
A Dual Network Exterior Point
Simplex-type Algorithm for the
Minimum Cost Network Flow

Problem

Georgios Geranis
PhD Thesis

Supervisors:
Samaras Nikolaos (Principal)

Roumeliotis Emmanuel
Papistas Athanasios

Department of Applied Informatics
University of Macedonia

Thessaloniki

December 2012

Acknowledgements

I would like to express my gratitude to all those who gave me the possibility to

complete this thesis. This work could not have been carried out without the

help of Dr. Konstantinos Paparrizos who guided me through the dissertation

process as my supervisor. The whole work is dedicated to his memory.

I am also grateful to Dr Nikolaos Samaras for the great help he offered

with his importand advices and suggestions. Many thanks also to Dr Em-

manuel Rumeliotis and Dr Athanasios Papistas.

I also feel very thankful for the precious help that Dr Angelo Sifaleras

offered to me throughout my work. Many special thanks also to PhD candi-

dates Nikolaos Ploskas and Themistoklis Glavelis and Dr Eleni Rosiou and

Dr Athanasios Baloukas for our collaboration.

Finally, I would like to express my gratitude to all my family and friends

for their support all these years.

Geranis Georgios

i

List of publications

• G. Geranis, K. Paparrizos, A. Sifaleras, A dual exterior point simplex

type algorithm for the minimum cost network flow problem, Yugoslav

Journal of Operations Research 19(1) (2009) pp. 157-170.

• G. Geranis, K. Paparrizos, A. Sifaleras, A Dual Exterior Point Simplex

Type Algorithm, 8th Balcan Conference On Operational Research, Bel-

grade, Zlatibor, September 14-17 (2007)

• G. Geranis, K. Paparrizos, A. Sifaleras, Computational experience with

a dual network exterior point simplex algorithm for the minimum cost

network flow problem, 20th National Conference of the Hellenic Oper-

ational Research Society, Spetses, June 19-21 (2008)

• G. Geranis, K. Paparrizos, A. Sifaleras, On a dual network exterior

point simplex algorithm for the minimum cost network flow problem

and its empirical behavior, 21st Conference of the European Chapter

on Combinatorial Optimization (ECCO XXI), May 29-31, Dubrovnik,

Croatia (2008) .

• G. Geranis, K. Paparrizos, A. Sifaleras, On the Computational Be-

havior of a Dual Network Exterior Point Simplex Algorithm for the

Minimum Cost Network Flow Problem, Proceedings of the Interna-

tional Network Optimization Conference (INOC 2009), 26-29 April,

Pisa, Italy, (2009).

• G. Geranis, K. Paparrizos, A. Sifaleras, Use of Dynamic Trees for the

ii

Implementation of the Dual Network Exterior Point Simplex Algo-

rithm, 1st International Symposium and 10th Balcan Conference on

Operational Research (BALCOR 2011), September 22-25, Thessaloniki,

Greece (2011).

• G. Geranis, K. Paparrizos, A. Sifaleras, On a Dual Network Exte-

rior Point Simplex Type Algorithm and its Computational Behavior,

RAIRO-Oper. Res. 46 (2012) pp. 211 - 234.

iii

Abstract

The Minimum Cost Network Flow Problem (MCNFP) refers to a wide cat-

egory of network flow problems and it is an important research area of Net-

work Optimization. A Dual Network Exterior Point Simplex Algorithm

(DNEPSA) for the MCNFP is presented here. The algorithm belongs to

the special category of Exterior Point Simplex-Type algorithms. Similarly

to the classical Dual Network Simplex-type Algorithm (DNSA), DNEPSA

starts with a dual feasible tree-solution and after a number of iterations, it

produces a solution that is both primal and dual feasible, i.e. it is opti-

mal. However, contrary to DNSA, the algorithm does not always maintain

a dual feasible solution throughout all its iterations. Instead, it produces

tree-solutions that can be infeasible for the dual problem and at the same

time infeasible for the primal problem. The theoretical proof of correctness

and the implementation details of DNEPSA are also presented. A detailed

comparative computational study of DNEPSA against DNSA on sparse and

dense random problem instances is presented and it is followed by the statisti-

cal analysis of the experimental results showing the effectiveness of DNEPSA

compared to DNSA in terms of cpu time and iterations. The implementation

of DNEPSA by using dynamic trees is also demonstrated and the algorithm’s

amotized computational complexity per pivot is estimated.

Contents

1 Introduction 1

1.1 The Minimum Cost Network Flow Problem 1

1.2 Elements of Graph Theory . 2

1.3 Problem Statement and Notation 12

1.4 Specializations of the MCNFP problem 20

1.4.1 The Assignment problem 20

1.4.2 The Transportation problem 21

1.4.3 The single-source Shortest Path problem 22

1.4.4 The Maximum Flow problem 23

1.5 Simplex-type algorithms for the Minimum Cost Network Flow

Problem . 24

1.5.1 The Primal Network Simplex-type Algorithm for the

MCNFP problem . 26

1.5.2 The Dual Network Simplex-type Algorithm for the MC-

NFP problem . 34

1.5.3 The Primal Network Exterior Point Simplex-type Al-

gorithm for the MCNFP problem 35

i

1.5.4 State of the art algorithms for the MCNFP problem . . 39

1.6 Innovation, objectives and structure of the Thesis 42

2 The Dual Network Exterior Point Simplex-type Algorithm 45

2.1 Introduction . 45

2.2 Algorithm Description . 46

2.3 Update of variables and sets 51

2.4 Illustrative examples . 56

2.4.1 An infeasible problem 66

3 Mathematical Proof of Correctness 73

3.1 Introduction . 73

3.2 Theorems . 74

4 Implementation and Computational Results 86

4.1 Implementation of DNEPSA 86

4.1.1 Degeneracy . 87

4.1.2 The NETGEN network generator 89

4.2 Data Structures . 91

4.3 Starting dual-feasible tree-solution 97

4.4 Computational results . 102

4.5 Statistical Analysis of the Performance of the algorithm 113

4.6 Empirical complexity of DNEPSA using statistical analysis . . 117

5 Implementation of DNEPSA by using Dynamic Trees 122

5.1 Introduction to Dynamic Trees 122

5.2 Representation of Dynamic Trees as a set of paths 125

ii

5.3 Use of Dynamic Trees in the implementation of DNEPSA . . . 131

5.4 Theoretical time complexity per pivot for DNEPSA algorithm 135

6 Conclusions and Future Work 138

6.1 Conclusions . 138

6.2 Future Work . 139

iii

List of Figures

1.1 A directed graph . 4

1.2 A non directed graph . 4

1.3 A graph containing parallel arcs and loops 5

1.4 Directed and not directed paths 6

1.5 Directed and not directed cycles 7

1.6 Adjacency list representation 8

1.7 Adjacency matrix representation 9

1.8 Incident matrix representation 10

1.9 Examples of trees . 11

1.10 Rooted trees . 12

1.11 The Minimum Cost Network Flow Problem 13

1.12 A tree-solution for the Minimum Cost Network Flow Problem 14

1.13 The big M method . 27

1.14 Subtrees produced from the basic tree after removing the leav-

ing arc . 32

2.1 Type A iteration . 51

2.2 Type B iteration . 53

iv

2.3 Initial dual feasible tree-solution 57

2.4 Cycle created when adding the entering arc into the basic tree 60

2.5 The basic tree after the first iteration 61

2.6 The subtrees created after the removal of the leaving arc . . . 62

2.7 Cycle created for the 2nd iteration 63

2.8 The basic tree after the second iteration 64

2.9 Cycle created for the 3rd iteration 65

2.10 The optimal basic tree-solution found after the third iteration 66

2.11 An infeasible problem . 66

2.12 Initial dual feasible tree-solution for the infeasible problem . . 67

2.13 Cycle created when adding the entering arc into the basic tree 70

2.14 The basic tree after the first iteration 70

2.15 The subtrees created after the removal of the leaving arc . . . 71

4.1 A rooted tree stored by using the ATI method. 92

4.2 Update of the basic tree when using the ATI method. 95

4.3 Update of the basic tree when using the ATI method. 96

4.4 A network for the dual feasible tree algorithm. 100

4.5 The dual feasible tree produced by the algorithm. 102

4.6 Average number of iterations for networks of density 2%. . . . 108

4.7 CPU time (in seconds) for networks of density 2%. 108

4.8 Average number of iterations for networks of density 10%. . . 109

4.9 CPU time (in seconds) for networks of density 10%. 109

4.10 Average number of iterations for networks of density 20%. . . 110

4.11 CPU time (in seconds) for networks of density 20%. 110

v

4.12 Average number of iterations for networks of density 30%. . . 111

4.13 CPU time (in seconds) for networks of density 30%. 111

4.14 Average number of iterations for networks of density 40%. . . 112

4.15 CPU time (in seconds) for networks of density 40%. 112

4.16 Scatterplot of DNEPSA vs DNSA (number of iterations). . . . 114

4.17 Scatterplot of DNEPSA vs DNSA (log-transformed CPU time).114

4.18 Normal Q-Q Plot of standardized residuals (number of itera-

tions). 120

4.19 Normal Q-Q Plot of standardized residuals (CPU time). . . . 121

5.1 Dynamic trees . 125

5.2 Dynamic tree after applying operation update 126

5.3 Linking of dynamic trees . 126

5.4 Cutting operation on dynamic trees 127

5.5 Evert operation on dynamic trees 127

5.6 Representation of a dynamic tree as a set of vertex disjoint

paths . 128

5.7 Splice operation on a path . 130

5.8 Expose operation on a path 131

5.9 Initial tree-solution for DNEPSA as a dynamic tree 132

5.10 Representation of paths as binary trees 133

5.11 Representation of a dynamic tree as a collection of linked as

binary trees . 134

vi

List of Tables

2.1 Cases for the basic arcs (i, j) ∈ T 53

2.2 Update of flows xij , ∀(i, j) ∈ T 54

2.3 Cases for the non-basic arcs (i, j) /∈ T 54

2.4 Update of reduced cost values sij, ∀(i, j) /∈ T 54

2.5 Update of direction values dij, ∀(i, j) /∈ T 55

4.1 Example of NETGEN parameters 91

4.2 Number of Iterations and CPU time for randomly generated

instances. 106

4.3 Normalized number of iterations and CPU time for randomly

generated instances. 107

vii

List of Algorithms

1 The Primal Network Simplex-type Algorithm 33

2 The Dual Network Simplex-type Algorithm 36

3 The Primal Network Exterior Point Simplex-type Algorithm . 40

4 The Dual Network Exerior Point Simplex-type Algorithm . . . 52

5 Algorithm to find a starting dual feasible solution. 98

viii

Chapter 1

Introduction

1.1 The Minimum Cost Network Flow Prob-

lem

Network Optimization is a research area that is part of the wider research

area of Linear Optimization. It refers to those linear problems that can be

modeled by using some special data structures like graphs and networks.

One of the most important network optimization problems is the Minimum

Cost Network FLow Problem, MCNFP for short. The MCNFP problem,

as described in [77], [2] and [14], is the problem of finding a minimum cost

flow of product units, through a number of supply nodes (sources), demand

nodes (sinks) and transshipment nodes. Other common problems, such as the

shortest path problem, the transportation problem, the assignment problem,

etc., are special cases of the MCNFP problem, as it is described in section 1.4.

The MCNFP problem appears very frequently in different sectors of technol-

1

ogy, like Informatics, Telecommunications, Transportation, etc. Numerous

real life problems can be solved by applying network flow models, as it is

demonstrated in [3] and [45].

The MCNFP problem can be easily transformed into a linear program-

ming problem and there exist well-known general linear programming al-

gorithms that can be applied in order to find an optimal solution. Such

algorithms though, do not take advantage of the special features met in the

MCNFP. Therefore, other special Simplex-type algorithms for the MCNFP

problem have been developed, such as the well-known Primal Network Sim-

plex Algorithm and the Dual Network Simplex Algorithm. There are also

other non Simplex-type algorithms that can be used for solving the same

problem, as presented in [67] and [30].

1.2 Elements of Graph Theory

Some introductory concepts from Graph Theory used throughout this thesis

will be presented here. A graph G is an abstract representation of a set

of objects, called vertices or nodes, where some pairs of the vertices are

connected by links, called arcs. Let N and A be the set of nodes and arcs

respectively, that consist a graph denoted as G=(N,A). The set of arcs A

contains pairs of the form (i,j), showing that there exists a link from node

i to node j. In a directed graph, the arc (i,j) is different from the arc (j,i).

On the other hand, in a non-directed graph a pair of nodes (i,j) is considered

equivalent to the pair (j,i) and is called an edge. Figures 1.1 and 1.2 show a

directed and a non directed graph respectively. The nodes of a graph can be

2

numbered by using integer values from 1 to n, where n=|N | is the number

of nodes in the graph. The number of nodes is also called the order of the

graph. In Figure 1.1, each arc (i,j) is represented by an arrow from node i to

node j. Node i is the tail of the arc (i,j) and node j is the head of the arc.

The nodes i and j connected by an arc (i,j) are said to be adjacent to each

other or neighbours. The head and the tail of an arc are also called endpoints

or ends of the arc.

The number of arcs m=|A| in a graph G=(N,A) is the size of the graph.

For the graph in Figure 1.1, we have n=|N |=6 and m=|A|=11, where it is

N={1, 2, 3, 4, 5, 6} and A={(1,2), (1,4), (2,5), (3,1), (3,4), (3,6), (4,3), (4,5),

(5,2), (5,6), (6,3)}. For a non directed arc, the edges are presented as simple

lines that connect two nodes. The edge (i,j) connects node i with node j and

it is equivalent to (j,i). In Figure 1.2 it is n=|N |=6 and m=|A|=8, where it is

N={1, 2, 3, 4, 5, 6} and A={(1,2), (1,3), (1,4), (2,5), (3,4), (3,6), (4,5), (5,6)}.

A non-directed graph can be considered as a special case of a directed graph

where for each edge (i,j) we have two arcs: an arc (i,j) connecting node i to

node j and an arc (j,i) connecting node j to node i.

Two or more arcs having the same tail i and the same head j, where i 6= j,

are called parallel arcs. An arc which starts and ends on the same vertex is

called a loop. In Figure 1.3, a graph that contains parallel arcs and loops

is shown. There are two parallel arcs from node 2 to node 1 and two other

parallel arcs from node 4 to node 5. There is also a loop on node 4. We

assume here that the graphs we have are directed without any parallel arcs

or loops.

A graph G’=(N’,A’) is a subgraph of a graph G=(N,A), when G’ is a

3

Figure 1.1: A directed graph

Figure 1.2: A non directed graph

4

Figure 1.3: A graph containing parallel arcs and loops

graph whose vertex set is a subset of that of G (N ′ ⊆ N) and whose set of

arcs connects only nodes of N’ and it is a subset of that of G (A′ ⊆ A). In the

other direction, a graph G’ is a supergraph of a graph G if G is a subgraph

of G’.

A graph can be extended by assigning a weight to each arc or edge of the

graph, called a weighted graph. A directed graph with weighted arcs is also

called a network.

The degree of a node is the number of arcs or edges that connect to it.

More particularly, the number of the arcs that start from a node is called the

out-degree of the node, while the number of the arcs that end to a node is

called the in-degree of the node. For example, in Figure 1.1, the out-degree

of node 1 is equal to 2 and its in-degree equals 1. A node of degree 0 is called

isolated and a node of degree 1 is a leaf.

A chain of a graph G is an alternating sequence of vertices and edges of the

form x0, e1, x1, e2, ..., ek, xk, beginning and ending with vertices in which each

edge is incident with the two vertices immediately preceding and following

5

Figure 1.4: Directed and not directed paths

it. The chain above joins vertices x0 and xk and may also be denoted by

x0, x1, ..., xk. A chain is called closed, if it is x0 = xk and it is called open

otherwise. The length of a chain is the number of edges in it.

A chain is called a path when every vertex and every arc in the chain

appears only once. An arc (i,j) in a path from vertex x0 to vertex xk is called

a forward arc when on the way from vertex x0 to vertex xk we meet node i

before we meet node j. Otherwise it is called a backward arc. We call directed

path a path where all the arcs are forward arcs or all of them are backward

arcs. In Figure 1.4(b) the path 1-2-5-4-3-6 is directed while in Figure 1.4(a)

it is not directed. The arc (2,5) in Figure 1.4(a) is a forward arc for the path

1-2-5-4-3-6 while the arc (4,5) is a backward arc for the same path.

If a path is closed, it is called a cycle. If a closed path is directed then

we have a directed cycle. A directed cycle is also called a circuit. A graph

is acyclic when it contains no directed cycles. In Figure 1.5(a), we can see

a non-directed cycle, while in Figure 1.5(b) we have a directed cycle. If two

arcs (i,j) and (k,l) in a cycle are both forward or they are both backward, then

we say they have the same orientation and we will denote it as (i, j) ↑↑ (k, l).

6

Figure 1.5: Directed and not directed cycles

Otherwise, if one of them is a forward arc and the other is a backward arc,

we denote it as (i, j) ↑↓ (k, l). In Figure 1.5(a), the arcs (1,2) and (4,3) have

the same orientation, i.e. (1, 2) ↑↑ (4, 3), while for the arcs (1,2) and (4,5)

we have (1, 2) ↑↓ (4, 5).

Two vertices are said to be connected, if there exists a path that starts

from the first vertex and ends to the other. If all the vertices in a graph

are connected to each other, then we have a connected graph. Otherwise, it

is a disconnected graph. If for every pair of vertices (i,j) in a graph there

exists a directed path from vertex i to vertex j then the graph is a strongly

connected graph. A graph that is not connected can be divided into connected

components which are disjoint connected subgraphs of the original graph.

There are two standard ways to represent a graph G=(N,A). The first way

is the representation of the graph as a collection of adjacency lists. The second

way is its representation as an adjacency matrix. Either way is applicable

to both directed and undirected graphs. The adjacency list representation is

very often preferred because it provides a compact way to represent sparse

graphs (those for which |A| is much less than |N |2). However, the adjacency

7

Figure 1.6: Adjacency list representation

matrix representation may be preferred in case the graph is dense (|A| is

close to |N |2).

The adjacency list representation of a graph G=(N,A) consists of an array

Adj of |N | lists, one for each vertex in N. For each node i ∈ N , the adjacency

list Adj[i] contains all the nodes j such that, there is an arc (i, j) ∈ A, i.e.

the list Adj[i] consists of all the vertices that are adjacent to i. The vertices

in each adjacency list are typically stored in an arbitrary order. Figure 1.6

shows an adjacency list representation of the directed graph in Figure 1.1.

The sum of the lengths of all the adjacency lists is |A| and the amount of

memory required is Θ(|N | + |A|). Adjacency lists can be easily adapted to

represent weighted graphs as well.

A disadvantage of the adjacency list representation is that there is no

quick way to determine if a given arc (i,j) is present in the graph. In order to

do that, the adjacency list Adj[i] has to be searched in order to determine if

8

Figure 1.7: Adjacency matrix representation

j is present in the list. This disadvantage can be remedied by the adjacency

matrix representation of a graph. The adjacency matrix representation of a

graph G=(N,A) consists of a |V | × |V | matrix A such that, it is aij = 1 if

(i, j) ∈ A and aij = 0, otherwise. Figure 1.7 shows the adjacency matrix

representation of the directed graph in Figure 1.1. The adjacency matrix of

a graph requires Θ(|N |2) memory, independent of the number of arcs in the

graph.

A different matrix representation for a graph is the incidence matrix. The

incident matrix for a directed graph G=(N,A) contains one row for every node

of the graph and one column for every arc of the graph. If the set of arcs

A contains an arc (i,j) then, in the column that corresponds to that arc, the

incident matrix contains 1 in the i-th row and -1 in the j-th row. The incident

matrix for the directed graph in Figure 1.1 is shown in Figure 1.8.

A tree is a connected graph without cycles. A forest is a vertex-disjoint

union of trees. A tree with n vertices contains n-1 arcs (edges) and, if n ≥ 2,

it contains at least two leaves. For every pair of vertices in a tree there exists

9

















(1, 2) (1, 4) (2, 5) (3, 1) (3, 4) (3, 6) (4, 3) (4, 5) (5, 2) (5, 6) (6, 3)

1 1 0 −1 0 0 0 0 0 0 0
−1 0 1 0 0 0 0 0 −1 0 0
0 0 0 1 1 1 −1 0 0 0 −1
0 −1 0 0 −1 0 1 1 0 0 0
0 0 −1 0 0 0 0 −1 1 1 0
0 0 0 0 0 −1 0 0 0 −1 −1

















Figure 1.8: Incident matrix representation

exactly one simple path connecting the one to the other. If we delete an arc

from a given tree T then, two separate subtrees are produced. On the other

hand, if we add a new arc to a given tree then, a graph is produced that

contains a unique cycle. Figure 1.9 shows some examples of trees.

A node r of a tree T can be chosen to be the tree’s root. In that case, we

have a rooted tree. All the nodes of a rooted tree can be placed in different

levels, depending on the length of the path that connects them to the root.

The root of the tree belongs to level 0 of the tree and all the other nodes are

placed in levels numbered as 1,2,3,... etc. The level where a node is placed

is the depth of the node. The depth of a tree is the maximum of the depths

of its nodes. A node i of a tree T is the parent or immediate predecessor of

a node j of T when i belongs in level k, j belongs in level k+1 and (i,j) or

(j,i) is an arc of T. In that case, j is a child or immediate successor of i. All

the nodes of a rooted tree, except of the tree’s root, have exactly one parent

and zero or more children. The root of a tree is the only node that has no

parent.

If in the tree of Figure 1.9(d), node 1 is the root, then we have the tree

10

Figure 1.9: Examples of trees

levels as shown on figure 1.10(a). Nodes 2, 4 and 3 are placed in level 1 and

node 5 is placed in level 2. The depth of the tree is 2. If, on the other hand,

node 4 is the root then, we have the levels as shown in figure 1.10(b). In that

case we take a tree of depth 3.

All the Simplex-type algorithms for the solution of the Minimum Cost

Network Flow Problem (MCNFP) start from an initial tree and they try,

iteration by iteration, to find out a tree that gives an optimal solution. In

order to move from a tree-solution to the next tree-solution, in every iteration,

the algorithm has to select a leaving and an entering arc so that a new

tree is produced. The algorithm’s performance, as we’ll see in the following

chapters, depends a lot on the data structures used to store the original

11

Figure 1.10: Rooted trees

network and the tree-solutions produced in every iteration.

1.3 Problem Statement and Notation

Let G = (N,A) be a network that consists of a finite set of nodes N and a

finite set of directed arcs A. The MCNFP problem on G is the problem of

finding a flow from a set of supply nodes of G, through the arcs of G, to a set

of demand nodes of G, at minimum total cost. Let n and m be the number

of nodes and arcs, respectively. For each node i ∈ N , there is an associated

variable bi representing the available supply or demand on that node. If a

node i is a supply node or source, then it is bi > 0. On the other hand, if

node i is a demand node or sink, then it is bi < 0. Finally, a node i is a

transshipment node in the case it is bi = 0. The total supply in the network,

has to be equal to the total demand, i.e., it is
∑

i∈N

bi = 0. Such a network is

called a balanced network.

For every arc (i, j) ∈ A we have a flow xij that shows the current amount

12

Figure 1.11: The Minimum Cost Network Flow Problem

of product units transferred from node i to node j. The value of xij can

be zero or even negative. In case it is xij < 0 it is like having a flow from

node j to node i instead of having a flow from node i to node j. For every

arc (i, j) ∈ A, there is also an associated value cij ≥ 0 that represents the

cost when one unit of product flows from node i to node j. In Figure 1.11 a

network of 6 nodes is given. For every node of the network, the associated

supply appears next to the node. For example, node 1 is a source node that

supplies 3 product units and node 5 is a sink node that demands 6 product

units. Next to each arc appears the cost per product unit for the flow on

that arc. The total supply, offered by nodes 1, 2, 3 and 4, is equal to 14 and

this sum is the same as the total demand, needed by nodes 5 and 6.

The total cost for a flow through the network is called the objective value

13

Figure 1.12: A tree-solution for the Minimum Cost Network Flow Problem

for the flow and it is equal to z =
∑

(i,j)∈A

cijxij . The question in a MCNFP

problem is to find a flow that minimizes that total cost. For every flow

xij on an arc (i,j) there can be a lower and an upper bound, denoted as

lij and uij respectively. This gives us additional constraints of the form

lij ≤ xij ≤ uij , that have to hold for every arc (i, j) ∈ A. 1 In our case,

we consider that it is lij = 0 and uij = +∞, ∀(i, j) ∈ A. That is, we’ll

deal only with the uncapacitated MCNFP problem. Figure 1.12 shows a

flow for the network in Figure 1.11. For every solid line arc (i,j) in the

figure, there is a flow xij from node i to node j. For all dotted line arcs

there is no flow through them. The solid line arcs form a tree-solution that

satisfies all the product demands in the network and its total cost is equal

to z = 3× 107 + 3 × 32 + 3 × 41 + 5 × 104 + 0× 84 = 1060. This is not an

optimal solution since there exist other tree-solutions of less total cost.

14

For every node i ∈ N , it has to be:

∑

(i,j)∈A

xij−
∑

(j,i)∈A

xji =bi (1.1)

because for every node in the network, the outgoing flow must be equal to the

incoming flow plus the node’s supply. Thefore, the mathematical formulation

for the MCNFP problem is as follows:

minimize z =
∑

(i,j)∈A

cijxij (1.2)

subject to the constraints below:

∑

(i,j)∈A

xij−
∑

(j,i)∈A

xji =bi, ∀i ∈ N

xij ≥ 0, ∀(i, j) ∈ A

(1.3)

For a balanced network, the total supply has to be equal to the total

demand, i.e. it is
∑

i∈N

bi = 0. Therefore, by using Relation (1.3), it comes out

that:

∑

i∈N

(
∑

(i,j)∈A

xij−
∑

(j,i)∈A

xji) =0 (1.4)

That means that the constraints in Relation (1.3) are linearly dependent so,

we can arbitrarily drop out one of them.

In matrix notation format, the problem can be expressed as follows:

15

minimize z = cTx

s.t. Ax = b

x ≥ 0

(1.5)

where A ∈ ℜn×m, x ∈ ℜm, c ∈ ℜm and b ∈ ℜn. Notation cT denotes the

transpose of vector c, containing the arc costs per product unit. Matrix A

is the incident matrix for network G and vector b contains the node sup-

plies/demands. For the MCNFP problem in Figure 1.11 the incident matrix

A is:

A =

































xT = [x15, x16, x25, x26, x35, x36, x45, x46, x53, x63, x64, x65]

1 1 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 −1 −1 0 0

0 0 0 0 0 0 1 1 0 0 −1 0

−1 0 −1 0 −1 0 −1 0 1 0 0 −1

0 −1 0 −1 0 −1 0 −1 0 1 1 1

































Above the columns of matrix A, we have the flows of the corresponding arcs,

as they appear in the vector of flows x. For the vector c of costs for Figure

1.11 we have:

cT = [16, 41, 57, 104, 107, 130, 32, 84, 71, 43, 0, 1]

and for the vector b of supplies/demands it is:

16

bT = [3, 5, 3, 3, −6, −8]

The MCNFP problem, as it can be seen in Relations 1.2 and 1.5, is

a special case of the linear problem and can be solved by using standard

Linear Programming (LP) techniques. The MCNFP problem though, has

some special properties, not met in other LP problems. The incident matrix

A in every column contains a unique value equal to 1 and a unique value

equal to -1. All the other values are equal to 0. Moreover, as it is shown

in Relation (1.3), all the constraints form equalities instead of inequalities.

These characteristics allow the development of algorithms for the MCNFP

problem that work faster than the standard Linear Programming algorithms.

For every linear problem, there exists a unique linear problem which is

called its dual problem. The original problem is called the primal problem.

That is, all the linear problems, and therefore all the MCNFP problems,

come in primal/dual pairs. The dual of the dual problem is the original

primal problem. The dual problem for the MCNFP problem uses a set of

dual variables wi, one for every node i of the network, i.e. we have one dual

variable for every primal constraint. The dual problem also uses a number

of reduced cost variables sij, one for every directed arc (i, j) ∈ A. The dual

MCNFP problem is a maximization problem and in matrix notation format

it is described as follows:

17

maximize z = bTw

s.t. ATw + Ims = c

s ≥ 0

(1.6)

where A ∈ ℜn×m, c ∈ ℜm, w ∈ ℜn, s ∈ ℜm, b ∈ ℜn and Im is the unit matrix

of size m. For the dual variable values wi it is

wi − wj = cij , ∀(i, j) ∈ T (1.7)

Since we have one dual variable for each primal constraint and the primal

constraints are linearly dependent, as it is stated in Relation (1.4), we can

arbitrarily choose one dual variable wr and give any value we want to it.

Then, it is very easy to compute the values for the rest of the dual variables.

Node r, that corresponds to the dual selected variable wr, is considered to

be the root of the basic tree-solution.

In an optimization problem, a slack variable is a variable that is added

to an inequality constraint to transform it to an equality. The reduced cost

variables are actually the slack variables for the dual problem (dual slacks),

as is can been seen in Relation (1.6), and their values can be computed by

the following relation:

sij = cij − wi + wj, ∀(i, j) /∈ T (1.8)

If for a solution x of the primal problem, it is xij ≥ 0, ∀(i, j) ∈ T , then

that solution x is called a primal feasible solution. If, on the other hand, for

a tree-solution w of the dual problem, it is sij ≥ 0∀(i, j) /∈ T then it is called

18

a dual feasible solution.

The solution of the dual problem provides an upper bound to the solution

of the primal problem. That is, we always have:

∑

(i,j)∈A

cijxij ≤
n
∑

i=1

biwi (1.9)

or in matrix notation form, it is:

cTx ≤ bTw (1.10)

Relations (1.9) and (1.10) are the result of a theorem called the weak duality

theorem. A consequence of this theorem is that, if we can find a primal

feasible solution x* and a dual feasible solution w*, such that cTx∗ = bTw∗,

then both solutions x* and w* are optimal solutions for the primal and dual

problem respectively.

A second very useful theorem, called the strong duality theorem, states

that if the primal problem has an optimal solution x*, then the dual problem

has also an optimal solution w* and vice versa. For the optimal solutions x*

and w*, it is cTx∗ = bTw∗.

There is not always an optimal solution. A linear problem is said to

be primal infeasible, if no solutions exist that satisfy all the constraints in

Relation (1.3) of the primal problem. Similarly, a problem is called dual

infeasible if there is no solution that satisfies the constraints in Relation

(1.6) of the dual problem. A linear program can also be unbounded, i.e. the

objective value is possible to go to −∞ for a minimization problem or to +∞

for a maximization problem. The weak duality theorem tells us that, if the

19

primal problem is unbounded then its dual problem is infeasible. Likewise,

if the dual is unbounded, then the primal must be infeasible. However, it is

possible for both the dual and the primal to be infeasible

A primal Simplex-type algorithm tries to find an optimal solution for

the primal problem, while a dual Simplex-type algorithm tries to find an

optimal solution for the dual problem. The two solutions, as stated by the

duality theorems, correspond to the same objective value and, by solving a

linear problem, its dual problem is also solved. Some classic Simple-type

algorithms for the MCNFP problem are presented in section 1.5.

1.4 Specializations of the MCNFP problem

The MCNFP problem formulation is very broad and it can be used to model

a number of various important network problems. Some problems that can

be solved as a specialization of the MCNFP problem are described in this

section.

1.4.1 The Assignment problem

In the assignment problem, we have a graph G = (N,A) where the set of

nodes N is partitioned into two disjoint subsets N1 andN2 of equal size. That

is N = N1 ∪N2 and N1 ∩N2 = ∅. Additionally, for all the arcs (i, j) ∈ A, it

is i ∈ N1 and j ∈ N2. The problem is to assign to each node in N1, a node

of N2, at the minimum possible cost. The cost of assigning a node i ∈ N1

to a node j ∈ N2 is denoted as cij. We set the parameters of the MCNFP

problem, as it is shown below:

20

bi = 1, ∀i ∈ N1

bi = −1, ∀i ∈ N2

lij = 0, ∀(i, j) ∈ A

uij = 1, ∀(i, j) ∈ A

The formulation of the problem is:

minimize z =
∑

(i,j)∈A

cijxij

subject to the following constraints:

∑

(i,j)∈A

xij = 1, ∀i ∈ N1

∑

(i,j)∈A

xij = −1, ∀j ∈ N2

0 ≤ xij ≤ 1, ∀(i, j) ∈ A

1.4.2 The Transportation problem

In this problem, the set of nodes N is again partitioned into two subsets N1

and N2 so that, N = N1 ∪N2, N1 ∩N2 = ∅ and ∀(i, j) ∈ A, i ∈ N1, j ∈ N2.

All the nodes in N1 are supply nodes (sources) and all the nodes in N2

are demand nodes (sinks). The problem is to find the flow of least cost

from the supply nodes of N1 to the sink nodes in N2. We denote as bi the

supply/demand at node i, xij the flow from source node i to sink node j and

cij the cost of shipping one product unit from node i to node j. There are

no upper bounds on flows.

21

The formulation of the problem is as follows:

minimize z =
∑

(i,j)∈A

cijxij

subject to the constraints:

∑

(i,j)∈A

xij = bi, ∀i ∈ N1

∑

(i,j)∈A

xij = −bj , ∀j ∈ N2

xij ≥ 0, ∀(i, j) ∈ A

1.4.3 The single-source Shortest Path problem

The single-source shortest path problem is the problem of finding in a net-

work, the directed paths of shortest length from a given node (source) to all

other nodes of the network. We assume, without loss of generality, that node

1 is the source node. We can set the parameters of the MCNFP problem, as

follows:

b1 = n− 1

bi = 1, ∀i ∈ N

cij = length of arc (i,j)

lij = 0

uij = n− 1, ∀(i, j) ∈ A

Therefore, the formulation of the problem is:

minimize z =
∑

(i,j)∈A

cijxij

22

subject to the constraints below:

∑

(1,j)∈A

x1j−
∑

(j,1)∈A

xj1 =n− 1,

∑

(i,j)∈A

xij−
∑

(j,i)∈A

xji =− 1, ∀i ∈ N, i > 1

0 ≤ xij ≤ n− 1, ∀(i, j) ∈ A

1.4.4 The Maximum Flow problem

The maximum flow problem is the problem to send the maximum possible

flow from a source node to a specified sink node. Every arc (i, j) has its own

capacity Capij and cannot pass flow greater than this capacity. Without loss

of generality, let’s assume that node 1 is the source node and node n is the

sink node. We can add a new artificial arc that connects the sink node to the

source node and we set the parameters of the MCNFP problem, as follows:

cn1 = 1

ln1 = 0

un1 = ∞

bi = 0, ∀i ∈ N

uij = Capij , ∀(i, j) ∈ A, (i, j) 6= (n, 1)

lij = 0, ∀(i, j) ∈ A

uij = n− 1, ∀(i, j) ∈ A

Therefore, the formulation of the problem is:

minimize − xn1

23

subject to the constraints below:

∑

(i,j)∈A

xij−
∑

(j,i)∈A

xji =0, ∀i ∈ N

0 ≤ xij ≤ uij , ∀(i, j) ∈ A

xn1 ≥ 0

1.5 Simplex-type algorithms for the Minimum

Cost Network Flow Problem

In Linear Programming, the feasibility region, i.e. the set of all feasible

solutions x ≥ 0, forms a polyhedron. Simplex-type algorithms use solutions

that correspond to the vertices of the polyhedron of the feasibility region,

called basic solutions. In a Network Simplex-type algorithm for the MCNFP

on a graph G=(N,A), a basic solution, as first described in [28], corresponds

to a spanning tree of G, called a basic tree. An arc that belongs to a basic

tree T is called a basic arc. The flow for all the non-basic arcs is always equal

to 0. If the flow for all the basic arcs in T, denoted as x(T), is not negative,

i.e. x(T) ≥ 0, then the tree T is called primal feasible tree.

A Network Simplex-type algorithm for the MCNFP problem starts from

an initial tree-solution T and computes vectors x, w and s that correspond

to the values of flows, dual variables and reduced cost variables respectively.

If it is sij ≥ 0, ∀(i, j) /∈ T , then the solution is dual feasible. If the algorithm

manages to find a solution being both primal and dual feasible then it is an

optimal solution and the algorithm stops.

Primal Network Simplex-type algorithms start from a primal feasible

24

tree-solution and they move, at every iteration, to a new primal feasible

tree-solution, until they find an optimal solution. On the other hand, Dual

Network Simplex-type algorithms start from a dual feasible tree-solution and

they reach to an optimal solution by moving inside the dual feasibility region.

Exterior Point Simplex-type algorithms start from a primal or dual feasible

tree-solution, but they have the possibility to move outside the primal and

dual feasibility region. That is, they use tree-solutions that are neither pri-

mal nor dual feasible, before they finally find a tree-solution that is both

primal and dual feasible, i.e. it is optimal.

Every iteration substitutes the current basic tree T with a new tree T ′,

until it finds a tree that corresponds to an optimal solution. The successive

tree T’ is derived from T after the addition into T of an entering arc (g,h) and

the deletion from it of a leaving arc (k,l). Therefore, it is T ′ = T∪(g, h)\(k, l).

The succession from a tree T to the next tree T’ is called a pivot. That way, a

Simplex-type algorithm follows a sequence of successive trees T 1, T 2, ..., T n,

where T 1 is the initial tree-solution that the algorithm uses as a starting

point. An initial tree-solution T 1 can always be found except of the case

that the problem is infeasible. A final optimal solution T n can always be

found except of the cases where the MCNFP problem is either infeasible or

unbounded.

A tree-solution found in an iteration is not necessarily better than the

tree-solution found in the previous iteration. For some iterations degenerate

pivots may occur. A pivot is degenerate when after the pivot is applied, the

objective value for the new tree-solution is the same as the objective value

of the old tree-solution. If degenerate pivots are applied one after the other,

25

problems like cycling or stalling may occur. Such problems are discussed in

more detail in section 4.1.1.

Section 1.5.1 presents the classic Primal Network Simplex-type algorithm

for the MCNFP problem and section 1.5.2 presents the corresponding dual

Simplex-type algorithm. Section 1.5.3 describes briefly a primal Exterior

Point Simplex-type algorithm for the MCNFP and finally, in section 1.5.4,

some state of the art algorithms are presented, together with some interesting

software implementations.

1.5.1 The Primal Network Simplex-type Algorithm for

the MCNFP problem

The Primal Network Simplex-type algorithm, PNSA for short, was first pre-

sented in 1951 by Danzing in [27]. PNSA maintains a primal feasible tree-

solution at every iteration. The algorithm iterates towards an optimal solu-

tion by exchanging basic with non-basic arcs and adjusting the flows accord-

ingly. The algorithm’s steps, for the uncapacitated MCNFP problem on a

network G=(N,a), are as follows:

Step 0: Initialization

A transformation has to be performed to the problem so that we find an

initial primal feasible tree-solution. A new artificial node, labeled n+1, is

added to the graph. The supply for the new node is bn+1 = 0. Additionally

n artificial arcs joining the artificial node to all other nodes i ∈ N are also

added to the graph. If node i ∈ N is a supply or transshipment node, i.e.

bi ≥ 0, then an artificial arc (i,n+1) is added and its cost per product unit

26

Figure 1.13: The big M method

is set equal to M, where M is a very big value. That is, we have ci,n+1 = M .

If node i ∈ N is a demand node, i.e. bi < 0, then an artificial arc (n+1,i) is

added and its cost per product unit is again set equal to M, i.e. cn+1,i = M .

The method described above is named the big M method and it produces

a new extended graph G’. In that graph G’, it is very easy to find an initial

primal feasible tree-solution T 1 (basic tree) by just including into it all the

artificial arcs of G’. For an artificial arc (n+1,i) of T 1 (i ∈ N), we consider

a flow xn+1,i = −bi > 0. On the other hand, for an artificial arc (i,n+1) of

T 1 (i ∈ N), we consider a flow xi,n+1 = bi ≥ 0. For all other non-basic arcs

(i, j) /∈ T 1 we have xij = 0. The flow x produced that way is primal feasible,

since it is
∑

i∈N

bi = 0 and x ≥ 0. Figure 1.13 shows the extended graph G’

produced by the big M method when it is applied on the graph of Figure 1.11.

Node 7 is the new artificial node added and the arcs in bold line: (1,7), (2,7),

27

(3,7), (4,7), (7,5) and (7,6) are the artificial arcs needed for the flow to pass

from the supply nodes to the demand nodes. The algorithm then processes

the new graph G’. If it comes to an optimal solution and none of the artificial

arcs has a positive flow, then an optimal solution for the original network has

been found. If, on the other hand, there exist artificial arcs having possitive

flow, then the original problem is infeasible.

A question that arises here is how large the value of M should be. We can

think of M having a big enough value, but if we want to give to it a certain

value, then we can assign to it any value that is greater than (n− 1)CU +1,

where C and U are computed by the relations: C = max{cij , (i, j) ∈ A} and

U =
∑

i∈N

bi.

After computing the initial flow x, PNSA has to compute the values of

the dual variables wi from Relation (1.7), and the reduced costs sij from

Relation (1.8). In order to do that, it is enough to set any dual variable to

an arbitrary value, e.g. w1 = 0, and then solve some simple linear equations

to compute the values of the other dual variables and all the reduced costs.

Step 1: Test of optimality

A non-basic arc has to be selected to enter the basic tree. The algorithm

chooses an arc (g,h) that violates the dual feasibility conditions, i.e. an arc

having sgh < 0. If no such admissible arc exists, then the current solution is

optimal, for the extended graph, since it is both primal and dual feasible. In

that case, if the original problem is feasible, the final tree-solution contains

no artificial arcs and an optimal solution for the original graph has been

found. So, the algorithm stops. Otherwise, the algorithm continues with the

next step.

28

Step 2: Select the entering arc

There are various rules for choosing the right entering arc but mostly

known is Dantzig’s rule that chooses an arc (g,h) having the minimum re-

duced cost value, i.e.:

sgh = min{sij : (i, j) /∈ T and sij < 0} (1.11)

Step 3: Determine the leaving arc

After adding the non-basic arc (g,h) into the basic tree T, then a unique

cycle C is created. Let C+ denote the set of arcs (i,j) of C having the same

orientation as (g,h), i.e. (i, j) ↑↑ (g, h), and C− denote the set of arcs (i,j) of

C having orientation opposite to (g,h), i.e. (i, j) ↑↑ (g, h). That is:

C+ = {(i, j) : (i, j) ∈ C and (i, j) ↑↑ (g, h)}

C− = {(i, j) : (i, j) ∈ C and (i, j) ↑↓ (g, h)}
(1.12)

The entering arc (g,h) is a linear combination of the basic arcs (i, j) ∈ T ,

after multiplying each basic arc (i,j) by a coefficient hij. For a basic arc (i,j)

that not belongs into cycle C, i.e. (i, j) /∈ C, it is hij = 0. If a basic arc (i,j)

belongs into C+, then it is hij = −1. Otherwise, if (i, j) ∈ C−, then it is

hij = −1. Therefore, we have:

hij =























0 , if (i, j) /∈ C

−1 , if (i, j) ∈ C+

+1 , if (i, j) ∈ C−

(1.13)

In order to eliminate the cycle C, created after adding the entering arc

29

(g,h) into the basic tree-solution T, one of the basic arcs must leave the basic

tree T. The leaving arc (k,l) is the arc of minimum flow that belongs into

C−. That is, for the leaving arc (k,l) we have:

xkl = min{xij : (i, j) ∈ C−} (1.14)

If it is C− = ∅ then the problem is unbounded.

Step 4: Pivot

A new basic tree-solution T∗ is produced by adding into the current tree-

solution T the entering arc (g,h) and removing the leaving arc (k,l) from it.

That is, the new tree is T∗ = T ∪ {(g, h)} \ {(k, l)}. Vectors x, w and s has

to be updated for the new tree and after that, the algorithm repeats from

Step 1.

For arcs (i, j) ∈ C+ their updated flow is decreased by the amount of the

flow xkl on the leaving arc (k,l), whereas for arcs (i, j) ∈ C− their updated

flow is increased by xkl. If we denote x
(t)
ij the flow of arc (i,j) in the current

iteration t, then it is:

x
(t+1)
ij =























x
(t)
ij − x

(t)
kl , if (i, j) ∈ C+

x
(t)
ij + x

(t)
kl , if (i, j) ∈ C−

x
(t)
ij , otherwise

(1.15)

The next issue is how to update the values for the dual variables. When

the leaving arc (k,l) is removed from the basic tree (without the addition

of the entering arc), two subtrees are produced. Let T ′ be the subtree that

contains the root r of the tree (the node that corresponds to the dual vari-

30

able wr to whom an arbitrary value was given) and T ′′ be the subtree not

containing r. Figure 1.14 shows the two subtrees produced when the leaving

arc (k,l) is removed from the basic tree T. Recalling that the dual variables

are calculated starting with the root node r and working up the basic tree

T, it is clear that the dual variables for the nodes of subtree T ′ remain un-

changed, whereas those for the nodes of T ′′ change by the same amount. If

the entering arc (g,h) crosses from subtree T ′ to subtree T ′′, then all dual

variables on T ′′ are increased by sgh. Otherwise, all dual variables on T ′′ are

decreased by sgh. Therefore, the values of the dual variables are updated as

shown below:

w
(t+1)
i =























w
(t)
i + s

(t)
gh , if i ∈ T ′′, g ∈ T ′ and h ∈ T ′′

w
(t)
i − s

(t)
gh , if i ∈ T ′′, g ∈ T ′′ and h ∈ T ′

w
(t)
i , otherwise

(1.16)

Finally, we must update the reduced costs variables (dual slacks). The

only reduced cost variables that change are those that span across the two

subtrees T ′ and T ′′. For these nodes, the dual variable of either the head or

the tail of the arc changes. For the arcs that bridge the two subtrees in the

same direction as the entering arc (g,h), their dual slcks are decremented by

sgh. On the other hand, for the arcs bridging the two subtrees in the opposite

direction, their dual slacks are incremented by sgh. That is:

31

Figure 1.14: Subtrees produced from the basic tree after removing the leaving
arc

s
(t+1)
ij =























s
(t)
ij − s

(t)
gh , if (i, g ∈ T ′ and j, h ∈ T ′′) or (i, g ∈ T ′′ and j, h ∈ T ′)

s
(t)
ij + s

(t)
gh , if (i, h ∈ T ′ and j, g ∈ T ′′) or (i, h ∈ T ′′ and j, g ∈ T ′)

s
(t)
ij , otherwise

(1.17)

All the steps for the Primal Network Simplex-type Algorithm for the

MCNFP problem are given in Algorithm 1.

32

Algorithm 1 The Primal Network Simplex-type Algorithm

Require: G = (N,A), b, c
1: procedure PNSA(G)

Step 0 (Initialization)
2: Compute flows x (big M method) and vectors w and s by using Re-

lations (1.7) and (1.8) respectively.
Step 1 (Test of optimality)

3: if sij ≥ 0, ∀(i, j) /∈ T then
4: if there are no artificial arcs in T then
5: STOP. An optimal solution is found.
6: else
7: STOP. The problem is infeasible.
8: end if
9: end if

Step 2 (Select the entering arc)
10: Choose the entering arc (g, h) by using Relation (1.11).

Step 3 (Determine the leaving arc)
11: Find sets C+ and C− using Relation (1.12).
12: if C− = ∅ then
13: STOP. The problem is unbounded.
14: else
15: Choose the leaving arc (k, l) by using Relation (1.14).
16: end if

Step 4 (Pivoting)
17: Set T = T ∪ {(g, h)} \ {(k, l)}.
18: Update vectors x, s, and w.
19: Go to Step 1.
20: end procedure

33

1.5.2 The Dual Network Simplex-type Algorithm for

the MCNFP problem

The Dual Network Simplex-type algorithm, DNSA for short, starts from

a dual feasible initial tree-solution T 1. In every iteration, the algorithm

maintains a dual feasible basic tree and tries to find a tree-solution that

is both dual and primal feasibly, i.e. it is optimal. Therefore, DNSA moves

into the dual feasible region instead of the primal feasible region where PNSA

moves into. Unlike PNSA, DNSA first selects the leaving arc and after that

it chooses the entering arc. The algorithm’s steps are described below:

Step 0: Initialization

First of all, an initial dual feasible tree-solution has to be constructed.

This can be done by using the technique described in section 4.3.

Step 1: Test of optimality

The algorithm first has to select a leaving arc (k,l) that breaks the solu-

tion’s primal feasibility. If no such arc exists, i.e. if for all the basic arcs (i,j)

it is xij ≥ 0, then the current solution is optimal. In that case, the algorithm

stops. Otherwise, it continues to Step 2.

Step 2: Select the leaving arc

The algorithm selects the basic arc, having the minimum flow, to leave

the basic tree-solution. So, for the leaving arc (k, l), we have:

xkl = min{xij : (i, j) ∈ T and xij < 0} (1.18)

Step 3: Determine the entering arc

When the leaving arc (k,l) is removed from the basic tree T, then two

34

disjoint subtrees T’ and T” are produced. The entering arc (g,h) the algo-

rithm chooses, is one that bridges the two subtrees in the opposite direction

to the leaving arc (k,l). In other words, in the cycle C created when (g,h) is

added to the basic tree T, the entering arc (g,h) has the same orientation as

the leaving arc (k,l). That is, (k,l) must belong into set C+, as it is defined

in Relation (1.12). The leaving arc (k,l) must also have the smallest reduced

cost amongst all the non-basic arcs (i,j) in C+, i.e. it is:

sgh = min{sij : (i, j) /∈ T and (i, j) ∈ C+} (1.19)

There is no case the primal problem is unbounded. If the primal problem

was unbounded, then the dual problem would be infeasible. In that case it

would not be possible to find an initial tree during the initialization step.

Step 4: Pivot

A new basic tree is produced by removing the leaving arc (k,l) and adding

the entering arc (g,h). That is, the new tree is T \{(k, l)}∪{(g, h)}. Vectors

x, w and s has to be updated for the new tree and the algorithm repeats

from Step 1.

The steps for the Dual Network Simplex-type Algorithm for the MCNFP

problem are described in Algorithm 2.

1.5.3 The Primal Network Exterior Point Simplex-type

Algorithm for the MCNFP problem

The Primal Network Exterior Point Simplex-type Algorithm for the MCNFP,

PNEPSA for short, is a Simplex-type algorithm that, like PNSA, starts from

35

Algorithm 2 The Dual Network Simplex-type Algorithm

Require: G = (N,A), b, c
1: procedure DNSA(G)

Step 0 (Initialization)
2: Find initial dual feasible tree and compute vectors w and s by using

Relations (1.7) and (1.8) respectively.
Step 1 (Test of optimality)

3: if xij ≥ 0, ∀(i, j) ∈ T then
4: STOP. An optimal solution is found.
5: end if

Step 2 (Select the leaving arc)
6: Choose the leaving arc (k, l) by using Relation (1.18).

Step 3 (Determine the entering arc)
7: Choose the entering arc (g, h) by using Relation (1.19).

Step 4 (Pivoting)
8: Set T = T \ {(k, l)} ∪ {(g, h)}.
9: Update vectors x, s, and w.

10: Go to Step 1.
11: end procedure

a primal feasible solution and after a number of iterations, it finds an optimal

solution for the MCNFP problem. Unlike PNSA, it can go through tree-

solutions that are not primal feasible. That is, it has the capability to move

outside the primal feasible region. PNEPSA is described in detail in [84] and

[78]. The algorithm’s steps are as follows:

Step 0: Initialization

First the algorithm has to build an initial primal feasible tree T to start

from. This can be done by using the big M method, described in section

1.5.1, that produced an extended network, as it is shown in Figure 1.13. The

set of non-basic arcs is divided into two subset, a set P containing those arcs

of negative reduced cost value and a set Q containing the rest of the arcs, as

it is seen below:

36

P = {(i, j) : (i, j) /∈ T and sij < 0}

Q = {(i, j) : (i, j) /∈ T and sij ≥ 0}
(1.20)

If a non-basic arc (i, j) /∈ T is added into the basic tree T , then a cycle

C is created. For every arc (i,j), let hij be the vector of orientations in C of

all the basic arcs of T compared to the orientation of (i, j). If an arc (u, v)

in C has the same orientation as (i, j), then it is hij(u, v) = −1, otherwise

we have hij(u, v) = +1. For all other arcs (u, v) /∈ C, it is hij(u, v) = 0.

Therefore, we have:

hij(u, v) =























0 , if (u, v) /∈ C

−1 , if (u, v) ∈ C and (u, v) ↑↑ (i, j)

+1 , if (u, v) ∈ C and (u, v) ↑↓ (i, j)

(1.21)

The vectors of orientations hij are used for the computation of a direction

vector d, that allows the algorithm to keep in touch with the primal feasi-

ble region. Vector d, for every arc (i,j), contains a value computed by the

following formula:

dij =



























− ∑

(i,j)∈P

hij , if (i, j) ∈ T

1 , if (i, j) ∈ P

0 , if (i, j) ∈ Q

(1.22)

Step 1: Test of optimality

If P = ∅ then the current tree solution is optimal and the algorithm stops.

If P 6= ∅ and d(i, j) ≥ 0, ∀(i, j) ∈ T , then the problem is unbounded and the

algorithm stops again. If non of the above is true, the algorithm continues

37

with the next step.

Step 2: Select the leaving arc

Vector d is used for the determination of the leaving arc (k,l), as it is

shown in the following formula:

xkl

dkl
= min{xij

dij
: (i, j) ∈ T and dij < 0} (1.23)

Step 3: Determine the entering arc

In order to determine the entering arc (g,h), the algorithm first computes

two values θ1 and θ2, that give two candidate entering arcs (p1, p2) and (q1, q2),

by using the following formula:

θ1 = −sp1p2 = min{−sij : (i, j) ∈ P and hij(k, l) = 1}

θ2 = sq1q2 = min{sij : (i, j) ∈ Qand hij(k, l) = −1}
(1.24)

If it is θ1 ≤ θ2, then we say we have a type A iteration and the algorithm

chooses (g, h) = (p1, p2) as the entering arc. Otherwise, we have a type B

iteration and (g, h) = (q1, q2) is the entering arc.

Step 4: Pivot

A new basic tree-solution is produced by removing the leaving arc (k,l)

from the basic tree-solution and adding the entering arc (g,h) into it. That

is, the new tree is T \ {(k, l)} ∪ {(g, h)}. The leaving arc (k,l) is added into

set Q. If it is θ1 ≤ θ2 then it becomes P = P \ {(g, h)}, otherwise it becomes

Q = Q \ {(g, h)} Vectors x, w and s are updated and the algorithm repeats

from Step 1.

38

The steps for the Primal Network Exterior Point Simplex-type Algorithm

for the MCNFP problem are shown in Algorithm 3.

1.5.4 State of the art algorithms for the MCNFP prob-

lem

In complexity theory, an algorithm is said to be of polynomial time if its

running time is upper bounded by a polynomial expression in the size of the

input for the algorithm. A strongly polynomial-time algorithm is one whose

running time is bounded polynomially by a function only of the inherent

dimensions of the problem and independent of the sizes of the numerical data.

An algorithm for a network problem is strongly polynomial if its running time

depends only on the number of nodes and arcs of the network, and not on

the size of the costs or capacities. An algorithm that runs in polynomial time

but is not strongly polynomial, is said to run in weakly polynomial time.

The first weakly polynomial time algorithm for the MCNFP problem

was presented in 1972 by Edmonds and Karp and it used scaling techniques

(see [29]) to solve the MCNFP problem. Scaling techniques work as follows:

Given a network problem, it divides all capacities or supplies by two (or both).

Then this scaled-down problem is solved recursively (or it could be solved

iteratively). By doubling the solution, we get we take a near-optimal solution

that can be transformed to an optimal solution of the original problem. A

cost scaling technique is described in [83] and an algorithm using capacity

scaling is presented in [68] by Orlin. A double scaling technique, i.e. a

technique scaling both capacity and cost, was developed in [1].

39

Algorithm 3 The Primal Network Exterior Point Simplex-type Algorithm

Require: G = (N,A), b, c
1: procedure DNSA(G)

Step 0 (Initialization)
2: Find initial primal feasible tree (big M method)
3: Compute vectors w, s and d by using Relations (1.7), (1.8) and (1.22).

Step 1 (Test of optimality)
4: if P = ∅ then
5: STOP. An optimal solution is found.
6: else
7: if d(i, j) ≥ 0, ∀(i, j) ∈ T then
8: STOP. The problem is unbounded.
9: end if

10: end if
Step 2 (Select the leaving arc)

11: Choose the leaving arc (k, l) by using Relation (1.23).
Step 3 (Determine the entering arc)

12: Find θ1 and θ2 by using Relation (1.24).
13: if θ1 ≤ θ2 then
14: the leaving arc is (g, h) = (p1, p2).
15: else
16: the leaving arc is (g, h) = (q1, q2).
17: end if

Step 4 (Pivoting)
18: Set T = T \ {(k, l)} ∪ {(g, h)}.
19: Set Q = Q ∪ {(k, l)}.
20: if θ1 ≤ θ2 then
21: Set P = P \ {(g, h)}
22: else
23: Set Q = Q \ {(g, h)}
24: end if
25: Update vectors x, s, and w.
26: Go to Step 1.
27: end procedure

40

Edmonds and Karp in [29] stated that a challenging problem was to give a

method for the minimum cost flow problem having a bound of computation,

which is polynomial in the number of nodes and is independent of both costs

and capacities. That is, they expressed the importance of the development

of a strongly polynomial algorithm.

The first strongly polynomial algorithm was presented in 1985 by Tardos

in [88]. She showed how to solve the MCNFP problem by solving m = |E|

distinct problems such that, in each problem it is logC ≤ 2log|V |, where C

is the maximum absolute cost value, given that all costs are integer values

(otherwise it is ∞). She also showed how to extend her own technique to

provide algorithms for all linear programs in which the constraint matrix

coefficients are small. Other strongly polynomial algorithms were also pre-

sented in [35] and [30]. Orlin in 1997 (see [70]) presented a polynomial-time

primal Simplex-type algorithm for the MCNFP problem that needs a number

of O(min{nmlognC, nm2logn}) iterations. Polynomial-time dual Simplex-

type algorithms for the MCNFP problem have been described in [69] and

[6].

Different approaches in the development of algorithms for the MCNFP

problem include the cycle cancelling algorithm, the minimum mean cycle-

cancelling method, the out-of-kilter algorithm and the steepest edge method,

presented in [87], [46], [33] and [25] respectively. Moreover, new scaling

techniques were developed like, the repeated capacity scaling technique in

[47], the enhanced capacity scaling technique in [80] and the triple scaling

method in [46].

Interior point methods were also used for the solution of he MCNFP

41

problem. Interior point methods (also referred as barrier methods) form a

certain class of algorithms to solve linear (and non-linear) optimization prob-

lems. Contrary to the Simplex-type methods, they reach an optimal solution

by traversing the interior of the (primal or dual) feasible region. Karmarkar

in 1984 presented for the first time a polynomial interior point algorithm (see

[57]). Plenty other similar interior point methods were described since then.

Miscellaneous network optimization codes for the MCNFP problem have

been implemented. One of the most important implementations is RELAX-

IV (see [13]) which is an evolvement of RELAX software that implements

the particularly effective (in practice) relaxation method, presented in [12].

RELAX-IV combines the RELAX code with an initialization process, based

on a shortest path algorithm. Other software suits were also developed, like

NETFLO in [58], cs2 that uses scaling techniques (see [48]), RNET in [50]

and commercial CPLEX with its NETOPT solver. There are various com-

parative studies (see [16]) on the performance of these (and other) software

implementations.

1.6 Innovation, objectives and structure of

the Thesis

The Dual Network Exterior Point Simplex-type Algorithm for the MCNFP

problem (DNEPSA for short) is the first Exteriorior-point Dual algorithm

developed for the solution of the MCNFP problem. Only a Primal Exterior-

point Simplex-type algorithm was presented in the previous years for the

42

MCNFP problem and DNEPSA shows superior computational results com-

pared to the primal algorithm. Hence, the development of the algorithm

introduces an innovation to the field of MCNFP algorithms since it is the

only algorithm of its kind.

The main objective of this thesis is to give a detailed presentation of

DNEPSA together with the proof of correctness of the algorithm. Illustra-

tive examples and implementation details will be also given. A comparative

computational study, against other classic Simplex-type algorithms, will try

to indicate the importance of exterior point algorithms. Moreover, some as-

pects of DNEPSA’s time complexity will be examined, first from a statistical

point of view and later from a theoretical point of view, when dynamic trees

data structures are used.

In chapter 1, an introduction to the Graph Theory is presented, together

with the definitions that will be used during the rest of the thesis. The Min-

imum Cost Network Flow Problem (MCNFP) is defined and a reference to

related work is given. Furthermore, some classic algorithms for the MCNFP

problem are briefly described.

Chapter 2 gives an analytical presentation of DNEPSA. The steps of the

algorithm are described in detail and additionally, a method for the quick

update of the algorithm’s variables is shown (section 2.3). Two illustrative

examples demonstrates the way the algorithm works in practice. In chapter 3

a sequence of theorems prove the correct behaviour of the algorithms.

Implementation details for the algorithm, that concerns the methods and

the data structures it uses, are given chapter 4. Some computational results

about the algorithm’s performance and a comparative study against the clas-

43

sic Dual Network Simplex-type Algorithm are presented in section 4.4. A

statistical analysis is carried out in section 4.5. Finally, section 4.6 calculates

the empirical complexity of the algorithm by using the computational results.

Chapter 5 describes an implementation of DNEPSA by using dynamic

trees. The theoretical time complexity per iteration is also found. The

conclusions of this thesis and the future work that have to been done are

presented finally in chapter 5.

44

Chapter 2

The Dual Network Exterior

Point Simplex-type Algorithm

2.1 Introduction

The Dual Network Exterior Point Simplex-type Algorithm, DNEPSA for

short, was first presented by Georgios Geranis in [37]. As its name implies, is

a Simplex-type algorithm that, starts from a dual feasible basic tree-solution

T and tries to find an optimal solution by moving outside the dual (and pri-

mal) feasibility region. In other words, DNEPSA starts from a dual solution

and reaches an optimal solution by following a route consisting of solutions

that do not always belong to the feasible area of the dual problem. This is

the main difference between DNEPSA and the other existing dual network

simplex-type algorithms, like DNSA described in section 1.5.2. Furthermore,

DNEPSA, contrary to the classical DNSA, first selects the entering arc and

afterwards it selects the leaving arc. Finally, in DNEPSA the entering and

45

the leaving arc are selected by using different rules than the rules used in

DNSA.

DNEPSA also works differently compared to PNEPSA, described in sec-

tion 1.5.3. PNEPSA starts from a primal feasible solution and it works in a

different way, while DNEPSA starts from a dual feasible solution. DNEPSA

also shows much better performance compared to DNSA and NEPSA, as it

is shown in section 4.4. The steps of the algorithm are described in detail in

the following section.

2.2 Algorithm Description

The algorithm performs itteratively a number of steps until it satisfies the

optimality condition, or it decides that the problem is infeasible. The steps

of the algorithm are described below:

Step 0: Initialization

DNEPSA starts from an initial dual feasible basic tree-solution. Various

methods may be used in order to find the starting tree. An algorithm that can

construct a dual feasible tree-solution for the generalized network problem

(and also for pure networks) was first described in [39]. An improved version

of the same algorithm, that gives a dual feasible solution that is closer to

an optimal solution, is presented in [53] and it is described in more detail in

section 4.3.

The initial tree-solution T is dual feasible. That is, for the non-basic arcs

(i, j) /∈ T , it is xij = 0 and sij ≥ 0, while for the basic arcs (i, j) ∈ T it

is sij = 0. The values of the dual variables wi, 1 ≤ i ≤ n, can be easily

46

computed from relation:

wi − wj = cij, ∀(i, j) ∈ T (2.1)

In Relation (2.1) we have n − 1 equations and n variables, so we can

choose one of the dual variables, e.g. w1, and set it equal to an arbitrary

value, e.g. 0. Then, it is easy to compute the values for the rest of the dual

variables by just solving some first-order equations.

In order to compute the values for the reduced cost variables sij for all

the non-basic arcs (i, j), we can use the relation:

sij = cij − wi + wj , ∀(i, j) /∈ T (2.2)

while it is sij = 0 for all the basic arcs. Next, the algorithm creates a set,

named I , that contains the basic arcs (i, j) having negative flow, i.e. xij < 0.

That is, I contains those arcs that violate the primal feasibility of the current

tree-solution. The rest of the arcs, having xij ≥ 0, belong in a set, named

I+. Therefore, it is:

I = {(i, j) ∈ T : xij < 0} (2.3)

and

I+ = {(i, j) ∈ T : xij ≥ 0} (2.4)

If a non-basic arc (i, j) is added into the basic tree T , then a cycle Cij is

created. Let hij be the vector of orientations in Cij of all the basic arcs of

47

T relative to the orientation of the entering arc (i, j). If an arc (u, v) in Cij

has the same orientation as (i, j), then it is hij(u, v) = −1, otherwise it is

hij(u, v) = +1. For an arc (u, v) not belonging into Cij, we have hij(u, v) = 0.

Let Cij+ denote the set of arcs (u,v) in Cij having the same orientation as

(i,j), i.e. (i, j) ↑↑ (u, v) and let C−

ij denote the set of arcs (u,v) of Cij having

orientation opposite to (i,j), i.e. (i, j) ↑↓ (u, v). Then, it is:

C+
ij = {(u, v) : (u, v) ∈ Cij and (i, j) ↑↑ (u, v)}

C−

ij = {(u, v) : (u, v) ∈ Cij and (i, j) ↑↓ (u, v)}
(2.5)

Therefore, for the vector hij we have:

hij(u, v) =























0 , if (u, v) /∈ Cij

−1 , if (u, v) ∈ C+
ij

+1 , if (u, v) ∈ C−

ij

(2.6)

In every iteration, DNEPSA finds out a new basic tree-solution which

is probably neither primal nor dual feasible. The algorithm maintains a

direction vector d pointing to the feasible region of the dual problem, so

that it keeps in touch with it. Vector d is computed by using the following

formula:

dij =



























1 , if (i, j) ∈ I

0 , if (i, j) ∈ I+
∑

(u,v)∈I

huv , if (i, j) /∈ T

(2.7)

Step 1: Test of optimality

If the set I is empty, i.e. I = ∅, that means that there are no basic

48

arcs breaking the primal feasibility solution. In that case the current tree-

solution is both primal and dual feasible and therefore, it is optimal. So, the

algorithm stops. Otherwise, it is I 6= ∅ and DNEPSA creates a set named

J , defined as shown below:

J = {(i, j) /∈ T : sij ≥ 0 and dij < 0} (2.8)

If it is J = ∅, then the MCNFP problem is infeasible and the algorithm

stops again. Otherwise, it continues with the next step.

Step 2: Selection of the entering arc

DNEPSA uses set J in order to compute the minimal ratio by using the

following formula:

α =
sgh
−dgh

= min{ sij
−dij

: (i, j) ∈ J } (2.9)

This ratio α, is used in order to choose the entering arc (g, h). The entering

arc is the non-basic arc that minimizes the ratio shown in Relation (2.9).

After (g, h) is added into the basic tree T , a cycle C is created. When a

product unit flows through C, the value of the objective function is changed

by the following amount:

∆z =
∑

(i,j)∈C

tijcij

where tij equals 1 if the arcs (i, j) and (g, h) have the same orientation in

cycle C, i.e. (i, j) ↑↑ (g, h). Otherwise, in case (i, j) ↑↓ (g, h), it is tij = −1.

By using Relation (2.1) for (i, j) ∈ T , we have:

49

∆z =
∑

(i,j)∈C

tijcij = cgh − wg + wh

and by applying Relation (2.2) we take:

∆z = sgh (2.10)

Relation (2.10) implies that the change in the objective value equals the

reduced cost value for the entering arc.

Step 3: Selection of the leaving arc

In order to find the leaving arc (k, l), DNEPSA calculates the values θ1

and θ2, as shown in the following formula:

θ1 = −xk1l1 = min{−xij : (i, j) ∈ I and (i, j) ↑↑ (g, h)}

θ2 = xk2l2 = min{ xij : (i, j) ∈ I+ and (i, j) ↑↓ (g, h)}
(2.11)

These values give two candidate arcs (k1, l1) and (k2, l2) and the algorithm

chooses the one that will leave the basic tree by comparing the values of θ1

and θ2.

If θ1 ≤ θ2, then the arc (k1, l1) is the leaving arc. In that case, we say

we have a type A iteration. An arc of negative flow xkl = −θ1 is leaving and

an arc with flow xgh = θ1 is entering the basic tree-solution. For the leaving

arc (k, l), the subtree containing node k is denoted by T+, while the other

subtree, containing l, is denoted by T−, as it is seen in Figure 2.1.

If, on the other hand, it is θ1 > θ2, then the arc (k2, l2) is the leaving

arc. In that case, we say we have a type B iteration. An arc of positive

50

Figure 2.1: Type A iteration

flow xkl = θ2 is leaving and an arc with flow xgh = θ2 is entering the basic

solution, as it can be seen in Figure 2.2.

Step 4: Pivoting

After selecting the entering and the leaving arc, the algorithm comes to

a new tree-solution, closer to an optimal solution. For the new tree solution

it is T = T \ (k, l) ∪ (g, h). The algorithm has to update vectors x, w and s

for the new tree-solution and sets I and I+. After that, it will repeat the

same process from step 1. The update of the vectors and sets can be done

as it is described in section 2.3.

The formal description of DNEPSA, in pseudocode format, is shown in

Algorithm 4.

2.3 Update of variables and sets

It is not necessary for the algorithm in every iteration to compute the values

of variables xij , sij , and dij or to create sets I and I+ from scratch. The

51

Algorithm 4 The Dual Network Exerior Point Simplex-type Algorithm

Require: G = (N,A), b, c, T
1: procedure DNEPSA(G)

Step 0 (Initialization)
2: Compute x, w, and s, using Relations (1.2), (2.1), and (2.2).
3: Find sets I and I+, using Relations (2.3) and (2.4).
4: Compute vector d, using Relation (2.7).

Step 1 (Test of optimality)
5: while I 6= ∅ do
6: Find set J , using Relation (2.8).
7: if J = ∅ then
8: STOP. The problem 1.2 is infeasible.
9: else

Step 2 (Selection of the entering arc)
10: Compute α, using Relation (2.9).
11: Select the entering arc (g, h).

Step 3 (Selection of the leaving arc)
12: Compute θ1, θ2, using Relations (2.11).
13: Select the leaving arc (k, l).

Step 4 (Pivoting)
14: Set T = T \ (k, l) ∪ (g, h).
15: Update vectors x, s, and d and sets I and I+.
16: if θ1 ≤ θ2 then
17: Set I = I \ (k, l) and I+ = I+ ∪ (g, h)
18: else
19: Set I+ = I+ ∪ (g, h) \ (k, l)
20: end if
21: end if
22: end while
23: STOP. The current tree-solution is optimal.
24: end procedure

52

Figure 2.2: Type B iteration

Table 2.1: Cases for the basic arcs (i, j) ∈ T
Case 1 (i, j) /∈ C(t)

Case 2 (i,j)=(g,h) and type A iteration
Case 3 (i,j)=(g,h) and type B iteration
Case 4 (type A iteration and (i, j) ↑↑ (g, h)) or

(type B iteration and (i, j) ↑↓ (g, h))
Case 5 (type A iteration and (i, j) ↑↓ (g, h)) or

(type B iteration and (i, j) ↑↑ (g, h))

variables and sets used by DNEPSA can be efficiently updated from iteration

to iteration. Let notation x
(t)
ij mean the flow on arc (i, j) during iteration t

of the algorithm. A similar notation is used for variables sij and dij. After

adding the entering arc (g,h) into the basic tree T during iteration t, a unique

cycle, denoted by C(t), is created. For the basic arcs (i, j) ∈ T we can have

the 5 different cases, shown in Table 2.1.

In iteration t+1, for every basic arc (i, j), the flow x
(t+1)
ij depends on the

flow of the arc in the previous iteration x
(t)
ij and the flow of the leaving arc

x
(t)
kl , as it is shown in Table 2.2.

53

Table 2.2: Update of flows xij , ∀(i, j) ∈ T

Cases x
(t+1)
ij

Case 1 x
(t)
ij

Case 2 −x
(t)
kl = θ1

Case 3 x
(t)
kl = θ2

Case 4 x
(t)
ij − x

(t)
kl

Case 5 x
(t)
ij + x

(t)
kl

Table 2.3: Cases for the non-basic arcs (i, j) /∈ T
Case 1 i, j ∈ T+ or i, j ∈ T−

Case 2 i ∈ T+, j ∈ T− and type A iteration
Case 3 i ∈ T+, j ∈ T− and type B iteration
Case 4 i ∈ T−, j ∈ T+ and type A iteration
Case 5 i ∈ T−, j ∈ T+ and type B iteration

For the non basic arcs (i, j) we can also have different cases, depending

on the type of iteration and the arc’s position, as it is shown in Table 2.3.

In iteration t + 1, the reduced costs s
(t+1)
ij for the non basic arcs (i, j)

depend on the reduced costs in the previous iteration s
(t)
ij and the reduced

cost for the entering arc s
(t)
gh. In Table 2.4, we can see how the sij values are

updated, for the cases of Table 2.3.

In a similar way, Table 2.5 shows how the dij values are updated after

each iteration, for the cases in Table 2.3.

Table 2.4: Update of reduced cost values sij, ∀(i, j) /∈ T

Cases s
(t+1)
ij

Case 1 s
(t)
ij

Case 2 s
(t)
ij + s

(t)
gh

Case 3 s
(t)
ij − s

(t)
gh

Case 4 s
(t)
ij − s

(t)
gh

Case 5 s
(t)
ij + s

(t)
gh

54

Table 2.5: Update of direction values dij, ∀(i, j) /∈ T

Cases d
(t+1)
ij

Case 1 d
(t)
ij

Case 2 d
(t)
ij + d

(t)
gh

Case 3 d
(t)
ij − d

(t)
gh

Case 4 d
(t)
ij − d

(t)
gh

Case 5 d
(t)
ij + d

(t)
gh

The update of the sets I and I+ depends only on the type of the iteration.

We have the following two cases:

• Case 1 : For a type A iteration, both sets change according to the

following formulas:

I+ = I+ ∪ {(g, h)}

I− = I− − {(k, l)}
(2.12)

• Case 2 : For a type B iteration, only set I+ changes. This is done as it

is shown below:

I+ = I+ ∪ {(g, h)} − {(k, l)} (2.13)

After the update of the vector variables and the sets is done, DNEPSA

repeats the same process, from step 1, until it finds an optimal solution. In

section 2.4 an illustrative example demonstrates how the algorithm works in

practice.

55

2.4 Illustrative examples

In this section, two illustrative examples will be given showing how DNEPSA

works in practice. For the first newtwork, there exists an optimal solution

and DNEPSA comes to it after the iterations shown below. The second

problem is infeasible and DNEPSA detects it after a couple of iterations, as

it is shown in subsection 2.4.1.

First, a step by step example for the application of DNEPSA to a MC-

NFP problem is presented. The algorithm will be applied to the network G

= (N, A) of Figure 1.11. Network G consists of 6 nodes and 12 arcs. Next

to each node, there is a value showing supply for that node (negative val-

ues mean demands). For every arc in A, the cost per product unit flow is

also shown. When DNEPSA is applied to the MCNFP problem, it finds an

optimal solution after three iterations, as it is shown below:

Iteration 1

Step 0 (Initialization)

In order to start, the algorithm needs an initial dual feasible basic tree-

solution. Figure 2.3 shows a dual feasible tree-solution that can be used by

DNEPSA as a starting point. Such an initial solution can be obtained by

using existing techniques, like the technique described in section 4.3.

The tree-solution T shown in Figure 2.3 is a dual feasible tree, since for

the reduced cost variables it is sij ≥ 0, ∀(i, j) ∈ T . This can be easily verified

by using Relation (2.1), which takes the following forms:

56

Figure 2.3: Initial dual feasible tree-solution

w5 − w1 = 16

w5 − w2 = 57

w5 − w3 = 107

w5 − w4 = 32

w5 − w6 = 1

(2.14)

By setting arbitrarily the value of w1 equal to 0, from Relation (2.14), we

can very easily find w5 = 16, w2 = −41, w3 = −91, w4 = −16 and w6 = 15.

For the computation of the reduced cost values for all non-basic arcs

(i, j) /∈ T , after using Relation (2.2), we have:

57

s16 = c16 + w1 − w6 = 41 + 0− 15 = 26

s26 = c26 + w2 − w6 = 104 + (−41)− 15 = 48

s36 = c36 + w3 − w6 = 130 + (−91)− 15 = 24

s46 = c46 + w4 − w6 = 84 + (−16)− 15 = 53

s53 = c53 + w5 − w3 = 71 + 16− (−91) = 178

s64 = c64 + w6 − w4 = 0 + 15− (−16) = 31

s63 = c63 + w6 − w3 = 43 + 15− (−91) = 149

For the basic arcs (i, j) ∈ T , it is sij = 0.

For all nodes i ∈ N of the graph, the outgoing flow has to be equal to

the incoming flow plus the supply of the node. Therefore, it is:

∑

(i,k)∈N

xik −
∑

(j,i)∈N

xji = bi

and thus we have:

node1 : x15 = 3

node2 : x25 = 5

node3 : x35 = 3

node4 : x45 = 3

node5 : −x15 − x25 − x35 − x45 − x65 = −6

node6 : x65 = −8

By solving the above equations we can easily compute the flows x for the

initial tree-solution T: x15 = 3, x25 = 5, x35 = 3, x45 = 3 and x65 = −8. This

is not a feasible tree, since there exist negative flows (it is x65 < 0).

58

We have I = {(6, 5)}, because it is x65 = −8 < 0. The rest of the arcs

form set I+ = {(1, 5), (2, 5), (3, 5), (4, 5)}.

If we add the non-basic arc (1,6) into the basic tree, a cycle C is created.

In this cycle, arc (1,6) has the same orientation as (6,5), which is the only

arc of set I . So, d16 = −1. By checking in a similar way all the non-basic

arcs, by using Relation (2.7), it comes out that it is: d26 = −1, d36 = −1 and

d46 = −1, since the arcs (2,6), (3,6) and (4,6) have the same orientation in the

cycle C created, as arc (6, 5) ∈ I . On the other hand, it is d53 = 0, d64 = 1

and d63 = 1.

Step 1 (Test of optimality)

It is I 6= ∅, so the current tree-solution is not optimal. From Relation

(2.8), the algorithm creates set J = {(1, 6), (2, 6), (3, 6), (4, 6)}. It is J 6= ∅,

so DNEPSA continues to step 2. If it was J = ∅, then the problem would

be infeasible.

Step 2 (Selection of the entering arc)

From Relation (2.9), the algorithm computes ratio α:

α =
s36
−d36

=
24

1
= min{ s16

−d16
,
s26
−d26

,
s36
−d36

,
s46
−d46

} = min{26
1
,
48

1
,
24

1
,
53

1
}

So, arc (3,6) is the entering arc.

Step 3 (Selection of the leaving arc)

After adding the entering arc (3,6) into the basic tree-solution T, a cycle

C is created, as it is shown in Figure 2.4. That cycle contains only two

basic arcs: (3,6) and (6,5). Arc (6,5) belongs into set I and it has the same

59

orientation as the entering arc (3,6). So, it is θ1 = −x65 = 8. Arc (3,5), on

the other hand, belongs into set I+ and it does not have the same orientation

as the entering arc (3,6). So, it is θ2 = x35 = 3. We have θ1 > θ2 which

means that we have a type B iteration and arc (3,5) is the leaving arc.

Figure 2.4: Cycle created when adding the entering arc into the basic tree

Step 4 (Pivot)

After removing the leaving arc from the basic tree-solution T and adding

the entering arc into T, a new tree, shown in Figure 2.5, is produced. Vectors

x, s and d has to be updated according to Tables (2.2), (2.4) and (2.5). The

flow for the entering arc is x36 = θ2 = 3 and for arc (6, 5) ∈ C, it becomes

x65 = −8 + 3 = −5. The rest of the flows remain unchanged.

When the leaving arc (3,5) is removed from the original tree T, then

subtrees T+ and T−, shown in Figure 2.6, are created. Only the reduced

costs for the arcs that cross from one subtree to the other are changed,

the leaving arc included. Those arcs, as Table 2.4 implies, change their

60

Figure 2.5: The basic tree after the first iteration

reduced cost value by adding or subtracting value s36 = 24 (depending on

their orientation). So, we have s35 = 0 − 24 = −24, s53 = 178 + 24 = 202

and s63 = 149 + 24 = 173. In a similar way, as Table 2.5 implies, the

values of d35, d53 and d63 change by an amount of d36 = −1. So, it becomes:

d35 = 0− (−1) = 1, d53 = 0 + (−1) = −1 and d63 = 1 + (−1) = 0.

Since the algorithm performed a type B iteration, only set I+ is changed,

according to Relation (2.13), while set I remains unchanged. It is I+ =

{(1, 5), (2, 5), (3, 5), (4, 5)} ∪ {(3, 6)} \ {(3, 5)} = {(1, 5), (2, 5), (4, 5), (3, 6)}.

The algorithm continues to the second iteration for the new basic tree-

solution (Figure 2.5), starting from Step 1.

Iteration 2

Step 1 (Test of optimality)

It is I 6= ∅, so the current tree-solution is not optimal. From Relation

(2.8), it comes out that J = {(1, 6), (2, 6), (4, 6), (5, 3)}. It is J 6= ∅, so

61

Figure 2.6: The subtrees created after the removal of the leaving arc

DNEPSA continues to step 2.

Step 2 (Selection of the entering arc)

From Relation (2.9), we find:

α =
s16
−d16

=
26

1
= min{26

1
,
48

1
,
53

1
,
202

1
}

So, arc (1,6) is the entering arc.

Step 3 (Selection of the leaving arc)

After adding the entering arc (1,6) into the basic tree T, a cycle C is

created, as shown in Figure 2.7. Arc (6,5) belongs into set I and it has the

same orientation as the entering arc (1,6). So, it is θ1 = −x65 = 5. Arc (1,5)

belongs into set I+ and has the opposite direction. So, it is θ2 = x15 = 3.

Again we have θ1 > θ2, i.e a type B iteration. Arc (1,5) is the leaving arc.

62

Figure 2.7: Cycle created for the 2nd iteration

Step 4 (Pivot)

After removing the leaving arc (1,5) from T and adding the entering arc

(1,6) into it, the tree shown in Figure 2.8, is created. After updating the

flows vector x we take: x16 = 3, x25 = 5, x36 = 3, x45 = 3 and x65 = −2.

For the reduced cost variables it is: s15 = −26, s26 = 48, s35 = −24, s46 =

53, s53 = 202, s64 = 31 and s63 = 173. Again only set I+ changes and it

becomes I+ = {(3, 6), (1, 6), (2, 5), (4, 5)}.

A primal feasible tree-solution has not been found yet, so the algorithm

continues with its third iteration:

Iteration 3

Step 1 (Test of optimality)

It is I 6= ∅, so the current tree-solution is not optimal. From Relation

(2.8), we find J = {(2, 6), (4, 6), (5, 3)}. It is J 6= ∅, so DNEPSA continues

to step 2.

63

Figure 2.8: The basic tree after the second iteration

Step 2 (Selection of the entering arc)

From Relation (2.9), we find:

α =
s26
−d26

=
48

1
= min{48

1
,
53

1
,
202

1
}

Therefore, arc (2,6) is the entering arc.

Step 3 (Selection of the leaving arc)

After adding the entering arc (2,6) into the basic tree T, a cycle C is

created, as shown in Figure 2.9. Arc (6,5) belongs into set I and it has the

same orientation as the entering arc (1,6). So, it is θ1 = −x65 = 2. Arc (2,5)

belongs into set I+ and has the opposite direction. So, it is θ2 = x25 = 5. It

is θ1 ≤ θ2, i.e we have a type A iteration and arc (6,5) is leaving the basic

tree-solution.

Step 4 (Pivot)

64

Figure 2.9: Cycle created for the 3rd iteration

After removing the leaving arc (6,5) from T and adding the entering arc

(2,6) into it, the tree shown in Figure 2.10, is created. After updating the

flows vector x, we take: x16 = 3, x25 = 3, x36 = 3, x45 = 3 and x26 = 2. We

observe here that, the tree-solution found is primal feasible, that is xij ≥

0, ∀(i, j) ∈ T . As it is theoretically proved in chapter 3, when DNEPSA

comes to a primal feasible tree-solution, that tree is also dual feasible and

therefore, it is an optimal solution. Indeed, the new tree-solution is also dual

feasible, since it is: s15 = 22, s35 = 24, s46 = 5, s53 = 154, s64 = 79, s65 = 48

and s63 = 173. Therefore, after three iterations, the algorithm has found an

optimal solution. It is I = ∅, so the algorithm stops.

65

Figure 2.10: The optimal basic tree-solution found after the third iteration

2.4.1 An infeasible problem

The algorithm will now be applied to the network G = (N, A) of Figure 2.11

that consists of 5 nodes and 10 arcs. We have the following iterations:

Figure 2.11: An infeasible problem

66

Iteration 1

Step 0 (Initialization)

Figure 2.12 shows a dual feasible tree-solution T that will be used by DNEPSA

as a starting point. Again, such an initial solution can be obtained by using

the technique described in section 4.3.

Figure 2.12: Initial dual feasible tree-solution for the infeasible problem

That tree-solution is a dual feasible tree, since for the reduced cost vari-

ables it is sij ≥ 0, ∀(i, j) ∈ T . This can be easily verified by using Relation

(2.1), which takes the following forms:

w1 − w2 = 1

w5 − w2 = 2

w3 − w5 = 1

w3 − w4 = 2

(2.15)

By setting arbitrarily the value of w1 equal to 0, from Relation (2.15), we

can very easily find w2 = −1, w3 = 2, w4 = 0 and w5 = 1.

67

By using Relation (2.2), the reduced cost values for all non-basic arcs

(i, j) /∈ T are:

s31 = c31 + w3 − w1 = 2 + 2− 0 = 4

s24 = c24 + w2 − w4 = 1 + (−1)− 0 = 0

s42 = c42 + w4 − w2 = 1 + 0− (−1) = 2

s52 = c52 + w5 − w2 = 3 + 1− (−1) = 5

s34 = c34 + w3 − w4 = 2 + 2− 0 = 4

s35 = c35 + w3 − w5 = 1 + 2− 1 = 2

For the basic arcs (i, j) ∈ T , it is sij = 0.

For all nodes i ∈ N of the graph, the outgoing flow has to be equal to

the incoming flow plus the supply of the node. Therefore, it is:

∑

(i,k)∈N

xik −
∑

(j,i)∈N

xji = bi

and thus we have:

node1 : −x21 = 15

node2 : x21 + x25 = 5

node3 : −x53 − x43 = −12

node4 : x43 = −8

node5 : x53 − x25 = 0

By solving the above equations we can easily compute the flows x for the

initial tree-solution T: x21 = −15, x25 = 20, x43 = −8 and x53 = 20. This is

not a feasible tree, since there exist negative flows.

We have I = {(2, 1), (4, 3)} and I+ = {(2, 5), (5, 3)}.

68

By using Relation (2.7), we find: d31 = 1, d24 = −1, d42 = 1, d52 = 0, d34 =

−1 and d35 = 0.

Step 1 (Test of optimality)

It is I 6= ∅, so the current tree-solution is not optimal. From Relation

(2.8), the algorithm creates set J = {(2, 4), (3, 4)}. It is J 6= ∅, so DNEPSA

continues to step 2.

Step 2 (Selection of the entering arc)

From Relation (2.9), the algorithm computes ratio α:

α =
s24
−d24

= min{ s24
−d24

,
s34
−d34

} = min{0
1
,
4

1
} = 0

So, arc (2,4) is the entering arc.

Step 3 (Selection of the leaving arc)

After adding the entering arc (2,4) into the basic tree-solution T, a cycle

C is created, as it is shown in Figure 2.13. That cycle contains three basic

arcs: (2,5) (5,3) and (4,3). Arc (4,3) belongs into set I and it has the same

orientation as the entering arc (2,4). So, it is θ1 = −x43 = 8. Arcs (2,5)

and (3,5), on the other hand, belong into set I+ and they do not have the

same orientation as the entering arc (2,4). So, it is θ2 = min{x25, x35} =

min{20, 20} = 20. We have θ1 < θ2 which means that we have a type A

iteration and arc (4,3) is the leaving arc.

Step 4 (Pivot)

After removing the leaving arc from the basic tree-solution T and adding

the entering arc into it, a new tree, shown in Figure 2.14, is produced. Vectors

x, s and d has to be updated according to Tables (2.2), (2.4) and (2.5). The

69

Figure 2.13: Cycle created when adding the entering arc into the basic tree

flow for the entering arc is x24 = θ1 = 8 and for the arcs (2, 5) and (5, 3) ∈ C,

it becomes x25 = 20 − 8 = 12 and x53 = 20 − 8 = 12. The rest of the flows

remain unchanged.

Figure 2.14: The basic tree after the first iteration

When the leaving arc (2,4) is removed from the original tree T, then sub-

trees T+ and T−, shown in Figure 2.14, are created. Only the reduced costs

for the arcs that cross from one subtree to the other are changed, the leaving

70

arc included. Those arcs, as Table 2.4 implies, change their reduced cost

value by adding or subtracting value of s24, depending on their orientation.

Since it is s24 = 0, the reduced cost values will remain unchanged. In a

similar way, as Table 2.5 implies, the values of d34, d43 and d42 change by an

amount of d24 = −1. So, it becomes: d34 = −1−(−1) = 0, d43 = 1+(−1) = 0

and d42 = 1 + (−1) = 0.

Figure 2.15: The subtrees created after the removal of the leaving arc

The algorithm performed a type A iteration, and it becomes I+ = I+ ∪

{(2, 4)} = {(2, 5), (5, 3), (2, 4)} and I− = I− \ {(4, 3)} = {(2, 1)}.

The algorithm continues to the second iteration for the new basic tree-

solution (Figure 2.14), starting from Step 1.

Iteration 2

Step 1 (Test of optimality)

71

It is I 6= ∅, so the current tree-solution is not optimal. From Relation

(2.8), it comes out that J = ∅. So, the algorithms comes into the conclusion

that the problem is infeasible.

72

Chapter 3

Mathematical Proof of

Correctness

3.1 Introduction

In this chapter, the analytical proof of correctness for the DNEPSA algo-

rithm will be presented through a number of theorems. All the theorems are

mathematically proved in section 3.2, under the assumption that the MC-

NFP problem is not degenerate. Although the assumption made, a practical

method to avoid the bad results due to degeneracy (stalling and cycling),

was applied during the implementation of DNEPSA. More precisely, when

DNEPSA has to choose between two or more equally qualified arcs for the

selection of the leaving or the entering arc, a technique is applied that is sim-

ilar to the Bland’s rule for the general linear programming problem. This

method is described in more detail in section 4.1.1. In the next section the

theorems needed to prove the correctness of the algorithm are given and

73

theoretically proved.

3.2 Theorems

The first theorem states that the value of the objective function z increases

strictly from iteration to iteration (for a non degenerate pivot). This conclu-

sion is used in Theorem 3.2, in order to prove that the algorithm terminates

after a finite number of iterations.

Theorem 3.1. The value of the objective function z increases strictly from

iteration to iteration.

Proof. Let z(t) be the value of the objective function in iteration t. We will

prove that the increase in the objective value is equal to ∆z = z(t+1)−z(t) > 0.

As it is shown in Relation (2.10), for the flow of a product unit, the

objective function value changes by ∆z = sgh. For a type A iteration, as

it is described in section 2.2, an arc (k,l) of negative flow is leaving the

basic tree T. In that case, the flow on the entering arc (g, h) is equal to

x
(t+1)
gh = θ1 = −x

(t)
kl > 0 (see Table 2.2). That is, the total change in the

objective value is equal to ∆z = x
(t+1)
gh sgh = θ1sgh > 0 (it is sgh > 0 since

(g, h) ∈ J , see Relation (2.8)).

Similarly, for a type B iteration, an arc of positive flow is leaving the basic

tree and the flow on the entering arc (g, h) is equal to x
(t+1)
gh = θ2 = xkl > 0.

The objective value is now changing by ∆z = θ2sgh > 0. Therefore it is

always ∆z > 0.

Theorem 3.2. The algorithm terminates after a finite number of iterations.

74

Proof. In Theorem 3.1 we proved that the value of the objective function

strictly increases from iteration to iteration. That is, no tree-solution will be

created twice. The number of trees that can be created for a given network is

finite. Therefore, DNEPSA will perform a finite number of iterations before

it terminates.

In the next theorem, we prove that after each iteration, the set I contains

the basic arcs (i, j) of negative flow while the set I+ contains those of non-

negative flow.

Theorem 3.3. For all iterations, if (i, j) ∈ I , then it is xij < 0 and if

(i, j) ∈ I+ then it is xij ≥ 0.

Proof. The theorem will be proved by using mathematical induction. Let’s

assume we have a type A iteration. For the first iteration, because of their

definition, I contains the arcs having negative flow, while I+ contains the

arcs of the tree of non negative flow. We assume that it is true for iteration

t. We’ll prove that it is also true for iteration t + 1.

The elements of I are updated according to Relation (2.12). Therefore,

an arc (i,j) that belongs to I during the (t + 1)th iteration, it also belongs

to I during the tth iteration. Because of the assumption, it is x
(t)
ij < 0. We

need to show that it is also x
(t+1)
ij < 0. By examining all the cases shown in

Table 2.1 and the way the flows are updated in Table 2.2, we have

• Case 1 : It is x
(t+1)
ij = x

(t)
ij < 0 because of the assumption.

• Case 2 : Cannot hold because (i, j) = (g, h) ∈ I+.

• Case 3 : Cannot hold because we assumed type A iteration.

75

• Case 4 : It is θ1 = −x
(t)
kl < −x

(t)
ij because of Relation (2.11). Therefore,

it is x
(t+1)
ij = x

(t)
ij − x

(t)
kl < 0.

• Case 5 : It is x
(t+1)
ij = x

(t)
ij + x

(t)
kl < 0 since x

(t)
ij < 0 and x

(t)
kl < 0.

The contents of set I+ are also updated according to Relation (2.12). Arc

(g, h) is the only new arc in I+. We have the following cases:

• Case 1 : It is x
(t+1)
ij = x

(t)
ij ≥ 0 because of the assumption.

• Case 2 : It is x
(t+1)
ij = x

(t+1)
gh = θ1 = −xkl ≥ 0.

• Case 3 : Cannot hold because we assumed a type A iteration.

• Case 4 : It is x
(t+1)
ij = x

(t)
ij − x

(t)
kl ≥ 0 because x

(t)
ij ≥ 0 and x

(t)
kl < 0.

• Case 5 : It is x
(t+1)
ij = x

(t)
ij + x

(t)
kl . It is also θ2 ≤ x

(t)
ij because of Relation

(2.11) and θ1 ≤ θ2 since we have a type A iteration. Therefore, it is

θ1 = −x
(t)
kl ≤ x

(t)
ij ⇒ x

(t+1)
ij ≥ 0.

In a similar way, we can prove for a type B iteration that, I contains

all the arcs having negative flow and I+ contains those arcs of non-negative

flow.

The next theorem will give a property for all the non-basic arcs (i, j) /∈ T

that have negative reduced cost value, i.e. for those arcs having sij < 0.

This property will be very important for the proof of the theorems that will

follow.

76

Theorem 3.4. If for a non-basic arc (i, j) /∈ T it is sij < 0, then it is dij > 0

and we also have:

sij
−dij

< α =
sgh
−dgh

Proof. We’ll first prove, by using mathematical induction, the first part of the

theorem, i.e. that if it is sij < 0 then it is dij > 0. During the first iteration,

we don’t have arcs having negative reduced cost, since the algorithm starts

from a dual feasible solution. Let k + 1 be the first iteration for which we

have s
(k+1)
ij < 0 for an arc (i, j), while it is s

(k)
ij ≥ 0. According to Table

2.4, in order to have a negative value for the reduced cost value, it has to be

s
(k+1)
ij = s

(k)
ij − s

(k)
gh .

So, we have:

s
(k+1)
ij < 0 ⇒ s

(k)
ij − s

(k)
gh < 0 ⇒ s

(k)
ij < s

(k)
gh . (3.1)

If it is d
(k)
ij ≥ 0, then it is obviously d

(k+1)
ij = d

(k)
ij −d

(k)
gh > 0, since it is d

(k)
gh < 0

(because (g, h) ∈ J , see section 2.2). If, on the other hand, it is dkij < 0,

then we have:

α =
s
(k)
gh

−d
(k)
gh

≤
s
(k)
ij

−d
(k)
ij

⇒
−d

(k)
ij

s
(k)
ij

≤
−d

(k)
gh

s
(k)
gh

. (3.2)

By multiplying equations (3.1) and (3.2) together, we take:

−d
(k)
ij < −d

(k)
gh ⇒ d

(k)
ij − d

(k)
gh > 0 ⇒ d

(k+1)
ij > 0

In Relation (3.2), we made silently the assumption that if dkij < 0, then

it can’t be skij = 0. This can be proved as follows: Let’s assume that in k

77

iteration it is skij = 0, while s
(k−1)
ij > 0. It has to be:

skij = s
(k−1)
ij − s

(k−1)
gh ⇒ s

(k−1)
ij − s

(k−1)
gh = 0 ⇒ s

(k−1)
ij = s

(k−1)
gh (3.3)

It is also

dkij = d
(k−1)
ij − d

(k−1)
gh ⇒ d

(k−1)
ij < dkij

since it is d
(k−1)
gh < 0. So, we have the following two cases:

• Case 1 : If it is d
(k−1)
ij ≥ 0, then it is dkij > 0.

• Case 2 : If it is d
(k−1)
ij < 0, then

α =
s
(k−1)
gh

−d
(k−1)
gh

≤
s
(k−1)
ij

−d
(k−1)
ij

and because of (3.3)

1

−d
(k−1)
gh

≤ 1

−d
(k−1)
ij

and since d
(k−1)
gh d

(k−1)
ij > 0

−d
(k−1)
ij ≤ −d

(k−1)
gh ⇒ d

(k−1)
ij − d

(k−1)
gh ≥ 0 ⇒ d

(k)
ij ≥ 0

Therefore, if it comes to be s
(k)
ij = 0, it is dkij ≥ 0. So, it has been proved

that, starting from a dual feasible solution, for the first iteration it comes to

78

be sij < 0, it is dij > 0, even if in the previous iteration it is sij = 0.

Assume now that the theorem holds for the t iteration . For the iteration

t + 1, according to the Tables 2.3 and 2.4, we have the following cases:

• Case 1 : Obviously, for this case, the theorem holds since it is d
(t+1)
ij =

d
(t)
ij and s

(t+1)
ij = s

(t)
ij .

• Cases 2 and 5 : It is:

s
(t+1)
ij = s

(t)
ij + s

(t)
gh < 0 ⇒ s

(t)
gh < −s

(t)
ij . (3.4)

Because of the assumption, it is:

s
(t)
ij

−d
(t)
ij

< α =
s
(t)
gh

−d
(t)
gh

and since it is −d
(t)
ghd

(t)
ij > 0, we have

d
(t)
ghs

(t)
ij < d

(t)
ij s

(t)
gh (3.5)

By multiplying (3.4) and (3.5) together, we have:

s
(t)
ghd

(t)
ghs

(t)
ij < −s

(t)
ij d

(t)
ij s

(t)
gh

and by dividing with −s
(t)
ij s

(t)
gh > 0, we take

−d
(t)
gh < d

(t)
ij ⇒ d

(t)
ij + d

(t)
gh > 0 ⇒ d

(t+1)
ij > 0

79

• Cases 3 and 4 : It is d
(t+1)
ij = d

(t)
ij − d

(t)
gh > 0, since we have d

(t)
ij > 0 and

d
(t)
gh < 0.

We’ll prove now the second part of the theorem by using again mathe-

matical induction. We first prove that it is

s
(t+1)
ij

−d
(t+1)
ij

< α(t)

and after that, we prove that it is

α(t) ≤ α(t+1)

Let’s assume that the above relations hold for iteration t and we will show

that they also hold for iteration t+1. For case 1 of Table 2.3, it is obviously

s
(t+1)
ij

−d
(t+1)
ij

< α(t)

For the rest of the cases it is:

s
(t)
ij

−d
(t)
ij

<
s
(t)
gh

−d
(t)
gh

and multiplying by −d
(t)
ghd

(t)
ij > 0, we have

d
(t)
ghs

(t)
ij < d

(t)
ij s

(t)
gh ⇒ d

(t)
ij > d

(t)
gh

s
(t)
ij

s
(t)
gh

(3.6)

We also have:

s
(t+1)
ij

−d
(t+1)
ij

=
s
(t)
ij ± s

(t)
gh

−(d
(t)
ij ± d

(t)
gh)

. (3.7)

80

From Relations (3.6) and (3.7) we take:

s
(t+1)
ij

−d
(t+1)
ij

<
s
(t)
ij ± s

(t)
gh

−(d
(t)
gh

s
(t)
ij

s
(t)
gh

± d
(t)
gh)

= −
s
(t)
gh(s

(t)
ij ± s

(t)
gh)

d
(t)
gh(s

(t)
ij ± s

(t)
gh)

= −
s
(t)
gh

d
(t)
gh

= α(t)

We will now show that

α(t) ≤ α(t+1)

Assume that this is true for iteration t. For the case 1 of Table 2.3, it is

obviously true. For the rest of the cases, it is:

s
(t)
ij

−d
(t)
ij

≥ α(t) =
s
(t)
gh

−d
(t)
gh

and by multiplying with −d
(t)
ij > 0, we have:

s
(t)
ij ≥

d
(t)
ij s

(t)
gh

d
(t)
gh

(3.8)

It is also:

s
(t+1)
ij

−d
(t+1)
ij

=
s
(t)
ij ± s

(t)
gh

−(d
(t)
ij ± d

(t)
gh)

(3.9)

From Relations (3.8) and (3.9) we take:

s
(t+1)
ij

−d
(t+1)
ij

≥
d
(t)
ij

s
(t)
gh

d
(t)
gh

± s
(t)
gh

−(d
(t)
ij ± d

(t)
gh)

=
s
(t)
gh(d

(t)
ij ± d

(t)
gh)

−d
(t)
gh(d

(t)
ij ± d

(t)
gh)

=
s
(t)
gh

−d
(t)
gh

= α(t)

We have proved that, for every case, it is α(t) ≤ α(t+1) and therefore, it is

81

s
(t+1)
ij

−d
(t+1)
ij

< α(t+1)

The algorithm keeps in touch with the dual feasible region by maintaining

a direction vector d. The next theorem proves that it is sij + α dij ≥ 0, for

every arc (i, j). Therefore, the vector y = s+αd always gives a dual feasible

solution.

Theorem 3.5. Solution y = s + αd is dual feasible during all iterations of

the algorithm.

Proof. If it is sij < 0, then according to Theorem 3.4, it is dij > 0 and

sij
−dij

< α

Therefore, it is

sij + αdij > 0

If it is sij ≥ 0 and dij < 0 then, because of Relation (2.9), it is

sij
−dij

≥ α

Therefore, it is again sij + αdij ≥ 0.

Finally, if it is sij ≥ 0 and dij ≥ 0, then it is obviously sij + αdij ≥ 0,

since α > 0.

The next theorem examines the case where the algorithm decides that

the problem is infeasible.

82

Theorem 3.6. If it is J = ∅ and I 6= ∅, then the problem in infeasible.

Proof. As it was shown in Theorem 3.5, y = s + αd is always dual feasible.

Therefore, it satisfies the restrictions of the dual problem as it is described

in matrix format in Relation (1.6). So, we have:

ATw + Im(s+ αd) = c (3.10)

We denote as AT
B the matrix formed by the rows of matrix AT that correspond

to the basic variables. Vectors cB, sB, and dB are formed in a similar way. It

is as follows:

AT
Bw + (sB + αdB) = cB (3.11)

By multiplying both parts of equation (3.11) with bT (AT
B)

−1 we take:

bT (AT
B)

−1AT
Bw + bT (AT

B)
−1(sB + αdB) = bT (AT

B)
−1cB

that becomes:

bTw = bT (AT
B)

−1cB − bT (AT
B)

−1(sB + αdB) (3.12)

For the basic solution xB it is:

ABxB = b ⇒ xT
B = bT (AT

B)
−1

so, Relation (3.12) becomes

83

bTw = xT
BcB − xT

B(sB + αdB) = xT
BcB − αxT

BdB

and since sB = 0, we have:

bTw = xT
BcB − αxT

BdB (3.13)

If we denote by z and z′ the value of the objective function of the pri-

mal and the dual problem respectively, then the Relation (3.13) takes the

following form:

z′ = z − αxT
BdB. (3.14)

We have dij = 1 for the negative flows and dij = 0 for the non-negative

flows (Relation (2.7)). There is at least one negative flow because I 6= ∅

(otherwise the algorithm would have stopped). Therefore, it is xBdB < 0

and as it can be seen in Relation (3.14), the objective function of the dual

problem is unbounded because it increases as far as the value of α increases.

The fact that the dual problem is unbounded, means that the primal problem

in infeasible.

The last theorem proves that the algorithm has reached an optimal solu-

tion when I = ∅.

Theorem 3.7. If I = ∅ then the current solution is optimal.

Proof. It is obvious from Relation (2.7) that

−|I | ≤ dij ≤ |I |

84

where the notation |I | means the cardinality of the set I . If I = ∅, then it

is |I | = 0 and therefore we have dij = 0, ∀(i, j) ∈ A. According to Theorem

3.5, it is y = s + αd ≥ 0, so we have s ≥ 0. At the same time, it is x ≥ 0,

since we have I = ∅. Therefore, the current tree-solution is both primal and

dual feasible and thus we can conclude that it is optimal.

85

Chapter 4

Implementation and

Computational Results

4.1 Implementation of DNEPSA

The Dual Network Exterior Point Simplex-type Algorithm was implemented

and run for numerous Minimum Cost Network Flow Problem instances. It

was tested on MCNFP instances made ”by hand” and it was also tested on

MCNFP instances generated by random network generators, like NETGEN

and GRIDGEN (see [59] and [61]). A brief description of the NETGET

network generator is given in section 4.1.2.

DNEPSA needs an initial dual feasible tree-solution to start from. The

method presented by Hultz and Klingman and described in section 4.3 was

used. Degeneracy problems (cycling abd stalling) were handled in the way

described in section 4.1.1.

The data structures of the algorithm for storing graphs and trees, were

86

implemented by using the Augmented Thread Index method (ATI method),

due to Glover et al. (see [41]). This method was selected because it allows

the fast update of the basic tree after each iteration of the algorithm. It can

also easily identify the cycle created after the addition of the entering arc

and check the orientations of the arcs in that cycle. In section 4.2 the data

structures used in the implementation of the algorithm are described.

4.1.1 Degeneracy

When running a Simplex-type algorithm, degenerate pivots may occur for

two or more iterations. A pivot is called degenerate when, after the pivot

is applied, the objective value for the new tree-solution is exactly the same

as the objective value of the previous tree-solution. Degenerate pivots may

occur when there are degenerate basic tree-solutions, i.e. tree-solutions con-

taining at least one arc of zero flow. In that case, we say we have a degenerate

problem.

Degenerate pivots may occur one after the other. In that case, a Simplex-

type algorithm may lead to cycling. Cycling occurs when starting from a

basic solution, after a number of iterations, the same basic solution is revis-

ited. So, when cycling occurs, the algorithm’s steps are repeated endlessly.

The possibility of cycling was recognized shortly after the first presentation

of the Simplex method. Some examples of cycling are presented in [52] and

[10]. Although cycling was one of the first problems encountered in Linear

Programming, it still remains one of the most basic problems (see [51] and

[36]). Some pathological examples for Minimum Cost Network Flow prob-

87

lems, where the standard PNSA algorithms falls into cycling, are given in

[93] and [94].

Cunningham showed that by using a specific type of basis, known as

strongly feasible basis, cycling can be avoided (see [23] and [24]). A basic

tree-solution, for the uncapacitated MCNFP problem, is said to be strongly

feasible, if all the basic arcs with zero flow are pointing toward the root of

the tree. So, it is enough to modify the rules for the selection of the leaving

and the entering arc in order to maintain strongly feasible basic trees, as it

is described in [15]. Despite the rules for the leaving and the entering arc,

it is always possible to construct pathological problems where cycling occurs

(see [95]). In practice, cycling is not happening very often except of cases

of strongly degenerate problems. So, in many cases, it is not worthy the

extra work needed to apply complicated rules in order to choose leaving and

entering arcs during the iterations.

Another problem, that may appear when applying a Simplex-type algo-

rithm, is stalling. Stalling in a Simplex-type algorithm is defined as an ex-

ponentially long sequence of consecutive degenerate pivots without cycling.

Several anti-stalling pivot rules have been proposed by researchers, like the

rules described in [24], [62] and [4].

The phenomenon of having, during an iteration, more than one equally

qualified choices for the leaving and the entering arc, is usually called a tie.

DNEPSA is implemented in such a way that it tries to resolve ties by giving

a numbering (index) to every arc of the graph. So, the algorithm breaks

the ties by always choosing the arc with the minimum index between all the

equally qualified leaving or entering arcs. This method, used by DNEPSA

88

to handle degeneracy, resembles the method introduced by Bland in [15].

For the randomly generated problems where DNEPSA was widely tested,

problems like cycling or stalling were not observed. It has not theoretically

proved though, that such phenomena could not appear in some pathological

cases.

4.1.2 The NETGEN network generator

The computational results presented in section 4.4, were collected after the

competetive algorithms were run on a number of different MCNFP instances.

These instances were randomly generated by using the NETGEN network

generator that was presented in 1974 by Klingman et al (see [59]). NETGEN

is a well-known network generator that can randomly produce instances for

the Minimum Cost Network Flow Problem (MCNFP) and also instances

of other problems like the transportation problem, the assignment prob-

lem etc. There are more network generators, like GRIDGEN, MESH and

GRIDGRAPH, that alternatively can be used for the random generation of

MCNFP instances.

NETGEN was selected because it is one of the most widely used. It

was first developed in FORTRAN programming language but there exists a

version of NETGEN in C programming language. Table 4.1 gives an example

of the values the parameters of NETGEN can have. These parameters, in

C programming language, are determined by a define preprocessor directive.

On the right side of each directive there is a comment describing its operation.

The parameters NODES and DENSITY refer to the number of nodes and

89

arcs that the network must have. The parameters SOURCES and SINKS

determine how many nodes will be source nodes and how many will be sink

nodes. The rest of them will be the transshipment nodes that are determined

by directives TSOURCES and TSINKS. The total supply for the source nodes

is given by parameter SUPPLY. This supply is divided randomly into the

source nodes of the network. In our example, the network will have 10 nodes

and 30 arcs. There will be 4 source nodes, 4 sink nodes and 2 transshipment

nodes. The total supply is 200.

The minimum and maximum costs for the arcs of the network are deter-

mined by the MINCOST and MAXCOST parameters. Directive HICOST

gives the percentage of the arcs that will have a cost of MAXCOST. For an

uncapacitated MCNFP problem, the parameter CAPACITATED must be

equal to 0, while for a capacitated network it must be equal to 1 and the

minimum and maximum capacity of the arc have to be determined. Finally,

the value of SEED parameter is used as the seed for the random numbers

generated. When the seed changes, different numbers are produced when the

algorithm runs again. In other word for different seed a different instance of

the MCNFP problem is generated.

If it is SOURCES+SINKS = NODES and TSOURCES = TSINKS =

0, then an instance of the transportation problem is generated, while if it is

SOURCES = SINKS and SUPPLY = SOURCES then an instance of

the assignment problem is generated. It becomes very clear here that the

transportation and the assignment problem are special cases of the more

general Minimum Cost Network Flow Problem (MCNFP).

90

Table 4.1: Example of NETGEN parameters
#define PROBLEM PARMS 13 No of parameters (i.e. the

number of lines below)
#define NODES 10 No of nodes
#define DENSITY 30 No of arcs
#define SOURCES 4 number of sources
#define SINKS 4 number of sinks
#define MINCOST 0 minimum cost of arcs
#define MAXCOST 30 maximum cost of arcs
#define SUPPLY 200 total supply
#define TSOURCES 1 transshipment sources
#define TSINKS 1 transshipment sinks
#define HICOST 10 percent of skeleton arcs given

maximum cost
#define CAPACITATED 0 percent of arcs to be capaci-

tated
#define MINCAP 0 minimum capacity for capaci-

tated arcs
#define MAXCAP 0 maximum capacity for capaci-

tated arcs
#define SEED 1001992789 seed for random graph genera-

tion

4.2 Data Structures

For the implementation of the algorithm theAugmented Thread Index method

(ATI method), presented in [41], was used. The method was further improved

in [42], [43] and [9] and it was finally referred as the Extended Thread Index

method (XTI method). The efficiency of the method is examined in different

works, like in [44]. The ATI method offers fast update of the basic tree and

easy cycle detection when an arc is added into the basic tree.

For the storing of a rooted tree T, a vector p containing the parents for

each node in the tree is used. In Figure 4.1 a rooted tree T, containing 17

nodes, is depicted (node 10 is the root of the tree). The parents vector p for

91

Figure 4.1: A rooted tree stored by using the ATI method.

this tree has the form:

p = [4, 4, 10, 6, 1, 3, 3, 2, 12,−1, 7, 13, 11, 3, 7, 4, 12]

For every node i of the tree, its parent in T is stored. In our example, it is

p(1) = 4 because node 4 is the parent of node 1. Similarly, p(2) = 4 because

node 4 is the parent of node 2 etc. For the root r of the tree T, the value -1 is

stored, i.e. p(r) = −1. In our case, it is r=10 and therefore, it is p(10) = −1.

For a directed tree, it is not enough to store only the parent for each node.

Another vector t has to be used in order to store the direction of each arc in

92

T. That vector t stores 1, if the arc (i,p(i)) belongs to T, i.e. if (i, p(i)) ∈ T

and it stores 0, if (p(i), i) ∈ T . For the root r of the tree, it is t(r) = −1, as

it shown below:

t(i) =























1 , if (i, p(i)) ∈ T

0 , if (p(i), i) ∈ T

−1 .if i = r

For the tree in Figure 4.1, we have:

t = [1, 1, 1, 0, 0, 0, 0, 0, 0,−1, 0, 1, 1, 0, 0, 0, 0]

Alternatively, the direction of each arc can be encoded in vector p, by having:

p(i) =























j , if (i, p(i)) ∈ T

−j , if (p(i), i) ∈ T

i , if i = r

In that case, for the vector of parents p we have:

p = [4, 4, 10,−6,−1,−3,−3,−2,−12, 10,−7, 13, 11,−3,−7,−4,−12]

The preorder traversal of the nodes of the rooted tree are also stored in a

vector named pr. For the tree of Figure 4.1, the vector pr has the following

form:

pr = [10, 3, 7, 11, 13, 12, 17, 9, 15, 14, 6, 4, 1, 5, 2, 8, 16]

A vector dep that stores the depth of every node of the tree is also used. For

93

the tree in Figure 4.1, it is:

dep = [4, 4, 1, 3, 5, 2, 2, 5, 6, 0, 3, 5, 4, 2, 3, 4, 6]

The way these vectors are updated, when the algorithm performs a pivot,

will be described now. When the leaving arc (k, l) is removed from the basic

tree T , then two subtrees are produced. Let T ∗ denote the subtree that does

not contain the root r of the tree. Only one of nodes k and l belongs to T ∗.

Let’s denote x that note, i.e. it is either x = k (if k ∈ T ∗) or x = l (if l ∈ T ∗).

Similarly, for the entering arc (g, h), only one of nodes g and h belongs to

T ∗. Let’s denote y that note, i.e. it is either y = g (if g ∈ T ∗) or y = h (if

h ∈ T ∗). Both x and y belong to T ∗, so there is a path q in T ∗ that connects

node x to node y. Let z denote the vector of nodes that contains the nodes

of path q, starting from y and ending in x. If we assume that, for the tree

of Figure 4.1, arc (3, 7) is the leaving arc and arc (1, 13) is the entering arc,

then the subtree T ∗, shown in Figure 4.2, is created and we have x = 7 and

y = 13. Vector z = [13, 11, 7] contains the nodes of the path that connects

node x to node y. The arcs that belong in this path are drawn in thick line.

Figure 4.3 shows the new basic tree formed, after removing arc (3, 7) from

the tree of Figure 4.1 and adding arc (1, 15) into it. For the new basic tree,

the vector of parents p′ has the following form:

p′ = [4, 4, 10,−6,−1,−3, 11,−2,−12, 10, -13, 13, -1,−3,−7,−4,−12]

We can observe here that only the parents for the nodes that belong in path

94

Figure 4.2: Update of the basic tree when using the ATI method.

q have been changed, i.e. in our example, only the parents for nodes 13, 11

and 7 changed (shown in bold in vector p′ above). For a node i on path q, its

new parent is the node j that precedes it in vector z. The sign for node i in

vector p′ is the opposite of the sign of node j in vector p. For the first node

in z, the role of node j is played by the end of the entering arc (g, h) that is

different than y and its sign is negative if it is y = h, otherwise it is positive.

Therefore, we have p′(i) = p(j), i.e. the parent of node 7 is node 11 and the

parent of node 11 is node 13. It is p′(7) = 11 because it was p(11) = −7 and

95

p′(11) = −13 since p(13) = 11. Finally, since (1, 13) is the entering arc, it is

p′(13) = −1 (we have y = h = 13 and g = 1).

Figure 4.3: Update of the basic tree when using the ATI method.

96

4.3 Starting dual-feasible tree-solution

DNEPSA needs to find an initial dual feasible tree-solution to start its iter-

ations from. A method developed by Hultz and Klingman and presented in

[53], was used. The steps the method uses are shown in Algorithm 5. These

steps were implemented by a function that DNEPSA calls when it starts

running, in order to produce a starting dual feasible tree-solution. Of course,

the same function was also called by the implementation of DNSA for the

computational results demonstrated in Section 4.4.

This method needs a network G = (N,A) as an input and produces

a dual feasible tree T. In its general form, it supposes that, for every arc

(i, j) ∈ A, there exists a value kij that denotes the attenuation factor affecting

the amount of flow going from node i to node j. For the algorithms discussed

here, it is enough to assume that kij = 1, ∀(i, j) ∈ A. It selects arbitrarily

(step 1) a node t as the root of the tree and then continues by selecting an arc

at every iteration. Therefore, it needs |N | − 1 iterations to finish, except of

the case that the network is disconnected. In that case, it is not possible to

produce a dual feasible solution and the algorithm stops earlier. We denote

as p the current iteration, T (p) the set of fixed (selected) nodes in iteration p,

S the set of arcs starting from a fixed node and ending to a non-fixed node,

B the set of arcs that have already been selected to be in the basic tree and

q the node whose dual variable was last set.

97

Algorithm 5 Algorithm to find a starting dual feasible solution.

Require: G = (N,A), b, c
procedure StartingDualFeasibleTree(G)
(Step 1)

1: Select arbitrarily the starting node t.
2: Set dual variable wt =

∑

(i,j)∈N

cij/
∏

(i,j)∈N

kij.

3: Set T (1) = {t} and B = ∅.
4: Set q = t and p = 1.
5: Set w1

i (0) = ∞, ∀i /∈ T (1) and w2
i (0) = 0, ∀i /∈ T (1)

(Step 2)
6: Set S = {(i, j) ∈ N : i ∈ T (p), j /∈ T (p)}.
7: if S = ∅ then go to Step 3
8: else
9: ∀j /∈ T (p) set

w1
j (p) =

{

min{w1
j (p− 1), (wq + cqi)/kqj} , if (q, i) ∈ N

w1
j (p− 1) , if (q, i) /∈ N

10: end if
(Step 3)

11: Set R = {(i, j) ∈ N : i /∈ T (p), j ∈ T (p)}.
12: if R = ∅ then go to Step 4
13: else
14: ∀j /∈ T (p) set

w2
j (p) =

{

max{w2
j (p− 1), (kjqwq − cjq} , if (i, q) ∈ N

w2
j (p− 1) , if (i, q) /∈ N

15: end if
(Continued)

98

Algorithm 5 (Continued)

(Step 4)

16: if S ∪R = ∅ and ∃j /∈ T (p) then STOP. The network is disconnected.

17: else

18: if S 6= ∅ then

19: Set wf = min
j /∈T (p)

{w1
j (p)}

20: Set b1f = bf +
∑

(f,j)∈N,j /∈T (p)

bj/kfj +
∑

(j,f)∈N,j /∈T (p)

kjfbj

21: end if

22: if R 6= ∅ then

23: Set wr = max
j /∈T (p)

{w2
j (p)}

24: Set b1r = br +
∑

(r,j)N,j /∈T (p)

bj/krj +
∑

(j,r)∈N,j /∈T (p)

kjrbj

25: end if

26: end if

27: if wfb
1
f ≥ wrb

1
r then

28: Set q = f and T (p) = T (p) ∪ {q} and B = B ∪ {(p, f)}

29: else

30: Set q = r.

31: Set T (p) = T (p) ∪ {q}.

32: Set B = B ∪ {(r, p)}.

33: end if

34: if T (p) = N then STOP. The algorithm has been completed.

35: else

36: Set T (p+ 1) = T (p).

37: Set p = p+ 1.

38: go to Step 2.

39: end if

end procedure

99

Figure 4.4: A network for the dual feasible tree algorithm.

The steps of the algorithm will be demonstrated by an example. Let’s

suppose we have the network depicted in Figure 4.4. Next to a node i is

shown the supply/demand bi for that node. Also, next to an arc (i, j), the

cost cij for that arc is shown. The algorithm’s steps for that network are

described below.

Iteration 1

Step 1

Let’s choose node 3 as the root of the tree, i.e. we set t = 3. Then it is

w3 =
∑

(i,j)∈A

cij = 27, T (1) = {3}

w1
i (0) = ∞, ∀i /∈ T (1), w2

i (0) = 0, ∀i /∈ T (1)

B = ∅

100

Step 2

S = {(3, 4), (3, 6)}

w1
4(1) = w3 + c34 = 27 + 2 = 29

w1
6(1) = w3 + c36 = 27 + 8 = 35

Step 3

R = {(1, 3), (2, 3), (4, 3)}

w2
1(1) = w3 − c13 = 27− 1 = 26

w2
2(1) = w3 − c23 = 27− 3 = 24

w2
4(1) = w3 − c43 = 27− 2 = 25

Step 4

wf = min
i
{w1

i (1)} = 29 for f = 4

b14 = b14 + (b5 + b6) + b2 = 0 + 6 + 4− 8 = 2

wr = max
i

{w2
i (1)} = 26, for r = 1

b11 = b1 + b2 = −2 − 8 = −10

It is wfbf ≥ wrbr,⇒ q = 4

B = {3, 4}

T = {(3, 4)}

The algorithm needs 5 iterations in total (it is |N | = 6) in order to find

a dual feasible tree-solution. If we proceed with all iterations, in the same way

as it is described in the first iteration, then we find T = {(3, 4), (4, 6), (4, 5), (2, 5), (1, 2)},

i.e. the dual feasible tree shown in Figure 4.5 is finally produced. It can be

easily tested, by using Relations (2.1) and (2.2), that it is sij ≥ 0, ∀(i, j) /∈ T ,

so the tree the algorithm returns is indeed a dual feasible tree.

101

Figure 4.5: The dual feasible tree produced by the algorithm.

4.4 Computational results

In order to evaluate the performance of DNEPSA, an experimental compar-

ison of DNEPSA against other standard Network Simplex-type Algorithm

was performed. The comparison demonstrates the efficiency of Exterior-point

algorithms on randomly generated MCNFP instances. In this section the re-

sults of these numerical tests are reported. DNEPSA was compared against

the PNSA, DNSA and PNEPSA algorithms (presented briefly in sections

1.5.1, 1.5.2 and 1.5.3 respectively) for the MCNFP problem. The results of

the comparisons against these three algorithms, were very good for DNEPSA

in terms of the mean number of iterations needed and also, in terms of the

mean time spent to solve the problem instances. The comparison though,

is more ”fair” against the Dual Network Simplex Algorithm (DNSA) than

against PNSA and PNEPSA. The reason is that both DNSA and DNEPSA

102

need an initial dual feasible tree-solution to start their iterations. So, the

two algorithms use the same starting point for the experimental tests. The

method discussed in section 4.3 discovers a ”good” starting point which is

the same for both algorithms.

PNSA and PNEPSA, on the other hand, need a primal feasible tree-

solution to start working. The big M method, described in section 1.5.1, was

used in order to find the primal feasible solution the algorithms need. This

method produces an extended graph (containing one artificial node and |N |

artificial arcs) and the algorithms work on this extended graph. The result

is PNSA and PNEPSA need more work to finish, mainly because they start

from tree-solution that is far away from an optimal solution. This is why

the results of the comparison of DNEPSA against DNSA are only presented

here.

The MCNFP problem instances used for the tests were created using

the well-known NETGEN generator presented in section 4.1.2. The experi-

ments were run on a desktop machine with an Intel Pentium 4 at 3.6 GHz

processor, running Ubuntu 9.10 (Karmic Koala) version and having 3 GB

memory (RAM DDR 2 400Mhz). The competitive programs were written in

the C programming language, compiled by the gcc v4.2 compiler (the GNU

Compiler Collection) with the ”-O3” option used (fully optimized for speed).

The functions, used for the implementation of the algorithms, have been

written following the same programming techniques for all algorithms, ad-

justed to the special characteristics of each one. The data structures de-

scribed in section 4.2 were used for all algorithms. At every execution, the

same dual feasible starting point was used for both DNEPSA and DNSA.

103

The time needed in order to find that initial solution, was included in the

measurements.

Some preliminary computational results on random generated problems

were published in [38]. This section presents a more detailed computational

study, in order to estimate the efficiency of DNEPSA for problem instances of

different densities. More specifically, five classes of instances were developed,

one class for each of the following densities: 2%, 10%, 20%, 30%, and 40%.

A graph’s density D is estimated by the following formula:

D =
|N |

|A|(|A| − 1)
(4.1)

where |N | denotes the number of nodes and |A| denotes the number of arcs

in the graph.

Each class consists of six problem categories, with varying dimensions.

The number of the nodes in each class, starts from 200 nodes and goes up

to 700 nodes (with a step equal to 100). The number of the arcs in a cat-

egory depends on the density of the class of the instance and the number

of nodes, as it is given by Relation (4.1). Moreover, in each category of the

classes, ten network instances have been created, in order to compute the

average number of iterations and also the average CPU time needed for the

algorithms to finish. To conclude with, 5 different classes were used, with 6

problem categories for each class and 10 network instances for each category.

Therefore 300 MCNFP network instances were randomly created by NET-

GEN and solved by using both algorithms. The comparative computational

results and the normalized comparative computational results for DNEPSA

104

and DNSA are presented in Tables 4.2 and 4.3 respectively. Table 4.2 gives

the average number of iterations and the average time in seconds that the

two algorithms need to solve 10 randomly generated MCNFP instances. Ta-

ble 4.3 gives the same information in a normalized format, so that it is clear

in what percentage is DNEPSA faster than DNSA (again in terms of the

number of iterations and the time spend).

A number of figures will be presented now to demonstrate the compar-

ative computational results selected. All the figures have been created by

using the gnuplot plotting program, version 4.2. Figure 4.6 demonstrates

the average number of iterations needed for DNEPSA and DNSA to solve

randomly generated MCNFP instances on networks of 2% density. Figure

4.7 gives a similar graph for the average CPU time (in seconds) needed for

the same MCNFP instances. Figures 4.8 and 4.9 give similar graphs for the

MCNFP problem instances on networks of 10% density. Finally, Figures 4.10

and 4.11, Figures 4.12 and 4.13 and Figures 4.14 and 4.15 give the graphs

for network instances of density 20%, 30% and 40% respectively.

The comparative study of DNEPSA and DNSA algorithms shows that,

for the instances considered, DNEPSA needs less CPU time and fewer num-

ber of iterations than DNSA does. A theoretical explanation of DNEPSA’s

superiority, is the fact that DNEPSA can cross over the infeasible region of

the dual problem and return back to it to find an optimal solution. That

fact may lead to an essential reduction on the number of iterations and the

CPU time needed.

105

Table 4.2: Number of Iterations and CPU time for randomly generated in-
stances.

DNSA DNEPSA

Density Nodes × Arcs niter CPU niter CPU

2% 200 × 796 296 0.85 289 0.71
300 × 1794 550 4.02 516 3.31
400 × 3192 969 11.10 845 8.90
500 × 4990 1315 34.02 1143 26.50
600 × 7188 1550 72.20 1237 51.60
700 × 9786 2317 140.38 1784 95.20

10% 200 × 3980 383 1.43 350 1.01
300 × 8970 853 7.70 770 5.01
400 × 15960 1451 30.02 1277 18.30
500 × 24950 2073 78.69 1811 46.81
600 × 35940 2819 170.20 2231 97.10
700 × 48930 4149 365.00 3101 188.21

20% 200 × 7960 389 2.34 359 1.71
300 × 17940 884 11.50 786 8.02
400 × 31920 1567 44.20 1298 29.60
500 × 49900 2271 125.47 1841 82.90
600 × 71880 3050 264.20 2291 155.40
700 × 97860 4478 591.64 3202 323.23

30% 200 × 11940 416 3.13 364 2.16
300 × 26910 954 16.50 803 11.20
400 × 47880 1628 72.15 1331 47.32
500 × 74850 2357 176.60 1848 103.63
600 × 107820 3083 265.52 2366 155.91
700 × 146790 4535 981.35 3278 497.33

40% 200 × 15920 454 4.59 377 3.06
300 × 35880 1049 18.15 864 11.76
400 × 63840 1791 79.37 1455 51.05
500 × 99800 2512 199.26 1913 110.10
600 × 143760 3398 312.25 2580 167.50
700 × 195720 4943 1069.67 3473 552.08

106

Table 4.3: Normalized number of iterations and CPU time for randomly
generated instances.

DNSA DNEPSA

Density Nodes × Arcs niter CPU niter CPU

2% 200 × 796 1.02 1.20 1 1
300 × 1794 1.07 1.21 1 1
400 × 3192 1.15 1.25 1 1
500 × 4990 1.15 1.28 1 1
600 × 7188 1.25 1.40 1 1
700 × 9786 1.30 1.47 1 1

10% 200 × 3980 1.09 1.42 1 1
300 × 8970 1.11 1.54 1 1
400 × 15960 1.14 1.64 1 1
500 × 24950 1.14 1.68 1 1
600 × 35940 1.26 1.75 1 1
700 × 48930 1.34 1.94 1 1

20% 200 × 7960 1.08 1.37 1 1
300 × 17940 1.13 1.43 1 1
400 × 31920 1.21 1.49 1 1
500 × 49900 1.23 1.51 1 1
600 × 71880 1.33 1.70 1 1
700 × 97860 1.40 1.83 1 1

30% 200 × 11940 1.14 1.45 1 1
300 × 26910 1.19 1.47 1 1
400 × 47880 1.22 1.52 1 1
500 × 74850 1.28 1.70 1 1
600 × 107820 1.30 1.70 1 1
700 × 146790 1.38 1.97 1 1

40% 200 × 15920 1.20 1.50 1 1
300 × 35880 1.21 1.54 1 1
400 × 63840 1.23 1.55 1 1
500 × 99800 1.31 1.81 1 1
600 × 143760 1.32 1.86 1 1
700 × 195720 1.42 1.94 1 1

107

 0

 500

 1000

 1500

 2000

 2500

 200 300 400 500 600 700

N
um

be
r

of
 it

er
at

io
ns

Dimension (nodes)

2 % Density

DNSA
DNEPSA

Figure 4.6: Average number of iterations for networks of density 2%.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 200 300 400 500 600 700

C
P

U
 T

im
e

(s
ec

on
ds

)

Dimension (nodes)

2 % Density

DNSA
DNEPSA

Figure 4.7: CPU time (in seconds) for networks of density 2%.

108

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 200 300 400 500 600 700

N
um

be
r

of
 it

er
at

io
ns

Dimension (nodes)

10 % Density

DNSA
DNEPSA

Figure 4.8: Average number of iterations for networks of density 10%.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 200 300 400 500 600 700

C
P

U
 T

im
e

(s
ec

on
ds

)

Dimension (nodes)

10 % Density

DNSA
DNEPSA

Figure 4.9: CPU time (in seconds) for networks of density 10%.

109

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 200 300 400 500 600 700

N
um

be
r

of
 it

er
at

io
ns

Dimension (nodes)

20 % Density

DNSA
DNEPSA

Figure 4.10: Average number of iterations for networks of density 20%.

 0

 100

 200

 300

 400

 500

 600

 200 300 400 500 600 700

C
P

U
 T

im
e

(s
ec

on
ds

)

Dimension (nodes)

20 % Density

DNSA
DNEPSA

Figure 4.11: CPU time (in seconds) for networks of density 20%.

110

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 200 300 400 500 600 700

N
um

be
r

of
 it

er
at

io
ns

Dimension (nodes)

30 % Density

DNSA
DNEPSA

Figure 4.12: Average number of iterations for networks of density 30%.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 200 300 400 500 600 700

C
P

U
 T

im
e

(s
ec

on
ds

)

Dimension (nodes)

30 % Density

DNSA
DNEPSA

Figure 4.13: CPU time (in seconds) for networks of density 30%.

111

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 200 300 400 500 600 700

N
um

be
r

of
 it

er
at

io
ns

Dimension (nodes)

40 % Density

DNSA
DNEPSA

Figure 4.14: Average number of iterations for networks of density 40%.

 0

 200

 400

 600

 800

 1000

 1200

 200 300 400 500 600 700

C
P

U
 T

im
e

(s
ec

on
ds

)

Dimension (nodes)

40 % Density

DNSA
DNEPSA

Figure 4.15: CPU time (in seconds) for networks of density 40%.

112

4.5 Statistical Analysis of the Performance of

the algorithm

In order to have an insight into the performance evaluation of an algorithm, a

statistical analysis is needed, as it is shown in [20], [64] and [66]. A systematic

approach to the problem of inferring asymptotic bounds from experimental

data is given in [65]. A study on how well an algorithm’s mathematical

complexity tally with the statistical measure is presented in [18]. For a list

of properties of a statistical complexity bound as well as to understand what

is the meaning of the design and analysis of computer experiments, [19] may

be consulted.

The results of the statistical analysis presented in this section, were based

on the IBM PASW Statistics package, version 19. The results are analysed

in order to improve and strengthen the experimental results presented in the

previous section. Typically, an increase or decrease in the running time leads

to an increase or decrease in the variance respectively. This can be attributed

to the fact that, the running times are bounded below by zero. Therefore, a

logarithmic transformation of the running times usually is preferred.

Figures 4.16 and 4.17 depict two scatter-plots where a straight line with

45◦ slope appears for reference. Figure 4.16 is showing the number of itera-

tions for DNEPSA and DNSA, while Figure 4.17 refers to CPU time needed

on a double-logarithmic scale. Both plots exhibit a linear trend. The major-

ity of the points lie below the 45◦ line, thus indicating that DNSA is generally

slower than DNEPSA.

However, in order to draw a valid statistical conclusion about the differ-

113

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

D
N

E
P

S
A

 (
nu

m
be

r
of

 it
er

at
io

ns
)

DNSA (number of iterations)

Figure 4.16: Scatterplot of DNEPSA vs DNSA (number of iterations).

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000 10000

D
N

E
P

S
A

 (
lo

g-
tr

an
sf

or
m

ed
 c

pu
 ti

m
e)

DNSA (log-transformed cpu time)

Figure 4.17: Scatterplot of DNEPSA vs DNSA (log-transformed CPU time).

114

ences between the solution times or the number of iterations, a hypothesis

testing is needed. To accomplish this, a decision must be made regarding

the use of parametric or non-parametric statistical hypothesis test. Let’s

denote by dniter the vector of pairwise differences in the number of iterations

between DNSA and DNEPSA and niterDNSA and niterDNEPSA the vectors

of the number of iterations for the two algorithms respectively (the values

are taken from the results in Table 4.2). So, it is:

dniter = niterDNSA − niterDNEPSA

In a similar way, we denote by dcpu the vector of pairwise differences in

CPU time between DNSA and DNEPSA. Thus, it is

dcpu = tDNSA − tDNEPSA

where tDNSA and tDNEPSA correspond to the vectors of DNSA and DNEPSA

CPU time respectively (the values are taken from the results in Table 4.2).

By applying a one-sample Kolmogorov-Smirnov test to the sample of

dniter, we take a p-value equal to 0.260 which is greater than 0.05. Therefore,

there is no reason to doubt the fact that the distribution of dniter is normal

and we can safely proceed to a paired-sample t-test. On the contrary, by

applying again a one-sample Kolmogorov-Smirnov test to the sample of dcpu,

we take a p-value equal to 0.018 which is less than 0.05. Therefore, there is

sufficient evidence to reject the normality assumption of the distribution of

dcpu and thus we should proceed to a Wilcoxon matched-pairs signed-ranks

test.

115

In the first case, the paired-sample t-test is actually a test on the differ-

ences between the number of iterations for DNSA and DNEPSA. If we denote

by M the population mean of pairwise differences, then M = 0 indicates that

on randomly generated problem instances, the experimental performance of

DNSA and DNEPSA is about the same. However, M > 0 implies that DNSA

is likely to need more iterations, whereas M < 0 implies that DNEPSA needs

more iterations. Since, we have no a priori reason to consider either algorithm

is doing less iterations, we will test the hypothesis that

H0 : M = 0

versus

H1 : M 6= 0

The mean difference in number of iterations (Mean = 423.27, Standard

Error = 74.90, N = 30) was significantly greater than zero, t = 5.65, two-tail

p < 0.05, verifying the conclusion that the two algorithms perform differently.

A 95% confidence interval about the mean difference in number of iterations

is (270, 576), indicating that the mean difference in number of iterations

lies between 270 and 576 iterations. Therefore, we reject the hypothesis H0

and conclude that the algorithms perform differently. Since the values of the

pairwise differences are all positive, we reach to the conclusion that DNEPSA

needs a smaller number of iterations than DNSA.

In the second case, the Wilcoxon matched-pairs signed-ranks test is a

distribution-free hypothesis test for the population median. The Wilcoxon

116

signed rank statistic W+ is based on the sizes of the absolute values of the

differences between observations of solution times. If we denote by M the

population median of pairwise differences, then M = 0 indicates that on

a randomly generated problem instances the experimental performance of

DNSA and DNEPSA is about the same. Since we have no a priori reason

to consider either algorithm is faster, we will test again the hypothesis that

H0 : M = 0 versus H1 : M 6= 0

The median differences in solution times is significantly different from

zero (it is W+ = 465, p < 0.05) providing evidence that the two algorithms

perform differently. Therefore, we reject hypothesis H0 and conclude that

the algorithms perform in a different way. Since the values of the pairwise

differences are all positive, we conclude that DNEPSA performs faster than

DNSA. It should be noted that the differences between the null hypothesis of

the Wilcoxon matched-pairs signed-ranks test and the paired-sample t-test,

is that the median difference between pairs of observations, instead the mean

difference between pairs, is zero.

4.6 Empirical complexity of DNEPSA using

statistical analysis

In this section, a statistical analysis based on the experimental results will

be performed, in order to measure the empirical complexity of DNEPSA.

Assume an algorithm with expected running time T (n,m) = O(g(n,m)),

where g(n,m) is a function with parameterized input length by n and m.

117

Then, the estimated function O(g(n,m)) is usually referred to as the empir-

ical complexity of the algorithm (see [20]).

The empirical complexity of DNEPSA presented in this section, was based

on a statistical analysis carried out by using the IBM PASW Statistics pack-

age, version 19. The research approach includes a stepwise multiple regression

analysis. The response variables are:

• the number of iterations

• the CPU time

while the predictor variables consist of a large number of variables that are

combinations of n and m (e.g., logn, logm, n2, n3, m2, nm, nm2, etc.). A

similar approach for the evaluation of the experimental performance of the

classical Simplex algorithm for the linear programming problem was pre-

sented by R. Vanderbei in [92], as also in [17] and [22].

R-squared (R2) is usually called the coefficient of determination and

equals to the ratio of the sum of squares explained by our regression model

and the total sum of squares around the mean. Furthermore, adjusted R-

squared (R̄2) is a modification of R-squared that adjusts for the number of

explanatory variables in a model. Unlike R-squared, the adjusted R-squared

increases only if the new variable clearly improves the regression model (and

not by chance).

The regression analysis, regarding the number of iterations, with an ad-

justed R-Squared value equal to R̄2 = 97.5% (very nearly unity) is indicated

in the following regression equation:

118

niter = a1 + b1nlogm+ c1
√
n (4.2)

where a1 = 775.991, b1 = 1.45, and c1 = −105.336. Hence, about 97.5% of

variation in the number of iterations can be explained by the variables nlogm

and
√
n. However, function g1(n,m) = nlogm is the one having the largest

order of growth.

In a similar way, the regression analysis regarding the CPU time needed

to solve each problem instance based on the problem dimension, with an

adjusted R-Squared value R̄2 = 97.4% (that is almost unity), is indicated in

the following regression equation:

cpu = a2 + b2mn2 + c2nm+ d2
√
nm (4.3)

where a2 = −16.871, b2 = 1.959× 10−8, c2 = −1.208× 10−5, and d2 = 0.29.

Hence, about 97.4% of variation in the CPU time can be explained by the

variables mn2, nm, and
√
nm. In this case, function g2(n,m) = mn2 has the

largest order of growth.

Moreover, the Analysis of Variance (ANOVA) resulted P < 0.001, show-

ing an absolute linear correlation between the variables of each regression

equation. The fit of both polynomials in Relations (4.2) and (4.3) were quite

good at 5% level of significance.

Figure 4.18 depicts the normal probability plot of the standardized resid-

uals regarding the number of iterations, while Figure 4.19 refers to the CPU

time needed. The standardized residuals of both regressions are normally

distributed (Kolmogorov-Smirnov normality tests P > 0.05 in both cases).

119

Figure 4.18: Normal Q-Q Plot of standardized residuals (number of itera-
tions).

Therefore, the regression analysis indicates that the DNEPSA algorithm

requires O(nlogm) number of iterations andO(mn2) cpu time. Thus, DNEPSA

has a polynomial empirical computational behavior regarding the required

number of iterations and the cpu time, observed statistically.

120

Figure 4.19: Normal Q-Q Plot of standardized residuals (CPU time).

121

Chapter 5

Implementation of DNEPSA by

using Dynamic Trees

5.1 Introduction to Dynamic Trees

A dynamic tree is an abstract data type that allows the maintenance of a col-

lection of vertex-disjoint rooted trees. These trees can be linked together by

adding a new edge and they can be split into subtrees by removing any edge.

These operations are usually referred as linking and cutting and dynamic

trees are often referred as link/cut trees.

Dynamic trees were first introduced by Sleator and Tarjan in [85] and

[86]. Sleator and Tarjan proposed two versions of the dynamic trees data

structure. The first version has a time bound of O(1ogn) per operation when

the time is amortized over a worst-case sequence of operations. The second

version is slightly more complicated and it has a worst-case time bound of

O(logn) per tree operation. One (or more) values may be associated with

122

every edge or vertex of a dynamic tree. The data structure may also be

modified in order to contain arcs instead of edges.

Dynamic trees may be used for the design of fast algorithms for various

kinds of problems like, finding the nearest common ancestor of two nodes in

a tree, solving network flow problems (minimum or maximum flow), solving

transportation problems etc.

Dynamic trees allow the easy modification of their structure by using

mainly three kinds of operations:

• link(u,v,c): links together two dynamic trees, where u is the root of

the first tree and v a vertex of the second tree, by adding a new edge

(u,v) of value (cost) c. The root of the second tree is the root of the

extended tree produced.

• cut(v): divides a dynamic tree into two subtrees by deleting the edge

that connects v to its parent. It cannot be applied if v is the root of

the tree.

• evert(v): makes node v the root of the tree by turning the dynamic

tree ”inside out”.

Beyond the three operations shown above, there can be other useful op-

erations that may be implemented for a dynamic tree data structure, like the

five operations described below:

• parent(v): returns the parent of a vertex.

• root(v): returns the root of the dynamic tree containing v.

123

• cost(v): returns the cost of the edge (v, parent(v)).

• mincost(v): finds the edge of minimum cost on the path joining vertex

v to root(v).

• update(v,x): adds a certain value x to all edges on the path from vertex

v to root(v).

The above operations may be modified or new operations can be added

in order to fit any special needs of an algorithm that uses dynamic trees. In

Figure 5.1 two dynamic trees are shown. Nodes a and q are the roots of the

two trees so, operations root(j) and root(t) return nodes a and q respectively.

Operation parent(e) gives node b because node b is the parent of node e.

Operation cost(e) returns the value 3 since this is the value (cost) associated

with the edge (e, parent(e)) and operation mincost(n) returns edge (a,b),

because this is the edge of minimum cost on the path from node n of the tree

to the root node root(n)=a.

After applying operation update(p,-1) on the tree of Figure 5.1(a), all

the costs from node p to node root(p) are reduced by 1, and we take the

tree shown in Figure 5.2. The linking operation link(q,i,4) joins the trees in

Figures 5.1(a) and 5.1(b) by adding a new edge (q,i) of cost 4. The dynamic

tree produced is depicted in Figure 5.3. Operation cut(d) on the tree of

Figure 5.1(a), deletes edge (a,d) and produces the two new trees depicted in

Figure 5.4. Finally, by applying the operation evert(f) on the tree in Figure

5.1(a), node f becomes the root of the new dynamic tree, as it can be seen

in Figure 5.5. In section 5.2 a method is described for the representation of

124

Figure 5.1: Dynamic trees

dynamic trees as a set of vertex disjoint paths. Section 5.3 describes how can

dynamic trees be used for the implementation of DNEPSA.

5.2 Representation of Dynamic Trees as a set

of paths

The techniques described in section 4.2 can be used for the representation of

dynamic trees; for every vertex v of the tree, its parent p(v) is stored together

with the cost of the edge (v,p(v)). Using this representation, parent, cost,

link and cut operations require O(1) time. The problem is that the time

requirements for each of the other operations is proportional to the length of

the tree path from v to root(v). This cost is O(n) in the worst case, where

n is the number of vertices in the graph. It is possible to reduce the cost

of time-consuming operations to O(logn), at the cost of increasing the time

125

Figure 5.2: Dynamic tree after applying operation update

Figure 5.3: Linking of dynamic trees

126

Figure 5.4: Cutting operation on dynamic trees

Figure 5.5: Evert operation on dynamic trees

127

Figure 5.6: Representation of a dynamic tree as a set of vertex disjoint paths

for the the less time-consuming operations to O(1ogn). This can be done by

representing a dynamic tree as a set of vertex-disjoint paths, as it is described

in [85]. In order to do that, the edges of a dynamic tree will be partitioned

into two types, the solid and the dashed edges.

Figure 5.6 gives a representation of the dynamic tree of Figure 5.1(a), as

a collection of vertex disjoint paths by drawing some of its edges as dashed

lines. Of course this representation is not unique. Every vertex belongs to

exactly one path. A vertex may belong to at most one solid edge but it can

belong to more than one dashed edges. The node of a path that is closer

to the root of the dynamic tree is the tail of the path and the node that is

farther is the head of the path. We have the following seven paths: [n,j,e],

[o], [p,k,f,b,a], [c], [l,g,d], [h] and [m,i]. In path [p,k,f,b,a] for example, node

p is the head of the path, while node a is the tail of the path.

A set of primitive path operations have to be implemented:

• path(v): returns the path containing vertex v.

128

• head(p): returns the first (bottommost) node of path p.

• tail(p): returns the the last(topmost) node of path p.

• before(v): returns the previous node of node v on path path(v).

• after(v): returns the next node of node v on path(v).

• pcost(v): returns the cost of edge (v, after(v)).

• pmincost(p): finds a node v on path p so that the edge (v, after(v))

has the minimum cost on p.

• pupdate(p,x): adds a value x to the cost of every edge of path p.

• reverse(p): reverses the direction of path p by making its head to be

the tail and vice versa.

• concatenate(p,q,x): combines two paths p and q by adding a new edge

(tail(p), head(q)) of cost x and returns the combined path.

• split(v): deletes edges (before(v),v) and (v, after(v)) producing two

subpaths.

In addition, two additional composite path operations, described below, are

also needed. These operations can be implemented by using the primitive

path operations described above.

• splice(p): transforms the dashed edge leaving tail(p) into a solid edge

and converts to dashed the solid edge entering parent(tail(p))(if any).

This way, path p is extended to include more vertices.

129

Figure 5.7: Splice operation on a path

• expose(v): transforms every dashed edge from v to root(v) into a solid

edge.

In Figure 5.7, the result of a splice(path(e)) operation on the dynamic tree

of Figure 5.6 is depicted. Edge (b,e) was converted to solid, while edge (b,f)

was converted to dashed. After that, if a expose(m) operation is performed,

the dynamic tree of Figure 5.8 is produced. All the dashed edges from node

m to root(m) have been transformed to dashed and edge (d,g) is transformed

to dashed so that, every vertex of the dynamic tree belongs to at most one

solid edge.

All the dynamic tree operations, described in section 5.1, can be imple-

mented by using the primitive and composite path operations presented here.

Sleator and Tarjan proved in [85] that, in a sequence of m dynamic tree op-

erations, there are O(mlogn) path operations, with splice and expose broken

down into their component operations (n is the total number of vertices).

130

Figure 5.8: Expose operation on a path

5.3 Use of Dynamic Trees in the implemen-

tation of DNEPSA

DNEPSA, as it was described in section 2.1, maintains a tree-solution that

is updated iteration by iteration. Dynamic tree data structures can be used

in order to store the tree-solutions the algorithm produces. First of all,

DNEPSA starts from an initial dual feasible tree-solution that can be rep-

resented as a dynamic tree. Figure 5.9 shows a possible initial dual feasible

tree-solution used by DNEPSA in order to solve a MCNFP problem. Such a

dynamic tree can be built by the method described in section 4.3, by slightly

modifying it to start from a collection of |V | single-vertex dynamic trees and

use a sequence of link operations to construct the tree. The tree consists of

three dynamic paths: [8, 2, 4, 6], [7, 3] and [5,1]. The supply for each vertex

and the flow on each basic arc are also shown in the figure. We have arcs

instead of edges in the dynamic tree but, this is not a problem because the

131

Figure 5.9: Initial tree-solution for DNEPSA as a dynamic tree

direction can be represented by adding a simple field in the data structure,

as it is described later in this section.

The paths of a dynamic tree can be implemented as binary trees. Figure

5.10 shows the representation of the three paths of the dynamic tree of Figure

5.9 as three different binary trees (a), (b) and (c), one for each path. As it

is easy to see in Figure 5.10, the external nodes of a binary tree, in left-to-

right order, correspond to the vertices of the path from head to tail. An

internal node w in a binary tree B that represents a path p, corresponds to

an edge (u,v) of p, where u and v are the leaf nodes of B that are just before

and after w when the nodes of B are traversed in symmetric order (inorder

traversal). Next to each internal node in the figure, a label indicates the edge

they correspond to.

For every node of a binary tree used to represent a dynamic path, a num-

132

Figure 5.10: Representation of paths as binary trees

ber of fields have to be used in the data structure to store all the information

needed. Such fields include:

• external : it can only take value 0 or 1, indicating whether the node is

internal or external (leaf node).

• direction: for an internal node it stores the direction of the correspond-

ing arc.

• reversed : shows if an arc was reversed. This way it is easy to reverse

an arc making it easy to implement operation evert.

• bparent : a pointer to the parent of a node. It is null if the node is the

root of the tree.

• bhead : a pointer to the head of the path.

• btail : a pointer to the tail of the path.

• bleft : a pointer to the left child of an internal node.

• bright : a pointer to the right child of an internal node.

133

Figure 5.11: Representation of a dynamic tree as a collection of linked as
binary trees

In order to store the whole dynamic tree, the binary trees of Figure 5.10

have to be linked together. For all the vertices of the dynamic tree with an

outgoing dashed line (Figure 5.9), we have to connect the corresponding leaf

node to the leaf node that correspond to its parent in the original dynamic

tree. In practice, this can be implemented by maintaining in every node’s

data structure two additional fields, named dparent and dcost, that store

information for the arc linking two paths and the corresponding cost for that

arc. Figure 5.11 shows how the binary trees depicted in Figure 5.10 have

to be connected together in order to represent the dynamic tree shown in

Figure 5.9.

More fields are needed in order to store information useful for the DNEPSA

algorithm. We need additional fields that store information about the flow

of the arc that corresponds to an internal node and a flag indicating whether

it belongs to set I or I+. For every external node (leaf) of a binary tree we

can also have fields to store the supplies bi and the values of dual variable

values wi.

134

5.4 Theoretical time complexity per pivot for

DNEPSA algorithm

The use of dynamic trees can help improve the performance of the most

time consuming steps of DNEPSA. In step 0 of the algorithm, vector d is

computed by using Relation (2.7). A value dij has to be computed for each

arc (i,j). It is very easy to compute dij, if (i,j) belongs to the basic tree T.

But, in case it is (i, j) /∈ T , then the algorithm has to traverse the cycle

Cij existing in T ∪ (i, j) and check the orientation of every arc (u, v) ∈ Cij

comparing it with the orientation of (i,j). Then dij becomes equal to the

sum of hij(u, v) for all (u, v) ∈ I , where hij(u, v) is given by Relation (2.6).

This is a very time consuming process. By using dynamic trees, in order to

compute dij, ∀(i, j) ∈ T , it is enough to do the following steps: First, we

make node j to be the root of the dynamic tree by using operation evert(j).

After that, we just traverse the path from node j to node i. For every arc

(u,v) on that path, it is enough to check the orientation field of the node

in order to find the value of hij(u, v) and sum up these values for the arcs

that belong to I (which is indicated by a field of the node). Therefore, the

amortized time complexity needed for the calculation of dij is the same as

the time complexity of the evert operation used, i.e. it is O(logn). After

finding the dij values for every arc (i,j), the algorithm can create the set J

by using Relation (2.8) (in step 1 of the algorithm). Then, in step 2, the

algorithm can select the entering arc (g,h) by finding the minimum ratio α

from Relation (2.9).

In step 3, DNEPSA has to select the leaving arc. The flows in the cycle

135

C, created when adding the entering arc (g,h) into the basic tree T, have to

be checked so that, the values of θ1 and θ2 are computed by Relation (2.11).

By using dynamic trees, in order to compute the values of θ1 and θ2, we can

just make node h to be the root of the dynamic tree (by using operation

evert(h)) and then we just traverse the path from node g up to node root(g)

(to the root of the tree). For every arc (i,j) on that path, it is enough to

check if it belongs to set I or to set I+ and then compare its orientation

to the orientation of the entering arc (g,h). Again, the time complexity for

this process is the same as the time complexity of the evert operation, i.e.

O(logn).

After selecting the entering and the leaving arc, the new tree-solution

T \ (k, l) ∪ (g, h) has to be built. When using dynamic trees, this can be

very easily done by using the cut and link dynamic tree operations. The

entering arc (g,h) is added into set I+ by setting the proper bit in the nodes

structure and its flow xgh becomes equal to θ1 or to θ2, depending on the

type of iteration the algorithm performs (type A or type B iteration). The

flows xij for the basic arcs (i, j) /∈ C do not change. On the other hand, for

the basic arcs (i,j) that belong to the cycle C, their flow xij changes and its

new value x
(t+1)
ij has to be computed, as Table 2.2 shows. This value is either

equal to x
(t)
ij − x

(t)
kl or equal to x

(t)
ij + x

(t)
kl depending on the orientation of arc

(i,j) compared to the orientation of the entering arc (g,h). By using dynamic

tree operations, in the same way as described above, it is easy to determine

the orientation of an arc (i, j) ∈ C in O(logn) time.

Vectors s and d has also to be updated for all non basic arcs (i, j) /∈ T .

If the leaving arc (k,l) is removed from the basic tree T, then two subtrees

136

T+ and T− are created, as it is shown in Figures 2.1 and 2.2. The values sij

and dij do not change when both i and j belong to subtree T+ or they both

belong to subtree T−. But, in the cases where it is i ∈ T+ and j ∈ T− or

i ∈ T− and j ∈ T+, then it is either s
(t+1)
ij = s

(t)
ij − s

(t)
gh or s

(t+1)
ij = s

(t)
ij + s

(t)
gh,

depending on the type of iteration (type A or type B). The same happens

for the new value of dij for every non basic arc (i, j) /∈ T . By using dynamic

trees, it is easy to determine for nodes i and j whether they belong to subtree

T+ or to subtree T−. This can be done by using a cut operation for node l,

i.e. perform cut(l), in order to produce the two subtrees T+ and T−. Then

by checking if root(i) is the same as root(j) it is easy to check if nodes k and

l belong to same subtree. The time complexity for these tree operations is

again O(logn).

Therefore, dynamic trees can be used by DNEPSA, during the whole

process of the algorithm, in order to limit the time needed for the most

time-consuming operations. So, the amortized time complexity per pivot is

O(logn). Sleator and Tarjan in [85] also propose a more sophisticated rep-

resentation of dynamic trees, that offers an O(logn) worst-case time bound.

This representation though, uses very complicated data structures and in

practice may be proved to be slower.

137

Chapter 6

Conclusions and Future Work

6.1 Conclusions

An Exterior-point Network Simplex-type algorithm (DNEPSA) for the MC-

NFP problem that starts from a dual feasible solution was presented in detail

here. A sequence of theorems were also proved to certify the correctness of

the algorithm. The algorithm was also compared against other classic algo-

rithms for the MCNFP problem, like DNSA, and the experimental results

that show its superiority were also presented. A statistical analysis of the ex-

perimental results was also given together with some results on the empirical

complexity of DNEPSA. The algorithm’s implementation was also described

and furthermore, a description on how the algorithm can use dynamic tree

to improve its time complexity was presented. Finally, the algorithm’s amor-

tized time complexity per pivot, when using dynamic trees data structures,

was analysed.

The conclusion that Exterior-point algorithms can offer a promising alter-

138

native approach in Network Optimization problems, can be safely extracted.

It is also clear that the use of sophisticated data structures, like dynamic

trees, is a key factor for the improvement on the performance of the algo-

rithm.

6.2 Future Work

A subject for future work is the examination of the algorithm’s performance

when using other sophisticated data structures, other than dynamic trees, for

storing and updating the necessary variables. Such data structures include

Fibonacci heaps as they are described in [31]. It would be very interest-

ing to use such data structures to implement DNEPSA and then compare

its performance against some state-of-the-art implementations, like RELAX

IV ([13]), combinatorial code CS2 ([48]), interior-point code DLNET ([82]),

RNET ([50]) and NETFLO ([58]). The algorithm’s behavior has also to be

examined in some well-known pathological problem instances, as they are

described in [93] and [94].

Furthermore, it would be very interesting to develop a capacitated ver-

sion of DNEPSA. Generally, it is possible for any capacitated network to be

transformed into an uncapacitated equivalent one by removing its arc capac-

ities. This technique is analytically described in [2]. The only drawback of

this transformation is that, it increases the number of nodes in the network.

However, in most cases, the original and transformed networks can be solved

by algorithms of the same time complexity. This is due to the fact that the

transformed network possesses a special structure that permits us to design

139

more efficient algorithms.

Moreover, statistical techniques were used in order to present some ex-

perimental results on the empirical complexity of DNEPSA. The fit of both

polynomials (Relations (4.2) and (4.3)) were quite good at 5% level of sig-

nificance. Furthermore, high adjusted R-Squared values equal to 97.5% and

97.4% for the estimation of the number of iterations and the total cpu time

respectively, provide the required validity of our experimental results. How-

ever, it is well known that the statistical measures of an algorithm’s complex-

ity do not always tally with the mathematical counterpart. Thus, it is very

interesting to also derive the computational complexity of DNEPSA with

rigorous theoretical proofs.

A parallelized version of the DNEPSA algorithm would be of much in-

terest, especially after the great developments in GRID technology and par-

allel computing during the last years. Some efforts on the parallelization

of Exterior-point Simpex-type algorithms for the Linear Problem have al-

ready been made, as it is described in [7]. Some time-consuming processes of

Network Exterior-point Simplex-type algorithms (dual or primal) could prob-

ably be parallelized and, in that case, the algorithm’s performance would be

improved drastically.

Finally, it would be very interesting to develop a visualization software

tool for DNEPSA for educational or other reasons. Similar educational tools

have been already developed for other network optimization algorithms, as

in [5] and [8] and it would be worthy to develop visual presentation tools

for Exterior-point algorithms, like DNEPSA. Also, it would be useful to

develop an on-line tool that uses DNEPSA in order to solve MCNFP net-

140

work instances submitted by users in some standard representation form and

presents the results to the user. A software optimization suite, named Web-

NetPro, has already been developed (presented in Karag2006) and it would

be good to add DNEPSA algorithm into it.

141

Bibliography

[1] R. Ahuja, A. V. Goldberg, J. B. Orlin, and R. E. Tarjan, Finding

minimum-cost flows by double scaling, Mathematical Programming 53

(3) (1992) 243-266.

[2] R. Ahuja, T. Magnanti, and J. Orlin, Network Flows: Theory, Algo-

rithms and Applications, Prentice Hall, Englewood Cliffs, NJ, 1993.

[3] R. Ahuja, T. Magnanti, J. Orlin, and M. Reddy, Applications of Net-

work Optimization, Handbooks of Operations Research and Management

Science 7 (1995) 1-83.

[4] R. Ahuja, J. Orlin, P. Sharma, P. Sokkalingam, A Network Simplex

Algorithm with O(n) Consecutive Degenerate Pivots, OR Letters 30

(2002) 141-148

[5] D. Andreou, K. Paparrizos, N. Samaras, and A. Sifaleras, Visualization

of the network exterior primal simplex algorithm for the minimum cost

network flow problem, Operational Research 7(3) (2007) 449-464.

[6] R. Armstrong and Z. Jin, A new strongly polynomial dual network sim-

plex algorithm, Mathematical Programming 78(2) (1997) 131-148.

142

[7] E. Badr, M. Moussa, K. Paparrizos, N. Samaras, and A. Sifaleras, Some

computational results on MPI Parallel Implementation of Dense Simplex

Method, in Proc. of World Academy of Science, Engineering and Tech-

nology 23 pp. 39-42 (presented in the Seventeenth International Con-

ference on Computer and Information Science and Engineering (CISE

2006), 8-10 December, Cairo, Egypt, 2006)

[8] Th. Baloukas, K. Paparrizos, and A. Sifaleras, An Animated Demon-

stration of the Uncapacitated Network Simplex Algorithm, INFORMS

Transactions on Education 10(1) (2009) 34-40.

[9] R. Barr, F. Glover, and D. Klingman, Enhancements of spanning tree

labelling procedures for network optimization, INFOR 17 (1) (1979)

16-34.

[10] E. Beale, Cycling in the dual Simplex algorithm, Naval Res. Logist.

Quart. 2 (1955) 269-275

[11] S. Bent, D. Sleator, and R.Tarjan, Biased 2-3 trees, Proc. Twenty-First

Annual IEEE Symp. on Foundations of Computer Science (1980) 248-

254.

[12] D.P. Bertsekas, and P. Tseng, Relaxation methods for minimum cost

ordinary and generalized network flow problems, Operations Research

36 (1) (1988) 93-114.

[13] D.P. Bertsekas, and P. Tseng, RELAX-IV: A Faster Version of the RE-

LAX Code for Solving Minimum Cost Flow Problems, Technical Report,

143

Massachusetts Institute of Technology, Laboratory for Information and

Decision Systems, 1994.

[14] D. P. Bertsekas, Linear Network Optimization: Algorithms and Codes,

Cambridge,MA: MIT Press, 1991.

[15] R. G. Bland, New finite pivoting rules for the simplex method, Mathe-

matics of Operations Research 2 (2) (1977) 103-107.

[16] R. G. Bland, J. Cheriyan, D. L. Jensen, and L. Ladnyi, An empirical

study of min cost flow algorithms, DIMACS, Series in Discrete Mathe-

matics and Theoretical Computer Science (1993)

[17] S. Chakraborty, and P.P. Choudhury, A statistical analysis of an algo-

rithm’s complexity, Applied Mathematics Letters 13(5) (2000) 121-126.

[18] S. Chakraborty, P. P. Choudhury, Can statistics provide a realistic mea-

sure for an algorithm’s complexity?, Applied Mathematics Letters 12 (7)

(1999) 113-118

[19] S. Chakraborty, and S.K. Sourabh, A Computer Experiment Oriented

Approach to Algorithmic Complexity, Lambert Academic Publishing

(2010)

[20] M. Coffin, and M.J. Saltzman, Statistical Analysis of Computational

Tests of Algorithms and Heuristics, INFORMS Journal on Computing

12(1) (2000) 24-44.

[21] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to Algo-

rithms, MIT Press, 3rd edition, 2009.

144

[22] C. Cotta, and P. Moscato, A mixed evolutionary-statistical analysis of

an algorithm’s complexity, Applied Mathematics Letters 16(1) (2003)

41-47.

[23] W. Cunningham, A network simplex method, Mathematical Program-

ming 11 (1976) 105-116

[24] W. Cunningham, Theoretical properties of the network simplex method,

Mathematics of Operations Research 4 (1979) 196-208

[25] N. Curet, Applying steepest-edge techniques to a network primal-dual

algorithm, Computers and Operations Research 24 (7) (1997) 601-609.

[26] N. Curet, Implementation of a steepest-edge primal-dual simplex

method for network linear programs, Annals of Operations Research 81

(0) (1998) 251-270.

[27] G. Dantzig, Applications of the simplex method to a transportation

problem, Activity Analysis of Production and Allocation, New York,

Wiley, 1951.

[28] J. Edmonds, Paths, trees, and flowers, Canadian Journal of Mathemat-

ics 17 (1965) 449-467.

[29] J. Edmonds and, R. Karp, Theoretical improvements in algorithmic

efficiency for network flow problems, Journal of the ACM 19 (2) (1972)

248264.

145

[30] T.R. Ervolina, and S.T. McCormick, Two strongly polynomial cut can-

celing algorithms for minimum cost network flow, Discrete Applied

Mathematics 46(2) (1993) 133-165.

[31] M. Fredman, and R. Tarjan, Fibonacci heaps and their uses in improved

network optimization algorithms, Journal of the ACM 34(3) (1987) 596-

615.

[32] K. Fukuda, and T. Terlaky, Criss-cross methods: a fresh view on pivot

algorithms. Mathematical Programming 79(1) (1997), 369-395.

[33] D. Fulkerson, An out-of-kilter method for minimal cost flow problems,

J. SIAM 9 (1) (1961) 18-27.

[34] H. Gabow, and R. Tarjan, Faster scaling algorithms for network prob-

lems, SIAM Journal on Computing 18 (5) (1989) 1013-1036.

[35] Z. Galil, and E. Tardos, A o(n2(m+nlogn)logn) min-cost flow algorithm,

Journal of the ACM 35 (2) (1988) 374-386.

[36] S. Gassa, and S. Vinjamurib Cycling in linear programming problems,

textitComputers and Operations Research 31 (2) (2004) 303311.

[37] G. Geranis, K. Paparrizos, and A. Sifaleras, A dual exterior point sim-

plex type algorithm for the minimum cost network flow problem, Yu-

goslav Journal of Operations Research 19(1) (2009) 157-170.

[38] G. Geranis, K. Paparrizos, and A. Sifaleras, On the Computational Be-

havior of a Dual Network Exterior Point Simplex Algorithm for the

Minimum Cost Network Flow Problem, Proceedings of the International

146

Network Optimization Conference (INOC 2009), 26-29 April, Pisa, Italy,

(2009).

[39] F. Glover, D. Klingman, and A. Napier, Basic Dual Feasible solutions

for a Class of Generalized Networks, Operations Research 20(1) (1972)

126-136.

[40] F. Glover, D. Klingman, and A. Napier, An efficient dual approach to

network problems, Opsearch 9 1 (1972) 1-18.

[41] F. Glover, D. Karney, and D. Klingman, The augmented predecessor

index method for locating stepping stone paths and assigning dual prices

in distribution problems, Transportation Science 6(2) (1972) 171-180.

[42] F. Glover, D. Klingman, and J. Stutz, Extensions of the augmented pre-

decessor index method to generalized transportation problems, Trans-

portation Science 7 (4) (1973) 377-384.

[43] F. Glover, D. Klingman, and J. Stutz, Augmented threaded index

method for network optimization, INFOR 12 (3) (1974) 293-298.

[44] F. Glover, D. Karney, D. Klingman, and A. Napier, A computation

study on start procedures, basis change criteria, and solution algorithms

for transportation problems, Management Science 20 (5) (1974) 793-

813.

[45] F. Glover, D. Klingman, and N. Phillips, Network Models in Optimiza-

tion and Their Applications in Practice, Wiley Publications, 1992.

147

[46] A. Goldberg, and R. Tarjan, Finding minimum-cost circulations by can-

celing negative cycles, Journal of the ACM 36 (4) (1989) 873-886.

[47] A. Goldberg, E. Tardos, and R. Tarjan, Network flow algorithms, Tech-

nical report, Department of Computer Science, Stanford University

(1989).

[48] A.V. Goldberg, An Efficient Implementation of a Scaling Minimum-Cost

Flow Algorithm, Journal of Algorithms 22(1) (1997) 1-29.

[49] A. Goldberg, M. Grigoriadis, and R.E. Tarjan, Use of dynamic trees in a

network simplex algorithm for the maximum flow problem, Mathemati-

cal Programming 50(3) (1991) 277-290.

[50] M. Grigoriadis, An efficient implementation of the network simplex

method, Mathematical Programming Studies 26 (1984) 83-111.

[51] J. Hall, and K. McKinnon, The simplest examples where the simplex

method cycles and conditions where expand fails to prevent cycling,

Mathematical Programming 100 (1) (2004) 133-150.

[52] A. Hoffman, Cycling in the Simplex method, Techn. Report Nat. Bureau

Standards 2974 (1953)

[53] J. Hultz and D. Klingman, An Advanced Dual Basic Feasible Solution

for a Class of Capacitated Generalized Networks, Operations Research

24(2) (1976) 301-313.

[54] P. Karagiannis, K. Paparrizos, N. Samaras, and A. Sifaleras, A short

bibliography on the assingment problem and its applications, Technical

148

report, Department of Applied Informatics, University of Macedonia,

Deliverable in Work Package 1, from the Research Project (EPEAEK

II) PYTHAGORAS I (2004).

[55] P. Karagiannis, K. Paparrizos, N. Samaras, and A. Sifaleras, A new

simplex type algorithm for the minimum cost network flow problem, in

Proc. of the 7th Balkan Conference on Operational Research (BACOR

05), 25-28 May, Constanta, Romania, pp. 133-139, 2005.

[56] P. Karagiannis, I. Markelis, K. Paparrizos, N. Samaras, and A. Sifaleras,

E-learning technologies: employing matlab web server to facilitate

the education of mathematical programming, International Journal of

Mathematical Education in Science and Technology 37 (7) (2006) 765-

782.

[57] N. Karmarkar, A new polynomial time algorithm for linear program-

ming, Combinatorica 4 (4) (1984) 373-395.

[58] J. Kennington and R. Helgason, Algorithms for Network Programming,

Wiley, New York, 1980.

[59] D. Klingman, A. Napier, and J. Stutz, NETGEN: A program for gener-

ating large scale capacitated assignment, transportation, and minimum

cost flow networks, Management Science 20(5) (1974) 814-821.

[60] Y. Lee, and J. B. Orlin, Computational testing of a network simplex

algorithm, Proceedings of the First DIMACS International Algorithm

Implementation Challenge (1991).

149

[61] Y. Lee, Computational analysis of network optimization algorithms,

Ph.D. thesis M.I.T. (1993).

[62] I. Maros, A practical anti-degeneracy row selection technique in network

linear programming, Annals of Operations Research 47(2) (1993) 431-

442.

[63] C.C. McGeoch, A Guide to Experimental Algorithmics, Cambridge Uni-

versity Press (2012)

[64] C.C. McGeoch, Toward an experimental method for algorithm simula-

tion, INFORMS Journal on Computing 8(1) (1996) 1-15.

[65] C. McGeoch, P. Sanders, R. Fleischer, P.R. Cohen, and D. Precup, Using

finite experiments to study asymptotic performance, Lecture Notes In

Computer Science, Vol. 2547, Springer-Verlag New York, Inc., (2002)

93-126

[66] R. Nance, R. Moose, and R. Foutz, A statistical technique for comparing

heuristics: an example from capacity assignment strategies in computer

network design, Communications of the ACM, 30(5) (1987) 430-442.

[67] J.B. Orlin, Genuinely Polynomial Simplex and Non-Simplex Algorithms

for the Minimum Cost Flow Problem, Technical Report No. 1615-84

Sloan School of Management, M.I.T., Cambridge, MA, (1984).

[68] J.B. Orlin, A faster strongly polynomial minimum cost flow algorithm,

Operations Research 41 (2) (1993) 338-350.

150

[69] J.B. Orlin, S. Plotkin, and E. Tardos, Polynomial dual network simplex

algorithms, Mathematical Programming 60 (3) (1993) 255-276.

[70] J.B. Orlin, A polynomial time primal network simplex algorithm for

minimum cost flows, Mathematical Programming 78 (2) (1997) 109-129.

[71] C. Papamanthou, K. Paparrizos, and N. Samaras, On the initialization

methods of an exterior point algorithm for the assignment problem, In-

ternational Journal of Computer Mathematics, Taylor and Francis Pub-

lications, 87 (8) (2010) 1831-1846.

[72] K. Paparrizos, An infeasible (exterior point) simplex algorithm for as-

signment problems, Mathematical Programming 51 (1) (1991) 45-54.

[73] K. Paparrizos, A non improving simplex algorithm for transportation

problems, RAIRO Operations Research 30 (1) (1996) 1-15.

[74] K. Paparrizos, Exterior point simplex algorithms: simple and short

proofs of correctness, Proceedings of the XXIII SYMOPIS, Zlatibor

(1996) 13-18.

[75] K. Paparrizos, N. Samaras, and G. Stephanides, An efficient simplex

type algorithm for sparse and dense linear programs, European Journal

of Operational Research 148 (2) (2003) 323-334.

[76] K. Paparrizos, N. Samaras, and A. Sifaleras, A learning tool for the

visualization of general directed or undirected rooted trees, K. Mor-

gan and J. M. Spector (Eds.), WIT Transactions on Information and

151

Communication Technologies, Volume 30, Chapter The Internet Soci-

ety: Advances in Learning, Commerce and Security, Skiathos, Greece:

WIT Press (2004), pp. 205-213,.

[77] Paparrizos K., Samaras N., and Sifaleras A., Network Optimization (in

Greek), ZYGOS Publications, ISBN: 978-960-8065-68-0, Thessaloniki,

2009.

[78] K. Paparrizos, N. Samaras, and A. Sifaleras, An exterior Simplex type

algorithm for the minimum cost network flow problem, Computers &

Operations Research 36(4) (2009) 1176-1190.

[79] K. Paparrizos, N. Samaras, and A. Sifaleras, On the empirical behaviour

of a new network exterior point simplex algorithm for the minimum

cost network flow problem, Proceedings of the Veszprem Optimization

Conference: Advanced Algorithms (VOCAL 2006), Veszperm Hungary,

(2006).

[80] S. Plotkin, and E. Tardos, Improved dual network simplex, Proceed-

ings of the 1st Annual ACM-SIAM Symposium on Discrete Algorithms,

(1990) 367-376.

[81] T. Radzik, Implementation of Dynamic Trees with In-Subtree Opera-

tions, Department of Computer Science, Kings College, London, Tech-

nical Report (1998).

[82] M. Resende, and G. Veiga, An efficient implementation of a network

interior point method, D.S. Johnson and C.C. McGeoch, (Eds.), Net-

work flows and matching: First DIMACS implementation challenge, 12,

152

DIMACS series in discrete mathematics and theoretical computer sci-

ence, American Mathematical Society, Providence, Rhode Island, (1993)

299-348.

[83] H. Rock, Scaling techniques for minimal cost network flows, Munich: C.

Hansen (1980) 181-191.

[84] A. Sifaleras, Development and Implementation of Exterior Point Sim-

plex Type Algorithms for Network Optimization Problems, Ph.D. The-

sis, University of Macedonia, Department of Applied Informatics, Thes-

saloniki, Greece, (2007).

[85] D. Sleator, and R. Tarjan, A data structure for dynamic trees, Journal

of Computer and System Sciences 26 (1985) 362-391.

[86] D. Sleator, and R. Tarjan , Self-adjusting binary search trees, Journal

of the Association of Computer Machinery 32 (1985) 652-686.

[87] P. Sokkalingam, R. Ahuja, and J. Orlin, New polynomial-time cycle-

canceling algorithms for minimum cost flows, Networks 36 (1) (2000)

53-63.

[88] E. Tardos, A strongly polynomial minimum cost circulation algorithm.

Combinatorica 5 (3) (1985) 247-255.

[89] R. Tarjan, Data Structures and Network Algorithms, Society for Indus-

trial and Applied Mathematics, Philadelphia, PA (1983).

[90] R. Tarjan, Amortized computational complexity, SIAM Journal on Al-

gebraic and Discrete Methods 6 (1985) 306-318.

153

[91] R. Tarjan, Dynamic Trees as Search Trees via Euler Tours, Applied

to the Network Simplex Algorithm, Mathematical Programming 78(2)

(1997) 169-177.

[92] R. Vanderbei, Linear Programming: Foundations and Extensions,

Springer, 3rd Ed. New York, NY, 2007.

[93] N. Zadeh, More Pathological Examples for Network Flow Problems,

Mathematical Programming 5(1) (1973) 217-224.

[94] N. Zadeh, A bad network problem for the simplex method and other

minimum cost flow algorithms, Mathematical Programming 5(1) (1973)

255-266.

[95] P. Zörnig, Systematic construction of examples for cycling in the simplex

method, Computers and Operations Research 33 (8) (2006) 2247-2262.

154

	Cover
	Abstract
	Table of Contents
	List of figures
	List of Tables
	List of Algorithms
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Bibliography

