

UNIVERSITY OF MACEDONIA

GRADUATE PROGRAM

DEPARTMENT OF APPLIED INFORMATICS

DISTRIBUTED COMPUTING IN GO: COMPARATIVE ANALYSIS OF WEB

APPLICATION FRAMEWORKS

Master Thesis

of

Evgenios Sochopoulos

Thessaloniki, June 2020

iii

DISTRIBUTED COMPUTING IN GO: COMPARATIVE ANALYSIS OF WEB

APPLICATION FRAMEWORKS

Evgenios Sochopoulos

Diploma in Rural and Surveying Engineering, Aristotle University of Thessaloniki, 2017

Master Thesis

submitted for the partial fulfillment of the

DEGREE OF MASTER OF SCIENCE IN APPLIED INFORMATICS

Supervisor

Professor Konstantinos G. Margaritis

Approved by examining board on 30/06/2020

Prof. Konstantinos G.

Margaritis

Assoc. Prof. Theodoros

Kaskalis

Prof. Maria – Aikaterini

Satratzemi

...................................

Evgenios Sochopoulos

...................................

iv

Abstract

While the Go programming language it is a relatively new language, it has gained

immense popularity in the last years and is now used by many major companies and

organizations, especially in the cloud computing field. Go is a great language for

developing high-performance, scalable web applications and, as it is an open-source

language, many web frameworks have emerged to help the development of such

applications.

The main objective of this thesis is to evaluate and compare the features of five

selected Go web frameworks, based on certain criteria. It consists of four chapters. The

first chapter is an introduction to Go with general information about the origins, the

design and its usage, followed by a demonstration of the language’s most basic aspects

that are accompanied by code examples. The second chapter presents a brief overview of

distributed computing, from introductory concepts and communication techniques to the

ways software components of distributed systems are organized. In the third chapter, five

Go web frameworks are selected along with specific evaluation criteria, based on which

the selected frameworks are compared to each other. Finally, the fourth chapter gives a

detailed description of the procedure followed in the making of a demo application using

each one of the five selected frameworks, which was used for the determination of the

criteria for the frameworks comparison.

Keywords: distributed computing, Go, web framework, web application, web

application framework, comparative analysis, frameworks comparison, REST

v

Table of Contents

1 An Introduction to Go 1

1.1 The Go Programming Language 1

1.1.1 Origins 1

1.1.2 Design 2

1.1.3 Usage 5

1.2 Writing Go code 6

1.2.1 Packages, variables and functions 6

1.2.2 Flow control statements 11

1.2.3 Structs, slices and maps 14

1.2.4 Methods and interfaces 20

1.2.5 Concurrency 24

1.3 A conclusion of the Go language 29

2 An Overview of Distributed Computing 30

2.1 Introduction 30

2.1.1 Definition of a distributed system 31

2.1.2 Design goals 32

2.2 Communication 33

2.2.1 Foundations 34

2.2.2 Remote procedure call 36

2.2.3 Message-oriented communication 38

2.3 Architectural styles 41

2.3.1 Layered architectures 41

2.3.2 Object-based architectures 42

2.3.3 Service-oriented architectures 44

2.3.4 Resource-based architectures 45

2.3.5 Publish-subscribe architectures 46

2.4 Web applications and frameworks 47

3 Comparison of Web Frameworks 50

3.1 Go for web applications 50

3.2 Frameworks selection 50

3.3 Criteria for frameworks comparison 51

vi

3.4 Comparison of frameworks 54

3.4.1 Internationalization 55

3.4.2 Testing 55

3.4.3 Templating-Rendering 56

3.4.4 Validation 58

3.4.5 HTTP Client 59

3.4.6 Caching 59

3.4.7 Logging 60

3.4.8 Static File Serving 61

3.4.9 File Upload-Download 61

3.4.10 Session-Cookies 62

3.4.11 Authentication 63

3.4.12 Database Handling 63

3.4.13 Emails 64

3.4.14 Convention over Configuration 65

3.4.15 Learning Curve 66

3.4.16 Usability 67

3.4.17 Code Structure 68

3.4.18 Security 69

3.4.19 Contribution 70

3.4.20 Community 71

3.4.21 Extensibility 71

3.4.22 Performance 72

3.4.23 Summary 77

4 Demo Application 80

4.1 The application’s rationale 80

4.2 Project structure 83

4.2.1 Gin 83

4.2.2 Beego 84

4.2.3 Echo 85

4.2.4 Buffalo 85

4.2.5 Iris 86

4.2.6 Front-end 87

vii

4.3 Writing the application 88

4.3.1 Gin 89

4.3.2 Beego 92

4.3.3 Echo 95

4.3.4 Buffalo 96

4.3.5 Iris 99

4.3.6 Front-end 100

References 105

List of Figures

Figure 1. A distributed system organized in a middleware layer 32

Figure 2. The OSI model's layers, interfaces and protocols ... 35

Figure 3. A message as it appears inside the network .. 36

Figure 4. The steps involved in a remote procedure call doIt(a, b). The return path

is not shown .. 38

Figure 5. A connection-oriented communication using sockets 39

Figure 6. A message-queuing system with a message broker .. 40

Figure 7. a) A pure layered organization b) A layered organizations with up-calls 41

Figure 8. An Internet search engine organized in three different layers 42

Figure 9. The object-based architecture ... 43

Figure 10. General organization of a remote object communication 44

Figure 11. Data items exchanging between publishers and subscribers 47

Figure 12. Total no. of Requests for GET collection ... 74

Figure 13. Requests/sec for GET collection ... 75

Figure 14. Average Request Time for GET collection .. 75

Figure 15. Total no. of Requests for POST entity .. 76

Figure 16. Requests/sec for POST entity ... 76

Figure 17. Average Request Time for POST entity ... 77

Figure 18. The Speak4Env Application ... 81

Figure 19. Creating a single Post .. 81

Figure 20. Successful creation of a Post ... 82

viii

Figure 21. General project structure ... 83

Figure 22. Gin project structure ... 83

Figure 23. Beego project structure ... 84

Figure 24. Echo project structure ... 85

Figure 25. Buffalo project structure ... 86

Figure 26. Iris project structure .. 87

Figure 27. Front-end folder structure ... 87

List of Tables

Table 1. Functional and Non-Functional requirements .. 52

Table 2. Performance evaluation results for the 5 frameworks .. 74

Table 3. Overall comparison of web frameworks .. 78

List of Abbreviations

API Application Programming Interface

ASCII American Standard Code for Information Interchange

CDN Content Delivery Network

CLI Command Line Interface

CRUD Create Retrieve Update Delete

CSS Cascading Style Sheets

CSV Comma Separated Values

DevOps Development and Operations

FTP File Transfer Protocol

GCC GNU Compiler Collection

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

HTTPS HyperText Transfer Protocol Secure

IDE Integrated Development Environment

JS JavaScript

ix

JSON JavaScript Object Notation

JSONP JavaScript Object Notation with Padding

LIFO Last In First Out

LLVM Low Level Virtual Machine

MVC Model View Controller

ORM Object Relational Mapping

OS Operating System

REST Representational State Transfer

RPC Remote Procedure Call

SSL Secure Sockets Layer

SMTP Simple Mail Transfer Protocol

TLS Transport Layer Security

TXT Text

TOML Tom’s Obvious, Minimal Language

URI Uniform Resource Identifier

URL Uniform Resource Locator

XML Extensible Markup Language

YAML YAML Ain’t Markup Language

MCR Model Controller Routes

1

 1 An Introduction to Go

 1.1 The Go Programming Language

 1.1.1 Origins

On September 21, 2007, Robert Griesemer, Rob Pike and Ken Thompson started

conceiving the first ideas for a new language. A few days were enough to transform these

ideas into a plan to do something and also to have a fair idea of what the language would

be eventually. The language design continued part-time in parallel with unrelated work.

Until January 2008, Thompson had started work on a prototype compiler to explore some

ideas of his, which generated C code as its output. By mid-year the language had become

a full-time project and had matured enough for a first attempt to create a production

compiler. In May 2008, Ian Taylor started working independently on a GCC front-end

for Go using the draft specification. Another addition to the team was Russ Cox, who

joined in late 2008 and helped move the language and libraries from prototype to reality.

Go became an open source project on November 10, 2009. Since then, countless people

from the Go community have contributed to the project with their precious ideas,

discussions and code [1].

Go was born out of frustration with existing languages and environments for the

work that was carried out at Google. Programming had become difficult and one of the

reasons was the languages that were being used. At the time of Go’s inception,

production software was usually written in C++ or Java, and there was a big frustration

by the unneeded complexity required to use the above languages for server

programming. Furthermore, computers had become a lot quicker since the first

appearance of languages like C, C++ or Java. It was clear that multiprocessors were

becoming universal, but no language offered enough help to program easily these

processors and also the programming art was not too advanced [1].

So, the choices were either efficient compilation, efficient execution, or ease of

programming. All three of those characteristics were not available in the same language.

Programmers were choosing ease over safety and efficiency by using dynamically typed

languages such as Python and JavaScript rather than C++ or even Java [1].

2

Google was not the only company troubled by these concerns. After many years

of a quiet landscape for programming languages, Go was among the first of several new

languages like Rust, Elixir or Swift that have made programming language development

an active field again [1].

As a result, Google took a step back and thought how a new programming

language would face the most critical issues that were going to dominate software

engineering in the years ahead. Go addressed these issues by endeavoring to combine the

ease of programming of an interpreted, dynamically typed language with the efficiency

and safety of a statically typed, compiled language. On top of that, it aimed to be modern,

suitable for networked and multicore computing with first-class support for concurrency

and parallelism, but also to make resource management tractable in a large concurrent

program and ensure some sort of safe automatic memory management (garbage

collection). But most importantly, working with Go was intended to be fast, meaning it

should take at most a few seconds to build a large executable file on a single computer.

To meet these goals, the language would require to have an expressive but lightweight

type system, concurrency and garbage collection, rigid dependency specification and so

on. These features can only be addressed well by a new language and not by libraries or

tools [1].

 These considerations led to a series of discussions from which Go arose, first as a

set of prerequisites and ideas, then as a language. Go also had a more general purpose: to

do more to help the working programmer by enabling tooling, automating tedious tasks

such as code formatting and making it easier to work on large code bases [1].

 1.1.2 Design

The basic syntax of Go is similar to that of the C family, with significant input

from the Pascal, Modula and Oberon languages family, regarding declarations and

packages. Regarding the concurrency practices, Go was influenced by languages such as

Newsqueak and Limbo [1].

Go’s design attempts to reduce the amount of typing in both senses of the word,

as well as to reduce clutter and complexity. As a result, there are no forward declarations

and no header files and everything is declared exactly once. Syntax is clean, with a small

number of keywords. Initialization is truly expressive, easy to use and automatic by using

3

a single declare-and-initialize construct. A radical feature of the language is that there is

no type hierarchy. Types just are, without having to announce their relationships. All

these simplifications allow the language to be expressive yet comprehensible without

sacrificing sophistication [1].

An important principle is to maintain the orthogonality of the concepts. For

example, in Go, methods can be implemented for any type and structures represent data

while interfaces represent abstraction. Orthogonality makes it easier to understand what

happens when many things are combined together [1].

Is Go an object-oriented language? Yes and no at the same time. Although Go has

types and methods and allows to program in an object-oriented way, there is no type

hierarchy. The “interface” in Go provides a different approach that is really easy to use

and more general in some ways. There is also the capability of embedding types in other

types to provide something similar-but not identical-to subclassing. In addition, methods

in Go are more general than in languages such as C++ or Java, meaning that they can be

defined for any kind of data, even built-in types such as integers. It is clear that they are

not restricted to structs (the analogous to classes in this case). Another thing is that, the

lack of a type hierarchy makes “objects” in Go feel more lightweight than in traditional

object-oriented languages languages [1].

Go has an extensive library, called the runtime, which is part of every Go

program. The runtime library implements critical features of the Go language: garbage

collection, concurrency, stack management and other ones too. Go's runtime could be

compared to libc, the C library. However, it is important to understand that Go's runtime

does not involve a virtual machine, like the Java runtime for example. Programs written

in Go are compiled ahead of time to native machine code (for some variant

implementations could also be compiled to JavaScript or WebAssembly). To sum up,

although the term “runtime” is most often used to describe the virtual environment in

which a program runs, in Go is just the name given to the library that enables the use of

critical language services [1].

Apart from having a lot of useful features, Go also lacks some pretty common

tools found in many languages: generics, exceptions and assertions. Generics are

convenient, but they come at a cost in complexity in the type system and run-time, plus

the current Go traits enable a similar behavior to that of generics. Also Go does not have

4

exceptions, because they often result in convoluted code and in the labelling of many

ordinary errors as exceptional. Instead, Go offers the multi-value returns, errors as a

canonical type and the “defer”, “panic” and “recover” functions for truly exceptional

conditions. Last, assertions are absent due to the need of servers and programs in general

to be live, even if an error occurs. In addition, they tend to make programmers avoid

thinking properly about error handling and reporting [1].

Go was also designed to provide concurrency as a basic component. But

concurrency and multi-threaded programming have developed a reputation for difficulty

over time. Google’s belief is that, this happens due partly to complex designs like

pthreads and partly to overemphasizing on low-level details such as mutexes, condition

variables and memory barriers. Higher-level concepts enable a lot simpler code, even if

there are still lower level designs, such as mutexes, under the covers [1]. Tony Hoare's

Communicating Sequential Processes, or just CSP, is one of the most successful models

for providing high-level linguistic support for concurrency. Two well-known languages

that stem from CSP are Occam and Erlang. Go's concurrency primitive structures come

from a different part of the family tree whose main contribution is the notion of channels

as first-class objects, as experience with earlier languages has shown that the CSP model

fits very well into a procedural language framework [1].

Goroutines are also part of making concurrency easy to use with the Go language.

The main idea is to multiplex independently executing functions-coroutines onto a set of

threads. When a coroutine blocks, such as by calling a blocking system call, the run-time

automatically moves other coroutines on the same operating system thread to a different,

runnable thread so they won't be blocked. The programmers can’t see any of these

operations; and this is the point. The result, which Go calls goroutines, can be very

cheap, so that they have just a few kilobytes of overhead beyond the memory for the

stack. For the stacks to be small, the Go run-time uses resizable, bounded stacks. A

newly created goroutine is given a few kilobytes, which is enough most of the time.

When it isn't, the run-time grows (or shrinks) the memory for storing the stack

automatically, allowing many goroutines to live in a modest amount of memory. So it

could be practical to create a large number of goroutines in the same address space. If

goroutines were just the classic threads, system resources would run out at a much

smaller number of existing goroutines [1].

5

 1.1.3 Usage

C and Go can be used together in the same address space, but this is not a natural

fit and may require some special interface software. Another thing is that, linking C with

Go code gives up the memory safety and stack management features that Go provides.

There may be cases that it's absolutely necessary to use C libraries to solve a problem,

but doing so always introduces some risk not present with pure Go code, which requires

special care. If the C and Go combination is absolutely necessary, then the process

followed depends on the Go compiler implementation. There are three Go compiler

implementations developed by the Go team. These are: gc, the default compiler, gccgo,

which uses the GCC back-end, and a less mature gollvm that uses the LLVM

infrastructure [1].

The Go project does not include a dedicated IDE. Although, the language itself

and the libraries have been designed to make it easy to analyze source code. That means,

that most well-known editors and IDEs support Go, either directly or through a plugin.

There are some well-known IDEs and text editors that have good Go support available,

like Emacs, Vim, Visual Studio Code, Atom, Eclipse, Sublime and Goland [1].

Go now is used worldwide by millions of programmers, whose numbers are

growing every day. A lot of companies and projects have made their own success stories

using Go, especially in the cloud computing space, but by no means exclusively in this

field. For example, Docker and Kubernetes are a couple of major cloud infrastructure

projects written in Go [1]. But cloud is not the only reason to choose Go. It can also be

used for building command-line interfaces, for classic web development or it can even

support DevOps and site reliability [2].

Programmers who want to know more about the Go language, can find a lot of

useful resources in the golang.org, go.dev and github.com/golang/go/wiki web pages.

These resources include news about the language, download links, extensive packages

documentation, essential learning material, social media, a wiki and blog.

https://golang.org/
https://go.dev/
https://github.com/golang/go/wiki

6

 1.2 Writing Go code

Go has many great features as a programming language. To start writing Go code,

one should have a basic knowledge of the language’s most basics aspects. In the

following paragraphs, the basic features of Go are going to be demonstrated by providing

on-point code examples with thorough explanation.

 1.2.1 Packages, variables and functions

 1.2.1.1 Packages

Go programs are organized into the so-called “packages”. A package is a

collection of Go source files in the same directory that are compiled together. Types,

variables, constants and functions defined in one source file are visible to all other source

files within the same package [3]. Packages are imported via their import path, which is

the directory path inside the src folder of the GOPATH. This rule does not apply to the

packages of the standard library that can be imported just by specifying their name.

packages.go [3]

package main

import "fmt"

func main() {
 fmt.Println("Hello, World!")
}

If 2 or more packages must be imported, multiple import statements can also be

used. But the best practice is to group the imports into a parenthesized import statement

[4].

imports.go [5]

package main

import (
 "fmt"
 "math/rand"
)

func main() {
 fmt.Println("Just a random number: ", rand.Intn(10))
}

7

 1.2.1.2 Comments

Go has C-style /* */ block comments and C++-style // line comments. Line

comments are more common than block comments, as they appear mostly as package

comments, but are useful within an expression or to disable large chunks of code. [6].

comments.go [3]

/*
This is a block comment that describes the package.
It contains multi-line comments.
 */
package main

import "fmt"

// This is a single-line comment that provides the function's description.
func main() {
 fmt.Println("Hello, World!")
}

 1.2.1.3 Exported names

A name in Go is exported only if it begins with a capital letter. For example, Pi is

an exported name, which is exported from the math package. pi does not start with a

capital letter, so it will not be exported.

When importing a package, references can be made only to its exported names.

Any "unexported" names are not going to be accessible from outside the package [7].

exported-names.go [7]

package main

import (
 "fmt"
 "math"
)

func main() {
 // This line will throw an error.
 fmt.Println(math.pi)

 // This line won't, as Pi is an exported name from package math.
 fmt.Println(math.Pi)
}

 1.2.1.4 Functions

Functions in Go are declared using the func keyword. They can take zero or

more arguments. The variables’ type comes after their name [8]. If 2 or more function

parameters are of the same type, it can be omitted from all but the last [9].

8

Multiple values can also be returned by a function [10]. But these values can be

named as well. In such case, they are treated as variables defined at the top of the

function. Their names re used to document the meaning of the returned values [11].

A return statement without receiving arguments, returns these named values and

is known as a “naked” return. They should be used only in small functions, as they will

harm readability in bigger ones [11].

functions.go [8] [9] [10] [11]

package main

import "fmt"

// Function add1 takes 2 arguments of int.
func add1(x int, y int) int {
 return x + y
}

// Function add2 has a shortened parameter declaration
func add2(x, y int) int {
 return x + y
}

// Function swap returns 2 string values
func swap(x, y string) (string, string) {
 return y, x
}

// Function split performs a naked return of 2 named values
func split(sum int) (x, y int) {
 x = sum * 4 / 9
 y = sum - x
 return
}

func main() {
 fmt.Println(add1(2,3))
 fmt.Println(add2(3,4))

 s1, s2 := swap("first", "second")
 fmt.Println(s1, s2)

 fmt.Println(split(15))
}

 1.2.1.5 Variables

The var statement is used to declare variables, either multiple or not, either of the

same type or different. This statement can be at package or function level [12]. Also it

can include initializers, one per variable. So if an initializer is present, there is no need to

declare the variable’s type, as it will take the initializer’s type [13].

While in function scope and only, the := short assignment can be used instead of

the var statement [14].

9

variables.go [12] [13] [14]

package main

import "fmt"

// Variables declared at package level
var i, j, k bool

// Variables at package level with initializers
var(
 a, b = 1, 2
 c = true
)

func main() {
 // Variable declared at function level
 var l int
 fmt.Println(i, j, k, l)

 // Variable at function level with initializer
 var d = "hi"
 // Variable created with short declaration
 e := 1.5
 fmt.Println(c, d, e)
}

 1.2.1.6 Basic Types

Go’s basic types are the following: bool, string, int, int8, int16, int32,

int64, uint, uint8, uint16, uint32, uint64, uintptr, byte, rune, float32, float64,

complex64, complex128 [15]. But when a variable is declared without an initial value, it

is given its zero value. Zero values are 0 for numeric types, false for the boolean type

and “” empty string for strings [16].

Type conversions can also be performed in Go, using the expression T(v) that

converts the value v to the type T. For example, a variable i declared as int with value 5,

can be converted to float64 by typing float64(i) [17].

It should be noted that when a variable is declared without specifying a type when

using := or var =, the variable’s type is inferred from the value on the right hand side of

the assignment [18].

basic-types.go [15] [16] [17] [18]

package main

import (
 "fmt"
 "math"
 "math/cmplx"
)

var (
 // Declaration of several types of variables
 WhatIs bool = false
 HugeInt uint64 = 1<<64 - 1
 z complex128 = cmplx.Sqrt(-5 + 12i)
)

10

var (
 // Declaration of variables with zero values
 anInt int
 aFloat64 float64
 aBool bool
 aString string
)

var (
 // Convert some variables' types
 cx, cy int = 3, 4
 cf float64 = math.Sqrt(float64(cx*cx + cy*cy))
 cz uint = uint(cf)
)

func main() {
 fmt.Printf("Type: %T Value: %v\n", WhatIs, WhatIs)
 fmt.Printf("Type: %T Value: %v\n", HugeInt, HugeInt)
 fmt.Printf("Type: %T Value: %v\n", z, z)

 fmt.Printf("%v %v %v %q\n", anInt, aFloat64, aBool, aString)

 fmt.Println(cx, cy, cz)

 // The variable's type is complex128 without specifying it directly
 complexNum := 5 + 2i
 fmt.Printf("v is of type %T\n", complexNum)
}

 1.2.1.7 Constants

Constants in Go are just like variables, but they are declared using the const

keyword and they can be characters, strings, booleans or numerics. They cannot be

declared using the short assignment := [19]. It should be noted that numeric constants are

high-precision values, but also untyped constants take the type needed by the current

context [20].

constants.go [19] [20]

package main

import "fmt"

// Constant declaration in package scope
const E = 2.718

const (
 // Numeric constants declaration
 bigInt = 1 << 100
 smallInt = bigInt >> 99
)

func getInt(x int) int {
 return x * 10 + 1
}

func getFloat(x float64) float64 {
 return x * 0.1
}

func main() {
 // Constants declaration in function scope
 const World = "World!"
 const ItIs = true

11

 fmt.Println("Hello,", World)
 fmt.Println("e =", E, "is the base of natural logarithms.")
 fmt.Println("Go is the best:", ItIs)

 // Untyped constants take the type of the needed context
 fmt.Println(getInt(smallInt))
 fmt.Println(getFloat(smallInt))
 fmt.Println(getFloat(bigInt))
}

 1.2.2 Flow control statements

 1.2.2.1 For

The only looping construct in Go is the for loop. It has 3 basic components: the

initialization statement which is executed before the first iteration, the condition

expression that is evaluated before every iteration and the post-iteration statement

executed after the end of every iteration. The initialization statement is usually a short

variable declaration, visible only inside the for loop’s scope. The iterations stop when

the condition evaluates to false [21].

The initialization and post-iteration statements are optional [22]. If both are

dropped, this is the equivalent while of other languages in Go [23]. Also without the

condition, the loop loops forever [24].

for.go [21] [22] [25]

package main

import "fmt"

func main() {
 // For loop with 3 components
 for a := 0; a < 3; a++ {
 if a == 1 {
 continue
 }
 fmt.Println(a)
 }

 // For loop without the post-iteration statement
 for b := 0; b < 3; {
 fmt.Println(b)
 b++
 }

 // For loop only with condition (while loop)
 c := 0
 for c < 3 {
 fmt.Println(c)
 c++
 }

 // Infinite for loop
 for {
 fmt.Println("just loopin'")
 break
 }
}

12

 1.2.2.2 If

Go’s if statement evaluates certain conditions without needing parentheses, only

curly braces just like the for loop [26]. It can start with a short statement that is executed

before the condition. Any variable declared by the statement belongs only in the if

statement scope [27]. As a result, it is also available inside else if and else blocks

[28].

if.go

package main

import "fmt"

func main() {
 // Normal if statement
 num := 3
 if num == 3 {
 fmt.Println("num is 3")
 }

 // If statement with initial short statement
 for i := 0; i < 3; i++ {
 if j := 1; j < i {
 fmt.Println("Inside the if statement!")
 }
 fmt.Println("Inside the for loop!")
 }

 // If, else if and else blocks
 if v := 2; v == num {
 fmt.Println("v is equal to num")
 } else if v < num {
 fmt.Println("v is smaller than num")
 } else {
 fmt.Println("v is greater than num")
 }
}

 1.2.2.3 Switch

Instead of writing a sequence of if – else statements, a switch statement could

be a better alternative. Unlike other languages like C, C++ or Java, switch runs only the

selected case and not all the cases that follow, meaning that the break statement at the

end of each case needed in other languages is not needed in Go. Also the switch cases

don’t have to be constants and the values involved need not be integers [29].

The switch cases evaluate from to top to bottom and if a case succeeds, the case

evaluation stops [30]. A switch condition is not always needed. Omitting it, it is the

same as writing switch true, a technique that provides cleaner implementation of if –

else chains [31].

switch.go [29] [30] [31]

13

package main

import (
 "fmt"
 "runtime"
 "time"
)

func main() {
 // Switch statement. Notice the initial short variable declaration
 fmt.Print("My OS is: ")
 switch os := runtime.GOOS; os {
 case "darwin":
 fmt.Println("OS X")
 case "linux":
 fmt.Println("Linux")
 default:
 fmt.Printf("%s.\n", os)
 }

 // Switch statement with cases that are variables
 fmt.Print("When's June? ")
 month := time.Now().Month()
 switch time.June {
 case month + 1:
 fmt.Println("In 1 month")
 case month + 2:
 fmt.Println("In 2 months")
 case month + 3:
 fmt.Println("In 3 months")
 default:
 fmt.Println("Too far away...")
 }

 // Switch statement without condition
 current_time := time.Now()
 switch {
 case current_time.Hour() < 12:
 fmt.Println("Good morning")
 case current_time.Hour() < 17:
 fmt.Println("Good afternoon")
 default:
 fmt.Println("Good evening")
 }
}

 1.2.2.4 Defer

The defer statement delays the execution of a called function until the function

that contains it returns, although the deferred call’s arguments are evaluated immediately

[32]. All the deferred function calls are pushed onto a stack, so when a function returns,

they are executed in LIFO order [33].

Using defer, is an unusual but effective way to tackle situations where certain

resources must be released, such as closing a file or releasing a mutex, regardless of

which path a function takes to return [6].

defer.go [32] [33]

package main

import "fmt"

14

// Function defer1 shows a simple defer functionality
func defer1() {
 defer fmt.Println("What's up ?")

 fmt.Print("Hey! ")
}

// Function defer2 demonstrates the LIFO execution of the deferred calls
func defer2() {
 fmt.Println("Starting to count:")

 for i := 0; i < 5; i++ {
 defer fmt.Printf("defer inside loop, i=%v\n", i)
 }
 defer fmt.Println("defer outside of loop")

 fmt.Println("Done counting")
}

func main() {
 defer1()
 defer2()
}

 1.2.3 Structs, slices and maps

 1.2.3.1 Pointers

Like C, Go has pointers, but no pointer arithmetic. Pointers hold the memory

address of a value. A pointer to a certain type T has the *T type and if it doesn’t have a

value, its value is nil [34].

Pointers use 2 operators. The & operator creates a pointer to its operand, while the

* operator denotes the pointer’s underlying value [34].

pointers.go [34]

package main

import "fmt"

func main() {
 // Declare two integer variables
 var1, var2 := 4, "hi"

 // Create two pointers, each for every variable
 var p1 *int
 p1 = &var1
 p2 := &var2

 // Read the variables through their pointers
 fmt.Println("Reading var1 value through p1: ", *p1)
 fmt.Println("Reading var2 value through p2: ", *p2)

 // Set the variables' values through the pointers
 *p1 = *p1 + 4
 *p2 = "ha"
 fmt.Println("Changed var1 value: ", *p1)
 fmt.Println("Changed var2 value: ", *p2)
}

 1.2.3.2 Structs

15

A struct in Go is a collection of fields of various types [35]. Those fields can be

accessed via a dot notation [36]. They can also be accessed through a struct pointer. For a

field X to be accessed with the struct pointer p, the use of the (*p).X statement would be

ideal. But Go permits just the use of p.X, without the explicit dereference [37].

Struct literals declare newly allocated structs by defining the values of their

fields. A subset of those fields can be listed using the Field: syntax as shown below.

The order of the fields does not matter [38].

structs.go [35] [36] [37] [38]

package main

import "fmt"

// Create a simple struct
type Point struct {
 X int
 Y int
}

func main() {
 // Create and print a Point struct with specific X and Y
 point1 := Point{1, 2}
 fmt.Println(point1)

 // Gain access to a Point's X field
 point2 := Point{3, 4}
 point2.X = 4
 fmt.Println(point2.X)

 // Access a struct's field with a pointer to that struct
 point3 := Point{4, 5}
 p3 := &point3
 p3.X = 1e6 //(*p3).X will also do
 fmt.Println(point3)

 // Create structs with various struct literals
 point4 := Point{5, 6} // has type Point
 point5 := Point{X: 7} // Y:7 is implicit
 point6 := Point{} // X:0 and Y:0
 p := &Point{8, 9} // has type *Point
 fmt.Println(point4, point5, point6, p)
}

 1.2.3.3 Arrays

Arrays in Go are declared as [n]T, where n is the number of the array’s elements

and T the type of the array. Each array’s length is part of its type, so arrays can’t be

resized [39].

arrays.go [39]

package main

import "fmt"

func main() {

16

 // Create an empty array of fixed size, then assign values to the elements
 var arr [3]string
 arr[0] = "Array"
 arr[1] = "Of"
 arr[2] = "Strings"
 fmt.Println(arr[0], arr[1], arr[2])
 fmt.Println(arr)

 // Create an array with values
 comp := [6]int{4, 6, 8, 9, 10, 12}
 fmt.Println(comp)
}

 1.2.3.4 Slices

Slices are dynamically-sized, flexible views into the elements of an array and

they are more common than arrays in practice. The []T type is a slice that contains

elements of type T. A slice is created by selecting a low and a high bound of an array,

thus specifying a half-open range that includes the first element, but excludes the last one

[40]. As a result, a slice does not store data, but it describes a section of the underlying

array. If the elements of the slice are changed, the corresponding elements of its

underlying array are changed as well. If more than one slices share the underlying array,

they see those changes too [41].

Slice literals are like array literals but without the length [42]. When slicing, the

high and low bound can be omitted in order to use the default ones. It is 0 for the lower

bound and the slice’s length for the higher bound [43].

A slice has a length and a capacity. Length is the number of its elements and

capacity is the number of elements in the underlying array, counting from the first

element in the slice. A slice’s length and capacity can be directly obtained using the

built-in expressions len(slice) and cap(slice). The length can be extended by

performing a re-slicing, but only if there is enough capacity [44].

The slices’ 0 value is nil. A nil slice does not have an underlying array and its

length and capacity are 0 [45]. Slices can also be created with the built-in function

make([]T, length, capacity), making it possible to create dynamically sized arrays.

[46]. They can contain any type of data, as well as other slices [47]. Also slices can

receive new elements. This can be done with the built-in append([]T, elem1,

elem2…) function, which takes in a slice, appends new elements to it and returns the new

slice [48].

Slices and maps can be iterated with the range form of the for loop. When inside

a range loop, 2 values are returned for each iteration, the current slice index and a copy

17

of the element at the current index [49]. The index or the element’s copy can be omitted

by assigning to _. If the element’s copy is to be omitted, it does not have to be assigned

to _, but it can be completely ignored [50].

slices.go [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50]

package main

import (
 "fmt"
 "strings"
)

func main() {
 // First create an array
 primes := [8]int{0, 1, 2, 3, 4, 5, 6, 7}
 // Then create a slice that contains the elements 1 to 4 of the array
 var sl1 []int = primes[1:5]
 fmt.Println("Slice sl1 of the primes array:", sl1)

 // Create slices of an array, changes values and notice the changes in both
slices and the array
 nums := [5]string{"one", "two", "three", "four", "five"}
 fmt.Println("Τhe nums array:", nums)
 sl2 := nums[0:3]
 sl3 := nums[1:4]
 fmt.Println("A slice sl2 of the nums array:", sl2)
 fmt.Println("Another slice sl3 of the nums array:", sl3)
 sl3[1] = "CHANGE"
 fmt.Println("Slice sl2 changed:", sl2)
 fmt.Println("Slice sl3 changed:", sl3)
 fmt.Println("nums array changed:", nums)

 // Slice literals
 sl4 := []bool{true, false, true, true, false, true}
 fmt.Println("Slice sl4:", sl4)

 // Slice defaults
 sl5 := sl4[:2]
 sl6 := sl4[2:5]
 sl7 := sl4[4:]
 fmt.Println("Slice sl4 defaults:", sl5, sl6, sl7)

 // Slices' length and capacity
 sl8 := []int{1, 3, 5, 7, 9, 11}
 fmt.Printf("The sl8 slice: %v len=%d cap=%d\n", sl8, len(sl8), cap(sl8))
 // Slice the slice to give it zero length
 sl8 = sl8[:0]
 fmt.Printf("sl8 re-sliced 1st time: %v len=%d cap=%d\n", sl8, len(sl8),
cap(sl8))
 // Extend its length
 sl8 = sl8[:4]
 fmt.Printf("sl8 re-sliced 2nd time: %v len=%d cap=%d\n", sl8, len(sl8),
cap(sl8))
 // Drop its first two values
 sl8 = sl8[2:]
 fmt.Printf("sl8 re-sliced 3rd time: %v len=%d cap=%d\n", sl8, len(sl8),
cap(sl8))

 // A nil slice
 var sl9 []int
 fmt.Printf("The sl9 slice: %v len=%d cap=%d\n", sl9, len(sl9), cap(sl9))
 if sl9 == nil {
 fmt.Println("sl9 is nil")
 }

 // Create slice with make
 sl10 := make([]int, 0, 6)

18

 fmt.Printf("The sl10 slice: %v len=%d cap=%d\n", sl10, len(sl10), cap(sl10))
 sl11 := sl10[:2]
 fmt.Printf("sl11 slice created by sl10: %v len=%d cap=%d\n", sl11,
len(sl11), cap(sl11))

 // Slices of slices
 // Create a tic-tac-toe board.
 board := [][]string{
 []string{"_", "_", "_"},
 []string{"_", "_", "_"},
 []string{"_", "_", "_"},
 }
 // The players take turns.
 board[0][0] = "O"
 board[2][2] = "X"
 board[1][2] = "X"
 board[1][0] = "O"
 board[0][2] = "X"
 for i := 0; i < len(board); i++ {
 fmt.Printf("%s\n", strings.Join(board[i], " "))
 }

 // Append new elements to a slice
 var sl12 []string
 fmt.Printf("The sl12 slice: %v len=%d cap=%d\n", sl12, len(sl12), cap(sl12))
 sl12 = append(sl12, "hi")
 sl12 = append(sl12, "there", "!")
 fmt.Printf("The sl12 slice with new elements: %v len=%d cap=%d\n", sl12,
len(sl12), cap(sl12))

 // Range loop a slice
 sl13 := []float64{0.1, 0.2, 0.3, 0.4}
 for i, v := range sl13 {
 fmt.Printf("Element in index %d has value %v\n", i, v)
 }

 // Range without value
 for i := range sl13 { // can also be written: for i, _ := range...
 fmt.Printf("Element in index %d\n", i)
 }
 // Range without index
 for _, v := range sl13 {
 fmt.Printf("Element has value %v\n", v)
 }
}

 1.2.3.5 Maps

Maps map keys to values. A new map can be created with the make function. A

map can have nil value, just like slices [51]. Map literals are just like struct literal with

the extra need to specify the keys [52]. Data mutations can also take place inside maps.

These mutations include the insertion or the update of a map’s element and the retrieval

or the deletion of an element. Besides these functions, a test that a specific key is present

inside the map can be done with a two-value assignment [53]. In addition, maps can be

iterated with the range form of the for loop.

maps.go [51] [52] [53]

package main

import "fmt"

19

type Point struct {
 X, Y float64
}

func main() {
 // Create a new map and give a value to it
 m1 := make(map[string]Point)
 m1["1st Point"] = Point{13.859, 20.136}
 fmt.Println("1st Map's 1st Point:", m1["1st Point"])

 // Create a map with map literals
 m2 := map[string]Point{
 "1st Point": {10.500, 11.500},
 "2nd Point": {12.600, 13.600},
 "3rd Point": {15.800, 16.800},
 }
 fmt.Println("2nd Map:", m2)

 // Mutate a map
 m3 := make(map[string]float64)
 // Insert an element
 m3["1st Point"] = 13.333
 fmt.Println("Inserted an element in map m3:", m3)
 // Update an element
 m3["1st Point"] = 14.444
 fmt.Println("Updated an element in map m3:", m3)
 // Delete an element
 delete(m3, "1st Point")
 fmt.Println("Deleted an element in map m3:", m3)
 // Check if a key exists
 value, ok := m3["1st Point"]
 fmt.Println("The key '1st Point' with value", value, "exists:", ok)

 // Iterate a map with range
 fmt.Println("Iterating the m2 map...")
 for i, v := range m2 {
 fmt.Printf("Element with key %s has value %v\n", i, v)
 }
}

 1.2.3.6 Function values and closures

In Go, functions are values too and they can be passed around like the other

values such as int. For example, they can be used as function arguments and return

values [54].

Go functions can also be closures. As functions can be values too, closures are

function values that reference variables from outside their bodies. This function can

access and set those referenced variables [55].

function-values-closures.go [54] [55]

package main

import (
 "fmt"
 "math"
)

// A function that takes a function as an argument.
// It also returns that function
func compute(fn func(float64, float64) float64) float64 {
 return fn(3, 4)
}

20

// The adder function returns a closure that is
// bound to its own sum variable
func adder() func(int) int {
 sum := 0
 return func(x int) int {
 sum = sum + x
 return sum
 }
}

func main() {
 // Create a new function and save it to a variable
 hypot := func(x, y float64) float64 {
 return math.Sqrt(x*x + y*y)
 }
 // Use this function directly
 fmt.Println(hypot(3, 5))
 // Use the function as argument in the compute function
 fmt.Println(compute(hypot))
 // math.Pow used as argument in the compute function.
 // It is exactly the same type as hypot, but it returns
 // the base-x exponential of y
 fmt.Println(compute(math.Pow))

 // Use the closure the adder function returns
 closure := adder()
 for i := 0; i < 5; i++ {
 fmt.Println("Sum is:", closure(i))
 }
}

 1.2.4 Methods and interfaces

 1.2.4.1 Methods

Go doesn’t support classes, but methods can be defined in types. Methods are

nothing but functions with a special receiver argument that appears between the func

keyword and the method’s name [56]. A method can be declared on non-struct types too.

Methods can only be declared on types that are defined in the same package as the

method. If the type is defined in another package, a method on that type cannot be

declared [58].

Methods can have pointer receivers, meaning that the receiver is of *T type,

without T already being a pointer. A method with a pointer receiver can modify the value

to which the receiver points. As a result, pointer receivers are more common than value

receivers, since methods often need to modify their receiver. Functions have also the

same behavior. If a function takes a pointer argument, then it can modify the value the

pointer points to. If it takes a value argument, it cannot [59].

Go offers a great convenience: methods with pointer receivers take either a value

or a pointer as a receiver when they are called. However, that doesn’t happen with

normal functions, as they should take a pointer argument, if that’s their specification

[61]. In the reverse direction, methods with value receivers take either a value or a

21

pointer when they are called, while functions that take value arguments, should be given

only value arguments [62].

Pointer receivers for methods are better to use for two main reasons. First, with

pointer receivers, the method can modify the value the pointer points to. Second is to

avoid copying the value on each method call, which is really useful is the receiver is a

large struct for example [63].

methods.go [56] [57] [58] [59] [60] [61] [62]

package main

import (
 "fmt"
 "math"
)

type Point struct {
 X, Y float64
}

// Declare an Abs method for the Point struct.
// Abs has a value receiver, which means that it operates
// on a copy of the original Point value
func (p Point) Abs() float64 {
 return math.Sqrt(p.X*p.X + p.Y*p.Y)
}

// The Scale method has a pointer receiver, because it
// should be able to change the Point's value that is called upon
func (p *Point) Scale(f float64) {
 p.X = p.X * f
 p.Y = p.Y * f
}

// The Abs method written as a normal function
// that takes a Point as an argument
func Abs(p Point) float64 {
 return math.Sqrt(p.X*p.X + p.Y*p.Y)
}

// The Scale method written as normal function, with a
// pointer to a Point struct as argument
func Scale(p *Point, f float64) {
 p.X = p.X * f
 p.Y = p.Y * f
}

type MyInt int

// Declare an Absolute method for the non-struct type MyInt
func (i MyInt) Absolute() int {
 if i < 0 {
 return int(-i)
 }
 return int(i)
}

func main() {
 // Call the Abs method of a Point struct
 p1 := Point{3, 4}
 fmt.Println("p1 Abs method:", p1.Abs())

 // Call the Abs function that takes a Point as an argument
 fmt.Println("Abs function with p1 as argument:", Abs(p1))

22

 // Call the Absolute method of a MyInt variable
 mi1 := MyInt(-5)
 fmt.Println("mi1 Absolute method:", mi1.Absolute())

 // Call the Scale method to change a Point
 p2 := Point{1, 2}
 fmt.Println("p2 before Scale method:", p2)
 // The Scale method has a pointer receiver, but Go
 // interprets p2.Scale as (&p2).Scale
 p2.Scale(2) // (&p2).Scale will produce the same result
 fmt.Println("p2 after Scale method:", p2)

 // Call the Abs and Scale functions instead of the methods
 p3 := Point{0.5, 0.5}
 Scale(&p3, 2)
 fmt.Println("Scale function with a pointer to p3 as argument:", p3)
 fmt.Println("Abs function with p3 as argument:", Abs(p3))

 // p4 is a pointer, but Abs method can be called
 // although it has a value receiver.
 // Abs function needs a value argument, doesn't receive a pointer one
 p4 := &Point{5, 6}
 fmt.Println("p4 Abs method:", p4.Abs())
 fmt.Println(("Abs function with dereferencing on p4 pointer to struct:"),
Abs(*p4))
}

 1.2.4.2 Interfaces

An interface is a type itself, and is defined as a set of method signatures. An

interface type value can be of any value, as long as this value is of a type that implements

these methods [64]. Simply put, a type implements an interface by implementing its

methods. There is no need for explicit declaration of such intent [65].

Interface values can be conceived as a tuple of a value and a solid type, like

(value, type). The interface’s value holds a value of a specific underlying solid type.

If a method is called on an interface value, the same method of the underlying type is

executed [66]. The value of the interface can also be nil. Should that be the case, the

method will be called with a nil receiver, without causing any exception. An interface

that has a nil value is itself non-nil [67]. An interface can be completely nil, meaning

that it has neither a value nor a solid type. Methods can’t be called in nil interfaces, as

they don’t have a specific type to indicate which method to call [68].

There is an interface type that specified zero methods. It is called the empty

interface, interface{}. Empty interfaces can hold values of any type and are used by

code that handles of unknown type [69].

Go also supports type assertions. They provide access to an interface’s value and

underlying type. The type assertion statement is t, ok := i.(T), which is an assertion

that the interface i holds the type T. A type assertion returns two values. The first is the

interface’s value and the second is a boolean value that states if the assertion was

23

successful. The boolean value can be omitted, so the type assertion can also be written t

:= i.(T). In this statement, if i is not of the T type then a panic is triggered [70].

Go also has a convenient way to perform several type assertions in series. A type

switch is just like the normal switch statement, but the cases here are about types. The

type values specified by those cases are compared against the type of the given interface

that is being switched [71].

interfaces.go [64] [66] [67] [68] [69] [70] [71]

package main

import "fmt"

// An interface that has a single method, Invert
type Inverter interface {
 Invert()
}

// Type TwoDPoint implements the Inverter interface
type TwoDPoint struct {
 X, Y float64
}

// Implicit implementation of the Inverter interface
func (tdp *TwoDPoint) Invert() {
 tdp.X = -tdp.X
 tdp.Y = -tdp.Y
}

// Type OneDPoint implements the Inverter interface
type OneDPoint struct {
 X float64
}

// Implicit implementation of the Inverter interface
func (odp *OneDPoint) Invert() {
 odp.X = -odp.X
}

func main() {
 // Create Inverter, TwoDPoint and OneDPoint variables
 var i1, i2 Inverter
 p1 := TwoDPoint{1, 2}
 p2 := OneDPoint{3}
 i1 = &p1 // Only *TwoDPoint implements Inverter, not TwoDPoint
 i2 = &p2 // Only *OneDPoint implements Inverter, not OneDPoint
 i1.Invert()
 i2.Invert()
 fmt.Println("*TwoDPoint type var p1 implements Inverter:", i1)
 fmt.Println("*OneDPoint type var mf1 implements Inverter:", i2)

 // Check interface values and types
 fmt.Printf("Value and type of i1 interface: (%v, %T)\n", i1, i1)
 fmt.Printf("Value and type of i2 interface: (%v, %T)\n", i2, i2)

 // Interface with nil value
 var (
 i3 Inverter
 p3 *TwoDPoint
)
 i3 = p3
 fmt.Printf("Value and type of i3 interface: (%v, %T)\n", i3, i3)

 // Nil interface

24

 var i4 Inverter
 fmt.Printf("Value and type of i4 interface: (%v, %T)\n", i4, i4)
 // Calling Invert on i4 causes run-time error: i4 doesn't have a type
 // i4.Invert()

 // Empty interface
 var i5 interface{}
 fmt.Printf("Value and type of i5 interface: (%v, %T)\n", i5, i5)
 i5 = "hi"
 fmt.Printf("Value and type of i5 interface: (%v, %T)\n", i5, i5)
 i5 = 5
 fmt.Printf("Value and type of i5 interface: (%v, %T)\n", i5, i5)

 // Type assertions
 var i6 interface{} = 88.88
 t, ok := i6.(float64) // ok can be omitted, can be written t := i6.(float64)
 if ok {
 fmt.Printf("Type assertion passed: i6 (%v, %T)\n", t, i6)
 }
 // The following line triggers a panic
 // t1 := i6.(string)

 // Type switch
 switch v := i6.(type) {
 case int:
 fmt.Printf("INT! i6 is of type %T with value %v\n", v, v)
 case float64:
 fmt.Printf("FLOAT64! i6 is of type %T with value %v\n", v, v)
 default:
 fmt.Printf("DEFAULT CASE! i6 is of type %T!\n", v)
 }
}

 1.2.5 Concurrency

 1.2.5.1 Goroutines

Goroutines are lightweight threads managed by the Go runtime. A goroutine is

initiated with the syntax go function(args). The evaluation of args happens in the

main goroutine and the execution of function in the new goroutine [72]. In the following

example, the time.sleep(10 * time.Millisecond) is used to delay the termination of

the main goroutine and schedule the execution of the printSomething goroutine,

otherwise the latter will not be executed at all [73].

goroutines.go [72] [73]

package main

import (
 "fmt"
 "time"
)

// Function printSomething will run as a goroutine
func printSomething() {
 fmt.Println("The printSomething goroutine is executed")
}

func main() {
 fmt.Println("The main goroutine started")

 // Initialize a goroutine

25

 go printSomething()
 // Delay the termination of main goroutine to schedule the
 // execution of the printSomething goroutine
 time.Sleep(10 * time.Millisecond)

 fmt.Println("The main goroutine ended")
}

 1.2.5.2 Channels

Maybe Go’s most popular data structures are channels. A channel is actually

something like a pipe, through which values can be sent and received using the channel

operator <-. Data flows in the direction of the arrow; ch <- v sends value v to the

channel and v := <-ch receives a value from ch and assigns it to v. Before use, channels

should be first created with the make function. The default behavior of channels is that,

the one side of the channel is blocked from sending or receiving until the other side is

ready to send or receive. That makes goroutines easy to synchronize without using locks

or condition variables [74]. Channels can also be buffered, so that they only hold a

limited number of values. The buffer length is provided as the second argument inside

the make function like this, ch := make(chan int, buffer_size). If the buffer is full,

the channel blocks from sending new values to it, but if the buffer is empty, the channel

blocks from receiving values from it [75].

Channels can be looped with the range loop to receive values repeatedly from the

channel until it is closed. The syntax is for i := range ch. The side of a channel that

sends values can close that channel, in order to stop sending values into it. Only the

sender side of a channel can close it, not the receiver one. Sending a value on a closed

channel is going to cause a panic. But channels don’t usually need to be manually closed,

it’s only necessary when the receiver side must be notified that there will be no more

values coming. One such case would be to terminate a range loop. Also the receiver side

can test whether the channel has been closed. This can be done by assigning a second

parameter in the channel receive expression: v, ok := <-ch. If there are no more values

to receive, ok becomes false [76].

A goroutine can wait on multiple communication operations with the select

statement. Using select, the execution of the goroutine is blocked until one of the cases

can be run. If multiple conditions are ready to be executed, one of them is selected

randomly [77]. If the default case is used inside the select statement, it is executed if

no other case is ready [78].

26

channels.go [74] [75] [76] [77] [78]

package main

import (
 "fmt"
 "time"
)

// Function sum sums all the elements of the input slice,
// then sends the computed sum value inside a channel that
// receives integer values
func sum(sl []int, ch chan int) {
 sum := 0
 for _, v := range sl {
 sum += v
 }
 // Wait till ch is ready to receive values, then send the sum
 // into ch
 ch <- sum
}

// Function fibonacci1 is used to demonstrate the combination
// of close - range functionalities. n is the number of values
// the receiver will request (the capacity of channel ch3)
func fibonacci1(n int, ch chan int) {
 x, y := 0, 1
 for i := 0; i < n; i++ {
 // Send a value to the channel
 ch <- x
 x, y = y, x+y
 }
 // Close the channel after sending all the values to be sent
 close(ch)
}

// Function fibonacci2 is used to showcase the simple
// select with multiple case. It takes two integer channels as arguments
func fibonacci2(ch, quit chan int) {
 x, y := 0, 1
 // The cases evaluation inside the select statement
 // should always be happening, so the select-cases
 // are surrounded by an infinite for loop
 for {
 select {
 // If ch is ready to send values inside it, execute this case
 case ch <- x:
 x, y = y, x+y
 // If quit is ready to receive values, execute this case
 case <-quit:
 return
 // If no other case is ready, the default case is executed
 default:
 fmt.Println("Inside the default case!")
 time.Sleep(100 * time.Millisecond)
 }
 }
}

func main() {
 // Simple demonstration of channel functionality
 // Create a slice and a channel
 sl1 := []int{1, 2, 3, 4, 5, 6}
 ch1 := make(chan int)
 // Create 2 goroutines, where each one computes
 // the sum of the half of the sl1 slice
 go sum(sl1[:len(sl1)/2], ch1)
 go sum(sl1[len(sl1)/2:], ch1)
 // Receive and assign the computed sums into 2 variables.
 // We don't know which goroutine will finish first,
 // so x is not necessarily going to be 6 and y 15

27

 sum1, sum2 := <-ch1, <-ch1
 fmt.Printf(
 "One sum of sl1 slice: %v\n" +
 "The other sum of sl1 slice: %v\n" +
 "Total sum of sl1 slice: %v\n", sum1, sum2, sum1 + sum2,
)

 // Buffered channels
 ch2 := make(chan string, 2)
 ch2 <- "say"
 ch2 <- "something"
 // This will cause a deadlock because buffer is filled
 //ch2 <- 3
 fmt.Println("Retrieving from buffered channel ch2:", <-ch2)
 fmt.Println("Retrieving from buffered channel ch2:", <-ch2)
 // An extra retrieval from an empty buffer will
 // also cause a deadlock
 // fmt.Println(<-ch2)

 // Range - Close demonstration
 ch3 := make(chan int, 10)
 // Initiate a goroutine running fibonacci function
 go fibonacci1(cap(ch3), ch3)
 // Consume all the values inside the ch3 channel with
 // a range loop
 fmt.Printf("A fibonacci sequence with %v values (range-close):\n", cap(ch3))
 for i := range ch3 {
 fmt.Println(i)
 }

 // Select inside a goroutine
 ch4, quit := make(chan int), make(chan int)
 // Create a goroutine with a function literal that
 // receives values from ch4 inside a for loop
 fmt.Println("A fibonacci sequence with 10 values (select):")
 go func() {
 for i := 0; i < 10; i++ {
 fmt.Println(<-ch4)
 }
 // If the loop is completed, signal to the quit channel
 // by sending a value into it, to return the fibonacci2 function
 quit <- 0
 }()
 // Run the fibonacci2 function as a normal function
 fibonacci2(ch4, quit)
}

 1.2.5.3 Mutexes

Although channels are great for communication between goroutines, there might

be some occasions where all that’s needed, is to make sure that only one goroutine can

access a variable at a time and avoid conflicts. This is called mutual exclusion and the

way to achieve it is by using the Lock and Unlock methods of the sync.Mutex struct.

The code that needs to be executed with mutual exclusion is surrounded by a Lock in the

start and an Unlock in the end of it [79].

mutexes.go [79]

package main

import (
 "fmt"
 "sync"
 "time"

28

)

// Type SafeCounter is safe to use concurrently
type SafeCounter struct {
 safeMap map[string]int
 mux sync.Mutex
}

// Method Inc increments the counter for the given key
func (sc *SafeCounter) Inc(key string) {
 // Lock so only one goroutine at a time can access the map
 sc.mux.Lock()
 // Increment the value safely
 sc.safeMap[key]++
 fmt.Println(sc.safeMap[key])
 // Unlock to give access to another goroutine
 sc.mux.Unlock()
 //fmt.Println(sc.Value(key))
}

// Method Value returns the current value of the counter for the given key
func (sc *SafeCounter) Value(key string) int {
 // Lock so only one goroutine at a time can access the map
 sc.mux.Lock()
 // Unlock with defer to ensure that the mutex will be unlocked
 // after the function returns
 defer sc.mux.Unlock()
 return sc.safeMap[key]
}

func main() {
 sc := SafeCounter{safeMap: make(map[string]int)}
 for i := 0; i < 100; i++ {
 go sc.Inc("first_key")
 }
 // Delay the execution of the main goroutine to start
 // scheduling the goroutines that increment the map's value
 time.Sleep(time.Second)
 fmt.Println(
 "The final value of the first_key is:",
 sc.Value("first_key"),
)
}

29

 1.3 A conclusion of the Go language

As seen before, Go borrows ideas from existing languages. However, it has some

unusual properties that make effective Go programs different in character from programs

written in its relatives. If someone attempts to translate a C++ or Java program into Go in

a straightforward way, is unlikely to produce a satisfactory result. Then again, thinking

about the problem from a Go perspective could produce a successful, but also quite

different program. Simply put, to write Go well, it is important to understand its

properties and idioms, let alone to know the established conventions for Go

programming, such as naming, formatting, program construction, and so on, so that

programs written will be easy for other Go programmers to understand [6].

While Go is a relatively new language (publicly released in 2009), it has taken

both the programmers’ community and the software businesses by storm in the last years.

Go has contributed to success stories in the corporate world [80]. In addition, more than

1300 companies all over the world are currently using Go as their primary language [81].

The Go community continues every day to enrich the language with new libraries for

fields such as audio and music, GUI development, database tools, game development,

image manipulation, hardware controlling, machine learning, security, code analysis,

web development and many more [82].

30

 2 An Overview of Distributed Computing

This chapter is a summary of selected topics from Maarten van Steen’s &

Andrew Tanenbaum’s “Distributed Systems” [83]. Therefore, a general reference to [83]

exceeds the whole chapter. Reference to other sources is explicitly noted.

 2.1 Introduction

Computer systems were, are and continue to change at an overwhelming pace.

Until about 1985 computers were very large and expensive. Also, due to lack of ways to

connect them, these computers operated independently from one another. However,

starting in the mid-1980s, two advances in technology seemed able to change that

situation. The first was the development of powerful microprocessors. At first they were

8-bit machines, but soon 16-, 32-, and 64-bit CPUs became common in the market.

Multicore CPUs nowadays are really powerful and cheap compared to the ones that

existed 30 or 40 years ago, as well as they offer great help tackling the challenge of

adapting and developing programs to exploit parallelism. The second fundamental

change was the invention of high-speed computer networks. Local-area networks allow

even thousands of machines within a building to be connected in such a way, that small

amounts of information can be transferred in a few microseconds. But also larger

amounts of data can be moved between machines at rates of billions of bits per second.

Wide-area networks allow a vast number of machines (hundreds of millions) all over the

world to be connected at speeds varying from tens of thousands to hundreds of millions

bps.

Along with the development of increasingly powerful and networked machines,

the size of computer systems has become a lot smaller. With the most impressive

outcome become the smartphones, they are packed with sensors, lots of memory, and a

powerful CPU, so these devices are nothing less than full-fledged computers with

networking capabilities of course. Following those footsteps, the so-called plug

computers are finding their way to the market. They are small computers, often the size

of a power adapter that can be plugged directly into an outlet and offer near-desktop

performance.

31

With now having all these technological advances available, it is pretty easy to

put together a computing system composed of a large numbers of networked computers,

large or small. The computers are generally geographically dispersed, for they are usually

said to form a distributed system. The size of a distributed system may vary from a small

number of devices to millions of computers. The interconnection network may be wired,

wireless, or a combination of these two. Distributed systems are highly dynamic,

meaning that computers can join and leave, while the topology and performance of the

underlying network continuously changes.

 2.1.1 Definition of a distributed system

A variety of definitions of distributed systems have been given in the literature. It

would be sufficient to give a loose characterization: “A distributed system is a collection

of autonomous computing elements that appears to its users as a single coherent system”.

This definition refers to two characteristic of distributed systems.

The first one is that a distributed system is a collection of other computing

elements (generally referred to as nodes), each one being able to behave independently

from one another. In practice, nodes are programmed to achieve common goals by

exchanging messages with each other. A node can be either a hardware device or a

software process. The nodes could be ranging from very big high-performance computers

to small plug computers or even smaller devices.

The second is that users, either people or applications, believe they are dealing

with a single coherent system. This means that the autonomous nodes need to

collaborate. But the way this collaboration is established should not be noticed by the end

users and have the so-called distribution transparency. So processes, data and control

dispersion across a computer network’s nodes should at least appear to be hidden,

making the distributed system seem as one coherent entity. In a single coherent system

the collection of nodes operated the same as a whole, no matter when, when and how

interaction between a user and the system takes place. Note that no assumptions are made

concerning the way that nodes are interconnected.

In order to assist the development of distributed applications, distributed systems

are organized to have an independent layer of software (middleware) that is logically

placed on top of the operating systems of the computers that are part of the system. Each

32

Figure 1. A distributed system organized in a middleware layer

application is offered the same application interface. The distributed system provides the

means for the components of a distributed application to communicate with each other,

as well as to let different applications communicate. At the same time, it hides, as best as

possible, the differences in hardware and operating systems from each application. So

middleware can be conceived as a container of commonly used components and

functions that they no longer have to be implemented by applications separately. Such

middleware is RPC and web services.

 2.1.2 Design goals

Just because it is possible to build distributed systems, doesn’t really mean that

it’s actually a good idea. There are four important goals that should be met to make

building a distributed system worth the effort.

The first important goal of a distributed system is to make it easy for users (and

applications) to access and share remote resources. Some typical resources examples

include peripherals, storage facilities, data, files, services, and networks. The connection

between users and resources makes it easier to collaborate and exchange information

worldwide, as shown by the success of the Internet with its protocols for exchanging

files, mail, documents, audio, and video. Resource sharing in distributed systems is

perhaps best demonstrated by the success of file-sharing peer-to-peer networks that make

it extremely simple for users to share files across the Internet like BitTorrent.

The second important goal of a distributed system is to hide that its processes and

resources are physically distributed across multiple computers possibly separated by

33

large distances. In other words, it tries to make the distribution of processes and

resources transparent (invisible) to end users and applications. The concept of

transparency can be applied to aspects of distributed systems such as access, location-

relocation, migration, replication, concurrency and failure. However, the degree of

transparency is a debatable matter that varies depending on the type of each distributed

system.

Another goal of distributed systems is to be open. An open distributed system is a

system that offers components that can easily be used by, or integrated into other

systems, while at the same time, it will often consist of components that originate from

elsewhere.

In the last years, the number of devices that are being networked has dramatically

increased. Even more nowadays, where the cloud applications are dominating. Having

this in mind, scalability has become one of the most important design goals for

developers of distributed systems. Scalability of a distributed system can refer to its size

(easy addition of users and resources without performance loss), its geographical

distribution (minimal notice of communication delays across large distances) as well as

its administration capabilities (easily managed across many independent administrative

organizations). These problems can be solved by adopting techniques such as hiding

communication latencies, partition and distribution but also replication or caching.

 2.2 Communication

Communication between processes is at the heart of all distributed systems.

Talking about distributed systems without carefully examining the ways that processes

on different machines can exchange information, does not really makes sense.

Communication in distributed systems has always been based on low-level message

passing as offered by the underlying network. Achieving communication with message

passing is harder than using primitives based on shared memory, a technique available

only on non-distributed platforms. Thousands or even millions of processes are scattered

across a network connecting modern distributed systems with unreliable communication,

like the Internet. Development of large-scale distributed applications is extremely

difficult, unless the primitive communication facilities of computer networks are

replaced by something else.

34

 2.2.1 Foundations

All communication in distributed systems is based on sending and receiving low-

level messages because there is no shared memory available. When process P wants to

communicate with another process Q, the message is first built in its own address space.

Then it triggers a system call that causes the operating system to send the message over

the network to Q. In order to prevent chaos, P and Q have to agree on the meaning of the

bits being sent, although this basic idea sounds somewhat simple.

To make it easier to deal with the many levels and issues involved in

communication, the International Standards Organization (ISO) developed a reference

model that identifies the various levels involved in a clear way, gives them standard

names, and points out which job should be done by which level. The model is called the

Open Systems Interconnection Reference Model usually abbreviated as just the OSI

model. It is designed to allow open systems to communicate. Open systems are the ones

that are prepared to communicate with other opens system by using standard rules that

dictate the format, contents, and meaning of the messages sent and received. These rules

are formalized in the so-called communication protocols. If a group of computers is to

communicate over a network, they must all agree on the protocols to be used, where

protocols are said to provide communication services. There are two types of these

services. In a connection-oriented service, the sender and receiver must first explicitly

establish a connection, and possibly negotiate specific parameters of the protocol they

will use, before exchanging data. When they are done communicating, they terminate the

connection between them, just like when two people talk on the telephone. With a

connectionless service, no setup in advance is needed, the sender just transmits the first

message when it is ready. This connection is analogous to dropping a mail inside a

mailbox.

In the OSI model, communication is divided into seven layers. Each layer offers

specific communication services to the layer above it. This way, the problem of getting a

message from the sender to the receiver can be divided into manageable pieces, each able

to be solved independently of the others. Every layer provides an interface to the layer

above it. The interface consists of a set of operations that together define the service the

layer is prepared to offer. The OSI layers are: Physical layer: Standardizes how two

computers are connected and how 0s and 1s are represented. Data link layer: Detects and

35

possibly corrects transmission errors, as well as protocols to keep a sender and receiver

in the same pace. Network layer: Holds the protocols for routing a message through a

computer network, but also the protocols for handling congestion. Transport layer: It

mainly contains protocols for direct support of applications, such as the ones that

establish reliable communication or support real-time streaming of data. Session layer:

Responsible for handling sessions between applications. Presentation layer: Determines

the way data is represented so that is independent of the hosts on which communicating

applications are running. Application layer: Everything else like e-mail protocols, Web

access protocols, file-transfer protocols, and many others.

Figure 2. The OSI model's layers, interfaces and protocols

When a process P has to communicate with a remote process Q, at first it builds a

message and passes it to the application layer through an interface. Then the application

layer software adds a header to the front of the message and passes it across the layer 6/7

interface to the presentation layer, which adds its own header and passes the result down

to the session layer and so on. Some layers also add a trailer to the end. When the

message hits the physical layer, it transmits the message by putting it onto the physical

transmission medium. When the message arrives in the machine hosting Q, it is lifted

upwards on each layer where the layer headers are examined respectively.

36

Figure 3. A message as it appears inside the network

The OSI protocols were never popular, in contrast to the protocols developed for

the Internet. The most widely used network layer protocol is the connectionless Internet

Protocol (IP), where an IP packet (a message when in network layer) can be sent without

any setup and is routed to its destination independent from the other packets. The transfer

protocol used by the Internet is the Transmission Control Protocol (TCP). Combined

with IP (TCP/IP), is nowadays used as a de facto standard for network communication.

There is also another transport protocol for the Internet, the connectionless Universal

Datagram Protocol (UDP), that is common to the IP, but it is used mainly by programs

that don’t require a connection-oriented protocol to function properly.

In the Internet protocols suite, all the layers above the transport layer are grouped

together. Someone could also say that only the application layer is used above the

transport layer in practice. A famous application layer protocol is the File Transfer

Protocol (FTP) that defines a standard way for a client and a server to transfer files

between them. It should not be confused with the ftp software that is meant for end-users

to transfer files and also implements the FTP protocol. Another typical application-

specific protocol is the HyperText Transfer Protocol (HTTP) that is designed to manage

and handle the transfer of Web pages remotely. It is implemented by Web browsers and

Web servers, but also by systems that are not tied to the Web per se such as the Java’s

object-invocation mechanism.

 2.2.2 Remote procedure call

A lot of distributed systems have been based on exchanging explicit messages

between processes. However, this way of communicating does not conceal the

37

communication at all, an important thing in order to achieve access transparency in

distributed systems which was a well-known problem. A new way of handling

communication was introduced around 1984 that allowed programs to call procedures

located on other machines. When a process on machine A calls a procedure that exists on

machine B, the execution of the called procedure happens on B, while the calling process

on A is suspended. Any information needed can be transported from the caller to the

callee in the form of parameters and can also come back as the procedure result. As a

result, no message passing visible to the programmer at all, and this method is known as

Remote Procedure Call or often just RPC. Τhe basic idea sounds simple and elegant, but

some subtle problems exist. Still most of them can be dealt with. RPC is a widely-used

technique that underlies many distributed systems.

The main idea behind RPC is to make a remote procedure call seem like a local

one. For example, a client calls a remote procedure like this: result =

remote_function(param1, param2) which pretty much looks like a call to a function

that exists in the local machine. A remote procedure call contains the following steps:

1. The client procedure calls the client stub (a different version of the remote

procedure) using a normal calling sequence.

2. The client stub builds a message containing the parameters and calls the

local operating system.

3. The client’s OS sends the message to the server’s OS.

4. The remote OS gives the message to the server stub (equivalent of client

stub).

5. The server stub unpacks the parameters and calls the server procedure.

6. The server does the work needed and returns the result of the procedure

call to the stub.

7. The server stub packs up the result in a message and calls the local OS.

8. The server’s OS sends the message back to the client’s OS.

9. The client’s OS delivers the message to the client stub.

10. The client’s stub unpacks the result of the remote procedure call and

returns it to the client.

38

Figure 4. The steps involved in a remote procedure call doIt(a, b). The return

path is not shown

 2.2.3 Message-oriented communication

While remote procedure calls contribute to hiding communication in distributed

systems and enhance access transparency, this mechanism is not always appropriate.

When the receiving side cannot be assumed to be executing at the time a request is sent,

just like in RPC where the client is blocked until the request is processed, some

alternative communication services are required. Messaging is the solution to this

problem.

A lot of distributed systems are built directly on top of the simple message-

oriented model offered by the transport layer, which is messaging through transport-level

sockets. Α socket is a communication end point to which an application can write data

that are sent out over the underlying network, and from which incoming data can be read.

A socket actually offers an abstraction over the actual port that is used by the local

operating system for a specific transport protocol. The socket operations for TCP are:

 socket: The caller creates a new communication endpoint, meaning that

the local OS reserves resources for sending and receiving messages.

 bind: Associates a local IP address to a newly created socket. The caller

accepts messages only on the specified address and port.

39

 listen: Non-blocking call that allows the local OS to reserve resources

for a specific maximum number of incoming connection requests to the

caller.

 accept: Blocks the caller until a connection request arrives. The local OS

creates a new socket with the same properties as the original one.

 connect: Attempts to establish a connection, provided the caller specifies

the address to which the connection request should be sent.

 send: Sends data over the connection.

 receive: Receives data over the connection.

 close: Closes the connection.

Servers execute the first four operations in the order given, in general. Clients use the last

four operations, with close also being called by both servers in order to fully terminate

the connection.

Figure 5. A connection-oriented communication using sockets

This standard approach with sockets is very basic and does not help making

network programming easier or expanding beyond the currently offered functionalities.

The development of Message-Oriented-Middleware (MOM) or generally known as

message-queuing systems has helped a lot tackling those kind of problems. The basic

idea of them is that applications communicate by inserting messages in specific queues.

This happens by offering intermediate-term storage capacity for messages, without

requiring either the sender or the receiver to be active when the message is transmitted;

they can execute independently of each other. Each application has its own queue to

which other applications can also send messages. That queue can only be read by the

associated application. However, it can be possible for multiple applications to share a

40

single queue. The basic interface that message queues offer to applications is the

following:

 put: Called by a sender to append a message to the specified queue.

 get: Blocks until a specified queue is not empty, then removes the first

message from the queue.

 poll: Removes the first message from the specified queue without

blocking. If the queue is empty, the calling process continues.

 notify: Enables a handler to be called as a callback function when a

message is put into the specified queue.

In order to integrate other applications into a single distributed system that

handles communication via message queues, it is important that the different application

can understand the different messages they receive. A sender and a receiver application

must follow the same communication protocol in order to understand each other.

Research has shown that this approach is not handled easily, so the best solution is to

learn to live with those differences and try to make the conversions as easy as possible.

These conversions are handled by message brokers, applications that convert incoming

messages so that they are understood by the destination application.

Figure 6. A message-queuing system with a message broker

Message queues that utilize a message broker follow the publish-subscribe model

that will be discussed in the following paragraphs.

41

 2.3 Architectural styles

Distributed systems are complex pieces of software of which the components are

dispersed across multiple machines. To handle this type of complexity, it is essential that

these systems are organized in a proper way. The organization of a distributed system’s

software components is called its software architecture. Components are directly related

to connectors; mechanisms that are responsible for communication, coordination,

cooperation, but also the flow of control and data between the individual components.

The use of both components and their connectors can lead to various configurations that

have been classified in specific architectural styles.

 2.3.1 Layered architectures

In layered architectures components are arranged in a way that, a component at a

higher layer can make a down-call at a component at a lower layer, usually expecting a

response. In some cases, an up-call may have to be made to a higher layer from a lower

layer.

 a) b)

Figure 7. a) A pure layered organization b) A layered organizations with up-calls

The layered architectural style is very popular in the case of communication

protocol stacks. The OSI model that was discussed in §2.2.1 is a pretty good example of

the application of a layered architecture in the making of such communication

infrastructure for distributed systems.

42

Regarding to the logical layering of applications, the most widely accepted

layered organization comprises of three logical layers:

 application-interface layer: Takes care of the interaction with a user or

another application.

 processing layer: The place where the core functionality of the application

is implemented.

 data layer: Contains the database and the file system.

An example of such an application would be an Internet search engine. If the user

interface is as simple as it gets, a user would type a few keywords inside a text box and

by clicking a ‘Search’ button, a list of results with Web pages appears. The actual

program that implements the search engine functionality is installed inside a server

machine. It mutates the user submitted keywords into database queries, as well as creates

a list of results that is rendered eventually in one or more HTML pages. Last, the

database is filled with Web pages that have already been fetched and indexed.

Figure 8. An Internet search engine organized in three different layers

 2.3.2 Object-based architectures

A looser organization is implemented in object-based architectures, where

components are in fact objects that are connected via procedure calls that take place over

43

a network, so the calling object doesn’t need to be on the same machine as the called

object.

Figure 9. The object-based architecture

This type of architecture encapsulates data (an object’s state) and functions to be

called on the data (an object’s method) into a single entity. Objects offer a

communication interface that hides the implementation details of its functionalities. The

interface alone can reside on one machine and the object itself with its state resides on a

remote machine. In most distributed systems the state cannot be distributed. These

characteristics are responsible for naming those objects distributed or remote objects.

A client machine can bind to a distributed object. When that happens, an

implementation of the object’s interface (analogous to client stub in RPC, generally

called proxy) is loaded in the client machine’s address space, marshaling method

invocations into messages and unmarshaling reply messages from the server’s object

interface, which does the same marshaling-unmarshaling of messages as the client one’s

(analogous to server stub in RPC, generally called skeleton).

44

Figure 10. General organization of a remote object communication

An example of an actual remote object architecture is Java’s take on RPC

implementation, called Remote Method Invocation (RMI). In RMI a client in one virtual

machine is able to invoke an object’s method that exists inside another remote virtual

machine.

 2.3.3 Service-oriented architectures

Object-based architectures laid the foundation for encapsulating services into

individual entities. These services are independent units that can operate on their own or

make use of other services, a characteristic that brings the service-oriented architectures

to the spotlight. A distributed application built with a service-oriented architecture

consists of many different services, each having its own programming interface that

allows it to communicate with other services with ease.

Most Web applications are built on top of service-oriented architecture; they are

known by the term web services. According to the W3C Web Services Architecture

Working Group, a web service “is a software system designed to support interoperable

machine-to-machine interaction over a network. It has an interface described in a

machine-processable format (specifically WSDL). Other systems interact with the Web

service in a manner prescribed by its description using SOAP messages, typically

conveyed using HTTP with an XML serialization in conjunction with other Web-related

standards” [84] [85].

45

Web services require the use of many layered and interrelated technologies. From

a bottom-up perspective, the five layers of the web services architecture stack are the

following [84] [85]:

 the representation level: It utilizes XML, which is the most popular

language for representing data and messages sent between clients and web

service providers [85].

 the transport level: Includes technologies used for data and messages

transfer on the Web. HTTP is the most used one in data exchange between

web Services. Also other technologies like TCP, SMTP and FTP are used

as well [85].

 the level of service invocation: This level is about describing the structure

of the data and messages sent to/from a web service. It actually specifies

what XML elements are present inside a request to and a response from a

Web service using the Simple Object Access Protocol (SOAP) [85].

 the level of service description: web services are described by specifying

the interface through other services can communicate with it. This

interface includes the available methods to call and its network location.

Such interfaces are implemented in Web Services Description Language

(WSDL) [85].

 the level of service discovery: Provides the means to a web service

requester to find the desired web service based on certain criteria from

services registries. This level takes advantage of the Universal Discovery

Description Language (UDDI) [85].

 2.3.4 Resource-based architectures

While the service-oriented architecture was the most popular style for distributed

systems programming, at some point the number of the available services on the Web has

increased dramatically, and so has the need for a new, more efficient way to connect and

integrate services. An effective approach to this problem would be to conceive a

distributed system as a big group of resources, each one being managed by a specific

service where resources may be created, retrieved, updated or deleted (CRUD scheme).

46

This is known as Representational State Transfer (REST) and there are four

characteristics that make a distributed system architecture a RESTful architecture:

 Every resource is reachable via a unique naming scheme named Uniform

Resource Identifier (URI). The collection of all the URIs is called the

Application Programming Interface (API) of the distributed system’s

software.

 All services provides the same interface and usually consists of four

operations/methods of the HTTP protocol; POST for creating a new

resource, GET for retrieving the state of the resource in a certain

representation form, PUT for updating a resource by transferring a new

state and DELETE for deleting a resource.

 The messages sent from or to a service are completely self-described.

 After a service is called and a specific function is executed, this service

does not keep any information about the caller and can also change its

state without being obliged to inform potential clients. This is also known

as stateless execution.

In practice, if a client machine would like to call a RESTful web service

maintained on a remote server, it would send an HTTP request with the POST, GET,

PUT, DELETE methods in the unique service URI and wait for a response to be returned

by it.

 2.3.5 Publish-subscribe architectures

When a distributed system grows too much, so does the number of processes that

join or leave it. I such cases, it is essential that the dependencies barrier between

processes should lessen as much as possible, so that processes communicate more easily.

To solve that problem, a lot of distributed systems have been designed so that they are in

fact a collection of independent processes. With this architecture, there is a strong

separation between processing and coordination, where the latter essentially glues

together the actions of processes by handling their cooperation and communication.

47

Publish-subscribe architecture-based systems follow the referentially coupled-

temporally coupled coordination model that leads to event-based coordination. Here

processes are not aware of each other; they can only publish a notification that an event

happened and also subscribe to a specific notification. Subscriber processes need to be

alive the time the notification was published.

In those systems, communication happens by depicting events that a subscriber

process is interested subscribing to. That means subscriptions must be coupled with

certain type of notifications. As generally events are just data that become available, if a

match between a publisher and subscriber happens, two situations may arise: either the

middleware is going to forward the published notification with its data to the subscribed

processes, or the middleware will forward a notification only at the point where

subscribers are ready to receive the incoming data.

Figure 11. Data items exchanging between publishers and subscribers

A typical example of the publish-subscribe architecture is the implementation of

the Message-Oriented Middleware (MOM), known mostly as message-queues, that was

analyzed in §2.2.3.

 2.4 Web applications and frameworks

The architectural styles mentioned above actually provide some basic middleware

for developing applications to be taken advantage of by end-users [85]. Programmers can

rely on this middleware for writing distributed systems software, of which the most

popular is Web applications.

48

Although there is not an “official” definition, W3C describes a web application as

“a Web page or collection of Web pages delivered over HTTP which use server-side or

client-side processing to provide an application-like experience within a Web browser.

Web applications are distinct from simple Web content in that they include locally

executable elements of interactivity and persistent state” [86]. Web applications today are

most important company assets utilized in business systems that are used in domains

such as online e-banking, electronic marketplaces, stock market and e-trading and e-

access to public administration services [87].

Web applications can be developed either by exploiting the existing low-level

tools given by the selected architectural style/middleware, or by using a web application

framework or just web framework. Server-side web frameworks are software frameworks

that simplify writing, maintaining and scaling web applications [88]. They do so by

abstracting away lower-level details of the interaction with the client [89], but also by

providing tools and libraries that make easier carrying out common web development

tasks, such as including routing URLs to appropriate handlers, interacting with databases,

supporting sessions and user authorization, formatting output and offering security

against web attacks [88].

Server-side web frameworks usually offer certain project structure conventions

that affect the number and the content of its files and directories, as well as the

communication between them. Two usual conventions are Model-View-Controller

(MVC) and Model-Controller-Routes (MCR). In the MVC pattern, the Model part

handles all the data and database-related operations of the application. The Controller

part communicates with Model to retrieve the data needed and then processes them, thus

containing the whole application logic. After that, the Controller produces the View,

which handles the presentation of the data that will be shown to the client via a

(graphical) user interface. The MCR pattern is mostly used for RESTful server-side

applications that provide an API (e.g a collection of URIs in a RESTful architecture) that

is to be consumed by a front-end or by another web service. The Model and Controller

part hold the same roles as in the MVC pattern, but here the Controller actually defines

some functions, where each one serves as a handler for a specific URI of the API.

Except for server-side web frameworks, client-side web frameworks also exist

that have recently gained a lot of attention from the web programmers communities

49

globally. These frameworks are concerned with programming browsers and enable

programmers to write applications with rich and highly interactive user interfaces.

Programmers and organizations nowadays have the opportunity to develop web

applications in the language of their choice, as server-side web frameworks exist for

almost any programming language available. However, client-side web frameworks

focus mostly on JavaScript, but there is an abundance of programming techniques and

conventions that vary from framework to framework.

50

 3 Comparison of Web Frameworks

 3.1 Go for web applications

In the 1st chapter, many powerful aspects of the Go language have been analyzed.

Many of these unique features can be used for the development of scalable, modular,

maintainable, high-performance web applications.

Go provides a rich set of built-in standard libraries that are useful for various

applications. A simple web application in Go can be written by just using the net/http

and the html/template standard packages [90]. The Go language docs have very

comprehensive information and numerous articles explaining how these packages work,

but also how they can be used to create a simple web application.

Although these packages are very useful for web applications development, a

modern web application may require some more advanced features that don’t exist in the

standard libraries. Furthermore, some people may find that the usage of these libraries

require a fair amount of code to be written, so they would like to wrap the existing

functionalities into simpler to use functions, whilst adding their own advanced features.

This is how web application frameworks are born.

With Go having a large and continuously growing community, it was somewhat

expected that some new web application frameworks would emerge. Right now there are

reportedly more than 30 available open source web frameworks for Go [91].

 3.2 Frameworks selection

This thesis’ goal is to explore and compare the features that a selected number of

Go web application frameworks provide. A total of five server-side frameworks where

chosen and will be evaluated in the following paragraphs. But how where these five

frameworks selected?

The main factor that was taken into account in the selection of the first three

frameworks was their overall popularity. One way to measure a framework’s popularity

is to count how many GitHub stars its repository has. According to a GitHub repository

that presents the most starred Go web frameworks on GitHub [91], the first three on the

51

list are: gin with 38.5k stars, beego with 24k and echo with 17.3k stars. So gin, beego

and echo are selected, since these are the most popular Go web frameworks right now.

Two notable alternatives would be kit and revel that come behind echo with 17k and

11.7k stars respectively, web frameworks that are widely used and very popular in the Go

community.

For the selection of the fourth framework, popularity and features completeness

has been taken upon consideration. But this time the framework’s popularity is selected

to be significantly lower than the most popular ones. With 5.6k stars on GitHub, buffalo

is behind the third most popular framework (echo). By browsing the buffalo

documentation, it seemed that it was packed with a fair number of libraries and modules.

The combination of the medium popularity along with the abundance of interesting

features, led to the selection of the buffalo framework.

The last framework was found by exploring new and mainly unpopular Go web

frameworks. Iris was created in 2016 and it is surprising the fact that although it is a

framework that actually has a lot of GitHub stars, is rarely mentioned on the Web, but

also when mentioned, it receives a lot of bad criticism. Eventually, iris is both popular

and unpopular, so it would be really interesting to put it to the test. A possible alternative

for iris might also have been the macaron framework [92].

 3.3 Criteria for frameworks comparison

It is of high importance to determine the criteria which will be used for the

evaluation of the selected frameworks.

The criteria can be divided into 2 main categories: Functional and Non-

Functional requirements.

 Functional requirement: “defines a function or a software system or its

component. A function is described as a set of inputs, the behavior and

outputs” [93].

 Non-Functional requirement: refers to a concern not related to the

functionality of the software [93].

52

The following table summarizes the functional and non-functional requirements

that will be taken into consideration for the comparison of the web application

frameworks. Note that those criteria were selected because they reflect some basic

requirements of a modern web application. For a more complex application, some extra

modules may be required for proper functionality, that either already exist in the current

framework bundle, or they should be installed separately from the Administration-

DevOps team or the individual developer.

Table 1. Functional and Non-Functional requirements

Functional Non-Functional

Internationalization
Convention over

Configuration

Testing Learning Curve

Templating-Rendering Usability

Validation Code Structure

HTTP Client Security

Caching Contribution

Logging Community

Static File Serving Extensibility

File Upload-Download Performance

Session-Cookies

Authentication

Database Handling

E-mails

The functional requirements are briefly described below:

 Internationalization: Module for providing the application in multiple

languages.

 Testing: The framework has built-in support for building unit or API tests.

 Templating-Rendering: HTML Templating engine and ability to produce

XML, JSON, YAML etc. file formats.

 Validation: Input, form or payload data validation.

 HTTP Client: An HTTP client is useful to make HTTP requests on

demand.

 Caching: Module for caching data, making the application faster.

53

 Logging: Integrated logging module for documenting the server’s and

requests state.

 Static File Serving: Static files like HTML, JS, CSS, TXT, CSV etc. can

be served.

 File Upload-Download: Support for uploading or downloading files to

and from the server respectively.

 Session-Cookies: With a session, user-specific data can be stored in the

server that are identified by a single cookie. Cookies themselves define

and store user data in the client’s browser.

 Authentication: For applications that have to do with accounts, user

authentication is a crucial component.

 Database Handling: Built-in functions to make queries or transactions

with a database, ORM support or other database related features.

 E-mails: Since a lot of websites communicate with their clients via e-

mails, a mailing component is a good asset to the whole framework

package.

A short description for every non-functional requirement is also given:

 Convention over Configuration: “All configuration should have sensible

defaults, in order to minimize the number of detailed decisions that

developers need to make for the common cases” [89]. Meaning that the

framework should propose e.g. a fixed folder structure, a pattern like

MVC and also make the developer avoid self-configuring the framework

as much as possible.

 Learning Curve: How much time it will take to a developer who has never

used the framework, to get familiar with it.

 Usability: The ease of use of the framework or how much does the

framework help the developer use it effectively.

 Code Structure: The amount of lines of code it takes to write the

application and the overall quality of the produced code after using the

framework’s features.

54

 Security: “It’s the capability of a system to prevent malicious or accidental

actions outside of the designed usage, and to prevent disclosure or loss of

information” [93]. It usually has to do with the maturity of the framework,

how long it has been used and tested by the developers in production

environment or the amount of open issues in GitHub related to security

flaws (if it’s an open source project). However, there could be some

functional requirements related to security that the application might have,

like SSL/TLS encryption, but overall, security can be more properly

categorized as a non-functional requirement.

 Contribution: How often does the framework get updates from the

publisher (if privately owned) or the community of developers (if open

source and open for contribution).

 Community: Forum posts, articles and video tutorials on the Web,

questions on StackOverflow and GitHub issues are factors that can define

the overall developers’ interest for the framework.

 Extensibility: The ease of extending the framework’s API with new self-

written features and modules.

 Performance: “It is an indication of the responsiveness of a system to

execute any action within a given time interval” [93]. The performance

can be measured by the amount of requests/sec, the total number of

requests and also the average response time in a limited time frame. The

average response time is the average total time needed for a server to

process the request received and return the response to the client.

 3.4 Comparison of frameworks

Having the comparison criteria defined, the next step is to see how the five

selected frameworks meet them. But first these frameworks must be used and tested in a

real case study.

The frameworks will be used to develop a CRUD web application with a

RESTful API. That means, that the same application will be built with five different

ways, each being dictated by each framework’s characteristics. Chapter 4 is dedicated to

55

the development of the application where the idea and the development process is

described in detail.

So, after the development of the application with each framework, the following

results are obtained regarding the comparison criteria.

 3.4.1 Internationalization

 3.4.1.1 Gin

Gin doesn’t provide any internationalization modules yet. There is a new GitHub

repository created for the development of a new internationalization middleware (i18n)

in the main GitHub contribution page of gin, this being https://github.com/gin-contrib.

 3.4.1.2 Beego

Beego provides an internationalization module that can be downloaded

separately. The github.com/beego/i18n package can be used to provide a multilingual

experience to the website users.

 3.4.1.3 Echo

Echo does not provide any internationalization modules.

 3.4.1.4 Buffalo

Buffalo uses the github.com/nicksnyder/go-i18n and

github.com/gobuffalo/mw-i18n package for internationalization and localization of

the application with a handful of useful functionalities. The translations are stored in the

locales folder of the project.

 3.4.1.5 Iris

Package github.com/kataras/iris/i18n enables internationalization and

localization features for iris.

 3.4.2 Testing

 3.4.2.1 Gin

https://github.com/gin-contrib

56

Gin encourages its users to take advantage of the net/http/httptest package

of the standard library along with the github.com/stretchr/testify package as a

dependency.

 3.4.2.2 Beego

Beego makes it easy creating test cases using the testing, net/http/httptest,

and some other helpful but not really necessary packages. When the bee CLI tool is used

to create a beego project from scratch, a new test folder is created with a sample testing

file. In addition, ORM tests for MySQL, SQLite3 and PostgreSQL databases can be

made.

 3.4.2.3 Echo

Test cases can be built using the net/http/httptest package of the standard

library together with the github.com/stretchr/testify.

 3.4.2.4 Buffalo

Buffalo has a dedicated test runner to make sure the test environment is correct

and run the desired tests. It uses a mix of packages that enable convenient method,

session and database setup testing. The tests can be run with the buffalo test

<package> -m <method> command with the package argument being optional. It is also

possible to generate test coverage reports.

 3.4.2.5 Iris

Iris provides testing support with the github.com/kataras/iris/httptest

package. This package provides helper functions to use github.com/gavv/httpexpect

as an HTTP and REST API testing tool.

 3.4.3 Templating-Rendering

 3.4.3.1 Gin

Gin uses the html/template standard library package, but allows only one

template to be rendered. To render multiple templates the github.com/gin-

contrib/multitemplate package can be downloaded. Apart from HTML, gin also can

57

render data in JSON, JSONP, ASCII-only JSON with escaped non-ASCII characters,

XML and YAML format and also a plain String.

 3.4.3.2 Beego

Beego uses the html/template standard library package. In startup the available

templates are compiled and cached for efficient rendering. There is also the ability to

pass data into the templates in a custom way by using this.Data[], set template names,

auto-render templates, change the default template tags, use built-in or custom template

functions and control the whole layout design of the selected view. Apart from templates,

beego can also render data in JSON, JSONP, XML and YAML format and also plain

Strings from reading a []byte array.

 3.4.3.3 Echo

For template rendering, the html/template package is used, with the ability to

call echo inside the templates. Echo can also render Strings, normal, beautified or stream

JSON, JSONP, JSON Blob, normal, beautified or stream XML, XML Blob and also send

files, attachments, Blob or just a data stream with the provided content type and the

appropriate io.Reader(). Empty content rendering and special hook-type functions

attachment are available as extra choices.

 3.4.3.4 Buffalo

The github.com/gobuffalo/buffalo/render package has a collection of

useful render options. They include auto format rendering, JSON, XML Markdown, JS

and HTML rendering or just plain text. It’s also possible to write custom renderers. For

templating, the github.com/gobuffalo/plush package is used with features like

standard layout setting, array, slice and map iterating, partials, helper functions and flash

messages.

 3.4.3.5 Iris

Iris supports 6 template engines, the standard html/template, the Django

template parser, Pug, Handlebars, Amber and Jet with an extra ability to use any other

template engine desired. Apart from templates, iris can also render data in JSON,

JSONP, XML, YAML or Markdown format and also plain text.

58

 3.4.4 Validation

 3.4.4.1 Gin

Gin binds the request body into specific types to enable further processing. It

currently supports binding of JSON, XML, YAML, and standard form values. It is also

possible to build custom validators using the external gokpg.in/go-

playground/validator.v10 package.

 3.4.4.2 Beego

Beego can check whether the input data are valid JSON, XML, YAML, standard

form values, integers, booleans, floating point numbers and strings. The package

github.com/astaxie/beego/validation can also be used for data validation and error

collection.

 3.4.4.3 Echo

Echo can check whether the payload data is valid JSON, standard form values and

query parameters and bind them into a Go type, but it doesn’t come with built-in data

validation capabilities. The docs suggest using third-party libraries for data validation

like github.com/go-playground/validator.

 3.4.4.4 Buffalo

Package github.com/gobuffalo/validate enables data validation inside a

buffalo application. github.com/gobuffalo/validate/validators has some

predefined validators for basic data types validation. Also with the

github.com/gobuffalo/buffalo/binding package certain types of payload data like

JSON, XML, HTML or HTML forms can be bound to Go data types for easy handling.

 3.4.4.5 Iris

For model binding and validation Iris uses the github.com/go-

playground/validator.v9 package. Validation can also happen in the url parameters.

For example in the path /users/{id:uint64} iris checks if the provided id is an

unsigned 64-bit integer, if not it throws a 404 error. Built-in functions but also user-

defined ones can be used for more detailed validation of the url parameters.

59

 3.4.5 HTTP Client

 3.4.5.1 Gin

A custom http client is not provided with gin. Third-party ones can be used.

 3.4.5.2 Beego

The github.com/astaxie/beego/httplib package is provided that enables the

user to make HTTP or HTTPS calls, send big data, upload files but also to set headers,

request parameters and timeout.

 3.4.5.3 Echo

No http client package comes along with the echo framework bundle.

 3.4.5.4 Buffalo

Buffalo doesn’t have a custom http client.

 3.4.5.5 Iris

Iris does not provide a dedicated client to make HTTP calls.

 3.4.6 Caching

 3.4.6.1 Gin

The gin community contributed middleware github.com/gin-contrib/cache

can be imported to use caching.

 3.4.6.2 Beego

Beego supports caching via the github.com/astaxie/beego/cache package

with 4 providers: memory, file, redis and memcache with the ability to create a custom

provider by implementing the Cache interface.

 3.4.6.3 Echo

Caching support is not provided. Third-party libraries or user-developed libraries

can be used instead.

 3.4.6.4 Buffalo

60

There is a caching plugin for buffalo but it is deprecated and not appropriate for

use.

 3.4.6.5 Iris

Iris supports both server-side and client-side caching. User sets a maximum data

expiration time and after that time frame has passed, cached data are erased.

 3.4.7 Logging

 3.4.7.1 Gin

Gin provides a logger middleware that is highly customizable. There are also

some community contributed logging packages as alternatives.

 3.4.7.2 Beego

The github.com/astaxie/beego/logs is beego’s logging module. It can be

imported and help with logging at multiple levels such as LevelDebug, LevelNotice,

LevelError, LevelCritical and more.

 3.4.7.3 Echo

Echo has a built-in logger middleware that can be set up with the

e.Use(middleware.Logger()) command and log information about every HTTP

request. The logs can be configured to be shown in a specific format to the developer’s

liking.

 3.4.7.4 Buffalo

Buffalo provides a logger that logs the requests made to the server and a general

application logger. Also the Logger interface can be implemented to create a custom

logger.

 3.4.7.5 Iris

The github.com/kataras/iris/middleware/logger middleware enables

HTTP request logging at multiple levels with configuration capabilities.

61

 3.4.8 Static File Serving

 3.4.8.1 Gin

There is support for defining paths that serve static file directories or even a

single static file.

 3.4.8.2 Beego

There is support for defining paths that serve static file directories or even a

single static file. Multiple static files or directories can be registered together.

 3.4.8.3 Echo

A new route can be registered to serve static files from a root directory with

e.Static(). Also single static file serving is available via the e.File() command.

 3.4.8.4 Buffalo

A new render.Engine with a new packer.Box can be defined to enable file

serving.

 3.4.8.5 Iris

Whole directories but also single static files can be served to the client with the

appropriate function calls.

 3.4.9 File Upload-Download

 3.4.9.1 Gin

Single file uploading and downloading is available, with an extra option for

multiple file uploading.

 3.4.9.2 Beego

Single file downloading is available, as well as single or multiple file uploading.

 3.4.9.3 Echo

One or more files can be uploaded with echo, but also there is support for

downloading a single file.

62

 3.4.9.4 Buffalo

Α render.Download() renderer enables file downloading. Also files can be

uploaded easily from a form.

 3.4.9.5 Iris

Iris supports single/multiple file uploading and single file downloading.

 3.4.10 Session-Cookies

 3.4.10.1 Gin

Gin doesn’t directly support sessions, but the github.com/gin-

contrib/sessions package can be downloaded to use them. Instead, it pretty much

supports setting and getting cookies.

 3.4.10.2 Beego

Beego has a built-in session control module that supports memory, file, redis,

MySQL, Couchbase, memcache and PostgreSQL. It also supports setting and getting

simple cookies or cookies with encoded values.

 3.4.10.3 Echo

For session management, the echo community maintained implementation can be

taken advantage of, which is being backed by github.com/gorilla/sessions. Cookies

are also available, but cookie-related functions functions require the use of the standard

http.Cookie.

 3.4.10.4 Buffalo

Buffalo sessions are available via the buffalo.Context and it uses

github.com/gorilla/sessions package under the cover. Setting and getting cookies is

also easy via the Cookies() method of the buffalo.Context.

 3.4.10.5 Iris

Session storage and setting or getting cookies is available on iris.

63

 3.4.11 Authentication

 3.4.11.1 Gin

User authentication can be succeeded via the gin.BasicAuth middleware.

 3.4.11.2 Beego

The package github.com/astaxie/beego/plugins/auth can provide basic

user authentication. It is activated like a beego filter middleware with

beego.InsertFilter().

 3.4.11.3 Echo

Echo’s basic auth middleware provides basic user authentication with a few

configuration choices.

 3.4.11.4 Buffalo

User authentication can be succeeded with the use of

github.com/gobuffalo/buffalo-auth or the github.com/gobuffalo/buffalo-

goth package. The second one provides authentication via social media accounts, which

is a really good feature.

 3.4.11.5 Iris

The github.com/kataras/iris/middleware/basicauth package can handle

provide basic user authentication.

 3.4.12 Database Handling

 3.4.12.1 Gin

There aren’t any database or data storage related tools inside gin.

 3.4.12.2 Beego

Beego has a rich set of database related tools. The ORM tool supports drivers for

MySQL, PostgreSQL and SQLite3, numerous operations like setting up a database,

registering drivers, time zone configuration, setting maximum idle or open connections,

generating tables, quick advanced filter-type queries and also the quick creation,

64

retrieval, updating or deletion of an object without making any raw SQL queries,

although it’s possible to do so. Apart from ORM-related features, beego has a

QueryBuilder asset that enables making fast, readable queries with ease and a. ORM

tests can be made as mentioned in the Testing section.

 3.4.12.3 Echo

Database-related features are absent from echo.

 3.4.12.4 Buffalo

The github.com/gobuffalo/pop package is great for making ORM models,

fast CRUD operations, run migrations, define associations and relationships between

tables, execute database queries and define callbacks to be executed database operations.

It supports MySQL, PostgreSQL, SQLite3 and CockroachDB and can be used

conveniently along with the soda CLI tool.

 3.4.12.5 Iris

Iris doesn’t provide any database-related tools. However in the GitHub

examples there is code that implements ORM logic with the github.com/jinzhu/gorm

and github.com/go-xorm/xorm libraries.

 3.4.13 Emails

 3.4.13.1 Gin

Gin doesn’t have a dedicated module for e-mail generation.

 3.4.13.2 Beego

Beego has a dedicated module for e-mail generation and sending in

github.com/astaxie/beego/utils package.

 3.4.13.3 Echo

E-mail modules are not included in echo.

 3.4.13.4 Buffalo

65

Buffalo provides a mailer extension that enables easy email generation with

useful extra configurations.

 3.4.13.5 Iris

There is no dedicated package for e-mail generation and sending.

 3.4.14 Convention over Configuration

 3.4.14.1 Gin

The framework doesn’t propose a specific folder structure, on the other hand

lacks any configuration-like philosophy. Gin has a default configuration setting and if the

developer wants to use any extra middleware, he/she can include it in the current setting

via the Use() method of the gin instance.

 3.4.14.2 Beego

Beego uses a MVC architecture. Using the bee CLI tool, a new standard project

or an API project can be created. Doing so, a specific folder structure is imposed on the

whole project, that being divided in concrete logical entities. Beego also gives the

developers the choice whether to implement a configuration logic to the application or

not. The app.conf file contains all the custom configurations needed. An alternative way

to do this would be to declare the desired configurations in the main.go file of the beego

application.

 3.4.14.3 Echo

Echo sets no boundaries in project folder structure and application architecture.

It’s a convention that if the developer needs to inject any desired middleware it can be

done with the Use() method of the current echo instance. Overall, echo does not have a

strong convention-like logic but it doesn’t encourage configuration logic either.

 3.4.14.4 Buffalo

When a new project is created with the buffalo CLI, a very specific and peculiar

project structure is created, that has some similarities with the MVC pattern. The

actions directory is the Controller, the models folder is the Model and the templates

directory is the View. It contains some other directories as well like assets, public,

66

grifts, locales, tmp and of course a main.go file. The buffalo framework has a

strong configuration logic. There are some environment variable that can be set, with

support for reading .env files for automatic project configuration. Even some functions,

e.g. the creation of a new renderer or a new buffalo instance imposes a configuration

procedure to be followed in order to set up the current application.

 3.4.14.5 Iris

Iris does not propose any project structure, can be used to create applications

with MVC architecture though. In general, iris pretty much works with a conventional

way, from using middleware and dependency injection to defining and grouping routes.

Configuration is only used for setting up the overall iris project from a built-in

configurator, a configuration struct, a YAML or TOML file or some middleware like

basicauth.

 3.4.15 Learning Curve

 3.4.15.1 Gin

The documentation is very good and guides the developer with examples how to

use the framework’s features, leading to quick familiarization with it.

 3.4.15.2 Beego

Extensive documentation with plenty of examples makes the learning process

enjoyable and relatively quick. A downside would be that the official documentation

doesn’t cover the whole spectrum of beego’s features, so if developers want to use some

more advanced functionalities maybe they have to search on their own how to use them

properly.

 3.4.15.3 Echo

The documentation covers the biggest part of the echo features with

understandable examples. Echo is really easy to learn and a basic application can be

developed rapidly from the early stages of the learning process.

 3.4.15.4 Buffalo

67

Buffalo docs have enough articles for the core features of the framework, these

being a getting-started guide, examples for request handling, database manipulation,

deployment practices but also various guides for advanced topics like setting background

workers, building an API, plugins integration and use of buffalo with Docker images.

Although the documentation is extensive, it requires some effort to learn the framework

and get familiar to it.

 3.4.15.5 Iris

The “Get Started” guide in iris’ official homepage (iris-go.com) gives a limited

number of examples for basic usage of the framework. For more advanced usage, iris

contains a _examples directory with actual code example of how to use the rest of iris’

features. It has a simple API which makes the learning process to take very little time.

The process that someone would spend the most time on, would be searching the

examples, just to see how the desired functionality should be implemented.

 3.4.16 Usability

 3.4.16.1 Gin

The provided functions greatly reduce the developer’s work. Especially their

naming really helps with writing understandable code.

 3.4.16.2 Beego

An abundance of useful functions reside in the beego framework. The MVC

pattern along with the ease of use of the numerous tools make beego a really interesting

framework to work with. Also the automated testing, packing and deploying are some of

the strong points for usability purposes.

 3.4.16.3 Echo

Echo has a really simple and straightforward API that boosts tremendously the

overall usability of the framework. Without having a ton of features, it is a framework

that makes a difference from an ease of use standpoint.

 3.4.16.4 Buffalo

68

Buffalo does not give the usability that someone would expect from a Go web

framework. It contains a handful of concepts and configuration practices that slow down

the development process, despite having lots of good features for the application

development.

 3.4.16.5 Iris

Even for a beginner, iris is a very easy framework to use. The utilization of its

features, even the customization of certain functionalities to the developers’ needs is

straightforward and facile.

 3.4.17 Code Structure

 3.4.17.1 Gin

In all 5 applications that were developed with the different frameworks, the file

that contains database manipulation functions is the same and is 160 lines long with the

break lines. If all lines of code (plus break lines) in all the files of the gin application are

summed, there is a total of 366 lines of code. Having also in mind the benefits gained

from the good usability of gin, the final product is elegant, concise and self-explanatory

code.

 3.4.17.2 Beego

If the break lines, the database manipulation file and all the other files except the

tests are taken into account, there is a total of 548 lines of code. For someone to fully

understand beego code, must be familiar with the naming conventions and concepts the

framework uses. Having done that, the readability and expressiveness of the code is quite

good.

 3.4.17.3 Echo

Taking into account the constraints for lines of code counting that were

mentioned previously, the application written in echo code is 358 lines long. The pros

gained from its good usability directly affect the syntactic structure of the code as the

final product is inclusive and elegant code.

69

 3.4.17.4 Buffalo

Some directories of the standard project folder structure were deleted because

they were of no use. Also there are some multiline comments that are useful for code

readability. If no configuration files and directories with binary data are considered, the

final code consists of 434 lines. If some effort is made, the final product can be quite

clean and easily readable.

 3.4.17.5 Iris

The code produced by using Iris is very comprehensive and thorough. The demo

application developed consists eventually of 404 lines of code.

 3.4.18 Security

 3.4.18.1 Gin

Gin’s GitHub repository was created at 2014 and since then it has been used by a

lot of people. It lacks any security issues, supports SSL and TLS, it has a stable API that

is not going to change in future releases, can handle goroutine panics triggered by HTTP

requests by recovering them and also can report such problems to Sentry, a real-time

crash reporting software [94].

 3.4.18.2 Beego

Beego’s is one of the first Go web frameworks that were created. As its

development started at 2012, it has been used and tested in many commercial projects in

production over the years. No security issues have been reported recently, it supports

TLS and easy error handling. There is an extra option to enable live monitoring of the

beego application as administrator.

 3.4.18.3 Echo

Echo’s development started at 2015 and there are no open security issues in its

GitHub page. In nearly 5 years of development, echo is now a mature framework that can

be used without security concerns. TLS encryption is also an extra security feature.

 3.4.18.4 Buffalo

70

Buffalo’s GitHub repository was created at 2014 and there were never any

security issues reported. The github.com/gobuffalo/mw-forcessl middleware

automatically forces a redirect to HTTPS instead of an HTTP. Buffalo also suggests that

the developers place their application behind an Apache or Nginx proxy and let them do

the “heavy SSL lifting”.

 3.4.18.5 Iris

Since the iris’ GitHub repository creation in 2016, it has evolved significantly

and continues to do so without having any known security issues so far. TLS encryption

is available, so a server listening only to HTTPS can easily be started.

 3.4.19 Contribution

 3.4.19.1 Gin

The latest release v1.6.3 of gin was published on May 3, 2020. Gin contributors

commit to the repository in a regular basis fixing existing bugs or adding new features.

 3.4.19.2 Beego

Version v1.12.1 of the beego framework is the latest one available and has been

released on February 7, 2020. Since this release, 8 commits have mediated with the latest

commit having been published on June 1, 2020.

 3.4.19.3 Echo

The latest version v4.1.16 of echo was published on March 30, 2020. Constant

contribution to the project is a fact, with stable releases being released regularly.

 3.4.19.4 Buffalo

The latest release v0.16.9 of buffalo was published on May 25, 2020 and

commits take place about once a month.

 3.4.19.5 Iris

Iris has had 56 releases published so far, with the latest one v12.1.8 having been

released on February 16, 2020. The project’s contributors commit frequently, so new

features are continuously added with great pace.

71

 3.4.20 Community

 3.4.20.1 Gin

With 2404 GitHub issues, 346 questions on StackOverflow [95] and numerous

articles on the Web, gin has attracted a lot of attention from developers all around the

world.

 3.4.20.2 Beego

Beego has 4005 issues on its GitHub page, 498 questions on StackOverflow [96]

and is referred frequently on articles on the Web. Those numbers indicate that there is a

very active community interested in the beego project.

 3.4.20.3 Echo

Echo has had 1584 issues on its GitHub page and 118 questions on

StackOverflow [97]. Because of its simplicity, echo has urged a lot of developers to try

it, so the Web is filling more and more with echo articles and video tutorials.

 3.4.20.4 Buffalo

In total there have been published 2001 issues in GitHub, along with 74 questions

on StackOverflow [98] and a fair number of articles and video tutorials on the Web.

 3.4.20.5 Iris

With 1531 issues on GitHub, 72 questions on StackOverflow [99] and a growing

number of references on articles and videos emerging are signs of an active community

that grows day by day.

 3.4.21 Extensibility

 3.4.21.1 Gin

Anyone can develop their own middleware and integrate it easily with gin by

utilizing the Use() method of the gin.Engine.

 3.4.21.2 Beego

72

Custom middleware or even new independent packages can be developed and

integrated into a beego project. For importing a custom built middleware the procedure

described in github.com/ojardila/beego_middleware can be followed with the help

of beego.InsertFilter(). A separate file for special handling functions can be created

and then initialized in routers.go file.

 3.4.21.3 Echo

Custom user middleware can be developed and integrated with the any echo

application with the Use() method of the echo instance.

 3.4.21.4 Buffalo

Developers can write their own middleware by implementing the

buffalo.MiddlewareFunc interface. Buffalo plugin development is encouraged as well.

 3.4.21.5 Iris

User-created handler functions for routes can be integrated into iris and used as

custom middleware for the current application.

 3.4.22 Performance

 3.4.22.1 Gin

In the demo application that was developed, the requests that are actually used are

the GET collection and POST entity, so the performance tests will be made only for these

types of requests. It should be noted that in every GET request a total of 4655 database

rows are fetched. The hardware used is an Intel i5-3210M @2.50GHz, 2 cores with each

supporting 2 threads (4 logical cores), 4GB DDR3 RAM and a 500 GB SanDisk Ultra II

SSD. Each framework’s server runs on localhost in port 8080. After using the

github.com/tsliwowicz/go-wrk package to test the framework, for approximately 5

seconds of benchmarking the results are the following.

 GET collection: 830 total requests, 165.84 requests/sec, 24.11987ms

average request time.

 POST entity: 668 total requests, 133.64 requests/sec, 14.96603ms average

request time.

https://github.com/ojardila/beego_middleware

73

 3.4.22.2 Beego

After testing for 5 seconds with the github.com/tsliwowicz/go-wrk package,

the results are the following.

 GET collection: 587 total requests, 117.22 requests/sec, 34.124682ms

average request time.

 POST entity: 653 total requests, 130.62 requests/sec, 15.311725ms

average request time.

 3.4.22.3 Echo

The performance tests for 5 seconds come with the results below.

 GET collection: 896 total requests, 179.22 requests/sec, 22.318552ms

average request time.

 POST entity: 831 total requests, 166.09 requests/sec, 12.041903ms

average request time.

 3.4.22.4 Buffalo

After running the performance tests, the following numbers are obtained.

 GET collection: 762 total requests, 152.08 requests/sec, 26.302248ms

average request time.

 POST entity: 675 total requests, 134.98 requests/sec, 14.817061ms

average request time.

 3.4.22.5 Iris

Five seconds of benchmarking give the results shown below.

 GET collection: 773 total requests, 154.35 requests/sec, 25.914429ms

average request time.

 POST entity: 655 total requests, 131.03 requests/sec, 15.263665ms

average request time.

74

 3.4.22.6 Performance Graphs

The benchmarks performed are summarized in the following table.

Table 2. Performance evaluation results for the 5 frameworks

GET collection POST entity

Total

Requests
Requests/sec

Avg.

Request

Time

Total

Requests
Requests/sec

Avg.

Request

Time

Gin 830 165.84 24.11987 668 133.64 14.96603

Beego 587 117.22 34.12468 653 130.62 15.31173

Echo 896 179.22 22.31855 831 166.09 12.0419

Buffalo 762 152.08 26.30225 675 134.98 14.81706

Iris 773 154.35 25.91443 655 131.03 15.26367

They can also be visualized for a better perception of the numbers.

Figure 12. Total no. of Requests for GET collection

75

Figure 13. Requests/sec for GET collection

Figure 14. Average Request Time for GET collection

76

Figure 15. Total no. of Requests for POST entity

Figure 16. Requests/sec for POST entity

77

Figure 17. Average Request Time for POST entity

For GET collection requests, echo is the framework that dominates the other ones

in performance aspect. Gin comes second and is being followed by iris, buffalo and

beego in that order.

As regards to the POST entity requests, echo again is the framework that

performs best. Buffalo is the second fastest framework leaving behind gin, iris and

beego again in the order in which they were mentioned.

In GET requests it seems that the frameworks with the largest number of features

score slower numbers than the lighter frameworks. But it in the POST requests, although

the lightweight echo is first in terms of speed, buffalo comes second and beego last, so

no safe conclusion can be extracted whether the more lightweight frameworks are

actually faster than the heavier ones.

 3.4.23 Summary

The overall comparison of the web frameworks is summarized in the table below:

78

Table 3. Overall comparison of web frameworks

 Gin Beego Echo Buffalo Iris

Internationalization No Optional No
Optional – 3rd

party
Yes

Testing
Standard library

-3rd party

Yes – Standard

library

Standard library

-3rd party
Yes Yes

Templating-

Rendering

Yes -Standard

library –

Community pkg

Yes – Standard

library

Yes – Standard

library
Yes

Yes – Standard

library

Validation Yes – 3rd party Yes Yes – 3rd party Yes Yes – 3rd party

HTTP Client No Yes No No No

Caching Community pkg Yes No Deprecated Yes

Logging
Yes –

Community pkg
Yes Yes Yes Yes

Static File Serving Yes Yes Yes Yes Yes

File Upload-

Download
Yes Yes Yes Yes Yes

Session-Cookies
Yes –

Community pkg
Yes Community pkg Yes Yes

Authentication Yes Yes Yes Yes Yes

Database Handling No Yes No Yes 3rd party

Emails No Yes No Yes No

Convention over

Configuration
Medium High Medium Low Medium

Learning Curve Shallow Rather steep Shallow Steep Rather steep

Usability Good Medium Good Poor Good

Code Structure Good Medium Good Medium Good

Security High High High High High

Contribution Regular
Relatively

regular
Regular Sparse Regular

Community Large Large Large Medium Medium

79

Extensibility Good Good Good Good Good

Performance High High High High High

 The green table entries that contain “3rd party” are about the 3rd party packages

that each framework’s official documentation urges developers for use. If a framework

does not recommend any 3rd party libraries, the appropriate table entry is marked red

with “No”, even though there might be some pluggable packages.

 The terms “Shallow” and “Steep” that describe the learning curve of a particular

framework are used metaphorically, indicating that a framework with a “Shallow”

learning curve requires less effort to learn than a framework with a “Steep” learning

curve.

 The fact that a framework has a lot of green entries in the table above does not

necessarily mean that it is the best framework to choose overall. Something similar can

also be said about frameworks with many orange or red entries too, these frameworks are

not necessarily worse than others, as choosing the appropriate framework is a very

subjective decision. For example, certain programmers are going to prefer an all-in-one

framework like Beego with many features, while others may choose a more lightweight

framework like Echo that does not have the same amount of features as Beego, but it is

highly customizable and available for experimenting with third-party or self-written

packages instead of having many built-in ones.

80

 4 Demo Application

In Chapter 3, five Go web frameworks were selected to be compared according to

specific criteria: gin, beego, echo, buffalo and iris. In order for them to be evaluated,

it was considered necessary to use them for building an actual web application, as the

only way to test every framework effectively, is to do it in practice.

 4.1 The application’s rationale

The main idea was to build a simple application that familiarizes the developer

with the use of the five selected frameworks, with the ultimate goal of evaluating and

comparing them. For that reason, it was decided that it would be a RESTful web

application with basic CRUD operations that would also store data in a SQLite3

database.

The application’s concept is the free online platform Speak4Env, which makes it

easy for everyone to share their thoughts and ideas with other people around the world

about improving the environment’s quality.

81

Figure 18. The Speak4Env Application

In Speak4Env, the feature is that a user can anonymously publish a single Post at

a time. By clicking the ‘+ Create Post’ button, a modal dialog is shown where the Post’s

text can be typed.

Figure 19. Creating a single Post

82

If the new Post is created successfully, a success message is shown to indicate it.

Then the user can create another Post or just close the modal to read the rest of the

published Posts.

Figure 20. Successful creation of a Post

 When the main page is loaded, all the published Posts appear in the screen by

chronological order, as shown in Figure 7.

It should be noted that, although the GET, PUT and DELETE entity web services

were not implemented on the website, they were created in the backend in order to have a

complete CRUD API.

83

 4.2 Project structure

The project is based on both back-end and front-end code. The backend folder

will be studied first and it contains 5 sub-folders, each for the application’s code written

with the help of the respective framework, along with a SQLite3 database file. The

frontend folder will be studied later.

gofwc/

├── backend/

│ ├── beego/

│ ├── buffalo/

│ ├── echo/

│ ├── gin/

│ ├── iris/

│ └── maindb.db

└── frontend/

Figure 21. General project structure

In the following paragraphs the back-end directories will be analyzed in detail.

 4.2.1 Gin

Gin is a framework that doesn’t propose a specific project structure. For that

reason, a Model-Controller-Routes structure convention is used for both logical and

folder structure of the application.

gin/

├── controllers/

│ └── post.go

├── models/

│ └── datasource.go

├── routers/

│ └── router.go

├── README.md

└── main.go

Figure 22. Gin project structure

The gin folder contains the controllers, models and routers folders along

with 2 separate files, README.md and main.go. The models folder has the

84

datasource.go file that houses all the database related tasks that need to be done in the

application. The post.go file inside the controllers folder is responsible for all the

functions the back-end can handle, and also the router.go file of the routers folder

makes those functions available via declaring the routes from where they can be

accessed. README.md provides instructions on how to run the gin application and

main.go is the starting point of the application where the gin instance is created, with

the gin server listening to HTTP requests.

 4.2.2 Beego

The beego API project is created automatically with the bee CLI tool, resulting in

the following project structure:

beego/

├── conf/

│ └── app.conf

├── controllers/

│ └── post.go

├── models/

│ └── datasource.go

├── routers/

│ ├── commentsRouter…controllers.go

│ ├── commentsRouter_controllers.go

│ └── router.go

├── tests/

│ └── default_test.go

├── README.md

├── beego.exe

├── lastupdate.tmp

└── main.go

Figure 23. Beego project structure

Conf folder hosts the file responsible for the project configuration, while

controllers, models and routers folders work the same way as in the gin project.

The 2 extra files inside the routers folder are used for routing analysis when

Annotation Router is used. The test folder contains test cases written to test if the

application works properly. README.md file explains how to run the beego application,

beego.exe is the executable created when bee run command is called to start the

85

server, lastupdate.tmp is a cache file for the Annotation Router and main.go is used

by the bee run command to enable the beego server listen to incoming requests.

The bee CLI tool also creates the swagger and docs folders for API

documentation and an auto-generated document file respectively. They are deleted

though because they are of no use to the application.

 4.2.3 Echo

Like gin, echo doesn’t have or propose a predefined structure for the application,

so the Model-Controller-Routes convention is utilized.

echo/

├── controllers/

│ └── post.go

├── models/

│ └── datasource.go

├── routers/

│ └── router.go

├── README.md

└── main.go

Figure 24. Echo project structure

The folders’ structure and content are identical to the gin application ones.

 4.2.4 Buffalo

The buffalo API project is created with the framework’s dedicated CLI tool and

produces a unique folder structure.

buffalo/

├── actions/

│ ├── app.go

│ ├── handlers.go

│ └── render.go

├── config/

│ ├── buffalo-app.toml

│ └── buffalo-plugins.toml

├── models/

│ └── datasource.go

├── tmp/

86

│ └── buffalo-build.exe

├── .buffalo.dev.yml

├── .codeclimate.yml

├── .env

├── README.md

├── go

├── inflections.json

└── main.go

Figure 25. Buffalo project structure

Actions directory handles the Controller part of the Model-Controller-Routes

pattern (handlers.go file), but also contains the app.go file for the application and

routes setup and the render.go file to setup the desired *render.Engine. The config

folder has the buffalo-app.toml file that documents the modules that have been

installed when the project was created and the buffalo-plugins.toml file that does the

same for all the buffalo plugins. Models folder is responsible for the Model part of the

MCR pattern. Tmp folder is used by the buffalo dev command to rebuild the project on

every change and all the temporary files that buffalo works with are put here [100]. The

.codeclimate.yml and .buffalo.dev.yml are general configuration files, while the

.env file handles environment variables declaration. The plain go file is automatically

generated by the CLI tool. Finally, README.md and main.go files explain how to start the

application and serve the buffalo application respectively.

Some other folders and files that were generated like fixtures, grifts,

Dockerfile, inflections.json and database.yml were deleted.

 4.2.5 Iris

Iris is a framework that provides MVC-oriented features. In the GitHub

examples there are some MVC folder structures proposed for use. On the other hand,

because the iris application is basically an API to be consumed, the previously

mentioned Model-Controller-Routes structure will do just fine.

87

iris/

├── controllers/

│ └── post.go

├── models/

│ └── datasource.go

├── routers/

│ └── router.go

├── README.md

└── main.go

Figure 26. Iris project structure

 4.2.6 Front-end

The front-end code was structured in such way that it can consume any of the 5

Go APIs that were built, meaning that only one frontend folder was created for the

application.

frontend/

├── css/

│ └── speak4env.css

├── images/

│ ├── tree.ico

│ └── tree.svg

├── js/

│ └── speak4env.js

└── index.html

Figure 27. Front-end folder structure

The css folder contains the stylesheet that decorates the template of the

application, index.html. The image shown on Speak4Env and the browser tab icon

reside inside the images folder. The application needs a fair amount of JavaScript

handling, so the speak4env.js file is created inside the js folder is created to do so.

88

 4.3 Writing the application

All back-ends built with the selected Go frameworks are RESTful APIs, meaning

that they provide some URIs available for consumption by a client who will call them, in

order to perform a particular operation.

As explained in §4.1, these are going to be CRUD-like functions. They have to do

with either a collection of items or single entities. So, the APIs are going to have the

following 5 routes with their example JSON payloads and responses:

 1 GET route to retrieve a collection of items

// Response
[
 {
 "ID": 2,
 "Text": "We should not use plastic bags ! Paper ones are a
better alternative for the environment."
 },
 {
 "ID": 1,
 "Text": "Research should be based on finding new renewable
energy resources."
 }
]

 1 GET route to retrieve a single entity/item

// Response
{
 "ID": 1,
 "Text": "Research should be based on finding new renewable
energy resources."
}

 1 POST route to create a single entity/item

// Payload
{
 "text": "Planting trees is a fun and useful way to protect the
environment."
}

// Response
{
 "postID": 3
}

 1 PUT route to update a single entity/item

// Payload
{
 "text": "Updated text!"
}

// Response
{
 "post_updated": "yes"
}

 1 DELETE route to delete a single entity/item

89

// Response
{
 "post_deleted": "yes"
}

After having decided what the RESTful routes should be, next step is to

implement them in practice, along with the other components like the database

manipulation and the whole web service logic.

 4.3.1 Gin

As mentioned before, the gin project follows the MCR pattern. The Model file

datasource.go handles all the data and database related functions that need to be done

in the application.

datasource.go

package models

import (
 "database/sql"
 "log"

 _ "github.com/mattn/go-sqlite3"
)

// The Post struct
type Post struct {
 ID int
 Text string
}

var (
 db *sql.DB
 driver = "sqlite3"
 datasourceName =
"C:/Users/Evgenios/go/src/github.com/evgesoch/gofwc/backend/maindb.db"
)

// Open the database
func OpenDB() {…}

// Close the database
func CloseDB() {…}

// Create the database
func CreateDB() {…}

// Get all Posts from the database
func GetAllPosts() ([]*Post, error) {…}

// Get a Post from the database
func GetPostByID(id int) (*Post, error) {…}

// Create a new Post in the database
func CreatePost(text string) (int64, error) {…}

// Update a Post in the database
func UpdatePostByID(id int, text string) error {…}

// Delete a Post from the database
func DeletePostByID(id int) error {…}

90

First of all the Post type must be declared, because it will determine the database

table’s columns, but also the web services’ payload and response format. Three other

variables must also be declared, db, driver and datasourceName which are the database

object, the database driver and the directory of the database file respectively. They will

be put to use in the following functions:

 OpenDB: Opens a connection to the database.

 CloseDB: Closes the connection to the database.

 CreateDB: Used to create a database file and a table with specific

columns.

 GetAllPosts: Fetches all published Posts from the database. Returns an

array of Posts and an error value.

 GetPostById: Fetches a single Post from the database. Accepts the

Post’s id as an argument and returns the fetched Post and an error

value.

 CreatePost: Creates a new Post in the database. Accepts the Post’s

text as an argument and returns the newly created Post’s id as an int64

value, as well as an error value.

 UpdatePostById: Updates an existing Post’s text, given its id and the

new text. Returns an error value.

 DeletePostById: Deletes a Post from the database. The Post for

deletion is specified by its id and the function returns an error value.

The Model file is used inside the Controller file, post.go, which implements the

whole logic of the application.

post.go

package controllers

import (
 "log"
 "net/http"
 "strconv"

 ginModels "github.com/evgesoch/gofwc/backend/gin/models"
 "github.com/gin-gonic/gin"
)

// Get all Posts
func GetAllPosts() func(c *gin.Context) {…}

91

// Get a Post
func GetPost() func(c *gin.Context) {…}

// Create a new Post
func CreatePost() func(c *gin.Context) {…}

// Update a Post
func UpdatePost() func(c *gin.Context) {…}

// Delete a Post
func DeletePost() func(c *gin.Context) {…}

// Check if a Post exists in the database by ID
func checkIfPostExists(postID int, postsSlice []*ginModels.Post) bool {…}

All the functions that appear inside the Controller (except one) return a func(c

*gin.Context), a handler function to be used in the Routes declaration and are

analogous to the ones in the database.go file:

 GetAllPosts: Fetches all the published Posts.

 GetPost: Fetches a single Post.

 CreatePost: Creates a new Post.

 UpdatePost: Updates the text of an existing Post.

 DeletePost: Deletes a single Post.

 checkIfPostExists: A private-to-its-package helper function that

performs a check if a specific Post exists. Used in UpdatePost() and

DeletePost(), it accepts the Post’s id and a slice containing all the

saved Posts and returns a boolean value.

The Routes file, router.go, uses the above functions to handle incoming

requests to the API URIs available for consumption.

router.go

package routers

import (
 ginControllers "github.com/evgesoch/gofwc/backend/gin/controllers"
 "github.com/gin-gonic/gin"
)

var r = gin.Default()

// Main Router for gin application
func SetupRouter() *gin.Engine {
 // Api
 r.GET("/posts", ginControllers.GetAllPosts())
 r.GET("/posts/:postID", ginControllers.GetPost())
 r.POST("/posts", ginControllers.CreatePost())
 r.PUT("/posts/:postID", ginControllers.UpdatePost())
 r.DELETE("/posts/:postID", ginControllers.DeletePost())

 // Frontend

92

 r.Static("/frontend", "../../frontend")
 r.StaticFile("/speak4env", "../../frontend/index.html")

 return r
}

Firstly a *gin.Engine instance is created. Then the basic routing function is

declared, which contains the definition of both the API and the front-end routes. It

returns the previous *gin.Engine.

The last part of the gin application is the main.go, that imports the Model and

Router files, opens the database for read/write operations, initiates the routes and starts

the gin web server which is listening to incoming client requests.

main.go

package main

import (
 ginModel "github.com/evgesoch/gofwc/backend/gin/models"
 ginRouter "github.com/evgesoch/gofwc/backend/gin/routers"
)

func main() {
 ginModel.OpenDB()

 r := ginRouter.SetupRouter()

 err := r.Run(":8080")
 if err != nil {
 ginModel.CloseDB()
 return
 }
}

 4.3.2 Beego

The beego project may not have the same project structure as the gin one, but the

main idea is the same again: the MCR pattern. The Model file is again datasource.go

with the same functions and variables as in the gin application. The Controller file

handling is different though, because of beego’s own internal structure.

post.go

package controllers

import (
 "encoding/json"
 "log"
 "strconv"

 "github.com/astaxie/beego"
 "github.com/evgesoch/gofwc/backend/beego/models"
)

// Main controller to hadle requests for Post
type PostController struct {
 beego.Controller

93

}

// @Title GetAll
// @Description Get all Posts
// @Success 200 {post} models.Post
// @router / [get]
func (pc *PostController) GetAll() {…}

// @Title Get
// @Description Get a Post by its ID
// @Param postID path int true "The Post's ID you want to get"
// @Success 200 {post} models.Post
// @router /:postID [get]
func (pc *PostController) Get() {…}

// @Title Post
// @Description Create a new Post
// @Param text body string true "The new Post's text"
// @Success 200 {string} models.Post.Id
// @router / [post]
func (pc *PostController) Post() {…}

// @Title Put
// @Description Update a Post by its ID
// @Param postID path int true "The Post's ID you want to update"
// @Param text body string true "The updated Post's text"
// @Success 201 {post} models.Post
// @router /:postID [put]
func (pc *PostController) Put() {…}

// @Title Delete
// @Description Delete a Post by its ID
// @Param postID path int true "The Post's ID you want to delete"
// @Success 204 {post} models.Post
// @router /:postID [delete]
func (pc *PostController) Delete() {…}

// Check if a Post exists in the database by ID
func checkIfPostExists(postID int, postsSlice []*models.Post) bool {…}

The beego Model file is imported because its functions will be used in the same

manner as in the gin application. The first thing created is the main Controller, which is

a struct that acquires all the methods of a beego.Controller. The next step is to

assign the appropriate methods to the PostController, along with their annotation

routing information. Annotation routing enables the developers to easily declare the data

that will be associated with each Controller function, like success and failure messages,

title and description of the interface, the route that is going to listen to requests, HTTP

request method and also request parameters.

 GetAll: Fetches all the published Posts.

 Get: Fetches a single Post. Overrides the beego.Controller Get()

method.

 Post: Creates a new Post. Overrides the beego.Controller Post()

method.

94

 Put: Updates the text of an existing Post. Overrides the

beego.Controller Put() method.

 Delete: Deletes a single Post. Overrides the beego.Controller

Delete() method.

 checkIfPostExists: The helper function that performs a check if a Post

with specific id exists.

Now that all the needed information is registered to the PostController, it is

essential that a namespace router teams up with the PostController to create a new

fixed route (namespace) on which the annotation routes will adjust. After that the front-

end communication routes are also stated.

router.go

package routers

import (
 "github.com/astaxie/beego"
 beegoController "github.com/evgesoch/gofwc/backend/beego/controllers"
)

func init() {
 // Api
 ns := beego.NewNamespace("/posts", beego.NSInclude(
 &beegoController.PostController{}),
)
 beego.AddNamespace(ns)

 // Frontend
 beego.DelStaticPath("/static")
 beego.SetStaticPath("/frontend", "../../frontend")
 beego.SetStaticPath("/speak4env", "../../frontend/index.html")
}

The application is completed by writing the main.go file, which imports the

Model and Router files, opens the database and initializes the beego server.

main.go

package main

import (
 "os"
 "os/signal"
 "syscall"

 beegoModel "github.com/evgesoch/gofwc/backend/beego/models"
 _ "github.com/evgesoch/gofwc/backend/beego/routers"

 "github.com/astaxie/beego"
)

func main() {
 beegoModel.OpenDB()

 // Run the application

95

 if beego.BConfig.RunMode == "dev" {
 beego.BConfig.WebConfig.DirectoryIndex = true
 beego.BConfig.WebConfig.StaticDir["/swagger"] = "swagger"
 }
 beego.Run()

 handleServerTermination()
}

// Close the database after server termination
func handleServerTermination() {…}

 4.3.3 Echo

The echo application has exactly the same structure as the gin one. Following the

MCR pattern, again the Model file datasource.go is the same. The Controller file is the

following:

post.go

package controllers

import (
 "log"
 "net/http"
 "strconv"

 echoModels "github.com/evgesoch/gofwc/backend/echo/models"
 "github.com/labstack/echo"
)

// Get all Posts
func GetAllPosts() func(c echo.Context) error {…}

// Get a Post
func GetPost() func(c echo.Context) error {…}

// Create a Post
func CreatePost() func(c echo.Context) error {…}

// Update a Post
func UpdatePost() func(c echo.Context) error {…}

// Delete a Post
func DeletePost() func(c echo.Context) error {…}

// Check if a Post exists in the database by ID
func checkIfPostExists(postID int, postsSlice []*echoModels.Post) bool {…}

The functions included in the Controller file have the same name as the ones in

the gin application, meaning we have one function for fetching all the Posts, one for

fetching a single Post, one for creating a new Post, one for updating a Post’s text and

one for deleting a Post. These functions return each a func(c echo.Context) error,

which is a function that returns an error value. They are going to be used in the Routes

file as handler functions for the appropriate routes.

router.go

96

package routers

import (
 echoControllers "github.com/evgesoch/gofwc/backend/echo/controllers"
 "github.com/labstack/echo"
)

// Setup the routes for the echo application
func SetupRoutes(e *echo.Echo) {
 // Api
 e.GET("posts", echoControllers.GetAllPosts())
 e.GET("posts/:postID", echoControllers.GetPost())
 e.POST("posts", echoControllers.CreatePost())
 e.PUT("posts/:postID", echoControllers.UpdatePost())
 e.DELETE("posts/:postID", echoControllers.DeletePost())

 // Frontend
 e.Static("/frontend", "../../frontend")
 e.File("/speak4env", "../../frontend/index.html")
}

The final stage is the creation of the main.go file, where the database connection

opens, a new echo instance is created, the declared Routes are assigned to the echo

instance and the web server starts listening to HTTP requests.

main.go

package main

import (
 echoModel "github.com/evgesoch/gofwc/backend/echo/models"
 echoRouter "github.com/evgesoch/gofwc/backend/echo/routers"

 "github.com/labstack/echo"
)

func main() {
 echoModel.OpenDB()

 e := echo.New()

 echoRouter.SetupRoutes(e)

 err := e.Start(":8080")
 if err != nil {
 echoModel.CloseDB()
 }

 e.Logger.Fatal(err)
}

 4.3.4 Buffalo

The buffalo framework adopts a very unique project structure. However there

are some notable similarities with the other frameworks’ structures. Starting from the

Model part, the existing datasource.go file can be used as whole in this case. Next step

is to define the default fall-back Content-Type header by setting the default buffalo

render engine in render.go file.

97

render.go

package actions

import (
 "github.com/gobuffalo/buffalo/render"
)

var r *render.Engine

func init() {
 r = render.New(render.Options{
 DefaultContentType: "application/json",
 })
}

The equivalent Controller part of the buffalo application is the handlers.go

file, where the Routes’ handler functions are created.

handlers.go

package actions

import (
 "log"
 "strconv"

 buffaloModels "github.com/evgesoch/gofwc/backend/buffalo/models"
 "github.com/gobuffalo/buffalo"
 "github.com/gobuffalo/buffalo/render"
 packer "github.com/gobuffalo/packr"
)

// Get All Posts
func GetAllPosts(c buffalo.Context) error {…}

// Get a Post
func GetPost(c buffalo.Context) error {…}

// Create a Post
func CreatePost(c buffalo.Context) error {…}

// Update a Post
func UpdatePost(c buffalo.Context) error {…}

// Delete a Post
func DeletePost(c buffalo.Context) error {…}

// Serve the index page
func GetIndexPage(c buffalo.Context) error {…}

// Check if a Post exists in the database by ID
func checkIfPostExists(postID int, postsSlice []*buffaloModels.Post) bool {…}

These handler functions are similar to those of the gin and echo Controllers and

return an error value. In the buffalo case, it is deemed necessary that a separate

handler function GetIndexPage is to be created for the front-end routes handling because

a new Renderer needs to be created in order to serve the webpage’s HTML file.

Next step is to fill in the app.go file with the application’s routes and the

middleware used.

98

app.go

package actions

import (
 "net/http"

 "github.com/gobuffalo/buffalo"
 "github.com/gobuffalo/envy"

 contenttype "github.com/gobuffalo/mw-contenttype"
 "github.com/gobuffalo/x/sessions"
 "github.com/rs/cors"
)

// ENV is used to help switch settings based on where the
// application is being run. Default is "development".
var ENV = envy.Get("GO_ENV", "development")
var app *buffalo.App

// …
func App() *buffalo.App {
 if app == nil {
 app = buffalo.New(buffalo.Options{
 Env: ENV,
 SessionStore: sessions.Null{},
 PreWares: []buffalo.PreWare{
 cors.Default().Handler,
 },
 SessionName: "_buffalo_session",
 })

 // Set the request content type to JSON
 app.Use(contenttype.Set("application/json"))

 // Api
 app.GET("/posts", GetAllPosts)
 app.GET("/posts/{postID}", GetPost)
 app.POST("/posts", CreatePost)
 app.PUT("/posts/{postID}", UpdatePost)
 app.DELETE("/posts/{postID}", DeletePost)

 // Frontend
 app.ServeFiles("/frontend", http.Dir("../../frontend"))
 app.GET("/speak4env", GetIndexPage)
 }

 return app
}

The App() function that creates a new *buffalo.App is called inside main.go

file where the database opens and the buffalo server is started.

main.go

package main

import (
 "log"

 buffaloModel "github.com/evgesoch/gofwc/backend/buffalo/models"

 "github.com/evgesoch/gofwc/backend/buffalo/actions"
)

// …
func main() {
 buffaloModel.OpenDB()

99

 app := actions.App()
 if err := app.Serve(); err != nil {
 buffaloModel.CloseDB()
 log.Fatal(err)
 }
}

/* … */

 4.3.5 Iris

The iris project has identical structure to the gin and echo projects. The

datasource.go file is the same and handles the database operations, while the post.go

file implements the web services’ main functionality.

post.go

package controllers

import (
 "log"
 "strconv"

 irisModels "github.com/evgesoch/gofwc/backend/iris/models"
 "github.com/kataras/iris"
)

// Get All Posts
func GetAllPosts() func(ctx iris.Context) {…}

// Get a Post
func GetPost() func(ctx iris.Context) {…}

// Create a Post
func CreatePost() func(ctx iris.Context) {…}

// Update a Post
func UpdatePost() func(ctx iris.Context) {…}

// Delete a Post
func DeletePost() func(ctx iris.Context) {…}

// Serve the index page
func GetIndexPage() func(ctx iris.Context) {…}

// Check if a Post exists in the database by ID
func checkIfPostExists(postID int, postsSlice []*irisModels.Post) bool {…}

The handler functions found inside are again the ones that incarnate the CRUD

character of the application. The extra function GetIndexPage serves as a handler for the

route that provides the HTML template from server-side.

The iris Routes are declared inside the SetupRoutes function that takes a

*iris.Application instance as an argument.

router.go

package routers

import (
 irisControllers "github.com/evgesoch/gofwc/backend/iris/controllers"

100

 "github.com/kataras/iris"
)

func SetupRoutes(app *iris.Application) {
 // Api
 app.Get("/posts", irisControllers.GetAllPosts())
 app.Get("/posts/{postID}", irisControllers.GetPost())
 app.Post("/posts", irisControllers.CreatePost())
 app.Put("/posts/{postID}", irisControllers.UpdatePost())
 app.Delete("/posts/{postID}", irisControllers.DeletePost())

 // Frontend
 app.HandleDir("/frontend", "../../frontend")
 app.Get("/speak4env", irisControllers.GetIndexPage())
}

The final piece of the iris application is the main.go file.

main.go

package main

import (
 irisModel "github.com/evgesoch/gofwc/backend/iris/models"
 irisRouter "github.com/evgesoch/gofwc/backend/iris/routers"

 "github.com/kataras/iris"
 "github.com/kataras/iris/middleware/logger"
 "github.com/kataras/iris/middleware/recover"
)

func main() {
 irisModel.OpenDB()

 app := iris.New()
 app.Logger().SetLevel("debug")
 // …
 app.Use(recover.New())
 app.Use(logger.New())

 irisRouter.SetupRoutes(app)

 err := app.Run(iris.Addr(":8080"),
iris.WithoutServerError(iris.ErrServerClosed))
 if err != nil {
 irisModel.CloseDB()
 }
}

 4.3.6 Front-end

The front-end consists of HTML, CSS, JS and image files. The Speak4Env

application can be used no matter what web server is listening (e.g. gin server, echo

server), because each one is configured to just serve the static front-end files.

The HTML template index.html imports the CSS stylesheet speak4env.css

that contains all the styling rules of the HTML elements and the 2 images, tree.ico and

tree.svg.

speak4env.css

101

.body {…}

.treeLogo {…}

.s4e-title {…}

.postText {…}

.s4e-buttonContainer {…}

.s4e-buttonContainer button {…}

.s4e-postHeader {…}

.postsContainer {…}

#backToTop {…}

.errorAllPostsMessage {…}

.s4e-spinner {…}

It also imports the JS file speak4env.js that manages the communication with

the server, but also the animations and HTML elements handling when a user interacts

with the application.

speak4env.js

fetchAndRenderAllPosts();

$(function() {
 listenAndActOnSavePostButtonPress();
 scrollPageToTop();
});

/**
 * Fetch all Posts from the database and display them
 */
function fetchAndRenderAllPosts() {…}

/**
 * Respond to clicks on Save Post button in the modal and create a new Post
 */
function listenAndActOnSavePostButtonPress() {…}

/**
 * Prepare data for creating a new Post
 *
 * @param {String} postText The new Post's text
 *
 * @return {Object} JS object with payload data
 */
function prepareNewPostData(postText) {…}

/**
 * Wrapper for jQuery $.ajax
 *
 * @param {String} method The HTTP method
 * @param {String} url The url in which the request is sent
 * @param {JSON} data The payload data
 *
 * @return {jqXHR} jQuery XHR object
 */
function makeAjaxRequest(method, url, data) {…}

/**
 * Refresh the Posts every 5 sec
 */

102

function fetchAllPostsEvery5Sec() {…}

/**
 * Scroll the page to top
 */
function scrollPageToTop() {…}

Inside the file there the following functions:

 fetchAndRenderAllPosts: Initially an AJAX call is made to the

GetAllPosts web service to fetch the data regarding all the Posts in the

database when the application is loaded for the first time. If the AJAX

request is successful, the Post card elements appear one on top of another

on the application window.

 listenAndActOnSavePostButtonPress: An onclick event listener for

the “Save Post” button. When clicked, an AJAX request is made to the

CreatePost web service and saves the newly created Post. If the request is

successful, the new Post is rendered on top of the other ones.

 scrollPageToTop: There is a case the number of Posts grows to be big

enough to make it difficult to scroll to the top of the page. This function is

listening for both an onscroll event that gets triggered when the user

scrolled after a certain position in the page to show the “Top” button and

an onclick event assigned to that button that when triggered,

automatically scrolls the page to the top.

 prepareNewPostData: It prepares the payload for the AJAX call to the

CreatePost web service.

 makeAjaxRequest: This is a wrapper function that simplifies the call to

jQuery’s $.ajax function.

 fetchAllPostsEvery5Sec: It calls fetchAndRenderAllPosts with an

interval of 5 seconds for automatic refresh of the Posts list. Currently not

used in the application.

The jQuery and Bootstrap 4 libraries are used via CDN for more comfortable

JavaScript handling, but also some predefined styling and behavior for specific elements

of the site, respectively. The cards and modal are such elements.

The index.html is presented below:

103

index.html
<!DOCTYPE html>
<html lang="en">

<head>
 <!-- Dependencies without cdn -->
 <!-- … -->

 <!-- Dependencies with cdn -->
 <link rel="stylesheet"
href="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/css/bootstrap.min.css"
 integrity="sha384-ggOyR0iXCbMQv3Xipma34MD+dH/1fQ784/j6cY/iJTQUOhcWr7x9JvoRxT2MZw1T"
crossorigin="anonymous">
 <script src="https://code.jquery.com/jquery-3.4.1.min.js"></script>
 <script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.7/umd/popper.min.js"
 integrity="sha384-UO2eT0CpHqdSJQ6hJty5KVphtPhzWj9WO1clHTMGa3JDZwrnQq4sF86dIHNDz0W1"
 crossorigin="anonymous"></script>
 <script src="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/js/bootstrap.min.js"
 integrity="sha384-JjSmVgyd0p3pXB1rRibZUAYoIIy6OrQ6VrjIEaFf/nJGzIxFDsf4x0xIM+B07jRM"
 crossorigin="anonymous"></script>
 <link rel="stylesheet" href="frontend/css/speak4env.css">
 <meta charset="utf-8" />
 <link rel="icon" href="frontend/images/tree.ico" />
 <meta name="viewport" content="width=device-width, initial-scale=1" />
 <meta name="description" content="Speak4Env lets you express your ideas about improving the
environment." />
 <title>Speak4Env!</title>
 <!--Tree image source: https://pixabay.com/vectors/abstract-art-colorful-ecology-leaf-1751248/-->
</head>

<body class="body">
 <noscript>You need to enable JavaScript to run this app.</noscript>

 <!-- Header -->
 <div id="header" class="container">
 <div class="jumbotron bg-white mb-10">
 <div class="container text-center">
 <div class="d-inline text-center">

 </div>
 <div class="d-inline s4e-title h1">
 Speak4Env!
 </div>
 </div>
 <hr class="my-4" />
 <p class="lead">Speak4Env gives you the opportunity to
express and
 share your thoughts and ideas with others about improving our planet's environment. Let's
make it a
 better place for all of us!</p>
 </div>
 </div>

 <!-- Posts cannot load error alert-->
 <div class="container errorAllPostsMessage">
 <div class="alert alert-danger d-none mb-0" id="errorAllPostsMessage" role="alert">
 <h5 class="alert-heading">
 Error
 </h5>
 <p class="mb-0">
 An error occurred while fetching the Posts. Please refresh the page.
 </p>
 </div>
 </div>

 <!-- Create Post Button-->
 <div class="container s4e-buttonContainer text-center">
 <button id="create-post-btn" type="button" class="btn btn-success rounded-pill" data-
toggle="modal" data-target="#createPostModal" disabled="true">
 + Create Post
 </button>
 </div>

 <!-- Loading spinner -->
 <div id="spinner" class="text-center">
 <div class="spinner-grow text-secondary s4e-spinner" role="status">
 Loading...
 </div>
 </div>

 <!-- Modal -->
 <div class="modal fade" id="createPostModal" tabindex="-1" role="dialog" aria-
labelledby="createPostModalLabel"
 aria-hidden="true">
 <div class="modal-dialog" role="document">
 <div class="modal-content">
 <div class="alert alert-success d-none mb-0" id="successMessage" role="alert">
 <h5 class="alert-heading">
 Success
 </h5>
 <p class="mb-0">

104

 Your Post was published successfully!
 </p>
 </div>
 <div class="alert alert-danger d-none mb-0" id="errorMessage" role="alert">
 <h5 class="alert-heading">
 Error
 </h5>
 <p class="mb-0">
 An error occurred when publishing the Post. Please try again.
 </p>
 </div>
 <div class="modal-header">
 <h5 class="modal-title" id="createPostModalLabel">
 Create a new Post
 </h5>
 <button type="button" class="close" data-dismiss="modal" aria-label="Close">
 ×
 </button>
 </div>
 <div class="modal-body p-0">
 <div class="postText" id="postText" contenteditable="true">
 </div>
 </div>
 <div class="modal-footer">
 <button type="button" class="btn btn-outline-secondary" data-dismiss="modal">
 Close
 </button>
 <button type="button" class="btn btn-outline-success" id="savePostButton">
 Save Post
 </button>
 </div>
 </div>
 </div>
 </div>

 <!-- Container that contains all the posts -->
 <div class="container postsContainer" id="postsContainer">
 </div>

 <!-- Post template -->
 <div class="container post d-none" id="post" style="margin-bottom: 25px;">
 <div class="card">
 <div class="card-header s4e-postHeader">
 Post #0
 </div>
 <div class="card-body">
 <p class="mb-0">
 Post example
 </p>
 </div>
 </div>
 </div>

 <!-- Back to Top Button -->
 Top

 <!-- Footer -->

</body>
<script src="frontend/js/speak4env.js"></script>

</html>

105

References

1. https://golang.org/doc/faq

2. https://go.dev

3. https://golang.org/doc/code.html

4. https://tour.golang.org/basics/2

5. https://tour.golang.org/basics/1

6. https://golang.org/doc/effective_go.html

7. https://tour.golang.org/basics/3

8. https://tour.golang.org/basics/4

9. https://tour.golang.org/basics/5

10. https://tour.golang.org/basics/6

11. https://tour.golang.org/basics/7

12. https://tour.golang.org/basics/8

13. https://tour.golang.org/basics/9

14. https://tour.golang.org/basics/10

15. https://tour.golang.org/basics/11

16. https://tour.golang.org/basics/12

17. https://tour.golang.org/basics/13

18. https://tour.golang.org/basics/14

19. https://tour.golang.org/basics/15

20. https://tour.golang.org/basics/16

21. https://tour.golang.org/flowcontrol/1

22. https://tour.golang.org/flowcontrol/2

23. https://tour.golang.org/flowcontrol/3

24. https://tour.golang.org/flowcontrol/4

https://golang.org/doc/faq
https://go.dev/
https://golang.org/doc/code.html
https://tour.golang.org/basics/2
https://tour.golang.org/basics/1
https://golang.org/doc/effective_go.html
https://tour.golang.org/basics/3
https://tour.golang.org/basics/4
https://tour.golang.org/basics/5
https://tour.golang.org/basics/6
https://tour.golang.org/basics/7
https://tour.golang.org/basics/8
https://tour.golang.org/basics/9
https://tour.golang.org/basics/10
https://tour.golang.org/basics/11
https://tour.golang.org/basics/12
https://tour.golang.org/basics/13
https://tour.golang.org/basics/14
https://tour.golang.org/basics/15
https://tour.golang.org/basics/16
https://tour.golang.org/flowcontrol/1
https://tour.golang.org/flowcontrol/2
https://tour.golang.org/flowcontrol/3
https://tour.golang.org/flowcontrol/4

106

25. https://gobyexample.com/for

26. https://tour.golang.org/flowcontrol/5

27. https://tour.golang.org/flowcontrol/6

28. https://tour.golang.org/flowcontrol/7

29. https://tour.golang.org/flowcontrol/9

30. https://tour.golang.org/flowcontrol/10

31. https://tour.golang.org/flowcontrol/11

32. https://tour.golang.org/flowcontrol/12

33. https://tour.golang.org/flowcontrol/13

34. https://tour.golang.org/moretypes/1

35. https://tour.golang.org/moretypes/2

36. https://tour.golang.org/moretypes/3

37. https://tour.golang.org/moretypes/4

38. https://tour.golang.org/moretypes/5

39. https://tour.golang.org/moretypes/6

40. https://tour.golang.org/moretypes/7

41. https://tour.golang.org/moretypes/8

42. https://tour.golang.org/moretypes/9

43. https://tour.golang.org/moretypes/10

44. https://tour.golang.org/moretypes/11

45. https://tour.golang.org/moretypes/12

46. https://tour.golang.org/moretypes/13

47. https://tour.golang.org/moretypes/14

48. https://tour.golang.org/moretypes/15

49. https://tour.golang.org/moretypes/16

50. https://tour.golang.org/moretypes/17

https://gobyexample.com/for
https://tour.golang.org/flowcontrol/5
https://tour.golang.org/flowcontrol/6
https://tour.golang.org/flowcontrol/7
https://tour.golang.org/flowcontrol/9
https://tour.golang.org/flowcontrol/10
https://tour.golang.org/flowcontrol/11
https://tour.golang.org/flowcontrol/12
https://tour.golang.org/flowcontrol/13
https://tour.golang.org/moretypes/1
https://tour.golang.org/moretypes/2
https://tour.golang.org/moretypes/3
https://tour.golang.org/moretypes/4
https://tour.golang.org/moretypes/5
https://tour.golang.org/moretypes/6
https://tour.golang.org/moretypes/7
https://tour.golang.org/moretypes/8
https://tour.golang.org/moretypes/9
https://tour.golang.org/moretypes/10
https://tour.golang.org/moretypes/11
https://tour.golang.org/moretypes/12
https://tour.golang.org/moretypes/13
https://tour.golang.org/moretypes/14
https://tour.golang.org/moretypes/15
https://tour.golang.org/moretypes/16
https://tour.golang.org/moretypes/17

107

51. https://tour.golang.org/moretypes/19

52. https://tour.golang.org/moretypes/20

53. https://tour.golang.org/moretypes/22

54. https://tour.golang.org/moretypes/24

55. https://tour.golang.org/moretypes/25

56. https://tour.golang.org/methods/1

57. https://tour.golang.org/methods/2

58. https://tour.golang.org/methods/3

59. https://tour.golang.org/methods/4

60. https://tour.golang.org/methods/5

61. https://tour.golang.org/methods/6

62. https://tour.golang.org/methods/7

63. https://tour.golang.org/methods/8

64. https://tour.golang.org/methods/9

65. https://tour.golang.org/methods/10

66. https://tour.golang.org/methods/11

67. https://tour.golang.org/methods/12

68. https://tour.golang.org/methods/13

69. https://tour.golang.org/methods/14

70. https://tour.golang.org/methods/15

71. https://tour.golang.org/methods/16

72. https://tour.golang.org/concurrency/1

73. https://medium.com/rungo/anatomy-of-goroutines-in-go-concurrency-in-go-

a4cb9272ff88

74. https://tour.golang.org/concurrency/2

75. https://tour.golang.org/concurrency/3

https://tour.golang.org/moretypes/19
https://tour.golang.org/moretypes/20
https://tour.golang.org/moretypes/22
https://tour.golang.org/moretypes/24
https://tour.golang.org/moretypes/25
https://tour.golang.org/methods/1
https://tour.golang.org/methods/2
https://tour.golang.org/methods/3
https://tour.golang.org/methods/4
https://tour.golang.org/methods/5
https://tour.golang.org/methods/6
https://tour.golang.org/methods/7
https://tour.golang.org/methods/8
https://tour.golang.org/methods/9
https://tour.golang.org/methods/10
https://tour.golang.org/methods/11
https://tour.golang.org/methods/12
https://tour.golang.org/methods/13
https://tour.golang.org/methods/14
https://tour.golang.org/methods/15
https://tour.golang.org/methods/16
https://tour.golang.org/concurrency/1
https://medium.com/rungo/anatomy-of-goroutines-in-go-concurrency-in-go-a4cb9272ff88
https://medium.com/rungo/anatomy-of-goroutines-in-go-concurrency-in-go-a4cb9272ff88
https://tour.golang.org/concurrency/2
https://tour.golang.org/concurrency/3

108

76. https://tour.golang.org/concurrency/4

77. https://tour.golang.org/concurrency/5

78. https://tour.golang.org/concurrency/6

79. https://tour.golang.org/concurrency/9

80. https://github.com/golang/go/wiki/SuccessStories

81. https://github.com/golang/go/wiki/GoUsers

82. https://github.com/avelino/awesome-go

83. Maarten van Steen & Andrew S. Tanenbaum, “Distributed Systems”, 2018

84. https://www.w3.org/TR/ws-arch/

85. Μαργαρίτης Κωνσταντίνος, Μιχαηλίδης Παναγιώτης, “Προγραμματισμός

Παράλληλων Κατανεμημένων Συστημάτων Υπολογιστών με Java”,

Πανεπιστημιακές Παραδόσεις, Σχολή Οικονομικών και Κοινωνικών Επιστημών

– Τμήμα Εφαρμοσμένης Πληροφορικής και Διοίκησης Τεχνολογίας, 2008

86. https://www.w3.org/TR/mwabp/

87. Giuliano Antoniol, Massimiliano Di Penta, and Michele Zazzara, “Understanding Web

applications through dynamic analysis”, Program Comprehension, 2004. Proceedings.

88. https://developer.mozilla.org/en-US/docs/Learn/Server-

side/First_steps/Web_frameworks

89. Mathias Schwarz, “Design and Analysis of Web Application Frameworks”, PhD

Dissertation, Aarchus University, 2013

90. Sau Chang Sheong, “Go Web Programming”, Manning, Shelter Island, 2016

91. https://github.com/mingrammer/go-web-framework-stars

92. https://go-macaron.com/

93. Changpil Lee, “An Evaluation Model for Application Development Frameworks for

Web Applications”, Master’s Thesis, The Ohio State University, 2012

94. https://github.com/getsentry

95. https://stackoverflow.com/search?q=go+%5Bgo-gin%5D

96. https://stackoverflow.com/search?q=go+%5Bbeego%5D

97. https://stackoverflow.com/search?q=go+%5Bgo-echo%5D

https://tour.golang.org/concurrency/4
https://tour.golang.org/concurrency/5
https://tour.golang.org/concurrency/6
https://tour.golang.org/concurrency/9
https://github.com/golang/go/wiki/SuccessStories
https://github.com/golang/go/wiki/GoUsers
https://github.com/avelino/awesome-go
https://www.w3.org/TR/ws-arch/
https://www.w3.org/TR/mwabp/
https://developer.mozilla.org/en-US/docs/Learn/Server-side/First_steps/Web_frameworks
https://developer.mozilla.org/en-US/docs/Learn/Server-side/First_steps/Web_frameworks
https://github.com/mingrammer/go-web-framework-stars
https://go-macaron.com/
https://github.com/getsentry
https://stackoverflow.com/search?q=go+%5Bgo-gin%5D
https://stackoverflow.com/search?q=go+%5Bbeego%5D
https://stackoverflow.com/search?q=go+%5Bgo-echo%5D

109

98. https://stackoverflow.com/search?q=go+%5Bbuffalo%5D

99. https://stackoverflow.com/search?q=go+%5Bgo-iris%5D

100. https://gobuffalo.io/en/docs/getting-started/directory-structure

https://stackoverflow.com/search?q=go+%5Bbuffalo%5D
https://stackoverflow.com/search?q=go+%5Bgo-iris%5D
https://gobuffalo.io/en/docs/getting-started/directory-structure

110

