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ABSTRACT 

This study examines linear and non-linear Granger causality between spot and futures 

markets. For this purpose, daily observations from January 2010 to November 2019 

for four commodities, namely WTI oil, natural gas, gold and silver and for four 

financial indices, namely the DAX30, CAC40, SP500 and Nasdaq100 are used. For 

each asset, futures contracts of various maturities are considered and are matched in 

pairs (bivariate) and jointly (multivariate) with the respective spot value. Linear and 

non-linear causal dynamics are investigated with the conventional VAR/VEC modelling 

and the Diks and Panchenko (2006) non-parametric test respectively. Regarding 

commodities, linear examination reveals that futures lead spot market in almost all 

pairs for the cases of gas, gold and silver, but there is either spot dominance or 

bidirectional lead in the pairs of WTI oil. The non-linear approach further enhances 

the leading role of futures for all commodities but also uncovers non-linear feedback 

mechanisms for a few pairs. Regarding financial indices, linear causal dynamics are 

weak for the DAX30, but there is evidence that spot linearly leads futures for the CAC40 

and that futures linearly Granger-cause the spot for the two US indices. Under the non-

linear approach significant bidirectional causal channels emerged for all pairs and all 

financial indices. 
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Introduction 

Spot and futures markets are closely related as futures contracts essentially refer to the 

underlying spot assets. As part of the interdependencies between them, causality 

relationships interest both academics and practitioners as they are tightly linked with 

two important concepts of financial markets; the asset price discovery process and 

market efficiency. Both concepts are based on the arrival and transmission of new 

information to markets and the speed of its integration into prices. Spot and futures 

markets “compete”, regarding the absorption of new information, and the link between 

them create differential dynamics and set the framework for the direction of 

informational transmissions and for the dominant and satellite market roles.  In 

particular, causal effects, as those are defined in the Granger context, can be used to 

answer the question of which market drives the price discovery process as well as the 

question of which market is relatively more efficient. 

Investigation of causality could help investors realize and employ appropriate 

investment strategies. Hedgers, the primary investors of futures markets, can assess the 

risk management efficiency of futures contracts. Speculators can outperform the 

passive portfolio if it is found that either the spot or futures market leads and is able to 

predict the other and if an appropriate trading strategy can be devised considering such 

lead-lag relationships. Market regulators are also interested in causality relationships as 

they can improve the functionality of the markets through their understanding of the 

traders’ incentives and keep the balance between hedgers and speculators. 

Theoretically, in frictionless and efficient markets, a new set of information is absorbed 

instantly. Hence, spot and futures markets should appear equally efficient and neither 

market should drive the other. However, solid theoretical arguments are presented by 

advocates who support the hypothesis that spot markets drive futures markets. The 

reverse hypothesis is also rigidly supported. There are also proponents who embrace 

the premise that both types of markets lead each other in time-varying regimes. 

Empirical evidence also has not yet produced a decisive conclusion as previous research 

in causality presented inconsistent results. While most of the studies found that futures 

markets drive spot markets, there is a substantial number of papers which indicate that 

spot markets drive futures markets or that both types of markets lead each other through 

a feedback mechanism. Furthermore, contradictions occur among studies examining 
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the same asset due to different data sets and methodologies used. Hence the puzzle 

remains regarding spot and futures causal dynamics.  

This work tries to answer the questions regarding price discovery and market efficiency 

by the investigation of Granger causality between spot and futures markets. 

Specifically, four commodities, namely WTI oil, natural gas, gold and silver, and four 

financial indices, namely the DAX30, CAC40, SP500 and Nasdaq100 are utilized for 

this purpose. Two to four contracts of different maturities are considered for each asset. 

Apart from the conventional linear Granger causality which is examined through the 

appropriate VAR/VEC models, the non-linear Granger causality is also examined 

through the Diks and Panchenko (2006) non-parametric approach, due to the ever-

growing evidence of non-linear causal dynamics in recent papers. 

Chapter 1 presents the foundations of derivatives theory including forwards, futures, 

options and swaps, as well as the theoretical background of interdependencies and 

causal dynamics between spot and futures markets. The last part of the chapter 

summarizes the literature review in the topic which is used as a basis for comparison 

for this work. 

Chapter 2 refers to the empirical part. This chapter presents the data used, the 

methodology employed and the test results derived. The last part of the chapter is 

concerned with the discussion and comparison of the results with those of similar 

studies and their potential implications with the theory presented in chapter 1. 
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CHAPTER 1 

1.1 DERIVATIVES THEORY 

1.1.1 Definition and a Brief History of Derivatives 

Derivatives are financial instruments which are built upon -derived from- underlying 

assets, such as stocks, indices, currency exchange rates, bonds, and commodities. They 

are bilateral agreements whose value depends on the value of the corresponding 

underlying assets. Derivatives are traded either on exchange markets or on over the 

counter (OTC) markets. 

Through a derivative agreement, market or credit risks can be transferred from one 

counterparty to the other. Each of the two counterparties evaluates and interprets risks 

differently considering its overall portfolio, so both sides may feel the agreement is 

favorable. Besides, traders are willing to be exposed to risks anyway for an appealing 

price or return with regard to their risk preferences. 

There are two positions in a derivative contract. The buyer or holder of the contract has 

the long position. The seller or writer of the contract has the short position. The long 

position trader benefits when the value of the contract increases, while the short position 

trader benefits when the value of the contract decreases. An important difference 

between derivatives and other instruments traded on financial markets is that the former 

constitute a zero sum game that is the profits of one counterparty come up as losses of 

the other party and profits and losses altogether sum up to zero. 

In a nutshell, the main derivative contract types are: 

 Forwards and Futures 

 Options 

 Swaps 

Forwards, futures and options are bilateral agreements for the sale and delivery of a 

specific quantity of the underlying asset in a predetermined price and date. Swaps are 

bilateral agreements for the exchange of fixed cash flows for a certain time duration. 

For forwards, futures and swaps, contract enforcement applies for both the buyer and 

the seller, while for options it only applies for the seller; the holder of an option may 

opt to walk away from the contract. All mentioned contracts transfer market risks. 
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Credit derivatives, which transfer default risks, are not presented here for they are out 

of the scope of this work. 

Derivatives is not a new financial concept. Evidence of contracts for future delivery of 

goods are found on clay plates, dated back in the 19th century B.C. in the region of 

Mesopotamia. Phoenicians and Greeks used to pre-sell their traded goods in 

predetermined prices and deliver them at some point in the future, although Greek laws 

imposed restrictions on such practices. In his Politics, Aristotle mentions that Thales, 

after forecasting for an excellent summer harvest season, agreed with olive press 

owners that he pre-pays a deposit for the right to use their presses after harvest. Thales 

afterwards rented the highly demanded presses to harvesters, thus gaining considerable 

profits via the first recorded option-like agreement. During Roman times, Pompey used 

pre-arrangements with merchants in order to secure goods and keep up with the ever-

growing urbanization of Rome, though generally Roman laws, influenced by Greek 

culture, favored spot transactions (Kummer and Pauletto, 2012). In medieval Italy, the 

first organized markets, such as the Periodical Fair regulated by the Church, emerged. 

Pre-arrangements upon traded goods in those markets helped merchants to optimize 

their logistics and mitigate travel dangers, a prevailing issue of that time. 

During the Renaissance, in the midst of European cultural and economic prosperity, the 

first security markets and organized secondary markets appeared throughout the Italian 

kingdoms. Derivative contracts, written until that time on commodities, expanded on 

city bonds (monti shares) and bills of exchange. Financial modernization spread in 

Northern Europe, particularly in the commercial cities of Antwerp, Bruges and 

Amsterdam. In the middle of the 16th century, a decisive innovation took place; delivery 

of the underlying asset of derivative contracts was not compulsory anymore. Instead, 

the contracts could be settled in cash by evaluating the difference between the 

prearranged price and the spot price of the asset. These contracts for differences became 

popular as a means of trading for the shares of the prominent of that time Dutch East 

India and Dutch West India companies (Weber, 2008). In the 1630s, in the midst of the 

Dutch golden age, the famous tulip mania period surfaced and Dutch markets turned to 

the sought after tulip bulbs, via spot and derivative trading. Domestic as well as French 

demand for the enchanting bulbs caused mass speculation and skyrocketed the tulip 

price, but, as there were no margins or other obligations for speculators, derivative 

contracts defaulted and the tulip price collapsed in 1637, thus completing the first 
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recorded financial bubble in history. In 1688, in Confusion de Confusiones, the first 

ever book written about exchange markets, Joseph de la Vega implicitly analysed call 

and put options as well as forward contracts. 

Meanwhile, in the middle of the 17th century, Osaka became the prevailing rice trading 

center of Japan and derivative trading started to blossom. Large amounts of rice were 

sold in auctions, but rice was not delivered immediately; instead rice bills were issued 

that determined price, delivery date, and rice quantity. Additionally, feudal lords in 

need of immediate cash flows issued prepay bills selling rice crops of future seasons. 

Shortly, merchants started trading on both of those bills which resembled modern 

forward contracts. Although Osaka authorities soon prohibited bill trading which was 

considered as pure gambling, merchants still managed to maintain an active informal 

market. Early in the 18th century, legislation regarding derivative trading became 

conveniently flexible. When rice price was high, bill trading was restricted, whereas 

restrictions were loose when rice price was low. In 1715 Dojima Rice Exchange was 

officially recognized by Shogun. The exchange had several features of modern 

exchanges. Contracts traded resembled nowadays forwards and futures with high level 

of standardization and they were cleared at regular time intervals. Also, participants 

had to be registered in the clearing house which carried default risks of the 

counterparties (Kummer and Pauletto, 2012). 

In the late 17th century, Dutch financial experts followed William of Orange in England 

after his victory in Glorious Revolution and sowed the seed for the first derivatives 

markets in London. Dutch financial knowledge and the emergence of the British Empire 

as the dominant naval commercial power enabled English markets to expand and drove 

London to grow into the leading trading center of Europe. London markets met their 

first bubble in 1720, when the backed by the government South Sea Company failed to 

meet public expectations and after options trading for speculation purposes had 

irrationally risen the share price. The South Sea Company bubble had more 

consequences in British economy than the tulip bubble had in Dutch economy, for 

London markets stipulated stricter contract enforcement (Weber, 2008). To avoid 

similar incidents, the British Parliament forbade derivatives on securities, yet British 

continued trading on derivative contracts with honor being the only assurance in effect. 

A similar situation occurred at about the same time in Paris markets. The promising 

Compagnie Perpetuelle des Indes crashed after intensive speculation through 
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derivatives, damaging French economy and leading the State Council to inhibit 

derivative trading both in securities and commodities. French reacted in the same way 

as British did, carrying prohibited trading from exchange markets to nearby restaurants 

and cafes. 

After the defeat of Napoleon in 1815, issuance of French government bonds for war 

reparations, combined with stabilization of franc achieved in previous years and 

positive investors’ sentiment, created fertile grounds for derivative trading to flourish 

in Parisian markets, although restrictions dictated a century ago were still in effect. 

Though the first exchanges started to appear in the 16th century in the Germanic region, 

derivative trading developed two centuries later. In the 19th century, following the 

French pattern, trading on city bonds, as well as, banks, railway and industrial 

enterprises shares enabled German cities, particularly Frankfurt and Berlin to catch up 

with the leading European economic centers. By that time, several publications on 

derivatives were available and attracted public attention, though most authors’ law 

background and insufficient financial expertise added little value for investors, even 

compared with de la Vega’s seminal work written more than a hundred years ago. 

Weber (2008) argues that the lack of understanding of derivative strategies and 

combinations hindered further development in the corresponding markets. 

In 1848 and 1898 respectively, the Chicago Board of Trade (CBOT) and the Chicago 

Mercantile Exchange (CME) were founded in the United States giving birth to the 

modern form of derivative trading. CBOT was initially establish to facilitate the 

transactions between merchants and agricultural producers, but trading on futures, or 

to-arrive contracts as known by that time, started after a few years luring speculators 

into the market. In 1858 the contracts were solidly standardized by classifying grades 

of grain. Two important innovations took place in about 1865 when a clearing house 

was established and margins were implemented in the contract transaction procedure. 

CME and CBOT merged in 2007 to create CME Group which now owns the 

Commodity Exchange Inc. (COMEX), New York Mercantile Exchange (NYMEX) and 

Kansas City Board of Trade (KCBT) as well (Hull, 2018). 

Roughly flicking through derivatives history, there are two distinctive points that could 

be made. Firstly, derivatives conceptually started as a risk management tool for either 

merchants and farmers or political leaders and their states and with respect to the 
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corresponding historic framework and its risks. Speculation appeared later on as an 

after-effect. But it was speculation that led to consequences, such as bubbles and 

volatility, associated at least partially with derivatives. Secondly, due to those issues, 

governments and policy makers periodically made efforts to control derivative markets 

and massive trading for speculative purposes mainly by imposing restrictive 

regulations. In most cases, traders slipped their way off these measures and continued 

to trade, but there is no evidence of whether trading was improved or not after 

implementing regulative changes. Legislation in derivative trading remains a 

controversial topic even nowadays, especially for developing economic markets. 

 

1.1.2 Derivatives Markets 

As mentioned before, derivatives nowadays are traded on derivatives exchange markets 

and over the counter markets. 

In derivatives exchanges, investors trade on standardized contracts with regard to the 

transaction price, the quantity of the underlying asset to be traded and the delivery date. 

In some contracts, such as those for agricultural commodities, the quality of the product 

as well as the location in which physical delivery will take place is also specified in 

contract terms. 

An important feature of a derivatives exchange is the clearing house. It acts as an 

intermediate player between the two counterparties of a derivative contract. In fact, the 

two investors involved in the contract may not even know each other. Technically 

speaking, if investor A wants to take the long position of a contract and investor B 

wants to take the short position, two contracts will be realized; a contract between 

investor A (long position) and the clearing house (short position) and a contract between 

investor B (short position) and the clearing house (long position). Thus, the investors 

acquire the desired respective positions and the two opposite positions acquired by the 

clearing house are actually nullified. The main advantage of this procedure is credit risk 

mitigation for both investors, as they do not have to worry about the creditworthiness 

of each other. 

The traditional operating system of derivatives exchanges has been the open outcry 

system. Traders meet in a physical place and agreements are realized via shouting and 
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gestures. In recent years however, electronic trading has gained ground at the expense 

of the outcry system. A step further, high frequency and often unmanned algorithmic 

trading through Application Programming Interfaces is the last technological 

implementation in derivative exchanges (Kosowski and Neftci, 2015). 

In 2018, about 30 billion derivatives were traded in exchange markets worldwide, with 

stock indices futures and options being the most traded contracts (WFE, 2019). The 

CME Group and the National Stock Exchange of India are the most active markets. 

In the case of over the counter markets, contracts are not necessarily standardized. 

The benefit of contract customization attracts big players, such as financial institutions 

and hedge funds in OTC markets. Here, the contract is agreed directly between the two 

counterparties. The participants know each other and they end up with a customized 

contract that fulfills their needs. A central counterparty (CCP) takes the place of the 

clearing house, however the CCP does not always stand between the two parties; the 

contract can be realized bilaterally without the interception of the CCP. After the 

collapse of Lehman Brothers in 2008, regulation of OTC markets became stricter in 

order to improve efficiency and transparency and to reduce systemic risk, that is the 

ripple effect caused by a default, such that of Lehman Brothers. According to Hull 

(2018), critical changes in the regulation of the United States OTC markets include: 

 In the case of standardized contracts, specialized electronic platforms called 

SEFs are used on which quotes are posted and trading takes place. 

 CCP must be involved in the trading of standardized contracts. 

 Trading of both standardized and non-standardized derivatives must be 

registered in a central system. 

As of December 2018, the total notional amount of derivatives traded on OTC markets 

was 544 trillion dollars and gross market value was 9.7 trillion dollars (BIS, 2019). 

Since December 2008 when it hit the peak of 35 trillion dollars, gross market value has 

been declining, partially as a result of stricter regulations after the recent economic 

crisis. Interest rates contracts are by far the most traded derivatives on OTC markets, 

both in principal and market value, followed by currency exchange rates contracts. 
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1.1.3 Types of Investors in Derivatives Markets 

Derivatives markets attract many investors, thus achieving high liquidity which 

facilitates transactions. Regarding their motives for entering the market, investors can 

be classified in three categories: hedgers, speculators and arbitrageurs. 

Hedgers desire to mitigate risks that they deal with in spot markets. From the 

perspective of the derivatives market makers, hedgers are theoretically the elementary 

investors, hence risk management performance is at the core of a derivatives market 

functions. However, from the perspective of hedgers, derivatives markets is the 

secondary domain; spot markets remain hedgers’ primary domain. They use derivatives 

to invest in unfavorable future movements of their primary spot position. The 

underlying asset of the derivative can be either exactly the same spot asset of interest 

or another asset with similar price behavior (cross-hedging). A typical example of 

hedger could be an oil production company which of course would worry to see oil 

prices declining. Thus, it will acquire such a position in derivatives markets that will be 

profitable if oil prices decline indeed. Any losses in the spot market would be totally or 

partially nullified by the position taken in derivatives markets. Another example could 

be a company that exports products internationally and desires to lock in a specific 

currency exchange rate, for fear that the national currency will be overvalued and future 

payments made in foreign currency will be devalued. It should be noted however, that 

hedging does not guarantee a better result. The spot and derivative positions have to 

oppose each other. Hedging mitigates losses in case of unfavorable spot movements, 

but it also narrows profits in case of favorable spot movements.  

Speculators do not have the same concerns as hedgers do. They essentially try to 

predict price movements and gamble in derivatives markets, mainly via futures or 

options. They take long positions if they forecast positive price changes and short 

positions in the opposite case, albeit the strategies followed are generally more 

composite. Derivatives are ideal for speculation as they are leveraged instruments 

requiring less initial capital than spot assets. Also, considering Kaldor’s (1939) 

argument that speculation blossoms in markets of high level of standardization and for 

assets with low carrying expenses, in terms of durability and storage, it is unsurprising 

that speculators are involved in derivatives markets. A typical example of speculator 

could be an investor who predicts that oil prices will rise, thus she buys (long position) 
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oil futures contracts. Though not originally considered as main participants in 

derivatives markets, they provide liquidity enabling markets to function better. On the 

other hand their speculation activities can disrupt market performance and lead to high 

price volatility and bubbles, thus policy makers and regulators in many exchange 

markets constrain speculative actions. Speculators can further divided into scalpers, day 

traders and position traders considering the time duration of their strategies. Scalpers 

act within minutes trying to profit from minor price changes. Day traders close out their 

strategies within one trading day. Position traders expand their trading throughout 

considerable time periods, trying to forecast major price changes. 

Arbitrageurs participate in the markets seeking for opportunities of riskless profits. 

Once such opportunity is spotted, arbitrageurs enter into two or more transactions in 

different markets. A typical example could be a trader who detects that a particular oil 

futures contract is overpriced considering the oil spot price at the time. Thus, she can 

sell the futures contract and buy oil barrels. Oversimplifying the procedure and ignoring 

price fluctuation and interest rates, once the contract expires she delivers the oil barrels 

to the buyer of the contract and she profits the difference of futures price minus spot 

price. However, such situations do not last long to be exploited. Supply and demand 

forces will reset the futures contract to its fair price. Pricing formulas of derivatives 

heavily relies on the non-arbitrage argument. 

Lastly, it is noteworthy that stakeholders of commodities underlying derivatives can act 

as invisible analysts, though they do not use derivative markets for direct trading. 

Observing market movements and patterns, they make decisions on production and 

storage. According to Black (1976), through this category, although it does not 

contribute directly to the markets, derivatives offer their greatest benefit to the overall 

economy. 
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1.1.4 Forward and Futures Contracts  

Despite their distinctive differences analyzed below, forwards and futures contracts are 

presented together as they share several common features. 

 

1.1.4.1 Forward Contracts  

A forward contract is an agreement between two participants, one of them in the long 

position (buyer) and the other one in the short position (seller), for the sale of an asset 

in a prearranged price, at a specific future date. The prearranged price, called delivery 

price and the specific date of delivery, called maturity date are decided when the 

contract is given birth, while the transaction takes place when the contract matures. 

Thus, no financial or asset flow happens when the contract is initially defined. It can be 

considered the exact opposite of a spot deal in which the asset is sold immediately. 

Forward contracts are generally traded on OTC markets and are highly customized to 

fulfill the needs of the two counterparties. Generally the two participants discuss 

privately and agree to the terms of the contract. Afterwards, the contract can be cleared 

either bilaterally or through the CCP. 

The payoff of the long position of a forward contract is equal to ST-F, where ST is the 

spot price of the underlying asset when the contract matures and F is the delivery price 

written on the contract. If the spot price of the asset at delivery date is higher than the 

delivery price, the buyer profits their difference, as she buys an asset worth ST for a 

lower price F. In the opposite case, if the spot price of the asset is lower, the buyer loses 

the difference between the two prices. 

On the other hand, the payoff of the short position of a forward contract is equal to F-

ST, anti-symmetric to the payoff of the long position and in compliance with the zero 

sum game concept of derivatives; the profit (loss) of the buyer equals the loss (profit) 

of the seller and contract payoff sums to zero. Figure 1 illustrates the payoffs of a 

forward contract both for the buyer and seller of the contract. 
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Figure 1. Payoffs for the long and short position of a forward contract. 

 

1.1.4.2 Futures Contracts  

A futures contract resembles a forward contract conceptually, but it is highly 

standardized and it is generally traded on an exchange market. The two counterparties 

match up through the clearing house of the exchange. The current futures price is the 

price in which the transaction will take place and it is determined by supply and demand 

of the specific futures. There may be multiple delivery dates throughout the year, 

usually every two or three months. Each futures is named conveniently after its delivery 

month. 

Various specifications are standardized in futures. Firstly, the quality of the underlying 

asset must be designated and leave no ambiguity, such as in the case of agricultural 

futures in which a wide range of grades exist for the underlying assets. Secondly, the 

size of the contract is also defined, i.e. the quantity of the asset delivered per contract. 

When the underlying asset of the futures is not transferable, typical examples being the 

stock index and weather futures, the contract is settled in cash. Thirdly, delivery details 

must be also arranged. Generally, the delivery period spreads for the whole expiration 

month. Lastly, the place of delivery should also be prearranged if considerable 

transportation costs occur. 
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1.1.4.2.1 Margins and daily settlements 

An important difference between forwards and futures is that the former settle only 

once, at maturity date, while the latter settle daily. As Hull (2018, p.53) outlines ‘’a 

futures is in effect closed out and rewritten at a new price each day’’. The new price is 

determined by supply and demand of the particular futures. This daily settlement, also 

known as mark to market procedure, occurs as an assurance against default risks. A 

futures contract between two investors consists technically of two separate futures each 

of which involving the clearing house and one of the two investors. The clearing house 

requires from the investors to have a margin account and deposit an initial fee named 

initial margin. In the end of every trading day, the futures resets its price and the 

difference is reflected in the investors’ margin accounts, either as profit or loss, 

considering the investors’ positions. A buyer of a futures profits when the asset price 

increases, while a writer profits when the asset price decreases. Some exchanges restrict 

the futures daily price movement by implementing a limit up and a limit down. If, after 

a daily settlement, a margin account falls below a certain threshold known as 

maintenance margin, the investor receives a margin call and she is obliged to deposit 

additional funds known as variation margin. The maintenance margin is usually equal 

to about 75% of the initial margin. Initial margin is not fixed; it normally varies between 

five and ten percent of the contract nominal value, justifying the label of futures as 

leveraged instrument, but it also depends on the type and credibility of the trader, as 

well as, the volatility of the market and the underlying asset. (Hull, 2018). 

It is noted that in the case of standard forward contracts traded on OTC markets through 

CCP, a similar daily settlement procedure occurs in years after the crisis of 2007. 

Although forwards are not rewritten as futures do, daily margin payments following 

asset price changes are made to mitigate default risks. But even for forwards not cleared 

through the CCP, BCBS-IOSCO regulations have enforced initial and variation 

margins since 2015, though some exceptions apply (Kosowski and Neftci, 2015). ISDA 

master agreements usually used for bilaterally cleared forwards are associated by credit 

support annexes (CSAs) requiring daily revaluation of the contracts and the provision 

of daily collateral (Hull, 2018). Hence, it is obvious that contract default risks have been 

an issue for OTC markets and there is effort by market makers to implement stricter 

regulations. 
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1.1.4.2.2 The basis  

During the life of a futures and before its maturity date, the futures price Ft at time t and 

the corresponding spot price St normally differ. The difference Bt=Ft-St is the basis of 

the contract. As the futures contract is settled daily and the maturity date approaches, 

the two prices converge. Theoretically, at maturity date T, the two prices must be equal 

and the basis BT=FT-ST must be zero. Figure 2 illustrates the relationship of futures and 

spot prices. 

 

Figure 2. The relationship between futures and spot prices (basis). 

 

The premise is grounded on the non-arbitrage argument which is usually deployed in 

the derivatives theory. If futures price is higher than spot price at delivery date, arbitrage 

can be achieved by selling a futures, buying the underlying asset in spot market and 

delivering the asset. If futures price is lower than spot price at delivery date, an 

arbitrageur can buy a futures, receive the asset and then sell it in the spot market. In 

both cases, supply and demand law will force the two prices to equalize and arbitrage 

opportunities will vanish. Practically, there are some costs associated with arbitrage and 

small differences between prices cannot be really exploited, hence there may be slight 

deviations from equilibrium BT=0. Also, as expiration date approaches, futures 

volatility increases under what is known as Samuelson hypothesis or maturity effect, as 

futures contracts tend to be more sensitive to news during the last stage of their life 

(Samuelson, 1965). 
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1.1.4.2.3 Closing out 

Practically, futures delivery rarely takes place. Most of investors involved in futures 

contracts prefer to close out their position before contract expiration. They can do so 

by entering a new contract of exactly the same type and opposing their original position. 

An investor in a long position closes out by selling a new contract, while an investor in 

a short position closes out by buying a new contract. Hence, the two contracts nullify 

each other. The ability of an investor to close out her position means that delivery does 

not necessarily taken by her. She may as well have closed out her position by entering 

a contract with another investor who has also closed out her position and so on. 

 

1.1.4.3 Forward and Futures Contracts Differences  

In the aggregate, forward and futures contracts display the following differences: 

 A forward is traded on OTC markets, either bilaterally or through CCP. The two 

parties know each other and negotiate for the contract. A futures is traded in 

exchanges through the clearing house. The two parties usually do not know each 

other. 

 A forward has usually one specific expiration date, while a certain type of 

futures offers various expiration dates. 

 A forward is settled once, at the expiration date, while a futures is settled and 

rewritten daily. Recent regulations have partially smoothed out this difference 

as explained previously. 

 In the case of forwards, the delivery of the asset is usually realized, while in the 

case of futures positions are closed out before expiration more often than not. 

Also, forwards are difficult to be sold to a third party, while futures are 

conveniently traded. 

 

1.1.4.4 Forward and Futures Prices  

The determination of forward and futures prices is based on non-arbitrage arguments 

and it can be summarized in the cost of carry model, firstly introduced by Keldor 

(1939). The model indicates the relationship between current forward/futures price and 
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current spot price. It should be noted that despite their differences, forward and futures 

prices are considered to be equal in theory, though in practice there are some deviations 

due to futures daily settlements. For convenience, forward contracts will be examined 

in this work. 

The cost of carry equation is expressed as: 

F0=S0e
cT      (eq. 1.1) 

where F0 is the current forward price, S0 is the current spot price, c is the cost of carry 

and T is the remaining time until the contract matures.  

The cost of carry c is a factor which summarizes income lost and earned on the asset. 

Intuitively speaking, it penalizes or rewards (or both) the investor for not buying or 

selling the asset at the spot but waiting for a future transaction. These ‘’penalties’’ and 

‘’rewards’’ depend on the underlying asset. In case F0 deviates from this relationship, 

arbitrage opportunities surface and supply and demand will bring it back to its fair 

value. Regarding the underlying asset and how it modifies the basic model, the most 

common cases are presented below: 

a) In the simplest case in which the underlying asset earns no income, such as a stock 

which pays no dividends and a zero coupon bond, eq. 1 becomes: 

F0=S0e
rT      (eq. 1.2) 

where cost of carry c equals the risk free interest rate r. The non-arbitrage argument is 

illustrated in this simple form. In case the forward contract is negotiated at price F’0>F0 

or F’0<F0, an arbitrageur can implement the following strategies to achieve riskless 

profits: 

At time t=0 (current date) 

F’0>F0      F’0<F0 

● Borrows S0, for time T, at interest rate r ● Shorts the asset for S0 

● Buys the asset for S0     ● Loans out S0 for time T, at interest rate r 

● Shorts a forward contract for F’0  ● Stands long in a forward contract for F’0 

At time t=T (maturity date) 

● Sells the asset for F’0    ● Gets the asset for F’0 
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● Repays loan equal to S0erT   ● Return the asset 

      ● Receives S0erT from loan 

† Profits made: F’0-S0ert = F’0-F0   † Profits made: S0ert-F’0=F0-F’0 

Thus, equation 1.2 must be realized. Otherwise, an arbitrageur can profit without risks 

the difference |F0-S0e
rT|. For other assets examined below, similar arbitrage strategies 

can be deployed. 

b) In case the underlying asset pays a known fixed income, such as a stock with known 

dividends, equation 1 becomes: 

F0=(S0–I)erT (eq. 1.3) 

where I is the present value of the fixed income until the contract expires, and r is the 

risk free interest rate. In this case, the cost of carry includes both I and r. 

c) In case the underlying asset pays a known yield, i.e. a known income dependent on 

the price of the asset, such as a stock index, equation 1 becomes: 

F0=S0e
(r-q)T      (eq. 1.4) 

where r is the risk free interest rate and q is the known yield of the asset. Obviously, in 

this case, c=r-q. 

A subcase of assets with known yields is a forward contract on foreign currency 

exchange rates. Equation 1.4 becomes: 

F0=S0e
(r-R)T     (eq. 1.5) 

where r is the domestic risk free interest rate and R is the foreign risk free interest rate. 

Equation 1.5 is also known as interest rate parity relationship. 

d) In this case the underlying asset brings in a known fixed loss. It is the opposite of the 

known fixed income case. A typical example is a contract on a commodity with storage 

costs. Equation 1.1 becomes: 

F0=(S0+U)erT      (eq. 1.6) 

where U is the cost of storage (or theoretically any fixed loss) and r is the risk free 

interest rate. If the cost of storage depends on the spot price of the asset, equation 1.6 

becomes: 
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F0=S0e
(r+u)T      (eq. 1.7) 

For this last case and in view of the non-arbitrage argument, a classification of the 

underlying assets should be made into investment assets and consumption assets. 

Investment assets are those which are held and traded primarily for investment 

purposes. Stocks and bonds are typical examples. Gold and silver are also investment 

assets despite the fact that they are also used for product manufacturing. On the other 

hand, consumption assets are held primarily for consumption purposes. Copper and oil 

are typical examples of consumption assets. The distinctive difference between the two 

classes is that, for investment assets, investors do not care if they hold the asset or a 

contract on the asset. However, they do care in the case of consumption assets. For a 

manufacturer, a ton of copper which can be used in a production process is more 

valuable than a contract on the same amount of copper. Thus, the non-arbitrage 

argument applies when F0 is higher than its fair value, but it does not apply if F0 is lower 

than its fair value. The copper manufacturer will still not be interested in forwards even 

if they are in sale. She will prefer to hold the copper and not be involved in the arbitrage 

process (Hull, 2018). Hence, for consumption assets, cost of carry given by equation 

1.1 becomes: 

F0=S0e
(c-y)T      (eq. 1.8) 

where y is the convenience yield of the asset, in other words the ‘’reward’’ from holding 

the asset per se. 

In determining the prices through the cost of carry model the following assumptions 

are made: 

 There are no trading costs. 

 Investors can borrow and loan at the default-free interest rate. 

 The same tax rate applies to all profits. 

 Once an arbitrage opportunity is spotted it will be immediately exploited. 

 Markets are efficient and there are no short selling restrictions and fees. 

 All flows are continuously compounded.  

 The interest rate is considered constant. This assumption is used for the 

argument that forwards and futures prices are the same and that daily 

settlements of futures can be neglected for price determination purposes. 
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However in practice, interest rates follow a stochastic process and if forward 

and futures prices were the same, arbitrage opportunities would exist. In fact, 

the higher the correlation between spot prices and interest rates, the bigger the 

difference between forward and futures prices (Cox et al., 1981). 

 

1.1.4.5 Value of Forward and Futures Contracts  

The value f of a forward contract is defined as: 

f=(F0-F)e-rT      (eq. 1.9) 

where F0 is the current price of the forward, F is the delivery price, r is the risk free 

interest rate and T is the duration until contract expiration. The variables K, r and T are 

fixed. According to the cost of carry model, F0 fluctuates as far as asset price S0 

fluctuates. The value of a forward contract is zero when the contract starts and it can be 

positive or negative afterwards.  

The value of a futures contract resets to zero at the end of every trading day as part of 

the mark to market process. During the day, the value of the futures can be positive or 

negative. In fact, a futures and the corresponding forward contract have the same value 

until the futures resettles. 

 

1.1.4.6 Expectation Hypothesis, Backwardation and Contango 

Regarding the relationship between the current forward/futures price and the expected 

spot price, there are three theories available. Firstly, the expectation theory suggests 

that forward/futures price equals the expected spot price of maturity date, that is, 

F0=E(ST). This hypothesis assumes that there are no uncertainties, or that investors are 

risk neutral. Secondly, backwardation theory suggests that there are uncertainties and 

hedgers supply the contracts, while speculators buy them. The latter should be 

compensated with a risk premium, thus they will accept a long position as far as the 

forward/futures price is below the expected spot price of maturity date. Thirdly, 

contango theory which can be considered as the opposite of the backwardation theory, 

suggests that hedgers stand on the long side of the contracts and speculators stand on 

the short side. Again, it is speculators that should be compensated with a risk premium, 
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thus forward/futures prices should be higher than the expected spot prices (Bodie et al., 

2018). 

 

1.1.5 Options 

An option contract, just as a forward or a futures contract, is an agreement between two 

counterparties for the future transaction of an asset in a prearranged price. One of the 

participants of the contract sells or writes the contract and the other one buys or holds 

the contract. The distinctive feature of an option is that the buyer has the right, but not 

the obligation, to proceed with the transaction. On the other hand, the writer has the 

obligation to honor the contract. As a compensation for her advantageous position, the 

buyer pays the writer a premium at the start of the contract. 

 

1.1.5.1 Types of Options  

There are two types of options. A call option gives its buyer the right to buy the 

underlying asset in a predetermined price, called the strike or exercise price K, at 

expiration date. The buyer will exercise the right to buy the asset only if the price of the 

asset exceeds the strike price of the call option. A put option gives its buyer the right to 

sell S the underlying asset in the strike price at the expiration date. The buyer will 

exercise the right to sell the asset only if the price of the asset is below the strike price 

of the put option. In both types of options, the writer receives the premium and has a 

passive role thereafter. 

Options can further be classified in European options in which the transaction can take 

place only at maturity date and American options in which the transaction can take 

place at any time during the life of the contract. 

Regarding the types of options and investors’ positions, there are four possible 

combinations: 

 To buy a call option (long call). The buyer of a call option predicts a bullish 

market. 

 To sell a call option (short call). The writer of a call option predicts a slightly 

bearish market. 



30 
 

 To buy a put option (long put). The buyer of a put option predicts a bearish 

market. 

 To sell a put option (short put). The writer of a put option predicts a slightly 

bullish market. 

 Profits of the four positions are illustrated in figures 3 and 4 below. For a call option, 

as long as the asset spot price is below the strike price K, the option is not exercised; 

the buyer of the contract has loss equal to the premium paid, while the writer gains that 

premium. As the spot price exceeds K, the buyer starts to gain at constant rate, while 

the writer losses the same amount. Whatever the case, the option complies with the zero 

sum game. It should be noted that potential gains for the buyer and losses for the writer 

are infinite. 

For a put option, as long as the asset price remains above the strike price K, there is no 

interest in exercising the option. Loss and profit for the buyer and the writer respectively 

are equal to the premium. As the spot price moves below K, the buyer starts to gain the 

amount that the writer starts to lose. In put options potential gains and losses are finite 

and are maximized when the spot price becomes zero. 

 

Figure 3. Profits of a long call (blue line) and the corresponding short call (red line). 
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Figure 4. Profits of a long put (blue line) and the corresponding short put (red line). 

 

Ignoring premiums, the payoffs of the four positions are the following: 

Long call payoff: max(Spot price-K, 0) 

Short call payoff: min(K-Spot price, 0) 

Long put payoff: max(K-Spot price, 0) 

Short put payoff: min(Spot price-K, 0) 

At a specific time, if exercising the option delivers a positive payoff for the holder, the 

option is in-the-money. If exercising the option delivers zero payoff for the holder or in 

other words exercising is pointless, the option is out-of-the-money. In between the two 

cases, if the spot price equals the strike price, the option is at-the-money. 

The intrinsic value of an option is the payoff that it would offer if exercised at the 

moment. Obviously, for in-the-money options intrinsic value is positive, while for out-

of-the-money and at-the-money options intrinsic value is negative and zero 

respectively. However, even if intrinsic value is zero, the option is not worthless as it 

can move in the money at some point in the future. Thus, the option has a time value as 

well. The total value of the option is the sum of its intrinsic and its time value (Bodie 

et al., 2018). 
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1.1.5.2 Margins  

Options are traded both in exchanges and OTC markets. As in the case of forwards and 

futures contracts, exchanges offer standardization and better mitigation of default risks, 

while OTC markets offer higher levels of customization. The Options Clearing 

Corporation (OCC), serving many markets, records all option transactions, intervenes 

between the two participants of the option and requires margins to be deposited in 

investors’ accounts. The holder of an option holds a right, but not an obligation, hence 

a margin is not required from her. However, the holder is not allowed to buy on margin 

and leverage an option expiring in nine months or less. For long-term options, the buyer 

is allowed to borrow from her broker up to 25% of the position. On the other hand, the 

writer of an option holds an obligation. A margin is required from her, considering 

among other factors whether the option is naked or covered. Usually, the margin 

amount is equal to full premium received plus ten to twenty percent of the underlying 

asset (CBOE, 2000). As the asset spot price changes, a daily recalculation of the margin 

takes place and a margin call is also expected if necessary, just as in the futures markets, 

but without the daily settlement of the derivative. 

 

1.1.5.3 Exercising and Closing Out 

When an investor wants to exercise an option, the broker delivers an exercise notice to 

a writer of the option. The delivery takes place via the OCC. Through a standardized 

procedure determined beforehand, the OCC assigns the buyer to a specific writer. The 

open interest in the particular option is reduced by one. 

The closing out process works as in futures trading. If a buyer of an option wants to 

withdraw, she can instruct her broker to sell an option of the same type. In the same 

way, a writer of an option can close out the position by buying the same option. 

 

1.1.5.4 Option Prices and the Put-Call Parity Theorem 

Option prices can be evaluated using once again the non-arbitrage argument. The option 

price is essentially the premium paid by the buyer of the contract. According to Bodie 

et al. (2018), the option price is affected by the underlying asset spot price and its 
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volatility, the strike price, the maturity date, the risk free rate and any income or loss 

derived from the underlying asset. A difference in prices occurs between a European 

and an American option. Intuitively, as an American option offers more alternatives 

than a European option, for the former can be exercised at any point during the life of 

the option, the price of an American option has to be slightly higher than that of an 

equivalent European option.  

An important equilibrium theorem in option valuation is the put-call parity relationship 

firstly introduced by Stoll (1969). It relates the prices of a European call and a European 

put option with the same strike price and expiration date. The general formula is given 

by: 

c+Ke-rT=p+S0e
yT      (eq. 1.10) 

In which, p is the price of the put option, c is the price of the call option, K is the strike 

price, S0 is the underlying asset spot price, r is the risk free rate, T is the time duration 

until contract expiration and y is the yield depending on the underlying asset. For stocks 

paying no dividends, y=0, for stocks paying known dividends d, y=-d, for foreign 

currency paying a free interest rate equal to rf, y=-rf.  

In its simplest form regarding assets with no income or cost, the put-call parity is given 

by:  

c+Ke-rT=p+S0      (eq. 1.11) 

This form can be used to prove the put-call parity relationship under the non-arbitrage 

argument. Let two hypothetical portfolios A and B be constructed. Portfolio A consists 

of one stock and a put option. Portfolio B consists of a call option and a T-bond with 

face value equal to K and maturity date T, equal to that of the options. There are two 

scenarios at time T; stock spot price will be either higher than K or lower than K.  

Portfolio A cost (t=0)    Portfolio B cost (t=0) 

S0+p      c+Ke-rt 

Portfolio A return (t=T)    Portfolio B return (t=T) 

return=ST+(K-ST)=K, if ST<K   return=0+K=K, if ST<K  

return=ST+0=ST, if ST>K   return=(ST-K)+K=ST, if ST>K 
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Under both scenarios, the returns of the two portfolios are identical. Hence their cost 

should be the same. Otherwise an arbitrageur could buy the cheap portfolio and sell the 

expensive one. The costs of the portfolios are the two sides of the equation 1.11. Similar 

non-arbitrage arguments can be deployed to the defense of the put-call parity regarding 

other underlying assets. 

Relative premium is defined as the ratio of the premium value to the total value of the 

underlying asset that the option contract refers to. In the case of stocks, an option 

usually refers to a lot of 100 shares. Stoll (1969), using the put-call parity, indicated 

that the difference of relative call and put premiums approximately equals the risk free 

rate, that is: 

𝑐

𝑉
−

𝑝

𝑉
= 𝑟 (eq. 1.12) 

where c and p are the call and put premiums respectively, V is the total value of the 

underlying asset specified by the contract and r is the risk free rate. 

It is noted that the put-call parity theorem applies only to European options. American 

option premiums cannot be strictly defined under this equilibrium, for they are allowed 

to be exercised at any point during the option life. Hull (2018) suggests the following 

lower and upper bounds for American options: 

S0e
yT-K ≤ c-p ≤ S0-Ke-rT      

with variables defined as previously. 

 

1.1.5.5 Trading Strategies with Options 

Options have proven to be a versatile tool for investors. They can be combined with 

either other financial instruments or other options. Below, the most common strategies 

involving options are briefly analyzed. 

 

1.1.5.5.1 Options combined with the underlyi ng asset.  

In this category there are four popular positions: the covered call, protective call, 

protective put and covered put. To acquire a covered call position, an investor has to 

write a call option and buy the underlying asset. It is the opposite of the naked option 
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position in which the underlying asset is not owned by the writer. The profit pattern of 

a covered call is illustrated in figure 5. As it can be observed, the investor is “covered” 

by an increase in the asset spot price. However, she actually “loses” the premium, if the 

asset spot price drops significantly. 

 

Figure 5. Covered call profit pattern. 

 

The protective call, illustrated in figure 6, is the reverse of the covered call. The investor 

buys a call option and shorts the underlying asset. Hence, if the asset spot price 

increases, the losses are mitigated in exchange for lower profits due to premium in case 

spot price decreases. 

 

Figure 6. Protective call profit pattern. 
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The protective put consists of a put option and the underlying asset. The profit pattern 

is illustrated in figure 7. The investor is “protected” from a drop of the asset spot price. 

On the other hand, in case the asset spot price increases, the investor gains less than she 

would if she did not enter the put option contract. 

 

Figure 7. Protective put profit pattern. 

 

The covered put, illustrated in figure 8, is the reverse of the protective put. The investor 

is “covered” if the spot price drops significantly, but in exchange she suffers losses if 

the spot price increases significantly. 

 

Figure 8. Covered put profit pattern. 
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1.1.5.5.2 Options combined with other options  

Two types of position are favored by investors in this category, spreads and 

combinations. 

A spread is achieved by taking a position in two or more calls, or, in two or more puts 

for the same asset. There are various spreads, considering the relative specifications of 

the options combined. 

A bull spread consists of holding a call option with strike price K1 and writing a call 

option with strike price K2>K1. Premium paid for the former option is always higher 

than premium received for the latter option, for K1<K2. Both options have the same 

maturity date. Figure 9 illustrates the profit pattern of a bull spread. The investor of this 

position predicts a bullish market and mitigates both her potential losses and profits. 

Bodie et al. (2018) argue that the investor taking a bull spread position may not think 

of a bullish market but of the one option being overpriced compared to the other. 

 

Figure 9. Bull spread profit pattern. 

 

A bear spread consists of writing a put option with strike price K1 and buying a put 

option with strike price K2>K1. Both options have the same maturity date. Figure 10 

illustrates the profit pattern of a bear spread. The investor predicts a bearish market and, 

as in bull spreads, both potential losses and profits are mitigated. 
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Figure 10. Bear spread profit pattern. 

 

A somewhat more complicated spread is the butterfly spread. This position is achieved 

by buying a call option with strike price K1, buying a call option with strike price K3, 

and selling two call options with strike price K2=(K1+K3)/2. The profit pattern is 

illustrated in figure 11. The position is hold by an investor who does not anticipate big 

market movements in either direction. 

 

Figure 11. Butterfly spread profit pattern. 

 

A calendar spread consists of selling a call option with strike price K and maturity T1 

and buying a call option with strike price K and maturity T2>T1. The profit pattern is 
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illustrated in figure 12 and resembles that of the butterfly spread. The graph is presented 

at time T1 when the short call position expires and assuming that the long call position 

is closed out. 

 

Figure 12. Calendar spread profit pattern. 

 

A comprehensive list of spreads cannot be presented here. Profit patterns can be plenty 

combining different options. For example, diagonal spreads consist of options with 

different strike prices and different expiration dates. Even spreads can be combined 

with each other and produce further spreads, such as the box spread which is the result 

of a bull and a bear spread.  

Combinations are investment strategies in which position is taken in both call and put 

options. A simple case of combination is the straddle. A straddle consists of holding a 

call and a put option with the same strike price and expiration date. The profit pattern 

is illustrated in figure 13. A trader investing in a straddle anticipates a big move of the 

price of the underlying asset, either upwards or downwards.  
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Figure 13. Straddle profit pattern. 

 

A strip is created by holding one call and two puts, while a strap is created by holding 

two calls and one put. In both strips and straps, options used have the same strike price 

and expiration date. The profit patterns are illustrated in figures 14 and 15. In both 

cases, the investor anticipates a big move of the price of the underlying asset. A positive 

move slightly favors the strap strategy, while a negative move slightly favors the strip 

strategy. 

 

Figure 14. Strip profit pattern. 
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Figure 15. Strap profit pattern. 

 

A strangle consists of holding a put with strike price K1 and holding a call with strike 

price K2>K1. The profit pattern is illustrated in figure 16. The investor anticipates a big 

move of the underlying asset in either direction. 

 

Figure 16. Strangle profit pattern. 

 

1.1.5.6 Exotic Options 

Exotic options differ from plain vanilla options in their structure and sometimes offer 

unique features. They essentially come from OTC-traded customized options that were 

successful enough to be standardized in either OTC markets or exchanges. There are a 
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few reasons for their development and success. They usually offer higher profit margins 

than conventional options do. They can also prove a better hedging tool for specific 

companies or provide a way of maneuvering around accounting and tax regulations 

(Hull, 2018). Just a few of them are presented here. 

An Asian option, with a name that has nothing to do with the geographic location in 

which it is traded, offers a payoff dependent on the average price of the underlying asset 

during the option life. A barrier option offers a payoff only if the asset price overcomes 

an upper or lower threshold. It can also immediately expire unexercised if the asset 

price goes below a lower threshold. Lookback options offer a payoff dependent on the 

peak and bottom of the asset price during the life of the option. Digital options may 

offer a pre-determined payoff relying on whether a specific condition about the asset 

price holds (Bodie et al., 2018). 

 

1.1.6 Swaps 

A swap is an agreement between two counterparties to exchange cash flows at regular 

time intervals for a certain time period. They can be considered as repetitive forwards, 

considering that forwards are essentially one-flow swaps; the participants of a forward 

exchange an asset that can potentially be immediately sold for its spot price creating a 

cash flow and a cash flow derived from the delivery price of the contract (Bodie et al., 

2018). Swaps are traded on OTC markets. Like in futures trading, there is usually an 

intermediate player who stands between the two counterparties and shoulders the risks. 

The two counterparties may not know each other. Each one deals only with the 

intermediate player. The latter does not need to enter simultaneously into the contracts, 

as the needs of the two counterparties may not spawn at the same time. Hence, the 

intermediate player has the role of the market maker and provides liquidity.  

 

1.1.6.1 Swap Mechanics  

The interest rate swap is by far the most popular contract, hence it will be used for 

illustration of swap mechanics. 

The most common interest rate swap is one in which fixed interest rate is exchanged 

for floating interest rate, usually proxied by LIBOR (London Interbank Offered Rate), 



43 
 

that is the interest rate which a highly credible bank can borrow at. A swap agreement 

of this type requires that one of the participants want to dispose of a fixed interest rate 

income or liability for a LIBOR income or liability and that the other participant have 

the exactly opposite desire. 

Theoretically, the comparative argument is deployed to justify a swap agreement. Let 

investors A and B want to borrow. Investor A has been assessed with higher credibility 

than investor B has, thus loaners offer lower interest rates, both fixed and floating, for 

A than they do for B. The assumed interest rates are presented in table 1. 

Table 1. Fixed and floating interest rates for investors A and B. 

 Fixed interest rate Floating interest rate 

Investor A a LIBOR+c 

Investor B b LIBOR+d 

 

According to the credibility premise made above, it follows that a<b and c<d. 

Let also be assumed that b-a>d-c. In other words, while investor A outperforms B in 

both markets, the difference is more obvious with regard to fixed interest rates. Under 

this assumption, investor A has a comparative advantage over investor B in the fixed 

interest rate market. Investor B comparative advantage is in the floating interest rate 

market. If both investors want to borrow in their corresponding non-advantageous 

interest rates, they can enter a swap agreement and achieve better rates than the ones 

offered to them. Assuming that an intermediary, such as a bank or other financial 

institution enters the agreement as well, the mechanism of figure 15 will take place. 

 

 

 

Figure 17. The swap mechanism and flows. 

 

The logical sequence of this swap can be analyzed as follows: 

 Investor A wants to borrow at LIBOR+c, but her comparative advantage is in 

fixed rates market. 

 Investor B wants to borrow at b, but her comparative advantage is in floating 

rates market. 
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 They both borrow in their advantageous markets (not what they really want). 

 They enter their corresponding swaps with the intermediary. Let be assumed 

that intermediary charges x for compensation. That is the difference of bid and 

offer quotes. The rate flows of the swaps are shown in figure 15. Investor A 

ends up with LIBOR outflows and investor B with fixed outflows (what they 

really want). 

 The rate profit for each investor, assuming they split profit in half, is: 

pA=pB= 
(𝑏−𝑎)−(𝑑−𝑐)−𝑥

2
 

 The rate profit for the intermediary is obviously x. The sum profit is P = (b-a)-

(d-c). 

 Indeed, without a swap, investor A would pay LIBOR+c. Through the swap (see 

figure 15) she pays a+LIBOR-(a-c-pA)=LIBOR+c-pA<LIBOR+c. 

 Without the swap, investor B would pay b. Through the swap she pays 

LIBOR+d-LIBOR+(b-d-pB)=b-pB<b. 

 

1.1.6.2 Swap Value 

The flows of an interest rate swap can be approached as they were bond payments. 

Specifically, for one of the participants, the flows are a combination of a long position 

in a hypothetical bond that pays fixed interest rate coupons and of a short position in a 

hypothetical bond that pays floating interest rate coupons. All payments refer to the 

principal amount of the swap. For the other participant the situation is reversed, so that 

the zero sum game concept is satisfied. Thus, for the first participant the value is: 

VA=Bfix-Bfloat 

where VA is the swap value from the perspective of the first participant and Bfix and 

Bfloat are the respective payments of the hypothetical bonds, normally discounted with 

the present value principles. 

For the second participant the value is: 

VB=Bfloat-Bfix 

Obviously, Sum=VA+VB=0. 
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When the swap agreement is initiated, its value is zero. It can be either positive or 

negative afterwards, considering the participant in question. 

 

1.1.6.3 Types of Swaps 

As mentioned previously the fixed for floating interest rate swap is the most popular of 

interest rate swaps. 

According to Hull (2018), other commonly used swaps are: 

 The fixed for fixed currency swap in which the fixed interest rates in two 

currencies are exchanged. Each currency pays on each own principal. 

 The fixed for floating currency swap in which the fixed interest rate in one 

currency is exchanged for the floating interest rate in another currency. Again, 

each currency pays on each own principal. 

 The floating for floating currency swap in which the floating interest rates in 

two currencies are exchanged, with each currency paying on each own principal. 

 The quanto swap in which interest rates of two currencies are exchanged, with 

each currency paying on the same principal enumerated in one of the two 

currencies units. 

 The equity swap in which an interest rate is exchanged for the yield of an equity 

index. 

Generally, swaps can offer a high level of flexibility. For example, the commercial 

paper (uncollateralized short-term firm bonds) rate instead of LIBOR can be used as a 

proxy for floating interest rate. Also, the principal may not be constant but decline in 

time in amortizing swaps. In forward swaps exchanges do not happen before a 

predetermined time point. In compounding swaps flows are postponed and 

compounded until the expiration date. In extendable swaps one of the participants can 

opt for extension of the expiration date of the swap. Contrariwise, in puttable swaps, 

early abortion is possible. In swaptions, the buyer have the right to enter a pre-

determined swap at some point in the future (Hull, 2018). 
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1.2 FUTURES AND SPOT PRICES CAUSALITY 

Before proceeding to futures and spot prices causality theory per se, price discovery 

and market efficiency are presented as they are tightly associated with the concept of 

causality between markets. 

 

1.2.1 Price Discovery 

Price discovery is the process through which the efficient equilibrium price of an asset 

is determined in a marketplace. It is considered one of the main functions of markets, 

as buyers and sellers gather and ‘’agree’’ on a specific trading price. Regarding 

financial markets, price discovery should not be confused with valuation; the former 

refers to the spot price of an asset while the latter is the ‘’fair’’ present value of an asset 

derived from a theoretical model. Metaphorically speaking, price discovery is the road 

through which an asset reaches its intrinsic value. The less obstacles or ‘’friction’’ on 

the road, the closer the asset will get to its ‘’pricing destination’’. Gupta et al. (2018) 

distinguish between long-term (static) price discovery which is the very presence of an 

equilibrium price and short-term (dynamic) price discovery which depicts how a new 

set of information is incorporated into and transmitted through markets. Price discovery 

mechanism is obviously built on supply and demand principle foundations. Other 

factors that hamper or facilitate the process attach to this framework; internally, trading 

volume and liquidity, market design and microstructure, and externally, 

macroeconomic and geopolitical variables can influence price discovery. 

According to Schreiber and Schwartz (1986), the market architecture features which 

may have an impact on price discovery are: 

a) Market makers role. Whether the market makers accept a passive role by providing 

just liquidity to the market or operate more actively by manipulating spreads for 

inventory control purposes or by counterbalancing price volatility will affect the price 

discovery process. 

b) Call market and continuous trading system. It is not clear whether the execution of 

orders in lots within specific trading sessions or the regular execution once opposite 

orders cross each other is beneficial for the price discovery process.  
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c) Effective information systems in terms of the transmission speed of news, transaction 

prices, quotations and volumes. 

d) Order priority rules and the gathering of orders in limit books and of public on the 

trading floor promote price discovery. 

In case there are two (or more) markets for an asset to be traded on, price discovery 

happens in both markets and it depends on communication costs and the 

interdependencies of those markets. If costs are above a certain high threshold, the 

markets are independent and asset price follows its own pathway for each market, while 

if costs are eliminated, the markets are considered as completely integrated. In the most 

realistic scenario, markets will be partially integrated and some kind of relationship will 

exist between the prices of the asset. Price differences will be subject to arbitrage 

opportunities and its speed of implementation which in turn will depend on market 

regulations and policies and trading costs. According to Garbade and Silber (1979), if 

price difference exists between two partially integrated markets X and Y, either price 

of market X moves to price of market Y and vice versa with both prices moving 

symmetrically in terms of speed, or only market X adjusts its price towards price of 

market Y. In the latter case, market Y is the ‘’dominant’’ market and market X is its 

pure ‘’satellite’’. Of course this relationship may move within a spectrum in which the 

roles of ‘’leader’’ and ‘’follower’’ are not so clearly defined. 

When markets compete for the price discovery process of an asset, under the trading 

cost hypothesis, the market with the lowest trading costs will absorb new information 

faster and will dominate the price discovery process. Trading costs include bid-ask 

spreads, commission fees and the potential intangible cost of market impact (Fleming 

et al., 1996). Investor structure can also affect price discovery process. Bohl et al. 

(2011) found that markets with higher percentage of institutional investors than the 

percentage of individual investors dominate price discovery, as the former tend to be 

more informed, sophisticated and trade rationally, while the latter are prone to 

behavioral biases and sentiment. 

Closely related to price discovery, pricing efficiency refers to how close the actual price 

of an asset is to its intrinsic value. Implicitly, it measures the success of price discovery 

mechanism. More precisely, in practice, the observed price Pt of an asset will equal its 

fundamental value P*t plus a stochastic noise et, that is: 



48 
 

Pt=P*t+et 

Black (1986) defined the pricing efficiency ratio as ER=P*t/Pt which in a pricing 

efficient market should equal 1. If ER>1, the asset is undervalued, while if ER<1, the 

asset is overvalued. A problem lies however in setting the intrinsic value and 

particularly in the correct values that should be used for the variables of holding period, 

discount interest rates and accrued profits/losses of a potential model (Ayadi, 1994). 

The issue of a suitable comparison for observed prices is also highlighted by Schreiber 

and Schwartz (1986) as the most significant reason for which price discovery is 

neglected by investors. 

 

1.2.2 Market Efficiency 

Since its theoretical birth, efficient market hypothesis (EMH) has been a controversial 

topic for economists. Bachelier (1900) started, unbeknown to him, the spark which led 

to EMH over half a century later. His dissertation concluded that speculators should 

expect no returns in the financial markets, or in other words, financial markets offer 

speculators a ‘’fair game’’. 

Kendall and Hill (1953) found that the set of price time series they examined could not 

produce a clear pattern, apart from superficial cycles, and that changes in prices seemed 

to move randomly, or in other words follow a Brownian motion. The random walk 

model was embraced by Fama (1965) who discarded the ‘’chartist’’ approach as 

valueless and gave birth to EMH. According to EMH all available information is 

already integrated into the market prices and any new piece of information will be 

instantaneously and rationally absorbed. Thus, there can be no undervalued or 

overvalued assets, and investors, either sophisticated or uninformed ones, cannot 

outperform the market or earn a higher than average return consistently and without 

taking extra risk. The EMH is based on three ‘’sufficient but not necessary’’ 

assumptions regarding financial markets (Fama, 1970): 

 There are no trading costs. 

 All information is available to all investors at no cost. 

 Investors have homogeneous expectations and their rationality will result to the 

same interpretation of information. 
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It is clear that hindrance of EMH can be either due to trading and trading mechanism 

or due to human factor in perception and decision making-or both. 

Fama (1970) classified EMH into three categories. All three categories presume the fact 

that prices reflect all available information. Their difference lies on the set of that 

information; 

 The weak form of EMH in which prices incorporate all information which can 

be excavated by examination of past prices. 

 The semi-strong form of EMH in which prices incorporate not only information 

about past prices, but also publicly accessible information about a firm’s 

management, organization and practices. 

 The strong form of EMH in which prices reflect the set of information of the 

previous two forms plus intelligence from business insiders. 

In case strong form holds, weak and semi-strong forms also hold. In case weak form 

does not hold, semi-strong and strong forms do not hold. 

EMH challenges some basic concepts in finance. In its weak form it defies technical 

analysts while in its semi-strong form it nullifies both technical and fundamental 

analysis. Thus, it questions the very existence of fund managers (unless they can secure 

private information) and actively traded portfolios and implicitly suggests that 

passively investing in a market index is the optimal approach. And indeed, very few 

professionally managed active funds have achieved to beat the market index (Malkiel 

et al., 2005). But if markets are efficient, then there is no point in acquiring and 

analyzing new information and this will result in market inefficiency. The theoretical 

absurd conclusion is that there could be a threshold of market efficiency level beyond 

which trading would have no meaning and markets would eventually shatter. Ironically, 

it is the belief of -at least- some investors that markets are inefficient that keeps markets 

efficient. Grossman and Stiglitz (1980) argue that costless information should be a 

necessary assumption, not a sufficient one. In practice, information, outlined by many 

as the most precious commodity in markets, costs, and investors seeking for it should 

be rewarded with excess returns, thus markets cannot be efficient. 

A main argument of adversaries of EMH is that, if markets are efficient, price anomalies 

should not exist. The inspection of a price anomaly could lead to two outcomes; in the 
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first outcome, the anomaly is just a statistically random deviation and of no concern 

and in the second outcome, the anomaly is the result of market inefficiency or flawed 

pricing models. Many anomalies of the past have been eliminated or minimized when 

they became well known through academic research. For example, the weekend effect 

and January effect have been arbitraged away leading to more efficient markets 

(Schwert, 2003). If this is the case however, it means that markets were once inefficient 

regarding a specific anomaly, thus anomalies can undermine EMH. On the other hand, 

the value effect and size effect anomalies which have also almost disappeared, were 

attributed to inadequacy of CAPM. Suitability of pricing models also concerned Fama 

(1991) who revisits his previous work and rejects much of the research done for testing 

EMH until then, arguing that it is jointly EMH and the underlying corresponding asset 

pricing model that is tested by researchers and not EMH solely. 

But some price anomalies, even after their discovery, are persistent. Lo (2007) 

distinguishes between ‘’academic’’ and ‘’realistic’’ anomalies. If limits to arbitrage, 

such as implementation costs, taxes, market structure, illiquidity and institutional 

stiffness, prevent investors from capitalizing on observed anomalies, there is no 

economic value in them and thus no action will be taken to mitigate mispricing. It 

should be noted that Fama (1965) even loosely, distinguishes between theory and 

practice in EMH from the very beginning, mentioning that practically some dependence 

in random walk model is acceptable, depending on the context. 

The emerging field of behavioral finance challenges EMH even further. Human 

decision making is subject to cognitive and psychological bias and humans cannot act 

fully rationally under uncertainty, thus the foundations of market efficiency are 

undermined. The existence of some anomalies and their persistence may be attributed 

to behaviorism. Prospect theory suggests that the expectation of loss results in greater 

amount of disappointment than the amount of pleasure that the equivalent expectation 

of gain results to, and challenges the traditional utility theory (Kahneman and Tversky, 

1979). In view of over-reaction constituting behaviorism and thus market inefficiency, 

Fama (1998) disagrees by arguing that this phenomenon has equal chances of 

happening as under-reaction, hence it complies with EMH. Proponents of EMH accept 

the existence of bias decision making, but they argue that arbitrageurs outcompete noise 

traders and reverse prices to their intrinsic values. 



51 
 

However, Malkiel (2003) attempts to reconcile the two sides by essentially splitting 

EMH in its theoretical and practical parts; while mispricing is evidence of inefficiency 

and in many cases the apparent result of investors’ behaviorism, it is not a sufficient 

condition of rejection of EMH. It requires a trading strategy which can exploit that 

inefficiency. Mispricing anomalies, such as short momentums or seasonal movements 

cannot be truly abused if trading costs cannot be overcome. Bubbles, a strong 

argumentative ram of market inefficiency advocates, also cannot be mined ex-ante, 

without heavy risk acceptance; a bubble is not obvious during its bloom and, even if it 

is recognized, its unknown potential duration does not allow for a light-hearted 

investing decision. Furthermore, market crashes, such as that of 1987, involve a 

combination of macroeconomic and political events which reshape investors’ rationale.  

A step further, Lo (2004) suggested an updated version of EMH, the adaptive market 

hypothesis (AMH), wedding components of original market efficiency and biologically 

driven factors. Rationality, induced by profit maximization and utility theory, is 

partially substituted by the evolutionary biology doctrine. Decision making involves 

finite rationality which enables for finite optimization under the traditional economic 

principles, but it also involves a biological dynamic heuristic process which forces 

investors to seek for satisfaction and is completely unrelated with economics. The 

market which is considered static in EMH (albeit Fama (1965) explicitly acknowledges 

the dynamic nature of markets) compares with a dynamic ecosystem and behaviorally 

homogeneous investors compare with a species. Any change in the system affects the 

heuristic process of the species. Behavioral traits such as fear, greed and overconfidence 

are just elements of this process which enables for satisfaction. Thus, prices reflect 

information which are interpreted both rationally and emotionally. Contrary to EMH, 

arbitrage opportunities are allowable in AMH occasionally and investment strategies 

are time-regime dependent. 

The empirical research testing for EMH in various markets is vast and out of the scope 

of this work. Ostensibly, in a survey of finance professors-viewed as specialists in the 

subject-, Doran et al. (2010) found that the majority of them consider markets standing 

between weak and semi-strong form efficiency and that two out of three professors hold 

passive portfolios. In apparent self-contradiction however, overconfidence to 

outperform the market is a critical factor in their trading, regardless of their opinion 

about market efficiency levels. But there is still no scientific consensus about markets 
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efficiency. Lo (2007) mentions that the paradigm of EMH is too abstract and theoretical 

to be tested empirically and even if it would be constrained within a certain framework, 

the result would be a meaningless investigation of joint hypotheses. Alternatively, he 

suggests that relative market efficiency would offer more realistic and tangible 

conclusions. Thus the examination of a market would result not in absolute acceptance 

or rejection of its efficiency, but in an ‘’efficient rating’’ when compared with another 

market.  

 

1.2.3 Interrelations between Futures and Spot Markets 

Futures and spot markets are connected through the underlying assets, hence 

interrelationships exist regarding their prices and returns. Interdependencies between 

the two types of markets can be used to assess the market efficiency and price discovery 

concepts, at least relatively. Below, relationships between current futures prices and 

expected spot prices and between current futures prices and current spot prices are used 

as the foundations for the examination of those interdependencies. 

Before moving on, the importance of futures markets for risk management purposes 

should be highlighted. Performance of futures markets as risk management tools is 

considered as a success indicator for their very existence (Garbade and Silber, 1983). 

Black (1986) mentions spot price volatility and futures contracts risk transfer capability 

among the success factors for futures contracts endurance in time. Brorsen and Fofana 

(2001) also notice active and volatile spot markets as a necessary condition for the 

existence of a corresponding futures market. Hence, the need for hedging seriously 

determines the success of futures markets. Potential relationships and 

interdependencies between futures and spot markets are researched in view of futures 

markets as suitable risk management tools. 

 

1.2.3.1 Current Futures Price and Expected future Spot Price 

Current futures price and the expected spot price when the futures contract matures is 

based on the expectation hypothesis, also known as unbiasedness hypothesis. 

According to that, futures price Ft should be an efficient and unbiased estimator of 

future spot price ST, that is: 
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E(ST|It)= Ft 

where t is current time, It is available information at time t and T is the futures maturity 

date. Two equivalent for this purpose models can be used for the investigation of the 

expectation hypothesis; the risk premium model and the asset pricing model. 

The risk premium model states that: 

Ft=E(ST)e-p(Τ-t) (eq. 2.1) 

where p is the risk premium of the underlying asset. 

Simplifying for time differences and allowing for rational innovations, equation 2.1 can 

be restated in logarithmic form as: 

 logSt=α+βlogFt-1+ut (eq. 2.2) 

The asset pricing theory of Fama (1970) states that: 

E(ST|It)=βFt+α(rM-rF)St+et (eq. 2.3) 

where rM is the risk-adjusted interest rate and rF is the risk free interest rate, hence rM-

rF is the risk premium. For both equations 2.2 and 2.3, coefficient β is associated with 

informational efficiency and price discovery, while coefficient α is associated with risk 

premium and the risk management function of futures. If market efficiency is to hold, 

β=1 should also hold. If the expectation hypothesis is to hold α=0 and β=1 jointly should 

also hold. There are three possible deviations from the latter joint hypothesis: If α≠0 

and β≠1 there is evidence of market inefficiency. If α≠0 and β=1, there is a constant 

risk premium which forces futures prices to be biased. If α=0 and β≠1, there is a time-

varying risk premium that forbids futures prices from being unbiased (Ankamah-

Yeboah et al., 2017). 

However, Chen and Zheng (2008) argue that futures cannot be an unbiased predictor of 

the future spot price at all. Unbiasedness would imply either that investors are risk 

neutral and they do not require compensation for extra risk or that the futures does not 

carry any systematic risk. They also argue against research conducted on the 

investigation of the relationship between current futures price and the expected spot 

price for market informational efficiency purposes. The latter can be only examined 

through the investigation of et=Ft-Ft-1 and whether et follows a martingale sequence and 

is in accordance with the concept of market efficiency as this was originally defined by 
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Fama (1970). Gupta et al. (2018) also state that the unbiasedness hypothesis requires 

both market efficiency and risk neutrality and that is rarely the case in real markets. 

Arouri et al. (2012) and Jena et al (2019) argue that when β deviates from its equilibrium 

value of unity, a lead-lag relationship occurs between the markets and arbitrage 

opportunities arise. This lead-lag relationship is related to informational dynamics, 

markets relative efficiency and price discovery and it is investigated through causality 

tests. The latter researchers also state that the more bearish or bullish the markets are, 

the bigger the deviations of β are. Also, regarding α, deviations increase as uncertainty 

increases, for speculators demand higher compensation to enter a futures contract and 

hedgers require more contracts to protect their spot positions. 

As explained in 1.1.4.6 the presence of a risk premium causes markets to be in 

backwardation or contango. According to Keynes (1930), backwardation or contango 

depends on whether speculators stand on the long position or short position 

respectively, matching hedgers and speculators clearly regarding their positions. 

However, Anderson and Danthine (1983) argue that backwardation or contango (i.e. 

risk premium/discount) and rejection of the unbiasedness hypothesis occur if there is 

imbalance of futures sales and purchases for hedging purposes. This translates to 

imbalance between short and long hedgers. Such imbalances may arise for two reasons: 

firstly, when futures market deducts a component from futures spot market (for example 

the demand which arises for a storage company to store a particular commodity) and 

secondly due to asymmetric risk faced by hedgers (long and short). Besides, Sensoy 

and Hacihasanoglou (2014) mention that if futures prices truly carry information about 

expected spot prices, informed investors have to participate in both positions (long-

short) of futures contracts. 

Working (1953) opposes Keynes’s (1930) theory by stating that futures price is equal 

to the expected spot price and speculators require a compensation for their different 

opinion about the expected spot price. Chang (1985) and Lee (2013) expand on 

Working’s theory and reconcile it with Keyne’s theory by arguing that speculators 

profit from either risk premiums or their forecasting ability (forecasting theory). The 

former researcher concluded that futures returns to speculators are due to risk 

premiums, thus supporting Keynes theory, however speculators displayed above 

average forecasting ability as well. The latter researcher concluded that there is not 

consistent evidence of backwardation or contango in markets, hence -sophisticated and 
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large- speculators mainly profit from their forecasting skills and the unbiasedness 

hypothesis is confirmed due to the very presence of those superior speculators even in 

few numbers. However, temporal periods of backwardation or contango may also exist 

for particular markets. 

  

1.2.3.2 Current Futures Price and Current Spot Price 

Under the non-arbitrage argument, the cost of carry model, also known as theory of 

storage or theory of convenience yield, reviewed in chapter 1.4.4, provides the 

fundamental relationship between current prices of spot and futures markets, 

algebraically that is: 

Ft=Ste
cΔT 

where Ft and St are the current futures and spot prices respectively, ΔT is the time period 

between current time point and futures maturity date and c is the cost of carry. In 

logarithmic form, cost of carry transforms to: ft=st+cΔΤ, where ft and st are the natural 

logarithms of futures and spot prices respectively. The cost of carry model connects the 

contemporaneous values of spot and futures prices and implies that the two markets are 

co-integrated. Co-integrated futures and spot prices share a stochastic drift and are 

interpreted as evidence of markets being pricing efficient, in other words as evidence 

of a long-run relationship between futures and spot prices within the non-arbitrage band 

(Chen and Zheng, 2008). Ankamah-Yeboah et al. (2017) also distinguish between 

pricing efficiency which can be investigated through the cost of carry model and 

informational efficiency which can be investigated through the risk premium theory 

mentioned in 1.2.3.1. Silvapulle and Moosa (1999) argue that presence of co-

integration is a prerequisite for market efficiency, hence for unbiasedness hypothesis as 

well, and in the case that current spot and futures price are not linked, the cost of carry 

model can be used to reject the unbiasedness hypothesis. On the other hand, if prices 

are co-integrated no further conclusion can be made for the unbiasedness hypothesis. 

Thus, under the market efficiency framework, co-integration is a necessary condition 

but not a sufficient one. 

If the cost of carry is supported, spot and futures prices should be linked with the co-

integrating vector (1, -1). Theissen (2012) flags the issue of daily changes in potential 
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co-integrating relationships using the cost of carry model due to term cΔΤ and suggests 

the examination of discounted futures prices and spot prices. Milunovich and Joyeux 

(2010) are also concerned about the stochastic nature of interest rates in the model. 

They suggest that cΔΤ be viewed as a third variable, apart from spot and futures prices, 

hence concluding to the examination of co-integrating vector (1, -1, -1). Gwilym et al. 

(2019) are also cautious with the frictionless markets assumption implied by the cost of 

carry model. They argue that heterogeneity of agents (short-hedging producers, long-

hedging consumers and speculators) can create multiple time-varying equilibria and 

erratic pricing behaviours as traders move in and out of markets. 

The cost of carry model does not restrict the existence of short-run dynamics. Regarding 

commodities, Jena et al. (2018) argue that demand shocks have an enduring influence 

on production and spot prices and can easily disrupt the long-run relationship of futures 

and spot prices. On the other hand, supply and storage-related shocks have temporal 

influence on markets. The cost of carry model evolves through the interactions of those 

shocks and while all shocks provoke trading, their consequences in financial markets 

depend on their nature. Thus economic reasoning justifies the co-existence of co-

integration and short-run causal dynamics; a long-run relationship is brewed through 

demand innovations and short-run dynamics grow out of supply and storage 

innovations, and also taking into consideration the different reaction times of markets. 

Besides, Nicolau and Palomba (2015) state that co-integration implies at least 

unidirectional causal effects. 

Additionally, considering that futures and spot markets ‘‘compete’’ for the price 

discovery process, relationships between contemporaneous futures and spot prices can 

be used as indicators for dominance of one of the two types of markets. In literature, 

dominance in price discovery process is examined either in terms of relative 

contribution or in terms of information flows and transmissions. Regarding relative 

contribution, information shares (Hasbrouck, 1995) and common factor weights 

(Gonzalo and Granger, 1995) are the most common techniques used, while regarding 

information flows and transmissions, the lead-lag relationships between futures and 

spot prices are examined via causality tests. The main reason that lead-lag relationships 

between futures and spot markets concern researchers and investors is the implicit 

examination of market efficiency -in terms of informational efficiency- and of price 

discovery process (Silvapulle & Moosa, 1999). However, Asche et al. (2016) and 
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Ankamah-Yeboah et al. (2017) suggest that prediction hypothesis be used for evidence 

of long-run price discovery dominance. They also argue that futures markets are 

suitable hedging tools only if they lead spot markets in long-run price discovery and if 

unbiasedness hypothesis holds.  

  

1.2.3.3 Lead-Lag Relationships and Causality  

Regarding the lead-lag relationships between futures and spot markets, and considering 

the fact that those markets refer to the same underlying assets and the theories of non-

arbitrage and efficient markets, any causality tests between futures and spot markets 

should theoretically conclude that neither market dominates the other. However, this is 

not the case in practice. The possible scenarios in futures and spot markets dynamics 

are presented in the following sub-sections. 

 

1.2.3.3.1 Futures markets lead spot markets (F→S) 

From empirical studies this is the most common conclusion. Futures markets lead spot 

markets and come out as relatively more efficient. Most researchers attribute this type 

of relationship to the lower transaction costs of futures markets (trading cost 

hypothesis). Thus, futures markets react faster to information arrivals than spot markets 

do.  Judge and Reancharoen (2014) suggest looser regulation and potential constraints 

of short selling in spot markets as possible factors of futures markets dominance. 

Additionally, as derivatives are leveraged financial instruments, investment financing 

is less in the case of futures (leverage hypothesis) (Fleming et al., 1996). Moreover, 

regarding assets with storage constraints, futures could prove a better solution than 

acquiring the underlying asset, especially for speculators who are not interested in the 

latter per se (Silvapulle & Moosa, 1999). Also, futures markets generally attract well-

informed investors, especially speculators, who contribute more skillfully in price 

discovery than their counterparts do in spot markets. Moreover, regarding commodities, 

futures markets can be used as a tool by big players of spot markets in order to 

manipulate competitors regarding production decisions (Newberry, 1992; Bekiros and 

Diks, 2008). Finally, according to Moosa and Al-Loughani (1995) both arbitrageurs 

and speculators use futures prices as their reference point for their strategies. 
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1.2.3.3.2 Spot markets lead futures markets (S→F) 

An explanation of this relationship was given by Silvapulle & Moosa (1999); 

transactions by investors who trade exclusively in spot markets provoke a change in 

spot price. Then, arbitrageurs detect deviations in the cost of carry model and reform 

futures price. Lastly, speculators notice expectation differentials and cause further 

changes in both prices. Asche et al. (2016) suggest that the leading role of spot markets 

implies that futures markets suffer from immaturity and lack of investor heterogeneity. 

 

1.2.3.3.3 Bidirectional lead of both markets  (feedback)  (F↔S)  

In this case futures prices may predict spot prices and vice versa. The markets exhibit 

rather erratic reactions to information arrival. Kawaller et al. (1987) argue that futures-

spot relationship is dynamic over time and new information are processed depending 

on each investor’s position. There are times when futures lead and times when spot 

prices lead. They also mention that both futures and spot prices are influenced by past 

futures and spot prices, thus suggesting for market inefficiency. Lin et al., (2018) state 

that time varying lead-lag relationships are partially due to time varying investor 

sentiment. The role of futures markets in price discovery process in the long-run and 

their leading role in the short-run decreases with high investor sentiment. When investor 

sentiment is driven up, noise trading also increases and this in turn increases trading 

risks and costs. Due to the unpredictability of noise traders, informed investors of 

futures markets withdraw from trading a bit, thus their information are not utilized and 

not integrated in prices. Also arbitrageurs cannot take as aggressive positions against 

potential arbitrages as they would want to. Hence futures markets may partially and 

temporarily concede dominance to spot markets. Furthermore, Moosa (1996) suggests 

that external shocks may disrupt an already unidirectional lead of futures markets and 

result in bidirectional lead. Other researchers, such as Shu and Zang (2012), interpret 

bidirectional causality as simultaneous absorption of information. 

 

1.2.3.3.4 Neither futures nor spot market s lead (independence)  

In case there is not a lead-lag relationship, the spot and futures prices are not co-

integrated as well. No prediction can be made for futures and spot prices considering 
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lagged spot and lagged futures prices respectively. Futures and spot markets are at the 

same levels of efficiency. Price discovery is a process that happens independently in 

the two markets. 

Investigation of causality could help, at least theoretically, investors realize and employ 

appropriate investment strategies. Also, regulators can improve the functionality of the 

markets through their understanding of the traders’ incentives and keep the balance 

between hedgers and speculators. While hedgers treat futures market as their secondary 

field for risk management purposes, speculators treat futures market as their priority 

and dedicate their resources in finding out regularities which they can exploit. Although 

speculators contribute positively to the markets by increasing liquidity, they pose a 

threat to the efficiency of futures markets if they can consistently predict prices 

(Hossefeld & Rothig, 2016). 

Focus of literature review was given on recent studies, with the exception of some 

seminal works of previous decades. The main reason is that technological advancement 

and the recent crisis accompanied by the collapse of Lehman Brothers have changed 

the way financial markets function. Regulation has been stricter for exchange and OTC 

markets, and new venues, such as ATS, ECN, dark and grey pools have risen and claim 

significant share of overall trading. Furthermore, electronic trading and the evolution 

of algorithmic and high frequency trading have changed microstructure, liquidity and 

transaction costs and, in turn, price discovery process (Kissell, 2006). Although 

outdated implications cannot be totally avoided, recent studies would provide a better 

comparison for the results of this work. Only studies on commodities and indices were 

considered, for there is not enough research conducted on other assets. Some of the 

articles reviewed below also examine volatility spillovers. The corresponding results 

are also presented for review completeness only and not for comparison purposes, for 

causality-in-variance is out of the scope of this work. 

 

1.2.4 Causality Studies on Commodities  

Regarding commodity markets, most of research has been conducted on assets of the 

energy, metal and agricultural sectors. There are also some researchers who examined 

assets from various commodity sectors. 



60 
 

1.2.4.1 Energy 

Trading of energy futures started in 1970s due to the high volatility of energy assets 

prices during that period. Nowadays, there are future contracts in a variety of energy 

commodities, including crude oil and its derivative products, natural gas, electricity, 

biofuel and emissions. The largest markets are the NYMEX (as part of the CME Group) 

and the ICE, attracting both financial professionals and physical market stakeholders 

(Simkins and Jia, 2015). As of 2018, the energy derivatives accounted for 31% of 

commodity derivatives trading volume worldwide or for 1.8 billion contracts annually, 

with a huge boost of trading volume in Asia-Pacific markets in recent years. Yet, about 

half of trading still takes place in the US. The asset that mostly lures traders is crude oil 

(WFE, 2019). According to Dergiades et al. (2018), observation and potential 

prediction of prices in the energy sector is a priority for many stakeholders due to the 

long horizon planning of energy projects. 

The research in lead-lag relationship in energy futures and spot markets is extensive, 

especially for crude oil. However, the results are mixed and there is no consensus about 

which the leading market is, if there is any at all. 

Silvapulle and Moosa (1999) studied crude oil market using daily data, from 2 January 

1985 to 11 July 1996. Observations included spot prices for WTI crude oil and the 

corresponding one, three and six-month to maturity futures contracts traded on the 

NYMEX. Deploying VAR models and the Hsio (1981) approach based on Akaike’s 

final prediction error (FPE) criterion for linear causal effects and the Back and Brock 

(1992) model on VAR-filtered residuals for non-linear effects, they ended up with 

mixed results; linear approach indicated that futures lead spot market, while non-linear 

approach showed bidirectional causality between futures and spot markets for all 

maturities. Re-applying the non-linear tests to EGARCH-filtered residuals, they 

discovered that part of non-linear dynamics was due to volatility transmissions. 

In one of the most cited studies, Bekiros and Diks (2008) examined causal effects 

between futures and spot markets of crude oil. They used two periods of daily data, 

from 21 October 1991 to 29 October 1999 and from 1 November 1999 to 20 October 

2007, in order to control for OPEC regulation changes regarding oil spare capacity. 

Data included WTI oil spot prices and the corresponding futures contracts of one to 

four months to maturity, traded on the NYMEX. Employing pairwise VEC models for 



61 
 

linear Granger causality, they detected substantial bidirectional causality for both 

periods. Additionally, applying the Diks and Panchenko (2006) non-parametric test on 

the VECM-filtered residuals to ensure for non-linear causality, they also found 

bidirectional causality for the first period, but mainly unidirectional causality from 

futures to spot prices for the second period. Re-applying the Diks and Panchenko (2006) 

test on GARCH-BEKK-filtered residuals they also concluded that substantial part of 

non-linear dynamics was due to volatility spillover effect. Repeating the same 

procedures but this time for a multivariate 5x5 model, they spotted linear dominance of 

spot over futures prices for the second period. Besides, the non-parametric approach 

revealed a non-linear feedback mechanism for the first period, and futures dominance 

for the second period. Again, GARCH-BEKK-filtered residuals proved that much of 

the non-linear dynamics was due to volatility transmissions.  

Huang et al. (2009) gathered daily observations, from 2 January 1986 to 30 April 2007, 

for WTI crude oil spot prices and its corresponding futures. Three sub-periods were 

defined considering two breaks due to the Gulf War and the 11 September attack. Two 

methodologies were used, firstly a conventional linear VEC model after confirmation 

of Engle-Granger co-integration, and secondly a three regime threshold VEC model 

considering the magnitude of the basis and the arbitrage band. The conventional VEC 

model indicated unidirectional causality from futures to spot prices for the whole 

sample and first and third sub-periods, and bidirectional causality for the second sub-

period. The threshold VEC model provided mixed results as expected. Under the first 

regime (strong contango), there was found no causality for the whole sample and the 

first sub-period, unidirectional effects from futures to spot for the second sub-period 

and bidirectional effects for the third sub-period. Under the second regime (no-arbitrage 

zone), no causality was detected at all. Under the third regime (strong backwardation), 

spot prices lead futures for the whole period and bidirectional lead-lag relationship was 

spotted for the first and second sub-periods. No causality was uncovered for the third 

sup-period. 

Alzahrani et al. (2014) investigated causality between futures and spot oil prices in both 

time and frequency domains, arguing that investors’ heterogeneous horizons should be 

considered. Data included daily observations, from 20 February 2003 to 19 April 2011, 

for WTI spot prices and one, two, three and four-months to maturity futures contracts 

traded on the NYMEX. Applying a VEC model in the original series, they found linear 
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bidirectional Granger causality between futures and spot prices. Wavelet 

transformation of data confirmed linear bidirectional causal effects for the short-term, 

using both a VAR and a VEC model for comparison reasons, while non-linear 

bidirectional causality was found for both short and long horizons, using a modified 

version of the Baek and Brock (1992) test on VECM-filtered residuals. 

As part of their study, Chen et al. (2014) approached causality in crude oil market 

considering potential structural breaks. Monthly observations were used, from January 

1986 to December 2012, for WTI spot prices and one-month to maturity futures of the 

NYMEX. Employing both a VEC model for linear causal effects and the Diks and 

Panchenko (2006) test for non-linear effects, the authors examined the full sample 

period and two sub-periods after considering a structural break in July 2004. Linear 

testing concluded that spot prices lead futures prices for the whole period and the 

second sub-period. Adversely, non-linear testing revealed that futures prices Granger-

cause spot prices for the full sample and the first sub-period. 

Balcilar et al. (2015) examined the lead-lag relationship of spot and futures prices in 

the crude oil market following two different methodologies; in the first one, Toda and 

Yamamoto (1995) causality test was used for the whole data period, while in the second 

one, a Markov-switching VEC model was utilized, thus enabling the researchers to 

stochastically divide the sample into regimes. Daily observations, from 2 January 1986 

to 31 July 2013, included WTI spot prices and futures prices of one, two, three and 

four-month maturity contracts traded on the NYMEX. 

The results for the whole sample confirmed bidirectional causality between spot and 

futures prices of crude oil. However, direction and strength of causality are not 

consistent under the regime switching approach; particularly it was found that there is 

no causality at all during serene market conditions, while there is bidirectional causality 

or unidirectional causal effects from futures to spot prices and vice versa in volatile 

market periods, particularly related with geopolitical events in Middle East and East 

Asia. Lastly, there was evidence of futures prices predictive power over spot prices on 

the long run. 

Arfaoui (2018) investigated conventional and cross causality between futures and spot 

prices of crude oil and refined oil, the latter being proxied by gasoline and heating oil. 

Monthly data were obtained, from January 2007 to April 2015, and one-month to 
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maturity futures traded on the NYMEX was used. After co-integration confirmation, a 

multivariate 6x6 VEC model was used for Granger causality examination. Interestingly, 

it was found that crude oil spot prices are Granger-caused by heating oil futures but not 

by crude oil futures prices. Also, while gasoline and heating oil spot prices Granger-

cause crude oil future prices, crude oil spot prices do not. As for gasoline, there is 

evidence of bidirectional causality between its spot and futures prices. Furthermore, in 

view of heating oil, its futures prices lead the spot prices but they are Granger-caused 

by the crude oil and gasoline spot prices. 

Shao et al. (2019) deployed the symmetric thermal optimal method (TOPS) to study the 

crude oil market. Data consisted of daily, weekly and monthly observations, from 

March 1987 to October 2017 with slight adjustments to the sample period with regard 

to the different frequencies used. The NYMEX traded futures contracts of one, two, 

three and four months to maturity were used, as well as WTI crude oil spot prices. 

Results indicated bidirectional causality for daily and weekly data for futures of all 

maturities. For monthly data, spot prices were found to lead futures for the period 1987-

1999 and to follow them for the period 1999-2007. Bidirectional causality was observed 

for the period 2007 onwards. As a conclusion, it was argued that no consistently 

dominant market could be found and direction and strength of causality are volatile and 

subject to geopolitical events influencing oil markets. 

Ghoddusi (2016) examined Granger causality in the natural gas market by considering 

different types of gas, namely wellhead, industrial, residential, commercial, power and 

citygate gas. Monthly data, from June 1990 to December 2014, contained six different 

gas spot prices with respect to its use, and gas futures contracts traded on the NYMEX 

with maturities of one, six and twelve months. Using the traditional Granger causality 

test through a VEC model, Ghoddusi ended up with mixed results. In the case of 

wellhead and industrial gas, there was no causality detected, in the case of power gas, 

bidirectional causality was spotted and in the case of commercial and residential gas, 

futures of all maturities led spot prices. 

Zhang and Liu (2018) also inspected lead-lag relationship of futures and spot prices of 

natural gas. Using daily data, from 7 January 1997 to 27 February 2016, and the first 

four nearest to maturity futures contracts traded on the NYMEX, they divided the 

sample into two sub-periods and they used the conventional VECM approach and the 
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Diks and Panchenko (2006) method. The study ended up with mixed outcomes; linear 

Granger causality detected unidirectional lead lag relationship from futures to spot 

prices, while the Diks and Panchenko (2006) test on raw data and the VECM-filtered 

residuals resulted in bidirectional causality for both sub-periods. The non-linear test 

was also applied to GARCH-BEKK-filtered residuals to conclude that non-linear causal 

dynamics were partly due to volatility spillovers. 

Dergiades et al. (2018) used daily data, from 7 January 1997 to 30 July 2013, including 

gas spot prices and the corresponding front month futures contract of the NYMEX. 

Deploying firstly the standard Granger causality test with VEC modelling and secondly 

a frequency domain analysis to capture non-linear dynamics, with and without 

controlling for weather conditions as an exogenous variable, they uncovered the leading 

role of futures over spot gas prices under both methodologies. The examination of the 

VECM filtered residuals under the frequency domain analysis showed that the futures 

dominance endured the de-meaning step for low and medium frequencies, while the 

examination of the GARCH-BEKK filtered residuals showed that almost all of the 

futures predictive power over the spot market was due to volatility transmissions. 

Moving on to electricity, Ballester et al. (2016) examined the daily data, from 1 January 

2007 to 31 December 2014, of SPEL index of MIBEL market in Spain and the 

corresponding futures and forwards contracts of one-month, one-quarter and one-year 

to maturity traded on OMIP and OTC markets respectively. Under VEC modelling, 

they found bidirectional causality between one-month futures and spot prices, while 

one-quarter futures Granger causes spot market. Furthermore, evidence that futures lead 

forwards was found as well, explained by the investors’ confidence in futures markets. 

As part of their study about electricity futures pricing in Finland, Junttila et al. (2018) 

inspected causal effects between futures and spot market. Data included monthly 

observations, from January 2006 to January 2016. In particular, the underlying asset 

examined was the difference between Finnish electricity spot price and average Nordic 

area electricity spot price, obtained from Nord Pool and the respective closest to 

maturity EPAD futures contract traded on Nasdaq. Using a VAR model for 

conventional Granger causality, but not checking for potential long-run equilibrium 

between the series, there was evidence of the leading role of spot prices over the futures 

contract.  
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Milunovich and Joyeux (2010) studied the European carbon market of phase I (2005-

2007) of Kyoto Protocol. Daily observations, from 24 June 2005 to 27 November 2006, 

consisted of EUA carbon spot prices obtained from Powernext, three futures contracts 

with maturity in December 2006, 2007 and 2008 obtained from European Climate 

Exchange (ECX), and Euribor interest rate values. Co-integration was found between 

spot prices, interest rates and December 2006 and 2007 maturity futures contracts. 

Using the Toda and Yamamoto (1995) approach for co-integrated series and a 

conventional VAR model for non-co-integrated ones, the authors found that there is 

bidirectional causality between spot prices and futures of maturity in December 2006 

and 2007. On the other hand, there was evidence of the leading role of futures of 

December 2008, justified by the fact that futures contracts of 2008 referred to spot 

prices of phase II (2008-2012) which came into effect well after the sample period of 

this study. Additionally, volatility spillovers were examined under a BEKK-GARCH 

approach resulting in the discovery of bidirectional causality in-variance between spot 

prices and futures of 2007.  

Arouri et al. (2012) examined causality in European carbon emission markets of phase 

II of EU ETS. Daily observations, from February 2008 to March 2010, included EUA 

carbon spot price and particularly the December 2010 maturity futures contract traded 

on Bluenext. Deploying a VAR model for linear causality, they detected bidirectional 

causal effects in-mean and in-variance. They also practiced a Switching Transition 

Regression EGARCH model to capture non-linear causality in bearish and bullish 

regimes. The non-linear approach also detected bidirectional causal effects. 

Rittler (2012) examined the carbon market in first and second conditional moments and 

in high frequency. Data, from 1 May 2008 to 15 December 2009, included daily, 30-

minute and 10-minute observations of spot prices obtained from Bluenext and 

December 2008 and 2009 maturity futures contracts obtained from ECX. Apart from 

the full sample period examination in which the most active of the two-2008 and 2009 

expiration date- future contracts was used, two sub-periods, from May 2008 to 

December 2008 and from January 2009 to December 2009 were also examined, in 

which the December 2008 and the December 2009 futures contracts were used 

respectively and exclusively. Using the Engle-Granger approach, the author found co-

integration evidence for the 30-minute and 10-minute data only, for all samples. 

Applying a VEC model, it was found that futures leads spot market for daily data and 
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for the whole sample period, but there is bidirectional causality in the higher frequency 

data. For the sub-periods and the 30 and 10-minute intervals data, bidirectional causal 

effects were also spotted. Causality in-variance was checked only for the 10-minute 

observations deploying an unrestricted extended CCC-GARCH model suggested by 

Conrad and Karanasos (2010). For all periods, unidirectional futures to spot market 

volatility spillovers were detected. 

Philip and Shi (2015) also studied causal effects in-mean and in-variance for carbon 

markets. The 15-minute interval data, from 30 April 2009 to 31 December 2011, 

included carbon spot prices from Bluenext and the most active futures contract from 

Intercontinental Exchange (ICE). The sample was split in quarters. Causality in-mean 

was tested with a VAR model which indicated bidirectional lead-lag relationship for all 

quarters, with the spot to futures causal effect power enhanced just before the allowance 

submission deadlines. Causality in-variance was tested with the HAR-RV model by 

Corsi (2009); the results are mixed for the short, medium and long-term coefficients 

and for different quarters, but it is noteworthy that the spot market creates unidirectional 

volatility spillovers to futures for the period before the deadlines and the direction of 

spillovers is reversed after the deadlines.  

 

1.2.4.2 Metals  

Non-precious metals derivatives account for 26% of commodity derivatives global 

trading volume or 1.5 billion contracts annually. On the other hand, market share of 

precious metals derivatives is less than 5% (WFE, 2019). Shanghai Futures Exchange, 

Dalian Commodity Exchange and London Metal Exchange are the main markets for 

non-precious metals, while CME Group and Shanghai Futures Exchange are the 

dominant markets for precious metals. Steel Rebar future contract of 10 tons/lot traded 

on Shanghai Futures Exchange was the most traded commodity derivative in the world 

in 2018. 

As part of their study, Chen and Lin (2004) studied causal effects between spot and 

futures in lead market. Quarterly data, from December 1964 to June 1995, contained 

spot prices of the London Metal Exchange (LME) and three-months to maturity futures. 

Two methodologies were used, firstly the conventional Granger causality and secondly, 

the Baek and Brock (1992) method for non-linear causality. Both VAR and VEC 
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models were used for linear causality, though data showed evidence of co-integration. 

Linear approach found no causality in VAR models, but it uncovered bidirectional 

causality in VEC models. On the other hand, non-linear approach detected a lead-lag 

relationship from spot to futures when applied to VAR filtered residuals, but it lost this 

detection when applied to VECM filtered residuals. 

Arouri et al. (2013) partially and indirectly examined potential causal effects in 

aluminum market. Using weekly data, from January 1979 to December 2010, and 

including the LME aluminum spot prices and the corresponding three-months to 

maturity futures contract, also traded on the LME, they applied an EC model, an 

augmented EC model with GARCH in-mean effects and a non-linear Exponential 

Switching Transition EC model. The results were consistent for all methods that futures 

can predict spot prices, but the reverse relationship was not examined, thus no leading 

roles can be determined. 

Fernandez (2016) examined the case of non-ferrous metals traded on the LME, namely 

aluminum, copper, lead, nickel, tin and zinc, using daily spot prices from January 1991 

to May 2015 and considering the corresponding three and 15-months to maturity futures 

contracts. Deploying VEC models and after controlling for inventory levels, she found 

that short maturity futures dominate spot prices, with the exception of bidirectional 

causality for aluminum, whereas she spotted no causality between long maturity futures 

and spot prices, with the exception of unidirectional spot to futures causality for tin and 

copper. 

 

1.2.4.3 Agriculture 

Agricultural derivatives account for 32% of all commodity derivatives trading volume 

worldwide, or for 1.9 billion contracts annually. Asia-Pacific region dominates trading 

with market share of about 50% (WFE, 2019). 

He and Xie (2012) studied Chinese sugar market, using daily data, from 6 January 2006 

to 21 September 2009. Observations included sugar wholesale spot prices and futures 

traded on the Zhengzhou Commodity Exchange (CZCE). After confirming for co-

integration, they applied a VEC model for Granger causality which spotted a 

unidirectional lead-lag relationship from futures to spot prices. 
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Studying the case of live cattle, Amarante et al. (2018) used daily data from 10 January 

2000 to 30 December 2014 for the spot prices of beef cattle and the corresponding 

futures contracts traded on the BM&FBOVESPA in Brazil. The classical Granger 

causality procedure through a VEC model resulted in bidirectional causality between 

futures and spot prices. 

Yan and Guiyu (2019) investigated the cornstarch market in China, using daily 

observations, from 19 December 2014 to 23 November 2017. Spot prices from the 

CSIA and the highest open interest futures traded on the DCE were used. Practicing 

Granger causality test in a VAR model despite the evidence of co-integration, the 

authors found that futures dominate spot prices.  

Agyekum et al. (2017) used daily data, from 4 January 2013 to 2 March 2016 to 

examine causal effects in Chinese cornstarch market. Spot price observations came 

from the average cornstarch price of twenty major domestic cities and futures came 

from the Dalian Commodity Exchange (DCE). Using a VEC model for conventional 

Granger causality, after confirming for co-integration, it was concluded that futures 

lead spot prices. 

Regarding salmon markets, Asche et al. (2016) explored the unbiasedness hypothesis 

and price discovery process for risk management purposes. Monthly data, from June 

2006 to June 2014, combined spot prices of Fish Pool Index (FPI) and futures of one to 

six months to maturity, traded on the Fish Pool Exchange of Norway. Johansen (1988, 

1991) co-integration tests confirmed the unbiasedness hypothesis and showed that spot 

prices lead futures of all maturities in the long-run and price discovery happens in the 

spot market. 

Ankamah-Yeboah et al. (2017) also investigated salmon markets using monthly data 

from June 2006 to June 2015. Salmon spot price was proxied by Fish Pool Index offered 

by Fish Pool ASA Exchange of Norway. One to twelve-months to maturity futures 

traded on the same market were also used. Conventional Granger causality was 

investigated with either VAR or VEC models with respect to co-integration results. It 

was found that spot prices lead futures of one, two and six-months to maturity, while 

futures of three, four, five, nine and twelve-months to maturity lead spot prices. 
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1.2.4.4 Mixed Commodity Studies 

Yang and Zhang (2014) studied Chinese metal and agricultural markets, specifically 

aluminum, copper, zinc, bean, sugar and cotton markets. They used daily observations, 

from 9 May 2008 to 20 November 2012, for spot prices and one-month to maturity 

futures contracts obtained from the Shanghai Futures Exchange (SHFE) and the 

Zhengzhou Commodity Exchange (CZCE) for metal and agricultural futures 

respectively. Using two different methodologies, a VAR model for conventional 

Granger causality and a frequency domain method suggested by Breitung and Candelon 

(2006), they ended up with consistent results. According to both methods, there is 

bidirectional causality for all commodities, except for the dominance of aluminum 

futures over spot prices. Additionally, despite the bidirectional lead-lag relationship, 

the frequency domain approach clearly indicated that futures causal effects are stronger 

than those of spot markets in almost all frequencies, except for bean market in which 

futures and spot prices impacts are of equal power. One potential objection to the study 

is the neglect of an ECT in VAR modelling, despite the confirmation of Johansen co-

integration.  

Similarly, Joseph et al. (2014) examined the two most traded commodities in each of 

the energy, agricultural, precious and non-precious metal sectors of India, namely crude 

oil, natural gas, chana, soybean, gold, silver, aluminum and copper. Using daily data, 

from 3 January 2008 to 31 December 2012 of the Multi Commodities Exchange and 

National Commodity and Derivatives Exchange for spot prices and the nearest to 

maturity futures, they examined Granger causality deploying VAR models and a 

frequency domain analysis. The former method showed that futures dominate spot 

prices for all commodities except for silver, crude oil and natural gas for which a 

feedback causal relationship was found, while the latter method showed complete 

dominance of futures prices for both high and low frequencies and for all commodities. 

Nicolau and Palomba (2015) examined causality and endogeneity between gold, oil and 

gas futures and spot prices deploying the Toda and Yamamoto (1995) method and 

recursive analysis. Daily observations were used from 7 January 1997 to 30 May 2014. 

Gold, oil and gas spot prices come from London PM Fix, WTI and Henry Hub closing 

prices respectively, and futures contracts come from the NYMEX for oil and gas and 

from the COMEX for gold. For gold and oil, bidirectional causality was found, while 
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for gas, futures lead spot prices. The results were also found to withstand after 

controlling for the crisis of 2008. 

Jebabli and Roubaud (2018) examined efficiency in agricultural and energy markets. 

Using daily data, from 1 December 2000 to 17 August 2015, for corn, soybean and 

crude oil spot prices and the respective one-month to maturity futures contracts traded 

on CME, they deployed a conventional VEC model after testing for Johansen co-

integration and a threshold VEC model after testing for threshold co-integration with 

supLM statistic of Hansen and Seo (2002). The former approach showed bidirectional 

causality for corn and soybean markets and unidirectional causal effects from spot to 

futures for crude oil. The latter approach determined three regimes with respect to basis 

divergence. Under the low divergence regime, corn and soybean futures lead their 

respective spot markets, while there is bidirectional lead-lag relationship in the case of 

crude oil. Under the middle divergence regime, there is bidirectional causality in the 

case of corn markets. Lastly, under the high divergence regime, bidirectional causality 

was uncovered for all commodities. 

Jena et al. (2019) investigated causality in gold, silver, crude oil and natural gas using 

the causality in-quantiles method suggested by Balcilar et al. (2016) and dividing 

markets into bearish, bullish and normal states. This method also allowed the 

researchers to examine causality in variance, as well as in mean. Data included daily 

spot prices of the four commodities in question and the corresponding nearest to 

maturity futures contracts traded on Multi Commodities Exchange of India. Regarding 

gold and silver, futures lead spot prices in mean for all market conditions, but there is 

bidirectional causality in variance for tranquil and bullish conditions. Natural gas 

futures lead spot prices both in mean and in variance, whereas for crude oil, there is 

unidirectional causality from futures to spot prices in mean and bidirectional causality 

in variance. Generally however, causal dynamics decrease for all commodities as 

markets move to extreme bullish or bearish conditions. 

As part of their study, Cagli et al. (2019) examined WTI crude oil, Brent oil, heating 

oil and natural gas from the energy sector, gold, silver, platinum, palladium from the 

precious metals sector and aluminum, copper, zinc, nickel, lead and tin from the base 

metals sector. Using daily data, from January 1985 to February 2019, and deploying 

the Diks and Panchenko (2006) method on raw data and VAR filtered residuals, they 
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discovered strong bi-directional causal dynamics for all energy assets and all precious 

metals. Regarding base metals, feedback dynamics were found for copper, lead and tin 

and unidirectional causality from spot to futures for aluminum, zinc and nickel. 

 

1.2.5 Causality Studies on Financial Indices 

Most studies in causality between futures and spot indices refer to stock indices. 

Trading of futures indices started in 1982 with the introduction of S&P 500 Index 

futures (Silber, 1985). Nowadays, top exchanges in this field are B3 SA Brasil Bolsa 

Balcao (formerly, BM&FBOVESPA), CME Group and Eurex, and the underlying 

indices of top futures are Bovespa Mini Index, E-mini S&P500 and EURO STOXX50. 

As of 2018, annually aggregate trading volume of futures indices was about 3.3 billion 

contracts, yet second to options indices volume (WFE, 2019). One peculiarity of stock 

indices is that the stocks, which the index consists of, may be of low interest to investors 

and infrequently traded. Hence, potentially outdated stock spot prices may lead to 

spurious dominance of futures in the lead-lag relationship investigation (Theissen, 

2012). 

As part of their study, Kasman and Kasman (2008) examined the long and short-term 

causality between Istanbul Stock Price Index 30 (ISE-30), traded on the ISE (nowadays 

BIST) and its corresponding futures contract traded on TurkDEX. Data included daily 

observations, from 1 July 2002 to 8 October 2007, and Granger causality was tested by 

VEC modelling after checking for co-integration. Evidence was found that there is a 

lead-lag relationship from spot to futures market, both in long and short-term. 

Li (2008) examined the US, UK, German, Brazilian, and Hungarian futures and spot 

markets through S&P 500, FTSE 100, DAX 30, BOVESPA Index and BSI respectively, 

using daily data, from 3 April 1995 to 12 December 2005. Two methodologies were 

followed, firstly the conventional VECM approach and secondly the Markov-switching 

VECM approach, controlling for high and low volatility regimes. Under VECM, it was 

found that futures lead spot market in the case of S&P 500, both in long and short-term. 

In the case of FTSE 100, spot lead futures market in the long-term, but this relationship 

is reversed in the short-term. Regarding DAX 30, BOVESPA and BSI, bidirectional 

causality was detected for both long and short-term. Under MS-VECM, the author 

argues that futures lead spot markets in tranquil periods, while spot markets dominate 
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futures markets in turbulent periods. The results of MS-VECM were consistent for all 

indices. 

Bohl et al. (2011) investigated Polish WIG20 Index and its corresponding futures traded 

on Warsaw Stock Exchange, using daily data, from 16 January 1998 to 30 June 2009. 

They also divided the sample into two sub-periods to control for change in regulations 

in Polish markets in December 2004 and the allowance of mutual funds in derivative 

trading. Running VECM-DCC-GARCH models, they spotted bidirectional causality in 

the long-term and the leading role of futures in the short-term. The results were 

consistent for the two sub-periods, although the magnitude of information flow in the 

long term from spot to futures market decreased in the second sub-period, a decline 

attributed to the entrance of sophisticated institutional investors to futures trading. 

Pati and Rajib (2011) examined S&P CNX Nifty Index of the NSE of India and the 

corresponding closest to maturity futures. Using 5-minute observations, from 1 March 

2007 to 31 January 2008, and deploying a VEC model for Granger causality, they 

detected unidirectional causality from futures to spot market. Additionally, they found 

bidirectional volatility spillovers using the BEKK-GARCH approach. 

Judge and Reancharoen (2014) studied the potential causality between SET 50 Index 

of the Stock Exchange of Thailand and its corresponding nearest to maturity futures 

contract traded on the TFEX. Using daily data, from 28 April 2006 to 30 September 

2011, and utilizing a VEC model for Granger causality, they found that spot market 

dominates futures market, possibly due to greater trading volume of the former. 

Chinese markets in particular have attracted recent academic interest. Xie and Juang 

(2013) probed into Chinese CSI 300 of Shanghai and Shenzhen stock exchanges and 

its future contract with the highest activity, using daily data from 16 April 2010 to 13 

April 2012. Through a VEC model, they uncovered spot dominance over futures in the 

long-run, but no lead-lag relationship in the short-term. The latter result was justified 

by the low frequency data used, as most lead-lag relationships between spot and futures 

markets are detected with utilization of intraday data. Additionally, testing for impulse 

responses, they found that futures market shocks have negligible effect on the spot 

market, while spot market shocks causes significant aftershocks to the futures market. 

Yao and Lin (2017) analysed information flows between stock index futures and stock 

markets in China, using conditional and non-conditional Granger causality tests in VAR 
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for direct and indirect causal effects respectively. In particular, daily data consisted of 

spot prices for 844 stocks of the Shanghai Stock Exchange and 902 stocks of the 

Shenzen Stock Exchange, and of futures prices for Shanghai and Shenzen 300 Index, 

China Securities Index 500 and Shangai Stock 50 Index. Non-conditional Granger 

causality test concluded that futures indices slightly lead stocks, while the result was 

reversed when conditional Granger causality test was applied. 

Wang et al. (2017) also studied futures and spot prices of CSI 300. Data contained daily 

observations, from 16 April 2010 to 31 December 2014, along with one-minute 

intervals of those observations. Futures contract used was that with the highest trading 

volume. Applying a thermal optimal path (TOP) method to capture non-linear causality, 

the authors found inconsistent results regarding daily data, but they detected a five-

minute dominance of futures over spot prices regarding high frequency data of one-

minute intervals. Additionally, they confirmed the latter leading role of futures in sub-

samples of bearish, bullish and turbulent market periods. 

As part of their study to investigate implications of regulation change in Chinese 

markets in 2015, Hao et al. (2019), examined Granger causality between SSE 50, CSI 

500 and CSI 300 and their respective futures. Using 5-minute intervals of daily 

observations from 16 April 2015 to 30 June 2017, and deploying a VEC model they 

found bidirectional lead-lag relationship for all indices and their futures. Results were 

consistent even after splitting the sample in sub-periods, before and after the stricter 

regulations implemented in Chinese financial markets in 2015. 

Gong et al. (2016) examined CSI300, HSI and S&P500 Index and their corresponding 

futures with the largest trading volume. Daily observations were used, from 16 April 

2010 to 14 January 2014. They practiced two methods, firstly Granger causality 

analysis with VEC models and secondly a thermal optimal path (TOP) analysis. The 

results for both methodologies showed that spot leads futures market in the case of 

CSI300, while futures market leads spot market in the case of HSI and S&P500 Index. 

A possible explanation for the outcome is that CSI300 is traded on the developing 

market of China, while HSI and S&P500 Index are traded on the developed markets of 

Hong Kong and US respectively. 

Moving on to non-stock indices, Shu and Zhang (2012), examining VIX and its futures 

traded on the CBOE, found mixed results. Daily data, from 26 March 2004 to 20 May 



74 
 

2009, included VIX spot value and the four nearest to maturity futures. Using VEC 

models, they found that the two nearest to maturity futures lead spot value, while there 

is no causality between spot value and the rest of the futures contracts. However, 

splitting the sample period into twenty quarters resulted in no causality in general, 

except for a few quarters. Additionally, using an updated version of Baek and Brock 

(1992) causality test to VECM filtered residuals to capture non-linear dynamics, 

bidirectional causality was detected. Yet, the authors were cautious about the result, for 

distant lags seemed to have had the same predictive power as near lags did. In any case, 

any leading role of futures was accorded to institutional investors. 

Lee and Mo (2016) also gathered daily observations, from 26 March 2004 to 30 

September 2011, in order to investigate VIX and its closest to maturity futures contract. 

Applying a VEC model, they found no linear lead-lag relationship between the markets. 

However, an exponential smooth transition VEC-GARCH model detected non-linear 

bidirectional causality between futures and spot markets. 

Generally, the results are mixed, although aggregate outcome tilts the balance in favor 

of futures domination which confirms the informal academic consensus that futures 

tend to lead spot prices. On the other hand, even results of different methodologies 

within the same study may vary, thus any conclusion should be approached cautiously. 

 

1.2.6 Potential Issues in Previous Studies 

Although extensive academic research has been conducted so far in lead-lag 

relationships between futures and spot markets, there are some issues which should be 

noticed. 

Firstly, there is dissimilarity among studies in the data frequency used. Researchers use 

observations that range from one-minute to monthly intervals, usually without any 

further explanation for the choice of the particular data they use. Several studies that 

combined data of different frequencies demonstrated inconsistent results. Thus, it is 

reasonable to assume that lead-lag relationships have gone undetected due to 

inappropriate data frequency. Additionally, very few studies consider the split of their 

sample period into sub-periods or deal with the presence of different regimes or 

structural breaks, even if this is clear just by the graphs of raw data. Some typical 
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examples include changes in regulations or governmental and institutional interceptions 

in financial markets, such as those after the collapse of Lehman Brothers, OPEC 

intervention in oil markets in 1999 and the heavily criticized T+1 regulation in Chinese 

spot markets in 2015. 

Secondly, there are many different methodologies applied. The development of new 

econometric models justifies such a phenomenon. But this heterogeneity in analysis 

makes comparison among studies difficult. If different analyses are of equal power and 

capability, then they should be practiced simultaneously for robustness purposes. If new 

analyses are more powerful than old ones, then old researches are outdated with respect 

to analysis, as well as to data. Yet, they are mentioned in even the most recent studies 

for comparison reasons. 

Moreover, very few studies justify their results. While they provide some general, 

opaque directions based on some broad assumptions in view of the differences between 

futures and spot markets, such as transaction costs and liquidity, there is no clear 

evidence or further investigation that the outcomes of the studies can be justified for 

the particular markets they refer to. To their defense, such explanations could be 

regarded as being out of the researchers’ objectives. 

Lastly, almost all studies present no trading strategy or regulatory advice, if any 

potentially exists considering the results and also considering in-practice obstacles. 

Extracting real markets data, analyzing them under a theoretical framework and 

returning them back without reconciling the two domains may offer no real economic 

value to investors. Two notable examples are brought up here to illustrate the point: 

Judge and Reancharoen (2014) found evidence of causality in Thai markets and they 

were able to form and present a strategy that outperformed the conventional buy and 

hold portfolio in real market conditions, at least for the out of sample data. Likewise, 

Brooks et al. (2001) found evidence of causality in the UK markets, but they also 

acknowledged that the strategies they came up with could not beat the passive portfolio, 

concluding that investors could not practically exploit the discovered causal effects and 

benefit from their study. Yet, not only is it mentioned in most studies that exploration 

of potential lead lag relationships can help investors and policy makers, but it is 

explicitly addressed as a primary objective for several studies to help those market 

stakeholders. 
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CHAPTER 2 

As presented in Chapter 1, theory regarding causal dynamics between spot and futures 

markets consists of contradictory yet reasonable arguments supporting the leading role 

of either one of the two types of markets invariably or both of them in a time-varying 

framework. Literature review also showed inconsistent results regarding the direction 

of causality. While most of research conducted supports that futures lead spot prices, 

there is a substantial number of articles that provide support either for unidirectional 

causal channels from spot prices to futures or for a feedback mechanism. Hence, the 

puzzle associated with information flows and price transmissions between interrelated 

markets remains unsolved; are spot and futures markets efficient and do both of them 

incorporate news instantaneously into prices as the EMH theory suggests? Which 

market, if any, drives the price discovery process in the long and short-term? This 

chapter is concerned with the lead-lag relationships and Granger causal effects between 

spot and futures markets from the empirical perspective.  

 

2.1 DATA 

Totally, eight assets were investigated for the purposes of this work, in particular, WTI 

oil and natural gas from the energy domain, gold and silver from the precious metals 

domain, and four stock indices, namely DAX30 and CAC40 from European exchanges 

and SP500 and Nasdaq100 from the US exchanges. The data consist of daily 

observations, from 4 January 2010 to 4 November 2019. 

West Texas Intermediate (WTI) crude oil . The data for oil spot prices 

(dollars per barrel) derived from the US Energy Information Administration (EIA). The 

respective futures prices came from the Intercontinental Exchange (ICE). The futures 

contracts are traded in New York, London and Singapore and the futures list includes 

contracts with maturities of up to 108 consecutive months. The contract size is 1000 

barrels with a tick of 0.01 dollars per barrel. Futures data used refer to contracts of one, 

two, three and six months to maturity (ICE code names T1, T2, T3 and T6 respectively). 

Total observations for WTI oil are 2542. 

Natural gas. The data for (Henry Hub) natural gas spot prices (dollars per million 

Btu-or MMBtu) came from the US EIA, while the respective futures prices came from 
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the NYMEX (CME Group). Futures contracts are deliverable and offered for maturities 

of every month for current calendar year plus twelve years more. The contract size is 

10000 MMBtu with a tick of 0.001 dollars per MMBtu. The futures data used refer to 

contracts of one, two, three and six months to maturity (NYMEX code names NG1, 

NG2, NG3 and NG6 respectively). Total observations for natural gas are 2502. 

Gold. The data for gold spot prices (dollars per fine troy ounce) stemmed from the 

London Bullion Market (LBMA), though benchmark is done by the ICE Benchmark 

Administration (IBA) twice per day at 11.00 (am spot price) and 15.00 (pm spot price) 

London time, with the former price being used in this work. The futures prices came 

from the COMEX (CME Group). The contracts are deliverable, refer to gold of 995 

minimum fineness and are offered for maturities of up to three months plus for 

maturities of the February-April-August-October cycle for the next two years and of 

the June-December cycle for the next five years. The contract size is 100 troy ounces 

with a tick of 0.1 dollars per troy ounce. The futures data used correspond to the first, 

second, third and sixth contracts listed for delivery in chronological order (COMEX 

code names GC1, GC2, GC3 and GC6 respectively). Total observations for gold are 

2523. 

Silver. The data for silver spot prices (dollars per ounce) came from the LBMA, with 

benchmark done by the IBA once per day at noon, London time. The futures prices 

came from the COMEX. The futures contracts are deliverable, refer to silver of 999 

minimum fineness and are offered for maturities of up to three months plus maturities 

of the January-March-May-September cycle for the next two years and of the July-

December cycle for the next five years. The contract size is 5000 troy ounces with a 

tick of 0.005 dollars per troy ounce. The futures contracts used are the first, third and 

sixth listed to be delivered (COMEX code names SI1, SI3 and SI6 respectively). Total 

observations for silver are 2521. 

DAX30. The German DAX30 index (Deutscher Aktien IndeX), given birth in 1988, 

consists of the stocks of the 30 leading companies quoted on the Frankfurt Stock 

Exchange. Depending on whether dividends are accounted for, it is distinguished in the 

performance DAX (total returns) and price DAX (no dividends), with the former being 

used in this work. The futures prices came from the Eurex. The future contracts have a 

multiplier of 25€, a tick of 0.5 points and are offered for maturities of the March-June-
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September-December cycle. The first and second listed to be delivered contracts were 

used (Eurex code names FDAX1 and FDAX2 respectively). Total observations for 

DAX30 are 2499. 

CAC40. The French CAC40 index, introduced in 1987 and named after Cotation 

Assistée en Continu system of the Paris Bourse (now Euronext Paris), consists of the 

stocks of the 40 leading firms quoted on the Euronext Paris. Contracts traded on the 

ICE Futures Europe (formerly, London International Financial Futures and Options 

Exchange-LIFFE) were used for futures pricing. The contracts have a multiplier of 10€, 

a tick of 0.5 points and are offered for maturities of every of the next twelve months. 

Futures of maturity of one and two months were considered (ICE code names FCE1 

and FCE2 respectively). Total observations for CAC40 are 2523. 

SP500.  The US Standard and Poor’s 500 index, created in 1957, consists of the 500 

largest by capitalization firms in the US exchanges. The futures prices came from the 

E-mini SP500 contracts traded on the CME Group platforms. The contracts have a 

multiplier of 50$, one fifth of the standard contract, a tick of 0.25 points and are offered 

for maturities of the March-June-September-December cycle for the next five quarters 

(5 contracts available at any time). The first, second and third to be delivered contracts 

were used (CME code names ES1, ES2 and ES3 respectively). Total observations for 

SP500 are 2481. 

Nasdaq100.  The US Nasdaq100 index, created in 1985, is composed of the 100 

largest non-financial firms traded on the Nasdaq Stock Market. The futures prices came 

from the E-mini Nasdaq contracts of the CME Group. The contracts have a multiplier 

of 20$, a tick of 0.25 points and are offered for maturities of the March-June-

September-December cycle for the next five quarters (5 contracts available at any time). 

The first two contracts were considered (CME code names NQ1 and NQ2 respectively). 

Total observations for Nasdaq100 are 2502. 

For the rest of this work, the adjusted symbols for the spot and futures prices are as 

follows: S for the spot price and FX or FutX for the price of the futures contract which 

is the Xth one chronologically to expire among available contracts, but not necessarily 

expiring in X months (see available contracts and cycles above). 

All asset spot and futures prices were transformed into logarithmic time series for 

further analysis. Graphs of the price time series (log levels) are presented in figures 
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18(a to h), while the descriptive statistics for the returns (log first-differences) are 

presented in tables 2(a to h). Regarding returns, skewness is negative for gold, silver, 

DAX30, SP500 and Nasdaq100, hence standard deviation underestimates risk for these 

assets. Kurtosis is also substantial for all assets implying fat tails in the distributions. 

The standard deviation, compliant with Samuelson effect, decreases as the maturity of 

the futures contracts increases for all assets except for gold, SP500 and Nasdaq100. It 

is noted that the Jarque-Bera normality test p-value is p=0.0000 for all returns (not 

shown in tables), implying that returns do not conform to the normal distribution 

assumption. Also, the correlation matrices reveal substantially low correlation 

coefficients between spot prices and their corresponding futures prices for gold, silver 

and gas.
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Figures 18(a) and 18(b). Graphs of spot and futures prices (log levels) for WTI oil and natural gas. 

 

Figures 18(c) and 18(d). Graphs of spot and futures prices (log levels) for gold and silver. 
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Figures 18(e) and 18(f). Graphs of spot and futures prices (log levels) for DAX30 and CAC40. 

 

Figures 18(g) and 18(h). Graphs of spot and futures prices (log levels) for SP500 and Nasdaq100.
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Table 2(a). Descriptive statistics of spot and futures returns for WTI oil. 

 Oil Spot Oil Fut1 Oil Fut2 Oil Fut3 Oil Fut6 

Mean -0.000145 -0.000144 -0.000146 -0.000150 -0.000164 
Std. Dev. 0.020787 0.020393 0.019820 0.019222 0.017888 
Skewness 0.153071 0.136656 0.075898 0.031165 -0.077328 
Kurtosis 6.782846 6.182011 6.017264 6.029405 6.018671 
Jarque-Bera 1524.986 1079.913 966.3133 972.0574 967.3052 
      
Correlation 
Matrix  

     

Oil Spot 1     
Oil Fut1 0.927838 1    
Oil Fut2 0.924384 0.982525 1   
Oil Fut3 0.922686 0.978581 0.995413 1  
Oil Fut6 0.910458 0.961588 0.983230 0.993232 1 

 

 

Table 2(b). Descriptive statistics of spot and futures returns for natural gas. 

 Gas Spot Gas Fut1 Gas Fut2 Gas Fut3 Gas Fut6 

Mean -0.000315 -0.000294 -0.000280 -0.000284 -0.000366 
Std. Dev. 0.040810 0.027986 0.025672 0.023595 0.018019 
Skewness 0.598323 0.134638 -0.172995 -0.015219 0.032919 
Kurtosis 37.15589 7.041462 8.548544 9.000499 6.760859 
Jarque-Bera 121721.2 1709.634 3220.668 3752.221 1474.381 
      
Correlation 
Matrix  

     

Gas Spot 1     
Gas Fut1 0.210340 1    
Gas Fut2 0.190920 0.942040 1   
Gas Fut3 0.179454 0.860670 0.952134 1  
Gas Fut6 0.183050 0.778742 0.799861 0.801972 1 

 

 

Table 2(c). Descriptive statistics of spot and futures returns for gold. 

 Gold Spot Gold Fut1 Gold Fut2 Gold Fut3 Gold Fut6 

Mean 0.000121 0.000119 0.000121 0.000122 0.000124 
Std. Dev. 0.009612 0.009926 0.009927 0.009929 0.009914 
Skewness -0.588633 -0.741101 -0.743878 -0.748140 -0.759930 
Kurtosis 10.12366 10.22205 10.22066 10.24833 10.34788 
Jarque-Bera 5478.254 5711.804 5711.416 5756.169 5916.324 
      
Correlation 
Matrix  

     

Gold Spot 1     
Gold Fut1 0.410523 1    
Gold Fut2 0.410537 0.999525 1   
Gold Fut3 0.410878 0.998932 0.999569 1  
Gold Fut6 0.411019 0.999217 0.999575 0.999221 1 
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Table 2(d). Descriptive statistics of spot and futures returns for silver. 

 Silver Spot Silver Fut1 Silver Fut3 Silver Fut6 

Mean 2.28x10-5 1.40x10-5 1.68x10-5 2.06x10-5 
Std. Dev. 0.019238 0.018253 0.018212 0.018180 
Skewness -0.621259 -1.005469 -1.015732 -1.021244 
Kurtosis 15.93019 11.44866 11.47362 11.54257 
Jarque-Bera 17717.02 7919.490 7972.545 8100.464 
     
Correlation 
Matrix  

    

Silver Spot 1    
Silver Fut1 0.431762 1   
Silver Fut3 0.431766 0.999014 1  
Silver Fut6 0.432390 0.999448 0.999368 1 

 

 

Table 2(e). Descriptive statistics of spot and futures returns for DAX30. 

 DAX30 Spot DAX30 Fut1 DAX30 Fut2 

Mean 0.000310 0.000310 0.000309 
Std. Dev. 0.011955 0.011892 0.011888 
Skewness -0.310123 -0.316872 -0.308995 
Kurtosis 5.728112 5.690599 5.742054 
Jarque-Bera 814.6914 795.2958 822.3388 
    
Correlation 
Matrix  

   

DAX30 Spot 1   
DAX30 Fut1 0.987603 1  
DAX30 Fut2 0.990048 0.997221 1 

 

 

Table 2(f). Descriptive statistics of spot and futures returns for CAC40. 

 CAC40 Spot CAC40 Fut1 CAC40 Fut2 

Mean 0.000148 0.000166 0.000165 
Std. Dev. 0.012219 0.012795 0.012718 
Skewness -0.177091 -0.173506 -0.198554 
Kurtosis 7.272531 8.133110 8.047497 
Jarque-Bera 1931.428 2781.475 2693.803 
    
Correlation 
Matrix  

   

CAC40 Spot 1   
CAC40 Fut1 0.965606 1  
CAC40 Fut2 0.974066 0.976135 1 
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Table 2(g). Descriptive statistics of spot and futures returns for SP500. 

 SP500 Spot SP500 Fut1 SP500 Fut2 SP500 Fut3 

Mean 0.000403 0.000404 0.000406 0.000408 
Std. Dev. 0.009369 0.009535 0.009548 0.009587 
Skewness -0.492081 -0.580276 -0.547936 -0.553805 
Kurtosis 7.532677 8.513357 8.423299 8.416488 
Jarque-Bera 2223.086 3280.212 3163.355 3158.389 
     
Correlation 
Matrix  

    

SP500 Spot 1    
SP500 Fut1 0.979376 1   
SP500 Fut2 0.980515 0.992921 1  
SP500 Fut3 0.980628 0.992786 0.999950 1 

 

 

Table 2(h). Descriptive statistics of spot and futures returns for Nasdaq100. 

 Nasdaq Spot Nasdaq Fut1 Nasdaq Fut2 

Mean 0.000588 0.000588 0.000590 
Std. Dev. 0.010933 0.010920 0.010938 
Skewness -0.385396 -0.436000 -0.398398 
Kurtosis 6.089037 6.715147 6.506768 
Jarque-Bera 1056.284 1517.555 1347.654 
    
Correlation 
Matrix  

   

Nasdaq Spot 1   
Nasdaq Fut1 0.969921 1  
Nasdaq Fut2 0.971849 0.983800 1 
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2.2 METHODOLOGY 

The data were tested for stationarity and co-integration as a preliminary step for the 

Granger causality process. 

 

2.2.1 Stationarity 

The series stationarity was examined with the Augmented Dickey-Fuller (ADF) test for 

unit roots (Dickey and Fuller, 1979) and the Kwiatkovski-Phillips-Schmidt-Shin 

(KPSS) stationarity test (Kwiatkovski et al., 1992). Concisely, the ADF is based on the 

autoregressive model: 

ΔΥt=μ+αt+φΥt-1+∑ {𝛽𝑖𝛥𝛶(𝑡 − 𝑖𝑝
𝑖=1 )}+et t=1,2,…,n et~(0, σ2) 

The area of interest is coefficient φ. The null hypothesis that the series contains a unit 

root examines whether φ=0, against the alternative hypothesis that the series does not 

contain a unit root (φ<0). 

The KPSS test breaks down the series into three components; a deterministic trend, a 

random walk and an error term. The test is based on the model: 

Yt=ξt+rt+et et~(0, σ2) 

where rt=rt-1+ut  ut~(0, σu
2) , a random walk process.  The test uses the LM one-sided 

statistic for the stationarity hypothesis that σu
2=0. 

If a (stochastically) non-stationary series Yt requires differencing d times until it 

becomes stationary, Yt is defined as integrated of order d, that is Yt~I(d) or ΔdYt=I(0), 

where Δd is the difference operator Δ applied d times. 

 

2.2.2 Co-Integration 

Loosely speaking, two or more non-stationary time series are co-integrated if they do 

not drift apart from each other too much and maintain an equilibrium relationship. More 

precisely, if the components-series of the vector Yt are in equilibrium, the following 

linear equation applies: 

ATYt=0 
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where AT is the transpose of vector A. However, practically there is an equilibrium 

error equal to: 

zt= ATYt, which can be interpreted as a temporary deviation from the equilibrium. 

According to Engle and Granger (1987), co-integration of order (d,b) among the series 

of the vector Yt, that is Yt~CI(d,b), exists if: 

a) All series of vector Yt are I(d), d>0 and 

b) At least one vector A≠0 exists so that zt= ATYt is I(d-b), d≥b>0. The vector A is the 

co-integrating vector. 

Economic theory and non-arbitrage conditions suggest that spot and futures prices 

should be co-integrated and maintain an equilibrium relationship, although temporary 

financial forces may disengage the pair in the short term. 

Co-integration was tested with the Johansen approach (Johansen, 1988). Let a set of n 

variables, (n>1) be I(1) and be depicted by the vector autoregressive model with k lags 

(in compact form): 

Yt=Β1Yt-1+Β2Yt-2+…+ΒkYt-k+et, 

or in first differences: 

ΔΥt=ΠΥt-k+Γ1ΔΥt-1+Γ2ΔΥt-2+...+Γk-1ΔΥt-(k-1)+et 

where Yt is the nx1 vector of variables and Π, Βi and Γi are nxn matrices of coefficients. 

The area of interest is matrix Π whose rank r determines whether co-integration exists 

among the variables as well as the number of co-integrating vectors among the 

variables. Matrix Π consists of the possible co-integrating vectors multiplied by the 

‘’weight’’ with which each vector participates in the model, hence Π=αβΤ, where α 

(nxr) contains the ‘’weights’’ and β (nxr) contains the co-integrating vectors. The rank 

of Π is determined by its eigenvalues (its characteristic roots different from zero). Let 

λ1, λ2,...,λn be the roots of Π in descending order, λiƐ[0,1]. The Johansen co-integration 

method investigates the number of λs statistically different from zero. Two tests are 

used for the eigenvalues: 

a) λtrace(r)=-T∑ ln (1 − 𝜆𝑖)𝑛
𝑖=𝑟+1  

b) λmax(r, r+1)=-Τln(1-λr+1) 
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The λtrace (joint) test examines the null hypothesis that the number of co-integrating 

vectors are equal or less than r. It starts with r=0 (no co-integration) and successively 

investigates for higher number of vectors if the null hypothesis is not accepted. The 

λmax test examines each eigenvalue under the null hypothesis that there are r co-

integrating vectors, with the existence of r+1 vectors being the alternative hypothesis. 

Again, this is done consecutively. 

 

2.2.3 Granger Causality 

The concept of Granger causality, firstly introduced by Wiener (1956) and Granger 

(1969) suggests that for two stationary time series, let them be Yt and Xt, Xt Granger 

causes Yt if past values of Xt and incorporated information in them can be used to 

predict the future values of Yt. Mathematically Granger non-causality implies that: 

(Yt+1, Yt+2,…,Yt+k)|(FXt,FYt) ~ (Yt+1, Yt+2,…,Yt+k)|(FYt) k≥1 

where FXt and FYt denote the information sets available in series Xt and Yt respectively 

until time t. In a more tangible way, Guidolin and Pedio (2018) involve the mean 

squared forecast errors (MSFE) in the definition of Granger non-causality: 

MSFE(E[Yt|Yt-1, Yt-2,…,Yt-λ ,Xt-1, Xt-2,…Xt-λ]) = MSFE(E[Yt|Yt-1, Yt-2,…,Yt-λ]) λ≥1 

where E denotes the expected value. 

Granger causality was tested both linearly and non-linearly, with the VAR/VEC 

modelling and the Diks and Panchenko (2006) approach respectively. 

 

2.2.3.1 Linear Granger Causality 

In literature, the conventional way to test for Granger causality between two or more 

series involves the VAR modelling process. Particularly for the case of spot and futures 

prices the bivariate VAR model is: 

St=α1+∑ (𝛽𝑘
𝑖=1 1iSt-i)+ ∑ (𝛾𝑘

𝑖=1 1iFt-i)+e1t 

Ft=α2+∑ (𝛽𝑘
𝑖=1 2iSt-i)+ ∑ (𝛾𝑘

𝑖=1 2iFt-i)+e2t 
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where St and Ft are the spot and futures prices in log form, k is the optimal number of 

lags for the model and e1t and e2t supposedly uncorrelated white noise errors. Granger 

non-causality from Ft (St) to St (Ft) examines the null hypothesis that the coefficients 

γ1i (β2i) are jointly equal to zero (a Wald type test) versus the alternative hypothesis that 

the coefficients γ1i (β2i) are jointly non-zero. Actually, if no causality is proven, the 

bivariate VAR model collapses to two separate univariate models. 

The model should involve stationary variables only, thus if St and Ft are non-stationary, 

the first differences ΔSt and ΔFt (returns) are used instead. In case St and Ft are non-

stationary and also co-integrated (the most anticipated scenario based on the cost of 

carry theory), an error correction term (ECT) should be included in the model to 

account for the long-run equilibrium between the spot and futures prices. More 

precisely, ECT can be interpreted as long-term mispricing or distortion of the law of 

one price. In this way, any deviation in the short-run is supposedly ‘’corrected’’ in the 

long-run and this effect is accounted for in the modelling process. The new ECT model 

(VECM) becomes: 

ΔSt=α1+ δ1ECT+∑ (𝛽𝑘
𝑖=1 1iΔSt-i)+ ∑ (𝛾𝑘

𝑖=1 1iΔFt-i)+e1t 

ΔFt=α2+δ2ECT+∑ (𝛽𝑘
𝑖=1 2iΔSt-i)+ ∑ (𝛾𝑘

𝑖=1 2iΔFt-i)+e2t 

where ECT is a linear combination (at time t-1) of St and Ft indicated by their co-

integrating vector (though St and Ft are non-stationary, the particular combination 

should be stationary, hence it can be used in the model) and δ1 and δ2 are the 

corresponding coefficients which can be interpreted as the speed of adjustment of St 

and Ft respectively to their long-run relationship once this has been ‘’violated’’. 

Theoretically, at least one of δ1 and δ2 should be non-zero, i.e. |δ1|+|δ2|>0. 

For each asset, linear dynamics were examined in pairs (spot with each corresponding 

futures contract separately) and altogether (spot with all corresponding futures 

contracts) using the suitable VAR/VECM. The optimal number of lags for each model 

was decided by the Schwarz information criterion (SIC). The VAR/VECM filtered 

residuals were also tested for Granger causality in the same way to ensure that any 

linear causal effects were revealed entirely. 
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2.2.3.2 Non-Linear Granger Causality 

Although VAR and VEC models can detect the presence of linear causality, they fail 

to capture possible non-linear dynamics. Non-linear causality was investigated with the 

Diks and Panchenko (2006) non-parametric test which is considered an improvement 

over the efforts of Baek and Brock (1992) and Hiemstra and Jones (1994). In a non-

parametric and finite framework, Granger non-causality can be restated as: 

Yt+1|(Xt
λx ; Yt

λy) ~ Yt+1|(Yt
λy) 

where Xt
λx = [Xt-λx+1,…,Xt] and Yt

λy = =[Yt-λy+1,…,Yt].  

The test regards time series as dynamical systems depicted as vectors in a lagged phase 

space with λx=λy. Dropping down time index, considering λx=λy=1 for simplicity and 

also given Z=[Yt+1], Granger non-causality can also be restated in terms of joint 

distributions as: 

FX,Z|Y(x,z|y)=FX|Y(x,y)FZ|Y(z|y), or 

FX,Y,Z(x,y,z)/FX,Y(x,y)=FY,Z(y,z)/FY(y) 

where F denotes the probability density function. The two above equations imply that 

X and Z are independent conditionally on Y, or that X has no effect on the distribution 

of Z conditionally on Y. Diks and Panchenko (2006) demonstrated that the Granger 

non-causality null hypothesis implies that: 

q≡E[FX,Y,Z(X,Y,Z) FY(Y)- FX,Y(X,Y) FY,Z(Y,Z)]=0 

Let F̂W(Wi) be a local density estimator of a dw-variate random vector W=[X, Y, Z] at 

Wi defined by F̂W(Wi)=(2εn)
-dw(n-1)-1Σjj≠iIij

W where Iij
W=I(||Wi-Wj||<εn) with I(·) the 

indicator function and εn the bandwidth depending on the sample size n. 

The test statistic for q concludes to: 

Tn(ε) = 
𝑛−1

𝑛(𝑛−2)
 Σi(F̂X,Y,Z(Xi,Yi,Zi) F̂Y(Y) - F̂X,Y(Xi,Yi) F̂Y,Z(Yi,Zi)) 

For one lag λX=λY=1 and bandwidth ε=Cn-β (C>0 and 0.25<β<0.3̅), Tn(ε) satisfies: 

n0.5[(Tn(ε)-q)/Sn]→ ̽N(0,1) 

where →̽ denotes convergence in distribution and Sn is the estimator of the asymptotic 

variance of Tn(·). 
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For constants C and β the optimal values suggested by the authors are C=8 

(asymptotically) and β=2/7. Bandwidth ε was set to 0.96 corresponding to a sample of 

2500 observations. The test was conducted for five different embedding dimensions (2 

to 6). 

In order to ensure that any causal dynamics detected by the Diks and Panchenko (2006) 

approach are non-linear in nature, the test was applied to the VAR/VECM filtered 

residuals supposedly purified from further linear causal effects. 

 

2.3 RESULTS 

2.3.1 Stationarity Results 

Following the first step of the preliminary analysis, series stationarity was examined 

with the ADF and KPSS tests. Results are shown in table 3. WTI oil, gold, silver and 

DAX30 were found to be I(1) processes by both tests, while there are contradictions for 

natural gas, CAC40, SP500 and Nasdaq100. The ADF test finds low evidence of a unit 

root in the log series of those assets, whereas the KPSS test finds strong proof that the 

series are not stationary in levels.  

Regarding those contradictory results, priority was given to the KPSS test results as the 

academic literature has already proven the low power of the ADF test under certain 

circumstances. Schwert (1987) tested macroeconomic series with unit roots and 

concluded that the Dickey-Fuller critical values are misleading. He opposed the 

argument that unit roots drive the asymptotic behavior of the model for large finite 

samples. Additionally, Schwert (1989) found that the ADF test is sensitive to the 

assumption that the variable under examination truly follows an AR(q) process. Given 

the fact that many economic series follow a mixed ARIMA process instead, the ADF 

test can be inaccurate. Agiakoglou and Newbond (1992) also showed that the ADF test 

rejects the null too often when a significant moving average component is included. 

Seo (1999) argued that, in the presence of conditional heteroskedasticity, the ADF test 

performs poorly and suggested that alternative unit root tests incorporating GARCH 

effects be used. Valkanov (2005) found that heteroskedasticity in data slows down the 

convergence in asymptotic distribution used to provide the DF critical values under the 

Functional CLT, even with sample sizes well above those used in this work, resulting 

in overrejection of the null. Hence, all series were treated as I(1) processes. 
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Table 3. The ADF unit root test and the KPSS stationarity test results. The first column presents 

the asset under consideration (series in log-levels). The second column shows the p-values of 

the ADF test (null hypothesis: the series has a unit root). In parentheses, the p-values of the 

returns (log-first differences) are given. The third column presents the LM statistics of the KPSS 

test (null hypothesis: the series is stationary), with and without trend. In parentheses, the LM 

stat of the returns (log-first differences) are given. For both tests, *, ** and *** indicate 

rejection of the null at 10%, 5% and 1% significance level respectively. 

Table 3. The ADF and KPSS results 

Log-Series ADF p-value KPSS LM-stat {with trend/without trend} 

WTI oil   

Spot 0.5108 (0.0000***) 0.553*** (0.072)/3.396*** (0.072) 
Fut1 0.5030 (0.0000***) 0.555*** (0.072)/3.430*** (0.072) 
Fut2 0.4955 (0.0000***) 0.558*** (0.073)/3.562*** (0.073) 
Fut3 0.4875 (0.0000***) 0.561*** (0.074)/3.687*** (0.074) 
Fut6 0.4585 (0.0000***) 0.568*** (0.072)/3.998*** (0.073) 
   
Natural gas   

Spot 0.0335** (0.0000***) 0.215** (0.026)/1.902*** (0.049) 
Fut1 0.0399** (0.0000***) 0.207** (0.030)/2.194*** (0.060) 
Fut2 0.0565*   (0.0000***) 0.201** (0.032)/2.412*** (0.066) 
Fut3 0.0627*   (0.0000***) 0.198** (0.032)/2.655*** (0.063) 
Fut6 0.0740*   (0.0000***) 0.190** (0.042)/3.540*** (0.054) 
   
Gold   

Spot 0.2736 (0.0000***) 0.532*** (0.142)/1.425*** (0.144) 
Fut1 0.2563 (0.0000***) 0.533*** (0.134)/1.436*** (0.135) 
Fut2 0.2599 (0.0000***) 0.535*** (0.135)/1.414*** (0.136) 
Fut3 0.2606 (0.0000***) 0.538*** (0.135)/1.386*** (0.136) 
Fut6 0.2618 (0.0000***) 0.549*** (0.134)/1.295*** (0.135) 
   
Silver   

Spot 0.3131 (0.0000***) 0.430*** (0.124)/3.622*** (0.143) 
Fut1 0.2717 (0.0000***) 0.429*** (0.119)/3.636*** (0.137) 
Fut3 0.2743 (0.0000***) 0.432*** (0.119)/3.605*** (0.136) 
Fut6 0.2756 (0.0000***) 0.435*** (0.119)/3.544*** (0.135) 
   
DAX30   

Spot 0.1627 (0.0000***) 0.547*** (0.029)/5.642*** (0.034) 
Fut1 0.1643 (0.0000***) 0.546*** (0.028)/5.638*** (0.034) 
Fut2 0.1633 (0.0000***) 0.546*** (0.028)/5.632*** (0.034) 
   
CAC40   

Spot 0.0321** (0.0000***) 0.296*** (0.037)/5.076*** (0.077) 
Fut1 0.0384** (0.0000***) 0.298*** (0.043)/5.213*** (0.075) 
Fut2 0.0382** (0.0000***) 0.300*** (0.044)/5.183*** (0.076) 
  (to be continued…) 
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(…continued) 

SP500   

Spot 0.0308** (0.0000***) 0.431*** (0.023)/5.990*** (0.023) 
Fut1 0.0291** (0.0000***) 0.418*** (0.023)/5.990*** (0.022) 
Fut2 0.0260** (0.0000***) 0.396*** (0.023)/5.991*** (0.023) 
Fut3 0.0246** (0.0000***) 0.376*** (0.023)/5.993*** (0.022) 
   
Nasdaq100   

Spot 0.0006*** (0.0000***) 0.149** (0.018)/6.119*** (0.019) 
Fut1 0.0007*** (0.0000***) 0.146** (0.018)/6.119*** (0.020) 
Fut2 0.0007*** (0.0000***) 0.144* (0.018)/6.119*** (0.020) 

 

 

2.3.2 Co-integration Results 

The results of Johansen co-integration are presented in table 4. All combinations were 

found to be co-integrated at 5% level of significance, except for the pair of spot-futures 

contract 6 for WTI oil and the pair of spot-futures contract 2 for CAC40. Results are 

consistent for both λtrace and λmax tests. 

 

Table 4. The Johansen co-integration results. The first column presents the combination of 

variables examined for co-integration (pairwise and altogether). The second column shows the 

null hypotheses for the number of co-integrating vectors and particularly the last one not to be 

accepted and the first one to be accepted (in bold the number of co-integrating vectors indicated 

by the two statistics-see next columns). The third column shows the trace statistic of the λtrace 

test and its p-value in parenthesis. The fourth column shows the max. eigenvalue statistic of the 

λmax test and its p-value in parenthesis. *, ** and *** indicate rejection of the null at 10%, 5% 

and 1% significance level respectively. The 5% significance level was considered to determine 

the number of vectors for the next steps. 

Table 4. The Johansen co-integration results 

Variables Null hypothesis Trace statistic 
Max eigenvalue 

statistic 

 
WTI oil 

   

Spot-futures 1 
None 

At most one 
301.540 (0.0001)*** 
2.277 (0.1313) 

230.717 (0.0001)*** 
2.277 (0.1313) 

Spot-futures 2 
None 

At most one 
51.193 (0.0000)*** 
2.222 (0.1360) 

48.970 (0.000)*** 
2.223 (0.1360) 

   (to be continued…) 
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(…continued)    

Spot-futures 3 
None 

At most one 
25.734 (0.0010)*** 
2.114 (0.1460) 

23.621 (0.0013)*** 
2.114 (0.1460) 

Spot-futures 6 
None 

At most one 
14.058 (0.0814)* 
1.873 (0.1711) 

12.185 (0.1039) 
1.873 (0.1711) 

Spot-futures 1-2-3-6 
At most two 

At most three 
73.167 (0.0000)*** 
11.960 (0.1589) 

61.207 (0.0000)*** 
10.214 (0.1982) 

    
Natural gas    

Spot-futures 1 None 
At most one1 

326.904 (0.0001)*** 
10.634 (0.0011)*** 

316.269 (0.0001)*** 
10.634 (0.0011)*** 

Spot-futures 2 None 
At most one1 

72.283 (0.0000)*** 
8.585 (0.0034)*** 

63.699 (0.0000)*** 
8.585 (0.0034)*** 

Spot futures 3 None 
At most one1 

53.496 (0.0000)*** 
7.953 (0.0048)*** 

45.542 (0.0000)*** 
7.953 (0.0048)*** 

Spot-futures 6 None 
At most one1 

27.699 (0.0005)*** 
3.921 (0.0477)** 

23.778 (0.0012)*** 
3.921 (0.0477)** 

Spot-futures 1-2-3-6 At most three 
At most four1 

23.493 (0.0025)*** 
5.279 (0.0216)** 

18.214 (0.0113)** 
5.279 (0.0216)** 

    
Gold    

Spot-futures 1 None 
At most one 

541.684 (0.0001)*** 
3.808 (0.0510)* 

537.876 (0.0001)*** 
3.808 (0.0510)* 

Spot-futures 2 None 
At most one 

493.963 (0.0001)*** 
3.784 (0.0517)* 

490.179 (0.0001)*** 
3.784 (0.0517)* 

Spot futures 3 None 
At most one 

188.531 (0.0001)*** 
3.647 (0.0562)* 

184.884 (0.0001)*** 
3.647 (0.0562)* 

Spot-futures 6 None 
At most one 

24.960 (0.0014)*** 
3.809 (0.0510)* 

21.151 (0.0035)*** 
3.809 (0.0510)* 

Spot-futures 1-2-3-6 At most two 
At most three 

68.445 (0.0000)*** 
5.321 (0.7739) 

63.124 (0.0000)*** 
4.066 (0.8523) 

    
Silver    

Spot-futures 1 None 
At most one 

739.514 (0.0001)*** 
2.207 (0.1374) 

737.307 (0.0001)*** 
2.207 (0.1374) 

Spot futures 3 None 
At most one 

659.891 (0.0001)*** 
2.229 (0.1355) 

657.663 (0.0001)*** 
2.229 (0.1355) 

Spot-futures 6 None 
At most one 

95.087 (0.0001)*** 
2.255 (0.1331) 

92.831 (0.0001)*** 
2.255 (0.1331) 

Spot-futures 1-3-6 At most one 
At most two 

52.390 (0.0000)*** 
7.844 (0.4822) 

44.546 (0.0000)*** 
6.816 (0.5111) 

    
DAX30    

Spot-futures 1 None 
At most one 

229.595 (0.0001)*** 
1.690 (0.1936) 

227.905 (0.0001)*** 
1.690 (0.1936) 

Spot-futures 2 None 
At most one 

46.428 (0.0000)*** 
1.374 (0.2411) 

45.054 (0.0000)*** 
1.374 (0.2411) 

Spot-futures 1-2 At most one 
At most two 

38.037 (0.0000)*** 
1.629 (0.2019) 

36.408 (0.0000)*** 
1.629 (0.2019) 

   (to be continued…) 
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(…continued)    

 
CAC40 

   

Spot-futures 1 None 
At most one 

23.028 (0.0030)*** 
1.545 (0.2139) 

21.483 (0.0031)*** 
1.545 (0.2139) 

Spot-futures 2 None 
At most one 

14.560 (0.0688)* 
1.539 (0.2147) 

13.021 (0.0778)* 
1.539 (0.2147) 

Spot-futures 1-2 At most one 
At most two 

16.317 (0.0375)** 
1.568 (0.2105) 

14.749 (0.0419)** 
1.568 (0.2105) 

    
SP500    

Spot-futures 1 None 
At most one 

162.183 (0.0001)*** 
0.412 (0.5209) 

161.770 (0.0001)*** 
0.412 (0.5209) 

Spot-futures 2 None 
At most one 

59.372 (0.0000)*** 
0.409 (0.5226) 

58.963 (0.0000)*** 
0.409 (0.5226) 

Spot futures 3 None 
At most one 

22.433 (0.0038)*** 
0.418 (0.5178) 

22.015 (0.0025)*** 
0.418 (0.5178) 

Spot-futures 1-2-3 At most one 
At most two 

217.320 (0.0001)*** 
5.348 (0.7708)  

211.972 (0.0001)*** 
4.453 (0.8087) 

    
Nasdaq100    

Spot-futures 1 None 
At most one 

265.959 (0.0001)*** 
0.213 (0.6445) 

265.746 (0.0001)*** 
0.213 (0.6445) 

Spot-futures 2 None 
At most one 

64.360 (0.0000)*** 
0.213 (0.6447) 

64.147 (0.0000)*** 
0.213 (0.6447) 

Spot-futures 1-2 At most one 
At most two 

58.443 (0.0000)*** 
0.242 (0.6230) 

58.202 (0.0000)*** 
0.242 (0.6230) 

1 For natural gas, the test indicates two co-integrating vectors for pairs and five vectors for the 

set of five. Since this is not possible, the maximum numbers of vectors were chosen (n-1 for a 

combination of n variables). 

 

 

2.3.3 Granger Causality Results 

For better comprehension and evaluation, causality results are classified and presented 

by asset, merging the linear and non-linear approaches. 

WTI oil.  Table 5(a) shows the models used for the four pairs of spot and futures 

contracts for WTI oil. The coefficients of the ECT are significant in all spot equations, 

but not in the futures ones, implying that it is the spot price that ‘’strives’’ to maintain 

the equilibrium with the futures and that there is long-run lead of futures market. The 

coefficients are also negative, an anticipated fact considering that the co-integrating 

vectors are normalized on the spot variable. The coefficients of the first lag of spot and 

futures appear to be significant for almost all pairs and equations, while earlier lags 
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seem to affect primarily the spot equations. In the multivariate 5x5 model, shown in 

table 5(b), the spot price follows the equilibrium determined by the ECT1, while both 

spot and futures remain inactive concerning the other two co-integrating relationships. 

Almost all lags, except for the first lag of the six-month futures contract, are 

independently insignificant in this model.  

Regarding, short-run causal effects, table 5(c) presents the linear and non-linear results 

of the corresponding tests. The VAR/VEC modelling revealed that the spot Granger-

causes the first and last futures contracts, but there is a feedback mechanism between 

spot and the contracts of the second and third months. It is notable that the p-value of 

the front month is close to the threshold of 10% significance level and the p-value of 

the last contract is close to the threshold of 5%. The multivariate 5x5 model discovered 

bi-directional causality between spot and the last futures and notably weakened any 

causal effects between spot and earlier contracts. Residuals of linear modelling showed 

no further linear effects, as expected. Under the non-linear framework, there is strong 

and consistent evidence that futures of all maturities Granger-cause the spot market. 

For the second and third embedding dimensions, spot also Granger-causes the futures 

contracts of all maturities, but the effects are not persistent throughout all lags reported. 

An exception to that pattern of non-linear channels is the bidirectional non-linear 

relationship of spot and front month contract. 
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Table 5(a) and Table 5(b) (see next page). The coefficient results of the VAR/VEC models for WTI oil. Table 5(a) shows the results of the bivariate models (pairwise) and table 

5(b) (next page) shows the results of the multivariate (5x5) model. The first two columns present the chosen model (VAR or VECM) and the dependent variables of the model. 

The rest of the columns present the coefficients of the independent variables participating in the corresponding model. *, ** and *** indicate statistical importance of the 

coefficients at 10%, 5% and 1% significance level respectively. All variables are in their log form and D denotes the first difference operation. The number of lags for each 

model was chosen with the Schwarz information criterion (SIC). 

Table 5(a) WTI Oil (pairwise) 

Model/Dependent 
Variables 

c 
ECTt-1

1 
(coint. eq.) 

DlogSpott-1 DlogSpott-2 DlogSpott-3 DlogFutt-1 DlogFutt-2 DlogFutt-3 

VECM 
DlogSpot 
DlogFut1 

-0.000158 
-0.000158 

-0.336584*** 
0.008826 

-0.070355 
0.160453** 

-0.117189* 
0.066728 

-0.134337** 
-0.061549 

0.028976 
-0.212541*** 

0.114726 
-0.064378 

0.133846** 
0.057734 

VECM 
DlogSpot 
DlogFut2 

-0.000152 
-0.000162 

-0.102512*** 
-0.031886 

-0.205443*** 
0.172949*** 

-0.229279*** 
0.055930 

-0.199036*** 
-0.050631 

0.170618*** 
-0.242960*** 

0.240915*** 
-0.049227 

0.209759*** 
0.047465 

VECM 
DlogSpot 
DlogFut3 

-0.000148 
-0.000167 

-0.050117*** 
-0.017865 

-0.189051*** 
0.153694*** 

-0.207769*** 
0.053773 

-0.178663*** 
-0.042960 

0.158056*** 
-0.227879*** 

0.224531*** 
-0.043868 

0.193642*** 
0.035894 

VAR 
DlogSpot 
DlogFut6 

-0.000153 
-0.000188 

- 
- 

-0.102052** 
0.139043*** 

-0.120510** 
0.054537 

- 
- 

0.066047 
-0.227189*** 

0.135718** 
-0.040526 

- 
- 

1. For spot-fut1 pair: ECT=logspot-1.005901logfut1+0.026442 

  For spot-fut2 pair: ECT=logspot-1.025173logfut2+0.114800 

 For spot-fut3 pair: ECT=logspot-1.040424logfut3+0.184786 
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Table 5(b). Results of the multivariate (5x5) VEC model for WTI oil (see previous page for further description). 

Table 5(b) WTI Oil (5x5) 

Model/Dependent 
Variables 

c 
ECT1t-1

1 
(coint. eq.1) 

ECT2 t-1
1 

(coint. eq.2) 
ECT3 t-1

1 
(coint. eq.3) 

DlogSpott-1 DlogSpott-2 DlogSpott-3 DlogFut1t-1 

VECM 

DlogSpot 
DlogFut1 
DlogFut2 
DlogFut3 
DlogFut6 

-0.000177 
-0.000181 
-0.000183 
-0.000184 
-0.000196 

-0.335138*** 
0.091768 
0.029153 
0.009759 
-0.008886 

0.257475* 
-0.271491* 
0.059149 
0.032238 
0.070022 

0.139117 
0.159080 
-0.511011 
-0.291090 
-0.275385 

-0.064302 
0.101828 
0.127164* 
0.135950* 
0.135336* 

-0.125973* 
0.005312 
0.040933 
0.059265 
0.066852 

-0.136548** 
-0.080317 
-0.068340 
-0.062313 
-0.066074 

-0.102496 
-0.324951* 
-0.061324 
-0.107600 
-0.114749 

 
WTI Oil (5x5) cont. 

Model/Dependent 
Variables 

DlogFut1t-2 DlogFut1t-3 DlogFut2t-1 DlogFut2t-2 DlogFut2t-3 DlogFut3t-1 DlogFut3t-2 DlogFut3t-3 

 

DlogSpot 
DlogFut1 
DlogFut2 
DlogFut3 
DlogFut6 

-0.099513 
-0.316148** 
-0.150256 
-0.189641 
-0.172083 

-0.057804 
-0.048691 
0.039884 
0.012559 
0.010984 

0.091293 
0.228634 
-0.250062 
0.015135 
-0.049651 

0.237850 
0.342861 
0.088666 
0.183250 
0.140157 

0.134621 
0.373321 
0.217353 
0.233147 
0.183996 

0.627030 
0.688197 
0.761920 
0.394122 
0.428833 

-0.095214 
-0.175915 
-0.064800 
-0.128058 
-0.039626 

0.408488 
0.039862 
0.022370 
0.009377 
0.073997 

 

WTI Oil (5x5) cont. 

Model/Dependent 
Variables 

DlogFut6t-1 DlogFut6t-2 DlogFut6t-3 

 

DlogSpot 
DlogFut1 
DlogFut2 
DlogFut3 
DlogFut6 

-0.642846*** 
-0.809217*** 
-0.694852*** 
-0.548010** 
-0.500332** 

0.092672 
0.168675 
0.101552 
0.093568 
0.024758 

-0.364276 
-0.309555 
-0.235420 
-0.219204 
-0.229740 

1. ECT1=logspot-1.897142logfut3+0.893620logfut6+0.020444 

   ECT2=logfut1-1.807262logfut3+0.805488logfut6+0.012328 

   ECT3=logfut2-1.401409logfut3+0.401260logfut6+0.002303 
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Table 5(c). Causality results for WTI oil. The first column presents the variables investigated for Granger causality. The second and the third columns present the p-values for 

the raw data (log-time series) based on the appropriate VAR/VEC model for each case (linear causal effects), while the fourth and the fifth columns show the p-values for the 

residuals of those VAR/VEC models (linear causal effects). The null hypothesis of S→F is that the spot does not Granger cause the corresponding futures (the equivalent applies 

for F→S). *, ** and *** indicate rejection of the null at 10%, 5% and 1% significance level respectively. The last three columns present the embedding dimensions and the p-

values for the Diks and Panchenko (2006) test conducted on the VAR/VECM filtered residuals (non-linear causal effects). 

Table 5(c) Causality results for WTI oil    

Variables Linear Granger causality Non-linear Granger causality 

 Raw data VAR/VECM filtered residuals VAR/VECM filtered residuals 
Pairwise (2x2) S→F F→S S→F F→S Embed. dimension S→F F→S 

Spot-Futures 1 0.0291** 0.1191 0.8947 0.8907 2 0.00028*** 0.00001*** 
     3 0.00121*** 0.00041*** 
     4 0.00676*** 0.00017*** 
     5 0.01635** 0.00324*** 
     6 0.03815** 0.01648** 

Spot-Futures 2 0.0054*** 0.0002*** 0.7756 0.8867 2 0.00132*** 0.00000*** 
     3 0.00767*** 0.00004*** 
     4 0.06549* 0.00002*** 
     5 0.15680 0.00065*** 
     6 0.24560 0.00481*** 

Spot-Futures 3 0.0095*** 0.0003*** 0.7828 0.8684 2 0.00099*** 0.00000*** 
     3 0.01349** 0.00001*** 
     4 0.13862 0.00001*** 
     5 0.34725 0.00023*** 
     6 0.42471 0.00318*** 

Spot-Futures 6 0.0037*** 0.0513* 0.8889 0.6917 2 0.00400*** 0.00000*** 
     3 0.04254** 0.00000*** 
     4 0.18439 0.00001*** 
     5 0.62957 0.00049*** 
     6 0.75907 0.00278*** 

Multivariate (5x5)        

Spot-Futures 1 0.1183 0.9215 0.8728 0.9904    
Spot-Futures 2 0.0760* 0.9232 0.8543 0.9419    
Spot-Futures 3 0.0548* 0.3785 0.8550 0.8831    
Spot-Futures 6 0.0257** 0.0242** 0.8533 0.8880    
Spot-Fut1,2,3,6 - 0.0674* - 0.9998    



99 
 

Natural gas.  Table 6(a) presents the pairwise VEC models for natural gas. As in the 

case of oil, the coefficients of the ECT are negative and statistically significant in the 

spot equations indicating that the equilibrium relationship is maintained in the long run 

and any deviations are corrected by spot movements. For the pair of spot and the six-

month contract, the coefficient of ECT is also negative and important in the futures 

equation, but smaller in absolute value than the coefficient in the spot equation (|-

0.006310|<|-0.030335|), thus equilibrium perseveres in this pair as well. Almost all lags 

of spot and futures affect spot equations independently, but only the first lag of futures 

appears significant for futures equations. Interestingly however, spot and futures lags 

of eight and nine days are very significant for the front-month futures equation. In the 

multivariate 5x5 model, shown in table 6(b), both the spot and the earliest futures seem 

to correct any departures from the long-run relationships. Also, the fact that the 

coefficient of the ECT4 for the six-month contract is negative and significant seems 

abnormal as this implies that the contract ‘’tries’’ to break off the particular equilibrium.  

Linear testing (table 6(c)) detected bidirectional causality between spot and one-month 

futures contract, but futures lead spot for longer maturities. The futures also dominate 

the spot jointly in the multivariate 5x5 model, but they are unable to Granger cause the 

spot market separately except for the front month contract. Additionally, VECM 

filtered residuals proved to be purified from further linear effects. Non-linear causal 

effects present the same pattern as the linear ones. In particular, bidirectional non-linear 

causality was detected between spot and the earliest contract for almost all embedding 

dimensions, while the futures of longer maturities consistently dominate the spot. 
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Table 6(a). Results of the bivariate VEC models for natural gas (see next page for further description). 

Table 6(a) Natural Gas (pairwise) 

Model/Dependent 
Variables 

c 
ECT t-1

1 
(coint. eq.) 

DlogSpott-1 DlogSpott-2 DlogSpott-3 DlogSpott-4 DlogSpott-5 DlogSpott-6 

VECM 
DlogSpot 
DlogFut1 

-0.000075 
-0.000300 

-0.158449*** 
-0.001608 

-0.024468 
0.033265* 

-0.151325*** 
0.005566 

-0.091962*** 
-0.005741 

-0.170280*** 
0.018749 

-0.086406*** 
0.045679** 

-0.046833** 
0.027167 

VECM 
DlogSpot 
DlogFut2 

-0.000164 
-0.000279 

-0.090807*** 
-0.003817 

-0.037572* 
0.027043* 

-0.178511*** 
0.005243 

-0.092172*** 
-0.012171 

-0.174383*** 
0.014566 

-0.080405*** 
0.017288 

- 
- 

VECM 
DlogSpot 
DlogFut3 

-0.000144 
-0.000276 

-0.063685*** 
-0.001964 

-0.039800* 
0.023550* 

-0.191222*** 
0.001144 

-0.098508*** 
-0.004191 

-0.176935*** 
0.014810 

-0.081297*** 
0.019903 

- 
- 

VECM 
DlogSpot 
DlogFut6 

0.000074 
-0.000368 

-0.030335*** 
-0.006310** 

-0.051039** 
0.005602 

-0.188069*** 
-0.003750 

-0.099951*** 
-0.000134 

-0.177838*** 
0.012438 

-0.079132*** 
0.017992* 

- 
- 

 
Natural Gas (pairwise) cont. 

Model/Dependent 
Variables 

DlogSpott-7 DlogSpott-8 DlogSpott-9 DlogFutt-1 DlogFutt-2 DlogFutt-3 DlogFutt-4 DlogFutt-5 

VECM 
DlogSpot 
DlogFut1 

-0.093329*** 
0.029025* 

0.032209 
0.051852*** 

0.058776*** 
0.041359*** 

0.453140*** 
-0.074954*** 

0.107640*** 
-0.032388 

0.090779*** 
0.002751 

0.118924*** 
-0.021449 

0.161551*** 
-0.047408* 

VECM 
DlogSpot 
DlogFut2 

- 
- 

- 
- 

- 
- 

0.521873*** 
-0.086945*** 

0.160431*** 
-0.035844 

0.149225*** 
0.005965 

0.109150*** 
-0.022122 

0.185237*** 
-0.016768 

VECM 
DlogSpot 
DlogFut3 

- 
- 

- 
- 

- 
- 

0.549819*** 
-0.072871*** 

0.172850*** 
-0.027777 

0.190745*** 
0.003232 

0.141176*** 
-0.031362 

0.180158*** 
-0.005650 

VECM 
DlogSpot 
DlogFut6 

- 
- 

- 
- 

- 
- 

0.717463*** 
-0.047187** 

0.227100*** 
-0.001366 

0.204538*** 
-0.026961 

0.227554*** 
-0.014081 

0.198927*** 
-0.009009 

 

Natural Gas (pairwise) cont.       

Model/Dependent 
Variables 

DlogFutt-6 DlogFutt-7 DlogFutt-8 DlogFutt-9 
 1. For spot-fut1 pair: ECT=logspot-1.019233logfut1+0.024573 
  For spot-fut2 pair: ECT=logspot-1.041058logfut2+0.067192 
 For spot-fut3 pair: ECT=logspot-1.043513logfut3+0.086875 

                   For spot-fut6 pair: ECT=logspot-0.899714logfut6-0.057628 
VECM 

DlogSpot 
DlogFut1 

0.081454*** 
-0.020925 

0.061690** 
0.006261 

0.111578*** 
-0.065728*** 

0.062315** 
-0.081334*** 

VECM 
DlogSpot 
DlogFut2 

- 
- 

- 
- 

- 
- 

- 
- 

VECM 
DlogSpot 
DlogFut3 

- 
- 

- 
- 

- 
- 

- 
- 

VECM 
DlogSpot 
DlogFut6 

- 
- 

- 
- 

- 
- 

- 
- 
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Table 6(a) (see previous page) and Table 6(b). The coefficient results of the VAR/VEC models for natural gas. Table 6(a) (previous page) shows the results of the bivariate 

models (pairwise) and table 6(b) shows the results of the multivariate (5x5) model. The first two columns present the chosen model (VAR or VECM) and the dependent variables 

of the model. The rest of the columns present the coefficients of the independent variables participating in the corresponding model. *, ** and *** indicate statistical importance 

of the coefficients at 10%, 5% and 1% significance level respectively. All variables are in their log form and D denotes the first difference operation. The number of lags for 

each model was chosen with the Schwarz information criterion (SIC). 

Table 6(b) Natural Gas (5x5) 

Model/Dependent 
Variables 

c 
ECT1 t-1

1 
(coint. eq.1) 

ECT2 t-1
1 

(coint. eq.2) 
ECT3 t-1

1 
(coint. eq.3) 

ECT4 t-1
1 

(coint. eq.4) 
DlogSpott-1 DlogFut1t-1 DlogFut2t-1 

VECM 

DlogSpot 
DlogFut1 
DlogFut2 
DlogFut3 
DlogFut6 

-0.000164 
-0.000292 
-0.000286 
-0.000294 
-0.000379 

-0.286627*** 
0.030824*** 
0.014615 
0.009870 
-0.000965 

0.541743*** 
-0.162472*** 
-0.036484 
-0.013800 
-0.035066 

-0.359300*** 
0.150155*** 
-0.043889 
-0.025882 
0.069997* 

0.114656*** 
-0.035880 
0.054662* 
0.010272 
-0.046177** 

0.092042*** 
0.004339 
0.011369 
0.010816 
-0.000513 

0.212060** 
0.034143 
0.099510 
0.088256 
0.078326* 

0.109355 
-0.267609** 
-0.326889*** 
-0.167932* 
-0.176498** 

 

Natural Gas (5x5) cont. 

Model/Dependent 
Variables 

DlogFut3t-1 DlogFut6t-1 

 

DlogSpot 
DlogFut1 
DlogFut2 
DlogFut3 
DlogFut6 

-0.017909 
0.213549** 
0.179037** 
0.023836 
0.090422 

0.088706 
0.014169 
0.007502 
0.005352 
-0.030554 

1. ECT1=logspot-0.910303logfut6-0.044975 

   ECT2=logfut1-0.908397logfut6-0.049349 

   ECT3=logfut2-0.898613logfut6-0.077738 

   ECT4=logfut3-0.902840logfut6-0.088573 
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Table 6(c). Causality results for natural gas. The first column presents the variables investigated for Granger causality. The second and the third columns present the p-values 

for the raw data (log-time series) based on the appropriate VAR/VEC model for each case (linear causal effects), while the fourth and the fifth columns show the p-values for 

the residuals of those VAR/VEC models (linear causal effects). The null hypothesis of S→F is that the spot does not Granger cause the corresponding futures (the equivalent 

applies for F→S). *, ** and *** indicate rejection of the null at 10%, 5% and 1% significance level respectively. The last three columns present the embedding dimensions and 

the p-values for the Diks and Panchenko (2006) test conducted on the VAR/VECM filtered residuals (non-linear causal effects). 

Table 6(c) Causality results for Natural Gas    

Variables Linear Granger causality Non-linear Granger causality 

 Raw data VAR/VECM filtered residuals VAR/VECM filtered residuals 
Pairwise (2x2) S→F F→S S→F F→S Embed. dimension S→F F→S 

Spot-Futures 1 0.0046*** 0.0000*** 0.9590 0.9916 2 0.00104*** 0.00000*** 
     3 0.00026*** 0.00001*** 
     4 0.00127*** 0.00003*** 
     5 0.00407*** 0.00120*** 
     6 0.10228 0.00589*** 

Spot-Futures 2 0.2176 0.0000*** 0.9884 0.8015 2 0.46764 0.00000*** 
     3 0.07142* 0.00000*** 
     4 0.08334* 0.00001*** 
     5 0.07189* 0.00019*** 
     6 0.64942 0.00254*** 

Spot-Futures 3 0.2479 0.0000*** 0.9964 0.8349 2 0.78862 0.00000*** 
     3 0.28255 0.00001*** 
     4 0.12124 0.00003*** 
     5 0.10186 0.00031*** 
     6 0.60729 0.00418*** 

Spot-Futures 6 0.3060 0.0000*** 0.9263 0.8647 2 0.87304 0.00000*** 
     3 0.80935 0.00178*** 
     4 0.64444 0.00872*** 
     5 0.72698 0.03506** 
     6 0.83583 0.15781 

Multivariate (5x5)        

Spot-Futures 1 0.7683 0.0143** 0.7809 0.6926    
Spot-Futures 2 0.4006 0.4690 0.7392 0.7490    
Spot-Futures 3 0.3855 0.8738 0.7535 0.8869    
Spot-Futures 6 0.9572 0.2025 0.7380 0.9370    
Spot-Fut1,2,3,6 - 0.0000*** - 0.9967    
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Gold.  Results for pairwise models for gold are presented in table 7(a). The coefficients 

of the ECT are negative and significant in the spot equations, implying that it is the spot 

which reacts to departures from the long-run relationship with the corresponding 

futures. The coefficients of almost all lags of spot and futures imply that those lags 

significantly affect spot equations, while they have very little influence on futures 

equations. Equilibrium is also stabilized by the spot market in the multivariate 5x5 

model (table 7(b)). In the multivariate context, futures lags do not affect much the spot 

which is now affected more by its own lags only. Also, the second and fourth lags of 

the second contract and the second lag of the third contract now influence futures 

current values. 

Concerning Granger causality dynamics (table 7(c)), there is very strong evidence of 

futures linear dominance over the spot market in pairwise models, but this lead is 

completely lost in the multivariate 5x5 model. Once again, there were no causal 

dynamics detected in the VECM filtered residuals. Regarding non-linear dynamics, 

there is consistent evidence at 5% significance level that futures of all maturities drive 

the spot market, though this evidence weakens for the last embedding dimension 

included in the test. The non-linear channels from spot to futures are very inconsistent 

and it is concluded that they can be disregarded. 
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Table 7(a). Results of the bivariate VEC models for gold (see next page for further description). 

Table 7(a) Gold (pairwise) 

Model/Dependent 
Variables 

c 
ECT t-1

1 
(coint. eq.) 

DlogSpott-1 DlogSpott-2 DlogSpott-3 DlogSpott-4 DlogSpott-5 DlogSpott-6 

VECM 
DlogSpot 
DlogFut1 

0.000108 
0.000107 

-0.637714*** 
0.100150 

-0.292516*** 
-0.092949 

-0.273225*** 
-0.100412 

-0.235674*** 
-0.125395 

-0.210864*** 
-0.066199 

-0.176097*** 
-0.067704 

-0.103775*** 
-0.043085 

VECM 
DlogSpot 
DlogFut2 

0.000099 
0.000109 

-0.541039*** 
0.085362 

-0.377304*** 
-0.079854 

-0.345824*** 
-0.087327 

-0.297815*** 
-0.116195 

-0.260367*** 
-0.060190 

-0.211259*** 
-0.060622 

-0.127454*** 
-0.037300 

VECM 
DlogSpot 
DlogFut3 

0.000077 
0.000113 

-0.312926*** 
0.042936 

-0.573714*** 
-0.037680 

-0.513469*** 
-0.050145 

-0.436424*** 
-0.084380 

-0.370578*** 
-0.033966 

-0.294082*** 
-0.040687 

-0.183362*** 
-0.023008 

VECM 
DlogSpot 
DlogFut6 

0.000048 
0.000118 

-0.070604*** 
0.006567 

-0.781805*** 
-0.005133 

-0.688642*** 
-0.019888 

-0.579998*** 
-0.054761 

-0.485387*** 
-0.008423 

-0.380522*** 
-0.020379 

-0.243574*** 
-0.011288 

 
Gold (pairwise) cont. 

Model/Dependent 
Variables 

DlogSpott-7 DlogSpott-8 DlogFutt-1 DlogFutt-2 DlogFutt-3 DlogFutt-4 DlogFutt-5 DlogFutt-6 

VECM 
DlogSpot 
DlogFut1 

-0.066580** 
-0.002264 

-0.008812 
0.021514 

0.297111*** 
0.063905 

0.250910*** 
0.092556 

0.228445*** 
0.116492 

0.201784*** 
0.095724 

0.176927*** 
0.066458 

0.121509*** 
0.063140 

VECM 
DlogSpot 
DlogFut2 

-0.079499*** 
0.001935 

-0.011580 
0.021884 

0.389016*** 
0.050084 

0.331036*** 
0.079621 

0.297046*** 
0.105301 

0.259563*** 
0.087850 

0.221319*** 
0.059546 

0.153233*** 
0.056327 

VECM 
DlogSpot 
DlogFut3 

-0.109857*** 
0.011657 

-0.017064 
0.024960 

0.603127*** 
0.008761 

0.514483*** 
0.037918 

0.453954*** 
0.070847 

0.388171*** 
0.056855 

0.323652*** 
0.035911 

0.229121*** 
0.038345 

VECM 
DlogSpot 
DlogFut6 

-0.145094*** 
0.015292 

-0.024317 
0.024855 

0.831405*** 
-0.026670 

0.710277*** 
0.007776 

0.617376*** 
0.039974 

0.522684*** 
0.028894 

0.429807*** 
0.012132 

0.307959*** 
0.020043 

 

Gold (pairwise) cont.   

Model/Dependent 
Variables 

DlogFutt-7 DlogFutt-8 
 1. For spot-fut1 pair: ECT=logspot-1.00647logfut1+0.004628 

      For spot-fut2 pair: ECT=logspot-0.999585logfut2-0.001774 
  For spot-fut3 pair: ECT=logspot-0.999739logfut3+0.001026 

                                                                                    For spot-fut6 pair: ECT=logspot-1.004715logfut6-0.042342 
VECM 

DlogSpot 
DlogFut1 

0.090558*** 
0.027371 

 

VECM 
DlogSpot 
DlogFut2 

0.111323*** 
0.020846 

0.043392* 
-0.017239 

VECM 
DlogSpot 
DlogFut3 

0.161215*** 
0.007713 

0.067581*** 
-0.025149 

VECM 
DlogSpot 
DlogFut6 

0.216139*** 
0.000014 

0.095265*** 
-0.027378 
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Table 7(a) (see previous page) and Table 7(b). The coefficient results of the VAR/VEC models for gold. Table 7(a) (previous page) shows the results of the bivariate models 

(pairwise) and table 7(b) shows the results of the multivariate (5x5) model. The first two columns present the chosen model (VAR or VECM) and the dependent variables of the 

model. The rest of the columns present the coefficients of the independent variables participating in the corresponding model. *, ** and *** indicate statistical importance of 

the coefficients at 10%, 5% and 1% significance level respectively. All variables are in their log form and D denotes the first difference operation. The number of lags for each 

model was chosen with the Schwarz information criterion (SIC). 

Table 7(b) Gold (5x5) 

Model/Dependent 
Variables 

c 
ECT1 t-1

1 
(coint. eq.1) 

ECT2 t-1
1 

(coint. eq.2) 
ECT3 t-1

1 
(coint. eq.3) 

DlogSpott-1 DlogSpott-2 DlogSpott-3 DlogSpott-4 

VECM 

DlogSpot 
DlogFut1 
DlogFut2 
DlogFut3 
DlogFut6 

0.000122 
0.000126 
0.000128 
0.000129 
0.000131 

-0.784359*** 
0.045870 
0.042095 
0.040875 
0.041362 

0.433357* 
0.022970 
0.133575 
0.119150 
0.103193 

0.812852 
-0.042867 
-0.265112 
-0.170392 
-0.176792 

-0.141994*** 
-0.038522 
-0.036109 
-0.034604 
-0.036103 

-0.116023*** 
-0.034796 
-0.031661 
-0.031215 
-0.033012 

-0.070740** 
-0.059048 
-0.058015 
-0.058616 
-0.058182 

-0.037388** 
0.001004 
0.000095 
-0.000498 
0.000313 

 

Gold (5x5) cont. 

Model/Dependent 
Variables 

DlogFut1t-1 DlogFut1t-2 DlogFut1t-3 DlogFut1t-4 DlogFut2t-1 DlogFut2t-2 DlogFut2t-3 DlogFut2t-4 

 

DlogSpot 
DlogFut1 
DlogFut2 
DlogFut3 
DlogFut6 

0.014967 
-0.386276 
-0.311594 
-0.333864 
-0.365375 

-0.014621 
-0.022563 
-0.069997 
-0.073787 
-0.046549 

0.120661 
-0.177640 
-0.197988 
-0.220909 
-0.202507 

-0.248138 
-0.120221 
-0.128289 
-0.152773 
-0.136389 

-0.175503 
1.402715 
1.352510 
1.742998 
1.372626 

0.807389 
2.707103** 
2.748874** 
2.955744** 
2.718845** 

-0.017337 
1.346325 
1.388583 
1.517232 
1.452058 

0.467831 
2.380206* 
2.512783** 
2.536562** 
2.437124** 

 

Gold (5x5) cont. 

Model/Dependent 
Variables 

DlogFut3t-1 DlogFut3t-2 DlogFut3t-3 DlogFut3t-4 DlogFut6t-1 DlogFut6t-2 DlogFut6t-3 DlogFut6t-4 

 

DlogSpot 
DlogFut1 
DlogFut2 
DlogFut3 
DlogFut6 

0.588899 
-0.290584 
-0.410573 
-0.890737 
-0.319516 

-0.195359 
-2.015478** 
-2.136997** 
-2.380079** 
-2.020198** 

0.208499 
-0.731372 
-0.813106 
-0.971018 
-0.738958 

-0.070972 
-1.162998 
-1.227204 
-1.310584 
-1.184441 

-0.278516 
-0.718912 
-0.626395 
-0.515153 
-0.683839 

-0.499141 
-0.639954 
-0.514786 
-0.476003 
-0.624580 

-0.242367 
-0.384742 
-0.326788 
-0.274504 
-0.459394 

-0.114705 
-1.071149 
-1.131694 
-1.047503 
-1.091087 

1. ECT1=logspot-1.472989logfut3+0.475603logfut6-0.018521 

   ECT2=logfut1-1.540438logfut3+0.543534logfut6-0.022336 

   ECT3=logfut2-1.303916logfut3+0.304971logfut6-0.007576 
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Table 7(c). Causality results for gold. The first column presents the variables investigated for Granger causality. The second and the third columns present the p-values for the 

raw data (log-time series) based on the appropriate VAR/VEC model for each case (linear causal effects), while the fourth and the fifth columns show the p-values for the 

residuals of those VAR/VEC models (linear causal effects). The null hypothesis of S→F is that the spot does not Granger cause the corresponding futures (the equivalent applies 

for F→S). *, ** and *** indicate rejection of the null at 10%, 5% and 1% significance level respectively. The last three columns present the embedding dimensions and the p-

values for the Diks and Panchenko (2006) test conducted on the VAR/VECM filtered residuals (non-linear causal effects). 

Table 7(c) Causality results for Gold    

Variables Linear Granger causality Non-linear Granger causality 

 Raw data VAR/VECM filtered residuals VAR/VECM filtered residuals 
Pairwise (2x2) S→F F→S S→F F→S Embed. dimension S→F F→S 

Spot-Futures 1 0.7548 0.0009*** 0.9474 0.9420 2 0.00021*** 0.04489** 
     3 0.01231** 0.01482** 
     4 0.12948 0.04481** 
     5 0.07811* 0.05444* 
     6 0.02879** 0.20580 

Spot-Futures 2 0.7807 0.0000*** 0.9362 0.9196 2 0.00096*** 0.02920** 
     3 0.02025** 0.00507*** 
     4 0.15421 0.02650** 
     5 0.12814 0.03013** 
     6 0.04070** 0.11479 

Spot-Futures 3 0.8274 0.0000*** 0.9210 0.8463 2 0.00096*** 0.02917** 
     3 0.01932** 0.01025** 
     4 0.12454 0.04355** 
     5 0.06336* 0.04198** 
     6 0.02107** 0.06007* 

Spot-Futures 6 0.8918 0.0000*** 0.9076 0.7482 2 0.00048*** 0.01411** 
     3 0.02587** 0.00380*** 
     4 0.07241* 0.03061** 
     5 0.08388* 0.04882** 
     6 0.03403** 0.08877* 

Multivariate (5x5)        

Spot-Futures 1 0.6428 0.9792 0.9845 0.9303    
Spot-Futures 2 0.6570 0.8143 0.9812 0.9266    
Spot-Futures 3 0.6522 0.6286 0.9808 0.9896    
Spot-Futures 6 0.6580 0.8213 0.9834 0.9486    
Spot-Fut1,2,3,6 - 0.4967 - 1.0000    
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Silver.  Bivariate results for silver are shown in table 8(a). In the long-run, the spot 

market revises the equilibrium with futures as indicated by the ECT coefficients. 

Coefficients of almost all spot and futures lags suggest that they heavily influence spot 

equations independently, while they have much weaker effect on futures equations. In 

the multivariate 4x4 model (table 8(b)) it is the spot market again which reacts to 

deviations for the long-run relationships. As in the case of gold, in the multivariate 

context, futures lags independently lose their influence on spot which is now affected 

by its own previous values. Futures equations do not appear to be affected by any lag 

separately. 

Moving on to the short-run linear causal dynamics (table8(c)), there is some evidence 

of the front month futures contract leading the spot, but there is much stronger evidence 

of the futures dominance for later maturities. As it happened with gold, this leading 

effect is completely lost when a multivariate 4x4 model is considered. Furthermore, the 

VECM filtered residuals proved to have been purified from any linear causal effects 

both in the bivariate and multivariate models. Regarding non-linear dynamics, futures 

of all maturities Granger-cause spot consistently for all embedding dimensions 

considered. There is some proof that the spot can predict the futures contracts as well, 

but the effect is rather lost for the pairs of spot with the front and with the third contracts 

as the number of lags in the non-linear test increases. However regarding the spot and 

the sixth futures contract, the spot predictive power is more consistent and it can be 

argued that there is bidirectional non-linear causality for this pair. 
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Table 8(a). Results of the bivariate VEC models for silver (see next page for further description). 

Table 8(a) Silver (pairwise) 

Model/Dependent 
Variables 

c 
ECT t-1

1 
(coint. eq.) 

DlogSpott-1 DlogSpott-2 DlogSpott-3 DlogSpott-4 DlogSpott-5 DlogSpott-6 

VECM 
DlogSpot 
DlogFut1 

-0.000007 
-0.000015 

-0.836347*** 
-0.082109 

-0.232195*** 
0.036414 

-0.203881*** 
-0.031807 

-0.187891*** 
-0.032485 

-0.150737*** 
-0.006363 

-0.162109*** 
-0.046959 

-0.117039*** 
-0.021558 

VECM 
DlogSpot 
DlogFut3 

-0.000011 
-0.000010 

-0.630635*** 
0.007690 

-0.411031*** 
-0.042026 

-0.355777*** 
-0.100488 

-0.312936*** 
-0.091796 

-0.247868*** 
-0.053815 

-0.235946*** 
-0.083939 

-0.169363*** 
-0.047008 

VECM 
DlogSpot 
DlogFut6 

-0.000024 
-0.000008 

-0.235011*** 
0.067656 

-0.763849*** 
-0.094215 

-0.659574*** 
-0.143107** 

-0.570301*** 
-0.125193* 

-0.457268*** 
-0.080212 

-0.397064*** 
-0.103894* 

-0.282259*** 
-0.060727 

 

Silver (pairwise) cont. 

Model/Dependent 
Variables 

DlogSpott-7 DlogSpott-8 DlogFutt-1 DlogFutt-2 DlogFutt-3 DlogFutt-4 DlogFutt-5 DlogFutt-6 

VECM 
DlogSpot 
DlogFut1 

-0.017214 
0.023730 

-0.005797 
0.012725 

0.210625*** 
-0.097440 

0.174379*** 
-0.014540 

0.152488** 
0.032508 

0.145012** 
0.014509 

0.154500*** 
0.021496 

0.101730** 
0.066393 

VECM 
DlogSpot 
DlogFut3 

-0.047323 
0.010280 

-0.015186 
0.009024 

0.404555*** 
-0.011483 

0.339447*** 
0.059855 

0.291851*** 
0.099363 

0.255876*** 
0.068236 

0.241211*** 
0.065931 

0.165613*** 
0.100342 

VECM 
DlogSpot 
DlogFut6 

-0.112224*** 
0.002218 

-0.032620 
0.006925 

0.782884 
0.046241 

0.670957 
0.107924 

0.577343 
0.137307** 

0.497104 
0.099918 

0.434143 
0.090352 

0.310758 
0.118584** 

 

Silver (pairwise) cont.   

Model/Dependent 
Variables 

DlogFutt-7 DlogFutt-8 
 1. For spot-fut1 pair: ECT=logspot-0.998860logfut1-0.004010    
 For spot-fut3 pair: ECT=logspot-1.004682logfut3+0.017848 

                                                                                    For spot-fut6 pair: ECT=logspot-1.017413logfut6-0.063351 
VECM 

DlogSpot 
DlogFut1 

0.083637** 
0.029541 

 

VECM 
DlogSpot 
DlogFut3 

0.127040*** 
0.049613 

0.042127 
-0.029121 

VECM 
DlogSpot 
DlogFut6 

0.225687 
0.063122 

0.091199 
-0.021790 
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Table 8(a) (see previous page) and Table 8(b). The coefficient results of the VAR/VEC models for silver. Table 8(a) (previous page) shows the results of the bivariate models 

(pairwise) and table 8(b) shows the results of the multivariate (4x4) model. The first two columns present the chosen model (VAR or VECM) and the dependent variables of the 

model. The rest of the columns present the coefficients of the independent variables participating in the corresponding model. *, ** and *** indicate statistical importance of 

the coefficients at 10%, 5% and 1% significance level respectively. All variables are in their log form and D denotes the first difference operation. The number of lags for each 

model was chosen with the Schwarz information criterion (SIC). 

Table 8(b) Silver (4x4) 

Model/Dependent 
Variables 

c 
ECT1 t-1

1 
(coint. eq.1) 

ECT2 t-1
1 

(coint. eq.2) 
DlogSpott-1 DlogSpott-2 DlogSpott-3 DlogSpott-4 DlogSpott-5 

VECM 

DlogSpot 
DlogFut1 
DlogFut3 
DlogFut6 

-0.000020 
-0.000012 
-0.000009 
-0.000003 

-0.947866*** 
-0.130182 
-0.132961 
-0.134991 

0.864244*** 
0.107720 
0.148584 
0.128742 

-0.125407** 
0.082729 
0.085626 
0.087047 

-0.101014** 
0.024516 
0.025255 
0.026381 

-0.082415* 
0.025253 
0.024414 
0.026350 

-0.048140 
0.049447 
0.050132 
0.051136 

-0.060110*** 
0.011576 
0.012827 
0.012671 

 

Silver (4x4) cont. 

Model/Dependent 
Variables 

DlogFut1t-1 DlogFut1t-2 DlogFut1t-3 DlogFut1t-4 DlogFut1t-5 DlogFut3t-1 DlogFut3t-2 DlogFut3t-3 

 

DlogSpot 
DlogFut1 
DlogFut3 
DlogFut6 

-0.523025 
-0.952335 
-0.651757 
-0.768583 

0.002533 
0.101956 
0.219397 
0.126006 

-0.128456 
0.076562 
0.150492 
0.107579 

-0.119854 
0.170691 
0.204892 
0.208282 

0.185911 
-0.399783 
-0.371715 
-0.367740 

0.079623 
0.442890 
-0.042496 
0.396251 

-0.159680 
0.296352 
0.046052 
0.243492 

-0.088063 
0.481673 
0.356910 
0.456665 

 

Silver (4x4) cont. 

Model/Dependent 
Variables 

DlogFut3t-4 DlogFut3t-5 DlogFut6t-1 DlogFut6t-2 DlogFut6t-3 DlogFut6t-4 DlogFut6t-5 

 

DlogSpot 
DlogFut1 
DlogFut3 
DlogFut6 

-0.296143 
0.401644 
0.320369 
0.399312 

-0.009479 
0.531189 
0.482649 
0.516371 

0.548712 
0.367072 
0.549420 
0.226113 

0.224956 
-0.467218 
-0.335286 
-0.440727 

0.264845 
-0.584013 
-0.531145 
-0.590721 

0.456112 
-0.618616 
-0.571226 
-0.655398 

-0.126295 
-0.166644 
-0.147085 
-0.185271 

1. ECT1=logspot-1.249384logfut3+0.247595logfut6+0.007385 

   ECT2=logfut1-1.442945logfut3+0.442231logfut6+0.003364 
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Table 8(c). Causality results for silver. The first column presents the variables investigated for Granger causality. The second and the third columns present the p-values for 

the raw data (log-time series) based on the appropriate VAR/VEC model for each case (linear causal effects), while the fourth and the fifth columns show the p-values for the 

residuals of those VAR/VEC models (linear causal effects). The null hypothesis of S→F is that the spot does not Granger cause the corresponding futures (the equivalent applies 

for F→S). *, ** and *** indicate rejection of the null at 10%, 5% and 1% significance level respectively. The last three columns present the embedding dimensions and the p-

values for the Diks and Panchenko (2006) test conducted on the VAR/VECM filtered residuals (non-linear causal effects). 

Table 8(c) Causality results for Silver    

Variables Linear Granger causality Non-linear Granger causality 

 Raw data VAR/VECM filtered residuals VAR/VECM filtered residuals 
Pairwise (2x2) S→F F→S S→F F→S Embed. dimension S→F F→S 

Spot-Futures 1 0.5680 0.0802* 0.9775 0.9594 2 0.00896*** 0.00000*** 
     3 0.02647** 0.00003*** 
     4 0.08805* 0.00134*** 
     5 0.07112* 0.00156*** 
     6 0.22760 0.00524*** 

Spot-Futures 3 0.5250 0.0000*** 0.9584 0.9300 2 0.00688*** 0.00000*** 
     3 0.02521** 0.00001*** 
     4 0.09433* 0.00044*** 
     5 0.06994* 0.00134*** 
     6 0.20736 0.00182*** 

Spot-Futures 6 0.3658 0.0000*** 0.9094 0.7982 2 0.00219*** 0.00000*** 
     3 0.00854*** 0.00001*** 
     4 0.03650** 0.00037*** 
     5 0.04558** 0.00213*** 
     6 0.11415 0.00292*** 

Multivariate (4x4)        

Spot-Futures 1 0.5772 0.8703 0.9231 0.9898    
Spot-Futures 3 0.5415 0.9852 0.9695 0.9917    
Spot-Futures 6 0.5320 0.8666 0.9968 0.9945    
Spot-Fut1,3,6 - 0.8835 - 0.9992    
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DAX30.  Table 9(a) shows the results for the two pairs for DAX30. The coefficients 

of ECT are significant in the spot equations, but they are also positive. Taking into 

consideration the form of the co-integrating equations (see table 9(a)), both pairwise 

models imply that when the spot price is higher than the indicated by the equilibrium 

value, the spot return increases and in turn escalates the existing deviation. The problem 

could be answered by the coefficients of the futures equations which are larger in 

absolute values than those of the spot equations (|0.812962|>|0.502544| and 

|0.451609|>|0.352707|), but they are not statistically significant. Spot equations in both 

pairs appear to be affected by several lags of futures and spot returns, while futures 

equations are not affected by previous spot and futures returns separately. In the 

multivariate 3x3 VEC model (table 9(b)), futures react to departures from the 

equilibrium, while spot remains inactive. Also, the influence of separate previous return 

values seems to have been eliminated for spot equation. 

Moving on to the short-run causal effects presented in table 9(c), almost no linear 

causality was found in pairwise models, with the exception of some evidence of the 

earliest futures contract leading the spot market. The multivariate 3x3 model also 

discovered no causal effects. The VECM filtered residuals indicated that no linear 

dynamics remained hidden from the first step. On the other hand, there is strong 

evidence at 1% significance level of very consistent bi-directional non-linear causal 

effects between the spot and the futures of one and two months, as discovered by the 

non-linear test. 
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Table 9(a) and Table 9(b) (see next page). The coefficient results of the VAR/VEC models for DAX30. Table 9(a) shows the results of the bivariate models (pairwise) and table 

9(b) (next page) shows the results of the multivariate (3x3) model. The first two columns present the chosen model (VAR or VECM) and the dependent variables of the model. 

The rest of the columns present the coefficients of the independent variables participating in the corresponding model. *, ** and *** indicate statistical importance of the 

coefficients at 10%, 5% and 1% significance level respectively. All variables are in their log form and D denotes the first difference operation. The number of lags for each 

model was chosen with the Schwarz information criterion (SIC). 

Table 9(a) DAX30 (pairwise) 

Model/Dependent 
Variables 

c 
ECT t-1

1 
(coint. eq.) 

DlogSpott-1 DlogSpott-2 DlogSpott-3 DlogSpott-4 DlogSpott-5 DlogSpott-6 

VECM 
DlogSpot 
DlogFut1 

0.000348 
0.000342 

0.502544** 
0.812962 

-0.624340** 
-0.098964 

-0.724633*** 
-0.302392 

-0.572772** 
-0.233337 

-0.389417 
-0.167516 

-0.391254* 
-0.227942 

-0.370047** 
-0.303653 

VECM 
DlogSpot 
DlogFut2 

0.000347 
0.000339 

0.352707** 
0.451609 

-0.462295** 
0.215137 

-0.488398** 
0.035025 

-0.298954 
0.102269 

-0.124173 
0.122903 

-0.025632 
0.128614 

- 
- 

 

DAX30 (pairwise) cont. 

Model/Dependent 
Variables 

DlogFutt-1 DlogFutt-2 DlogFutt-3 DlogFutt-4 DlogFutt-5 DlogFutt-6 

VECM 
DlogSpot 
DlogFut1 

0.656452** 
0.131510 

0.699787*** 
0.278349 

0.572051** 
0.235364 

0.326644 
0.107294 

0.340755 
0.179255 

0.381517** 
0.319849 

VECM 
DlogSpot 
DlogFut2 

0.493221** 
-0.182052 

0.460772* 
-0.060571 

0.298502 
-0.099541 

0.062414 
-0.180222 

-0.026210 
-0.177705 

- 
- 

1. For spot-fut1 pair: ECT=logspot-1.001238logfut1+0.011699 

  For spot-fut2 pair: ECT=logspot-1.004234logfut2+0.040618 
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Table 9(b). Results of the multivariate (3x3) VEC model for DAX30 (see previous page for further description). 

Table 9(b) DAX30 (3x3) 

Model/Dependent 
Variables 

c 
ECT1 t-1

1 
(coint. eq.1) 

ECT2 t-1
1 

(coint. eq.2) 
DlogSpott-1 DlogSpott-2 DlogSpott-3 DlogSpott-4 DlogSpott-5 

VECM 
DlogSpot 
DlogFut1 
DlogFut2 

0.000346 
0.000342 
0.000339 

0.356589 
0.695808*** 
0.616530** 

0.001695 
-0.413500 
-0.269434 

-0.472063* 
0.031938 
0.072672 

-0.505070* 
-0.099508 
-0.087209 

-0.320570 
0.002774 
0.001718 

-0.138189 
0.045707 
0.057028 

-0.035827 
0.083716 
0.091619 

 

DAX30 (3x3) cont. 

Model/Dependent 
Variables 

DlogFut1t-1 DlogFut1t-2 DlogFut1t-3 DlogFut1t-4 DlogFut1t-5 DlogFut2t-1 DlogFut2t-2 DlogFut2t-3 

 
DlogSpot 
DlogFut1 
DlogFut2 

0.114172 
-0.267756 
0.328746 

0.342251 
0.084139 
0.498367 

0.190704 
0.052029 
0.324736 

-0.140530 
-0.229092 
-0.066610 

0.134897 
0.099069 
0.172818 

0.389353 
0.267507 
-0.368422 

0.136102 
-0.010734 
-0.436449 

0.129470 
-0.052457 
-0.324263 

 

DAX30 (3x3) cont.   

Model/Dependen
t Variables 

DlogFut2t-4 DlogFut2t-5 
 1.ECT1=logspot-1.004518logfut2+0.042394    

                                                                                   ECT2=logfut1-1.003243logfut2+0.030351 

 
DlogSpot 
DlogFut1 
DlogFut2 

0.216348 
0.123654 
-0.048897 

-0.150609 
-0.232124 
-0.313825 
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Table 9(c). Causality results for DAX30. The first column presents the variables investigated for Granger causality. The second and the third columns present the p-values for 

the raw data (log-time series) based on the appropriate VAR/VEC model for each case (linear causal effects), while the fourth and the fifth columns show the p-values for the 

residuals of those VAR/VEC models (linear causal effects). The null hypothesis of S→F is that the spot does not Granger cause the corresponding futures (the equivalent applies 

for F→S). *, ** and *** indicate rejection of the null at 10%, 5% and 1% significance level respectively. The last three columns present the embedding dimensions and the p-

values for the Diks and Panchenko (2006) test conducted on the VAR/VECM filtered residuals (non-linear causal effects). 

Table 9(c) Causality results for DAX30    

Variables Linear Granger causality Non-linear Granger causality 

 Raw data VAR/VECM filtered residuals VAR/VECM filtered residuals 
Pairwise (2x2) S→F F→S S→F F→S Embed. dimension S→F F→S 

Spot-Futures 1 0.5238 0.0890* 0.9933 0.9915 2 0.00006*** 0.00106*** 
     3 0.00005*** 0.00037*** 
     4 0.00010*** 0.00055*** 
     5 0.00026*** 0.00094*** 
     6 0.00036*** 0.00119*** 

Spot-Futures 2 0.8306 0.2708 0.80999 0.7611 2 0.00000*** 0.00061*** 
     3 0.00001*** 0.00035*** 
     4 0.00018*** 0.00058*** 
     5 0.00053*** 0.00078*** 
     6 0.00037*** 0.00064*** 

Multivariate (3x3)        

Spot-Futures 1 0.9625 0.8512 0.8408 0.9893    
Spot-Futures 2 0.9405 0.8552 0.8348 0.9120    
Spot-Fut1,2 - 0.7478 - 0.9704    

 

 

 

 

 



115 
 

CAC40.  Table 10(a) presents the results of the bivariate models for CAC40. As in 

most of previous cases, the spot market corrects any deviations from the equilibrium 

for the pair of spot and earliest futures contract. No co-integration was found for the 

pair of spot and two-month contract. Spot and futures current returns of CAC40 are 

shown to follow a different pattern than those of previous assets regarding lag 

coefficients. Particularly, spot equation in the first pair does not appear to be influenced 

by past values of spot and futures returns independently, but it is affected by the second 

lag of futures returns in the second pair. On the other hand, futures equation in both 

pairs are more heavily affected by past returns of both markets. When the multivariate 

3x3 model is examined (table 10(b)) it is again the spot market that tries to erase 

deviation errors in the equilibrium relationship. Spot equation continues to neglect any 

(auto)-regressive nature, while futures equations are directed by spot and two-month 

futures returns of previous day. 

The short-run causal effects are shown in table 10(c). Linear investigation with VECMs 

indicated no Granger causality between spot and the earliest futures, but it detected 

strong dominance of spot on the two-month futures contract. When all variables were 

tested in the multivariate 3x3 model, spot dominance spread to the one-month futures 

as well. For both bivariate and multivariate models, VECM filtered residuals presented 

no further Granger causality. The test for non-linear dynamics showed that there is a 

feedback mechanism for both pairs examined, considering the 5% significance level. 

However, it appears that the causal channels from futures to spot are more significant 

with lower p-values through all embedding dimensions than the respective channels 

from spot to futures. 
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Table 10(a). Results of the bivariate VEC models for CAC40 (see table below for further description). 

Table 10(a) CAC40 (pairwise) 

Model/Dependent 
Variables 

c 
ECT t-1

1 
(coint. eq.) 

DlogSpott-1 DlogSpott-2 DlogFutt-1 DlogFutt-2   

VECM 
DlogSpot 
DlogFut1 

0.000146 
0.000165 

-0.037036*** 
-0.017859 

-0.018016 
0.108840 

- 
- 

0.027983 
-0.098381 

- 
- 

  

VAR 
DlogSpot 
DlogFut2 

0.000154 
0.000169 

- 
- 

0.025568 
0.345874*** 

0.137593 
0.252968*** 

-0.016560 
-0.325007*** 

-0.168770** 
-0.272762*** 

  

1. For spot-fut1 pair: ECT=logspot-0.881178logfut1-1.012731 

 

Table 10(a) and Table 10(b). The coefficient results of the VAR/VEC models for CAC40. Table 10(a) shows the results of the bivariate models (pairwise) and table 10(b) shows 

the results of the multivariate (3x3) model. The first two columns present the chosen model (VAR or VECM) and the dependent variables of the model. The rest of the columns 

present the coefficients of the independent variables participating in the corresponding model. *, ** and *** indicate statistical importance of the coefficients at 10%, 5% and 

1% significance level respectively. All variables are in their log form and D denotes the first difference operation. The number of lags for each model was chosen with the 

Schwarz information criterion (SIC). 

Table 10(b) CAC40 (3x3) 

Model/Dependent 
Variables 

c 
ECT1 t-1

1 
(coint. eq.1) 

ECT2 t-1
1 

(coint. eq.2) 
DlogSpott-1 DlogFut1t-1 DlogFut2t-1   

VECM 
DlogSpot 
DlogFut1 
DlogFut2 

0.000146 
0.000166 
0.000162 

-0.041055*** 
-0.028879 
-0.031034* 

0.010759 
-0.055372 
0.029607 

-0.012223 
0.195695** 
0.285382*** 

0.042535 
0.023537 
-0.018334 

-0.020153 
-0.207415* 
-0.245862** 

  

1. ECT1=logspot-0.883519logfut3-0.993856 

   ECT2=logfut1-1.008009logfut2+0.066118 
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Table 10(c). Causality results for CAC40. The first column presents the variables investigated for Granger causality. The second and the third columns present the p-values for 

the raw data (log-time series) based on the appropriate VAR/VEC model for each case (linear causal effects), while the fourth and the fifth columns show the p-values for the 

residuals of those VAR/VEC models (linear causal effects). The null hypothesis of S→F is that the spot does not Granger cause the corresponding futures (the equivalent applies 

for F→S). *, ** and *** indicate rejection of the null at 10%, 5% and 1% significance level respectively. The last three columns present the embedding dimensions and the p-

values for the Diks and Panchenko (2006) test conducted on the VAR/VECM filtered residuals (non-linear causal effects). 

Table 10(c) Causality results for CAC40    

Variables Linear Granger causality Non-linear Granger causality 

 Raw data VAR/VECM filtered residuals VAR/VECM filtered residuals 
Pairwise (2x2) S→F F→S S→F F→S Embed. dimension S→F F→S 

Spot-Futures 1 0.1775 0.7034 0.8249 0.8903 2 0.12141 0.00021*** 
     3 0.04513** 0.00003*** 
     4 0.02594** 0.00016*** 
     5 0.02392** 0.00038*** 
     6 0.01332** 0.00233*** 

Spot-Futures 2 0.0003*** 0.1491 0.9891 0.9492 2 0.02404** 0.00004*** 
     3 0.00481*** 0.00004*** 
     4 0.01796** 0.00166*** 
     5 0.01917** 0.00399*** 
     6 0.05621* 0.05073* 

Multivariate (3x3)        

Spot-Futures 1 0.0437** 0.6495 0.4971 0.9424    
Spot-Futures 2 0.0031*** 0.8518 0.4160 0.7190    
Spot-Fut1,2 - 0.8957 - 0.8783    
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SP500.  The results of the pairwise models for SP500 are shown in table 11(a). The 

coefficients of ECT for the two first pairs indicate that correction in the long-term 

equilibrium is done by the futures market. The third pair indicates that neither the spot 

nor the futures contract complies with their long-run relationship. Past spot and futures 

returns are generally significant for spot current returns, while this not the case for 

futures current returns. Also, constants are significant for all models indicating that the 

average SP500 spot and futures returns are non-zero. Absence of correction by both the 

spot and the corresponding futures is hinted by the multivariate 4x4 model as well (table 

11(b)), as all coefficients are statistically zero even at 10% significance level. Lag 

coefficients indicate that spot current return is not so boldly explained by futures past 

returns as it did in pairwise models, while futures current return present evidence of 

auto-regressive nature. 

Table 11(c) presents the results of causality tests. In pairwise modelling, strong linear 

causal effects were detected from the second and third to expire futures contracts to the 

spot market. However, in the multivariate 4x4 model those causal dynamics move to 

the first and second contracts, albeit somewhat weaker in strength. There is also clear 

joint dominance of futures over spot. The tests on the VECM filtered residuals 

discovered no further linear causality as anticipated. The Diks and Panchenko (2006) 

test revealed strong and consistent through all lags non-linear feedback relationship 

between spot and futures contracts of all maturities. With the exception of the pair of 

spot and front contract, the feedback effect is somewhat weakened in higher number of 

lags at the expense of futures dominance over spot. 
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Table 11(a) and Table 11(b) (see next page). The coefficient results of the VAR/VEC models for SP500. Table 11(a) shows the results of the bivariate models (pairwise) and 

table 11(b) (next page) shows the results of the multivariate (4x4) model. The first two columns present the chosen model (VAR or VECM) and the dependent variables of the 

model. The rest of the columns present the coefficients of the independent variables participating in the corresponding model. *, ** and *** indicate statistical importance of 

the coefficients at 10%, 5% and 1% significance level respectively. All variables are in their log form and D denotes the first difference operation. The number of lags for each 

model was chosen with the Schwarz information criterion (SIC). 

Table 11(a) SP500 (pairwise) 

Model/Dependent 
Variables 

c 
ECT t-1

1 
(coint. eq.) 

DlogSpott-1 DlogSpott-2 DlogSpott-3 DlogSpott-4 DlogSpott-5 DlogFutt-1 

VECM 
DlogSpot 
DlogFut1 

0.000435** 
0.000437** 

0.012131 
0.269179** 

-0.373492** 
0.062483 

-0.304359** 
-0.033783 

-0.315661** 
-0.161859 

-0.222646* 
-0.169795 

- 
- 

0.324262** 
-0.109055 

VECM 
DlogSpot 
DlogFut2 

0.000469*** 
0.000472*** 

0.051946 
0.138301* 

-0.622829*** 
-0.036392 

-0.371526** 
0.006790 

-0.393345** 
-0.161284 

-0.237939 
-0.105439 

-0.167460 
-0.100754 

0.569575*** 
-0.008229 

VECM 
DlogSpot 
DlogFut3 

0.000470** 
0.000474** 

0.043832 
0.083262 

-0.611860*** 
0.018775 

-0.366564** 
0.048596 

-0.377980** 
-0.117630 

-0.222250 -
0.070129 

-0.157086 
-0.079980 

0.556240*** 
-0.062363 

 

SP500 (pairwise) cont. 

Model/Dependent 
Variables 

DlogFutt-2 DlogFutt-3 DlogFutt-4 DlogFutt-5 

VECM 
DlogSpot 
DlogFut1 

0.304079** 
0.032322 

0.283250** 
0.135055 

0.211342* 
0.150827 

- 
- 

VECM 
DlogSpot 
DlogFut2 

0.363646** 
-0.012000 

0.358493** 
0.132952 

0.219678 
0.082927 

0.093034 
0.023321 

VECM 
DlogSpot 
DlogFut3 

0.356919** 
-0.052554 

0.341164** 
0.089211 

0.202674 
0.047850 

0.081492 
0.001985 

1. For spot-fut1 pair: ECT=logspot-0.997116logfut1-0.023374 

  For spot-fut2 pair: ECT=logspot-0.991050logfut2-0.071716 

  For spot-fut3 pair: ECT=logspot-0.984725logfut2-0.121799 
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Table 11(b). Results of the multivariate (4x4) VEC model for SP500 (see previous page for further description). 

Table 11(b) SP500 (4x4) 

Model/Dependent 
Variables 

c 
ECT1 t-1

1 
(coint. eq.1) 

ECT2 t-1
1 

(coint. eq.2) 
DlogSpott-1 DlogSpott-2 DlogSpott-3 DlogSpott-4 DlogFut1t-1 

VECM 

DlogSpot 
DlogFut1 
DlogFut2 
DlogFut3 

0.000433** 
0.000435** 
0.000432** 
0.000433** 

-0.092635 
0.216794 
0.191692 
0.186491 

0.294822 
-0.421225 
0.055343 
0.057266 

-0.466760*** 
-0.093007 
-0.017545 
-0.014114 

-0.324947* 
-0.115363 
-0.069539 
-0.067800 

-0.295408* 
-0.182575 
-0.169945 
-0.169060 

-0.149607 
-0.112030 
-0.102950 
-0.103848 

-0.637287* 
-0.917399** 
-0.545190 
-0.539523 

 

SP500 (4x4) cont. 

Model/Dependent 
Variables 

DlogFut1t-2 DlogFut1t-3 DlogFut1t-4 DlogFut2t-1 DlogFut2t-2 DlogFut2t-3 DlogFut2t-4 DlogFut3t-1 

 

DlogSpot 
DlogFut1 
DlogFut2 
DlogFut3 

0.017190 
-0.173276 
0.109591 
0.116201 

-0.017567 
-0.121488 
0.069704 
0.076227 

0.230987 
0.194512 
0.292335 
0.301716 

4.103419* 
4.822220** 
4.580855** 
4.690179** 

-1.715752 
-1.233297 
-1.428276 
-1.432028 

3.169444 
3.572891* 
3.184060 
3.255414 

2.444717 
2.836068 
2.568687 
2.569515 

-3.038807 
-3.845443* 
-4.044618* 
-4.161939** 

 

SP500 (4x4) cont. 

Model/Dependent 
Variables 

DlogFut3t-2 DlogFut3t-3 DlogFut3t-4 

 

DlogSpot 
DlogFut1 
DlogFut2 
DlogFut3 

2.011111 
1.510237 
1.382153 
1.378320 

-2.876595 
-3.281446 
-3.094982 
-3.173244 

-2.525751 
-2.923650 
-2.759705 
-2.768508 

1. ECT1=logspot-2.484725logfut2+1.484299logfut3+0.002589 

   ECT2=logfut1-1.964714logfut2+0.964716logfut3-0.000278 
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Table 11(c). Causality results for SP500. The first column presents the variables investigated for Granger causality. The second and the third columns present the p-values for 

the raw data (log-time series) based on the appropriate VAR/VEC model for each case (linear causal effects), while the fourth and the fifth columns show the p-values for the 

residuals of those VAR/VEC models (linear causal effects). The null hypothesis of S→F is that the spot does not Granger cause the corresponding futures (the equivalent applies 

for F→S). *, ** and *** indicate rejection of the null at 10%, 5% and 1% significance level respectively. The last three columns present the embedding dimensions and the p-

values for the Diks and Panchenko (2006) test conducted on the VAR/VECM filtered residuals (non-linear causal effects). 

Table 11(c) Causality results for SP500    

Variables Linear Granger causality Non-linear Granger causality 

 Raw data VAR/VECM filtered residuals VAR/VECM filtered residuals 
Pairwise (2x2) S→F F→S S→F F→S Embed. dimension S→F F→S 

Spot-Futures 1 0.5171 0.1752 0.9748 0.9719 2 0.00072*** 0.00000*** 
     3 0.00038*** 0.00000*** 
     4 0.00027*** 0.00000*** 
     5 0.00098*** 0.00000*** 
     6 0.00643*** 0.00001*** 

Spot-Futures 2 0.8201 0.0020*** 0.9373 0.9717 2 0.00465*** 0.00000*** 
     3 0.00577*** 0.00000*** 
     4 0.00157*** 0.00000*** 
     5 0.01547** 0.00000*** 
     6 0.04586** 0.00001*** 

Spot-Futures 3 0.8799 0.0011*** 0.9223 0.9664 2 0.00384*** 0.00000*** 
     3 0.00629*** 0.00000*** 
     4 0.00190*** 0.00000*** 
     5 0.02548** 0.00000*** 
     6 0.07492* 0.00001*** 

Multivariate (4x4)        

Spot-Futures 1 0.8474 0.0357** 0.9517 0.7386    
Spot-Futures 2 0.8480 0.0783* 0.9354 0.8037    
Spot-Futures 3 0.8481 0.1357 0.9355 0.7762    
Spot-Fut1,2,3 - 0.0082*** - 0.9770    

 

 

 



122 
 

Nasdaq100.  Table 12(a) presents the results of the bivariate VEC models for 

Nasdaq100. The coefficients of ECT indicate that the long-run relationship between the 

spot and the futures contracts is fragile and not corrected by spot or futures movements 

in pairwise models, but it is secured in the 3x3 multivariate model through futures 

movements (table 12(b)). Furthermore, regarding pairwise models and lag coefficients, 

spot equation seems to have some autoregressive components for the first pair, while it 

seems to be influenced both by its past values and past futures return values in the 

second pair. Equations of both futures contracts indicate that futures returns are affected 

by some late lags of spot and futures returns. It is also noticeable that, as in the case of 

SP500, constants are significant in all models. 

Linear Granger causality approached with VEC modelling concluded mixed results as 

shown in the table 12(c). The earliest futures leads the spot, but there is a feedback 

mechanism for the spot and the second to expire futures. On the other hand, in the 

multivariate 3x3 model, there is slight evidence that the spot leads the earliest futures 

contract, while the bi-directional causality between the spot and the second to expire 

futures remains, albeit the causal transmission from spot to futures weakens relatively 

to the corresponding pairwise model. Again, the VEC models seems to have captured 

the linear effects entirely, as the tests on their residuals detected no further linear effects. 

In the non-linear context, very strong and consistent bi-directional causal dynamics 

were found for the spot and the futures contracts of both maturities.  

It is noted that tests on residuals, to assure entire capture of linear causality in the 

previous step, were done with VAR models as no co-integration was found and with 

one lag chosen. This applies to all assets.  

In table 13, co-integration and Granger causality results are summarized for all assets.
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Table 12(a) and Table 12(b) (see next page). The coefficient results of the VAR/VEC models for Nasdaq100. Table 12(a) shows the results of the bivariate models (pairwise) 

and table 12(b) (next page) shows the results of the multivariate (3x3) model. The first two columns present the chosen model (VAR or VECM) and the dependent variables of 

the model. The rest of the columns present the coefficients of the independent variables participating in the corresponding model. *, ** and *** indicate statistical importance 

of the coefficients at 10%, 5% and 1% significance level respectively. All variables are in their log form and D denotes the first difference operation. The number of lags for 

each model was chosen with the Schwarz information criterion (SIC). 

Table 12(a) Nasdaq100 (pairwise) 

Model/Dependent 
Variables 

c 
ECT t-1

1 
(coint. eq.) 

DlogSpott-1 DlogSpott-2 DlogSpott-3 DlogSpott-4 DlogSpott-5 DlogSpott-6 

VECM 
DlogSpot 
DlogFut1 

0.000692*** 
0.000685*** 

-0.127407 
0.238236 

-0.328128* 
0.140097 

-0.278998 
0.084197 

-0.385057** 
-0.098654 

-0.181569 
0.015501 

0.108118 
0.254697 

0.041948 
0.188921 

VECM 
DlogSpot 
DlogFut2 

0.000674*** 
0.000667*** 

0.013507 
0.131154 

-0.620488*** 
0.061190 

-0.374760** 
0.204775 

-0.487272*** 
-0.102986 

-0.137631 
0.100294 

0.101545 
0.258366* 

-0.005294 
0.081400 

 

Nasdaq100 (pairwise) cont. 

Model/Dependent 
Variables 

DlogSpott-7 DlogSpott-8 DlogFutt-1 DlogFutt-2 DlogFutt-3 DlogFutt-4 DlogFutt-5 DlogFutt-6 

VECM 
DlogSpot 
DlogFut1 

0.183846 
0.294206** 

0.105239 
0.159939 

0.305764 
-0.158448 

0.265169 
-0.095719 

0.349322* 
0.069202 

0.172052 
-0.027424 

-0.155696 
-0.304011* 

-0.047051 
-0.193878 

VECM 
DlogSpot 
DlogFut2 

- 
- 

- 
- 

0.600521*** 
-0.072324 

0.355100** 
-0.217063 

0.451479*** 
0.072054 

0.126347 
-0.107673 

-0.150534 
-0.306699** 

-0.000244 
-0.091730 

 

Nasdaq100 (pairwise) cont. 

Model/Dependent 
Variables 

DlogFutt-7 DlogFutt-8 

VECM 
DlogSpot 
DlogFut1 

-0.189867 
-0.298635** 

-0.143113 
-0.194090* 

VECM 
DlogSpot 
DlogFut2 

- 
- 

- 
- 

1. For spot-fut1 pair: ECT=logspot-0.997839logfut1-0.018313 

  For spot-fut2 pair: ECT=logspot-0.993880logfut2-0.051507 
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Table 12(b). Results of the multivariate (3x3) VEC model for Nasdaq100 (see previous page for further description). 

Table 12(b) Nasdaq100 (3x3) 

Model/Dependent 
Variables 

c 
ECT1 t-1

1 
(coint. eq.1) 

ECT2 t-1
1 

(coint. eq.2) 
DlogSpott-1 DlogSpott-2 DlogSpott-3 DlogSpott-4 DlogSpott-5 

VECM 
DlogSpot 
DlogFut1 
DlogFut2 

0.000669*** 
0.000664*** 
0.000661*** 

-0.123851 
0.420270** 
0.224901 

0.252485 
-0.574011* 
-0.173156 

-0.509038*** 
-0.222550 
-0.029253 

-0.328039* 
-0.110512 
0.060212 

-0.460512** 
-0.312956* 
-0.224282 

-0.157784 
-0.090005 
-0.028077 

0.102671 
0.118145 
0.168000 

 

Nasdaq100 (3x3) cont. 

Model/Dependent 
Variables 

DlogSpott-6 DlogFut1t-1 DlogFut1t-2 DlogFut1t-3 DlogFut1t-4 DlogFut1t-5 DlogFut1t-6 DlogFut2t-1 

 
DlogSpot 
DlogFut1 
DlogFut2 

-0.031488 
-0.004497 
0.013583 

-0.107534 
-0.209110 
0.303118 

0.192430 
0.193635 
0.640284** 

0.287361 
0.301653 
0.645095** 

0.438419* 
0.476739* 
0.669999*** 

0.204066 
0.240173 
0.401939* 

0.206739 
0.201436 
0.275599* 

0.596647*** 
0.417453* 
-0.284726 

 

Nasdaq100 (3x3) cont. 

Model/Dependent 
Variables 

DlogFut2t-2 DlogFut2t-3 DlogFut2t-4 DlogFut2t-5 DlogFut2t-6    

 
DlogSpot 
DlogFut1 
DlogFut2 

0.117158 
-0.099001 
-0.710079*** 

0.140241 
-0.015280 
-0.448160* 

-0.288882 
-0.397264 
-0.645329*** 

-0.355146* 
-0.408844* 
-0.616796*** 

-0.177409 
-0.198980 
-0.295851* 

   

1. ECT1=logspot-0.993807logfut2-0.052104 

   ECT2=logfut1-0.996024logfut2-0.033339 
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Table 12(c). Causality results for Nasdaq100. The first column presents the variables investigated for Granger causality. The second and the third columns present the p-

values for the raw data (log-time series) based on the appropriate VAR/VEC model for each case (linear causal effects), while the fourth and the fifth columns show the p-

values for the residuals of those VAR/VEC models (linear causal effects). The null hypothesis of S→F is that the spot does not Granger cause the corresponding futures (the 

equivalent applies for F→S). *, ** and *** indicate rejection of the null at 10%, 5% and 1% significance level respectively. The last three columns present the embedding 

dimensions and the p-values for the Diks and Panchenko (2006) test conducted on the VAR/VECM filtered residuals (non-linear causal effects). 

Table 12(c) Causality results for Nasdaq100    

Variables Linear Granger causality Non-linear Granger causality 

 Raw data VAR/VECM filtered residuals VAR/VECM filtered residuals 
Pairwise (2x2) S→F F→S S→F F→S Embed. dimension S→F F→S 

Spot-Futures 1 0.1157 0.0238** 0.9953 0.9931 2 0.00003*** 0.00000*** 
     3 0.00144*** 0.00000*** 
     4 0.00086*** 0.00000*** 
     5 0.00056*** 0.00001*** 
     6 0.00302*** 0.00026*** 

Spot-Futures 2 0.0113** 0.0000*** 0.9760 0.9927 2 0.00001*** 0.00000*** 
     3 0.00025*** 0.00000*** 
     4 0.00129*** 0.00000*** 
     5 0.00049*** 0.00002*** 
     6 0.00359*** 0.00032*** 

Multivariate (3x3)        

Spot-Futures 1 0.0864* 0.2347 0.9651 0.8904    
Spot-Futures 2 0.0605* 0.0025*** 0.9810 0.8635    
Spot-Fut1,2 - 0.0002*** - 0.9852    
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Table 13. Aggregate results of co-integration and Granger causality for all assets. S→F 

denotes causality from spot to futures and F→S denotes causality from futures to spot. Y and 

N denote presence and absence of co-integration/causality respectively, at 5% significance 

level. For non-linear causality, Y additionally requires consistent presence of causality for at 

least 4 of the 5 lags considered in the non-linear test (see tables 5-12(c)). 

Table 13 Aggregate co-integration and Granger causality results 

 
 

 Linear Granger 
causality 

Non-linear Granger 
causality 

 
 

Co-
integration 

S→F F→S S→F F→S 

WTI oil 

Spot-Fut1 Y Y N Y Y 

Spot-Fut2 Y Y Y N Y 

Spot-Fut3 Y Y Y N Y 

Spot-Fut6 N Y N N Y 

Natural gas 

Spot-Fut1 Y Y Y Y Y 

Spot-Fut2 Y N Y N Y 

Spot-Fut3 Y N Y N Y 

Spot-Fut6 Y N Y N Y 

Gold 

Spot-Fut1 Y N Y N N 

Spot-Fut2 Y N Y N Y 

Spot-Fut3 Y N Y N Y 

Spot-Fut6 Y N Y N Y 

Silver 

Spot-Fut1 Y N N N Y 

Spot-Fut3 Y N Y N Y 

Spot-Fut6 Y N Y Y Y 

DAX30 
Spot-Fut1 Y N N Y Y 

Spot-Fut2 Y N N Y Y 

CAC40 
Spot-Fut1 Y N N Y Y 

Spot-Fut2 N Y N Y Y 

SP500 

Spot-Fut1 Y N N Y Y 

Spot-Fut2 Y N Y Y Y 

Spot-Fut3 Y N Y Y Y 

Nasdaq100 
Spot-Fut1 Y N Y Y Y 
Spot-Fut2 Y N Y Y Y 

 

 

2.4 Discussion 

This section is also classified by product for better evaluation of results and comparison 

with previous studies. A general conclusion is given in the end considering all assets. 

WTI oil.  In a rather expected continuation of the literature, the investigation of WTI 

oil in this work captured mixed results. Spot price and futures of one, two, three and 

six-month to maturity were used for examination. Regarding long-run equilibrium, it 

appears that oil markets are co-integrated considering the one, two and three-months to 
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maturity futures, while the six-month futures contract was founded not to be co-

integrated with the spot price (table 13). Investors interested in the six month hedging 

period should opt for shorter contracts in a rolling basis instead of the standard six-

month contract. 

Regarding short-run dynamics, the oil markets seem not to be efficient. Overall results 

(table 13), which indicate Granger causality to be unidirectional from spot to futures or 

bidirectional in the linear context and mostly unidirectional from futures to spot in the 

non-linear context, appear to be in disagreement with the study of Silvapulle and Moosa 

(1999) and in liaison with the study of Bekiros and Diks (2008). In particular, the former 

study revealed futures dominance and bidirectional causal effects in the linear and non-

linear context respectively, while the latter study found the same causal effects, but in 

the opposite contexts. Also, considering that the study of Bekiros and Diks (2008) 

expands from 1991 to 2007 while this work refers to the sample from 2010 to 2019 it 

could be argued that WTI oil spot and futures markets behave in about the same way, 

linearly and non-linearly, in the last three decades and roughly excluding the recent 

crisis years. It can be concluded that both markets have predictive power over each 

other and that price discovery process happens both in the spot and futures markets 

accompanied by dynamic dispute regarding the retention of the leading role. 

Natural gas.  Results for natural gas illustrated a somewhat more consistent picture 

than results for WTI oil did. Spot price and one, two, three and six-month to maturity 

futures were used. All pairs were found to be co-integrated (table 13) with futures 

driving spot price in the long-run (see ECTs in table 6(a)). 

The short-run dynamics showed a feedback mechanism between the spot and the front 

month futures and unidirectional Granger causality from futures to spot for longer 

maturities under both linear and non-linear examination (table 13). The results roughly 

agree with the study of Zhang and Liu (2018) regarding linear investigation with the 

exception of the front month contract. However, there is contradiction regarding the 

non-linear approach, as Zhang and Liu (2018) found bidirectional causality for all 

maturities using the Diks and Panchenko (2006) test. Also, the results concerning the 

front month futures are in conflict with the study of Dergiades et al. (2018) who 

detected futures dominance for the one-month contract both in time and frequency 

domains. 
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Gold.  The general picture of gold markets illustrates rather undeniably the dominant 

position of futures over spot both in linear and non-linear contexts. Gold spot price was 

examined alongside the first, second, third and sixth listed for delivery futures 

contracts. Co-integration exists for all pairs (table 13) and coefficients of ECTs (table 

7(a)) showed that futures lead the spot price in the long-run. 

Regarding short-run dynamics, the linear tests revealed the leading role of futures of all 

maturities (table 13). Non-linear tests also revealed that futures lead the spot market 

with the exception of the front contract. The results are consonant with previous studies 

of Joseph et al. (2014), Jena et al. (2018) and Torun et al. (2020), but not with that of 

Cagli et al. (2020) who found a clear feedback relationship. 

Silver.  Spot price and the first, third and sixth listed for delivery futures contracts 

were used for silver. Again in the long-run, co-integration exists between spot and 

futures (table 13), with futures of all maturities leading the spot which corrects any 

deviation from the equilibrium (see ECTs in table 8(a)). 

Linear short-run dynamics of pairwise VECMs revealed unidirectional Granger 

causality from futures to spot with the exception of the front contract (table 13). 

Additionally, non-linear approach also detected strong unidirectional Granger causality 

from futures to spot considering the front and third contracts, but it detected a feedback 

mechanism between the spot and sixth contract. Overall, the results are roughly in 

agreement with the study of Torun et al. (2020) who found that futures drive the spot 

for all frequencies of their wavelet analysis and with the study of Jena et al. (2019) who 

used causality-in-quantile to reach a similar conclusion. There is also agreement with 

the VECM analysis of the study of Joseph et al. (2014) but disagreement with the 

frequency domain analysis of the same study. Furthermore, there are contradictions 

with Cagli et al. (2020) who found bidirectional causality under the Diks and 

Panchenko (2006) approach. 

DAX30.  The German DAX30 was examined considering the spot value and the first 

and second listed for delivery futures contracts. A long-run equilibrium relationship 

exists for both pairs (table 13), however spot prices appear to aggravate deviations (see 

ECTs in table 9(a)). 

Regarding linear short-run dynamics, no causality was detected for the two pairs under 

investigation (table 13). Non-linear testing detected strong and consistent bidirectional 
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causality between spot and futures of both maturities. The results are in contradiction 

with the study of Li (2008) who found a feedback linear relationship using both VECM 

and MS-VECM methods and with the study of Torun et al. (2020) who found evidence 

of futures dominance in high frequencies using wavelet analysis. 

CAC40.  The French CAC40 was investigated considering the spot value and the one 

and two-month futures contracts. Co-integration exists for the pair of spot and front 

month futures (table 13) with the latter leading the former (see ECTs in table 10(a)), 

but no equilibrium relationship was found for the second pair. 

Concerning linear short-run dynamics, pairwise VECMs discovered unidirectional 

causal effects from spot to the second month futures (table 13). Non-linear testing 

detected consistent bidirectional Granger causality for both pairs. The results disagree 

with the study of Torun et al. (2020) who did not find any causal dynamics for CAC40. 

SP500.  The US SP500 was studied using its spot value and the first three futures 

contracts listed for delivery. For all pairs, equilibrium relationships exist in the presence 

of co-integration (table 13), with futures reacting to deviations only for the two first 

pairs (see ECTs in table 11(a)). 

Regarding short-run dynamics, linear testing detected strong Granger causality from 

the second and third futures to spot (table 13). Moving on to non-linear testing, 

bidirectional causality was revealed for all pairs. The results disagree with previous 

studies of Li (2008) and Chen and Zheng, (2008) who spotted futures dominance over 

spot as well as that of Torun et al. (2020) who found spot dominance over futures, all 

of them considering front month futures contracts only. 

Nasdaq100 .  Spot and the first two tradable futures contracts were used for 

investigation of Nasdaq100. Co-integration exists for both pairs (table 13), but as it 

partially happened in the case of SP500, neither spot nor futures tries to correct any 

discrepancies of their long-run relationship (see ECTs in table 12(a)). 

Regarding short-run dynamics, pairwise VECMs detected evidence that futures of both 

maturities Granger cause spot market (table 13). The Diks and Panchenko (2006) 

method revealed a feedback mechanism between spot and futures of both maturities. 
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The big picture of the analysis of the relationship of spot and futures markets for the 

commodities and indices under consideration can be summarized as follows: 

 Firstly, futures markets appear to fulfill their risk management role which is 

crucial for their very survival according to Garbade and Silver (1983) and 

Brorsen and Fofana (2001). The long-run equilibrium relationship in the 

presence of co-integration which qualifies futures markets as adequate hedging 

tools (Ankamah-Yeboah et al., 2017) and implies pricing efficiency (Chen and 

Zheng, 2008; Ankamah-Yeboah et al., 2017)  is confirmed for all pairs, except 

for the cases of the six-month WTI oil and two-month CAC40 futures contracts 

(table 13). According to Silvapulle and Moosa (1999) absence of co-integration 

indicates market inefficiency and rejection of the cost of carry model should be 

associated with the non-stationarity of interest rates and the convenience yield 

included in the model, hence futures of longer maturities are quite likely not to 

be found co-integrated with the spot market. Besides, for the case of WTI oil, 

Wang and Wu (2013) argue that futures of longer maturities are preferred by 

hedgers and oil project stakeholders who will react conservatively to non-major 

new information. 

 Secondly, in the long-run, futures markets lead spot markets regarding 

commodities as shown by the coefficients of ECTs (tables 5-8(a)), while this 

leading role is not clear in the case of financial indices (tables 9-12(a)).  

Two peculiarities occurred concerning equilibrium deviations. In the case of DAX30, 

the spot market exaggerates deviations while futures correct them and follow the spot 

(see ECTs in table 9(a)). According to Bohl et al. (2011), such abnormal exaggerations 

may happen due to momentum effect. This derives from the fact that the underlying 

index cannot be directly traded and some stocks participating in DAX30 may continue 

to raise due to momentum anomaly. Tswei and Lai (2009) advocate that ECT 

coefficients may have the same sign as a result of over-reaction to news among 

investors in the less informative market or under-reaction among investors in the more 

informative market. 

Also, in the case of the last bivariate and the multivariate VECMs for SP500 and both 

bivariate VECMs for Nasdaq100, neither the spot nor the futures comply with the long-

run relationships (see ECTs in tables 11(a-b) and 12(a)). This ‘’indifference’’ for 
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equilibrium, when it exists, by both spot and futures could be justified if the basis does 

not override a certain threshold which would trigger arbitrage trading (Huang et al., 

2009). 

 Thirdly, as far as short-run causal dynamics are concerned (table 13), the results 

are mixed in overall. For WTI oil, it seems that there are bidirectional or 

unidirectional from spot to futures causal channels, but futures appear to 

dominate the spot in the non-linear context excluding the feedback relationship 

of the first pair. For the rest of commodities, futures generally lead the spot both 

linearly and non-linearly with the exception of bidirectional causality for the 

first pair of natural gas and for the last pair of silver. 

Regarding financial indices, there is evidence that spot linearly leads the second 

futures contract for CAC40, while futures appear to linearly dominate the spot 

for the cases of SP500 and Nasdaq100. However, the non-linear method reveals 

bidirectional lead-lag relationships for all pairs and all indices. 

It is noteworthy that the bivariate linear causal relationships change 

significantly for almost all assets when futures contracts of different maturities 

are studied altogether in multivariate models, particularly for commodities (see 

multivariate parts of tables 5-12(c)). Hence, any pairwise dynamics should be 

approached with caution in the absence of effects of other variables. 

Taking into consideration both linear and non-linear tests and with the exception of 

gold and partially gas and silver whose futures Granger-cause the respective spot 

markets in most pairs, it appears that the hypothesis of Kawaller et al. (1987) is 

confirmed. Neither the spot nor the futures market leads consistently, as a set of new 

information is not integrated in the markets thoroughly but partially and gradually, for 

investors, both in the spot and futures markets, filter new information with respect to 

their positions creating bidirectional lead-lag relationships either linearly or non-

linearly. Regarding gold, gas and silver, it can be argued that the futures leading role in 

informational transmissions and price discovery can be attributed to speculators who 

prefer to trade in futures markets due to lower transaction costs, availability of short 

selling, less strict regulations and their indifference for the underlying commodities. 

For medium six-month or longer maturities contracts, it could be the hedgers who 

provoke changes in futures markets. However, any conclusion at this point should be 

approached with reservation for literature provides several arguments for the futures 
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leading role (see sub-section 1.2.3.3.1) and further investigation of the particular 

markets is needed. Furthermore, Theissen (2012) hypothesis that spot financial indices 

concede dominion to futures due to infrequent spot trading seems not to be confirmed 

as shown by the pairs of all indices examined. Also, for all assets, the predictive power 

of causal channels spotted can be theoretically exploited by investors devising a suitable 

trading strategy. However, practical obstacles, such as transaction costs, availability of 

short-selling, liquidity and slippage time have to be overcome if such a strategy is to be 

realized. 

Finally, it is notable that with the Diks and Panchenko (2006) approach, very strong 

and consistent non-linear causal dynamics were revealed in both directions. According 

to Abhyankar (1996), non-linear effects can be induced by non-linear transaction costs, 

the market microstructure and noise traders. Wilson et al. (1996) argued that periods of 

extreme volatility can add up to non-linearity. Considering that speculation creates 

volatility and it also includes irrational trading, it can be argued that speculators 

provoke non-linear causality. Galeotti et al. (2003) underline that price inelasticity and 

market defragmentation are the main reasons for asymmetric transmissions in the 

energy sector, while Dergiades et al. (2018) notice the role of weather conditions in 

non-linear dynamics in the natural gas market. Furthermore, Arouri et al. (2013) 

mention industry evolutions and economic crises as potential sources of non-linear 

dynamics for consumption commodities, seemingly due to the shocking innovations 

those sources are accompanied with.  
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Conclusion 

This work was concerned with the causal dynamics between spot and futures markets, 

dynamics which can provide insight into the price discovery and market efficiency 

concepts. The first chapter provided the basics of derivatives, including forwards, 

futures, options and swaps, and the interrelations between the spot and futures markets 

from a theoretical perspective with priority given to the lead-lag relationships. 

Additionally, the relevant to the topic academic literature was reviewed, primarily that 

of the last decade. In the second chapter, the empirical investigation was conducted. 

Daily data, from 4 January 2010 to 4 November 2019, for four commodities, that is 

WTI oil, natural gas, gold and silver and for four financial indices, that is the DAX30, 

CAC40, SP500 and Nasdaq100 were collected for this purpose. For each asset, futures 

contracts of various maturities were matched in pairs with the corresponding spot price, 

as well as altogether in multivariate models. Granger causal effects were tested in two 

steps. In the first step, linear Granger causality was investigated with the appropriate 

VAR/VEC models. The filtered residuals were also tested for linear causal effects to 

ensure that no linear dynamics had remained. In the second step, non-linear Granger 

causality was investigated with the Diks and Panchenko (2006) test applied to the 

previously purified residuals. 

In accordance with the big picture of literature review, results were mixed, as spot and 

futures markets appear to behave uniquely for each asset. Long-run equilibrium was 

confirmed for almost all pairs. Regarding Granger causality and commodities, linear 

examination revealed that futures lead spot market in almost all pairs of gas, gold and 

silver, but there is either spot dominance or bidirectional lead in the pairs of WTI oil. 

The non-linear approach further enhanced the leading role of futures for all 

commodities, but a few non-linear feedback mechanisms were also revealed. 

Regarding financial indices in the linear context, no causality was detected for the 

DAX30, while evidence was found that spot partially leads futures for the CAC40 and 

that futures lead spot for the SP500 and Nasdaq100. Under the non-linear approach 

significant bidirectional causal channels emerged for all pairs and all financial indices, 

as linear tests underestimated the causal transmissions and predictive power of both 

spot and futures markets over each other. 
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