
University of Macedonia

Master of Science

Department of Applied Informatics

Jason Logo

A configurable graphical environment for Multi-Agent-Systems (MAS)

simulation based on JaCaMo framework.

Master thesis

Of

Panagiotis Despotis

Thessaloniki, 06/2018

2

3

JASON LOGO: A CONFIGURABLE GRAPHICAL ENVIRONMENT FOR

MULTI-AGENT-SYSTEMS (MAS) SIMULATION BASED ON JACAMO

FRAMEWORK.

Panagiotis Despotis

Software Engineer Bachelor’s degree, TEI of Central Macedonia, 2013

Master Thesis

Submitted for the partial fulfillment of its requirements

POSTGRADUATE TITLE OF EDUCATION IN APPLIED INFORMATICS

Επιβλέπων Καθηγητής
Σακελλαρίου Ηλίας

Εγκρίθηκε από την τριμελή εξεταστική επιτροπή την 26/06/2018

ΣΑΚΕΛΛΑΡΙΟΥ ΗΛΙΑΣ ΡΕΦΑΝΙΔΗΣ ΙΩΑΝΝΗΣ ΧΑΤΖΗΓΕΩΡΓΙΟΥ
ΑΛΕΞΑΝΔΡΟΣ

...................................

ΔΕΣΠΟΤΗΣ ΠΑΝΑΓΙΩΤΗΣ

...................................

4

Περίληψη

Η προσομοίωση είναι η μίμηση μιας διεργασίας του πραγματικού

κόσμου ή ενός συστήματος. Οι προσομοιώσεις πολυπρακτορικών

συστημάτων (Multi-Agent systems - MAS) στοχεύουν στη δοκιμή της

συμπεριφοράς και των αποτελεσμάτων των αλληλεπιδράσεων μεταξύ

αυτόνομων προγραμμάτων (πρακτόρων) κάτω από ένα κοινό

περιβάλλον ως σύστημα. Μια γραφική απεικόνιση του περιβάλλοντος

μπορεί να βοηθήσει στην καλύτερη κατανόηση των αποτελεσμάτων

μιας προσομοίωσης. Σκοπός της παρούσας εργασίας ήταν η

δημιουργία ενός γραφικού διαμορφώσιμου περιβάλλοντος

προσομοίωσης για πολυπρακτορικά συστήματα με τη χρήση της

γλώσσας Jason (AgentSpeakL) ως κύρια γλώσσα προγραμματισμού

των πρακτόρων του συστηματος. Για να το επιτύχουμε, συνδυάσαμε

δύο τεχνολογίες. Το JaCaMo και την NetLogo. Το JaCaMo είναι ένα

framework που μας παρέχει τη γλώσσα Jason για τον προγραμματισμό

των πρακτόρων, το Cartago ως το πλαίσιο για τη δημιουργία

αντικειμένων (εργαλείων) που θα χρησιμοποιηθούν από τους

πράκτορες της Jason και το Moise, το οποίο χρησιμοποιείται για την

οργάνωση, το σχεδιασμό και τη μοντελοποίηση των πρακτόρων. Από

την NetLogo δανειστήκαμε την ιδέα ενός περιβάλλοντος

προσομοίωσης 2D αποτελούμενου από κελιά "μπαλώματα" στα οποία

πάνω από αυτά τα κελία λειτουργούν οι πράκτορες "χελώνες". Επίσης

κάποια χαρακτηριστικά από το UI της NetLogo.

Λέξεις κλειδιά: Προσομοίωση, πολυπρακτορικά συστήματα,

γραφικό περιβάλλον, απεικόνιση, JaCaMo, Cartago, Jason, NetLogo

5

 Abstract

Simulation is the imitation of the operation of a real-world process or

system. Multi-Agent systems (MAS) simulations are aiming on testing

the behavior and the results of the interactions between autonomous

programs (agents) under a common environment as a system. A

graphical representation of the environment can help for better

understanding the results of a simulation. The aim of the present work

was to create a graphical configurable simulation environment for

Multi-Agent-System (MAS) using the Jason (AgentSpeakL) language

as the primary language for programming the agents of the MAS. In

order to achieve this we combined two technologies. The JaCaMo

framework and the NetLogo. JaCaMo provided us the Jason language

for programming the agents, Cartago as the framework for creating

artifacts (tools) to be used by the agents in Jason and Moise which it

is used for organize, planning and modeling the agents. From the

NetLogo we borrowed the idea of a 2D simulation environment

consisting of “patches” which on top of them are operating agents

“turtles”, also some futures from the UI of the NetLogo.

Keywords: Simulation, Multi-Agent systems (MAS), JaCaMo,

Graphical environment, Java, Swing

6

Contents

1 Introduction and Motivation 8

2 Related Work 10

2.1 Agents 10

2.1.1 Agent-based model (ABM) 10

2.1.2 Belief-desire-intention model (BDI) 11

2.2 Simulation 11

2.2.1 BDI - ABM simulations 11

2.3 Jason 12

2.4 CArtAgO 13

2.5 JaCaMo approach 15

3 Analysis and Design 16

3.1 JLogo Environment 16

3.1.1 JLogo patch 17

3.1.2 JLogo agent 18

3.2 JLogo Tools 19

3.2.1 JLogo Artifacts 19

3.2.2 JLogo Internal Actions 20

4 JLogo implementation 24

4.1 Jason Layer (Operational agent templates) 25

4.1.1 Observer Agent 25

4.1.2 Motion Agent 29

4.1.3 Stationary (Patch) Agent 30

4.2 Cartago layer (JLogo Artifacts) 32

4.2.1 World Artifact 32

4.2.2 Sense Artifact 34

4.2.3 Interaction Artifact 35

4.2.4 Environment Artifact 38

4.3 JLogo Model 41

4.4 JLogo GUI 41

7

4.5 JLogo Simulation View 41

5. Example Models in JLogo 42

5.1 Lunar Lander 42

5.2 Burning forest 49

5.3 The Drone waiter 53

5.4 Tic-Tac-Toe 61

6. Conclusion and Discussion 65

6.1 Limitations 65

6.2 Future extensions 66

References 67

8

1 Introduction and Motivation

 Simulation of Multi-agent systems (MAS) is an important tool in research and

development, as it allows on the one hand the modeling of complex systems and, on the

other, the extensive testing of the design of a MAS. In addition, it allows the

familiarization among the programming languages of a MAS. Furthermore, the graphical

representation of a simulation which is our main focus is essential especially when it is

used for education purposes for better understanding. NetLogo [1] it is a tool which

provides the environment and capabilities for creating a MAS graphical simulation but it

lacks in the use of a proper agent-based programming language. On the other hand, there

are powerful agent programming languages, such as Jason [2] which lack any simulation

visualization facilities. Unfortunately, up to date, there is not a complete set which

provides the proper tools for creating a configurable graphical simulation with the use of

a proper agent-based language.

 NetLogo [1] is a well-suited platform which provides a multi-agent programming

language and modeling environment for simulating complex ‘emergent phenomena’.

Developers (modelers) can program a vast number of independent autonomous entities

(agents) which all can operate concurrently, in order to monitor the behaviors between

these entities (agents) in a micro-level scope and also to unravel the patterns that are

emerged from their interactions over time. It was designed by Uri Wilensky and it is a

powerful tool which is used for research and education purposes. In NetLogo [1] agents

are called “turtles” and they operate over a grid of “patches”. Turtles and patches are

programmable agents which all can interact with each other and perform multiple tasks

concurrently. Modelers are able to shape the turtles and patches by changing the view,

color and size for creating a visualized environment and study mathematical abstractions

or play games. NetLogo [1] also includes a third agent type, the “observer”. There is only

one observer. Observer is able to issue instructions to the turtles and patches.

 In view of that, having as reference the NetLogo [1], we created JasonLogo (JLogo)

a project which it is developed under JaCaMo [3] platform and Jacamoide [18] (JaCaMo

eclipse plugin), aiming to provide the proper set of tools for creating a configurable

graphical simulation environment with minimum use of Java code. Adopting the main

9

concept of NetLogo [1] having “turtles” and “patches” as the main agent types, which in

our implementation “turtles” are motion agents and “patches” the stationary one

alongside with the “observer” agent which will be the instantiator and the coordinator

agent in a simulation. Using Jason [2] as the programming language, which is the

implementation of AgentSpeak, the primary language for programming logic-based

agents based on BDI [6] architecture, Cartago [4] which is the infrastructure for creating

artifacts (computational entities) which can be used by the agents as tools and Moise [7]

which it is used for organize, planning and modeling the agents. The three technologies

are the JaCaMo [3] platform, and together they aspire to be a practical solution to

programming a MAS. Using JaCaMo [3] platform for creating a framework which will

provide similar tools like NetLogo [1] will allow the development and study of MAS

simulations and also it will contribute significantly to the training of developers who first

come into contact with the field of MAS.

 The rest of this thesis is organized as follows: Chapter 2 presents the related work,

whereas chapter 3 presents the Analysis and design, follows the chapter 4 with the

implementation and chapter 5 with example models in JLogo. Finally, chapter 6 presents

the conclusions of this thesis.

10

2 Related Work

 In this section we are going to brief present some of the basic ideas and tools

which are used for programming and modeling Multi-Agent Systems (MAS)

simulations.

2.1 Agents

 The definition of an agent is a person who acts on behalf of another person or

group. An agent can be a person, a machine, a piece of software or a variety of other

entities. In abstract an agent is generally regarded to be an autonomous entity that can

interact with its environment. In other words, it must be able to perceive its

environment through sensors and act upon its environment with effectors.

 A software agent is a computer program that acts for (behalf) a user or other

program in a relationship of agency (person or group). A software agent can interact

with other agents or humans like chat-bots. A major category of software agents are the

intelligent agents (IA) which have capabilities of process natural language,

understanding and speech. In our days a famous example of the use of intelligent agents

are the personal assistants (see Siri [14], Google assistant [15], Cortana [16], Alexa [17]

etc.) which are development by all the major software companies in the world.

 To design a software agent various model types have been introduced. Two major

model types are the Agent-based model (ABM) [5] for modeling reactive agents and

Belief-desire-intention model (BDI) [6] for modeling conductive agents.

2.1.1 Agent-based model (ABM)

 Agent-based model (ABM) [5] is the technique for modeling the logic of an agent.

Modelling the logic of the decision make of an agent usually is very simple, it is

depending on the current state of the environment, which means that the agents are

"reacting" with the environmental changes. ABMs are used for simulate various

scenarios of real world for studying and testing their results. In Multi-Agent system

simulations there are several autonomous agents operating at the same time

concurrently, studying the interactions and the patterns which emerged over time. In a

MAS, agents are based on ABMs, they may have the same logic e.g. they have the same

11

ABM or a different one depending on the agents’ role. As successful ABMs are for

modeling simulations about a real world process they are lack in social simulations

which there is the need for simulating a human like behavior.

2.1.2 Belief-desire-intention model (BDI)

 The belief-desire-intention (BDI) [6] model it is used for programming intelligent

agents. These cognitive agents are based on a simplified human being behavior. Like

humans which are based on their knowledge (which may be false) about the

environment to make decisions relative to select what is the best plan to follow for

achieving their desires, these agents also have some information of the world as beliefs,

depending on these beliefs they try to select the best plans (intentions) to execute to

achieved their goals (desires).

Characteristics of a BDI model are the following:

 Beliefs: Is the information which the agent knows about the world and itself. A

belief is not necessary to be true. Also, the belief base can be constantly updated.

 Desires: Is the goals which an agent wants to achieve.

 Intentions: Is the plans which agents needs to complete in order to achieve its

goals.

2.2 Simulation

 The definition of a simulation is the imitation of a process of the real world or a

system. Simulations are used for better understanding how a process evolves over time.

To be able to simulate something a model is required, in which all the characteristics,

operations and behaviors of the system are defined. The evolution of the model over

time is described as the simulation of the system.

2.2.1 BDI - ABM simulations

 Both BDI and ABM models have their advantages and their disadvantages in

simulations, for instance BDI models are very effective on decision making for selecting

the right plan to execute depending on their beliefs about the environment and ABMs

are very effective on executing it. There are several successful paradigms in BDI - ABM

integration. In the work of Luna Ramirez and Maria Fasli [9] we can see the same idea

12

with our own but with a different approach. They integrate the NetLogo in Jason by

using the capability of Jason having a custom environment. They create the

environment and keep the simple reactive agents in the level of NetLogo, and the BDI

agents in both Jason and NetLogo. A translator is implemented in java converting the

Jason literals to NetLogo commands and vice-versa. This approach needs to have a good

knowledge of Jason, NetLogo and Java as the simulation runs in the two platforms.

Furthermore, a more abstract approach is the work of the work of Singh, D., Padgham,

L. and Logan, B. [8], they have created a framework which intends to combine different

types of BDI – ABMs platforms. Also, this approach needs to have a good knowledge of

the platforms which are combined and Java.

 We think that the above approaches are especially complex to be implemented by

the students who first come contact with the field of MAS.

2.3 Jason

 Jason [2] is the implementation of the AgentSpeak, an abstract computer

programming language for developing Multi-agent systems based on the BDI [6]

architecture. Jason [2] is used for programming cognitive agents in a multi-agent

system. It is developed with java, which that means it can run anywhere that java can.

The source files of the agents in Jason are written in the .asl files. In Jason you can

declare beliefs, plans and initial goals of an agent in the source file.

An example of the model of an agent in Jason

//Belief base

sky(blue).

sun(bright).

//Initial goals

!how_is_the_day

//Plans

+!how_is_the_day: sky(S) & sun (B)

<-

 .print(“The sun is ”,B,“ and the sky is”,S).

13

 In the above example the agents have some beliefs about weather condition. The

desire of the agent is to print a message about the weather condition. To achieve this

calls +!how_is_the_day plan.

2.4 CArtAgO

 Common Artifact infrastructure for Agents Open environments (CArtAgO) [4] is

a framework which provides the infrastructure for creating tools and resources to be

used by the agents to achieve their tasks and goals. CArtAgO it is based on Agents &

Artifacts meta-model for modeling Multi-Agent systems. Artifacts are small

programmable pieces of the system. The artifacts can be shared between the agents of

the MAS.

 In the following we are going to brief explain some of the basic functionalities of a

CArtAgO artifact integrated Jason.

Example of a CustomArtifact class.

public class CustomArtifact extends Artifact {

 private JasonLogoModel model;
 private String title;

 public void init() {
 this.title = "Default title";
 defineObsProperty("count",0);
 }

 public void init(String title,int count) {
 this.title = title;
 defineObsProperty("count",count);
 }

 @OPERATION
 public void count(int i) {
 ObsProperty belief = getObsProperty("count");
 belief.updateValue(0,belief.intValue(0)+i);
 }
}

 Artifacts are java classes developed by the modelers to provide the necessary

resources or operations to the agents. The basic class which an artifact is extending is

the cartago.Artifact, there are also other types of Artifacts but in the moment will we

stick with the basic one. The initialized methods of an artifacts are the init methods, like

14

the constructors in the java classes modelers can have as many init methods with

different parameters as they need.

 Class methods with void return parameter and annotated by @OPERATION are

operations which can be called by the agents. Methods parameter corresponds to

operations parameters.

 Observable property is a tuple set with a functor and multiple parameters. In the

above example the observable’s property name is “count” and value is a single integer

argument. To define an observable property, it is achieved by the defineObsProp

method of an artifact. Furthermore, artifact’s observable properties are automatically

added in agents’ belief base when the have focus the artifact. To retrieve an observable

property, it is achieved by the getObsProperty("count").

 Creation of artifact it is achieve by the use of the makeArtifact operation of the

workspace artifact (All agents by default are join the default workspace). The

parameters of the makeArtifact operation are

 1st the name of the artifact

 2nd the class of the artifact

 3rd a list of objects which are relative with the init methods

 4th a feedback parameter which returns the artifact object

makeArtifact(c1,"example.artifact.CustomArtifact",["Title",1],W);
focus(W);
makeArtifact(c2,"example.artifact. CustomArtifact ",[],E);
focus(E);

 An agent can focus an artifact by using the focus operation of the workspace

artifact. By focusing an artifact, the agent gets as beliefs all the observable properties of

the artifact and can use its operations.

An operation can be called by the method name of the artifact.

E.g. count(1)

15

2.5 JaCaMo approach

 JaCaMo [3] is a framework which it is used for Multi-Agent Programming.

Combines Jason as the programming language, CArtAgO [4] for programming

environment artifacts and Moise [7] for programming Multi-Agent organisations. All

these threes technologies compose the JaCaMo.

 JaCaMo it based on a specific programming model named JaCa. In JaCa a MAS

is designed and programmed as a set of agents which work and cooperate inside a

common environment.

 JaCaMo has a configuration file which in it, it is defined the initial state of the

MAS. Agents, workspaces, artifacts and organisations can pre-defined in the jcm file.

An example of jcm file.

mas test {
 agent bob : bobSource.asl {
 focus:wsp.customArtifact
 }
 workspace wsp {
 artifact customArtifact: example.CustomArtifact(“Test”,1)
 }
}

 In the configuration file a workspace with name “wsp” is created, in the

workspace an artifact with name “customArtifact” is created. Also, an agent named bob

is created with Jason [2] source file the “bobSource.asl” which has join the workspace

“wsp” and focused the artifact “customeArtifact”.

example.CustomArtifact(“Test”,1) The parameters are relative to which init method will called
on the instantiation of the artifact.

16

3 Analysis and Design

 JLogo attempts to combine the ease use of NetLogo [1], with the programming

power of Jason [2] platform. In order to achieve this, we followed closely the successful

NetLogo [1] paradigm in simulation. Thus, it was necessary to implement a grid world,

where each cell is a patch location and in these patches the agents can move and

operate. Furthermore, JLogo provides a set of sensors and operations which can be used

by the agents to “sense” and “alter” the simulation environment. Also provides a

graphical environment which except of the simulation view displays information about

the simulation configuration, provides graphical components for controlling the

simulation speed and when the simulation starts. The graphical environment can be

altered by the developers by adding extra graphical components such as buttons, fields

etc. and bind them with an internal agent action. Furthermore, the user is able to

interact with the simulation view by click in the cells of the grid.

3.1 JLogo Environment

 JLogo environment is a grid-based environment consisting of tiles, called patches.

A patch is a grid location. In the graphical simulation environment two types of agent are

operating, the motion and the stationary. The motion agents can move and navigate over

the grid of “patches” in the world. The stationary agents operate on a “patch” location, it

cannot move, yet it can interact with other motion and stationary agents. Also, there is a

third type of agent the “observer” which is responsible for the instantiation of world and

coordinate the other agents.

 The size of both the simulation environment and the patches are configurable on

the instantiation of the environment by the observer agent. In the simulation view the

starting point of any object (patch or agent) is the top left corner including the simulation

view, also the orientation is upside down. The view of the motion agent is render in the

center of the agent position for better representation on display [Figure 1].

17

3.1.1 JLogo patch

 A “patch” in JLogo environment is a position of the grid model. Patch has two main

properties.

 The location in the grid. Is Cartesian coordinate location which every point cannot

be less than zero and greater than gridSize [0, gridSize).

 The color of the patch. The default color of a patch is black.

 One and only stationary agent should operate in a patch location. On the other

hand, there are no restrictions on how many motion agents can be in the patch location.

A patch location can be manipulated or “sensed” by other agents through Cartago artifacts

and Jason internal actions, as it is going to be discussed later. The main artifact which is

responsible for manipulate a patch location is the EnvironmentArtifact.

Figure 1: JLogo grid environment

0 1 2 3 4 5 6 7 8 9

0

1

2

3

9

8

4

5

6

7

X

Y

18

3.1.2 JLogo agent

 In JLogo there are three types of agents. The motion, the stationary and the

observer agent.

Motion agent (turtle):

 The motion agent (“turtle”), can move and navigate in the simulation environment,

interact with other “turtles” and “patches” and share beliefs.

The main properties of a motion agent are the following:

 Id: The id of the agent. Is unique for every

agent and it is the same the same with the id

that the agent has in the Jason level.

 Location: The absolute pixel location of the

agent in the environment.

 Patch Location: The patch location of the

agent

 Breed: The type of the agent

 Direction: Direction of the agent in the 2D

model in degrees.

 Speed: How many pixels agent will be moved with one step (Default:1)

Also an agent has display properties as:

 Render size: The render size of the agent

 Render image: An image which is rendered instead of the default shape of the agent

 Render color: The color of the agent

 Visibility: Defines if an agent is it rendered on the simulation view

 The position of the agent in the world model is the top left corner and the direction

is upside down following Java’s swing orientation [Figure 2].

 The default render view of a motion agent is the oval shape, but this can change

through the EnvironmentArtifact and Interaction artifact assigning an image to the

specific agent.

180°

270°

0
0

Agent 0°

90°

Figure 2: Agent model

19

Stationary agent (patch):

 The stationary agent is a “patch” agent, which operates over a grid location. Only

one “patch” agent can operate at the same time over a grid location. A patch agent cannot

move in the environment, however can interact with other motion and stationary agents.

Also, can share beliefs, spawn new agents and manipulate the environmental state. A

patch agent extends the properties of a patch location by adding an id.

Properties of a “patch” agent.

 Id: The id of the agent is unique and it is the same with the id of agent in the Jason

level.

Observer agent:

 Observer is the instantiator of the JLogo simulation environment. A single instance

of this type of agent should exist in a JLogo simulation. The declaration of the observer it

is pre-defined in MAS configuration file (jmc). In most cases it will be responsible to

create the initial world environment and spawn the players (agents) of the simulation.

Observer does not have a physical location in the world, however can edit the

environment, spawn or kill agents and patches, share beliefs and manipulate other agents.

Also can play the role of the coordinator between the agents when this is necessary.

3.2 JLogo Tools

 To provide agents the capabilities to navigate, manipulate and sense the

environment we create the proper tools through Cartago Artifacts and Jason Internal

Actions.

3.2.1 JLogo Artifacts

 Four basic artifacts have been introduced which can be focused by the agents to

achieve their goals depending on their plans and type.

 WorldArtifact: It is responsible for creating the model and GUI of JLogo. Also,

can “listen” the events of the UI such as button clicks, speed sliders changes etc. A single

instance of this artifact should be created in a JLogo simulation. The instantiation and

operation of this artifact should be done only by the observer agent.

20

 EnviromentArtifact: Provides the operations for add and remove agents and

patches from the environment. It can be focused by any type of agent. Many instances of

this artifact can be created depending the concurrent use by the agents.

 InteractionArtifact: Provides the operations for the motion agent to be able to

navigate in the simulation environment and alter their display properties. Every motion

agent must have its own unique interaction artifact.

 SenseArtifact: Provides the operations to share beliefs between the agents who

have focus the artifact. It can be focused by any type of agent.

Focusing the artifact automatically adds to agents the following beliefs:

 worldSize: The size of the world in pixels E.g. (600).

 gridSize: The grid size of the world in pixels E.g. (100).

 patchSize: The patch size E.g. (6)

 simSpeed: Simulation speed it is updated from the slider on the GUI

 tick: A step counter.

3.2.2 JLogo Internal Actions

 Internal actions are an interface between the Jason layer and JModel. Most of

them are used as ‘sensors’ operations which can ‘read’ the environmental state and can be

used as guards or operations in the agent’s plans. Internal actions are categorized under

various prefixes depending the actions that performs. Some internals actions can be

operated as validators on the agent plans.

 Validator: In a validator internal action, which employs the classic logic predicate

semantics, i.e. can have its arguments partially instantiated. For example

 breedOf (agId,B) is an action that will return the breed of agent (agId) in the “output”

parameter B, but if the action is called with a ground value in parameter B, then it will

compare if the breed of agent matches the value of B and succeeds or fail respectively.

Internal actions that are related with information regarding an agent are called by adding

the ‘agent.’ prefix.

 breed (agId, B): Returns the breed of the agent(agId). [Validator]

21

 color (agId, C): Returns the color of the agent(agId). [Validator]

 size (agId, S): Returns the szie of the agent(agId). [Validator]

 visible (agId, B): Returns the visibility of the agent(agId). [Validator]

 dir (agId, D): Returns the direction of the agent(agId). [Validator]

 pos (agId, X, Y): Returns the pixel location of the agent(agId). [Validator]

 patch (agId, X, Y): Returns the patch location of the agent(agId). [Validator]

 nextLocation (agId,X,Y,S): Returns the patch location of an agent if performs a

number of steps(S) forward. [Validator]

 hasPatchesAhead(agId,C,W,S): Returns true if an agent (agId) moving (W)

number of steps from its current position and direction a speed (S optional) and

step over a patch with the specific color(C). Else returns false [Validator]

Internal actions that ‘sense’ the environment are under the ‘ask.’ prefix.

 agentsOf (B, L): Returns all agent ids in a list (L) which are of the specific breed(B)

 agentsOn (X, Y, L): Returns all agent ids in a list(L) which are in a specific patch

location[X, Y].

 countPatchesOf(C,T): Counts and returns the number of patches of the specific

color(C). [Validator]

 nextPatchTo(X,Y,D,X2,Y2): Returns the neighbor patch location (L2[X2,Y2]) of a

current patch location(L1[X,Y]) and direction(D). [Validator]

 firstPatchOf(X,Y,D,C,X2,Y2): Returns the first patch location(L2[X2,Y2]) with

color (C) of a patch location(L1[X,Y]) and direction (D). [Validator]

 inWorld (x, y): Action succeeds or fails depending of the given patch Location [x,

y] if exists in the grid world. [Validator]

 isNeighbor (X1, Y1, X2 ,Y2): Action succeeds or fails depending if the two given

locations(L1[X1, Y1], L2[X2, Y2]) are neighbors. [Validator]

 patchesOf(C,L): Returns a list(L) of patches of a specific color(C).

 patchColor(X,Y,C): Returns or validates the patch color. If you pass feedback

parameter returns the patch colors else validates the color of the patch if matches

the given one. [Validator]

22

 patchNeighbour(X,Y,L): Returns the neighbor patches of the current patch

location in a list (does not include diagonal patch locations).

 patchAgent(X,Y,N): Returns the patch agent id of a patch location if exists.

[Validator]

 patchAgentPos(N,X,Y): Returns the patch agent position. [Validator]

General internal actions that perform a simple action are under the general ‘jia.’ prefix.

 distanceTo (x1, y1, x2, y2): Returns the distance between two locations (L1[x1, y1],

L2[x2, y2]). [Validator]

 validatePos (X1, Y1, X2, Y2): Action fails or succeeds depending if the two locations

(L1[X1, Y1] , L2[X2, Y2]) are equals. [Validator]

 random (P,R): Returns a random number (R) between [0,r) range.

 Internal actions alongside with the Cartago artifacts operations which we are going

to present later in this thesis, can be used by the agents to senses the environment. It

should be noted that, Cartago artifact operations cannot be used as guards in Jason

agent’s plans.

3.3 JLogo User interface

 Figure 3 it is shows JLogo user interface

after running the JLogo JaCaMo project.

The main features:

 Simulation view displays the graphical

simulation

 Simulation speed slider controls the

speed of the simulation

 Start button triggers the observer agent

start plan.

 Ticks shows the current ticks value

 On the bottom it is displayed

information about the graphical Figure 3: JLogo’s interface with lunar landing simulation example

23

environment such as World size in pixels, Grid size, Patch size in pixels and

simulation number.

It should be noted that, the development interface is the Eclipse IDE with the use of

Jacamoide plugin.

24

4 JLogo implementation

 JLogo is a JaCaMo [3] project developed under Jacamoide [18] which intends to

extend the capabilities of Jason by providing the proper tools in the Jason [2] layer so the

agents can interact, sense and navigate in a 2D graphical simulation environment. In

order to be able the agents to “sense” and “alter” the environment we created “operations”

and “sensors” which are exposed in Jason by Cartago [4] artifacts and Jason [2] internal

actions (jia). The environmental state is rendered by the simulation view. The simulation

view and the other UI components are rendered in the JLogo GUI window [Figure 4].

 Even though Jason [2] provides some components (GridWolrdView,

GridWorldModel etc.) for creating graphical simulations, the use of them requires the

user to resort to java for their implementation. JLogo aims, for the students / developers

who first come into contact with the field of MAS to focus only in the Jason [2]

(AgentSpeak) tier for studying and creating their MAS simulations providing a

configurable graphical environment. To achieve this, we use java’s swing for creating the

graphical components. As a JaCaMo [3] project developers can use Eclipse IDE alongside

with Jacamoide [18] plugin to develop their JLogo simulations. Developers / Students

can use JLogo project as their base JaCaMo [3] project for creating 2D graphical

Jason

Agent

template

s

Cartago

Artifacts

JModel

Environ

ment

JLogo

GUI

Renders

the

simulation

view and

GUI

JLogo Internal Actions JLogo Simulation view

JaCaMo

Figure 4: JLogo JaCaMo structure

JaCaMo Project Configuration File (JCM)

25

simulations. They can extend or altered it based on their needs. Automatically a graphical

window will appear rendering the simulation.

JLogo Project file (JCM)

 In JaCaMo, a project such as the JLogo has a configuration file that defines the

initial state of the MAS. In this file, workspaces, agents (Instances, beliefs and focused

artifacts/workspaces), artifacts and organisations are declared. In JLogo we create only

the operational workspace (jlogo) and the Observer agent which will handle all the other

configuration options.

This is a standard JLogo JCM file

mas jasonlogo {
agent observer : observer.asl
workspace jlogo {}
class-path:lib
asl-path: src/agt

src/agt/inc
}

 Developers can extend and alter the JLogo JCM at will, based on their MAS

simulation needs.

4.1 Jason Layer (Operational agent templates)

 In JLogo environment there are three basic roles of agents (observer, motion,

stationary) which can be used in the simulation. In the following we present an agent

template structure for every type of agent in the JLogo.

4.1.1 Observer Agent

 The ‘God’ of the simulation. It is responsible for instantiating the initial state of the

simulation, can create or destroy dynamic agents and patches, sense and alter anything

in the simulation environment. One and only instance of this type of agent should exist in

the JLogo MAS simulation. The instantiation of the Observer agent is pre-defined in the

JLogo JCM file.

26

 The initial plan of the observer is to focus the operational workspace and create the

necessary artifacts for the JLogo simulation.

/* Initial Beliefs */
pool(0). //Artifact pool id
ready(false). //Observer ready flag

/* Initial goals */
!createArtifacts

 The basic artifacts which Observer needs to create for the graphical simulation

environment are the following:

 WorldArtifact: Instantiates the JLogo model and JLogo GUI (The graphical

representation of the MAS)

 EnvironmentArtifact: Provides the tools to edit the simulation environment (Add

or remove agents and patches, alter the patches.

 SenseArtifact: Provides the tools which an agent can use to sense the world and

share beliefs between the agents which have focus the artifact.

For example, the following code:

+!createArtifacts:true
<-
 joinWorkspace("jlogo",_);
 makeArtifact(world,"jasonlogo.artifact.WorldArtifact",["Sim",600,10],W);
 focus(W);
 makeArtifact(env,"jasonlogo.artifact.EnvironmentArtifact",[],E);
 focus(E);
 makeArtifact(sense,"jasonlogo.artifact.SenseArtifact",[],S);
 focus(S);
.

 After the instantiation of the mandatory artifacts, observer is ready to create the

initial environment state. In this state Observer can define motion agents, patch agents

and simple patches.

Internally call signal ‘setup’ is called after the instantiation of WorldArtifact

+setup
<-
 !createWorld
.
+!createWorld

27

<-
 //Create your initial world state here
 //.
 //World state is ready update the observer ready belief to true

-+ready(true);
.
 When the initial environment is created, the observer has completed all the

necessary setup work and it is ready and waiting the user to call the ‘start’ from the

interface by click on start button.

+start:ready(true)
<-
 .print("Ok everyone GO!");
 .broadcast(achieve,observerReady);
.

 One mandatory task of the observer is to create the interaction tools for the

operational motion agents when they request one.

+!requestTool[source(S)] : toolBox(S,T)
<-
 .print("Agent:",S," have requested a tool again!");
 .send(S,achieve,pickupTool(T))
.

+!requestTool[source(S)]
<-
 .print("Agent:",S," have requested a tool");
 !createTool[source(S)]
.

 These tools are used by the operational agents giving them the capabilities to

navigate in the environment.

+!createTool[source(S)] : pool(X)
<-
 -+pool(X+1);
 .wait(100);
 .concat("i",X,I);
 makeArtifact(I,"jasonlogo.artifact.InteractionArtifact",[],_);
 +toolBox(S,I);
 .send(S,achieve,pickupTool(I))
.
 Other major jobs that observer can do is to create and remove agents and patches

from the environment.

 Spawn an agent: To spawn an agent you need to provide a name (Optional), Breed,

agent template path (asl), X patch position, Y patch position, D direction.

28

+!spawnAgent(Agent,Breed,Template,X,Y,D): ready(R) <-
 .print("Creating agent...");
 .create_agent(Agent,Template);
 createAgent(Agent,Breed,X,Y,D);
 if(R) {
 .send(Agent,achieve,requestTool);
 }
.

 Kill an agent: To remove an agent from the environment you must provide the

agent id.

+!killAgent(Agent):toolBox(Agent,T)
<-
 .kill_agent(Agent); //Remove agent from MAS
 removeAgent(Agent); //Remove agent from Model
 lookupArtifact(T,S);
 disposeArtifact(S); //Remove agent Interaction artifact
 -toolBox(Agent,T); //Remove artifact from the toolbox
 .print("Remove ",Agent," and all its tools.");
.
+!killAgent(Agent):true
<-
 .kill_agent(Agent)
 removeAgent(Agent);
 .print("Remove ",Agent,".");
.

 Spawn a patch agent: To spawn agent you must provide patch agent template path

(asl), patch X position, patch Y Position and color.

+!spawnPatch(Template,X,Y,Color): not ask.patchAgent(X,Y,N) & ready(R)<-
 .create_agent(Patch,Template);
 setPatchColor(X,Y,Color);
 setPatchId(X,Y,Patch);
 if(R) {
 .send(Patch,achieve,prepare);
 }.
.

If patch location already has a patch agent on top of it this plan will fail.

-!spawnPatch(Template,X,Y,Color)
<-
 .print("Already exist patch agent on X:",X," y:",Y);
.

 Kill a patch agent: To remove a patch agent from the environment you should

know the patch position.

+!killPatch(X,Y):ask.patchAgent(X,Y,N) <-
 clearPatch(X,Y);

29

 .kill_agent(N);
.

Agent manipulate operations

 Using the capabilities of Cartago [4] to call artifact operations through Jason

without focusing the artifact, the observer can manipulate the other agents. The observer

keeps the Interaction Artifacts names of the motion agents in a list. Having this “toolbox”

only observer can manipulate the motion agents.

E.g. Observer force agent “bob” to move one step forward (operation “fd”).

+!moveBobForward:true <-

 ?toolBox(bob,T);

 lookupArtifact(T,A);

 A::fd;

.

In the example above:

?toolBox(agentId,T) will return agent’s InteractionArtifact name.

lookupArtifact(T,A) will return the InteraxtionsArtifact’s instance.

A::operation calls the operation of artifact (A)

4.1.2 Motion Agent

 Motion agents can be pre-defined in the JCM file or created dynamically by the

Observer or the Patch agents.

 The initial plan of the motion agent is to join the workspace and wait for the

environment to be instantiated.

!join.
+!join : true <-
 joinWorkspace("jlogo",_);
 .print("Hello world. I have join the workspace:jlogo");
.
 When the observer is ready (has finish the creation of the initial world state) should

inform the agents.

+!observerReady[source(observer)]:true
<-
 .print("Request interaction tool from observer.");
 .wait(100);
 !requestTool
.

30

 When observer is ready the agent requests an interaction tool (artifact) from the

observer so can get the capabilities to navigate in the world.

+!requestTool:true
<-
 .send(observer,achieve,requestTool);
.
 Observer informs the agent that the tool is ready. Agent focus the interaction

artifact which it was made for it. Every interaction artifact is unique for every motion

agent. In this state motion agents can focus other shared artifacts such as the Sense

artifact.

+!pickupTool(T)[source(observer)] : true
<-
 lookupArtifact(T,I);
 focus(I);
 lookupArtifact(sense,S);
 focus(S);
 !prepare
.

 After the motion agent has picked up its tools, calls the ready operation of the

interaction artifact to get as beliefs its current state. The initial beliefs added to the agent

are world grid Size, patch position, pos pixel position, breed, direction.

+!prepare:true <-
 .wait(200); //Wait a bit for cartago artifacts to be focused
 ready;
 !prepared
.

 After this step agent is prepared and ready to achieve his goals and plans.

+!prepared:true
<-
 .print("I have picked up my tool and I am prepared for action.");
.

 From there developers can add agent’s goals and plans to start the operation of the

motion agent.

4.1.3 Stationary (Patch) Agent

 This agent is the ‘Operational patch’, i.e a location with a behavior that allows to

model complex environments. It is placed in a patch location, it is stationary but can

interact with the other agents, including spawning new agents and patches.

31

 The initial plan of the patch agent is to join the workspace and wait for the

environment to be instantiated.

!join.
+!join : true <-
 joinWorkspace("jlogo",_);
 .print("Hello world.I have join the workspace:jlogo");
.

 When the observer is ready (have finish the initial world state) should inform the

agent.

+!observerReady[source(observer)]:true
<-
 .print("Observer is ready");
 !prepare
.

 Patch agent is not a motion agent, so it is not required by the observer to create an

interaction artifact. The artifacts which a patch agent needs is the Environment and sense

artifacts.

+!prepare:true <-
 lookupArtifact(env,E);
 focus(E);
 lookupArtifact(sense,S);
 focus(S);
 !prepared
.

-!prepare:true<-
 .wait(100);
 !prepare;
.

 After this step the patch is prepared and ready to achieve his goals and plans.

+!prepared:true <-
 .print("I am prepared!");
.

 Patch agents plans for spawning patches and agents is the same as the observer.

From there developers can add their goals and plans to start the operation of the agent.

32

4.2 Cartago layer (JLogo Artifacts)

 All capabilities of the agents to navigate, sense and manipulate the environment

are achieved through Cartago [4] artifacts which is the main interface between the Jason

and JModel.

 Four basic artifacts are predefined in the JLogo providing all the mandatory

operations which can manipulate the simulation environment. Each artifact is

responsible to achieve one purpose only.

4.2.1 World Artifact

 World Artifact instantiates the JModel and JView. It is responsible to manipulate

the graphical window of the simulation. Should be used only from the “observer” and only

one instance should be created in a simulation. The environment initial parameters are

passed through the init method which it is used as constructor by the artifact.

@OPERATION init constructor of the World Artifact

Parameters:

 title: Graphical simulation window title

 worldSize: Simulation view world size (SxS) in pixels

 patchSize: Patch size in pixels

 Example code in Java:

 /**
 * Artifact constructor
 * @param title Simulation title
 * @param worldSize Simulation world size
 * @param patchSize Simulation patch size
 */
 @OPERATION void init(String title,int worldSize,int patchSize) {

 //Create the model
 if(model == null) {
 model = JasonLogoModel.create();
 }
 //Update the world size
 model.updateWorldSize(worldSize, patchSize);

 //Create the view
 view = new JasonLogoGUI(model, title);

 //Hide the setup panel

33

 view.getSetupControlPaneL().setVisible(false);

 //Setup callback listeners
 setupViewListeners();

 //Initialize the world
 execInternalOp("initWorld");

 }

@OPERATION simulation sets the randomizer seed to instantiate the same simulation

 seed: The seed of the randomizer

@OPERATION purge clears the agents and patches from the model.

Parameters: No parameters

Also WorldArtifacts “fires” signals in Jason tier as GUI listeners.

 setup: Fires internally when the instantiation of the GUI is completed.

 start: Fires when the start button is clicked

 patchClicked(X,Y): Fires when the mouse clicks on a patch

@OPERATION enableGrid Enable grid lines

Parameters: No parameters

@OPERATION disableGrid Disable grid lines

Parameters: No parameters

@OPERATION gridColor sets the color of the grid

Parameters:

 color The color of the grid

@OPERATION showMessageDialog shows a GUI dialog with a message

Parameters:

 message An array of variables that will be parsed as a sentence.

34

4.2.2 Sense Artifact

 Sense Artifact operates as a blackboard. Provides the operations which agents can

use for sensing (read) the environment and share (write) their beliefs to all agents which

have focus the artifact. Can be focused from every type of agent.

@OPERATION init Constructor of the Sense artifact declares the belief of gridSize,

worldSize, patchSize, simSpeed and tick counter.

Parameters: No parameters

@OPERATION distanceToAgent Returns the pixel distance between the operational

agent the provided one.

Parameters:

 agentId: The id of the agent will be used to measure.

 distance: FeedBack parameter for returning the distance between the artifact

operational agent and the provided one.

 Example code in Java:

 @OPERATION
 public double distanceToAgent(String agId) {
 //Get the operational agent id
 String operationalAg = this.getCurrentOpAgentId().getGlobalId();
 //Return the distance of the two agents by consulting the model
 return model.distanceToAgent(operationalAg,agId);
 }
@OPERATION addBelief adds a belief to all operational agents.

Parameters:

 beliefName: The name of the belief

 params: The parameters of the belief.

@OPERATION removeBelief removes a belief of all operational agents.

Parameters:

 beliefName: The name of the belief

 params: The parameters of the belief (optional).

35

@OPERATION updateBelief updates a belief

Parameters:

 beliefName: The name of the belief

 params: The parameters of the belief (optional).

@OPERATION tick updates tick counter by one. Also updates the tick belief. Every tick

update it is delayed by an amount of ms. The amount of the wait time is controlled by the

simulation speed slider of the GUI.

Parameters: No parameters

@OPERATION clearTicks clears ticks counters. Also updates the tick belief.

Parameters: No parameters

4.2.3 Interaction Artifact

 Provides the motion and display capabilities for the agents, gives them the abilities

to navigate in the environment by moving, turning etc. and change their appearance by

changing the size, view and visibility. This artifact should be unique for each agent (E.g.

only one agent should operate the artifact).

@OPERATION init: Is the constructor of the artifact.

Parameters: No parameters

@OPERATION ready: Bounds the artifact to the agent. Add to the agent the initial

beliefs. (Patch position, pixel position, breed, dir).

Parameters: No parameters

@OPERATION patch: Set agent grid position.

Parameters:

 X patch X position

 Y patch Y position

@OPERATION pos: Set agent pixel position.

36

Parameters:

 X pixel X position

 Y pixel Y position

@OPERATION dir: Set agent direction.

Parameters:

 D direction [0,360] degrees.

@OPERATION fd: Moves the agents one step forward based on the current pixel location

and direction

Parameters: No parameters

@OPERATION bd: Moves the agent one step backward base on the current pixel location

and direction

Parameters: No parameters

@OPERATION tr: Turn agent right from his current direction.

E.g. Agent direction 50° tr(20) new agent direction 70°

Parameters:

 degrees: the degrees to turn

@OPERATION tl: Turn agent left from his current direction.

E.g. Agent direction 50° tl(20) new agent direction 30°

Parameters:

 degrees: the degrees to turn

@OPERATION rt Turns the agent to a random direction

Parameters: No parameters

@OPERATION speed set agent’s speed

37

Parameters:

 speed: The new speed of the agent

@OPERATION speedup adds speed to the agent’s current speed

Parameters:

 speedup: The amount of speed that will add to agent’s current speed.

@OPERATION moveTowardsPos moves the agent one step towards to the given pixel

position

Parameters:

 X: Position of X pixel

 Y: Position of Y pixel

@OPERATION moveTowardsPatch moves the agent one step towards to the given

patch position

Parameters:

 X: Patch X position

 Y: Patch Y position

@OPERATION message sets a text message to an agent to be rendered on the graphical

potion of the agent.

Parameters:

 Message: The message to be displayed

@OPERATION size sets the size of the agent

Parameters:

 size: the size of the agent

@OPERATION color sets the color of the agent

Parameters:

38

 color: the color of the agent

@OPERATION image sets the image of the agent from assets

Parameters:

 image: the image name

@OPERATION hide make the agent hidden (Still can interact with other agents but it

won’t render)

Parameter: No parameters

@OPERATION show make the agent visible (Still can interact with other agents but it

won’t render)

Parameter: No parameters

4.2.4 Environment Artifact

 Provides the operations for manipulate the environment. Adds or removes agents

and patches.

@OPERATION setPatchColor Set patch color

Parameters:

 X patch X position

 Y patch Y position

 C patch color

@OPERATION setPatchRGBColor Set patch rgba color.

 red from [0,255]

 green from [0,255]

 blue form [0,255]

 a from [0,255]

@OPERATION setPatchId set patch id for patch agents

 X patch X position

39

 Y patch Y position

 ID the id of the patch

@OPERATION clearPatch Clear patch color and patch agent (if there one which

operates on the patch)

Parameters:

 X patch X position

 Y patch Y position

 agentId Feedback parameter which return the patch agent id [Optional]

@OPERATION setPatchText sets a text in a patch location.

 X patch X position

 Y patch Y position

 Message text of the patch

@OPERATION createAgent adds a new agent in the JLogo model

Parameters:

 agent id Agent id

 breed Agent breed

 x Patch x position

 y Patch y position

 d Direction

@OPERATION removeAgent removes an agent from the model

Parameters:

 agent id The id of the agent

@OPERATION setBreedColor sets current breed agents a color

Parameters:

 breed The breed name

40

 color The color

@OPERATION setBreedSize sets current breed agents a size

 breed the breed name

 size The breed size

@OPERATION setBreedImage sets current breed agents an image from assets folder

 breed the breed name

 image the image name

@OPERATION setAgentColor sets agent’s color

 agentId the agent id

 color the color name

@OPERATION setAgentSize sets agent’s size

 agentId the agent id

 size the size in pixels

@OPERATION setAgentImage sets agent’s color

 agentId the agent id

 image the image name

@OPERATION colorPatches Colors the patches of the area with a specific color

 X of first point

 Y of first point

 X2 of second point

 Y2 of second point

 Floor percent of patches that will be colored (1 = all patches) (0 = none)

 ColorName the name of the color

@OPERATION addWall paints the patches in a straight line. The line should be vertical

or horizontal.

41

 x1 = x2 vertical line

 y1 = y2 horizontal line

 x1 = x2 and y1 = y2 or x1 != x2 and y2 !=y2 (does nothing)

Parameters:

 c Color of the wall

 x1 X axis of starting point

 y1 Y axis of starting point

 x2 X axis of end point

 y2 Y axis of end point

@OPERATION setPatchImage sets patch image

Parameters:

 x location of patch

 y location of patch

 image Image name from assets forlder

4.3 JLogo Model

 JLogo model is the heart of the simulation. All information about the graphical

simulation is stored in the model. Agents can ‘read’ and ‘write’ the model through Cartago

artifacts and Jason internal actions. The model is a single instance object which can

accessed in the context of the JLogo by the class path.

4.4 JLogo GUI

 JLogo is using Java’s swing for creating its graphical components. All components

are defined on the instantiation of the JasonLogoGUI which is made in WorldArtifact.

Also is responsible for triggering the render of the simulation view. The default refresh

rate of the simulation view is the 30 fps.

4.5 JLogo Simulation View

 JLogoView is the simulation window. It is based on java’s swing panel and renders

the state of the JLogo model. It is used by the JLogoGUI for updating the simulation view.

42

5. Example Models in JLogo

 We are going to demonstrate the use of JLogo through some example Models for

better understanding. So, for this purpose we have create four simulations:

 Lunar Lander: An arcade game

 Burning forest: A fire spreading simulation

 Drone waiter: A simulation about drone waiters

 Tic-Tac-Toe: A game playing against a bot

5.1 Lunar Lander

 We are going to implement a famous arcade game the Lunar Lander, in this

game the spaceship which is the main “player” is trying to land safely in a harsh

environment avoiding cliffs, finding the platform and landing safely on it with a proper

speed and angle.

The required entities are:

 A moon environment

 A spaceship

 A platform to land.

 As it has been mentioned in JLogo “observer” agent is responsible to instantiate

the initial simulation state.

In the following the detailed steps are presented.

jasonlogo.jcm

 In the configuration file of JLogo (jasonlogo.jcm) is defined the initial state of the

MAS. The observer agent and the operational workspace (jlogo) are pre-defined.

mas jasonlogo {

 agent observer : lunarLander.asl
 workspace jlogo {}
 class-path:lib
 asl-path: src/agt
 src/agt/inc

}

43

lunarLander.asl (observer)

 For the lunar lander example, the observer has two beliefs. How large will be the

landing platform (platformSize) and how smooth will be the environment (smooth).

For instance:

smooth(22).
platformSize(5).

 The observer create the world artifact with title “Lunar lander”, simulation view

600x600 pixels and patch size 10px. This will result having a grid world of 60x60.

+!createArtifacts:true
<-
 …
 makeArtifact(world,"jasonlogo.artifact.WorldArtifact",["Lunar lander",600,10],W);
 …
.

 In the createWorld plan, the observer is going to create the environment based on

his beliefs about how smooth the environment will be and the size the platform.

+!createWorld:gridSize(G) & smooth(B) & platformSize(PS)
<-
 jia.random(G-PS,P);
 jia.random(G/2-B,R);

 for(.range(I,0,G-1)){
 if(I>=P & I<P+PS) {
 addWall(gray,I,G-B-R,I,G);
 setPatch(I,G-B-R,red);

 } else {
 jia.random(G/2-B,N);
 addWall(gray,I,G-B-N,I,G);
 }
 }
 !spawnSpaceShip;
 -+ready(true);
.

 To create a rough environment simulating that of the moon, cliffs are added by

using addWall operation of EnvironmentArtifact for every line of the grid.

 How steep the cliffs will be depends on the value of the smooth belief. Thus smooth

(0), will result a very steep environment or smooth (gridSize/2-1), will result a flat

environment. So, the value should be between 0 and gridSize/2-1.

44

 After creating the lunar environment and the platform, the observer spawns the

spaceship agent.

+!spawnSpaceShip:gridSize(G)
<-
 setBreedColor(ship,blue);
 setBreedSize(ship,20);
 setBreedImage(ship,"rocket.png");
 !spawnAgent(ship,ship,"ship.asl",G/2,2,270);
.

 The observer can create an agent by using the

plan !spawnAgent. To create a spaceship agent observer

creates an agent with source of “ship.asl” and breed

“ship”.

 Additionally the observer can set breed’s view by

setting the color (setBreedColor), size (setBreedSize) and

image (setBreedImage). It should be noted that all images should be placed in the assets

folder [Figure 5].

 Upon completion of the createWorld plan the UI should be look like the one

depicted in [Figure 6].

Figure 6: Lunar Lander simulation view.

Figure 5: Assets folder for images.

45

 To inform the agent to start its execution, the user should click the “start” button.

ship.asl

 The Ship agent’s main goal is to land successfully on the platform avoiding the

steep environment of the moon. To achieve this goal, the ship agent has two main plans.

The first plan handles the positioning over the landing platform with correct direction

and the second plan concerns landing to the platform with a proper speed.

The initial beliefs of the ship agent are:

maxSpeed(3).
gravitySpeed(-2).

where maxSpeed defines the max positive speed of the ship and gravitySpeed defines the

max negative speed of the ship.

 I.e. Positive speed is the speed which the ship moves towards its direction.

Negative speed moves the ship in opposite direction from its current direction and zero

speed means that the ship is not moving at all in the simulation environment.

 When the ship agent is prepared, some initial parameters and beliefs are set.

 +!prepared: true
<-
 speed(-1);
 !sense_platform;
 message("Going to platform");
 !goto_platform;
.

 Setting the ship speed to -1 simulates the initial “gravity” effect to the ship’s

movement. The achievement of the goal !sense_platform will add the platform’s position

as an agent’s belief.

+!sense_platform:jia.patchesOf(red,L)
<-
 for(.member(X,L)) {
 .nth(0,X,I);
 .nth(1,X,J);
 +platform(I,J);
 }
.

46

 After setting initial “gravity speed” and sensing the platform underneath, the ship

agent is ready to start the execution of the plan !goto_platform. The behavior of the ship

in order to reach the correct location is determined by a set of reactive plans that handle

different situations in the environment. In what follows, each such reactive plan is

explained in more detail.

 If the ship’s patch location is on a gray patch,

it means that the ship has crashed on the lunar

terrain [Figure 7].

+!goto_platform:patch(X,Y) & jia.patchColor(X,Y,gray)
<-
 message("Crashed on X:",X," - Y:",Y);
 .send(observer,achieve,done(false));

.

When the ship is over the landing platform and its

direction is vertical up, then can start the execution

of the landing plan [Figure 8].

+!goto_platform:patch(X,_) & platform(X,_) & dir(270)
<-
 message("Landing");
 !land;
.

If the ship is over the landing platform but its

direction is not vertical up, then an attempt is made

to correct the ship’s direction.

+!goto_platform:patch(X,_) & platform(X,_) & dir(D)

Figure 7: Lunar lander ship crashed.

Figure 8 Lunar lander ship starting land plan.

47

<-

 if(D < 270 & D >=90) {
 tr(1);
 } else {
 if(D > 270 | D <90) {
 tl(1);
 }
 }
 !gravity_pull;
 !goto_platform
.

 The following plan is activated when the ship is too close to cliffs, and turns the

ship away from the cliffs.

+!goto_platform: .my_name(N) & patchSize(PS) & jia.patchesAheadOf(N,gray,PS*2)
<-
 tl(45);
 !thrust(2);
 !goto_platform
.

 The following reactive plan is activated if the ship is neither over the platform nor

close to cliffs. We simple let the gravity do its work.

+!goto_platform
<-
 !gravity_pull;
 !goto_platform
.

 The execution of the “land” plan starts when the ship agent is over the platform

and its direction is vertical up [Figure 8]. The land plan caters for landing the ship

safely on the platform with a proper speed. In our simulation the safe landing speed

threshold is set to -0.5. Speed less than -0.5 will result a crash for the ship [Figure 9].

 If the ship’s patch location is red and its speed is less than the safe speed limit for

landing means that the ship’s crashed.

+!land:patch(X,Y) & jia.patchColor(X,Y,red) & speed(S) & S < -0.5
<-
 message("Crashed on X:",X," - Y:",Y);
 .send(observer,achieve,done(false));
.

 If the ship patch position is on a red patch and its speed is greater than -0.5

means that the ship has landed successfully [Figure 10].

+!land:patch(X,Y) & jia.patchColor(X,Y,red) & speed(S) & S >= -0.5

48

<-
 message("I have landed successfully!");
 .send(observer,achieve,done(true));
.

 The following reactive plan is activated if the ship speed is less than -0.5. To

avoid the ship crash the specific plan caters to raise the speed above the crash limit.

+!land:speed(S) & S <= -0.5
<-
 !thrust(0.1)
 !land;
.

 The following reactive plan is activated when there is no other plan in landing

process executing. This applies the gravity force on the ship’s speed.

+!land
<-
 !gravity_pull;
 !land;
.

 The thrust plan adds an amount (A) of speed in ships current speed.

+!thrust(A):speed(S)
<-
 if(S < 1) {
 speedup(A);
 }
.

Figure 9: Ship crashed on landing Figure 10:Ship landed successfully

49

 The following reactive plan is activated when the next calculated ship’s patch

location is outside of the top of the simulation view. Does not let the ship to go outside

of the moon surface.

+!gravity_pull:.my_name(N) & jia.nextLocationOf(N,X,Y) & Y = -1
<-
 speed(0);
 tr(10);
.

 This specific plan applies a little negative speed in ship’s current speed simulating

moon’s gravity.

+!gravity_pull:speed(S) & gravitySpeed(GS) & dir(D) & simSpeed(Sim)
<-
 if(S > GS){
 speedup(-0.01);
 }
 if(S<0) {
 if(D < 270 & D >=90) {
 tr(1);
 } else {
 if(D > 270 | D <90) {
 tl(1);
 }
 }
 }
 tick;
 fd;
 .wait(Sim);
.

 After a number of cycles the ship agent should have landed successfully over the

platform with a proper speed and direction avoiding in the way any cliff.

5.2 Burning forest

 In this example we are going to simulate how a fire can spread through a forest

depending on the density of the trees.

In order to model the example, we need to implement:

 A forest

 A fire

 The only acting agent in the simulation is the observer, which it is going to create

the forest and start a fire in it.

In the following the detailed steps are presented.

50

 The observer agent is pre-defined in the jcm file.

mas jasonlogo {
 …

 agent observer : burningForest.asl

 …

}

burningForest.asl (observer)

 Observer creates the forest. The density of trees in the forest is set by the density

belief.

density(0.7).

 In order to simulating a forest, a random number of patches must be painted

green. The random factor which depends if a patch will be painted green is the density

belief. To achieve this, the use of the operation colorPatches of EnvironmentArtifact comes

in handy which paints an area of patches with a specific color and a random factor.

+!createWorld:gridSize(S) & density(D)
<-
 colorPatches(0,0,S-1,S-1,1-D,green);
 ask.countPatchesOf(green,T);
 +totalTrees(T);
 !setFire;
 -+ready(true);
.

 To set the initial fire observer paints the green patches (trees) in the first line as

red (burning trees).

+!setFire: gridSize(S) & ask.patchesOf(green,L,0,0,0,S-1)
<-
 .print("Setting fire!");
 for(.member(X,L)) {
 .nth(0,X,I);
 .nth(1,X,J);
 setPatchColor(I,J,red);
 } .

After the completion of the createWorld plan, the simulation view should look like the

one depicted in [Figure 11]

51

Figure 11: Burning forest initial state

 To start the simulation, the user has to press the start button and let the fire

progressing.

+start:ready(true)
<-
 .print("Ok everyone GO!");
 .broadcast(achieve,observerReady);
 !burn_forest;
.

 Fire is spreading by having every tree set fire its neighbor trees. In every

execution of the plan, all the burning trees (red patches) set fire to their neighbor trees

and they get burned completed (changing their color to brown).

+!burn_forest:ask.patchesOf(red,L)& simSpeed(S) & .length(L,N) & N >0
<-
 for(.member(X,L)) {
 .nth(0,X,I);
 .nth(1,X,J);
 setPatchRGBColor(I,J,255,0,0,50);
 !burn_tree(I,J);
 }
 tick;
 .wait(S);
 !burn_forest;
.

 If burn forest plan fails that means that there are no other trees to be burned. The

observer prints the results of the simulation in the MAS console.

52

-!burn_forest:ask.countPatchesOf(green,T) & totalTrees(TT)
<-
 .print("Burned ",TT-T," of ",TT,". Forest burned:",100-(T*100)/TT);
.

 The following plan is the one which spreads the fire of a burning tree to its

neighbor trees. Neighbors are defined the top left right and bottom patches of the

current patch with color green. To get the neighbor trees of a current tree, the internal

action ask.patchNeighbour(X,Y,L,green) which returns the top, right, left and bottom patches

of a current patch location with a specific color does the job.

+!burn_tree(X,Y):ask.patchNeighbour(X,Y,L,green)
<-

 for(.member(P,L)) {
 .nth(0,P,I);
 .nth(1,P,J);
 setPatchColor(I,J,red);
 }
.

 When the simulation is completed observer prints the following message in the

console: [Observer] Burned 6835 of 6983. Forest burned: 97.88

Figure 12: Fire progressing Figure 13: Forest burned

53

5.3 The Drone waiter

 In the future, it is highly possible drones to be used as the waiters replacing

humans in the task. In this example we are going to see how well drones can handle this

job by simulating a store environment.

In order to model the example, we need to implement:

 A store

 A number of customers

 Machines which produce products

 A drone waiter

The role of the store will be played by the observer.

mas jasonlogo {
 …
 agent observer : store.asl
 …
}

store.asl (Obsever)

 The store is responsible to setup the product machines, the drone waiter and let

the customers to enter and exit (Spawn and remove customer agents) [Figure 14].

The beliefs of the store are the following:

 maxCustomers: the max number of customers entering the store

 Customers: a counter of the customers that already had enter the store

 CustomerPool: a counter to generate customer agent’s ids (for internal use)

54

The main plans of the store are the following:

 In createWolrd plan observer will create the product machines and the drone

waiter.

+!createWorld
<-
 !spawnAgent(cokeMachine,cokeMachine,"machine.asl",5,5,0);
 setBreedColor(cokeMachine,red);
 setBreedSize(cokeMachine,20);
 !spawnAgent(burgerMachine,burgerMachine,"machine.asl",30,5,0);
 setBreedColor(burgerMachine,yellow);
 setBreedSize(burgerMachine,20);
 !spawnAgent(icecreamMachine,icecreamMachine,"machine.asl",50,5,0);
 setBreedColor(icecreamMachine,white);
 setBreedSize(icecreamMachine,20);

 !spawnAgent(drone,drone,"drone.asl",30,30,270);
 setBreedColor(drone,blue);
 setBreedImage(drone,"drone.png");
 setBreedSize(drone,30);

 setBreedColor(customer,green);
 setBreedImage(customer,"customer.png");
 setBreedSize(customer,30);

 -+ready(true);
.

Figure 14: Initial state of the model
Figure 15: drone serving

55

 When the simulation is starts, the store allows customers to enter, spawning a

new customer agent every few seconds.

+start:ready(true)
<-
 .print("Ok everyone GO!");
 .broadcast(achieve,observerReady);
 !spawnCustomers;
.

 The following plan spawns a new customer every few seconds. As the max

number of customers limit defined by maxCustomers belief does not has reached, the plan

is executed retrospectively.

+!spawnCustomers: maxCustomers(MC) & customers(C) & C < MC
<-
 !spawnCustomer
 .wait(5000);
 !spawnCustomers
.

 The following plan is activated when the max number of customers limit has

reached. The store prints a generic messages and does not continue to spawn any new

customers.

+!spawnCustomers: maxCustomers(MC) & customers(C) & C == MC
<-
 .print("Shop closed!");
.

 The following plan, is the one which creates a new customer in a random position

in the simulated store environment.

+!spawnCustomer: customerPool(P) & gridSize(GS) & customers(C)
<-
 -+customers(C+1);
 -+customerPool(P+1);
 .concat("customer",P,N);
 jia.random(GS-6,X);
 jia.random(GS-10,Y);
 !spawnAgent(N,customer,"customer.asl",X+3,Y+10,270);
.

 The store is also responsible for letting the customers to leave the shop. When a

customer informs the shop that it is leaving, the store removes the specific customer

from the simulation.

+!leaving[source(S)]
<-
 !killAgent(S);
.

56

machine.asl

 The machine agent is responsible to provide the products to the drone and refill

its resources.

The beliefs of a machine are:

 Products: The number of current products

 maxProducts: the number of the max capacity of products

 delay: interval of the generation of new product

 The main plans of the machine are to provide a product to the drone when it is

request one and refill its resources.

 The fillProduct plan is executed constantly by the machine, generating a new

product. Activates as long as the max capacity of the products does not have reached.

+!fillProduct:products(P) & maxProducts(MP) & P < MP & delay(D) & productName(N)
<-
 message(N,":",P+1);
 -+products(P+1);
 .wait(D);
 !fillProduct
.

 The specific fillProduct plan is executed, when the max capacity have reached. Wait
a small amount of time and executes the plan again.
+!fillProduct:productName(N)
<-
 message(N," machine is full!");
 .wait(5000);
 !fillProduct
.

 This plan is activated when the drone requests a product of the machine, but the

machine does not have any product to provide. Informs the drone for the unavailability

of the product.

+!requestProduct[source(S)]:products(P) & P=0 & productName(N)
<-
 .send(S,achieve,notAvaible(N));
 .print("No product!");
.

 This plan is activated when the drone requests a product of the machine and the

machine has available products to provide.

+!requestProduct[source(S)]:products(P) & P>0 & productName(N)
<-

57

 message(N,":",P-1);
 -+products(P-1);
 .send(S,achieve,pickProduct(N));
 .print("Drone took product!");
.

customer.asl

 Upon entering the store, a customer decides what he wants to eat and waits for

the drone to take the order. When the order is delivered the customer eats and leaves

the shop.

The beliefs of a customer are:

 availableDesires A list of products that he can choose.

 Ordered: If has given the order to the drone

The main plans of the customer are:

 Create a list with products that he wants to ear, with at least one product is

picked from the available

+!iWant:avaibleDesires(L) & .length(L,AL)
<-
 for(.member(X,L)){
 jia.random(2,N);
 if(N==0) {
 +desires(X);
 }
 }
 .findall(X,desires(X),D);
 .length(D,ND);
 if(ND == 0) {
 jia.random(AL,NN);
 .nth(NN,L,IT);
 +desires(IT);
 }
.

 The specific plan activates when the drone request the order from the customer.

The customer gives “send” the order to the drone.

+!order[source(drone)]:.findall(X,desires(X),L)
<-
 -+ordered(true);
 .send(drone,achieve,customerOrder(L));
.

58

 The specific plan activates when the drone delivers the order to the customer. The

customer “eats” the order and leaves the some after some time.

+!eat[source(drone)]:pos(X,_) & worldSize(W)
<-
 message("Eating...");
 .wait(1000);
 message("Leaving...");
 dir(90);
 !gotoPosition(X,W);
 .send(observer,achieve,leaving);
.

drone.asl

 Drone is responsible to select a customer, go to him, take the order, collect the

order and serve it to the customer. This process is repeated as long as there are

customers in the store.

The beliefs of the drone are the following:

 served([]) A list of the customers that already had served

 orderToCollect([]). A list of an order for collection

 bench(coke,cokeMachine). The operating machines of the store

 bench(burger,burgerMachine).

 bench(icecream,icecreamMachine).

The main plans of the drone are:

 Select a customer to serve. The customer must have not already get served, in the

shop maybe customers who have already served but does not have left the shop yet.

+!getNextCustomer: ask.agentsOf(customer,L) & served(SL) & .difference(L,SL,CL) & .length(CL,N) & N
>0
<-
 .wait(300);
 message("Going to customer.");
 .member(C,CL);
 agent.pos(C,X,Y);
 -+nowServing(C,X,Y);
 !serveCustomer;
.

 The following reactive plan is activated when all customers in the shop have

served. The drone flies to the center of the store.

+!getNextCustomer: ask.agentsOf(customer,L) & served(SL) & .difference(L,SL,CL) & .length(CL,N) & N
== 0
<-

59

 !goto_center
 message("Waiting for customers...");
 .wait(500);
 !getNextCustomer
.

 The following reactive plan is activated when the drone is flying to the center of

the shop and a new customer enters the shop.

+!goto_center: ask.agentsOf(customer,L) & served(SL) & .difference(L,SL,CL) & .length(CL,N) & N >0
<-
 .print("Going to customer");
.

 As long there are no new customers to serve and the drone is not in the center of

the store, the drone flies towards the center. This plan is executed repeatedly.

+!goto_center:gridSize(G) & not patch(30,30) & simSpeed(S)
<-
 moveTowardsPatch(30,30);
 tick;
 .wait(S);
 !goto_center;
.

 The following reactive plan is activated when the drone is in the center of the
shop.
+!goto_center:gridSize(G) & patch(30,30)
<-
 .print("Went to center");
.

 The following reactive plan is activated when the drone has select a customer to

serve. Flies to customer’s position and asks the order from the customer.

+!serveCustomer:nowServing(C,X,Y)
<-
 //Go to customer position
 !gotoPosition(X,Y);
 ?pos(MX,MY);
 agent.pos(C,MX,MY);
 //Get customer order
 .send(C,achieve,order);
.

 This plan flies the drone to a specific location. It is executed repeatedly as long as

the drone does not have reached the location.

+!gotoPosition(X,Y): not pos(X,Y) & simSpeed(S)
<-
 moveTowardsPos(X,Y);
 tick;
 .wait(S);
 !gotoPosition(X,Y);
.

60

 The following reactive plan is activated when the drone has reach the specific

location.

+!gotoPosition(X,Y):pos(X,Y)
<-
 .print("Went to:(",X,",",Y,")");
.

 This plan is activated when a customer has send the order to the drone. When the

order is received, the drone starts to collect the order.

+!customerOrder(L)[source(S)]:.length(L,N) & N >0
<-
 .print("Customer:",S," order:",L);
 message("Collecting order.");
 -+orderToCollect(L);
 !collectOrder;
.

 This plan is activated when a customer has send an empty order.

+!customerOrder(L)[source(S)]:.length(L,0)
<-
 .print("Customer:",S," didn't wont anyting");
.

 The following plan collects the order of a customer. The drone picks an item from

the order lists and collects it. This plan is executed as long as there are items in the order

list.

+!collectOrder: orderToCollect(L) & .length(L,N) & N >0 & .member(M,L) & bench(M,B) &
agent.pos(B,X,Y)
<-
 //Go to machine
 !gotoPosition(X,Y);
 //Get product of the machine
 .send(B,achieve,requestProduct);
.

 The following reactive plan is activated when there are no other items in the

order list to collect. The drone flies to the customer to serve the order.

+!collectOrder: orderToCollect(L) & .length(L,N) & N == 0 & nowServing(C,X,Y) & served(SL)
<-
 .print("Order collected");
 message("Serve order");
 !gotoPosition(X,Y);
 .send(C,achieve,eat);
 .concat([C],SL,NL);
 -+served(NL);
 -nowServing(C,X,Y);
 !getNextCustomer;
.

 This plan is activated when the requested product from a machine is unavailable.

The drone waits a little time and tries again to collect the order.

61

+!notAvaible(N)[source(S)]
<-
 .print("Product not");
 .wait(500);
 !collectOrder
.

 This plan is activated when the machine provides the requested product to the

drone.

+!pickProduct(N)[source(S)]:orderToCollect(L)
<-
 .delete(N,L,NL);
 -+orderToCollect(NL);
 !collectOrder;
.

 The simulation ends when the max number of customers have enter the shop and

all have served and left the store.

[observer] Shop closed!

5.4 Tic-Tac-Toe

 In this example we are demonstrating how the user can interact with the grid

during the execution of the simulation by implemented a famous game Tic-tac-toe. To

model the specific simulation an AI bot (agent) is playing against the user.

 The required entities are:

 A board

 A bot

 The observer will create the game board and will be the AI bot which it is going to

play against the user.

tic-tac-toe.asl

Observer beliefs:

 play(false) Indicates if the game is on.

 The game board will be a 3x3 grid.

+!createArtifacts:true

62

<-
 …
 joinWorkspace("jlogo",_);

 makeArtifact(world,"jasonlogo.artifact.WorldArtifact",["Simulation",600,200],W);
 focus(W);

 …
.

 The specific plan activates when the user hits the start button. Adds as beliefs all

the available locations of the grid which an observer can play. Also updates the play

which indicates that the game has started.

+start:ready(true) & gridSize(G)
<-
 enableGrid;
 for(.range(I,0,G-1)) {
 for(.range(J,0,G-1)) {
 +available(I,J);
 }
 }
 -+play(true);
.

 The operation enableGrid of WorldArtifact will display the grid lines in the

simulation view.

 The patchClicked reactive plan is a signal, it is activated when the user clicks in a

cell (patch) of the grid and the play belief is false.

+patchClicked(X,Y): play(false)
<-
 showMessageDialog("Hit start button");
.

 The patchClicked reactive plan is a signal is activated when a user clicks in a cell

(patch) of the grid, the game is on and the specific clicked location is available for select.

+patchClicked(X,Y): available(X,Y) & play(true)
<-
 +position(X,Y,"X");
 -available(X,Y);
 setPatchColor(X,Y,red);
 setPatchText(X,Y,"X");
 !haveWin("X");
 !play;
.

63

 The patchClicked reactive plan is a signal is activated when a user clicks in a cell

(patch) of the grid, the game is on and the specific clicked location is not available for

select [Figure 16].

+patchClicked(X,Y): not available(X,Y) & play(true)
<-
 showMessageDialog("X:",X," - Y:",Y," is already marked!");
.

 The operation showMessageDialog of WorldArtiact displays a java swing dialog to

the GUI view of JLogo.

 The haveWin plan it is executed when there is a win combination relative to the

players marked cells [Figure 17].

+!haveWin(T): play(true) &
(.findall(_,position(0,Y,T),L) & .length(L,3)) |
(.findall(_,position(1,Y,T),LL) & .length(LL,3)) |
(.findall(_,position(2,Y,T),LLL) & .length(LLL,3)) |
(.findall(_,position(X,0,T),IL) & .length(IL,3)) |
(.findall(_,position(X,1,T),IIL) & .length(IIL,3)) |
(.findall(_,position(X,2,T),III) & .length(III,3)) |
(.findall(_,position(X,X,T),DDD) & .length(DDD,3)) |
(.findall(_,(position(0,2,T) | position(1,1,T) | position(2,0,T)),DDDD) & .length(DDDD,3))
<-
 showMessageDialog(T," has won!");
 -+play(false);
.

 If haveWin plan it is failed means that there is not winner yet.

-!haveWin(T):play(true)
<-
 .print("No winner yet");
.

 The reactive play plan is the AI mind of selecting a cell to be played and marked.

In the current implementation the agent selects one of the available grid locations.

+!play:available(X,Y) & play(true)
<-
 .print(L);
 .wait(300);
 +position(X,Y,"O");
 -available(X,Y);
 setPatchColor(X,Y,blue);
 setPatchText(X,Y,"O");
 !haveWin("O");
.

 If there are not available locations to be played by the AI means that the game is

draw.

+!play: not available(X,Y) & play(true)

64

<-
 showMessageDialog("Draw");
.

Figure 16: Tic Tac Toe board Figure 17: Player won

65

6. Conclusion and Discussion

 As far as we known, JLogo is the first attempt to provide a configurable graphical

environment and an infrastructure for creating 2D graphical simulations using JaCaMo

[3] platform. As an infrastructure provides a capable set of instructions for

programming a 2D graphical environment as we have demonstrate on model examples.

However, as a configurable environment it is not possible to achieve it without the use of

Java.

 On the other hand, as a template project JLogo can easily edited as all the source

code it is available in the project depending the developer’s needs. In addition the use of

the JLogo is not strict meaning that the developers can write their own artifacts and

internal actions.

 In the current state JLogo, is recommended to be used only for education

purposes as it is not very stable yet. It will help students who first come into contact with

the field of MAS using Jason as programming language to create their own models and

display the simulation into a 2D graphical environment for better understanding the

results.

6.1 Limitations

 Although JLogo does not have any restriction on how many agents (motion and

stationary) can operate on the same time, there are a performance issues on simulations

with hundreds of agents. There are two major reasons for this. The first is the

concurrent operation of a shared artifact by multiple agents. Sometimes Cartago [4]

struggles to make the artifact available when a vast number of multiple agents request to

focus it and operate it. The second reason is the concurrent modification of the model by

the agents with the use of the Artifacts and the internal actions. The latter occurs more

rarely.

 Another limitation of the JLogo is the configuration of the simulation GUI. In

this state JLogo is not very flexible on adding and removing GUI components such as

buttons which could help the users to interact with the simulation on demand. To

achieve that, the use of Java code is required. Furthermore the customization of the

66

environment is limited in the configuration of world size, patch size and the speed of the

tick step.

6.2 Future extensions

 In future updates JLogo should become more stable platform especially on

simulations with hundreds of agents operating concurrently and extend the current set

of instructions will help developers to modeling more complex and detailed simulations.

 In current state JLogo is a JaCaMo [3] project developed under the Jacamoide

[18]. This limits the JLogo as a configurable graphical environment for developing

graphical simulations. In future updates JLogo should became a separated IDE by

creating a new plugin for the Eclipse [19] or a complete new platform which will provide

a more flexible environment, for editing the GUI of the JLogo simulations by adding UI

components such as buttons, sliders etc. with drag and drop operations for ease of use.

Also providing more options for displaying the results such as plots will help the users

on better understanding the results of their simulations.

 Another helpful addition would be to add a command line in the GUI providing

the users the ability to pass execute commands to the observer agent like NetLogo [1].

67

References

1. NetLogo: Wilensky, U. (1999). NetLogo. http://ccl.northwestern.edu/netlogo/.

Center for Connected Learning and Computer-Based Modeling, Northwestern

University, Evanston, IL.

2. Bordini, R. H., Hübner, J. F., and Wooldridge, M. 2007. Programming

Multi-Agent Systems in AgentSpeak Using Jason. John Wiley & Sons, Ltd.

3. Olivier Boissier, Rafael H. Bordini, Jomi F. Hübner, Alessandro Ricci, Andrea

Santi ,Multi-agent oriented programming with JaCaMo, Science of Computer

Programming, 2013.

4. Alessandro Ricci, Mirko Viroli, Andrea Omicini. “Give Agents their

Artifacts”: The A&A Approach for Engineering Working Environments in

MAS. 6th International Joint Conference “Autonomous Agents & Multi-Agent

Systems” (AAMAS 2007), 14-18 May 2007

5. Wilensky U., and William Rand W. An Introduction to Agent-Based

Modeling: Modeling Natural, Social, and Engineered Complex Systems with

NetLogo, MIT Press, 2015.

6. Anand S. Rao, 1996. AgentSpeak(L): BDI Agents Speak Out in a Logical

Computable Language. Proceedings of Seventh European Workshop on

Modelling Autonomous Agents in a Multi-Agent World (MAAMAW-96).

7. Jomi F. Hübner, Olivier Boissier, Rosine Kitio, Alessandro Ricci ,

Instrumenting multi-agent organisations with organisational artifacts and

agents, Autonomous Agents and Multi-Agent Systems, May 2010, Volume

20, Issue 3, pp 369-400

8. Singh, D., Padgham, L., Logan, B. (2016). Integrating BDI agents with agent-

based simulation platforms In: Autonomous Agents and Multi-Agent

Systems,30,1050 – 1071

9. W. A. L. Ramirez and M. Fasli, "Integrating NetLogo and Jason: A disaster-

rescue simulation," 2017 9th Computer Science and Electronic Engineering

(CEEC), Colchester, 2017, pp. 213-218.

68

Internet sources

10. The Jacamo Project http://jacamo.sourceforge.net/

11. The NetLogo Platform: https://ccl.northwestern.edu/netlogo/

12. The Jason platform: http://jason.sourceforge.net/

13. The Cartago platform: http://cartago.sourceforge.net/

14. Siri wiki: https://en.wikipedia.org/wiki/Siri/

15. Google assistant: https://assistant.google.com/

16. Cortana wiki: https://en.wikipedia.org/wiki/Cortana/

17. Alexa wiki: https://en.wikipedia.org/wiki/Amazon_Alexa/

18. Jacamoide: http://jacamo.sourceforge.net/eclipseplugin/tutorial/

19. Eclipse IDE: http://www.eclipse.org/

http://jacamo.sourceforge.net/
https://ccl.northwestern.edu/netlogo/
http://jason.sourceforge.net/
http://cartago.sourceforge.net/
https://en.wikipedia.org/wiki/Siri/
https://assistant.google.com/
https://en.wikipedia.org/wiki/Cortana/
https://en.wikipedia.org/wiki/Amazon_Alexa/
http://jacamo.sourceforge.net/eclipseplugin/tutorial/
http://www.eclipse.org/

