7.93× 10−8 9.41× 10−11

SVM 8.24× 10−11 7.19× 10−8 4.70× 10−9 8.91× 10−8 2.54× 10−9

k-NN 9.78× 10−11 1.10× 10−8 7.02× 10−10 1.22× 10−7 1.24× 10−6

RF 7.94× 10−8 6.63× 10−8 7.82× 10−8 3.39× 10−5 8.62× 10−4

#Genes 6.00× 10−3 8.51× 10−7 5.88× 10−5 1.64× 10−6 1.34× 10−1

Table 6.7 presents the p-values that resulted after a Welch’s t-test of equal means. It should

be noticed that such a statistical test works under the assumption that the two populations

have unequal variances and we use it since there is no indication to assume the two populations’

variances coincide. The two hypothesis made by the named test are:

1. H0: the means of the two populations are equal

2. H1: H0 is not true

In case the p-value is less than a certain threshold, i.e., level of significance, then someone

should reject hypothesis H0. In our case, we apply the aforementioned t-test with 0.05% signif-

icance level. Figures in 6.7, thus, indicate different means of all populations studied, except for

the number of genes in the Colon dataset. In a nutshell, the said statistical analysis indicates

that RVNS and RFE-RVNS do not perform equally in terms of accuracy and gene subset size.

54

CHAPTER 7

Conclusion

The final chapter is dedicated in summing up the objective, the methodology and the perfor-

mance of this thesis algorithmic proposal. Moreover, we mention the extent to which this study

tackles the FS problem and present references for future work. We conclude by commenting

upon the future directions of combinatorial optimization.

7.1 Summary

As already stated, the FS problem pertains to the class of combinatorial optimization prob-

lems. More specifically, the solution space grows exponentially with the problem’s size and

exact integer programming techniques fail to converge to a solution within a reasonable amount

of time, even for small problem instances.

The need of solving, to a certain degree, the FS problem, led to the development of specific

FS algorithms, as well as the use of search techniques successfully applied in combinatorial

optimization problems belonging to other domains. Thereby, nowadays, FS algorithms are

divided into Filters, Wrappers, Embedded and Ensemble, with the hybridization of two or more

from the said categories being a recent trend in the field.

Our initial approach involves the development of a Wrapper technique, namely an RVNS

algorithm. RVNS, a variant of the basic VNS algorithm, benefits from the systematic changes

in the neighborhoods structures it is searching into but avoids local search; thus, it is suitable

for large problem instances, like the ones we test it upon. Following the emerging tendency

in the FS domain, we have also developed a hybrid RFE-RVNS algorithm, which essentially

integrates two-phases, the first one made performed by the RFE and the second one from the

RVNS.

Among several domains addressing the need of FS, we proceed in applying our algorithms

upon cancer-related datasets, which are essentially comprised from gene values and, thereby,

we intertwine the term feature selection with gene selection. In particular, we are interested

55

to reduce the datasets’ variables so that a supervised-learning algorithm is able to correctly

classify unknown patients with as little information as possible. In order to have a solid verdict

of whether the chosen features carry the required information, we each time train and test three

different-learning classifiers with the same gene subset.

Result-wise, both of our algorithms converge reasonably fast and, compared to similar recent

methods, significantly faster. Additionally, gene subsets obtained are impressively small and

the accuracy levels extremely high. Therefore, we suggest both RVNS and RFE-RVNS as

appropriate gene selection algorithms.

From a statistical analysis standpoint, we have shown in Chapter 6 a few quite valuable

insights. First, we have presented some boxplots on the number of iterations to converge and

verified that the selection of 300 unsuccessful iterations is a reasonable choice. Another interest-

ing outcome of the said analysis was the fact that each neighborhood structure contributes, to a

certain degree, to the optimization procedure. Last, let us point out once again that the t-test

of equal means on the accuracy values of the two methodologies showed that the two proposed

methodologies do not perform equally, with RFE-RVNS having a considerate advantage over

RVNS.

7.2 Study Limits - Constraints

Within the scope of the present thesis, we develop and test our RVNS and RFE-RVNS

algorithms on cancer related datasets and, in particular, on two-class classification problems.

Despite the presence of a multitude of datasets necessitating FS, we focus our research on the

said problem class, mainly due to the fact that it is extremely difficult, just during a thesis

work, to thoroughly examine the behavior of both algorithms in more domains.

Enhancing RVNS with RFE is just one option among many others, where a pre-processing

FS phase could be achieved with all of known Filters, Wrappers, Embedded and Ensemble

methods. However, the range of this work is limited in examining the behavior of only RFE,

since RFE-RVNS performs impressively well and we have no reason, for now, to believe that

the proposed pre-processing step should be replaced by another FS algorithm.

Finally, it is meaningful to underline the fact that the used datasets are all health-related

ones and, as such, they consist of a relatively small sample size. Therefore, a generalization of

any algorithmic model tested upon such datasets is considered naive and should be certainly

avoided. Although other researchers tend to give prominence to their algorithms performing

well on similar datasets, we would like to point out that, at present, there is no clear winner

algorithmic-wise.

56

7.3 Future Work

Extending the present study, we aim at further evaluating our methods on more datasets, in

an attempt to get a better view of their behavior and performance. More specifically, we would

like to test RVNS and RFE-RVNS in the text classification domain, where the sample size is

not an issue, although the initial feature set is large enough. Finally, we are interested to apply

more Filters as pre-processing FS methods and combine the best performing ones with RVNS.

7.4 Thoughts on Combinatorial Optimization

We have seen, this far, the special kind of problems Combinatorial Optimization (CO)

deals with, as well as their applicability in many industry aspects. Moreover, we mentioned

that, in many cases, quadrillions or more of possible solutions need to be evaluated in order to

mathematically prove a certain solution is the best, with respect to an objective function. The

latter led to the rapid development of heuristic and metaheuristic techniques, which encompass

strategies that intelligently search a finite solution space, yielding acceptable solutions that

improve business processes and operations.

In this final section, we comment on the extend to which CO has infiltrated within in-

dustry and its associated operations. More specifically, we attempt to address the observed

phenomenon, according to which, the advancements in the field of Operations Research (OR)

and CO do not seem to be correlated with their utilization in practice. Therefore, despite OR is

derived from real-world problems and its purpose is to tackle them, it is today’s research in the

field that has lost the track or companies are unaware of how to take advantage of OR practices

or both. It is really interesting to observe this last remark in conjunction with the surprisingly

huge demand in Artificial Intelligence (AI) applications. Since this demand is accompanied

with a strong research focus on the scientific area of AI and ML, today’s flows formed are as

depicted in Figure 7.4.1.

Most people involved in the assimilation of technological developments within companies

and organizations are able to distinguish between trends that return real value and marketing

tricks. Dr. H. Ramalhinho Lourenco, giving a lecture on metaheuristics at the Universitat

Pompeu Fabra - Barcelona, mentions that trends and industry needs change and claims that,

at some point, OR will be at the forefront of developments again. Thereby, we need to be ready

when that time comes. For the whole lecture someone can visit https://www.youtube.com/

watch?v=bOM-M2yXdpc.

Let us note that, we, by no means, see the advancements in other scientific areas compet-

itively. After all, this thesis remarkably proves how the FS problem nicely combines elements

from both OR and AI. However, influenced by the rapid growth and industry’s absorption of

57

Figure 7.4.1: Worldwide interest based on google’s search engine for the terms OR, AI and ML
from 2004-01 until 2019-06.

Source: https://trends.google.com

AI and ML, in this section we also present a short study in recent CO developments that can

be proved game-changing.

7.4.1 Combinatorial Optimization Industry Infiltration

It was during World War II where George Dantzig, doing research as a mathematician in

the U.S. Pentagon, was asked to solve a COP regarding military operations. As he writes in

the Preface of his book with M. N. Thapa (Dantzig and Thapa 2006), the need of addressing

the problem he was given was the motive to invent the Simplex method which, in turn, helped

mathematical programming and OR shape and flower.

Today, the Simplex algorithm, along with other brilliant exact algorithms, are implemented

within commercial solvers like IBM CPLEX, Gurobi and XPRESS, offered as SaaS to companies

worldwide. The typical use of such software entails the strict mathematical formulation of the

problem, in the form of a linear or a mixed-integer linear program, which sometimes requires

the direct communication of the IT department of the client side with experts from the SaaS

company’s side.

In section 2.1, we established the fact that exact algorithms lack in computational efficiency

against heuristic and metaheuristic approximate methods. However, it is worth to notice that

58

the said solvers are capable of handling millions of variables and constraints and, with modern

parallelization and cloud computing techniques, they manage to compute optimal solutions

within hours (mainly running in batch mode for tasks that a few hours of computing time is

worth in favor of an exact solution). Therefore, there are thousands of leading companies that

have added this kind of optimization software to their technical stack. For instance, Figure

7.4.2 witnesses only a few of the Gurobi Solver clients.

Figure 7.4.2: Indicative Gurobi Solver clients.

Source: http://www.gurobi.com/company/example-customers

Turning to the approximate methods, things are not so clear as the exact ones. Essentially,

we can only assume that, for problems that are intractable even for the said powerful solvers,

companies have to implement heuristic and metaheuristic techniques to tackle them. A certain

thing is that, the fact that these methods do not guarantee optimal solutions, constitutes a

critical reason for companies not to advertise their usage. Moreover, Dr. H. Ramalhinho

Lourenco, in the same lecture we mentioned before, says that perhaps many companies ignore

their existence. Of course, if the latter stands to a big extend, anyone involved in the OR field

should be worried.

However, there are indications that colossal IT companies leverage the advantages of heuris-

tic and metaheuristic algorithms, and we mainly base this allegation on the research they pub-

lish. For example, Microsoft Research Silicon Valley lab published a paper regarding heuristic

validation for virtual machines consolidation (Lee, Panigrahy, Prabhakaran, Ramasubramanian,

59

Talwar, Uyeda, and Wieder 2011) that negotiates and compares the efficiency of virtual machine

placement policies, using a variety of simulation scenarios. Another publication concerning the

same COP is that of (Gao, Guan, Qi, Hou, and Liu 2013), where one of the authors, Liang Liu,

was that time working at China’s IBM Research department.

The aforementioned cases enhance the reasoning that heuristic and metaheuristic algorithms

are, indeed, daily contributors towards optimized business operations in many problems where

exact solvers fail. Our final point is that, if someone looks more carefully into the issue we

discuss, they might notice that such business operations are information-sensitive. Competency

tactics, thus, definitely possess a huge part in keeping intra-business algorithmic developments

obfuscated. At the end, companies advertise what they sell and not how they implemented it.

7.4.2 Future Directions of Combinatorial Optimization

Following recent advances within CO, the etching of two courses can be observed. The

first one involves the automation of metaheuristic algorithms configuration, while the second

concerns with the development of specific hardware that leverages the quantum-inspired concept

of a bit’s superposition, i.e., the capability of a bit to both be at state 0 and state 1 at the same

time. The next paragraphs are dedicated in shortly elaborating on both CO future directions.

Stützle and López, within their recent paper (Stützle and López-Ibáñez 2019), describe the

difficulties designers face during the process of developing a metaheuristic algorithm. Using

iterated local search (Lourenço, Martin, and Stützle 2003) as an exemplary metaheuristic, they

show how a multitude of different configurations can lead to different metaheuristics. Their work

concludes by claiming that existing automatic algorithm configuration techniques will lead in

the way metaheuristic algorithms will be implemented in the years to come.

The second direction of advances in CO derives from the bottleneck current computers

face, e.g., Moore’s law. A promising approach is that of Fujitsu and other leading IT companies

follow, that is, to intertwine concepts from quantum-mechanics with current hardware materials

towards the design of specific machines that are capable of tackling COPs within significantly

shorter times than traditional computers do. The said development, as Figure 7.4.3 illustrates,

is expected to balance the analogy of data volume and computing performance.

A typical example of this kind of specific hardware consists the Fujitsu Digital Annealer ma-

chine. According to its official website, https://www.fujitsu.com/global/digitalannealer,

Digital Annealer is the world’s first Quantum-Inspired technology and, advertises 300x faster

computing times than traditional computers, with applicability within a wide range of COPs. In

a nutshell, this machine is built on a custom configured FPGA that is able to emulate quantum

bits in a digital circuit design.

Despite the aforesaid advances look quite promising, let’s not forget that they consist private

60

Figure 7.4.3: The need for more computing power.

Source: https://www.fujitsu.com/global/documents/digitalannealer/services/da-introduction-
.pdf

company assets. Therefore, it is more safe to judge them after their performance is extensively

tested in real life problems.

We conclude by mentioning the famous, among computer scientists, paraphrased saying

that, good algorithms are better than any hardware. Our belief is that, in the case of COPs,

it is probably developments in both algorithms and computing architectures that will give

prominence to the value of OR and CO techniques, making their absorption by industries a

necessity.

61

BIBLIOGRAPHY

Alba, E., J. Garcia-Nieto, L. Jourdan, and E.-G. Talbi (2007). Gene selection in cancer

classification using pso/svm and ga/svm hybrid algorithms. In Evolutionary Computation,

2007. CEC 2007. IEEE Congress on, pp. 284–290. IEEE.

Alon, U., N. Barkai, D. A. Notterman, K. Gish, S. Ybarra, D. Mack, and A. J. Levine (1999).

Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tis-

sues probed by oligonucleotide arrays. Proceedings of the National Academy of Sciences 96 (12),

6745–6750.

Alpaydin, E. (2009). Introduction to machine learning. MIT press.

Alshamlan, H. M., G. H. Badr, and Y. A. Alohali (2015). Genetic bee colony (gbc) algorithm:

A new gene selection method for microarray cancer classification. Computational biology and

chemistry 56, 49–60.

Beloglazov, A., J. Abawajy, and R. Buyya (2012). Energy-aware resource allocation heuristics

for efficient management of data centers for cloud computing. Future generation computer

systems 28 (5), 755–768.

Bir-Jmel, A., S. M. Douiri, and S. Elbernoussi (2019). Gene selection via bpso and backward

generation for cancer classification. RAIRO-Operations Research 53 (1), 269–288.

Blum, C. and A. Roli (2003). Metaheuristics in combinatorial optimization: Overview and

conceptual comparison. ACM computing surveys (CSUR) 35 (3), 268–308.

Bolón-Canedo, V., N. Sánchez-Marono, A. Alonso-Betanzos, J. M. Beńıtez, and F. Herrera

(2014). A review of microarray datasets and applied feature selection methods. Information

Sciences 282, 111–135.

CGAN, C. G. A. N. et al. (2012). Comprehensive molecular portraits of human breast tumours.

Nature 490 (7418), 61.

Chuang, L.-Y., C.-H. Yang, K.-C. Wu, and C.-H. Yang (2011). A hybrid feature selection

method for dna microarray data. Computers in biology and medicine 41 (4), 228–237.

62

Cover, T. M., P. E. Hart, et al. (1967). Nearest neighbor pattern classification. IEEE trans-

actions on information theory 13 (1), 21–27.

Dantzig, G. B. and M. N. Thapa (2006). Linear programming 1: introduction. Springer Science

& Business Media.

Dash, M. and H. Liu (2003). Consistency-based search in feature selection. Artificial intelli-

gence 151 (1-2), 155–176.

Domon, B. and R. Aebersold (2006). Mass spectrometry and protein analysis. sci-

ence 312 (5771), 212–217.

Gao, Y., H. Guan, Z. Qi, Y. Hou, and L. Liu (2013). A multi-objective ant colony system

algorithm for virtual machine placement in cloud computing. Journal of Computer and System

Sciences 79 (8), 1230–1242.

Golub, T. R., D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov, H. Coller,

M. L. Loh, J. R. Downing, M. A. Caligiuri, et al. (1999). Molecular classification of cancer:

class discovery and class prediction by gene expression monitoring. science 286 (5439), 531–537.

Gordon, G. J., R. V. Jensen, L.-L. Hsiao, S. R. Gullans, J. E. Blumenstock, S. Ramaswamy,

W. G. Richards, D. J. Sugarbaker, and R. Bueno (2002). Translation of microarray data

into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and

mesothelioma. Cancer research 62 (17), 4963–4967.

Guyon, I., J. Weston, S. Barnhill, and V. Vapnik (2002). Gene selection for cancer classification

using support vector machines. Machine learning 46 (1-3), 389–422.

Hall, M. A. (1999a). Correlation-based feature selection for machine learning.

Hall, M. A. (1999b). Correlation-based feature selection for machine learning.

Hansen, P., N. Mladenović, and J. A. M. Pérez (2010). Variable neighbourhood search: meth-

ods and applications. Annals of Operations Research 175 (1), 367–407.

Kerr, M. K., M. Martin, and G. A. Churchill (2000). Analysis of variance for gene expression

microarray data. Journal of computational biology 7 (6), 819–837.

Kira, K. and L. A. Rendell (1992). The feature selection problem: Traditional methods and a

new algorithm. In Aaai, Volume 2, pp. 129–134.

Kytöjoki, J., T. Nuortio, O. Bräysy, and M. Gendreau (2007). An efficient variable neighbor-

hood search heuristic for very large scale vehicle routing problems. Computers & operations

research 34 (9), 2743–2757.

63

Lee, S., R. Panigrahy, V. Prabhakaran, V. Ramasubramanian, K. Talwar, L. Uyeda, and

U. Wieder (2011). Validating heuristics for virtual machines consolidation. Microsoft Research,

MSR-TR-2011-9 , 1–14.

Leung, Y. and Y. Hung (2010). A multiple-filter-multiple-wrapper approach to gene selection

and microarray data classification. IEEE/ACM Transactions on Computational Biology and

Bioinformatics (TCBB) 7 (1), 108–117.

Liu, B., Q. Cui, T. Jiang, and S. Ma (2004). A combinational feature selection and ensemble

neural network method for classification of gene expression data. BMC bioinformatics 5 (1),

136.

Lourenço, H. R., O. C. Martin, and T. Stützle (2003). Iterated local search. In Handbook of

metaheuristics, pp. 320–353. Springer.

Mladenović, N. and P. Hansen (1997). Variable neighborhood search. Computers & operations

research 24 (11), 1097–1100.

Mundra, P. A. and J. C. Rajapakse (2010). Svm-rfe with mrmr filter for gene selection. IEEE

transactions on nanobioscience 9 (1), 31–37.

Narendra, P. M. and K. Fukunaga (1977). A branch and bound algorithm for feature subset

selection. IEEE Transactions on computers (9), 917–922.

Osman, I. H. and J. P. Kelly (1996). Meta-heuristics: an overview. In Meta-heuristics, pp.

1–21. Springer.

Paessens, H. (1988). The savings algorithm for the vehicle routing problem. European Journal

of Operational Research 34 (3), 336–344.

Papadimitriou, C. H. (2003). Computational complexity. John Wiley and Sons Ltd.

Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,

P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,

M. Perrot, and E. Duchesnay (2011). Scikit-learn: Machine learning in Python. Journal of

Machine Learning Research 12, 2825–2830.

Petricoin III, E. F., A. M. Ardekani, B. A. Hitt, P. J. Levine, V. A. Fusaro, S. M. Steinberg,

G. B. Mills, C. Simone, D. A. Fishman, E. C. Kohn, et al. (2002). Use of proteomic patterns

in serum to identify ovarian cancer. The lancet 359 (9306), 572–577.

64

Saeys, Y., T. Abeel, and Y. Van de Peer (2008). Robust feature selection using ensemble feature

selection techniques. In Joint European Conference on Machine Learning and Knowledge

Discovery in Databases, pp. 313–325. Springer.

Sifaleras, A., I. Konstantaras, and N. Mladenović (2015). Variable neighborhood search for

the economic lot sizing problem with product returns and recovery. International Journal of

Production Economics 160, 133–143.

Stützle, T. and M. López-Ibáñez (2019). Automated design of metaheuristic algorithms. In

Handbook of Metaheuristics, pp. 541–579. Springer.

Toth, P. and D. Vigo (2002). The vehicle routing problem. SIAM.

Tsai, J.-T., T.-K. Liu, and J.-H. Chou (2004). Hybrid taguchi-genetic algorithm for global

numerical optimization. IEEE Transactions on evolutionary computation 8 (4), 365–377.

Wu, X., V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J. McLachlan, A. Ng,

B. Liu, S. Y. Philip, et al. (2008). Top 10 algorithms in data mining. Knowledge and infor-

mation systems 14 (1), 1–37.

Xiao, Y., I. Kaku, Q. Zhao, and R. Zhang (2011). A reduced variable neighborhood search

algorithm for uncapacitated multilevel lot-sizing problems. European Journal of Operational

Research 214 (2), 223–231.

Xie, H., J. Li, Q. Zhang, and Y. Wang (2016). Comparison among dimensionality reduction

techniques based on random projection for cancer classification. Computational biology and

chemistry 65, 165–172.

Yu, L. and H. Liu (2003). Feature selection for high-dimensional data: A fast correlation-

based filter solution. In Proceedings of the 20th international conference on machine learning

(ICML-03), pp. 856–863.

Yu, L. and H. Liu (2004). Redundancy based feature selection for microarray data. In Proceed-

ings of the tenth ACM SIGKDD international conference on Knowledge discovery and data

mining, pp. 737–742. ACM.

65

